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Abstract

Objective: To evaluate the pharmacokinetics of tenofovir alafenamide (TAF) 10 mg with 

cobicistat and 25 mg without boosting in pregnant and postpartum women with HIV and to 

characterize TAF placental transfer and infant washout pharmacokinetics.

Design: Open-label, multicenter phase IV prospective study of TAF pharmacokinetics during 

pregnancy, postpartum, delivery and infant washout.

Methods: Pregnant women receiving TAF 10 mg with cobicistat or TAF 25 mg without boosting 

as part of clinical care had intensive pharmacokinetic assessments performed during the second 

and third trimesters, and 6–12 weeks postpartum. Maternal and cord blood samples were collected 

at delivery, and washout pharmacokinetic samples were collected in infants. TAF concentrations 

were quantified using LC/MS. Comparisons between pregnancy and postpartum were made using 

geometric mean ratios (90% confidence intervals) and Wilcoxon signed-rank tests.

Results: Thirty-one pregnant women receiving TAF 10 mg with cobicistat-boosting and 27 

women receiving TAF 25 mg without boosting were enrolled. TAF exposures did not significantly 

differ between pregnancy and postpartum when administered as 10 mg with cobicistat. 

Antepartum TAF exposures with the 25 mg dose were 33–43% lower in comparison to 

postpartum, but comparable to those measured in non-pregnant adults. TAF was below the lower 

limit of quantitation in 43/44 cord blood, 41/45 maternal blood at delivery, and all infant washout 

samples.

Conclusions: TAF exposures were comparable or higher than those measured in non-pregnant 

adults during pregnancy and postpartum. These findings provide reassurance on adequate TAF 

exposures during pregnancy, and support efforts to expand the use of TAF in pregnant women with 

HIV.

Keywords
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INTRODUCTION

The clinical study of newer antiretroviral therapies in pregnant women lags behind non-

pregnant adults due to the routine exclusion of pregnant women from drug development 

programs.1,2 Antiretroviral treatment during pregnancy is critical for suppressing HIV 

replication and preventing perinatal HIV transmission,3–7 but physiological changes during 

pregnancy and postpartum can alter the pharmacokinetics of antiretroviral medications.8 Of 

particular concern are subtherapeutic drug levels, which may result in virologic 

breakthrough, antiretroviral treatment resistance, and an increased risk of perinatal HIV 

transmission. Notable recent examples of this include cobicistat-containing regimens, which 

are not recommended during pregnancy9 due to markedly lower levels of cobicistat, 

elvitegravir,10 darunavir,11,12 and atazanavir13 subsequent to increased expression of 

CYP3A4 during pregnancy. Thus, pharmacokinetic data from pregnant women are essential 

for informing the appropriate dosing and use of antiretroviral medications during pregnancy.
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Tenofovir alafenamide (TAF) is a newer prodrug of the nucleotide reverse transcriptase 

inhibitor, tenofovir, and is a key component of multiple antiretroviral regimens for non-

pregnant adults living with HIV.14–17 Despite its initial approval in 2015, TAF is not 

currently recommended for use during pregnancy due to limited pharmacokinetic and safety 

data.3,17 Tenofovir in the form of tenofovir disoproxil fumarate (TDF) is recommended 

during pregnancy in combination with other antiretroviral medications and has been used for 

several years in pregnant women.3 Though TDF is considered safe during pregnancy, some 

studies have shown a higher risk of adverse pregnancy outcomes with TDF-based therapy, 

such as very preterm delivery before 34 weeks and early infant death,7 and variable findings 

on infant growth and development in TDF-exposed infants.7,18 These studies were also 

complicated by the concomitant use of other antiretroviral medications, and a clear 

mechanistic link between TDF specifically and adverse outcomes has not been established.
19

