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ABSTRACT OF THE DISSERTATION

Essays on Consumer Demand Modeling

By

Colin Reinhardt

Doctor of Philosophy in Economics

University of California, Irvine, 2023

Associate Professor Jiawei Chen, Chair

This dissertation comprises three chapters. Chapter 1 is based on my unpublished job mar-

ket paper ”Flavorants and Addiction: An Empirical Analysis of Tobacco Product Bans and

Taxation.” In this chapter, I investigate the potential impact of a proposed menthol cigarette

ban on cigarette consumption and product substitution. The use of menthol cigarettes and

other tobacco product flavorants has been a contentious issue, but empirical research on the

effectiveness of flavorant bans is limited. To fill this gap, I use aggregate-level retail data and

micro-level household data to estimate a random coefficient nested logit demand model that

incorporates the effects of addiction and consumer heterogeneity. I pay particular attention

to the Black American community and low-income households, who have the highest rates of

menthol cigarette consumption. My findings show that in the absence of menthol cigarettes,

overall cigarette usage reduces by 13%, and the Black smoking rate falls by 35%. In addi-

tion, e-cigarettes and cessation products experience a 4.9% and 1.7% increase in demand,

respectively. These results are then contrasted with changes in consumption and consumer

surplus stemming from a national cigarette tax and a ban on all flavored nicotine products.

Chapter 2 is based on unpublished work in collaboration with Jiawei Chen and Saad Andalib

Syed Shah. In this chapter, we introduce a structural choice model that takes into account

households’ geographic and product substitution behavior to evaluate the impact of localized

ix



taxation policies. Using detailed retail and household data from Philadelphia’s soda tax, we

estimate the choice model to examine the relationship between households’ demographic

characteristics, proximity to the city border, and their tax avoidance behavior - such as

switching from taxed to untaxed products or from Philadelphia to non-Philadelphia stores.

Our findings show that travel time is a crucial factor for modeling households’ heterogeneous

responses, with an additional minute of travel time equivalent to adding 47¢ to the product

price. By factoring in travel costs and the switch to less preferred products, we find that on

average, Philadelphia households experience a loss in consumer surplus more than twice the

amount of tax paid, with low-income households bearing the greatest burden.

Chapter 3 examines the importance of accounting for realistic substitution patterns in dis-

crete choice models, particularly in the presence of large alternative sets. While multinomial

probit models are the preferred method for modeling correlated unobservables across ele-

ments of the choice set, their estimation and identification can be challenging. As a result,

researchers often resort to alternative methods or restrictive assumptions that disregard sub-

stitution patterns. However, ignoring these patterns can lead to biased estimation results.

To address this issue, I propose a structured covariance matrix that models substitution

patterns as a function of product similarity, allowing for feasible estimation in the presence

of large alternative sets. In addition, I incorporate individual parameter heterogeneity and

a two-stage consumer decision process, enabling dynamic and individual-level behavior. To

estimate the model, I develop a Bayesian MCMC process that utilizes a Tailored Random

Block Metropolis Hastings algorithm. Finally, I conduct a simulation experiment to demon-

strate the superior performance of my proposed model compared to alternative estimation

methods. My results suggest that restrictive substitution patterns can hinder proper esti-

mation of parameter values, emphasizing the importance of considering realistic substitution

patterns in choice models.
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Chapter 1

Flavorants and Addiction: An

Empirical Analysis of Tobacco

Product Bans and Taxation

1.1 Introduction

The leading cause of preventable death in the United States is tobacco usage (CDC Smoking

and Tobacco Use, 2020). In particular, cigarette consumption is associated with a variety

of aliments including a greater risk of bronchitis, heart disease, and cancer, and contributes

to one out of every five deaths. This amounts to over 480,000 preventable deaths each year.

Within the past several decades, public policy experts in the US and abroad have relent-

lessly expanded their efforts to curb tobacco consumption. Minimum age limits, advertising

restrictions, and heavy taxation are among the tools employed. However, experts concur

that more restrictive policies and regulations are necessary, particularly to advance health

equity in the face of unethical marketing practices (FDA, 2021).
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This paper is focused on a menthol cigarette ban, recently proposed by the Food and Drug

Administration (FDA) (FDA, 2021). In particular, I evaluate the expected impact of the

removal of mentholated cigarettes on cigarette, e-cigarette, and cessation products (nicotine

patches, gum, and lozenges) using data from 2015 to 2019. For this purpose, I construct a

model of consumer demand that takes into account the dynamic effect of nicotine addiction,

as well as combining available household- and retail-level data in a way that is internally

consistent. I account for unobserved preferences and product substitution through the use

of both nesting parameters and random coefficients. Finally, I allow household consumption

to differ through observed demographic characteristics.

Differences in demand arising from demographic preference for flavorants in tobacco prod-

ucts is an important issue. Historically, the Black American community has long been the

target of marketing and advertising practices promoting the use of menthol cigarettes (Gar-

diner, 2004). Current national estimates of the Black American smoking rate suggests that

menthol purchases make up 74% to 89% of their total cigarette purchases; menthol usage

is two to three times that of their non-Black peers (Delnevo et al., 2020). In addition,

household income has long been correlated with increased price sensitivity and demand for

cigarettes, including regular tobacco and menthol (Evans et al. (1999),Wang et al. (2018)).

Calls from lawmakers and laypersons seeking to address health inequalities in disadvantaged

communities as the result of marketing practices, encouraged the FDA’s recently proposed

rule prohibiting the sale of menthol cigarettes.

A major consideration when dealing with banning products for health reasons is the will-

ingness of consumers to substitute to equally harmful products. Many menthol smokers in

Ontario, Canada, when presented with a local menthol cigarette ban, chose to switch to

regular tobacco cigarettes (Chaiton et al., 2020). Further, pre-ban, a fraction of smokers

indicated a willingness to consider electronic smoking devices, which also contain nicotine.

E-cigarettes, as they are commonly known, are regarded by as a path to smoking cessation,

2



however may also offer a new path to further nicotine addiction (Kasza et al. (2021), Kasza

et al. (2022)). I include both e-cigarettes and traditional cessation products in my model,

recognizing e-cigarette’s role as a substitute for traditional cigarettes as well as its potential

to draw nicotine-quitters from more successful cessation products.

The primary goal of my study is twofold: to identify demographic preferences for product

flavorants, and to model realistic substitution patterns in the evaluation of the proposed

menthol cigarette ban.

In determining the demographic preferences and product substitution patterns, I construct

and estimate a model of consumer demand, for cigarettes, e-cigarettes, and cessation prod-

ucts, in the Random Coefficients Nested Logit (RCNL) framework (Grigolon and Verboven,

2014), with a combination of both retail- and household-level data. The use of the ran-

dom coefficients allows for a rich set of unobserved heterogeneous and observed demographic

preferences, and my nesting structure is particularly suited at measuring the degree of sub-

stitution across flavors within product categories (“nests”). Further, I adapt the RCNL

structure to account for nicotine addiction’s dynamic state dependence (e.g. Caves (2005),

Tuchman (2019)). Micro-level household purchase data covers only a small subset of total

product purchases, but allows for the accurate identification of addiction, consumer hetero-

geneity, and flavorant substitution. Aggregate-level retail data lacks information necessary

to track household-level purchases, but provides a far less noisy measure of price responsive-

ness and product market shares, and provides a reliable method to account for endogenous

model parameters. I use the availability of household and retail data to my advantage, in-

corporating them in my modeling procedure in such a way as to be internally consistent,

and combine the strength of both datasets.

My estimation follows that described in Grieco et al. (2022), adapted for the RCNL structure

with dynamic state dependence. This procedure allows me to recover mean utility and

unobserved demand shocks, while accounting for household heterogeneity, addiction, and

3



categorical substitution.1

Several key findings result from my parameter estimation. (1) I find that the willingness to

switch among product flavorings differs significantly between cigarettes and e-cigarettes, and

plays a key role in determining the effectiveness of the various bans considered in my model.

Menthol and tobacco cigarettes were found to be closer substitutes for each other when com-

pared to the substitution rate between e-cigarette flavorants. (2) I identify addiction, in the

form of dynamic state dependence, to play a significant role in repeated purchasing behav-

ior. (3) Demographic differences strongly determine product preference and consumption

behavior. I find Black Americans display greater demand for menthol and flavored products,

and low-income households exhibit significantly higher rates of cigarette usage.

Conditioned on the results from my structural estimation, I examine several counterfactual

scenarios. (1) My model predicts that weekly cigarette smoking rates would have been

13% lower, on average, during the period from April 2015 to April 2019, with the removal

of mentholated cigarettes. Black Americans, in particular, would have experienced a 35%

drop in expected weekly smoking rates, during this period, with the removal of menthol

cigarettes. (2) In contrast to a menthol cigarette ban, I find a 10.23% cigarette sales tax

to be as effective in lowering the average weekly smoking rate, with a smaller reduction in

average consumer surplus across all demographic groups—including low-income households,

thereby demonstrating greater preference for taxation. In addition, a back-of-the-envelope

calculation finds a 10.23% cigarette sales tax would have resulted in an expected weekly tax

revenue of $66.1 million, for a total of $1.41 billion over the period from April 2015 to April

2019. (3) Finally, I find that by expanding the flavorant ban to include menthol and flavored

e-cigarettes over this same period results in a reduction in weekly cigarette smoking rates

similar to the menthol cigarette ban alone, as well as a drop in average weekly e-cigarette

usage ranging up to 46% dependent upon supply side assumptions.

1Several other works have adapted the same or similar procedures, including Goolsbee and Petrin (2004),
Chintagunta and Dubé (2005), Tuchman (2019), and Murry and Zhou (2020).
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Interest in flavorant bans has grown alongside the popularity of flavored e-cigarette nicotine

products, although to date, research addressing the effects of a ban on menthol and other

flavorants remains limited. In regard to a menthol cigarette ban, most empirical research

involves either questionnaires of consumer intent (Levy et al. (2021a)) or the study of bans

imposed in other countries (Chaiton et al. (2020), East et al. (2022), Fong et al. (2022a)). As

such, expectations as to the impact of the proposed menthol ban on US smoking rates relies

on projections based upon these works, e.g. Levy et al. (2021b), Fong et al. (2022a), and

Issabakhsh et al. (2022). Using Canadian data, Fong et al. (2022a) finds an expected decrease

of 7.3% reduction in the number of US smokers. In contrast, both Levy et al. (2021b) and

Issabakhsh et al. (2022) rely on the same expert elicitation of consumer intent post ban

(Levy et al., 2021a), and these works find an expected reduction in smoking cigarette rates

of 15% among all consumers and 35.7% when focusing on the Black American community.

I complement these existing works by using both retail-level and household-level data to

estimate consumer behavior and preference for flavorants, and by conducting counterfactual

analyses based on my structural estimation results.

To the best of my knowledge, Olesiński (2020) is the only structural model examining the

impact of a mentholated cigarette ban on consumer demand. However, his results and

counterfactual analysis pertain to Polish consumers, and provides an ex ante evaluation of

the 2020 European Union menthol ban. I rely on US aggregate- and individual-level data,

ranging from 2015 to 2019. Furthermore, my modeling structure differs, in that the inclusion

of household-level data allows for a richer set of heterogeneous preferences and I account for

addiction in the form of dynamic state dependence.

Current literature of addiction commonly considers two modeling formats: “rational ad-

diction” with forward-looking behavior and myopic models. Myopic models allow for past

consumption to affect current consumer behavior, but future consequences of addiction play

no role in determining one’s actions (Houthakker and Taylor (1970), Mullahy (1985)). Fur-
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thermore, under the myopic modeling framework, increases in current and past prices re-

duce current consumption, while increases in future prices will not affect current consump-

tion (Baltagi and Levin (1986), Jones (1989), Baltagi and Levin (1992)). On the other

hand, “rational-addiction” models contend that consumers consider future prices and con-

sequences when making current consumption choices (Becker and Murphy (1988), Gordon

and Sun (2015)). Researchers, such as Winston (1980) and Akerlof (1991), have objected

to the assumption of perfect foresight present in rational-addiction models. More recently,

Hidayat and Thabrany (2011) found rational addiction models inadequate in explaining be-

havior related to cigarette usage; instead, their findings favor myopic modeling assumptions.

In my own work, allowing for forward-looking behavior would inhibit my ability to combine

the household- and retail-level data in a way that is internally consistent; therefore, I rely

on a myopic framework as detailed in Caves (2005) and Tuchman (2019).

The remainder of this work proceeds as follows. In Section 1.2, I introduce the background

information regarding the history of flavored nicotine products, and the reasoning underly-

ing the currently proposed menthol ban. Section 1.3 describes my data sources and provides

details on products, households, and markets. Section 1.4 provides supportive evidence,

formed from both retail and household data, of preference heterogeneity, product substi-

tution, and addiction. Section 1.5 details the discrete choice model of demand which in-

corporates addiction as well as both household and retail data. In Section 1.6 I discuss

parameter identification and estimation. Model results are presented in Section 1.7. Coun-

terfactual simulations providing changes in product consumption rates under product bans

and taxation are provided in Section 1.8. Section 1.9 concludes this work.
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1.2 Industry Background

The tobacco industry has long been a creative with product development and marketing,

much to the detriment of public health. Industry innovations have included cigarette length

and width (with ultra long and ultra slim), filters, low-tar tobacco, and a finer control of

nicotine content; The introduction of product flavorants began with the country-wide sale

of mentholated tobacco in 1927 and, in 1999, the mass production of flavored (fruity, candy,

and mint) cigarettes (Toll and Ling (2005), Mills et al. (2018)). Fueled by the desire for

greater market share, industry research conducted by Big Tobacco led to fine-tuned innova-

tions targeting specific consumer groups.2 Slim cigarettes (in particular “Virginia Slims”) are

regarded as the first and most successful female-oriented cigarette brand, menthol cigarette

print and billboard advertising has been found to primarily target the Black American com-

munity, and archived tobacco industry documents detail the development of sweet, fruity,

and candy-like flavors to target young smokers (Cumminggs (1999), University of California

San Francisco (1999), Toll and Ling (2005), Mills et al. (2018)).

In the past two decades, rising health concerns and increasing negative public opinion towards

tobacco products has led to the introduction of tobacco control regulations. In particular,

the advent of product bans started with the mass introduction of flavored cigarettes in the

early 2000s and the subsequent public outcry. From 1999 to 2006, three flavored products

were introduced to the US market by well established tobacco companies, and quickly rose to

public prominence—Camel Exotic Blends, Kool’s Smooth Fusions, and Salem’s Silver label

(Lewis and Wackowski, 2006). Decades of research into youth consumption and preference

for flavored products by industry powerhouses, such as Philip Morris, R.J. Reynolds, and

Brown & Williamson, encouraged this product development. Flavored cigarettes quickly

became popular among young smokers, and while overall cigarette sales fell, market shares

of flavored products rose—defying the national downward trend (Cumminggs (1999), Lewis

2Big Tobacco is a name used to refer to the largest companies in the tobacco industry.
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and Wackowski (2006)). However, public concerns over increasing youth tobacco usage

pressured congress to action.

The Family Smoking Prevention and Tobacco Control Act, signed into law June 22, 2009,

by President Barack Obama, provided the FDA the power to regulate the tobacco industry,

and marked the first ban on flavored (fruity, candy, and mint) cigarettes some months later.

The Act also prohibited advertising to children and required tobacco companies to obtain

FDA approval for new tobacco products.

A mere decade later saw the next proposed flavorant ban, this time in relation to youth e-

cigarettes usage. The introduction of more stylish pod system e-cigarettes, innovative social

media marketing campaigns, and the promotion of flavored products, particularly to the

youth and young adults, contributed to over a 300% increase in e-cigarette unit sales during

the period from January 2015 through July 2019 (Nardone et al., 2019).3 Sales of Juul,

the most common pod-based e-cigarette, surged over 600% and contributed much to the

overall rise in e-cigarettes during this period, and Juul became the company with the single

greatest e-cigarette market share by the end of 2017 (Ali et al., 2020). Juul’s small size,

sleek USB styled design, variety of flavors, and subtle scent made it particularly appealing

to young users (Lee et al. (2020), Vallone et al. (2020)). The term “JUULing” soon became

synonymous with the discrete usage of e-cigarettes by teenagers in classrooms, school yards,

or restrooms (Ramamurthi et al., 2019).

Concerns over this increased youth e-cigaratte smoking pushed the FDA to act; in Jan-

uary 2020, a ban was placed on the sale of all flavored (fruity, candy, and mint) e-cigarette

cartridges. While the ban on flavored e-cigarette cartridges was intended to reduce youth

consumption, regulators failed to include disposable style e-cigarettes. And, although be-

yond the scope of this paper, current research suggest consumers—particularly the young

consumers—simply switched to these disposable products (Hickman and Jaspers, 2022).

3See Figure 1.2.
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In 2022, the FDA proposed a new ban on menthol cigarettes. Similar to the prior two

product bans, regulators sought to advance health equity by reducing tobacco-related health

disparities and addiction, particularly among disproportionately affected, menthol using,

minority communities. Thus, as I shift the focus to mentholated tobacco, I will revisit the

theme that flavorants attract specific and potentially vulnerable populations.

