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ABSTRACT

This paper presents a method to determine chromophore concentrations, blood saturation,
and epidermal thickness of human skin from diffuse reflectance spectra. Human skin was
approximated as a plane-parallel slab of variable thickness supported by a semi-infinite layer
corresponding to the epidermis and dermis, respectively. The absorption coefficient was
modeled as a function of melanin content for the epidermis and blood content and oxygen
saturation for the dermis. The scattering coefficient and refractive index of each layer were
found in the literature. Diffuse reflectance spectra between 490 and 620 nm were generated
using Monte Carlo simulations for a wide range of melanosome volume fraction, epidermal
thickness, blood volume, and oxygen saturation. Then, an inverse method was developed to
retrieve these physiologically meaningful parameters from the simulated diffuse reflectance
spectra of skin. A previously developed accurate and efficient semi-empirical model for
diffuse reflectance of two layered media was used instead of time-consuming Monte Carlo
simulations. All parameters could be estimated with relative root mean squared error less
than 5% for (i) melanosome volume fraction ranging from 1 to 8%, (ii) epidermal thickness
from 20 to 150 µm, (iii) oxygen saturation from 25 to 100%, (iv) blood volume from 1.2
to 10%, and (v) tissue scattering coefficient typical of human skin in the visible part of the
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spectrum. Similar approach could be extended to other two-layer absorbing and scattering
system.
OCIS codes: 100.3190: Inverse problems, 170.1470: Blood or tissue constituent monitor-
ing, 170.1870: Dermatology, 170.3660: Light propagation in tissues, 170.3880: Medical and
biological imaging, 170.6510: Spectroscopy, tissue diagnostics

1 INTRODUCTION

Diffuse reflectance spectroscopy has found many applications in non-invasive monitoring of
biological tissues [1–7]. This technique investigates tissue structure, chromophore concen-
tration, and health by measuring the tissue’s optical properties. Commercially available
devices typically analyze experimental data using the modified Beer-Lambert’s law to deter-
mine the relative concentrations of tissue chromophores such as melanin, blood, water, or
hemoglobin in arbitrary units [6, 8–13]. However the tissue scattering coefficient cannot be
retrieved [10,14]. Alternatively, diffuse reflectance data processed with the diffusion approxi-
mation [15] can yield absolute chromophore concentration and measure the tissue’s scattering
coefficient [16] which is related to tissue microstructure [16–19]. However, this technique re-
quires emitter-detector separation up to 1 cm thus limiting the spatial resolution of these
devices [20,21].

Current spectroscopic techniques are based on the assumption that tissue is homogeneous
and that properties are independent of depth [6,7,9,11,22,23]. In reality, most bodily organs
such as skin, the intestine, or the cervix are protected by a thin lining called the epithelial
layer [24]. While the organ is typically composed of connective tissues and perfused with
blood vessels and nerves, the protective epithelial layer is bloodless and consists of structured
cell layers [24]. Differences in cellular structure and chemical composition give rise to distinct
optical properties making the assumption of tissue homogeneity questionable [25]. In skin,
for example, the outer epidermal layer is pigmented by melanin which absorbs strongly in
the UV while the inner dermal layer is pigmented by blood which absorbs in the visible and
near-infrared parts of the spectrum [26]. Furthermore, the thickness of the epidermal layer
may vary with anatomical location, gender, and age [27–29].

Multi-layer optical models of tissue have been developed [13,30–32] to study the effects of
tissue structure and chromophore distribution on light propagation. However, such models
are computationally intensive and cannot be used in real-time clinical applications [33]. Semi-
empirical models of light transfer have been developed to accelerate computation without
significant loss of accuracy [34–38]. Mantis and Zonios [34], for example, developed a semi-
empirical model for diffuse reflectance of two-layer media. They used their model in an
inverse method to determine the optical properties of two-layer tissue phantoms of variable
epithelial thickness. However, their method requires that the bottom layer be scattering
but non-absorbing [34] which is not the case for most organs [24, 26]. In addition, Tsumura
et al. [36] developed a semi-empirical model for diffuse reflectance of two-layer scattering
and absorbing media based on the modified Beer-Lambert’s law. The authors assumed that
the thickness of the top layer was equal to 70 µm [36]. Recently, Yudovsky and Pilon [35]
developed a semi-empirical model that predicts the diffuse reflectance of strongly scattering
two-layer media. The model accounted for (i) absorption and anisotropic scattering in both
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layers, (ii) variable thickness of the top layer, and (iii) internal reflection at the medium/air
interface. It was shown to accurately predict the diffuse reflectance of skin [35].

The objective of this study is to develop an inverse method based on our semi-empirical
model [35] and to assess its robustness in estimating the scattering coefficients, chromophore
concentrations in both epidermis and dermis, and the epidermal thickness from spectral
diffuse reflectance of human skin.

2 BACKGROUND

Human Skin

Skin is the largest organ of the human body representing a total surface area of approximately
1.8 m2 and a total weight of approximately 11 kg for adults [39]. The epidermis and dermis
are the two main layers. They are separated by the basement membrane and rest on the
subcutaneous fat layer [39]. The topmost layer of the epidermis is called the stratum corneum
and is composed of dead cells embedded in a lipid matrix. The rest of the epidermis is
mainly composed of keratinocytes, melanocytes, and langerhans [39]. Melanocytes synthesize
melanin, the skin protein mainly responsible for skin color. Melanin is contained in organelles
know as melanosomes which are distributed throughout the epidermis [39]. Depending on
genetic factors and UV light exposure, melanosomes occupy 1 to 43% of the epidermal volume
corresponding to lightly or darkly pigmented skin, respectively [40–42]. Epidermal thickness
varies with bodily location and ranges between 20 and 150 µm [26,42–44].