Given the improved safety profile of TAF in non-pregnant adults and differing 

pharmacology from TDF, TAF may be another valuable addition to HIV treatment options 

available during pregnancy. However, TAF pharmacokinetics may be altered during 

pregnancy through changes in hydrolase or transporter expression, volume expansion, or 

other mechanisms,8 and thus pharmacokinetic data are needed to support uptake in this 

population. The primary objectives of this study were to characterize the pharmacokinetics 

of TAF when administered at doses of 10 mg with cobicistat-boosting and 25 mg without 

boosting during pregnancy and postpartum. Primary outcomes included comparisons of TAF 

exposures to historical data in non-pregnant adults living with HIV, and within-subject 

comparisons to characterize the influence of pregnancy on TAF exposures in comparison to 

the postpartum period. Secondary objectives were to determine the transplacental passage of 

TAF from maternal to fetal circulation and to describe maternal and infant safety and clinical 

outcomes.

METHODS

Study Population & Design

IMPAACT P1026s was a prospective, opportunistic, open-label, multi-center phase IV study 

of the pharmacokinetics and safety of multiple antiretroviral medications in pregnant women 

living with HIV (NCT00042289). Pregnant women with confirmed HIV infection receiving 

either TAF 10 mg with cobicistat-boosting or TAF 25 mg without boosting as part of 

standard care were eligible for these study arms. Antiretroviral medications were prescribed 

by the participant’s clinical provider. The study team was not involved in clinical decision 

making over the initiation or alteration of treatment regimens.

Women could enroll either during the 2nd trimester (20 0/7 to 26 6/7 weeks gestation) or the 

3rd trimester (30 0/7 to 37 6/7 weeks gestation) and underwent PK assessments during the 

2nd trimester (if enrolled), 3rd trimester, and 6–12 weeks postpartum. Additional study visits 

for pharmacokinetic and safety assessments took place at delivery and at birth through day 

3, 5–9 days, and 16–24 weeks of life in infants. All women provided written informed 

consent. Infants were enrolled in utero, after maternal enrollment. All study procedures were 

conducted in accordance with the ethical standards of the Declaration of Helsinki, as revised 
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in 2000, and underwent review by relevant ethical review boards at each institution where 

the study was being conducted.

Women were required to be on therapy for at least two weeks prior to the first 

pharmacokinetic sampling and have plans to continue on their prescribed therapy through 

the postpartum pharmacokinetic assessment. Key exclusion criteria included the 

concomitant use of medications that may alter TAF pharmacokinetics (except cobicistat), 

pregnant with twin or higher order gestation, or clinical/laboratory toxicities that would 

likely lead to ARV regimen changes during the study. For the infant washout 

pharmacokinetic assessments, infants were required to weigh at least 1000 grams, not be 

receiving any medications that could alter TAF pharmacokinetics, and not have severe 

congenital malformations or other medical conditions deemed incompatible with life or that 

would interfere with study participation.

Bioanalytical Methods

TAF concentrations were measured using a validated LC-MS/MS method. Briefly, plasma 

proteins were precipitated with 100% acetonitrile, centrifuged, and injected directly onto a 

C18 reversed phase HPLC column (MacMod Ace-5, 2.1 × 150 mm). TAF was eluted using a 

gradient mobile phase consisting of 98%−0.1% formic acid in water and 2–0.1% to 5–0.1% 

formic acid in acetonitrile at a flow rate of 0.8 mL/min, with an alternating acetonitrile 

washout interval at the end of each run. MS/MS detection was made in positive ionization 

mode, with MRM monitoring of transitions for TAF (477.3→270) and d5-TAF 

(482.3→270). Mean recovery efficiency of drug from plasma was 100.2%. The method had 

a dynamic range of 3.9–2000 ng/mL, and a lower limit of quantitation (LLOQ) of 3.9 

ng/mL. Calibration standards were used to generate a curve using a quadratic regression 

algorithm to plot the peak area ratio of TAF/d5-TAF versus concentration with 1/y 

weighting. The lowest calibrator was the LLOQ. Participant plasma samples were kept 

frozen at −70°C prior to analysis.