1.2.1 Menthol Cigarettes

In 1925, the first menthol cigarette was created by Lloyd “Spud” Hughes who, seeking to

alleviate the symptoms of a cold, placed loose tobacco in a tin of medical menthol crystals

overnight (Lee and Glantz, 2011). The next day, he found the resulting smoke soothing

to his throat; the mentholated cigarette providing a more pleasant, “cooler”, experience.

Hughes later patented his invention and, after selling the patent to the Axton-Fisher Tobacco

Company in 1927, “Spud Menthol Cooled Cigarettes” would remain the sole mentholated

nicotine product until the introduction of Kool menthol cigarettes in 1933, by Brown &

Williamson.

For the next two decades, Kool became the industry leader in menthol cigarettes; however,

during this time, mentholated products represented only 3% of the overall cigarette market

(Lee and Glantz, 2011). However, post WWII, Big Tobacco saw new opportunity among the

Black American community; a new, wealthier, urban Black community was growing. By the

1960s, advertising of specialized products—shampoo, skin creams, etc.—targeted towards

this burgeoning community began in earnest.

Following the years of post-war growth, Black media had reached record-breaking levels.

Over 600 radio stations now catered to Black audiences, where less than two decades prior

there were only 20, and readership of Ebony magazine, the leader in Black print media,

was at an all-time high (Pollay et al., 1992). The surge in print, radio, and television con-
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Figure 1.1: Print Advertising of Menthol Cigarettes Targeting the Black Community

(a) Kent Menthol Cigarette Ad (1961) (b) Winston Menthol Cigarette Ad (1970)

sumption among Black audiences was a prime opportunity for the advertising of menthol

products by Big Tobacco. Research by Gardiner (2004) found that, by 1962, Ebony maga-

zine contained twice as many menthol advertisements as the similarly popular, among white

communities, Life magazine. Despite some initial advertising to white clientele, Black com-

munities soon became the primary focus of mentholated cigarettes; Black American smoking

rates of menthol products skyrocketed from 14% in 1968 to 44% by 1975 (Gardiner, 2004).

Today, the impact of race based marketing in the Black community remains clear. Despite a

fall in overall smoking rates, Black consumers still display a preference for menthol products

at rates 2 to 3 times their non-Black peers (Delnevo et al., 2020). Further, although Black

Americans make up approximately 12% of the population, they contribute to about 40% of all

menthol related tobacco deaths (CDC Smoking and Tobacco Use, 2020). In acknowledgement

of past wrongs, and to reduce further cigarette consumption, the FDA proposed, in April

22, 2022, new product standards to prohibit menthol as a flavorant in cigarettes. To quote
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acting FDA commissioner Janet Woodcock, M.D., “With these actions, the FDA will help

significantly reduce youth initiation, increase the chances of smoking cessation among current

smokers, and address health disparities experienced by communities of color, low-income

populations, and LGBTQ+ individuals, all of whom are far more likely to use these tobacco

products.” (FDA, 2021)

1.3 Data

In this section, I provide details pertaining to my retail and household data. In addition,

I describe my markets of interest, including demographic information and the formation of

retail market shares from available data.

1.3.1 Retail Data

I use the Nielsen retail datasets which cover the period from January 1st, 2015 to July

31st, 2019.4 Sales information is available for the entirety of 2019, however I do not use

the months post July, as some brands began to engage in the voluntary removal of flavored

cartridge products in an attempt to appease e-cigarette critics. The data contains store-level

information detailing weekly price and quantity sold at the Universal Product Code (UPC)

level. Recorded sales include my three primary categories of interest: cigarettes, e-cigarettes,

and smoking cessation products (nicotine lozenges, gum, and patches). At the store level,

I observe unique location identifiers. I choose to focus on 26,916 stores active every year

during the entirety of the period studied.

Products within the e-cigarette category contained a mixture of battery units, starter kits,

4All Nielsen material discussed herein was obtained from the Kilts Center for Marketing Data at The
University of Chicago Booth School of Business.
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refill cartridges, disposable e-cigarettes, and flavored e-juice. In my analysis, I remove from

consideration those UPCs pertaining to battery units, starter kits, and flavored e-juice.

Battery units and starter kits were removed because these products contain only, or include,

the rechargeable smoking device used with refill cartridges. These purchases are generally

not repeat, and are significantly more costly. E-juice, on the other hand, contains greater

variation in terms of price, inconsistent sizing, and nicotine content. In contrast, cartridge

packs and disposable e-cigarettes have standardized quantities, similar prices, and account

for 89% of category-level unit sales.

Sold in 3 to 5 cartridge packs, each refill cartridge contains a nicotine content generally

equivalent to 1-1.5 cigarette packs, and are priced around $3 to $5 a cartridge. I find

disposable e-cigarettes are generally sold individually or in packs of 10; each unit contain a

nicotine content equivalent to 1-1.5 cigarette packs and are generally priced around $5 to

$10 per unit. Traditional cigarettes are sold in packs of 20 cigarettes or 10 pack cartons, and

prices range from $3.50 to $15 a pack, depending upon marketing strategies, and federal,

state, and local tax. Finally, smoking cessation products such as nicotine lozenges and gum

are sold in sizes ranging from 20 to 100 pieces, with a nicotine content of either 2 mg or 4 mg

per piece. I weight the sizes of lozenges and gum to a standardized 4 mg per piece, with

15 pieces costing about $8.50 and providing the about same nicotine as one cigarette pack.

Nicotine patches are most commonly sold in packs of 7 or 14; one patch provides a nicotine

content equivalent to 1 pack of cigarettes and costs around $4. In my subsequent analysis, I

consider a pack of cigarettes equivalent to one e-cigarette cartridge, one disposable unit, 15

pieces of 4 mg nicotine gum/lozenges or a single nicotine patch, and I adjust product prices

for inflation.5

Nielsen’s retail datasets also provide information pertaining to product flavor in almost

all cases—excepting some e-cigarettes. When product flavor was unavailable, I proceeded

5I adjust price to its January 2015 dollar value using the Consumer Price Index for all Urban consumers
(CPI-U).
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with manual identification. There are 10,344 unique cigarette UPCs (5,667 regular tobacco

and 4,677 menthol), 1,630 unique e-cigarette UPCs (668 regular tobacco, 493 menthol, and

469 flavored), and 668 unique smoking cessation product UPCs. Among cigarettes and e-

cigarettes, all major brands (overall market share ≥ 1%) offer tobacco, menthol, and—in the

case of e-cigarettes—flavored product varieties. For the remainder of this work, I aggregate

UPCs into products, where each product is a category/flavor combination, and the size of

each product is standardized to that equivalent to one pack of cigarettes.

Figure 1.2 plots the trends in cigarette and e-cigarette sales by flavor type from January

2015 through July 2019. Sales from 26,916 stores generate the referenced figure. The plots

demonstrate seasonality in cigarette sales, and an overall negative trend. As for E-cigarettes,

sales were steadily increasing until January 2018, when a period of rapid growth began, driven

primarily by flavored products.

1.3.2 Household Data

Nielsen provides household purchase data for a sample of US consumers totaling about

50,000 households yearly. Information provided includes cigarette, e-cigarette, and smoking

cessation purchases, as well as a household’s home county and other demographic data.

Pertaining to purchases, I am provided with records that include price, date, quantity, and

the unique store identifier where the sale took place, if available.

Between January 2015 and July 2019, I record 17,420 households who engaged in a total

of 401,718 purchases of our products of interest. Given the available demographic data, I

first generate an indicator for those households recorded as having the racial characteristic

”Black (non-Hispanic)”; in my subsequent analysis, this indicator allows me to ascertain the

impact of proposed policy changes on the Black American community. I focus on Black as

a primary racial characteristic of interest because there exists a well documented difference
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Figure 1.2: Weekly Sales Quantities for Cigarettes and E-cigarettes

(a) Weekly Cigarette Sales

(b) Weekly E-cigarette Sales
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in preferences among the Black American community, particularly in regard to menthol

cigarettes.

Next, I differentiate between low- and high-income households through the use of an indicator

variable denoting low income. I define low-income households to be those whose yearly

household income falls within 200% of the 2019 federal poverty guideline, which takes into

account household size.6 Table 1.1 reports the joint distribution of households by race and

Income.7 Finally, the average weekly cigarette smoking rate among all households within

my panel is 14.7%.

Table 1.1: Household Panel Joint Distribution of Race and Incomea

High Income Low Income Total
Black 6.02% (6.89%) 3.97% (5.66%) 9.98% (12.55%)
Non-Black 54.63% (63.92%) 35.39% (23.54%) 90.02% (87.46%)
Total 60.64% (70.81%) 39.36% (29.20%)

a U.S. household joint distribution included in parentheses for comparison pur-
poses.

1.3.3 Market Formation

I define my markets based upon the Designated Marketing Areas (DMAs) provided by

Nielsen. As defined, a DMA consists of a group of counties displaying similar regional char-

acteristics and are considered radio and television markets. Often centered around major

metropolitan areas, there exist 210 DMA regions covering the entire continental US, Hawaii,

6Nielsen does not provide a continuous measure of household income; I define low-income households to
be those falling below the category closest to twice the poverty federal guideline—this difference is never
grater than $2,500.

7The joint distribution of race and income status for my household data may not match that suggested
by the ACS, however by conditioning on these observables the resulting selection bias is removed (see Grieco
et al. (2022)).
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and parts of Alaska. Defining my markets based upon DMA regions provides several advan-

tages: (1) Nielsen and their provided datasets already contain identifying information as to

DMA assignment for both retailers and households. (2) DMAs are generally centered around

large urban populations and include surrounding suburban and rural counties—reducing bi-

ases that could be present if one only considered, say, major city centers. (3) DMAs form

regions of households with similar characteristics and define television/radio markets, there-

fore demand shocks should be similar across consumers—particularly those stemming from

advertising campaigns run at the DMA level.

I begin market formation by first determining total sales and quantity weighted prices at the

product/DMA/week level using unique identifiers provided in the store-level data.8 Next, for

population and demographic data, I rely on the 2019 American Community Survey (ACS)

5-year estimates. Note that DMA regions are proprietary to Nielsen; however, from my

available retail data, I obtain a list of counties specific to each of the 206 DMAs in which I

observe store-level sales. Total household population, defined by racial group, is accessible

at the county level provided in the 2019 ACS 5-year estimates. However, to obtain the joint

distribution of income status by race, I rely upon the Public Use Microdata Sample from

the 2019 ACS 5-year estimates available at the public use microdata area (PUMA) level. I

obtain the county-level joint distribution of income status by race as the weighted average of

overlapping PUMAs using the PUMA-county crosswalk file from the Missouri Census Data

Center.9 Finally, from the county-level population estimates and joint distribution of income

status by race, I obtain county-level population defined by race and income status.

From county specific population distributions defined by race and income, I aggregate to

8Similar to Tuchman (2019), my analysis is performed at the week level; I find the average time be-
tween purchases, among current smokers, to be less than one week and I do not find significant evidence of
stockpiling behavior. For more information, see Appendix A1

9I should note that the public use micro sample data could be used to obtain the joint distribution of race
and income. However, to avoid introducing greater error via the PUMA to the county conversion, I only
calculate the proportion of low-income consumers by race. Data pertaining to the population distribution,
in addition to total population, comes from the county-level 2019 ACS 5-year estimates.
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the DMA level. A final hurdle arises from determining DMA weekly market shares. My

Nielsen retail sample forms a subset of the available stores in each DMA; I do not observe

all sales. Therefore, I cannot simply divide observed sales by total population to obtain

shares. Instead, I turn to available information pertaining to cigarette smoking rates; coun-

tyhealthrankings.org, operated by the University of Wisconsin and Robert Wood Johnson

foundation, which provide yearly expected county-level smoking rates for all counties for the

years 2016, 2017 and 2018. With this data, I form expected DMA-level smoking rates as

the population weighted average of the county-level smoking rates. Then, for each DMA

I weight the population such that weekly cigarette market shares best fit DMA expected

smoking rates.10 11

My final market sample consists of 100 DMAs with the largest pre-weighted populations,

and which displayed strictly positive market shares over all weeks. This provides three major

benefits: (1) remaining DMAs form pricing instruments (i.e., Hausman-style instruments as

seen in Nevo (2001)), (2) zero market shares complicate estimation, and (3) model runtime

is significantly reduced. The markets forming my model provide a mix of all regions—from

major urban city centers to rural communities; Finally, 85% of my household sample, 86%

of my store sample, and 85% of the US population exist within these 100 DMAs.

1.4 Descriptive Analysis

In this section, I provide supportive evidence for my selection of demographic coefficients

through the use of reduced form estimation, figures, and graphs. I also explore the impact

of addictive behavior on product selection as supportive evidence for the inclusion of this

dynamic element.

10The DMA specific population weight applies to all weeks and years; I do not adjust the weight weekly,
nor yearly.

11My formation of DMA-level weekly product usage rates preclude the existence of illicit sales; I discuss
in the impact of this limitation in Appendix A5.
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1.4.1 Retail Evidence of Preference Heterogeneity

Throughout my analysis, I rely on two primary demographic attributes: income and the

prevalence of Black consumers. Prior empirical work provides support for the selection of

these demographic variables, especially when considering rates of smoking behavior and the

removal of menthol products. I begin by documenting potential systematic differences, or

lack thereof, in consumer preferences along these demographic profiles in Figure 1.3.

I show the preference for menthol by considering its proportion of cigarette sales based on

each demographic trait—the share of menthol sales to the Black population and the share

of menthol sales to low-income households. Demographic preferences for e-cigarettes are

similarly considered, however in this case I assign each DMA into quartiles based on the

share of each demographic trait. Markets with a greater proportion of Black households

have substantially higher sales of menthol cigarettes—not surprising given prior research.

However, when considering e-cigarettes, differences in flavorant preference are not apparent

between regions of high and low Black populations. In areas with a greater proportion of low-

income consumers there is a slight preference for regular tobacco cigarettes, however these

regions display a significantly greater demand for regular tobacco e-cigarettes.12 Finally, I

display differences in category preference by observed DMA demographic characteristics in

Table 1.4.

As before, I show differences in preference by assigning markets into quartiles based on

each demographic trait. Where the column “High” represents those DMAs falling in the

top quartile, and “Low” represents those in the bottom. Markets with a greater share

of Black households have substantially higher sales of cigarettes, whereas DMAs with low

Black populations display greater preference for cessation products. Areas with a larger

proportion of low-income consumers, similar to those with high Black populations, prefer

12To avoid confusion, I define the flavor “regular tobacco” to consist of cigarettes and e-cigarettes whose
flavor profile is solely tobacco.
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Figure 1.3: Flavorant Choice and DMA Demographics

(a) Black and Menthol Cigarette Consumption (b) Low Income and Menthol Cigarette Consumption

(c) Black and E-cigarette Flavor Choice (d) Low Income and E-cigarette Flavor Choice

Notes: In the bottom two figures, I compare markets in the top (”High”) and bottom (”Low”) quartile of
each demographic trait. For Figure (c) ”High” represents those DMAs with the greatest proportion of
Black consumers and for Figure (d) ”High” denotes those DMAs with the highest proportion of low-income
households. The top two figures plot each market as a function of demographic attributes and the
proportion of menthol sales. These figures are generated from the 206 DMA’s in which I observe store-level
sales.

cigarettes. Finally, as a regions’ wealth increases, so does the proportion of sales involving

cessation products and e-cigarettes.
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Figure 1.4: Category Choice and DMA Demographics

(a) Black and Category Choice (b) Low Income and Category Choice

Notes: In the two figures, I compare markets in the top (”High”) and bottom (”Low”) quartile of each
demographic trait. For Figure (a) ”High” represents those DMAs with the greatest proportion of Black
consumers and for Figure (b) ”High” denotes those DMAs with the highest proportion of low-income
households. As cigarettes are by far the most popular product, for display purposes both figures start at a
y-intercept of 85. These figures are generated from the 206 DMA’s in which I observe store-level sales.

1.4.2 Household Evidence of Substitution, Addiction, and Flavo-

rant Heterogeneity

In this subsection, I first present evidence of product substitution through the use of a matrix

describing the transitional probability of product purchase. Next, I document consumer

addiction through the use of a linear probability model, controlling for time and individual

fixed effects. Lastly, I provide figures demonstrating heterogeneous responsiveness in product

choice, similar to those shown above. As before, my demographic covariates of interest are

Black and low income.

Product Substitution Table 1.2 provides the probability of observing product choice

conditional on the last observed inside option purchased. I focus on the last observed inside

option purchased, rather than the prior week’s purchase, to highlight household product

substitution and heterogeneous preference; I discuss weekly continuation of product usage
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and addiction later in this subsection. The last observed product purchased makes up the

first column; each subsequent column provides the conditional probability of transitioning

from the last observed purchase to the current product choice, provided a consumer decides

to choose an inside option. If a consumer decides not to choose an inside option, then their

last observed purchase remains unchanged.