The dermis, located beneath the epidermis, is responsible for the skin’s pliability, me-
chanical resistance and temperature control. It contains touch, pressure, and temperature
receptors as well as sebaceous and sweat glands and hair follicles [39]. The dermis is com-
posed of collagen fibers perfused by nerves, capillaries, and blood vessels [26, 45, 46]. The
thickness of the dermis ranges between 450 and 650 µm [27,47]. Depending on body location
and tissue health, the volume of blood in the dermis ranges between 0.2% and 7% [42,48,49].
Approximately half of the blood volume is occupied by erythrocytes (red blood cells) which
are responsible for oxygen transfer from the lungs to the rest of the body [42, 49]. Ery-
throcytes are composed mainly of hemoglobin molecules which reversibly bind to oxygen
molecules in the lungs to form oxyhemoglobin. Hemoglobin is known as deoxyhemoglobin
once it has released its oxygen molecules. The ratio of oxyhemoglobin molecules to the total
number of hemoglobin molecules in the blood is the so-called oxygen saturation denoted by
SO2. Hemoglobin absorption dominates the total absorption of the dermis in the visible
range [26, 39, 46]. Furthermore, the spectral extinction coefficient of oxyhemoglobin differs
significantly from that of deoxyhemoglobin. Thus, the color of the dermis depends on the
average oxygen saturation of its blood content.

Skin Properties Measurement

Various techniques exist to measure chromophore concentrations and blood saturation of
human skin. Commercially available non-invasive, optical devices typically measure these
quantities in a small region 1 to 2 cm in diameter and report a device specific melanin

3



(MI) and erythema (EI) index [40,50]. The MI corresponds qualitatively to the darkness of
skin while EI corresponds to the redness or inflammation of skin. Such devices have been
used to predict the risk of melanoma skin cancer [40] and as dosimetry feedback during
laser treatment of port-wine stains [51] and acne [52]. Recently, hyperspectral imaging in
the visible and near-infrared parts of the spectrum has been used to determine the spatial
distribution of oxygen saturation in the human skin [12]. This technique has been applied
clinically to study diabetic neuropathy [53] and predict the healing potential of diabetic
foot ulcers [4, 54]. Such devices typically assume a homogeneous tissue structure and do
not model changes in the scattering coefficient with wavelength, biological state, or from
patient to patient. Thus, only relative chromophore concentration in arbitrary units can
be reported [10, 12, 13]. Furthermore, epidermal thickness and blood volume cannot be
determined [10].

Epidermal thickness varies naturally with age, gender, and body location [27–29, 55]. It
may also increase or decrease due to external stimuli. For example, UV exposure of human
skin has been shown to increase the thickness of the epidermis in addition to increasing its
melanin content [56,57]. On the other hand, smoking has been shown to decrease epidermal
thickness [55]. Epidermal thickness can be measured reliably with punch biopsy whereby a
sample of the skin is removed and analyzed ex vivo [27, 55, 57]. This invasive technique can
be painful and destroys the sample. Alternatively, non-invasive measurements of epidermal
thickness can be made with techniques such as optical coherent tomograph or ultrasound
[58,59]. However, these techniques are primarily sensitive to the tissue’s scattering coefficient
therefore simultaneous determination of chromophore concentration is difficult [60,61].

The Radiative Transfer Equation

Biological tissues such as skin are generally absorbing and strongly scattering media [33].
Light transfer through such turbid media is governed by the radiative transfer equation
(RTE) written as [15]

ŝ · ∇I(r̂, ŝ, λ) = −µa(λ)I(r̂, ŝ, λ)− µs(λ)I(r̂, ŝ, λ) +
µs(λ)

4π

∫

4π

I(r̂, ŝi, λ)Φ(ŝi, ŝ, λ)dΩi (1)

where I(r̂, ŝ, λ) is the spectral intensity at location r̂ in a unit solid angle dΩ around direction
ŝ expressed in W/cm2·sr·nm. The linear spectral absorption and scattering coefficients are
denoted by µa(λ) and µs(λ), respectively and are expressed in cm−1 while the scattering
phase function is denoted by Φ(ŝ, ŝi, λ). The Henyey-Greenstein scattering phase function
is an approximate expression that accounts for the anisotropic nature of scattering and is
given by [62],

Φ(ŝi, ŝ, λ) =
1− g(λ)

[1 + g(λ)2 − 2g(λ) cos Θ]3/2
(2)

where Θ is the angle between ŝ and ŝi and g(λ) is the Henyey-Greenstein asymmetry factor
used extensively in tissue optics [33,63,64]. The values of g(λ) measured for the epidermis and
dermis were approximately the same and ranges between 0.73 and 0.82 in the visible range
[46]. In order to account for the magnitude and anisotropy of the scattering phenomenon,
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the transport single scattering albedo ωtr(λ) is defined as [15],

ωtr(λ) =
µs,tr(λ)

µs,tr(λ) + µa(λ)
=

µs(λ)[1− g(λ)]

µs(λ)[1− g(λ)] + µa(λ)
(3)

where, µs,tr(λ) = µs(λ)[1− g(λ)] is the transport scattering coefficient.
Monte Carlo simulation is a stochastic method for solving differential equations such as

the RTE [15,32] and has been applied to study of light transfer in skin [23,31,37,65]. To do so,
a stochastic model is constructed such that the expected value of a certain random variable
is equivalent to the value of physical quantity that is determined by the exact differential
equation [66]. The expected value is estimated by sampling the random variable multiple
times. In effect, by repeating the simulation, the variance of the estimate diminishes. Thus,
albeit at the cost of time, the solution may be found with arbitrary accuracy by increasing
the number of simulations [32,66].

Semi-Empirical Model of Diffuse Reflectance

Recently, Yudovsky and Pilon [35] developed an approximate expression for the diffuse re-
flectance of skin treated as a two-layer media and given by,

Re = R∗[R−(n1, ωtr,epi)−R−(n1, ωtr,derm)] + R−(n1, ωtr,derm) (4)

where ωtr,epi and ωtr,derm are the transport single scattering albedos of the epidermis and
dermis, respectively, while n1 is the index of refraction of both layers. The reduced reflectance
R∗ is a function of a single semi-empirical parameter α and expressed as [35],

R∗ =
tanh(Yepi)

1/α + (1− 1/α) tanh(Yepi)
(5)

The parameter Yepi is the modified optical thickness defined as Yepi = ζ(µa,epi + µs,tr)Lepi,
where Lepi is the physical thickness of the epidermis [67]. The parameter ζ was approximated
by a third order polynomial [35],

ζ2 =
47

52
+

31

49
ωtr,epi − 49

54
ω2

tr,epi −
17

27
ω3

tr,epi (6)

Similarly, assuming the refractive index of tissue to be n1 = 1.44, the semi-empirical param-
eter α was found to be [35],

1/α = −0.569ω2
tr,derm − 0.055ωtr,derm + 0.993 (7)

The function R−(n1, ωtr) appearing in Equation (4) is the diffuse reflectance of a semi-infinite
homogeneous layer, with transport single scattering albedo ωtr and index of refraction n1

given by [35],

R−(n1, ωtr) = [1− ρ01(n1)][1− ρ̂10(n1, ωtr)]
R̂d(ωtr)

1− ρ̂10(n1, ωtr)R̂d(ωtr)
(8)
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where ρ01(n1) is the normal-normal reflectivity of the tissue/air interface defined as,

ρ01(n1) =

(
n1 − n0

n1 + n0

)2

(9)

Expressions for ρ̂10 and R̂d were given in Equations (26) and (27) of Ref. [35], respectively.
The relative error between the semi-empirical model and Monte Carlo simulations was typi-
cally around 3% and never more than 8% for the optical properties of skin in the visible [35].