Pharmacokinetic Sampling & Analysis

Intensive pharmacokinetic assessments were performed during the second and/or third 

trimesters (depending on gestational age at enrollment), and 6–12 weeks postpartum. Blood 

samples were collected at 0, 1, 2, 4, 6, 8, 12, and 24 hours post-dose in both TAF groups. 

Maternal plasma and cord blood samples were collected at delivery. Infant washout samples 

were collected from infants at 2–10, 18–28, and 36–72 hours and 5–9 days after birth. 

Plasma was isolated from women, cord blood, and infants across all time points. PK 

parameters were calculated using posthoc Bayesian estimation methods in NONMEM, 

analogous to a therapeutic drug monitoring program, as TAF concentrations were only 

quantifiable through 4–6 hours post-dose. Posthoc PK parameter estimates were calculated 

using a simple one-compartment model with first-order absorption and elimination and a 

proportional error model with an additional error component for samples below the LLOQ. 

Initial parameter estimates for apparent oral clearance (CL/F), apparent volume of 

distribution (V/F), and the absorption rate constant from the rilpivirine/TAF/emtricitabine 

(Odefsey®, Gilead Sciences, Inc.; Foster City, CA) package insert.
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Statistical Analysis

The enrollment target was a total of at least 25 women with evaluable pharmacokinetic data 

during the third trimester, with a minimum of 12 women with second trimester data, per 

arm. Sample size estimates were based on a two-tiered approach as previously described.
20,21 Pharmacokinetic parameters were analyzed by first determining individual TAF area 

under the concentration vs. time curve over the dosing interval (AUCtau) and comparing 

values to the 10th percentile AUCtau value of 132 ng*h/mL in non-pregnant adults in real-

time. Interim pharmacokinetic exposure monitoring criteria were defined for all drugs under 

study a priori such that if six or more women fell below the 10th percentile cutoff, then the 

study team would decide if enrollment should be stopped early to avoid enrollment of 

additional women with subtherapeutic drug concentrations. Comparisons were also later 

made to the 10th percentile AUCtau value of 88 ng*h/mL reflecting pooled results from 

phase III clinical trials with elvitegravir/cobicistat/TAF/emtricitabine.22 Within-subject 

comparisons of 2nd and 3rd trimester PK results vs. those measured during the postpartum 

period were calculated using geometric mean ratios with 90% confidence intervals (CIs). 

Descriptive statistics were used to summarize pharmacokinetic parameters during pregnancy 

and postpartum, infant washout pharmacokinetics, and safety results. Statistical comparisons 

of continuous pharmacokinetic outcomes were made using a two-tailed Wilcoxon signed 

rank test. Two-sided P<0.10 was considered statistically significant.

Safety Monitoring

Each maternal study visit included a physical examination and clinical/safety laboratory 

assessments. Maternal laboratory assessments consisted of HIV-1 RNA, CD4+ lymphocyte 

cell count, hematology, and renal/hepatic panels. Infants received physical examinations 

following birth, and laboratory assessments were performed if clinically indicated. Infant 

HIV infection status was collected through the final visit at age 16–24 weeks. All 

medications were prescribed by the participant’s clinician. Adverse events (AEs) were 

reported at each study visit and management was determined by each participant’s clinician. 

All clinical and laboratory AEs were graded according to the DAIDS Table for Grading the 

Severity of Adult and Pediatric AEs, Version 2.0.