Table 1.2: Product Transition Table

Current Product Choice

Last Inside Cigarette E-cigarette

Option Purchased Cessation Tobacco Menthol Tobacco Menthol Flavored

Cessation 75.48 15.12 8.36 0.61 0.18 0.24

Cig. Tobacco 0.26 93.10 6.03 0.37 0.07 0.16

Cig. Menthol 0.24 10.81 88.36 0.10 0.31 0.17

Ecig. Tobacco 0.61 22.12 2.91 66.78 1.96 5.61

Ecig. Menthol 0.30 7.82 16.20 3.99 64.68 7.01

Ecig. Flavored 0.26 14.62 7.21 8.52 7.84 61.55

Notes: In the above table, I present the probability of current product choice (”Current Product
Choice”) conditioned upon the last observed product chosen (”Last Inside Option Purchased”).

If households did not display inherent preferences, then the current purchase probability

should be independent of a consumer’s last product choice. That is to say, the probability

of choice j in the current time period conditional on purchasing choice a in the past should

be the same as if they had instead purchased product b. This is obviously not the case

observed in Table 1.2. Instead, a consumer’s preferred product choice is that of their last

observed purchase. This persistence in consumption is strongest among cigarette users,

where subsequent purchases almost always consist of the preceding product. The willingness

for consumers to switch products within the cigarette category is an important consideration

regarding the proposed menthol ban. Individual-level data suggests, when cigarette smokers

switch products, it is primarily to an alternative flavor within the same product category—

supporting the notion of within-nest substitution among cigarette users.

E-cigarette users also demonstrate persistence in product preference, albeit, not nearly
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to the degree observed among cigarette smokers. Furthermore, the second most popu-

lar present choice of product for past e-cigarette smokers was cigarettes. If products are

switched, users of regular tobacco and flavored e-cigarettes preferred to switch to regular

tobacco cigarettes instead of products within the e-cigarette category. Smokers of menthol

e-cigarettes, when switching products, generally choose menthol cigarettes as their alterna-

tive choice—suggesting persistent preference for menthol products. These findings suggest

degrees of within-category substitution differ between cigarettes and e-cigarettes.

Unfortunately, for individuals dedicated to smoking cessation, I find that nearly 24% of

all purchases of cessation products are eventually followed by a choice of cigarettes. Fur-

thermore, although it is small, there does appear to be a willingness for users of cessation

products to switch to e-cigarettes; the probability of choosing e-cigarettes grows in the latter

half of the sample, as e-cigarettes rise in popularity, and consumers looking to quit smoking

may consider e-cigarettes a viable substitute to other cessation products. Regardless of the

methods by which one may attempt to quit, the presence of addiction is clear.

Addiction and Dynamic Dependency Table 1.3 provides an illustration of the depen-

dent nature of nicotine laced products. Testing for the presence of addiction as well as

other forms of dynamic state dependency, I analyze the weekly consumption habits of the

17,420 households in my household dataset. Specifically, I consider how past consumption

of a nicotine containing product influences future product choice through the use of a lin-

ear probability model. To control for individual preferences, time trends, and seasonality, I

include household and time fixed effects, and cluster the errors at the household level.

Considering my regression results, I find that consumption in the prior week plays a posi-

tive and significant role in determining the probability of purchasing in the current period.

This result is unsurprising, as on average 53% of all purchases immediately follow consump-

tion in the prior week. A key result of this regression is supportive evidence that state
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Table 1.3: Linear Regression on the Probability of Purchasing

Coefficient

Purchase in Prior Week 0.104***

(0.003)

HH FEs Y

Week FEs Y

Mean DV .112

Num HH 17,420

Num Obs 2,622,559

***p<.01, **p<.05, *p<.1

Standard errors clustered at the household level are included in parentheses.

dependence—possibly in the form of addiction—plays a significant role in determining the

choice to purchase. However, the impact of prior consumption on the probability of purchas-

ing appears to differ by category.

Table 1.4 presents current categorical choice based upon the prior week’s purchase decision.

Unlike the transition table presenting product substitution (Table 1.2), Table 1.4 displays

current categorical choice as a function of a household’s purchase decision during the pre-

ceding week, and includes the outside option to highlight how state dependence may differ

between categories. I find cessation product purchases are followed by a choice of outside

option 78% of the time. Whereas, in the week following a cigarette purchase, households

choose the outside option only 47% of the time. Similarly, 50% of all e-cigarette purchases

in my household data are followed by a choice of inside option during the next week. These

findings, coupled with those displayed in Table 1.3, suggest that dynamic state dependency

may differ by category choice in the prior week, affecting both the probability of purchasing

an inside option as well as the current choice of product.

Flavorant Preference Finally, in the consideration of within-category choice, I present

Figure 1.5 which illuminates a household’s flavorant preference dependent on their observed
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Table 1.4: Categorical Purchase Probability by Week

Last Week’s Current Category Choice

Category Choice Outside Op. Cessation Cigarettes E-cigarettes

Outside Op. 91.47 0.14 8.20 0.19

Cessation 78.27 15.88 5.58 0.26

Cigarettes 46.52 0.08 53.09 0.31

E-Cigarettes 49.57 0.16 12.40 37.86

Notes: In the above table, I present the probability of current category choice condi-
tioned upon the category choice made during the prior week (“Last Week’s Category
Choice”).

demographic attributes. Similar to the figures in Subsection 1.4.1, I provide bar charts by

demographic status providing the sales proportion by flavorant for cigarettes and e-cigarettes.

As observed in the DMA-level data, Black households display a strong preference for men-

thol cigarettes, with 77% of cigarette purchases by Black consumers consisting of menthol

products. Additionally, high and low-income household preference for menthol products

appears near identical—similar to the results found in the DMA sales data. In regard to e-

cigarettes, both Black and high-income consumers display increased preferences for flavored

and menthol products—shunning regular tobacco e-cigarettes. For low-income consumers,

this result is similar to that suggested above (Figure 1.3); however, Black households display

a clear flavorant preference—for menthol and flavored products—that was not apparent in

the retail-level data. This finding stresses the importance of household-level information, and

its ability to present a markedly less noisy reference as to demographic product preference.

1.5 Choice Model

I follow the literature detailing demand estimation employing retail-level data (e.g. Berry

et al. (1995), Nevo (2000), etc.) in modeling the demand for cigarettes, e-cigarettes, and
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Figure 1.5: Product Choice and Household Demographics

(a) Black and Menthol Cigarette Consumption (b) Low Income and Menthol Cigarette Consumption

(c) Black and E-cigarette Flavor Choice (d) Low Income and E-cigarette Flavor Choice

smoking cessation products as a function of product characteristics, heterogeneous con-

sumers, demographic information, and addiction. I adjust traditional methods to exploit

the availability of household data (Similar to Chintagunta and Dubé (2005),Goolsbee and

Petrin (2004), Murry and Zhou (2020), etc.). My work extends the model of addiction,

proposed in Tuchman (2019), through the use of a nested framework, inclusion of product

flavorants, and modeling of demographic responses. Lastly, my estimation procedure differs

in methodology from that performed in Tuchman (2019); rather, I adapt the work of Grieco
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et al. (2022) in designing my estimation procedure.13

The use of retail datasets, coupled with household datasets, allows me to leverage the ben-

efits of both. Specifically, retail data measures demand responsiveness with less noise—

particularly for sparsely purchased products. In addition, the retail modeling structure

provides a reliable method by which one can account for parameter endogeneity. House-

hold data provides a more accurate estimation of heterogeneity, substitution, and addiction.

Therefore, the model I propose utilizes both datasets to their full potential in a way that is

internally consistent.

1.5.1 Demand Specification

Let J represent the set of available products denoted j = 1, . . . , J , where J = |J |, and let

G represent the set of product categories (“nests”) denoted g = 1, . . . , G, where G = |G|.

Furthermore, consider the outside option to be choice j = 0 and a member of group g = 0.

Then, at the individual level, in week t, a consumer i living in market m obtains the indirect

utility from purchasing product j ∈ J , where product j is a member of group g ∈ G, given

by

uijmt =x′
jβi + αipjmt + h′

gmtγ + ϕI
(∑
g′∈G

Cig′,t−1 > 0
)
+ ρgCig,t−1 + ξjmt + ϵ̄ijmt

where i = 1, . . . , H; j = 1, . . . , J ; t = 1, . . . , T ; m = 1, . . . ,M.

(1.1)

The n1×1 vector of product characteristics xj includes elements such as category and flavor

constants. Retail price for product j in market m and time t is pjmt. The n2 × 1 vector

hjmt contains market/category and time/category fixed effects. I
(
·
)
is an indicator function,

13Tuchman (2019) follows a process described in Chintagunta and Dubé (2005), which involves a four-step
estimation procedure; iterating between a maximum likelihood step and the inversion described in Berry
et al. (1995). I find in testing that, through the inclusion of numerical gradients, the estimation procedure
developed in Grieco et al. (2022) provides a faster and more reliable estimation of the parameters of interest.
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and, at the individual level, Cig,t−1 signifies the choice of group g, by consumer i, in the

prior week.14 Therefore, ϕ captures the change in demand common across all inside options

provided consumption of any nicotine product during the prior week, and ρg captures state

dependency at the category level. Finally, ϵ̄ijmt denotes unobserved individual preferences

for product j, in market m, at time t, and I allow for common variation in consumer utility

through the use of demand shocks (ξjmt) unobserved by the researcher—but known to the

consumer.

I characterize a consumer i living in market m through the use of a (n + 1) × d matrix

of observed demographic attributes, Di, including race and income. I model unobserved

individual preference heterogeneity for product characteristics, vi, through the use of a mul-

tivariate normal distribution; this assumption alleviates the burden imposed by the Indepen-

dence of Irrelevant Alternatives (IIA) propriety of the logit model. Preferences for product

characteristics and prices are as follows:

(
αi
βi

)
=

(
α
β

)
+ΠDi + Σvi, vi ∼ N (0, In1+1), (1.2)

where Π is a (n1 + 1) × d matrix that measures the impact of observable demographic

attributes on the preference for product characteristics, while Σ captures the covariance of

unobserved individual preferences for product characteristics. In practice, I restrict Σjk = 0

∀j ̸= k, and estimate only the variance of unobserved preference for characteristics.

Furthermore, I follow the work of Grigolon and Verboven (2014) in assuming that unobserved

individual preferences for products are correlated across goods of the same category. In

my analysis, I observe G = 3 product categories: cigarettes, e-cigarettes, and cessation

14In essence, it is possible to consider addiction as lasting multiple weeks. However, doing so significantly
increases modeling complexity and runtime—particularly in regard to the gradient estimation. In the retail
data step, when evaluating the gradient, state dependency requires I model the propagation of changes in
demand, over time, due to changes in parameter values—this calculation is computationally intensive. My
current procedure strikes a balance between modeling complexity and runtime. I discuss cases of multiple
observed product purchases in Subsection 1.5.2
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products. Within each category, flavor defines the set of available products. In the case of

cigarettes, available flavors are regular tobacco and menthol. E-cigarettes are available in

regular tobacco, menthol and flavored products (e.g., fruit, candy, and mint). The choice

of cessation, having no within category options, represents a degenerate nest. Finally, my

outside option is defined to be group zero. Thus, the unobserved individual preferences,

ϵ̄ijmt, for product j, which falls in category g, follows the distributional assumption of a

two-level nested logit model, and can be decomposed into

ϵ̄ijmt = ζigmt + (1− λg)ϵijmt (1.3)

where ϵijt is iid Type-1 extreme value, the nesting parameter λg ∈ [0, 1], and ζigt has a

(unique) distribution such that ϵ̄ijt is distributed Type-1 extreme value.

The random coefficient nested logit (RCNL) model, described in equations (1.2) and (1.3),

can encompass a variety of demand specifications—allowing for correlation in both observed

and unobserved preferences. Within nest, perfect substitution is obtained under the case

where the category-level nesting parameter equals one. As the category-level nesting param-

eter tends toward zero, the model reduces to the standard random coefficient specification.

Lastly, in modeling different values of λg for each category, I allow for products within dif-

ferent nests to display varying degrees of within-group substitution. When accounting for

consumer heterogeneity, it is useful to decompose indirect consumer utility into its common,

δjmt, and idiosyncratic, µijmt, components (excluding ϵ̄ijmt):

δjmt = x′
jβ + αpjmt + h′

gmtγ + ξjmt,

µijmt(Ci,t−1) =
[
x′
j, pjmt

]
(ΠDi + Σvi) + ϕI

(∑
g′∈G

Cig′,t−1 > 0
)
+ ρgCig,t−1,

(1.4)

where Ci,t−1 = (Ci0,t−1, Ci1,t−1, . . . Cig,t−1, . . . CiG,t−1)
′.15

15Note, Ci0,t−1 denotes the decision by household i to choose the outside option during the preceeding
week.
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Thus the probability of a consumer i, living in market m, purchasing product j during time

period t is then

πijmt(Ci,t−1) =
exp

(
δjmt+µijmt(Ci,t−1)

(1−λg)

)
exp

(
Iigmt(Ci,t−1)

(1−λg)

) ×
exp

(
Iigmt(Ci,t−1)

)
exp

(
Iimt(Ci,t−1)

) , (1.5)

where, after denoting the set of choices available in group g as Jg,

Iigmt(Ci,t−1) = (1− λg)log
∑
j∈Jg

exp
(δjmt + µijmt(Ci,t−1)

(1− λg)

)
, (1.6)

Iimt(Ci,t−1) = log
(
1 +

∑
g∈G

exp
(
Iigmt(Ci,t−1)

))
. (1.7)

The final equation includes the group composed of the outside option—as the utility from

the decision not to purchase is normalized to 0, it is the source of the “1”.

1.5.2 Consumer Choice Probabilities

In the household dataset, I consider a consumer i choosing to purchase product j at the

weekly level—matching the weekly data available at the retail level. When focusing on

household purchases, I do not consider quantity and instead consider purchase incidence—

whether at least one unit was consumed. To do otherwise would require strong assumptions

to make the model tractable, as retail data does not provide information pertaining to

consumer purchase quantities. Furthermore, I derive my retail market shares from observed

smoking rates; as such, my model is one of changes in smoking behavior rather than purchase

quantities. In the case of multiple distinct products consumed during a single week, I generate

duplicate entries for each.16 Again, to do otherwise is beyond the scope of my model, and

this assumption is one innately made by a researcher working solely with retail data (i.e.

16Duplicate entries make up less than .02% of weekly observed household-level choices.
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Berry et al. (1995), Nevo (2000), etc).

Turning now to the individual choice probabilities, for ease of notation, I consider Θ =

(Σ,Π, ϕ, ρq, ρc, ρe, λc, λe). The parameters ρq, ρc, and ρe provide the impact of category-level

state dependence for cessation products, cigarettes, and e-cigarettes, respectively. Further-

more, λc and λe denote the nesting parameters for cigarettes and e-cigarettes, respectively.17

After integrating out the distribution of unobserved individual attributes, denoted Fv(vi),

the density of a consumer’s observed sequence of choices is given by

Li(Yi|x, pm, hm, Di; δ,Θ) =

∫ Ti∏
t=1

J∏
j=1

[πijmt(x, pmt, hmt, δmt,Ci,t−1,Θ, Di, vi)]
yijt dFv(vi),

where δmt = (δ1mt, . . . , δJmt)
′, x = (x1, . . . , xJ)

′, pmt = (p1mt, . . . , pJmt)
′,

and ht = (h1mt, . . . , hJmt)
′.

(1.8)

I denote Yi as the observed sequence of a consumer’s choices where yijt = 1 if consumer i,

living in market m, chooses product j during time period t.

1.5.3 Retail Market Shares

Unlike individual consumer choice probabilities, deriving market shares from aggregate retail

sales data introduces a component of difficulty; namely, I do not observe a consumer’s prior

choice of product. Instead, I am provided with weekly sales data transformed into product-

level market shares, which are a function of individual-level smoking behavior. As such,

under the assumption of consumer homogeneity for ease of explanation, retail market shares

are formed as follows:

sjmt =
G∑

g=0

πjmt(Cg,t−1 = 1)P (Cg,t−1 = 1), (1.9)

17As the choice of cessation products is a degenerate nest, it requires no nesting parameter.
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where sjmt denotes the market shares of product j in marketm and time period t. P (Cg,t−1 = 1)

signifies the probability that group g was chosen in the prior period, and evolves each period

according to a simple recursion equation. Under the assumption of homogeneous consumers,

the probability of having made a choice contained in group g, this week, is equal to the sum

of observed choice shares made within group g, across all possible category decisions from

the prior week. Thus, solving for this probability simple;

P (Cg,t = 1) =
∑
j∈Jg

G∑
g′=0

πjmt(Cg′,t−1 = 1)P (Cg′,t−1 = 1). (1.10)

In application, I rely upon the assumption of consumer heterogeneity such that the simulated

retail shares now take the form

sjmt =

∫
vm

∫
Dm

G∑
g=0

πijmt(Cig,t−1 = 1)P (Cig,t−1 = 1)dFD(Di)dFv(vi). (1.11)

I now integrate over the distribution of observable and unobservable consumer attributes

denoted FD(Di) and Fv(vi), respectively. In practice, I evaluate the above integrals by

Monte Carlo simulation through the use of Halton draws from the empirical distribution of

v and D.18 For each market m, I draw R simulated consumers and evaluate their choices

over time such that

sjmt =
1

R

∑
R

G∑
g=0

πrjmt(Crg,t−1 = 1)P (Crg,t−1 = 1). (1.12)

From Eq. (1.10), it follows that for each simulated consumer r the probability of them having

18A Halton sequence is a low-discrepancy quasi-random number sequence. See Train (1999).
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made a choice in group g, during the current week, is simply

P (Crg,t = 1) =
∑
j∈Jg

G∑
g′=0

πrjmt(Crg′,t−1 = 1)P (Crg′,t−1 = 1). (1.13)

In this context, Eq. (1.13) provides an evolving joint distribution of consumer heterogeneity

and consumption status that is easily derived. This recursion equation demonstrates that the

consumption behavior of a simulated consumer r relies on each prior time period. Therefore,

when performing my demand estimation, I require an initial distribution of consumption

status, which I cover in Subsection 1.6.1.