3 METHODS

Assumptions

Figure 1 shows the two-layer medium considered to approximate skin structure. It consisted

Figure 1: Simplified skin geometry, biological properties, and optical characteristics of the
epidermis and dermis considered in this study.

of a plane-parallel slab of thickness Lepi representing the epidermis characterized by µa,epi(λ)
and µs,tr(λ) and index of refraction n1. This top layer was supported by a semi-infinite sub-
layer representing the dermis and characterized by µa,derm(λ), µs,tr(λ) and n2. The indices
of refraction of both layers were assumed to be identical and constant with wavelength and
depth (i.e., n1 = n2) [63]. The physical distance from the surface was denoted by z. The
thickness of epidermis Lepi was considered between 20 and 150 µm. The incident light
source was modeled as a collimated, monochromatic, and normally incident beam of infinite
radius and intensity I0(λ) = q0(λ)δ(θ). The quantity q0(λ) denotes the radiative flux of
the collimated beam and δ(θ) is the Dirac delta function. The air/epidermis interface and
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the interface between the slab and the semi-infinite sub-layer were assumed to be optically
smooth and therefore specularly reflecting. Then, radiative transfer can be considered as
one-dimensional [15,68]. Thus, the local intensity depends only on depth z and angle θ, i.e.,
I(r̂, ŝ, λ) = I(z, θ, λ) [15].

Closure Laws

In order to solve the RTE along with the associated boundary conditions [35] using the
Monte Carlo method [32], the radiation properties of both the epidermis and dermis must
be specified on a spectral basis.

Reduced Scattering Spectrum

The reduced scattering coefficients of the epidermis and dermis were assumed to be equal
and given by the power law [33],

µs,tr(λ) = C

(
λ

λ0

)−b

(10)

where λ0 = 1 nm was introduced to ensure consistency in units. This approximate relation-
ship is based on analytical [19, 69–72] and experimental [17, 73, 74] studies of scattering in
biological media and has been used to model tissue scattering in the visible and near-infrared
parts of the spectrum. It has been shown experimentally that C and b depend on the av-
erage size of the microscopic features such as cells or connective tissue responsible for light
scattering in the skin [17,70].

Epidermis

Absorption in the epidermis is mainly due to melanin and flesh. Thus, the absorption
coefficient in the epidermal layer µa,epi(λ) was expressed as [42],

µa,epi(λ) = µa,mel(λ)fmel + µa,back(λ)(1− fmel) (11)

where fmel is the volume fraction of melanosomes and µa,back(λ) is the background absorption
of human flesh given by [42,75],

µa,back(λ) = 7.84× 108λ−3.255 (12)

The absorption coefficient of melanosomes as a function of wavelength has been approximated
as [76],

µa,mel(λ) = 6.60× 1011λ−3.33 (13)

where λ and µa,mel(λ) are expressed in nanometers and cm−1, respectively. Figure 2a shows
µa,back and µa,mel predicted by Equations (12) and (13) as a function of wavelength between
450 and 700 nm. It illustrates that melanin absorption of UV light is much stronger than
the near-infrared light. Indeed, the primary function of melanin is to protect the human
body from harmful UV radiation [40–42].
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Figure 2: Absorption properties of endogenous skin chromophores in the visible range (480
to 700 nm). (a) Absorption coefficient of melanosomes [76]. (b) Spectral molar extinction
coefficient of human oxyhemoglobin and deoxyhemoglobin [77].

Dermis

The absorption coefficient of the dermis is determined primarily by the absorption of blood
[26,39,46] and can be written as [48,77],

µa,derm(λ) = fbloodµa,blood(λ) + µa,back(λ)(1− fblood) (14)

where fblood is the volume fraction of the dermis occupied by blood and µa,back(λ) is given
by Equation (12). In the visible range, oxyhemoglobin and deoxyhemoglobin are mainly
responsible for blood absorption, i.e., µa,blood(λ) = µa,oxy(λ) + µa,deoxy(λ). The absorption
coefficient of oxyhemoglobin is given by [48,77],

µa,oxy(λ) = εoxy(λ)ChemeSO2/66, 500 (15)

where εoxy(λ) is the molar extinction coefficient of oxyhemoglobin in cm−1/(mole/L) of molec-
ular weight 66,500 g/mole while Cheme is the concentration ratio of hemoglobin in blood [g/L],
and SO2 is the oxygen saturation. Similarly, the absorption coefficient of deoxyhemoglobin
is given by [48,77],

µa,deoxy(λ) = εdeoxy(λ)Cheme(1− SO2)/66, 500 (16)

where εdeoxy(λ) is the molar extinction coefficient of deoxyhemoglobin. While the blood
volume fraction fblood and oxygen saturation SO2 may vary with location and metabolic
state, the average value of hemoglobin concentration Cheme is typically constant and equal
to 150 g/L [44, 77, 78]. The spectral molar extinction coefficients of oxyhemoglobin and
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deoxyhemoglobin are available in the literature for a wide range of wavelengths [77, 79–
81]. Figure 2b shows the values of εoxy(λ) and εdeoxy(λ) used in this study in the visible
range from 450 to 700 nm as reported in the literature [77]. Oxyhemoglobin exhibits two
absorption peaks at 542 and 578 nm while deoxyhemoglobin exhibits a single peak at 554
nm. Furthermore, oxyhemoglobin is nearly transparent for wavelengths above 600 nm, giving
oxygen rich blood its red color.