RESULTS

Study Population

A total of 31 women were enrolled into the TAF 10 mg with cobicistat arm between March 

2016 and July 2017, and 27 women in the TAF 25 mg without boosting arm between May 

2016 and May 2018. All women were from the United States. Key demographic 

characteristics are summarized in Table 1. In the TAF 10 mg arm, all women were on the 

fixed dose combination of elvitegravir/cobicistat/TAF/emtricitabine (Genvoya®, Gilead 

Sciences, Inc.). Zidovudine was added in two women during the second and third trimesters, 

and three women during the postpartum period per the discretion of their clinical care 

provider. In the TAF 25 mg arm, all women were on emtricitabine in combination with 

rilpivirine (n=20), dolutegravir (n=5), raltegravir (n=1), and/or nevirapine (n=1). Two 

women received zidovudine in addition to the remainder of their antiretroviral regimen.
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TAF 10 mg Pharmacokinetics with Cobicistat

TAF AUCtau did not differ significantly during the second or third trimester in comparison to 

postpartum (Table 2, and Figures 1a and 2a). The same was true for apparent oral clearance 

(CL/F), apparent volume of distribution (V/F), peak concentration (Cmax), and time to peak 

concentration (Tmax). TAF elimination half-life did not differ significantly between the 

second trimester and postpartum but was 29% higher (p=0.079) during the third trimester 

versus postpartum. In comparison to the 10th percentile AUCtau cutoff for real-time feedback 

(132 ng*h/mL), 83–85% of women exceeded targets during pregnancy, and 89–96% 

exceeded the 10th percentile cutoff from phase 3 studies (88 ng*h/mL) (Figure 2a). Twenty-

two maternal and 21 cord blood samples were collected at delivery at a median (IQR 

[range]) of 15.4 (6.0–21.1 [1.0–37.4]) hours after the last TAF dose. Only two maternal 

samples were above the LLOQ (10.4 and 14.3 ng/mL), and only one cord blood sample was 

above the LLOQ at 13.9 ng/mL. The cord-to-maternal ratio for the single measurable pair 

was 0.97. Infant washout samples were collected at a median (range) of 16 (4–40), 35.5 (21–

57), 59 (39–92), 186 (123–243) hours since the last maternal dose of TAF, but TAF 

concentrations in all samples were below the LLOQ.

TAF 25 mg Pharmacokinetics

TAF AUCtau was 43% lower during the second trimester (p=0.091) and 33% lower during 

the third trimester (p=0.0035) in comparison to the postpartum period (Table 2, and Figure 

1b and 2b). CL/F was 74% higher during the second trimester, although this did not reach 

statistical significance (p=0.17), and 50% higher during the third trimester in comparison to 

postpartum (p=0.0072). V/F was 71% higher (p=0.079) and 65% higher (p=0.0031) during 

the second and third trimesters, respectively. Cmax was 39% lower during the second 

trimester, although this did not reach statistical significance (p=0.14), and was 36% lower 

during the third trimester (p=0.0022). Tmax and half-life also did not differ between either 

trimester and postpartum. Over 85% of pregnant women exceeded the 10th percentile 

AUCtau cutoff for real-time feedback (132 ng*h/mL), and all women were above the 10th 

percentile AUCtau cutoff of 88 ng*h/mL (Figure 2b). A total of 23 maternal and cord blood 

samples were collected at a median (IQR [range]) of 11.1 (7.8–20.8 [2.4–35.3]) hours post-

dose. Only two maternal samples had levels above the LLOQ (53.1 and 16.2 ng/mL). TAF 

levels were below the LLOQ in all cord blood samples, thus cord-to-blood ratios were not 

calculated. Infant washout pharmacokinetic samples were collected at a median (range) of 

14.5 (7–39), 34 (24–55), 55 (46–89), and 171.5 (120–213) hours since the last maternal dose 

of TAF. No infant washout samples had TAF concentrations above the LLOQ.

Maternal Viral & Delivery Outcomes

Delivery outcomes were available in 30 women and infants in the TAF 10 mg arm, and 27 

women and infants in the TAF 25 mg arm (Table 3). In the TAF 10 mg arm, 26 (86.7%) 

women had viral load below 50 copies/mL, and 29 (96.7%) were below 400 copies/mL at 

delivery. In the TAF 25 mg arm, 24 (88.9%) had viral load below 50 copies/mL, and 25 

(92.6%) were below 400 copies/mL at delivery. Infants were born at a median of 38.5 and 

38.9 weeks of gestation in the TAF 10 mg with cobicistat and TAF 25 mg arms, respectively. 