1.6 Identification and Estimation

My objective is to estimate the parameter vectors α, β, γ and Θ corresponding to the mean

responses, demographic interactions, unobserved taste heterogeneity, addiction, and nesting

parameters. While I am not necessarily interested in the values of δ, they provide the means

by which I can recover my mean taste parameters. My estimation proceeds through a two-

step process: first, I maximize the individual likelihood function through the use of my

household and retail data, and then I perform a two stage least squares (TSLS) regression

to estimate my mean utility parameters, α, β and γ.

I rely on a Hausman-style instrument, as used in Nevo (2001), to control for price endogeneity.

My identifying assumption is that, by conditioning on market/category and time/category

fixed effects, market-specific demand shocks are independent across DMAs. Given this as-

sumption, the average product price across regions not included in my estimation will be

independent of my market’s demand shocks, but this average will be correlated with my

observed prices due to common marginal costs.19

19In Appendix A3 I compare my model predicted mean utility coefficients with and without the use of my
pricing Instrument.
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1.6.1 Maximum Likelihood Estimation

Given Eq. (1.8), for any candidate values of δ and Θ the log likelihood of the household data

is

L(Y ; δ,Θ) =
H∑
i=1

log[Li(Yi|x, pm, hm, Di; δ,Θ)]. (1.14)

In theory, one can estimate δ directly via maximum likelihood, requiring only household

data; in practice, this is computationally infeasible.20 Instead, I rely upon the work of Berry

(1994), who shows that for any given value of θ, there exists a unique vector δ such that

predicted shares from Eq. (1.12) exactly match those observed in the retail dataset. Thereby,

I treat δ as a known function of θ provided retail market shares—as is common practice in

discrete choice demand estimation with retail data (Berry et al. (1995), Nevo (2000), Nevo

(2001)).

Thus, the log likelihood of the household data, Eq. (1.14), can be rewritten as

L(Y ; δ,Θ) =
H∑
i=1

log[Li(Yi|x, pm, hm, Di; δ(Θ),Θ)], (1.15)

where δ(Θ) is provided by the contraction mapping specified in Grigolon and Verboven

(2014). When evaluating simulated retail market shares during the contraction mapping

step (Eq. (1.12)) I make R = 200 Halton draws, per market, from the empirical distribution

of v and D. In each time period, the joint distribution of consumer heterogeneity and

consumption status, for my simulated consumers, evolves according to the Eq. (1.13).

Consequently, to perform the contraction mapping, I require an initial distribution of con-

sumption status for each simulated consumer. Two techniques govern this decision: (1) I

specify the initial distribution as a parameter of interest to be estimated, or (2) I provide

20In the household dataset there are many product/time/market combinations lacking observed prod-
uct purchases, rendering product/time/market-level identification of δ impossible when reliant solely on
individual-level data.
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an arbitrary initial distribution and forward simulate during a burn-in period (Erdem et al.

(2003), Hendel and Nevo (2006b), Tuchman (2019)). I utilize the second procedure, treating

the first quarter of 2015 as my burn in period, and provide the initial arbitrary joint distri-

bution as P (Crg1 = 1) = 1/(G + 1), ∀r ∈ R. Tests of other arbitrary initial distributions

demonstrate convergence to the same steady state well within my allotted burn-in period.

Finally, Appendix A2 provides more detail regarding how a unique vector of δ(Θ) is derived

from my retail data.

After obtaining δ(Θ) for a given value of Θ, I evaluate the integral governing the density

of a household’s observed sequence of choices (Eq. (1.8)) via Monte Carlo simulation. In

practice, I utilize 100 Halton draws from the empirical distribution of v.21 My estimation

procedure then searches over the values of Θ that maximize Eq. (1.15).22 Upon obtaining

optimum values, I calculate robust standard errors for Θ̂ as described in Train (2009), p. 201;

sandwiching the covariance of the household-level gradient between the inverted Hessian at

the optimum of the likelihood function.

1.6.2 Mean Utility Coefficients

Given Θ̂ from the maximum likelihood step, the resulting unique vector δ̂ provides the rela-

tionship between a product’s mean utility and our covariates of interest—see Eq. (1.4). In my

evaluation of this relationship, I proceed with a TSLS regression relying upon the Hausman

style instruments discussed above. Standard errors for (β̂, α̂, γ̂) are calculated using a two-

step bootstrap procedure where estimation error from the maximum likelihood step is cap-

tured by the first stage of the procedure, and the second step accounts for typical sampling er-

21Results from Train (1999) show simulation variance with 100 Halton draws to be lower than 1000 random
draws in a mixed logit application with a similar number of random coefficients.

22My tolerance during the contraction mapping step is set to 1e−13. For the likelihood maximization
algorithm, I set a tolerance of 2e−10 and provide computed numerical gradients. I consider several randomized
starting values when proceeding with the maximization algorithm to rule out local minima. Finally, the
RCNL contraction mapping requires a dampening procedure discussed in Grigolon and Verboven (2014).
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ror. I begin by taking B = 1000 draws from the asymptotic distribution of Θ found in subsec-

tion 1.6.1. Next, for each of the thousand draws, Θb, I find the corresponding vector, δ(Θb),

and sample with replacement from the set {(δ111(Θb), x1, p111, h111), . . . , (δJMT (Θb), xJ , pJMT , hJMT )}

to create a bootstrapped sample of a size equal to the original. Given the bootstrapped sam-

ple, I then perform the TSLS regression to estimate (β∗
b , α

∗
b , γ

∗
b ). Finally, from the distribution

of (β∗
b , α

∗
b , γ

∗
b ), I find the standard errors of my mean utility parameters.

1.7 Estimation Results

Table 1.5 presents the demand estimates of my model’s preferred specification using the

two-stage process described above. In total, I have 100 markets with 226 time periods each

(after removing the burn-in weeks per Subsection 1.6.1) for a total of 135,600 market-level

observations.23 At the individual level, I have 14,712 households (residing in the 100 markets)

for a total of 2,100,709 household observations post burn-in. To control for common time

and market specific demand shocks, my estimation includes fixed effects at the category/time

and category/market level. For presentation purposes, and to avoid perfect collinearity, I

exclude the constant for regular tobacco flavor, the final time period, and the last market;

these then form my reference categories for my cigarette, e-cigarette, and cessation category

level constants.

Dummies representing product flavorant are denoted Menthol and Flavored. Flavored prod-

ucts are only available in the form of disposable or cartridge based e-cigarettes; however,

menthol products are available for both e-cigarettes and traditional cigarettes. To account

for heterogeneous flavorant preferences across product categories, I include an interaction

of menthol and e-cigarettes. On average, consumer valuations of tobacco products exceed

that of menthol, but, in terms of e-cigarettes, flavored products are the most preferred on

23After burning the first quarter of my sample; the time frame considered under my demand analysis
ranges from April 2015 through July 2019.
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Table 1.5: RCNL Demand Estimates.a

Means Std. Dev. Demographic Interactions (Π)

(β) (σ) Low Income Black

Price -0.759*** -0.017

(0.094) (0.026)

Cigarette 1.303** 2.036*** 0.351** -0.700***

(0.606) (0.028) (0.164) (0.090)

E-cigarette -4.771*** 2.281*** 0.365* -1.929***

(0.352) (0.075) (0.220) (0.329)

Cessation -1.749** 2.805***

(0.889) (0.086)

Menthol -0.718*** 1.188*** 0.118*** 1.055***

(0.051) (0.054) (0.029) (0.062)

Menthol × Ecig. -0.348***

(0.042)

Flavored 0.451*** -0.397* 1.040***

(0.078) (0.213) (0.319)

Past Consumption (ϕ) 0.247***

(0.096)

Cess State Depedence (ρq) 0.958***

(0.204)

Cig State Depedence (ρc) 0.405***

(0.099)

E-cig State Depedence (ρe) 2.672***

(0.166)

Cigarette Nest (λc) 0.768***

(0.013)

E-cigarette Nest (λe) 0.357***

(0.086)

Cat. × Time FEs Y

Cat. × Market FEs Y

Num HH 14,712

Num HH Obs 2,100,709

Num Markets 100

Num Time Periods 226

Num Market Level
Obs

135,600

***p<.01, **p<.05, *p<.1
a Standard errors are included in parentheses. My estimation includes fixed effects at the cate-
gory/time and category/market level. For presentation purposes, and to avoid perfect collinearity,
I exclude the flavor regular tobacco, the final time period, and the last market—making these
my reference levels for the cigarette, e-cigarette, and cessation category dummies. Finally, I ex-
plored the inclusion of demographic interactions with cessation as well as a two-layered nesting
structure comprising an upper nest (cigarettes, e-cigarettes, cessation) and lower nest choice of
flavor, however such changes did not improve model fit.
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average. Finally, as expected, average product valuation decreases with price.

Demographic Interactions In addition to average consumer valuation, I allow for a rich

set of heterogeneous parameters to account for variations in preferences across demographic

groups. The estimates of Π reveals significant variation in demographic valuation. Low-

income consumers display greater preference for cigarettes and e-cigarettes and, interestingly,

I do not find statistically significant evidence of differences in average price valuation for low-

income households. Racial disparities in demand for cigarettes mirror those found in other

works (Sakuma et al. (2016), Sakuma et al. (2020)); Black household demand for cigarettes

and e-cigarettes is less than that of other consumer types. Preference for flavorants also

varies across demographic groups; Black households strongly favor menthol and flavored

products. In contrast, while low-income consumers display a slight preference for menthol,

other flavored products are less preferred.

Random Coefficients and State Dependence Turning to the estimates of my random

coefficients (Σ), all are statistically significant, and account for variation in valuation across

households. In addition, past consumption of an inside option plays a positive and significant

role in determining consumption status across all product offerings. This result is consistent

with the presence of addictive behavior in nicotine containing products. However, dynamic

state dependency appears to be primarily focused at the category level, with the values

of categorical state dependency (ρg) nearly 2 to 10 times larger than the effect of past

consumption on the demand for all inside options (ϕ).

Notably, cessation products and e-cigarettes demonstrate the greatest degree of state depen-

dence. For cessation products, I find ρq to be twice that of the state dependent parameter

for cigarettes, ρc, and, in the case of e-cigarettes, ρe is roughly 6 times larger than ρc. I

hypothesize that the differences in state dependency between product categories arises from
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consumer learning behavior, particularly for goods with small market shares or, in the case

of e-cigarettes, products newly introduced.24 My indicators of prior consumption status may

also capture forms of structural state dependence, such as loyalty behavior.25

Nesting Parameters I also obtain significant estimates of my nesting parameters for

cigarettes and e-cigarettes (λc and λe), indicating that products of the same category are

considered closer substitutes. Interestingly, I find the nesting parameter for cigarettes is

greater than twice that of e-cigarettes. This suggests degrees of within-nest substitution

differ between product categories. Households consider tobacco and menthol to be close

substitutes, whereas e-cigarette flavorants are not held in the same regard. To corroborate

this point, I calculate short-run own-price and cross-price elasticities of demand; capturing

consumer responsiveness to a one-time price increase during the same week.

Table 1.6: Price Elasticity of Demand.a

Average Level Own Cross-Elasticity

Same Different All

Category Category Products

C
ig
a
re

tt
e
s

Tobacco -4.028 1.682 0.006 0.341

Menthol -4.724 2.581 0.006 0.521

Average -4.376 2.132 0.006 0.431

E
-C

ig
a
re

tt
e
s Tobacco -4.077 0.854 0.121 0.414

Menthol -4.085 0.820 0.178 0.435

Flavored -5.153 0.914 0.118 0.436

Average -4.438 0.863 0.139 0.429

Cessation -5.487 - 0.086 0.086

a The table above reports own and cross-elasticities at the product and
category average level. Cross-elasticities are averaged across products
from the same category, different categories, and across all products.

24I examined, and did not find, a statistical difference in e-cigarette state dependence pre- and post-2018.
25My estimates of ϕ and ρ reflects the net effect of all forms of state dependence.
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Price Elasticity Table 1.6 provides the price elasticity of demand. The cross-price elas-

ticity between the focal product and other products is averaged across three groups: the

focal product and those that share its same category, the focal product and those in differ-

ent categories, and the focal product and all other products. Finally, I present own-price

and cross-price elasticities of demand at the product and category average level. Consider,

the cross-price elasticities of demand averaged across products within the same category

compared to the average across products from a different category; tobacco and menthol

cigarettes are far more responsive to changes in other product prices when those products

exist within the same nest. Similarly, the cross-price elasticity of e-cigarettes is greater

when averaged across products within the same nest when compared to the average across

products in alternative categories. My cross-elasticity calculations provide supportive evi-

dence of within nest substitution for both cigarettes and e-cigarettes, and suggests sensible

substitution patterns across products.

Model estimates imply category average own-price elasticities of demand for cigarettes and

e-cigarettes to be -4.376 and -4.438, respectively. In comparison to cessation products,

cigarettes and e-cigarettes are generally less elastic. I find that markets with a greater pro-

portion of low-income households have, on average, less elastic demand for cigarettes. This

finding is generally in line with literature demonstrating persistence in cigarette consump-

tion among low-income consumers. In terms of product flavorant, I find demand for menthol

cigarettes the least elastic in markets with the greatest Black American populations. Inter-

estingly, market-level average own-price elasticity for e-cigarettes—regardless of flavor—does

not appear to be significantly correlated with the proportion of low-income households nor

Black consumers. Lastly, demand for cessation products is the least elastic in those mar-

kets with the greatest percentage of high-income households—suggesting a persistence in

preference for cessation products among wealthier consumers. Overall, my calculated own-

price elasticities provide sensible variation along consumer demographic distributions and

are consistent with consumption differences displayed in Subsection 1.4.1.
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1.8 Counterfactual Product Bans and Taxation

I now use my estimates of cigarette, e-cigarette and cessation product demand to measure

the effect of the proposed menthol ban—in addition to other counterfactuals. Thus, I can

evaluate consumer responsiveness to various product bans, and to provide a taxation rate

which results in consumption-level changes equivalent to that resulting from the removal of

menthol products. I proceed by first describing my supply-side model, and the assumptions

I impose while performing my analysis. Then, provided estimates of counterfactual prices

from my supply-side model, I present expected changes in consumption behavior resulting

from my varied counterfactual scenarios.

1.8.1 Supply-Side Model

I begin my model of supply-side behavior by considering multi-product firms interested in

maximizing their profits. Generating a full supply-side model with true forward-thinking firm

behavior would be exceedingly complex given the presence of dynamic state dependence. I

simplify by considering firms to be interested in maximizing profits over the finite sum time-

periods included in my sample, and I rely upon the fact that changes in consumption behavior

resulting from price changes made weeks prior tend towards zero as time progresses. Thus,

when considering optimal prices for a given week, I find firms place almost no weight on

the resulting changes for profits occurring a quarter or more in the future. As such, in my

analysis, only counterfactual prices calculated towards the final weeks of my sample would

inherit bias resulting from my specifying a finite time problem (as opposed to considering

profit maximization over an infinite number of periods). In practice, I drop the final quarter

of my counterfactual analysis, analogous to how I rely upon a burn-in period when forward

simulating in my maximum likelihood estimation (see Subsection 1.6.1).26

26After burning the first quarter and last quarter of my sample, the time frame considered under my
counterfactual analysis ranges from April 2015 through April 2019.
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Table 1.7: E-Cigarette Brands by Market Share

Brand Market Share Owner

Blu 24.02% Imperial Brands*

Juul 23.40% Juul, Altria* (35% Post Dec. 2018)

NJOY 18.22% NJOY

Logic 11.08% Logic, JTI* (Post April 2015)

Vuse 7.23% R. J. Reynolds*

21st Century Smoke 5.46% 21st Century Smoke

FIN 4.23% FIN

Mark Ten 2.51% Altria*

Mistic 2.26% Ballantyne

Other 1.59% Other

* Tobacco company.

Next, of note, is my decision to consider firms as either operating at the nest level, or

to consider a single firm as the producer of both cigarettes and e-cigarettes.27 If I model

firms at the nest level, then I contend that competition exists between products of differing

nests, and that manufactures of cigarettes, for instance, do not likewise produce e-cigarettes.