Simulated Diffuse Reflectance

The biological properties required to estimate the radiative properties of skin in order to
solve the RTE can be represented by the input property vector,

~ai = 〈fmel, Lepi, fblood, SO2, C, b〉 (17)

For a given vector ~ai, the absorption and scattering coefficients of the epidermis and dermis
were determined as a function of wavelength using Equations (10) through (16). Then, the
RTE was solved on a spectral basis for 40 evenly spaced wavelengths between 480 and 650 nm
using the Monte Carlo simulation software developed by Wang and Jacques [32]. A complete
and detailed description of the implementation and theoretical underpinnings of this software
is given in Ref. [32]. The number of simulated photon packets per simulation was adjusted
until the variance associated with the estimate of the diffuse reflectance fell below 1%. Each
Monte Carlo simulation was allowed to run with 1,000,000 photon bundles which effectively
reduced the variance of the simulated diffuse reflectance spectra to zero. The computed
diffuse reflectance is referred to as the “simulated diffuse reflectance spectrum” denoted by
Ri(~ai, λj) where λj is the jth wavelength and j is an integer between 1 to K.

Inverse Method

The goal of the inverse problem was to estimate the vector ~ai from the simulated diffuse
reflectance Ri(~ai, λj). This was achieved by finding an estimate vector ~ae that minimizes the
sum of the squared residuals δ expressed as,

δ =
K∑

i=1

[Ri(~ai, λj)−Re(~ae, λj)]
2W 2

j (18)

where Re(~ae, λj) is the estimated spectral diffuse reflectance predicted by Equations (4)
and (5), and Wj is the weight associated with the jth residual, and K is the number of
wavelengths considered. The input diffuse reflectance spectra Ri(~ai, λj) were calculated by
Monte Carlo simulations for a given input parameter vector ~ai. Diffuse reflectance was
predicted at K = 40 evenly space wavelengths between 490 and 650 nm. This wavelength
range was chosen such that melanin, oxyhemoglobin, and deoxyhemoglobin exhibit distinct
and significant absorption (Figures 2a and 2b).

Note that the number of wavelengths considered (K = 40) was chosen arbitrarily. The-
oretically, six wavelengths are required to retrieve the six unknowns fmel, Lepi, fblood, SO2,
C, and b. In practice, more measurements can be made to reduce the effects of experimen-
tal uncertainty. Furthermore, wavelengths can be strategically chosen to coincide with the
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absorption peaks of oxyhemoglobin and deoxyhemoglobin to increase the inverse method’s
sensitivity to, for example, SO2 [13]. The goal of this study, however, was to assess the use
of the semi-empirical model [Equation (4)] in predicting ~ai. Therefore K was chosen to be
relatively large, yet practically implementable so as to reduce the effects of numerical error
and wavelength selection.

The values of Wj were chosen to be 2.0 for λj < 600 nm and 1.0 for λj ≥ 600 nm
to increase the method’s sensitivity to changes in SO2 observed mainly for λ < 600 nm.
Equation (18) was solved iteratively with the constrained Levenberg-Marquardt algorithm
[82]. The values of the estimated property vector ~ae were constrained between physiologically
realistic upper and lower bounds reported in the literature and summarized in Table 1. The
minimization was stopped once successive iterations of the algorithm no longer reduced δ
by more that 10−9. Furthermore, multiple random initial guesses for ~ae were attempted to
prevent convergence to a local minimum.

Table 1: Lower and upper bound values for biological properties of human skin estimated
by the inverse method.

Biological Property Symbol Lower Bound Upper Bound Reference
Volume fraction of melanosomes fmel 1% 10% [40–42]
Epidermal thickness Lepi 20 µm 150 µm [26,42–44]
Blood volume fraction fblood 0.2% 7% [42,49]
Oxygen saturation SO2 0% 100%
Scattering constant C 4.0× 105 cm−1 5.5× 105 cm−1 [42]
Scattering power constant b 1.10 1.50 [16,17,42]

4 RESULTS AND DISCUSSION

Accuracy of Semi-Empirical Model for Skin

Figure 3 compares the diffuse reflectance spectrum Ri(λ) calculated by Monte Carlo simu-
lations to that predicted by Equation (4) for Lepi = 30 µm and fmel = 5.0%. Two different
values for both fblood and SO2 were explored namely fblood = 0.41 and 7% and SO2 = 0
and 100%. The effects of oxygen saturation on the shape of the diffuse reflectance spectrum
was most apparent when fblood = 7.0%. Skin with oxygen depleted blood, corresponding to
SO2 = 0%, exhibited the single absorption peak of deoxyhemoglobin at 554 nm while re-
flectance for SO2 = 100% exhibits both oxyhemoglobin absorption peaks at 542 and 578 nm.
Furthermore, fully oxygenated blood resulted in 1.5 times more reflective skin for λ > 600
nm than when blood was deoxygenated. Figure 3 also shows that decreasing the blood vol-
ume fraction to fblood = 0.41% greatly diminished the effects of oxygen saturation on the
reflectance spectrum. Then, the oxyhemoglobin and deoxyhemoglobin peaks and changes
in reflectance were far more subtle since the absorption coefficient of the dermis predicted
by Equation (14) was dominated by µa,back. Note that it typically took 2 minutes on a 2.66
GHz processor to compute the diffuse reflectance spectrum for 40 discrete wavelengths using
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Figure 3: Diffuse reflectance of human skin as a function of wavelength calculated by Monte
Carlo simulates and predicted by the semi-empirical model for Lepi = 30 µm and fmel = 5.0%
and different values of blood volume fraction fblood (0.41 and 7%) and oxygen saturation SO2

(0 and 100%).

Monte Carlo simulations [32]. On the other hand, the diffuse reflectance spectrum could be
estimated nearly instantaneously using Equation (4) to (9).

The accuracy of the semi-empirical model with respect to predictions by Monte Carlo
simulations can also be assessed from Figure 3. For fblood = 7.0%, predictions of the diffuse
reflectance by the semi-empirical model fell within 3% of that calculated by Monte Carlo
simulations for all wavelengths considered. The error was less that 0.5% for λ between 530
and 600 nm, the region associated with the oxyhemoglobin and deoxyhemoglobin peaks.
However, for fblood = 0.41%, the semi-empirical model underpredicted the diffuse reflectance
by approximately 4% for all wavelengths and for SO2 equal to 0 and 100%. As discussed by
Yudovsky and Pilon [35], the prediction error associated with the semi-empirical model used
in this study increased when the transport single scattering albedo of either layer approaches
unity. Thus, as fblood decreased, the absorption coefficient of the dermis µa,derm decreased
and its single scattering albedo approached 1.0 resulting in larger error in the prediction of
the diffuse reflectance.