No perinatal transmissions of HIV occurred in either study arm.
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Safety Results

Maternal AEs with any relatedness to TAF included two preterm deliveries in the TAF 10 

mg arm at 35 weeks (grade 1, probably not related); and 27 weeks (grade 3, possibly 

related), and one case of hepatic steatosis in the TAF 25 mg arm (grade 1, possibly 

treatment-related). Grade 3 or higher AEs (none deemed related to TAF) occurred in seven 

women in the TAF 10 mg arm, and included calcific tendonitis, pyelonephritis, premature 

rupture of membranes with amniotic fluid loss, preeclampsia with headache, low 

hemoglobin, chorioamnionitis, and nausea/vomiting with chronic hypertension of pregnancy 

(n=1 each); and ten women in the TAF with 25 mg arm, which included low hemoglobin 

(n=7), hypertension (n=2), postpartum preeclampsia (n=1), low bicarbonate and calcium 

(n=1 each), and uterine rupture (n=1).

Infant abnormalities were observed at birth in the TAF 10 mg with cobicistat arm (regardless 

of attribution) in five different infants. Three abnormalities occurred in infants whose 

mothers started TAF before the end of the first trimester (muscular VSD, supernumerary 

digits (ulnar postaxial polydactyly), and left brachial plexopathy), and two (patent foramen 

ovale and ventricular septal defect [VSD]) occurred in infants whose mothers initiated TAF 

after the first trimester. Grade 3 or higher AEs occurred in eight infants, and included 

bronchiolitis (n=2), neutropenia (n=1), neonatal sepsis (n=1), hyperbilirubinemia (n=1), 

viral gastroenteritis (n=1), low glucose (n=1), pneumothorax of the left lung (n=1), and 

seizure like activity with hypertonia later reported (n=1 each).

Infant birth abnormalities in the TAF 25 mg arm (regardless of attribution) consisted of one 

infant with a renal cyst on the right kidney (TAF started before the end of the first trimester); 

a second infant with neonatal compartment syndrome, duplicated collecting system of the 

right kidney (TAF started after the first trimester), and congenital pseudoarthrosis of the 

right clavicle; and a third infant with skin tags on the right ear (TAF started after the first 

trimester). Grade 3 or higher AEs occurred in five infants and included low glucose (n=3), 

hyperbilirubinemia (n=1), high potassium (n=1), probable sepsis (n=1), neonatal abstinence 

syndrome (n=1), and acute viral bronchiolitis (n=1), none of which were deemed related to 

TAF.

DISCUSSION

TAF exposures did not differ significantly between pregnancy and postpartum in women 

taking TAF 10 mg with cobicistat. In women taking TAF 25 mg without boosting, TAF 

plasma exposures during pregnancy were similar to historical data in non-pregnant adults but 

were 33–43% lower in comparison to postpartum. Only one maternal-cord blood pair had 

plasma TAF concentrations above the LLOQ, and none of the infant washout 

pharmacokinetic samples had plasma TAF concentration above the LLOQ. No perinatal 

transmissions of HIV occurred, and TAF in combination with other antiretroviral 

medications was well-tolerated by women in both study arms.

TAF and TDF are key components of multiple recommended antiretroviral regimens in 

children, adolescents, and adults.3,14,16 Though both are prodrug forms of tenofovir, the 

pharmacology of these two moieties differ significantly. In comparison to TDF, TAF is more 
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stable in plasma and preferentially loads peripheral blood mononuclear cells (PBMCs), 

resulting in ~2–10-fold higher concentrations of its active anabolite, tenofovir-diphosphate, 

and ~75–91% lower plasma tenofovir levels.23–25 TAF has a short half-life in plasma of ~30 

minutes, is hydrolyzed by carboxylesterase type (CES1) in the liver, and is less than 1% 

renally excreted.26–28 In contrast, parent tenofovir is renally excreted and has a half-life of 

~15 hours with TDF and 40 hours with TAF.23 TAF is a substrate for multiple efflux and 

uptake transporters, including P-glycoprotein, breast cancer resistance protein (BCRP), and 

organic anion transporter protein family 1B1 and 1B3 (OATP1B1/3), and thus is susceptible 

to alterations in drug disposition due to drug-drug interactions or changes in transporter 

expression.