Otherwise, I could consider cigarettes and e-cigarettes to be owned and produced by a

singular entity interested in maximizing the collective sum of their profits. Consider Table

1.7, which presents brand-level market shares for e-cigarettes sold between January 2015 and

July 2019.

I observe that prior to 2019, 55.16% of e-cigarettes sold were by companies not directly owned

or operated by Big Tobacco. With the purchase of a 35% stake in Juul by Altria (previously

known as Phillip Morris) in late December 2018, the proportion of independent producers

fell to 31.76%. The trend towards e-cigarette acquisition by large multinational tobacco

manufactures is not surprising. Initially, the industry was composed of small independent

companies interested, primarily, in producing products to assist in smoking cessation be-

27My choice of modeling cigarettes and e-cigarettes as a composite product inhibits my modeling as-
sumptions. I can either consider producers of cigarettes and e-cigarettes as competitive firms or a single
entity.
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havior, but Big Tobacco’s entry into the market during the early 2010s changed producer

incentives, and lead to growing market concentration among the largest players (University

of Bath, 2012).

To compensate for both the independence of firms and the growth in market concentration,

I consider two versions of my supply-side model. The first defines firms at the nest level

(cigarette and e-cigarette producers considered as competitors), and the second models the

total acquisition of e-cigarette producers by Big Tobacco, e.g. one firm producing both

products. Thus, my findings can be perceived as providing bounds for possible firm responses

based upon the proportion of market concentration under traditional producers of tobacco

products. Throughout both models of my supply-side analysis, I assume the producers of

cessation products are now, and continue to be, independent. Finally, a detailed description

of my counterfactual price estimation is provided in Appendix A4.

1.8.2 Counterfactual Simulations

This subsection begins with the proposed menthol cigarette ban; I report expected changes in

cigarette and e-cigarette consumption by demographic profile, as well as the average change

in cessation product usage upon removal of all non-tobacco cigarettes. Next, I calculate

an average national sales tax that results in a similar reduction in smoking rates as those

expected under the menthol ban—weighing the pros and cons of bans vs taxation. Lastly,

I explore the expansion of the menthol ban to all, non-tobacco, product flavorants—paying

particular attention to the expected reduction in e-cigarette usage. All counterfactual sce-

narios considered in my model rely on supply-side estimates of counterfactual price discussed

above, in Subsection 1.8.1.

To obtain average weekly usage rates, I impose my counterfactual scenarios beginning in

2015, and simulate weekly demand over the following four and a half years, for each simulated

42



consumer r. Weighting my counterfactual shares by the market population, and averaging

over each week, I determine the weekly average rate of consumption for all products—across

all markets. I burn the first and last quarter of my results, and average across all weeks

to determine the average change in product usage over the period from April 2015 through

April 2019.

Menthol Cigarette Ban Table 1.8 presents the impact of the removal of mentholated

cigarettes from a household’s choice set. I display smoking rates for cigarettes and e-

cigarettes by demographic profile; cessation usage rates are presented as the average across

all households. Changes in consumption behavior are displayed under the assumption of

both independent and merged (cigarette and e-cigarette) producers. I find that in the ab-

sence of menthol cigarettes, weekly cigarette smoking rates reduce, across all households, by

13% (from 15.72 to 13.74 percent) regardless of producer merger status. On average, 67.5%

of menthol smokers switched to tobacco cigarettes upon removal of mentholated product of-

ferings; expected consumer surplus, across all households, falls by 15.7 to 15.9% (dependent

on merger status) compared to the status quo.

Among Black households, the average reduction in cigarette consumption is far higher; a

35% drop in their average weekly cigarette smoking rate (from 15.41 to 10.00 percent). This

result bodes well for the proponents of the proposed menthol ban; it addresses disparities in

smoking behavior thought to be influenced by race-based advertising practices. Overall, I find

that 52.8% of all Black menthol smokers switched to Tobacco cigarettes when faced with the

removal of mentholated products, and expected consumer surplus among Black households

falls by 42.7 to 42.9% (dependent on merger status) when compared to the status quo.

Researchers Levy et al. (2021b) evaluated the expected impact of a menthol cigarette ban

through the use of a recent expert elicitation on behavioral changes resulting from the removal

of mentholated cigarettes. They find an expected decline in cigarette smoking rates of 15%;
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Table 1.8: Average Weekly Rate of Product Usage: Menthol Cigarette Ban.a

Independent Producers Merged Producers

Without Ban With Ban % Change With Ban % Change

C
ig
a
re

tt
e
s Black 15.41% 10.00% (-35.12%) 9.99% (-35.13%)

Non-Black 15.76% 14.30% (-9.29%) 14.30% (-9.31%)

High Income 14.91% 13.22% (-11.32%) 13.22% (-11.33%)

Low Income 17.75% 15.04% (-15.24%) 15.04% (-15.27%)

Average 15.72% 13.74% (-12.58%) 13.74% (-12.59%)

E
-C

ig
a
re

tt
e
s Black 0.23% 0.25% (+12.23%) 0.28% (+22.74%)

Non-Black 0.48% 0.51% (+4.38%) 0.53% (+10.06%)

High Income 0.43% 0.45% (+3.75%) 0.47% (+8.96%)

Low Income 0.49% 0.53% (+7.48%) 0.0.57% (+15.21%)

Average 0.45% 0.47% (+4.91%) 0.50% (+10.90%)

Cessation 0.47% 0.48% (+1.74%) 0.48% (+1.71%)

a The table above reports expected weekly rates of product usage under the assumption of a
menthol cigarette ban, averaged across April 2015 through April 2019 and adjusted for market
population. I display usage rates for cigarette and e-cigarette by demographic profile; cessation
rates are presented as the average across all consumers.

my results suggest a similar—if slightly smaller—reduction. With regard to changes in

smoking rates among Black Americans, researchers Issabakhsh et al. (2022) rely upon the

same expert elicitation of behavioral changes as in the aforementioned study. Their results

suggest an expected 35.7% reduction in the Black smoking rate when compared to the current

status quo scenario. Again, my counterfactual study suggests similar changes in cigarette

usage among the Black community.

Finally, I find the menthol ban is associated with a rise in the sale of electronic smoking de-

vices, the amount of which differs dependent upon the assumption of independent or merged

(cigarette and e-cigarette) producers. Under the assumption of independent producers, I

find the menthol ban is associated with at 4.91% rise in the average weekly consumption of

e-cigarettes. Unsurprisingly, Black households experience the largest growth in e-cigarette

smoking rates—these consumers being most affected by the removal of menthol cigarettes.

Provided the total acquisition of e-cigarette producers by Big Tobacco (one firm producing

both products), the rise in average weekly e-cigarette usage more than doubles to 10.90%.
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Ultimately, I find the vast majority of smokers who quit cigarettes, provided a menthol ban,

do not substitute their consumption to other nicotine products, i.e. e-cigarettes and cessation

products. My results mirror those observed in Ontario, Canada, where, despite a fraction

of consumers indicating willingness pre-ban (Ontario having banned menthol cigarettes in

2017) to switch to e-cigarettes, research by Chaiton et al. (2020) did not find a significant

association between the Ontario’s menthol ban and e-cigarette usage. This result bodes well

for policymakers concerned with the continuation of addiction through the use of electronic

smoking devices post ban.

However, I must note that for much of my sample, the relative share of e-cigarette usage

remained quite small; shares post January 2018 seeing a dramatic rise in the proportion of

e-cigarettes. As such, the willingness to substitute to e-cigarettes remains very much time-

dependent; rising alongside the growth in popularity of electronic smoking products. Nor

does my counterfactual model consider that marketing practices by e-cigarette companies,

may change in an attempt to draw disfranchised cigarette smokers post-ban.

Cigarette Taxation For decades sin taxes—excise taxes placed on things like tobacco,

alcohol and gambling—have been used for health, education, and other public programs; for

example, states such as Arizona, New Hampshire, Virginia, and Colorado, use revenue gener-

ated from cigarette sales to fund programs from public education to economic revitalization

projects. In recent years, tax revenue from tobacco products has fallen with the decline in

smoking rates, and the FDA’s proposed menthol ban may lead to the steepest reduction yet

seen.

As an alternative to the menthol ban, I find that a 10.23% sales tax, imposed in addition to

current state and federal-level taxes, leads to a comparable reduction in the average weekly

cigarette smoking rate (see Table 1.9). Further, under taxation, the average household faces

a reduction in consumer surplus of 13.9% to 14% dependent on merger status; whereas, the
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proposed menthol ban reduced average surplus by 15.7% to 15.9%. Of greater disparity is

the reduction of surplus experienced, on average, by Black households: taxation resulting

in an average consumer surplus reduction of 12.9% to 13%, whereas the proposed menthol

ban lowers consumers surplus by 42.7% to 42.9%. Black households largely prefer menthol

products, and a 10.23% sales tax reduces household consumption far less than the proposed

menthol ban among Black consumers, therefore it’s only logical that Black Americans would

prefer a 10.23% tax to the removal of mentholated cigarettes.

Table 1.9: Average Weekly Rate of Product Usage: Cigarette Tax (10.23%).a

Independent Producers Merged Producers

Without Tax With
Tax

% Change With
Tax

% Change

C
ig
a
re

tt
e
s Black 15.41% 13.63% (-11.52%) 13.64% (-11.50%)

Non-Black 15.76% 13.76% (-12.72%) 13.76% (-12.71%)

High Income 14.91% 12.98% (-12.94%) 12.98% (-12.93%)

Low Income 17.75% 15.66% (-11.78%) 15.66% (-11.77%)

Average 15.72% 13.74% (-12.57%) 13.74% (-12.56%)

E
-C

ig
a
re

tt
e
s Black 0.23% 0.23% (+2.38%) 0.24% (+6.14%)

Non-Black 0.48% 0.50% (+2.79%) 0.52% (+6.40%)

High Income 0.43% 0.45% (+2.60%) 0.46% (+6.15%)

Low Income 0.49% 0.51% (+3.15%) 0.53% (+6.93%)

Average 0.45% 0.46% (+2.77%) 0.48% (+6.39%)

Cessation 0.47% 0.48% (+1.93%) 0.48% (+1.93%)

a The table above reports expected weekly rates of product usage under the assumption of an
10.23% cigarette tax, averaged across April 2015 through April 2019. I display usage rates for
cigarette and e-cigarette by demographic profile; cessation rates are presented as the average
across all households.

Regardless of demographic group, changes in relative degree of consumer surplus demonstrate

clear a preference for taxation rather than an outright product ban. For instance, I find

among low-income households — those often most impacted by sales taxation policies —, a

10.23% cigarette sales tax results in a smaller reduction in consumer surplus when compared

to the removal of menthol cigarettes. Low-income households face a reduction in consumer

surplus ranging from 13.3% to 13.4% under taxation vs a loss of 18.8% to 19% under the

menthol cigarette ban. Lastly, under taxation, e-cigarette consumption does not experience
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the same increase in demand—smokers with a high menthol preference no longer seeking an

alternative among e-cigarettes. Again, the assumption of merged producers results in greater

e-cigarette usage rates through coordinated pricing strategies among taxed and untaxed

products.

As a back-of-the-envelope calculation, I multiply DMA-level weekly smoking rates by market

population, weighted by the average number of packs purchased each week among cigarette

smokers—provided via the household-level data. I find a 10.23% sales tax generates an

average tax revenue of $66.1 million each week, across the 100 DMAs making up my sample,

for a total revenue of $1.41 billion over the period from April 2015 through April 2019.28

Revenue generated has the potential to replace that lost, at the state and federal level,

as a result of reduced smoking rates. However, to paraphrase FDA commissioner Janet

Woodcock, the primary objective of the proposed menthol ban is to address health disparities

as a result of unscrupulous marketing practices—particularly in communities of color; for

this purpose, an outright ban has the greatest effect (FDA, 2021).

Flavorant Ban It is necessary to acknowledge that, pursuant to the successful imple-

mentation of the menthol cigarette ban, flavored and menthol e-cigarettes will likely be the

FDA’s next target. Already, flavored e-cigarettes are only available in disposable form; fla-

vored cartridges were banned in 2020 in an attempt to reduce youth consumption. Further,

lawmakers in California, New York, Massachusetts, and New Jersey have passed some form

of flavored product restriction, and many other states opting to ban purchasing of flavored

products through online marketplaces—avenues of illegal sales to youth and young adults.

Therefore, it would be remiss of me to fail to consider the implications of a ban on all—

cigarette and e-cigarette—menthol and flavored (fruity, candy, mint) products. Table 1.10

28This expected tax revenue should be treated as an upper bound as my model does not consider possible
reductions in the number of packs smoked each week; rather, my model is one of smoking incidence. Nor do
I address how tax revenue, itself, may be used to fund anti-smoking campaigns and other cessation inducing
behavior.
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presents my findings.

Table 1.10: Average Weekly Rate of Product Usage: Flavorant Ban.a

Independent Producers Merged Producers

Without Ban With
Ban

% Change With
Ban

% Change

C
ig
a
re

tt
e
s Black 15.41% 10.00% (-35.09%) 10.02% (-34.98%)

Non-Black 15.76% 14.32% (-9.18%) 14.34% (-9.05%)

High Income 14.91% 13.24% (-11.21%) 13.26% (-11.08%)

Low Income 17.75% 15.06% (-15.15%) 15.08% (-15.03%)

Average 15.72% 13.76% (-12.48%) 13.78% (-12.35%)

E
-C

ig
a
re

tt
e
s Black 0.23% 0.06 (-72.41%) 0.07% (-71.26%)

Non-Black 0.48% 0.27% (-44.65%) 0.28% (-42.89%)

High Income 0.43% 0.23% (-46.81%) 0.24% (-45.06%)

Low Income 0.49% 0.27% (-45.67%) 0.28% (-43.98%)

Average 0.45% 0.24% (-46.46%) 0.25% (-44.73%)

Cessation 0.47% 0.48% (+1.88%) 0.48% (+1.86%)

a The table above reports expected weekly rates of product usage under the assumption of a
flavorant (non-tobacco) ban, averaged across April 2015 through April 2019. I display usage
rates for cigarette and e-cigarette by demographic profile; cessation rates are presented as the
average across all consumers.

Banning flavorants across all products leads to a similar reduction in average cigarette usage

as that seen under the menthol ban. In addition, the fall in Black smoking rates mirror

those seen with the earlier menthol ban. Of greater interest is the expected change in weekly

e-cigarette usage. On average, a flavorant ban reduces weekly e-cigarette usage by 44.7% to

46.5% (dependent on supply side assumptions). Of course, the average reduction in weekly

e-cigarette usage, as a result of a flavorant ban, is very much time dependent.

E-cigarette market shares in the latter half of my sample are dominated by flavored products,

whereas, pre-2018, regular tobacco was the primary choice. It then follows, that a flavorant

ban’s effect on weekly e-cigarette consumption should be considered on a week-by-week

basis. Figure 1.6 graphs the weekly expected reduction in e-cigarette sales upon the removal

of product flavorants when compared to the status quo scenario.

As the popularity of flavored e-cigarettes grows, so does the impact of a flavorant ban. I find
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Figure 1.6: Percent Change in Weekly E-cigarette Consumption Relative to the Status Quo

an average reduction in weekly e-cigarette usage, pre-2018, to be 41.1% assuming independent

producers and 39.1% assuming merged producers. Post-2018, the average weekly reduction

becomes 51.9% and 50.5% when assuming independent and merged producers, respectively.

1.9 Conclusion

In this paper, I employ a model of consumer demand that incorporates retail- and household-

level data, in a way that is internally consistent, to study consumer demand for cigarette

and e-cigarette flavorants, and evaluate the impact of the proposed menthol cigarette ban

among other counterfactual scenarios.

My work is among the first that analyzes the effect of flavorant bans on demand for cigarettes,

e-cigarettes and cessation products, and is the only work that incorporates addiction, cat-

egorical substitution, as well as both household- and retail-level data in the study of these

effects. I demonstrate that product bans significantly reduce cigarette and e-cigarette con-

sumption, and I find a taxation level which reduces average weekly consumption, among all
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consumers, by the same rate as the proposed menthol ban. To account for the purchase of

e-cigarette companies by cigarette manufactures, I consider my counterfactual results under

the assumption of independent and merged producers of cigarettes and e-cigarettes. My

results suggest that, across all households, the removal of mentholated cigarettes results in

a 13% decrease in the average weekly smoking rate.

Further, by considering a rich set of heterogeneous parameters, I find demographic differences

play a key role in responsiveness to product bans; Black households reduce their cigarette

consumption by 35% when faced with the removal of menthol cigarettes. In contrast, I find

a 10.23% cigarette sales tax as effective, on average, in reducing weekly cigarette smok-

ing rates among all households, and results in a reduction in consumer surplus less than

that experienced under the proposed menthol ban (and significantly less when considering

Black households).29 My results suggest, when it comes to e-cigarettes, only a fraction of

e-cigarette smokers switch among products. In addition, increases in e-cigarette usage under

the proposed menthol cigarette ban are heavily dependent on the assumption of independent

or merged (cigarette and e-cigarette) producers; coordination in product pricing playing a

key role.