Parameter Estimation

Diffuse reflectance spectra were calculated with Monte Carlo simulations while varying the
components of ~ai between the upper and lower bounds reported in Table 1. Six values
of oxygen saturation SO2, epidermal thickness Lepi, melanosome volume fraction fmel, and
blood volume fraction fblood and three values of scattering constants C and b were considered
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for a total of 11, 664 simulated spectra. For each spectrum, the estimate vector ~ae was
found by minimizing δ defined in Equation (17). To explore the effects of each parameter
separately, two scenarios were considered. First, the inverse method’s ability to estimate
Lepi, fmel, fblood, and SO2 was assessed assuming that the scattering constants C and b were
known. Second, the scattering constants C and b were assumed unknown and were retrieved
along with the other four input parameters. To assess the accuracy of the inverse method,
the root mean squared (rms) error in the retrieval of a given parameter was computed over
the entire range of biological properties considered for an arbitrary value of that parameter.

Estimation with Known C and b

In this section, C and b were assumed to be known and equal to C = 5.0 × 105 cm−1 and
b = 1.30. These values were measured ex vivo for healthy human skin [42]. Here, diffuse
reflectance spectra were simulated only for input melanin concentration fmel = 5%. Then,
values of fmel, Lepi, SO2, and fblood were retrieved by inverse method using the simulated
diffuse reflectance spectrum obtained using Monte Carlo simulations for the range of fmel,
Lepi, SO2, and fblood specified in Table 1. The rms relative error between the estimated and
input value of fmel = 5% was less than 0.5% for all values of Lepi, SO2, and fblood considered.

Figures 4a and 4b show the estimated versus input oxygen saturation SO2 and 10%
absolute error bounds for Lepi ranging from 20 to 150 µm and for fblood equal to 0.20 and 7.0%,
respectively. Figure 4a indicates that SO2 was overestimated for low values of fblood. This
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Figure 4: Estimated versus input oxygen saturation SO2 and 10% absolute error bounds
for input values fmel = 5.0%, 20 ≤ Lepi ≤ 150 µm, and (a) fblood = 0.20% and (b) 7%,
respectively. The scattering constants were taken as C = 5.0× 105 cm−1 and b = 1.30.

was primarily due to the underprediction of diffuse reflectance by the semi-empirical model
for λ ≥ 600 nm (Figure 3). Indeed, highly oxygenated blood exhibited stronger reflectance
in this spectral range. Thus, an overestimate of SO2 compensated for the inaccuracy of
the semi-empirical model. Figure 4a also shows the effect of epidermal thickness on the
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prediction of SO2. A thicker epidermis resulted in poorer estimates of SO2 since, then, the
epidermis optically shielded the dermis. The effect of epidermal thickness on the prediction
of SO2 was best illustrated for input SO2 = 60%. In this case, when Lepi = 20 µm, the
absolute estimation error was less than 5%. However, for Lepi larger than 100 µm, the
absolute error in SO2 increased beyond 10%.

Figure 4b indicates that for blood volume equal to 7.0%, epidermal thickness has little
effect on the prediction error associated with SO2. The rms and the maximum absolute
errors between the estimated and input values of SO2 increased from 2.9 and 9.2% to 13.5
and 47.9%, respectively as Lepi increased from 20 to 150 µm. In contrast, as fblood increased
from 0.20 to 7.0%, the rms and maximum absolute errors between the estimated and input
values of SO2 decreased from 13.8 to 3% and of 47.9 to 9.4%, respectively. The largest
maximum error of 47.9% occurred for the lowest values of fblood and the largest values of
Lepi. However, it was not typical of this inverse method’s performance, as suggested by the
rms error.

Nouvong et al. [54] recently measured the oxygen saturation near healing and non-healing
diabetic foot ulcers using hyperspectral imaging [12]. Their data suggests that skin near non-
healing ulcers exhibit a 10% lower oxygen saturation on average when compared with skin
near healing ulcers. Furthermore, the values of SO2 reported were near 55%. The rms error
of the present algorithm for SO2 = 55% was found to be 3.6%. Thus, the present method is
accurate enough to assess wound healing on the diabetic foot.

Figures 5a and 5b show the estimated versus input values of fblood and 0.5% absolute
error bounds for 20 ≤ Lepi ≤ 150 µm and SO2 = 0% and 100%, respectively. Unlike
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Figure 5: Estimated versus input blood volume fraction fblood and 0.5% absolute error bounds
for input values fmel = 5.0%, 20 ≤ Lepi ≤ 150 µm, and (a) SO2 = 0% and (b) 100%,
respectively. The scattering constants were taken as C = 5.0× 105 cm−1 and b = 1.30.

the estimate of SO2 previously discussed, the estimate of fblood was almost unaffected by
epidermal thickness Lepi since the effect of increasing or decreasing fblood was to shift the
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entire reflectance spectrum intensity down or up, respectively. Changes in SO2, on the other
hand, affected the spectral shape of the diffuse reflectance spectrum near the absorption
peaks of oxyhemoglobin and deoxyhemoglobin (530 <≤ λ <≤ 600 nm). However, SO2

had an effect only outside of this wavelength range for larger values of fblood. Thus, the
proposed inverse method predicted changes in fblood more accurately than changes in SO2.
Furthermore, as Lepi increased from 20 to 150 µm, the rms and the maximum absolute errors
between the input and estimated values of fblood increased from 0.074 to 0.21% and 0.30 to
0.71%, respectively. However, these errors remained small and acceptable for all values of
Lepi.