Sex has been identified as a significant covariate in a few population pharmacokinetic 

analyses with TAF. The combination of female sex and HIV was associated with ~46% 

higher TAF exposures in comparison to males without HIV in a population PK analysis of 

bictegravir/TAF 25 mg/emtricitabine, equating to a mean AUCtau estimate of 197 ng*h/mL.
29 A separate population PK model using data from healthy volunteers, PWH, and chronic 

hepatitis B identified relative bioavailability was 39% higher in females, translating to AUC 

estimates of 268 ng*h/mL in females versus 184 ng*h/mL in males with hepatitis B.30 The 

magnitudes of difference by sex were deemed not clinically relevant in these analyses,29,29 

other clinical pharmacology reviews did not identify sex as a covariate,30,32 and concomitant 

antiretroviral medications can also alter TAF pharmacokinetics,33 making direct 

comparisons to historical data in females challenging. Though the influence of pregnancy on 

TAF pharmacokinetics differed between study arms in this study, TAF exposures were 

within range of those measured in non-pregnant adults, and more specifically females with 

HIV.29,30 Furthermore, all TAF AUCs in this study were above 55 ng*h/mL, which 

demonstrated similar antiviral activity to TDF 300 mg.23

The exact mechanisms behind the differences in study arms are unclear. Plasma tenofovir 

exposures with TDF are approximately 20% lower during pregnancy versus postpartum34–37 

due in part to increases in glomerular filtration rate (GFR) by up to 50%.38 TAF is less than 

1% renally excreted,26 thus pregnancy-related GFR increases is an unlikely factor. CYP3A 

activity increases during pregnancy,10,12,13,20,39 but this is a minor metabolic pathway for 

TAF. CES1 activity also does not appear to be altered in pregnancy.40,41 Both CL/F and V/F 

were increased by a similar magnitude during the second and third trimesters in the TAF 25 

mg arm, and peak concentrations were lower, suggesting that lower exposures between 

pregnancy and postpartum may be due in part to changes in bioavailability. The magnitude 

of change in the activity/expression of P-glycoprotein42,42 and BCRP43 during pregnancy 

varies across studies and species, but some suggest increased expression, which would 

reduce TAF absorption. No differences were identified between pregnancy and postpartum 

in the TAF 10 mg with cobicistat arm, suggesting that cobicistat can still adequately inhibit 

intestinal and hepatic transporters involved in TAF bioavailability,45 and furthermore may 

counteract some of the expressional changes that occur during pregnancy and revert during 

the postpartum period. Despite this finding, cobicistat-containing regimens should still not 

be used during pregnancy as plasma cobicistat concentrations are too low3,9 to adequately 

inhibit hepatic first-pass metabolism of atazanavir,13 darunavir,11,12 and elvitegravir.10 

These recommendations from the U.S. Food and Drug Administration were based on 
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pharmacokinetic data originating from P1026s, and many of the women receiving TAF with 

cobicistat in this study arm contributed results to the elvitegravir with cobicistat findings.10

The lack of quantifiable TAF in cord and maternal blood and infant washout samples may be 

due to the timing of drug administration compared to when samples were drawn. Collection 

of samples in closer proximity to drug intake may have provided a clearer picture of TAF 

placental transfer. Parent tenofovir has cord-to-maternal blood ratios between ~0.6 to 1.0 

with TDF administration,35,35,46 thus parent tenofovir may also cross over with TAF. 