As a final counterfactual scenario, I consider the removal of all menthol and flavored products

for both cigarettes and e-cigarettes. I find, on average, the reduction in e-cigarette usage is

time dependent, as market shares of flavored e-cigarettes grew rapidly near the end of my

sample. As it stands, I find an average reduction in weekly e-cigarette usage, pre-2018, to be

41.1% assuming independent producers and 39.1% assuming merged producers. Post-2018,

the average weekly reduction becomes 51.9% and 50.5%, respectively.

Although not considered in this paper, future work has the potential to address youth con-

sumption of product flavorants; my analysis is limited by the unavailability of youth and

29The imposition of a 10.23% tax does not cause nearly as great a reduction in cigarette smoking among
Black consumers, and therefore may not fulfill the intent of the menthol ban.

50



young adults in the Nielsen household dataset. Further, I do not address the long term

health benefits as the result of the reduction in product usage. Nor do I consider inter brand

substitution; rather, my model is one of product usage at the flavor level. Also, beyond the

scope of my work is the recent self-regulation by producers designed to avoid government

intervention—the effectiveness of which may be a topic of interest. Finally, I form market

shares by considering average smoking rates and weekly purchase incidence; I do not con-

sider purchase quantities. Future work has the potential to bridge this gap, forming a model

linking both incidence and quantity choice.

51



Chapter 2

Substitution Patterns and Welfare

Implications of Local Taxation:

Empirical Analysis of a Soda Tax

2.1 Introduction

Governments of all types levy “sin taxes”—excise taxes imposed on certain goods deemed

harmful to society and individuals—with the dual, and oftentimes competing, motives of

curbing consumption and raising tax revenue. Examples include taxes on tobacco, alcohol,

gambling, drugs1, junk foods2, etc. The present study designs a model to evaluate the effects

of an increasingly popular category of sin taxes—“soda taxes”, which are imposed on sugar-

sweetened beverages (SSBs)—by paying particular attention to both cross-border shopping

(geographic substitution) and switching to alternative products (product substitution) as

forms of tax avoidance.

1Such as legal marijuana (Hollenbeck and Uetake, 2021).
2See for example Yazzie et al. (2020).
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We focus on the SSB tax implemented in the US city of Philadelphia. Philadelphia provides

a set of conditions that benefits researchers interested in the effects of SSB taxation. First,

Philadelphia is demographically diverse, particularly in terms of income distribution, which

allows researchers to better understand the heterogeneous effects of the taxation on the city’s

rich and poor households. Second, Philadelphia is a large urban center with a substantial

set of retail-level and household-level data available. Finally, the city of Philadelphia is both

expansive and surrounded by a large suburban population, which provides an ideal setting

for studying the effects of geographic and product substitution.

The difference between geographic and product substitution is an important one. For a

local government collecting tax revenue, geographic substitution hurts local businesses and

lowers tax revenue as consumers take their SSB purchase and with it their grocery shopping

to other locations, whereas product substitution leaves consumers’ purchases in the same

location. For public health agencies, geographic substitution defeats the purpose of the

tax as consumers continue to buy unhealthy products and only change where they buy

them, whereas product substitution achieves exactly the health objective of the tax by

diverting consumption from unhealthy products to healthier ones. A good understanding

of the relation between and the magnitudes of geographic and product substitution is then

an important prerequisite for sound policymaking, for local governments and public health

agencies alike.

Besides SSB taxation, analogous scenarios featuring such tension between geographic and

product substitution apply to many policies implemented by states, counties, or cities, in-

cluding all kinds of sin taxes collected at the local level, other types of local taxes and

regulations3, local subsidies for certain products such as healthy foods and gasoline4, and

3Such as gasoline taxes at the state level and local amusement taxes (Breslow, 2019).
4A local subsidy not only induces local consumers to switch from unsubsidized products to subsidized

ones, but also incentivizes consumers in other locations to travel to the subsidized location in pursuit of lower
prices. For example, when the subsidized gasoline prices in Mexico are noticeably lower than the prices in
the US, many US drivers cross the border into Mexico to fill their tanks, leading to a gasoline shortage and
temporary suspension of the gasoline subsidy in Mexico’s US border region (Garrison and Barrera, 2022).
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even restrictions on abortion imposed by various US states5. By providing a structural

empirical analysis of a local policy that decomposes consumers’ heterogeneous substitution

responses along the dimensions of geographic and product substitution, this paper offers new

insights as well as a useful approach for related policy studies in local taxation, subsidy, and

regulation.

The primary goals of this study are then twofold: to estimate consumers’ geographic and

product substitution as well as welfare changes resulting from an SSB tax, and to provide an

empirical framework by which one can evaluate the effects of local taxation or related policies

taking into account consumers’ multifaceted and heterogeneous substitution patterns.

To quantify the effects of Philadelphia’s SSB tax on consumers’ product and location choices

and their welfare, we construct and estimate a model of consumer demand in the random

coefficients nested logit (RCNL) framework (e.g., Grigolon and Verboven (2014), Miller and

Weinberg (2017), and Miravete et al. (2018)) using a combination of retail and household

data. The random coefficients approach allows rich modeling of heterogeneity in consumer

tastes and travel costs, while the nested structure is particularly suited to our analysis of

consumers’ substitution across beverage categories (“nests”). Aggregate-level retail data

lacks the information needed to track individual households’ heterogeneous responses to the

tax, but measures the aggregate effect of the tax with far less noise and provides a reliable

method by which one can account for endogenous variables. Micro-level household data

covers only a small subset of all households, but provides an accurate measure of consumer

heterogeneity and responsiveness to travel costs. Our empirical approach combines the

strengths of the above elements and incorporates the two kinds of data in an internally

consistent way.

5In states where abortion restrictions are in place, a woman may face a choice among getting an abortion
at an out-of-state clinic, switching to an alternative method such as abortion medication by mail, and the
“outside option” of using none of the above and giving birth instead. In such cases, the cost associated with
traveling out of state to obtain an abortion plays a significant role in determining the woman’s ultimate
choice.

54



In estimation, we follow an approach suggested in Grieco et al. (2022) to recover mean utility

and unobserved demand shocks while accounting for heterogeneous tastes and cross-border

shopping.6 Our results include estimates of mean responses to SSB taxation and travel time

as well as heterogeneous parameters related to preference and substitution. To the best of our

knowledge, this paper is the first study that estimates an RCNL model using a combination

of aggregate-level and micro-level data.7

Several key findings emerge from our analysis. (1) Our demand estimates show that travel

time to the alternative region plays a key role in determining households’ willingness to cross-

border shop, the effectiveness of the taxation, and changes in consumer surplus. On average

an extra minute of travel time to reach a store in the alternative region is equivalent to adding

47¢ to the product price. (2) We obtain households’ substitution patterns in response to the

SSB tax that clearly show both geographic and product substitution are substantial. For each

category of Philadelphia SSBs, we quantify to what extent households switch their purchases

to a store outside Philadelphia, to an untaxed product in Philadelphia, and to the outside

option of no purchase, respectively. (3) We find the SSB tax to be highly regressive. When

measured as a percentage of annual income, low-income Philadelphia households on average

incur a loss of consumer surplus 4.8 times as large as their high-income counterparts’. (4)

Sugar intake from beverages drops significantly for Philadelphia households, by 38% and 35%

for high- and low-income households, respectively, attesting to the substantial public health

benefit of the tax. (5) Accounting for households’ heterogeneous preferences and substitution

patterns, we find 3.14¢ per ounce to be the revenue-maximizing tax rate. Compared to this

rate, the current tax rate of 1.5¢ per ounce results in 90% of the tax revenue, 72% of the

reduction in Philadelphia SSB volume sales, and 68% of the loss in consumer surplus.

6Several other papers have used similar methods combining retail and household data, including Goolsbee
and Petrin (2004), Chintagunta and Dubé (2005), Tuchman (2019), and Murry and Zhou (2020).

7In our estimation process, we found that the inclusion of household data, rather than relying solely on
retail data, greatly facilitates the estimation of the RCNL model, particularly the estimation of the nesting
parameter (compared to using moment conditions derived from aggregate-level data).
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As of July 2022, excluding Cook County in the state of Illinois and the Navajo Nation, all

SSB taxes in the US have been implemented at the city level. Given the relatively small area

of taxation, these SSB taxation policies are especially vulnerable to tax avoidance behavior in

the form of cross-border shopping. Roberto et al. (2019) compare pre- and post-taxation SSB

sales in and around Philadelphia, concluding that 24% of the decrease in Philadelphia SSB

sales due to the SSB tax is offset by an increase in sales in the surrounding region. Similarly,

Seiler et al. (2021) find evidence of cross-border shopping by Philadelphia households to the

city’s surrounding region, indicating that such behavior offsets 52% of the sales reduction

resulting from the city’s SSB tax. In the general market for food products, cross-border

shopping as a response to sales taxes has been observed in the District of Columbia (Fisher,

1980) and West Virginia (Tosun and Skidmore, 2007), among others.

Literature pertaining to both aggregate-level data (e.g., Thomadsen (2005), Davis (2006),

and Houde (2012)) and micro-level data (e.g., McFadden et al. (1977), Capps et al. (2003),

Bayer et al. (2007), and Burda et al. (2008)) finds that distance plays an important role

in determining product choices. In terms of cross-border shopping, Harding et al. (2012)

show that the distance to a lower-tax border affects the pass-through rates of state cigarette

taxes, suggesting that consumers engage in cross-state purchasing, which pushes the burden

of taxation backwards onto the factors of production. Chandra et al. (2014) find that longer

driving distances strongly disincentivize shopping across the US-Canadian border in search

of cheaper alternatives. Cross-border shopping as a function of geographic distance has also

been identified in Denmark (Bygvr̊a, 2009) and Norway (Friberg et al., 2018). Our analysis

builds upon the idea that distance plays a large role in inhibiting cross-border shopping, and

applies it to the policy evaluation of Philadelphia’s SSB tax. Our modeling of travel time as

a measure of distance within an RCNL model provides a novel approach for incorporating

heterogeneous cross-locational substitution patterns into the analysis of consumer choices.

Through the inclusion of geographic and product substitution of beverages in a choice mod-
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eling structure, our paper also contributes to the expanding set of SSB taxation litera-

ture. Prior works that have considered Philadelphia’s SSB tax as well as cross-border shop-

ping, such as Roberto et al. (2019) and Seiler et al. (2021), have used either retail-level or

household-level data but not both and have relied on reduced form estimation techniques.

We complement those existing works by using both retail-level and household-level data to

estimate consumer behavior and aggregate responsiveness to taxation and by conducting

counterfactual analyses based on structural estimation results. In the context of structural

modeling, Kifer (2015), Wang (2015), Allcott et al. (2019) and Dubois et al. (2020) have used

pre-taxation data to predict the effects of hypothetical SSB taxes. We take a different ap-

proach by studying the actual implementation of an SSB tax, incorporating both retail-level

and household-level data, and accounting for the effects of geographic substitution.

The remainder of this paper proceeds as follows. In Section 2.2, we introduce background

information about the Philadelphia SSB tax. We describe our data sources and provide

detailed information about the products and market in Section 2.3. Section 2.4 details the

discrete choice model of demand that incorporates both the retail and household data. In

Section 2.5, we discuss model identification and estimation. Section 2.6 presents the results

of our demand estimation. We discuss the effects of the taxation on prices, market shares

and consumption in Section 2.7. Changes in consumer surplus and the heterogeneous impact

of the taxation by household income level are discussed in Section 2.8. Section 2.9 derives

the revenue-maximizing tax rate and explores the effects of alternative taxation schemes.

Section 2.10 concludes.

2.2 Philadelphia Soda Tax

On June 16th, 2016, Philadelphia became the second US city to pass an SSB tax, after

Berkeley. Initially proposed as a 3¢-per-ounce tax on all sugar-sweetened sodas, the measure
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garnered widespread support.8 Supporters of the proposal, such as the American Medical

Association, American Heart Association, and other medical groups, argued that such a tax

would combat the twin epidemics of obesity and heart disease. Philadelphia ranks as one of

the worst cities in the US in terms of type 2 diabetes, heart disease, and obesity. City mayor

Jim Kenney predicted the tax would raise $400 million over five years, which would be used

to fund universal pre-kindergarten, job creation, and development projects.

Opponents of the proposal claimed that the measure would disproportionately affect the

least fortunate. The American Beverage Association, a lobbying group formed of beverage

manufacturers and distributors, pushed newspaper, radio and television ads condemning

the proposal as regressive—burdening the city’s poorest with the largest share of the tax.

Interest in the measure was so high that Democratic primary candidates Hilary Clinton and

Bernie Sanders weighed in with their opinions for and against the measure, respectively.

After months of negotiation, a compromise was reached.

Passing with a city council vote of 13-to-4, the final draft required distributors to pay a

1.5¢-per-ounce tax on all sugar-/artificially sweetened beverages, with the law becoming

effective on January 1st, 2017.9 Thus, the tax applies to not only beverages sweetened with

sugar but also diet beverages containing artificial sweeteners. While it may seem surprising

to tax artificially sweetened beverages, given that artificial sweeteners have virtually no

calories and that diet beverages (beverages with few or no calories) are generally considered

healthier alternatives, the city council included diet beverages in the tax to make up for lost

revenue as a result of decreasing the tax from the proposed 3¢ per ounce to the actual 1.5¢

per ounce. Most other soda taxes (in Berkeley, CA, Boulder, CO, Seattle, WA, etc.) tax

only products with added caloric sweeteners, thus excluding diet beverages. In this paper,

we use the term SSB to denote a sugar-/artificially sweetened beverage, corresponding to

8In the context of beverages, the term ounce is a measure of volume and means fluid ounce.
9The tax is levied on distributors, and so the price increase observed by consumers is subject to a pass-

through rate.
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Figure 2.1: Grocery Store Price Tags Indicating Amount of SSB Tax

the coverage of Philadelphia’s soda tax. Figure 2.1 illustrates store-level responses to the

taxation policy by retailers. The figure shows that the retailers display the amount of SSB

tax prominently, contributing to the issue of tax salience, which we discuss in Section 2.6.

2.3 Data

In this section, we describe the data used in our estimation.

2.3.1 Retail Data

Our retail dataset, from Nielsen through the Kilts Center for Marketing at The University

of Chicago Booth School of Business, covers the 4-year period from January 1st, 2015 to

December 31st, 2018 (Philadelphia’s SSB tax took effect at the midpoint of this period on

January 1st, 2017). The dataset contains store-level information detailing weekly price and

quantity sold at the Universal Product Code (UPC) level. For each store in the dataset,

we observe a store identifier, retailer identifier, retailer type as well as the store’s ZIP Code

prefix (a ZIP Code prefix is the first three digits of a 5-digit ZIP Code). Stores contained

within the six ZIP Code prefixes in and around Philadelphia (080, 081, 189, 190, 191, 194)

are considered in our analysis. We apply further restrictions by only considering stores
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that maintained a presence throughout the period of the dataset, whose ZIP Code could be

approximated via the household-level data (as detailed later), and whose approximated ZIP

Code fell within 8 miles of the nearest ZIP Code in Philadelphia.10

Seiler et al. (2021) suggest that cross-border shopping in response to the Philadelphia SSB

tax occurs in the region immediately surrounding the city. They find that post SSB taxation,

there is a positive, statistically significant increase in SSB sales in stores located 0-6 miles

from Philadelphia’s border, but not in stores more than 6 miles from the border. Given that

the primary purpose of our work is to evaluate the effect of SSB taxation on cross-border

shopping and avoidance behavior, we define our market similarly. In practice, we define our

market to be the collection of the ZIP Codes in Philadelphia and the surrounding 8-mile

band (“city + 8 miles”), where we use the wider 8-mile band to account for the fact that

our retail dataset does not provide exact store locations. Appendix B1 shows that sales in

stores beyond the 8-mile band surrounding the city do not experience an increase in SSB

sales following the implementation of the SSB tax. Our final retail dataset contains 218

stores: 111 stores in Philadelphia and 107 in the surrounding region.11

In our retail data, we observe 7,805 UPCs pertaining to eight beverage categories: Car-

bonated Soft Drinks, Juice, Sports Drinks, Energy Drinks, Coffee, Tea, Flavored Water and

Pure Water. All beverage categories, excluding Pure Water, contain both taxed and untaxed

products. For each UPC, we have information concerning brand, pack size, container ounces,

and flavor (many UPCs relate to variations in pack size and container ounces). We rely on

the USDA FoodData Central database along with several food nutrition API services12 to

collect information pertaining to ingredients, sugar content, and caloric value (sugar content

10Nielsen data provides ZIP Code information according to the United States Postal Service (USPS)
designation. We match these USPS ZIP Codes to their corresponding ZIP Code Tabulation Areas (ZCTAs)
as defined in 2016 according to the US Census Bureau. UDSMapper.org, funded by the American Academy
of Family Physicians, provides the most up-to-date conversion of USPS ZIP Codes to their corresponding
ZCTAs. ZCTA centroids and distances for 2016 are provided by the NBER ZIP Code Distance Database.