Figures 6a and 6b show the estimated versus input values of Lepi and 10% relative error
bounds for SO2 between 0 and 100% and for fblood = 0.20 and 7.0%, respectively. The
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Figure 6: Estimated versus input epidermal thickness Lepi and 10% relative error bounds
for input values fmel = 5.0%, 0% ≤ SO2 ≤ 100%, and (a) fblood = 0.20% and (b) 7.0%,
respectively. The scattering constants were taken as C = 5.0× 105 cm−1 and b = 1.30.

relative error in Lepi was larger than 10% for fblood less than 1% and Lepi between 40 and 100
µm. However, for Lepi smaller than 40 µm or larger than 100 µm, the epidermal thickness
was dominant in determining the shape of the diffuse reflectance spectrum. In both cases,
Lepi was estimated accurately for all values of fblood. Indeed, for large values of fblood, ωtr,derm

decreased but remained larger than 0.5 resulting in better agreement between the semi-
empirical model and Monte Carlo simulations. Thus, the epidermal thickness Lepi was better
estimated for larger values of fblood. In fact, as fblood increased from 0.20 to 7.0%, the rms
relative error and the maximum relative error between the input and estimated values of
Lepi decreased from 8.1 to 6.6% and from 20.1 to 16.7%, respectively. Note that for all cases,
the maximum absolute error in estimating Lepi was less than 14 µm which is approximately
the diameter of a keratinocytes cell [83].
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Estimation of Melanin Concentration

Here also, C and b were assumed to be known and equal to C = 5.0×105 cm−1 and b = 1.30.
The value of fmel was varied between 1 and 10% and retrieved by inverse method along
with Lepi, SO2, and fblood. While melanosome volume fractions of up to 43% have been
reported [42], the range considered in this study was abridged to 10%. Indeed, beyond 10%,
the transport single scattering albedo ωtr,epi became less than 0.50 and the accuracy of the
semi-empirical model in predicting the diffuse reflectance greatly diminished [35] making
accurate inversion difficult or even impossible.

Figure 7 shows the estimated versus input values of fmel and 0.5% absolute error bounds
for various input values of Lepi and fblood and for SO2 = 50%. The estimate of fmel was well
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Figure 7: Estimated versus input melanosome volume fraction fmel and 0.5% absolute error
bounds for input values 20 ≤ Lepi ≤ 150 µm and 0.20 ≤ fblood ≤ 7.0%, and SO2 = 50%. The
scattering constants were taken as C = 5.0× 105 cm−1 and b = 1.30.

within 0.5% for all values of Lepi. As with fblood shown in Figure 5, the absolute error was
small and acceptable. Similar results as those previously discussed for fmel = 5% were found
for the retrieved values of SO2, Lepi and fblood and need not be repeated. In other words,
the ability of the inverse method to estimate Lepi, SO2, and fblood was not altered by the
melanosome volume fraction fmel.

Estimation of Tissue Scattering

So far, the values of C and b were considered to be constant and known. In reality, they
depend on the average diameter and concentration of collagen fibers in the skin, for example.
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They may vary from 4.0× 105 to 5.5× 105 cm−1 and from 1.1 to 1.5, respectively [17,18,70].
To test the ability of the proposed inverse method to estimate C and b from diffuse reflectance
measurements, Monte Carlo simulations were performed while varying C and b between these
bounds. Then, δ given by Equation (18) was minimized to find optimal estimates of C and b
for each diffuse reflectance spectrum in addition to the four parameters fmel, Lepi, fblood, and
SO2. It was found that fmel, Lepi, fblood, SO2, and b or C could be estimated accurately only
if C or b was assumed to be known, respectively. However, if both b and C were retrieved
simultaneously, only SO2, fmel and Lepi could be estimated reliably while fblood, b, and C
could not be accurately estimated. This was despite the fact that the estimated diffuse
reflectance by the semi-empirical model using the retrieved parameters matched the input
diffuse reflectance closely for all cases considered.

Therefore, values of b measured in vitro and reported in the literature [16, 17, 42] were
used in conjunction with the present inverse method. Figures 8a and 8b show the estimated
versus input scattering constant C and 5% relative error bounds for 20 <≤ Lepi <≤ 150 µm,
0.20% ≤ fblood ≤ 7%, fmel = 5% and for SO2 = 0 and 100 %, respectively. The parameter

3.5 4 4.5 5 5.5 6
3.5

4

4.5

5

5.5

6

Input Scattering Constant, C × 10−5 (1/cm)

E
st

im
at

ed
 S

ca
tte

rin
g 

C
on

st
an

t, 
C

 
× 

10
−5

 (
1/

cm
)

5%

 

 

SO
2
 = 0%

L
epi

 = 20.0 µm, f
blood

 = 0.20%

L
epi

 = 150.0 µm, f
blood

 = 0.20%

L
epi

 = 20.0 µm, f
blood

 = 7.00%

L
epi

 = 150.0 µm, f
blood

 = 7.00%

(a)

3.5 4 4.5 5 5.5 6
3.5

4

4.5

5

5.5

6

Input Scattering Constant, C × 10−5 (1/cm)

E
st

im
at

ed
 S

ca
tte

rin
g 

C
on

st
an

t, 
C

 
× 

10
−5

 (
1/

cm
)

5%

 

 

SO
2
 = 100%

L
epi

 = 20.0 µm, f
blood

 = 0.20%

L
epi

 = 150.0 µm, f
blood

 = 0.20%

L
epi

 = 20.0 µm, f
blood

 = 7.00%

L
epi

 = 150.0 µm, f
blood

 = 7.00%

(b)

Figure 8: Estimated versus input scattering constant C and 5% relative error bounds for
input values 20 ≤ Lepi ≤ 150 µm, 0.20 ≤ fblood ≤ 7.0%, fmel = 5.0%, b = 1.30 for (a)
SO2 = 0% and (b) SO2 = 100%, respectively. The scattering constant b is assumed to be
known.

b was assumed to be constant and equal to 1.30 for both simulated and estimated diffuse
reflectance. The blood volume fraction fblood had the strongest effect on the relative error in
the retrieved C. Greater error was observed for small values of fblood for reasons previously
discussed. As fblood increased from 0.20 to 7.0%, the rms relative error and the maximum
relative error between the input and estimated value of C decreased from 5.9 to 1.4% and
from 23.4 to 3.4%, respectively. These errors remained small and acceptable.

To illustrate the accuracy of the inverse method using the semi-empirical model, simulated
diffuse reflectance spectra were produced for Lepi = 50 and 100 µm and fmel equal to 1%,
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5%, and 10% representing weakly, moderately, and strongly pigmented skin, respectively.
The input values of the other parameters SO2, fblood, and C were chosen in the ranges given
in Table 1. Then, all 5 parameters were estimated, while b was imposed to be 1.30. Table
2 shows the relative rms error between the input and estimated values of fmel, Lepi, fblood,
SO2, and C for the three skin complexions and two epidermal thicknesses considered. Note
that input values of SO2 smaller than 25% were ignored while calculating the relative rms
error associated with estimating SO2 because these small values are unrealistic for living
tissues.