Placental P-glycoprotein expression increases during pregnancy, and TDF placental transfer 

is limited by drug efflux transporters,47 thus TAF placental transfer may also be limited. 

However, medications that are P-glycoprotein substrates have been linked with a higher risk 

of certain congenital anomalies, which may be increased with the use of P-glycoprotein 

inhibitors.48

Eight out of 57 infants in this study had clinical abnormalities observed at birth. Two infants 

had abnormalities involving different components of the renal system, one of which was a 

benign renal cyst, and the other a duplicated collecting system in an infant with multiple 

other abnormalities. Three infants had abnormalities involving the cardiovascular system. 

The Antiretroviral Pregnancy Registry reported congenital anomalies in 5.15% of infants 

exposed to TAF during the first trimester and 1.2% exposed during the second/third 

trimesters through July 2019.49 IMPAACT 2010 reported one major congenital anomaly in 

the dolutegravir/TAF/emtricitabine arm out of 217 women,50 and lower rates of adverse 

pregnancy outcomes and similar rates of neonatal death were shown in comparison to 

dolutegravir/TDF/emtricitabine.50 However, women in IMPAACT 2010 were randomized at 

a gestational age of 14 to 28 weeks. The influence of placental TAF, parent tenofovir, and 

intracellular tenofovir-diphosphate transfer on fetal development, long-term growth and 

developmental outcomes should continue to be investigated in future studies.

There are limitations to this study. The pharmacokinetic sampling strategy was designed to 

assess multiple antiretroviral medications and adding several sampling points earlier in the 

dosing interval was not logistically feasible. Maximum TAF plasma concentrations usually 

occur between 0.5–2 hours post-dose,27,27 thus caution is advised in comparing peaks 

measured in this study against historical data in non-pregnant adults. To address this 

sampling gap, post hoc Bayesian estimation was used to more accurately estimate TAF 

exposures, but this required the same absorption rate constant as non-pregnant adults to be 

assumed. Additionally, food intake after drug administration was not recorded, but high-fat 

meals increase TAF AUC by 75%.51 Parent tenofovir was not quantified in this study, but 

TAF is more stable in the blood than TDF, and loads target cells more efficiently than parent 

tenofovir.52,53 Plasma tenofovir and intracellular concentrations of tenofovir-diphosphate 

were not measured, but will be evaluated in future studies to gain better insight into the drug 

disposition of TAF in pregnant and postpartum women.54 Breast milk transfer studies were 

not performed, but should also be investigated. Although safety outcomes are reported, the 

study was not powered to detect safety signals in pregnant women or congenital anomalies 

in infants receiving TAF. Our study population is also biased towards women who tolerated 

TAF-containing therapy during pregnancy and postpartum.
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In conclusion, this study provided the first pharmacokinetic data with TAF during 

pregnancy, and demonstrated that TAF plasma exposures in pregnant women receiving TAF 

10 mg with cobicistat and TAF 25 mg without boosting were comparable to those measured 

in non-pregnant adults. Over 90% of women had HIV viral loads suppressed below 400 

copies/mL at delivery, no perinatal HIV transmissions occurred, and TAF was well-tolerated 

by mothers in these small sample sizes. These findings support the continued study and 

uptake of TAF-based regimens in pregnant women.
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Figure 1. 
Median (IQR) concentration-time curves during the 2nd trimester, 3rd trimester, and 

postpartum for (a) TAF 10 mg with cobicistat and (b) TAF 25 mg (without boosting). Dotted 

lines indicate 50th percentile concentrations measured in non-pregnant adults.
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Figure 2. 
Median (IQR) TAF exposures during the 2nd trimester, 3rd trimester, and postpartum for (a) 

TAF 10 mg with cobicistat and (b) TAF 25 mg (unboosted). Gray shading indicates 10th and 

90th percentile exposures from phase II/III studies in non-pregnant adults, and the dashed 

line indicates the threshold for real-time comparisons. In the TAF 10 mg with cobicistat arm, 

there was one woman during the second trimester and a second woman during the third 

trimester and postpartum with drug concentrations below the LLOQ at all time points (not 

included). The summary tables below each figure reflect number (N) (percentage [%]) of 

women exceeding the AUC target for real-time comparisons (132 ng*h/mL) and phase 3 

data (88 ng*h/mL).

