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ABSTRACT 
 

This paper provides experimental measurements of through-focus pattern shifts between contact holes in a dense array 
and a surrounding pattern of lines and spaces using the SHARP actinic microscope in Berkeley.  Experimental values for 
pattern shift in EUV lithography due to 3D mask effects are extracted from SHARP microscope images and 
benchmarked with pattern shift values determined by rigorous simulations.  
 
Keywords: EUV, 3D mask effects, pattern shift, rigorous 3D mask lithography simulation. 
 
 

1. INTRODUCTION 
 

This paper provides experimental measurements of the through-focus relative pattern shift between contact holes in 
dense contact-hole arrays and a surrounding pattern of lines and spaces on an EUV reflective mask extracted from 
actinic images of these patterns captured with the SHARP actinic microscope in Berkeley [1].  Because the reflective 
masks utilized by EUV lithography must be illuminated at an oblique angle in order to separate incident and reflected 
light, the coating structure on an EUV mask has an inordinately large impact on wafer image quality and gives rise to a 
variety of 3D mask effects including horizontal-vertical print differences, a diffraction imbalance in the pupil of the 
imaging system, and through-focus pattern placement (telecentricity) errors on printed wafers.  In the past, the 
magnitude of 3D mask effects has been examined experimentally using images of EUV masks captured with the SHARP 
actinic microscope [2], using mask diffractometry data collected with the EUV reflectometer on Physikalisch-
Technische-Bundesanstalt (PTB’s) soft x-ray radiometry beamline at the BESSYII synchrotron in Berlin, and at the 
wafer-level by measuring the relative shift between two sets of line and space patterns printed using EUV lithography 
using CD-SEM metrology [3].  Even so, since almost all of what is known about EUV 3D mask effects have come from 
simulations carried out using commercially-available, rigorous mask 3D simulators, e.g., S-Litho (Synopsys) [4], the 
need for additional benchmarking of the simulations with measurement data is increasingly critical. 

Since extreme ultraviolet (EUV) lithography at 13.5 nm wavelength is a potential patterning technology for high volume 
manufacturing of semiconductor devices at the 7 nm technology node and beyond, each of the techniques known to 
mitigate EUV 3D mask effects, including application of optical proximity corrections (OPC) to the geometric layout of 
the mask patterns to pre-correct the image deformations [5], utilization of a number of innovative source-mask 
optimization (SMO) resolution enhancement techniques [6-7], and development of EUV masks with alternatives to the 
conventional Ta-based absorber Mo/Si multilayer reflector film stack [8-9], needs to be benchmarked to experimental 
measurement data. 

* obert.wood@globalfoundries.com; phone 1 518 305-7809 
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stage to take consistent and accurate steps.  We suggest that accurate through-focus measurements of pattern shift with 
the SHARP microscope should always be captured when defocus is produced by wavelength tuning. 

 
4.  DISCUSSION 

 
Because through focus pattern shift is fundamentally caused by the imbalance of diffraction order intensity, more 
isolated structures will have smaller pattern shifts as less light is absorbed by the mask absorber. In Fig. 4, we show 
extracted pattern shifts through focus for contact arrays with different pitches, 80nm x 80nm in Fig. 4(a) and 56nm x 
56nm in Fig. 4(b). It can be clearly observed that the pattern shifts for the more isolated pitch contact array is 
consistently smaller than the pattern shifts for the dense contact array, in agreement with theory. 

      
                                                   (a)                                                                                       (b) 
Figure 4  Through focus pattern shifts for contact arrays with different pitches, (a) 80nmx80nm and (b) 56nmx56nm. 

 
Comparison of measured (data points with error bars) and simulated (solid lines) relative pattern shift between individual 
56 nm pitch contact holes in a dense contact hole array and a surrounding line and space pattern fiducial as a function of 
defocus determined from a through-focus series of mask images captured with the actinic SHARP microscope in 
Berkeley is shown in Figure 5. 

 

                                                
Figure 5  Comparison of measured (data points with error bars) and simulated (solid lines) relative pattern shift between 
individual contact holes in a dense contact hole array and a surrounding line and space pattern fiducial as a function of 
defocus determined from a through-focus series of mask images captured with the actinic SHARP microscope in 
Berkeley. 

Since the EUV mask pattern was illuminated at 6° to the mask normal in the vertical direction (central ray is in the y-z 
plane), the image shift in the horizontal direction should have been exactly zero.  The measurement data in Figure 5 
shows that the experimental values in the horizontal direction are decidedly not zero.  The experimental values for 
pattern shift in the horizontal direction are ~6x larger (approximately 0.019nm pattern shift per nm defocus for both 
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directions) than the values predicted in the simulation.  Possible reasons for the discrepancy between measurement and 
simulation could be a) the method used to locate the contact hole centroids needs improvement, and b) the zone plate 
lenses in the actinic microscope have much larger than expected aberrations.  Both explanation seem unlikely since a 
recent attempt to measure directly the 3-order aberration in the SHARP zoneplate lenses at 0.25 and 0.33 NA using an 
image-based technique [11] reported values for 3rd order Zernikes of 63.6 milliwaves, i.e., considerably smaller than 
those needed to match the simulation values.  At a minimum, the experimental measurements plotted in the figure 
provide an upper limit to the magnitude of the relative pattern shift due to EUV 3D mask effects. 