Table 2: Relative rms error between retrieved and input values of fmel, Lepi, SO2, fblood,
and C for Lepi = 50 and 100 µm and fmel equal to 1%, 5%, and 10% representing weakly,
moderately, and strongly pigmented skin, respectively. The input values of SO2, fblood, and
C were chosen in the ranges given in Table 1. The rms error in estimating SO2 was calculated
for SO2 > 25%

.

Lepi = 50 µm Lepi = 100 µm
fmel fmel Lepi SO2 fblood C fmel Lepi SO2 fblood C
1% 9.3% 16.1% 1.3% 2.5% 2.4% 10.1% 15.4% 4.8% 5.2% 2.2%
5% 9.9% 9.6% 4.6% 10.2% 2.4% 3.7% 5.7% 4.9% 6.4% 2.5%
10% 3.5% 1.8% 3.2% 11.8% 3.1% 0.5% 3.8% 15.8% 11.3% 2.2%

Finally, the present inverse algorithm was recently used to detect callus and ulcer for-
mation on the foot of a diabetic patient [84]. Hyperspectral tissue reflectance images of the
foot of a diabetic patient were collected at regular interval for 18 months [54]. During this
period a foot ulcer developed on the plantar surface of the left sole [54]. Hyperspectral data
of the ulceration site was available 30 days before the ulcer formed. A diabetic foot ulcer
is often preceded by callus formation (i.e., epidermal thickening) around the preulcerative
site [85,86]. As the ulcer formation progresses, the epidermis immediately above the necrotic
tissue diminishes in thickness [85,86]. Estimation of the epidermal thickness was performed
with the present algorithm to confirm that such changes could be detected optically. In
fact, the preulcerative site exhibited an epidermal thickness of 85 µm and was surrounded
by much thicker epidermis of approximately (130 µm). These results show promise that
the present algorithm could be used to assess tissue health in vivo and in a clinical setting.
However, complete discussion of this topic falls outside the scope of this paper.

5 CONCLUSION

In this paper, human skin was modeled as a slab of variable thickness, corresponding to the
epidermis, supported by a semi-infinite layer, corresponding to the dermis. Absorption in
the epidermis was due to melanin and varied depending on melanosome volume fraction.
Absorption in the epidermis was due to oxyhemoglobin and deoxyhemoglobin and varied
with blood volume fraction and oxygen saturation. Index of refraction and scattering co-
efficient in both layers were assumed to be identical. The radiative transfer equation was
solved on a spectral basis between 490 and 650 nm by Monte Carlo simulations to produce
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simulated diffuse reflectance spectra for a wide range of biological properties. Then, an in-
verse method was used to retrieve physiologically meaningful parameters from the simulated
diffuse reflectance spectra. A quicker semi-empirical model [35] was used instead of Monte
Carlo simulations in the iterative inversion procedure. The accuracy of the inverse method in
estimating fmel, Lepi, SO2, fblood and C was explored for a range of physiologically meaning-
ful values specified in Table 1. In summary, all parameters could be estimated with relative
rms error less than 5% for fmel between 1 and 8%, Lepi ranging from 20 to 150 µm, SO2 from
25 to 100%, fblood from 1.2 to 10%, and C from 4.0×105 to 5.5×105 cm−1. The methodology
presented can be applied to any two layer optical system where scattering dominates over
absorption.
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[51] Kono, T. and Erçöçen, A.R. and Nakazawa, H. and Honda, T. and Hayashi, N. and Nozaki,
M., “The flashlamp-pumped pulsed dye laser (585 nm) treatment of hypertrophic scars in
Asians”, Annals of Plastic Surgery, vol. 51, no. 4, pp. 366–371, 2003.

[52] H.J. Yoon, D.H. Lee, S. Ok Kim, K. Chan Park, and S. Woong Youn, “Acne erythema
improvement by long-pulsed 595-nm pulsed-dye laser treatment: A pilot study”, Journal of
Dermatological Treatment, vol. 19, no. 1, pp. 38–44, 2008.

21



[53] R.L. Greenman, S. Panasyuk, X. Wang, T.E. Lyons, T. Dinh, L. Longoria, J.M. Giurini,
J. Freeman, L. Khaodhiar, and A. Veves, “Early changes in the skin microcirculation and
muscle metabolism of the diabetic foot”, The Lancet, vol. 366, no. 9498, pp. 1711–1717, 2005.

[54] A. Nouvong, B. Hoogwerf, E. Mohler, B. Davis, A. Tajaddini, and E. Medenilla, “Evaluation
of diabetic foot ulcer healing with hyperspectral imaging of oxyhemoglobin and deoxyhe-
moglobin”, Diabetes Care, vol. 32, no. 11, 2009.

[55] J. Sandby-Moller, T. Poulsen, and H.C. Wulf, “Epidermal thickness at different body sites:
relationship to age, gender, pigmentation, blood content, skin type and smoking habits”, Acta
Dermato-Venereologica, vol. 83, no. 6, pp. 410–413, 2003.

[56] T. Gambichler, J. Huyn, N.S. Tomi, G. Moussa, C. Moll, A. Sommer, P. Altmeyer, and
K. Hoffmann, “A comparative pilot study on ultraviolet-induced skin changes assessed by
noninvasive imaging techniques in vivo”, Photochemistry and Photobiology, vol. 82, no. 4, pp.
1103–1107, 2006.

[57] J. Lock-Andersen, P. Therkildsen, O.F. de Fine, M. Gniadecka, K. Dahlstrøm, T. Poulsen,
and HC Wulf, “Epidermal thickness, skin pigmentation and constitutive photosensitivity.”,
Photodermatology, Photoimmunology & Photomedicine, vol. 13, no. 4, pp. 153–157, 1997.

[58] T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of
epidermal thickness evaluated by optical coherence tomography: effects of age, gender, skin
type, and anatomic site”, Journal of Dermatological Science, vol. 44, no. 3, pp. 145–152, 2006.

[59] P.P. Guastalla, V.I. Guerci, A. Fabretto, F. Faletra, D.L. Grasso, E. Zocconi, D. Stefanidou,
P. D’Adamo, L. Ronfani, M. Montico, et al., “Detection of epidermal thickening in GJB2
carriers with epidermal US”, Radiology, vol. 251, no. 1, pp. 280–286, 2009.

[60] D.J. Faber and T.G. van Leeuwen, “Are quantitative attenuation measurements of blood by
optical coherence tomography feasible?”, Optics Letters, vol. 34, no. 9, pp. 1435–1437, 2009.