BROOKS et al. Page 15

AIDS. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

BROOKS et al. Page 16

Table 1.

Participant Demographics

Characteristic TAF 10 mg with Cobicistat (n=31) TAF 25 mg (n=27)

Race, n (%)

 Asian/Pacific Islander 0 (0%) 1 (4%)

 Black 18 (58%) 10 (37%)

 White 11 (35%) 12 (44%)

 American Indian 1 (3%) 1 (4%)

 Unknown 1 (3%) 3 (11%)

Ethnicity, n(%)

 Hispanic or Latino 10 (32%) 14 (52%)

 Not Hispanic or Latino 21 (68%) 13 (48%)

Age (yr), median (IQR)

 Second Trimester 34.8 (25.9–36.3) 30.2 (24.0–36.3)

 Third Trimester 33.9 (27.4–35.3) 29.5 (24.1–35.1)

Weight (kg), median (IQR)

 Second Trimester 78.1 (67.0–88.2) 69.0 (57.6–90.6)

 Third Trimester 85.2 (75.2–101.8) 79.3 (66.6–93.9)

 Delivery 87.5 (75.7–96.8) 85.0 (71.8–94.3)

 Postpartum 81.0 (73.7–90.6) 71.3 (65.3–88.9)

Gestational Age or Time after Delivery (weeks), median (range)

 Second Trimester 24.6 (20.4–27.1) 23.4 (21.2–27.4)

 Third Trimester 33.0 (30.0–36.4) 33.3 (30.0–37.6)

 Postpartum 8.6 (4.4–20.6) 10.0 (6.0–14.4)

Duration of TAF Therapy (weeks), median (IQR)

 Second Trimester 10.9 (7.0–20.3) 14.1 (10.9–20.6)

 Third Trimester 22.0 (13.0–29.3) 20.1 (12.1–24.9)

TAF initiated before end of first trimester, n (%) 15 (48%) 9 (33%)

HIV Viral Load ≤50 copies/mL, n (%)

 Second Trimester 13/17 (76.5%) 13/15 (86.7%)

 Third Trimester 24/27 (88.9%) 24/27 (88.9%)

 Postpartum 23/25 (92.0%) 22/26 (84.6%)

HIV Viral Load ≤400 copies/mL, n (%)

 Second Trimester 15/17 (88.2%) 14/15 (93.3%)

 Third Trimester 27/27 (100.0%) 26/27 (96.3%)

 Postpartum 23/25 (92.0%) 23/26 (88.5%)
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Table 3.

Maternal Viral Suppression and Delivery Outcomes

Characteristic TAF 10 mg with Cobicistat (n=30) TAF 25 mg (n=27)

Maternal Viral Load ≤50 copies/mL at Delivery, n (%) 26 (86.7%) 24 (88.9%)

Maternal Viral Load ≤400 copies/mL, n (%) 29 (96.7%) 25 (92.6%)

Birth Weight (gm), median (range) 3035 (1835 – 4170) 3084 (2100 – 4102)

Birth Length (cm), median (range) 48.7 (43.2 – 54.0) 49.5 (41.5 – 53.0)

Gestational Age at Delivery (weeks), median (range) 38.5 (27.1 – 41.3) 38.9 (36.0 – 40.9)

HIV Status, n (%)

 Uninfected 30 (100%) 26 (96%)

 Unknown
a 0 (0%) 1 (4%)

Note: numbers and percentages vary depending on the total number of women and infants with results available at each time point; one woman in 
the TAF with cobicistat arm withdrew prior to delivery.

a
No HIV testing results available.
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