11In our retail dataset we observe 31 grocery stores, 171 drug stores, and 16 discount stores, which comprise
54%, 30%, and 16% of our observed unit sales, respectively.

12world.openfoodfacts.org, chompthis.com, edamam.com, foodrepo.org and nutritionix.com.
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and caloric value are reported per a 100ml serving size). Among the UPCs we observe, we

remove infrequently purchased items and consider only the 5,259 UPCs whose brand has

greater than 0.5% market share in any of the eight beverage categories; such UPCs account

for 97.5% of all unit sales.

We then aggregate the UPCs into products, where each product is a brand/SSB status/category/diet

status/size combination.13 SSB status is an indicator denoting the presence of added sugar or

artificial sweeteners—these products are subject to the SSB tax if they are sold in Philadel-

phia. Diet status indicates those products marketed as “diet”, “light”, “reduced calories”,

etc. To allow for heterogeneous responsiveness to the tax by product size, we create three

size categories in which all products fall: small, for products whose pack size × container

ounces is less than or equal to 20oz; medium, greater than 20oz but less than or equal to

80oz; and large, greater than 80oz. Each size category accounts for roughly a third of all

unit sales. In total there are 567 products, of which 377 are SSBs and the other 190 are

non-SSBs. Prices are adjusted for inflation.14

We use the term location to denote Philadelphia or non-Philadelphia (the 8-mile band sur-

rounding Philadelphia). For computational reasons, we aggregate our data from the store-

week level to the location-month level; the aggregation over time also helps reduce the

potential bias in demand estimation stemming from households’ stockpiling behavior (see

for example Miller and Weinberg (2017)). In our demand model, to be specified in the next

section, we define an alternative in households’ monthly choice set to be a product-location

combination. Correspondingly, total unit sales, quantity-weighted price, sugar content, and

caloric value are considered at the product-location-month level. If every product is available

in every location in every month, there would be 567× 2× 12× 4 = 54, 432 observations at

the product-location-month level. In reality, not all products are available in both locations

13Flavor variations for the same product are aggregated together. Such variations typically have uniform
price and similar sugar content and caloric values.

14We adjust for inflation by expressing prices as their December 2018 dollar values using the Consumer
Price Index for All Urban Consumers (CPI-U).
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every month, and as a result our retail dataset has a smaller number of observations, at

41,464.

Table 2.1 provides retail data descriptive statistics, broken down by beverage category and

SSB status. We note that we do not account for beverage sales at non-retailer vendors such

as restaurants, fast-food outlets, and theaters, as such vendors are not covered in our data.

2.3.2 Household Data

Nielsen provides household purchase data for a sample of US households. Beverage purchases,

information pertaining to the number of shopping trips, a household’s ZIP Code of residence,

and other household demographic data are recorded. The purchase data reports the price

paid, number of units purchased, and product UPC. When available, store identifier, retailer

identifier, retailer type and store location information are provided. As with the retail data,

store location information is provided as a 3-digit ZIP Code prefix.

Between 2015 and 2018, there were 866 households recorded in the Nielsen data who lived

within the 153 ZIP Codes pertaining to our market.15 Over the course of these 4 years, these

households recorded 212,301 purchase opportunities (i.e., store trips) with 68,442 beverage

purchases. With the provided household demographic information, we differentiate between

low- and high-income households. Specifically, we create an indicator variable for the 365

households whose annual income falls below $50,000—we provide reasoning for this choice

of cutoff in the next subsection. We focus on income as a demographic variable of interest

since (1) opponents of the taxation policy argued that low-income individuals would be most

negatively affected by the policy, and (2) prior works suggest that low income is correlated

with a higher price sensitivity and a greater preference for sugary beverages.

15Of these 866 households, 211 were tracked for all 4 years. Nationally, Nielsen records a household
attrition rate of about 40% each year. Our estimation uses all the 866 households.
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Table 2.1: Retail Data Descriptive Statisticsa

Category Number of
Products

Market Share
in Beverages

Price Sugarb

(g/100ml)
Calories
(cal/100ml)

Carbonated Soft Drinks 160 36.48%

SSB 114 32.6% $2.20 7.43 27.84

Non-SSB 46 3.88% $2.13 0.03 0.14

Coffee 37 1.76%

SSB 25 1.64% $2.96 8.13 54.48

Non-SSB 12 0.12% $3.89 0.10 5.26

Energy Drinks 40 4.63%

SSB 38 4.63% $2.73 6.64 28.03

Non-SSB 2 <0.01% $1.76 2.93 14.69

Flavored Water 32 2.57%

SSB 27 2.5% $1.52 2.9 10.95

Non-SSB 5 0.07% $1.37 0.13 0.68

Juice 145 20.25%

SSB 87 9.38 $2.16 8.37 35.91

Non-SSB 58 10.87 $3.26 9.69 46.99

Pure Water 45 12.07%

SSB 0 0% – – –

Non-SSB 45 12.07% $2.70 0 0

Sports Drinks 27 8.63%

SSB 23 8.57% $1.81 4.76 18.66

Non-SSB 4 0.06% $1.10 0 0

Tea 81 13.53%

SSB 63 13.01% $2.04 5.98 25.63

Non-SSB 18 0.52% $2.24 0.08 0.32

aPrice, Sugar and Calories are presented as quantity-weighted averages.
bSugar present in non-SSB products is the result of natural processes and is not considered
added.

2.3.3 ZIP Codes

We define our market as the 153 ZIP Codes either within Philadelphia or whose centroid

is outside Philadelphia but within 8 miles of the nearest Philadelphia ZIP Code centroid;
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Table 2.2: Household Distribution by Location and Income Status

Income Status Households by Location

All Philadelphia Non-Philadelphia

High-Income 659,923 267,727 392,196

Low-Income 535,749 327,112 208,637

Total 1,195,672 594,839 600,833

46 ZIP Codes exist within Philadelphia while the other 107 are in the surrounding 8-mile

band. ZIP Code-specific demographic data pertaining to the number of households and

the percentage of households whose annual income is below $50,000 is collected from the

2018 5-Year American Community Survey (ACS).16 We consider those households whose

annual income is below $50,000 to be “Low-Income” for the purposes of this study (as also

observed in Miravete et al. (2018)). Table 2.2 provides the household distribution by location

and income status. The table shows that the two locations have roughly the same number

of households, with Philadelphia having more low-income households and non-Philadelphia

having more high-income ones.

Rather than using straight-line distance to account for location substitution in our model,

we rely on travel time as provided by the Google Maps API service. For each Philadelphia

ZIP Code, we find the minimum travel time to drive to a non-Philadelphia ZIP Code, and

vice versa.17 We rely on travel time rather than distance to account for location substitution

for two reasons: (1) ZIP Code distances do not account for road and highway placements

which can greatly alter consumers’ willingness to cross-border shop, and (2) Philadelphia is

home to many rivers and bridges which would remain unaccounted for if distance was the

metric considered. Furthermore, driving is by far the most popular mode of transportation in

and around Philadelphia (see for example Duchneskie (2016)), giving support to calculating

16Both the Nielsen data and the ACS report household income in ranges, and the range cutoffs in the two
data sources match only at the $50,000 mark.

17Travel time between two ZIP Codes is defined as the average time required to drive from one ZIP Code
centroid to the other. Using ZIP Code centroids for the calculation is analogous to how ZCTA distances are
calculated.
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travel time based on driving as an approximation.

Figure 2.2 presents some model-free, suggestive evidence of the importance of travel time.

Panel (a) shows, for each Philadelphia ZIP Code, the minimum travel time to a non-

Philadelphia ZIP Code. Panel (b) shows, for each Philadelphia ZIP Code, the percentage of

beverage purchases made by the ZIP Code’s households that are recorded in a store within

their home location (Philadelphia). A comparison of the two panels suggests these two vari-

ables are positively correlated (a longer travel time to the alternative location is associated

with a higher percentage of beverage purchases in the home location), and calculation shows

these two variables have a correlation coefficient of 0.53.

Figure 2.2: Travel Time and Beverage Purchases

(18,20]
(16,18]
(14,16]
(12,14]
(10,12]
(8,10]
[0,8]

(a) Travel time (minutes) to alternative lo-
cation for Phil. ZIP Codes; affected by not
only distance but also roads, highways, rivers,
bridges, etc.

(99,100]
(98,99]
(95,98]
(90,95]
(80,90]
(50,80]
[0,50]
Insufficient data

(b) Percentage of beverage purchases in home
location by Phil. households, as observed in
the household dataset.

2.3.4 Store Location

As detailed above, the retail dataset does not provide stores’ exact locations or full 5-digit ZIP

Codes. Instead, we are provided with the stores’ 3-digit ZIP Code prefixes (corresponding

to the first three digits of the ZIP Codes). There are six ZIP Code prefixes in and around
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Philadelphia. Among them, two are entirely within our market: 191 is the ZIP Code prefix

for Philadelphia, and 081 corresponds to a region of New Jersey that is entirely within the

8-mile band surrounding Philadelphia. Stores located within the ZIP Code prefixes of 080,

189, 190 and 194 have their locations approximated to determine whether they fall within

any of the ZIP Codes pertaining to our market, as follows.

To approximate store locations, we rely on a method similar to that proposed in DellaVigna

and Gentzkow (2019) and Goldin et al. (2022). For each store, we observe in the house-

hold data the ZIP Codes of residence for the households who make purchasing trips to the

store. We then take the store’s location to be the average of the centroids of these ZIP

Codes, weighted by the total number of trips to the store originating from each of these ZIP

Code during the pre-taxation period.18 In the data, only retailers of the types “Grocery”,

“Discount Store”, and “Drug Store” have unique identifying information that allows for this

location approximation. Thus, our final retail and household dataset only considers stores

of these types to remain consistent.

2.4 Model

In modeling the demand for beverages as a function of product and household characteristics

incorporating consumer heterogeneity and demographic information, we follow the literature

on discrete choice demand estimation with retail data (Berry et al. (1995) (BLP), Nevo

(2000), etc.), and supplement the traditional method with household data in a process similar

to that described in Goolsbee and Petrin (2004), Murry and Zhou (2020), and Grieco et al.

(2022).19 This allows us to leverage the benefits of both datasets: the retail data measures

18Centroid locations are given as latitude and longitude. We first convert the centroids to polar coordinates,
calculate the weighted average, then convert back to latitude and longitude. There is a slight error introduced,
as this conversion assumes a perfectly spherical earth, however given the relative closeness of locations this
error is minimal.

19Another method is the micro-BLP estimator (Berry et al., 2004). Grieco et al. (2022) suggest that the
use of micro-moment conditions, as described in Berry et al. (2004), induces an additional cost in efficiency
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responses to the SSB tax with far less noise and allows for a reliable method by which one can

account for price endogeneity, while the household data provides a more accurate estimation

of heterogeneous parameters, substitution patterns, and responsiveness to travel time. The

model we propose utilizes the retail and household data in an internally consistent way.

2.4.1 Demand Specification

Consider household i in month t. The household chooses one of the available beverage

options (j = 1, . . . , Jt) or the outside option of no purchase (j = 0), where a beverage option

is defined as a product-location combination.20 Household i’s indirect utility from choosing

beverage option j in month t is given by

uijt =x′
jtβi + αipjt + h′

jtγ + 1(Aj ̸= Azi)(ϕiQzi) + ξjt + ϵ̄ijt,

where i = 1, . . . , Ht, j = 1, . . . , Jt, t = 1, . . . , T, and zi = 1, . . . , Z.

(2.1)

xjt is an n1×1 vector of option j’s characteristics in month t, including a constant, Philadel-

phia dummy variable, category dummy variables, brand dummy variables, sugar content,

caloric value, etc. (the full specification is given later in Section 2.6). pjt denotes the retail

price for option j in month t. The n2 × 1 vector hjt contains categorical time trends and

month fixed effects. Our month fixed effects are not year-specific; rather, they capture sea-

sonal variation in beverage sales. zi denotes household i’s ZIP Code of residence. Aj and Azi

are indicator variables signifying if option j and ZIP Code zi are in the Philadelphia location,

respectively. Qzi is the minimum travel time for a household living in ZIP Code zi to drive

to the alternative location (Philadelphia or non-Philadelphia), in which zi is not located.

ξjt denotes unobserved quality, and ϵ̄ijt denotes unobserved idiosyncratic preferences. The

relative to a share constrained micro likelihood estimator, the type of estimator applied in this paper.
20Product availability varies month to month. Similar to Miravete et al. (2018), if no sales are observed for

a beverage option during a specific month, then we assume that option is not present in households’ choice
set for that month.

67



indirect utility from choosing the outside option excluding ϵ̄i0t is normalized to 0.

We characterize household i by a d-vector of demographic attributesDi, including low-income

(below $50,000) and location (non-Philadelphia). We model unobserved household prefer-

ence heterogeneity through the use of the multivariate normal distribution. Households’

preferences for price, beverage option characteristics, and travel time are as follows:

( αi
βi
ϕi

)
=

( α
β
ϕ

)
+ΠDi + Σvi, vi ∼ N (0, In1+2), (2.2)

where Π is an (n1 + 2) × d matrix that measures the impact of observable demographic

attributes on preferences, while Σ is an (n1 + 2)× (n1 + 2) matrix that captures the covari-

ance of unobserved household preferences. In our study we estimate only the variance of

unobserved household preferences, and therefore we restrict Σhk = 0 ∀h ̸= k.

Given the specification in Eq. (2.2), the indirect utility in Eq. (2.1) excluding ϵ̄ijt can be

decomposed into its common and idiosyncratic components, δjt and µijt, respectively, where

δjt = x′
jtβ + αpjt + h′

jtγ + ξjt, and

µijt =
[
x′
jt, pjt,1(Aj ̸= Azi)Qzi

]
(ΠDi + Σvi) + 1(Aj ̸= Azi)(ϕQzi).

(2.3)

We assume that unobserved idiosyncratic preferences for beverage options, ϵ̄ijt, are correlated

within the same beverage category. In our data we observe eight beverage categories (coffee,

carbonated soft drinks, energy drinks, flavored water, juice, pure water, sports drinks, and

tea), and the outside option of no purchase is defined to be category zero. Thus ϵ̄ijt follows

the distributional assumption of a one-level nested logit model and can be decomposed into

ϵ̄ijt = ζigt + (1− ρ)ϵijt, (2.4)

where ϵijt is i.i.d. extreme value, ρ ∈ [0, 1] is the nesting parameter, g ∈ {0, 1, . . . , 8} is
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the category that option j belongs to, and ζigt has a (unique) distribution such that ϵ̄ijt is

distributed extreme value. The nesting parameter ρ measures the correlation in preferences

across beverages within the same category. Perfect within-nest substitution is obtained if ρ

equals one, while as ρ goes to zero, the model reduces to the standard random coefficients

logit specification.

The probability of household i choosing option j belonging to category g in month t is then

πijt =
exp

(
(δjt + µijt)/(1− ρ)

)
exp

(
Iigt/(1− ρ)

) ×
exp

(
Iigt

)
exp

(
Iit
) , (2.5)

where the “inclusive values” Iigt and Iit are given by

Iigt = (1− ρ)log
∑
j∈Jgt

exp
(δjt + µijt

1− ρ

)
(2.6)

with Jgt denoting the set of beverage options in category g in month t, and

Iit = log
(
1 +

8∑
g=1

exp
(
Iigt

))
. (2.7)

2.4.2 Household Choice Probabilities

In the household dataset, for each household i and each month t ∈ Ti during which household

i is in the data, we observe the household’s Oit purchase opportunities (i.e., store trips).

During each opportunity, the household chooses one of the available beverage options or the

outside option of no purchase.21 Integrating over the distribution of unobserved household

attributes, denoted Fv(vi), the density of household i’s observed sequence of choices is given

21We assume that the number of purchase opportunities is independent of observable or unobservable
individual characteristics. Such an assumption is necessary for our estimation to be tractable under the
BLP framework, and is one innately imposed by researchers working solely with retail data (i.e., Berry et al.
(1995), Nevo (2000), etc.).
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by

Li(Yi|x, p, h,Qzi , Di; δ,Θ) =

∫ ∏
t∈Ti

Oit∏
o=1

Jt∏
j=0

[πijt(xt, pt, ht, Qzi , Di, δt,Θ, vi)]
yijot dFv(vi),

where δt = (δ1t, . . . , δJtt)
′, xt = (x′

1t, . . . , x
′
Jtt)

′, pt = (p1t, . . . , pJtt)
′, and ht = (h′

1t, . . . , h
′
Jtt)

′.

(2.8)

We summarize the model’s heterogeneous taste, travel time, and nesting parameters as

Θ = (Π,Σ, ϕ, ρ), and use Yi to denote the observed sequence of household i’s choices, where

yijot = 1 if household i chooses beverage option j during purchase opportunity o in month t.