[61] D.J. Faber, E.G. Mik, M.C.G. Aalders, and T.G. van Leeuwen, “Toward assessment of blood
oxygen saturation by spectroscopic optical coherence tomography”, Optics Letters, vol. 30,
no. 9, pp. 1015–1017, 2005.

[62] L.G. Henyey and J.L. Greenstein, “Diffuse radiation in the galaxy”, Annales d’Astrophysique,
vol. 93, pp. 70–83, 1940.

[63] M.J.C. Van Gemert, S.L. Jacques, H. Sterenborg, and W.M. Star, “Skin optics”, IEEE
Transactions on Biomedical Engineering, vol. 36, no. 12, pp. 1146–1154, 1989.

[64] S.L. Jacques, C.A. Alter, and S.A. Prahl, “Angular dependence of HeNe laser light scattering
by human dermis”, Lasers in the Life Sciences, vol. 1, no. 4, pp. 309–333, 1987.

[65] S.K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to
describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with
Monte Carlo simulations and clinical measurements”, Journal of Biomedical Optics, vol. 9,
no. 3, pp. 511–522, 2004.

[66] I. Lux and L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon
Calculations, CRC Press, Boca Raton, FL, 6th edition, 1991.

22



[67] M.J.C. van Gemert and W.M. Star, “Relations between the Kubelka-Munk and the transport
equation models for anisotropic scattering”, Lasers in the Life Sciences, vol. 1, no. 98, pp.
287–298, 1987.

[68] M. Keijzer, S.L. Jacques, S.A. Prahl, and A.J. Welch, “Light distributions in artery tissue:
Monte Carlo simulations for finite-diameter laser beams”, Lasers Surgery in Medicine, vol. 9,
no. 2, pp. 148–154, 1989.

[69] S.Y. Shchyogolev, “Inverse problems of spectroturbidimetry of biological disperse systems: an
overview”, Journal of Biomedical Optics, vol. 4, no. 4, pp. 490–503, 1999.

[70] J.R. Mourant, J.P. Freyer, A.H. Hielscher, A.A. Eick, D. Shen, and T.M. Johnson, “Mecha-
nisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics”,
Applied Optics, vol. 37, no. 16, pp. 3586–3593, 1998.

[71] J.R. Mourant, T. Fuselier, J. Boyer, T.M. Johnson, and I.J. Bigio, “Predictions and measure-
ments of scattering and absorption over broad wavelength ranges in tissue phantoms”, Applied
Optics, vol. 36, no. 4, pp. 949–957, 1997.

[72] R. Graaff, J.G. Aarnoudse, J.R. Zijp, P.M.A. Sloot, F.F.M. de Mul, J. Greve, and M.H.
Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple
approximation derived from Mie calculations”, Applied Optics, vol. 31, no. 10, pp. 1370–1376,
1992.

[73] A.N. Bashkatov, E.A. Genina, V.I. Kochubey, and V.V. Tuchin, “Optical properties of human
skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm”, Journal
of Physics D: Applied Physics, vol. 38, no. 15, pp. 2543–2555, 2005.

[74] G. Vargas, E.K. Chan, J.K. Barton, and A.J. Welch, “Use of an agent to reduce scattering in
skin”, Lasers in Surgery and Medicine, vol. 24, no. 2, pp. 133–141, 1999.

[75] I.S. Saidi, Transcutaneous Optical Measurement of Hyperbilirubinemia in Neonates, PhD
thesis, Rice University, 1992.

[76] S.L. Jacques and D.J. McAuliffe, “The melanosome: threshold temperature for explosive va-
porization and internal absorption coefficient during pulsed laser irradiation”, Photochemistry
and Photobiology, vol. 53, no. 6, pp. 769–775, 1991.

[77] S. Prahl, “Optical absorption of hemoglobin”, World Wide Web:
http://omlc.ogi.edu/spectra/hemoglobin/hemestruct/index.html, Accessed: 10/5/2009.

[78] A.N. Yaroslavsky, A.V. Priezzhev, J.R.I.V. Yaroslavsky, and H. Battarbee, “Optics of blood”,
in Handbook of Optical Biomedical Diagnostics, V.V. Tuchin, Ed., pp. 169–216. SPIE Publi-
cations, Bellingham, WA, 2002.

[79] S. Wray, M. Cope, D.T. Delpy, J.S. Wyatt, and E.O. Reynolds, “Characterization of the
near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive
monitoring of cerebral oxygenation.”, Biochimica et Biophysica Acta - Bioenergetics, vol. 933,
no. 1, pp. 184–192, 1988.

[80] A.P. Harris, M.J. Sendak, R.T. Donham, M. Thomas, and D. Duncan, “Absorption character-
istics of human fetal hemoglobin at wavelengths used in pulse oximetry”, Journal of Clinical
Monitoring and Computing, vol. 4, no. 3, pp. 175–177, 1987.

23



[81] S. Takatani and M.D. Graham, “Theoretical analysis of diffuse reflectance from a two-layer
tissue model”, IEEE Transactions on Biomedical Engineering, vol. 26, no. 12, pp. 656–664,
1979.

[82] D.W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters”, Jour-
nal of the Society for Industrial and Applied Mathematics, vol. 11, no. 2, pp. 431–441, 1963.

[83] C. Harle-Bachor and P. Boukamp, “Telomerase activity in the regenerative basal layer of
the epidermis in human skin and in immortal and carcinoma-derived skin keratinocytes”,
Proceedings of the National Academy of Sciences, vol. 93, no. 13, pp. 6476–6481, 1996.

[84] D. Yudovsky, A. Nouvong, K. Schomacker, and L Pilon, “Two-layer optical model of skin for
early, non-invasive detection of wound development on the diabetic foot”, in Proceedings of the
SPIE: Advanced Biomedical and Clinical Diagnostic Systems VIII, 2010, vol. 7555, p. 7555.

[85] J.S. Vande Berg and R. Rudolph, “Pressure (decubitus) ulcer: variation in histopathology –
a light and electron microscope study”, Human pathology, vol. 26, no. 2, pp. 195–200, 1995.

[86] A.J. Boulton, P. Meneses, and W.J. Ennis, “Diabetic foot ulcers: A framework for prevention
and care”, Wound Repair and Regeneration, vol. 7, no. 1, pp. 7–16, 1999.

24