 

5.  CONCLUSIONS 
 
The SHARP actinic microscope in Berkeley was used to image the through-focus pattern shift between contact holes in a 
dense contact-hole array and a surrounding pattern of lines and spaces on an EUV test mask caused by 3D mask effects.  
While the correspondence between measured and simulated pattern shift values is not as close as expected, the 
observation of pattern shifts of 1 – 2 nm provides an upper limit for their magnitudes.  The measurements of through 
focus pattern shift using the SHARP actinic microscope show that the pattern shift values recorded with SHARP when 
defocus was produced with a mechanical motion of the zoneplate lens were considerably noisier that the pattern shift 
values recorded with SHARP when defocus was produced by wavelength tuning. 

 
 
 

REFERENCES 
 

 
[1]  Goldberg, K., Benk, M., Wojdyla, A., Mochi, I., Rekawa, S., Allezy, A., Dickinson, M., Cork, C., Chao, W., Zehm, 
D., Macdougall, J., Naulleau, P., Rudack, A., “Actinic mask imaging: Recent results and future directions from the 
SHARP EUV microscope,” Proc. SPIE 9048, 90480Y (2014). 
 
[2]  Raghunathan, S., Wood, O., Mangat, P., Verduijn, E., Philipsen, V., Hendrickx, E., Jonckheere, R. Goldberg, K., 
Benk, M., Kearney, P., Levinson, Z., Smith, B.W., “Experimental measurements of telecentricity errors, in high-
numerical-aperture extreme ultraviolet mask images,” J. Vac. Sci. Technol. B. 32, 06F801 (2014). 
 
[3]  Philipsen, V., Hendrickx, E., Verduijn, E., Raghunathan, S., Wood, O., Soltwisch, V., Scholze, F., Davydova, N., 
Mangat, P., “Imaging impact of multilayer tuning in EUV masks, experimental validation,” Proc. SPIE 9235, 92350J 
(2014). 
  
[4]  http://www.synopsys.com/Tools/Manufacturing/MaskSynthesis/Pages/Sentaurus-Lithography.aspx. 
 
[5]  Erdmann, A., Xu, D., Evanschitzky, P., Philipsen, V., Luong, V., Hendrickx, E., “Characterization and mitigation of 
3D mask effects in extreme ultraviolet lithography,” Adv. Opt. Techn. 6, 187 (2017). 
 
[6]  Hsu, S., Howell, R., Jia, J., Liu, H-Y, Gronlund, K., Hansen, S., Zimmerman, J., “EUV resolution enhancement 
techniques (RETs) for k1 0.4 and below,” Proc. SPIE 9422, 94331I (2015). 
 
[7]  Kim, R.-H., Wood, O., Crouse, M., Chen, Y., Plachecki, V., Hsu, S., and Gronlund, K., “Application of EUV 
resolution enhancement techniques (RET) to optimize and extend single exposure bi-directional patterning for 7nm and 
beyond logic designs,” Proc. SPIE 9776, 97761R (2016). 
 
[8]  Wood, O., Raghunathan, S., Mangat, P., Philipsen, V., Luong, V., Kearney, P., Verduijn, E., Kumar, A., Patil, S., 
Laubis, C., Soltwisch, V., Scholze, F., “Alternative materials for high numerical aperture extreme ultraviolet lithography 
mask stacks,” Proc. SPIE 9422, 94220I (2015). 
 
[9]  Hay, D., Bagge, P., Khaw, I., Sun, L., Wood, O., Chen, Y., Kim, R.-H., Qi, Z. J., and Shi, Z., "Thin absorber 
extreme ultraviolet photomask based on Ni–TaN nanocomposite material." Opt. Lett. 41, 3791 (2016). 

Proc. of SPIE Vol. 10450  1045008-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 25 Feb 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

 
[10]  Goldberg, K.A., Mochi, I. Huh, S., "Collecting EUV mask images through focus by wavelength tuning," Proc. 
SPIE 7271, 72713N (2009). 
 
[11]  Levinson, Z, Smith, B., Raghunathan, S., Wood, O., “An image-based method for EUVL  aberration metrology,” 
International Symposium on Extreme Ultraviolet Lithography, Washington, DC, 23 October 2014. 

Proc. of SPIE Vol. 10450  1045008-6
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 25 Feb 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use