2.4.3 Retail Market Shares

At the retail level, we use Mt to denote the market size in month t, i.e., the total number of

purchase opportunities experienced that month, obtained as the total number of households

in the market multiplied by the average number of grocery store trips per household in that

month as observed in the household data. We assume a continuum of purchase opportunities

of mass Mt, and the household data is assumed to be a finite sample drawn from it.22

Consider the set of household-specific characteristics that lead to the purchase of beverage

option j in month t, {(Di, zi, vi, ϵ̄ijt)|uijt ≥ uikt ∀k = 0, 1, . . . , Jt}. The distribution of ϵ̄ijt is

extreme value as given in Eq. (2.4), which leads to household choice probabilities πijt given

in Eq. (2.5). The distribution of vi is multivariate normal as given in Eq. (2.2), and the

distributions of zi and Di|zi are obtained from the ACS. Integrating over the distributions

of vi, zi, and Di|zi, we obtain the predicted market share for beverage option j in month t

as

sjt =

∫
vi

∫
zi

∫
Di

πijt(xt, pt, ht, Qzi , Di, δt,Θ, vi)dFD(Di|zi)dFz(zi)dFv(vi). (2.9)

In assuming a continuum of households, as is routine in the literature, and conditioning on

22Appendix B2 provides details about the case of multiple purchases during a single trip.
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ξ, through δ, the market share in Eq. (2.9) is deterministic, and the aggregate demand for

beverage option j is obtained as Mtsjt .

2.5 Identification and Estimation

Our objective is to estimate the parameters α, β, γ, Π, Σ, ϕ, and ρ. While we are not

necessarily interested in the value of δ per se, it is required to recover the mean taste

parameters α, β, and γ. Thus, our estimation proceeds with two steps. First, we maximize

a likelihood function using the retail and household data. This identifies all the parameters

except those derived from the mean utility. Next, to estimate α, β, and γ, we use a two-

stage least squares (TSLS) regression and instrument pjt with a Hausman style instrument

(as seen in Nevo (2001)) to control for correlation with the error term ξjt.
23

2.5.1 Maximum Likelihood

In the first stage of our estimation, for any candidate values of Θ and δ, the density of a

household’s choice history is given by Eq. (2.8), and the corresponding log-likelihood of the

household data is

L(Y ; δ,Θ) =
H∑
i=1

log[Li(Yi|x, p, h,Qzi , Di; δ,Θ)]. (2.10)

In theory it is possible to estimate δ directly via maximum likelihood solely with the

household-level data; practically, however, this is computationally infeasible considering the

large number of beverage options available. Instead, we rely upon the work of Berry (1994)

who shows that for any given value of Θ, there exists a unique vector of δ such that the

predicted market shares from Eq. (2.9), sjt, exactly match those observed in the retail data,

23We calculate the average price of each product across all US stores in the Nielsen data, excluding those
in the Philadelphia designated market area (DMA) which contains the market of our demand model, and
use this average to instrument the price in our model.
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Sjt. Consequently, given the retail market shares, we can treat δ as a known function of Θ.24

Appendix B3 shows in more detail how a unique vector of δ is obtained from our retail data.

Thereby, the log-likelihood of the household-level data shown in Eq. (2.10) can be re-written

as

L(Y ; Θ) =
H∑
i=1

log[Li(Yi|x, p, h,Qzi , Di, δ(Θ);Θ)], (2.11)

where δ(Θ) is given by the one-to-one contraction mapping from the retail market share

constraint. In performing the contraction mapping, we evaluate the integrals of Eq. (2.9)

by Monte Carlo simulation with 4000 Halton draws from the distributions of v, z, and D|z

(i.e., 4000 simulated households). Similarly, we use a separate set of 100 Halton draws from

the distribution of v when evaluating the integral in Eq. (2.8).25 Our estimation proceeds

by searching for the value of Θ that maximizes Eq. (2.11).26 Finally, we obtain robust

standard errors for Θ by sandwiching the covariance of the household-level gradient between

the inverted Hessian at the optimum of the likelihood function.27

2.5.2 Mean Utility Coefficients

Given δ̂ resulting from the optimal Θ̂ in the maximum likelihood step, we use the fact that

δjt = x′
jtβ + αpjt + h′

jtγ + ξjt to determine our mean utility parameters. We proceed with

24By assuming the aggregate market shares are derived from a continuum of households, the asymptotic
variance of the shares is zero. Grieco et al. (2022) shows that this assumption has a cost in terms of both
efficiency and inference, unless the household sample size is negligibly small when compared to the size of
the market population. This is similar to the efficiency loss of the standard micro-BLP (Berry et al., 2004).
In our model H/N = 0.00072, where H = 866 is the size of the household dataset and N = 1, 195, 672
is the population of households in and around Philadelphia from which those 866 households were drawn;
accordingly, the efficiency loss should be minimal. Furthermore, to use a mixed data likelihood estimator as
suggested in Grieco et al. (2022) would be too computationally burdensome, as each δjt must be treated as
a parameter of interest in the likelihood estimation.

25Results from Train (1999) show simulation variance with 100 Halton draws to be lower than 1000 random
draws in a mixed logit application.

26Our tolerance for the contraction mapping step is set to .5e−12. For the likelihood maximization algo-
rithm, we set a tolerance of 2e−10 and provide computed numerical gradients. We consider several randomized
starting values when proceeding with the maximization algorithm to rule out local minima.

27See Train (2009), p. 201.
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a TSLS regression relying upon Hausman style instruments, as there is reason to believe

pjt may be correlated with the error term ξjt. Standard errors for (α̂, β̂, γ̂) are calculated

using a two-stage bootstrap procedure, where the first stage captures the estimation error

from the maximum likelihood step and the second stage captures the typical sampling er-

ror. Specifically, we begin by first taking 1000 draws from the asymptotic distribution of Θ.

Next, for each draw, Θd, we find its corresponding vector δ(Θd). We then draw with replace-

ment from the sample {(δ11(Θd), x11, p11, h11), . . . , (δJTT (Θd), xJTT , pJTT , hJTT )} to create a

bootstrapped dataset (of a size equal to the original sample). Given this bootstrapped sam-

ple, we then perform the TSLS regression to estimate (α∗
d, β

∗
d , γ

∗
d). From the distribution of

(α∗
d, β

∗
d , γ

∗
d), we find the standard errors of our mean utility parameters.

2.6 Demand Estimates

Table 2.3 presents the demand estimates of our preferred specification of the RCNL model

using the two-step procedure outlined above.28 To avoid perfect collinearity, we have dropped

the category pure water, the brand Aquafina, the size small, and the month of December. On

average, consumer valuations for beverages decrease with calories, but increase with sugar

content. Excluding juices and flavored water, beverages that contain added sweeteners dis-

play a comparative increase in demand. We also observe that consumer valuations decrease

with price, conforming to the law of demand.

Tax Salience Considering the price tags displayed in Figure 2.1, where the per-unit price

and tax amount are displayed independently and prominently, and the publicity surrounding

the SSB tax, we hypothesize that consumer responsiveness to the taxation policy is greater

28We considered a three-level nested logit model (Train, 2009) with the choice between beverages and the
outside option at the highest level and the choices of beverage category and beverage option at subsequent
nodes; however such a model did not improve model fit.
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Table 2.3: RCNL Demand Estimatesa

Mean Standard Demographic Interactions (Π)

(α, β, ϕ) Deviation (Σ) Low-Income Non-Phil.

Price -0.285*** 0.010*** -0.006

(0.024) (0.008) (0.013)

Calories -0.011***

(0.001)

Sugar 0.021*** 0.051*** 0.009

(0.004) (0.004) (0.006)

Diet -0.393*** -0.009

(0.039) (0.042)

Medium 0.546*** -0.161***

(0.054) (0.062)

Large 0.964*** 0.235*** -0.222***

(0.082) (0.029) (0.084)

Tax Amount -0.157*** 0.020

(0.029) (0.055)

Tax Saving 0.012

(0.008)

SSB × Carb. Soft Drinks 0.224*** 0.705***

(0.024) (0.040)

SSB × Coffee 0.556***

(0.048)

SSB × Energy Drinks 0.580***

(0.065)

SSB × Flavored Water 0.042

(0.085)

SSB × Juice -0.263*** 0.242***

(0.024) (0.030)

SSB × Sports Drinks 0.798***

(0.081)

SSB × Tea 0.571***

(0.048)

Philadelphia -0.378*** 0.428*** 0.754***

(0.064) (0.045) (0.203)

Constant -4.781*** 0.988*** 0.877***

(0.200) (0.045) (0.226)

Travel Time -0.127*** 0.047*** 0.021**

(0.014) (0.007) (0.010)

Category Nesting (ρ) 0.685***

(0.024)

Category FEs Y N Y N

Category Time Trends Y N N N

Month FEs Y N N N

Brand FEs Y N N N

***p<.01, **p<.05, *p<.1
aStandard errors are reported in parentheses. Estimates of Category FEs and corresponding Low-Income
interactions are provided in Appendix B4.
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than that arising solely from a change in price. In fact, Acton et al. (2022) find an increase

in perceived costs of SSBs and taxation awareness in countries where a national SSB tax has

been implemented.

We therefore include the variable “tax amount”, which provides a quantity-weighted dollar

value of the SSB tax to be paid for each Philadelphia beverage option. Similar to Li et al.

(2014), who examine gasoline taxes, our negative and significant coefficient for tax amount

shows consumer responsiveness to the taxation policy is greater than what the price increase

per se suggests. This points to the existence of a tax salience effect, whereby consumers

exhibit heightened awareness of and aversion to a highly visible tax, given the extensive media

coverage of the tax and retailers’ eagerness to inform consumers of the source of such price

increases (Figure 2.1). Our estimation results show that on average, the tax salience effect

increases consumers’ disutility from a price increase due to the tax by 0.157/0.285 = 55%.

Likewise, we include the variable “tax saving” which provides, for non-Philadelphia beverage

options, their SSB tax amount if sold in Philadelphia. Although only statistically significant

at the 85% confidence level, the coefficient for tax saving suggests a small but positive increase

in demand for products in the non-Philadelphia location whose counterparts in Philadelphia

are subject to the tax. We can interpret this increase in demand as a result of psychological

gains from purchasing a product at a lower price than at the alternative location.

Demographic Interactions We also allow for variation in consumer valuations across

observed demographic characteristics including income and location, presented in columns 4

and 5 of Table 2.3. The estimation of Π reveals significant differences in consumer valuations

for beverage options. For instance, compared to high-income households, low-income house-

holds have higher valuations for inside options except for medium- and large-sized tea prod-

ucts (based on the estimates for low-income interactions with constant, sizes, and category

fixed effects, the last of which reported in Appendix B4). The disutility from travel time
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is greater for high-income households, consistent with prior transportation research (e.g.,

Hymel et al. (2010)) which suggests that high-income households have a higher valuation

of their time. Finally, allowing non-Philadelphia households to experience a heterogeneous

response to Philadelphia beverage options allows for differing intercepts when considering

willingness to cross-border shop.

Random Coefficients and Nesting Parameter We include in our model a rich set of

random coefficient parameters (Σ), all of which exhibit statistical significance and sensible

results. For instance, the relatively large standard deviation of the random coefficient on

sugar content suggests that only 66% of high-income households and 72% of low-income

households experience an increase in utility from higher sugar content. The nesting parame-

ter ρ is estimated very precisely, and implies that consumers show a strong correlation across

beverages within the same category. To corroborate this point, consider the price elasticity

of demand.

Price and Travel Time Elasticities Table 2.4 provides the price elasticity of demand for

all households, reporting own- and cross-elasticities averaged at the category-location level,

location level, and all beverage options level. Cross-elasticities of demand are reported for

beverage options from the same category, same category and same location, same category

and different location, and all beverage options. Estimates for the own-elasticity of demand

show that households have elastic demand for beverages, with the elasticity ranging from

-1.71 to -2.65. Considering the cross-elasticity of demand, we see that it is higher between

beverages in the same category, and furthermore it is higher between beverages in the same

category and same location when compared to beverages in the same category but different

locations. These results delineate a clear order of preference in terms of substitution.

Turning to the travel time elasticity of locational demand, the estimates in Table 2.5 provide
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Table 2.4: Price Elasticity of Demand for All Households

Average Level Own-Elasticity Cross-Elasticity

Same Category
All Bev.
Options

All Bev. Same Different

Options Location Location

Phil. Bev. Options -2.0910 0.0115 0.0195 0.0035 0.0017

Carbonated Soft Drinks -1.9999 0.0050 0.0083 0.0017 0.0016

Coffee -2.6384 0.0446 0.0778 0.0120 0.0020

Energy Drinks -2.0163 0.0200 0.0348 0.0053 0.0017

Flavored Water -1.7985 0.0248 0.0411 0.0081 0.0012

Juice -2.3227 0.0063 0.0106 0.0019 0.0019

Pure Water -1.9250 0.0201 0.0344 0.0057 0.0019

Sports Drinks -1.8850 0.0266 0.0452 0.0084 0.0015

Tea -1.9713 0.0084 0.0141 0.0028 0.0015

Non-Phil. Bev. Options -2.0225 0.0120 0.0212 0.0028 0.0018

Carbonated Soft Drinks -1.8685 0.0052 0.0092 0.0011 0.0017

Coffee -2.6511 0.0482 0.0841 0.0118 0.0022

Energy Drinks -2.1000 0.0203 0.0342 0.0063 0.0017

Flavored Water -1.7104 0.0255 0.0461 0.0054 0.0013

Juice -2.2776 0.0067 0.0120 0.0014 0.0020

Pure Water -1.9100 0.0214 0.0377 0.0052 0.0020

Sports Drinks -1.7606 0.0250 0.0442 0.0057 0.0014

Tea -1.8698 0.0092 0.0165 0.0018 0.0016

All Bev. Options -2.0564 0.0117 0.0203 0.0031 0.0017

the percentage changes in quantity demanded for beverage options in a household’s home

and alternative locations, respectively, given a 1% increase in travel time needed to reach

the alternative location. These estimates are found by first taking, for each simulated house-

hold/beverage option/month combination, 100 draws from the distribution of ϵ̄ijt. Next, the

change in choice of beverage location is found by comparing beverage choices given a 1%

increase in travel time and holding draws from the distribution of ϵ̄ijt constant. Finally, the

change in locational demand is averaged across simulated households at the location level.

These results provide a picture of households who are elastic in travel responsiveness, willing

to decrease their propensity to shop in the alternative location when faced with increased

travel time.
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Table 2.5: Travel Time Elasticity of Locational Demand

Phil. Households Non-Phil. Households

Phil. Bev. Options 0.14 -1.75

Non-Phil. Bev. Options -1.36 0.14

Cost of Traveling Lastly, consider the cost of traveling to a grocery store. Taking the

average of the ratio of travel time responsiveness to price responsiveness across all simulated

households, we find that on average an extra minute of travel time to reach the store is

equivalent to adding $0.47 to the product price.29 Note that our travel time variable measures

the time needed to travel to a store in the alternative location, so purchasing at a store 10

minutes away would involve a 20-minute round trip. Also note that the per-minute cost of

travel includes not only the cost of time but also the cost of fuel. Other factors such as the

depreciation of the car are not significant for the relatively short trips of grocery shopping.

To obtain a back-of-the-envelope figure for the value of time based on the above estimate,

consider driving to a store 10 minutes away and coming back. Assuming a speed of 30

miles per hour, a fuel efficiency of 25 miles per gallon, and a gasoline price of $2.53 per

gallon (the average gasoline price in the Philadelphia area in May 2017 (U.S. Bureau of

Labor Statistics, 2017)), the fuel cost for the 20-minute round trip is approximately (30 ×

20/60)/25× 2.53 = $1.01. Consequently, the value of the 20 minutes spent is approximately

0.47× 10− 1.01 = $3.69, implying a value of time equal to 3.69× 60/20 = $11.07 per hour.

This figure falls in the same range as the US Government’s practice of valuing people’s time

between 1/3 and 1/2 of the wage rate based on research in transportation and recreational

demand (Goldszmidt et al., 2020). Workers in the Philadelphia area had an average hourly

wage of $26.41 in May 2017 (U.S. Bureau of Labor Statistics, 2018), implying a value of time

at 26.41/3 = $8.80 per hour using the 1/3 factor and 26.41/2 = $13.21 per hour using the

29Both price and travel time have random coefficients, and so directly taking the ratio of the mean
coefficient for travel time to the mean coefficient for price would give an inaccurate figure, as the ratio of
averages differs from the average of ratios.
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1/2 factor.30

2.7 Pass-Through, Substitution Patterns, and Consump-

tion Changes

In the remainder of this paper, we study the effects of Philadelphia’s SSB tax by using

our demand estimates to evaluate various counterfactual scenarios. Comparing the outcome

under taxation to the counterfactual scenario of no tax, this section examines consumers’

substitution patterns and consumption changes brought about by the tax, while the next

section analyzes the welfare implications and regressivity of the tax. Then in Section 2.9 we

consider the effects of alternative tax rates, alternative tax coverages, and changes in travel

time.

As an input for conducting the counterfactual analyses, we first estimate the pass-through

rate of the SSB tax.

2.7.1 Pass-Through Rate

Since we do not estimate the supply side of the market, when conducting counterfactual

analyses involving changes in the SSB tax, we need to make an assumption about prices

under the counterfactual scenarios. To that end, we follow the literature on SSB taxation

and estimate a pass-through rate of the tax for constructing counterfactual prices.

Studying Philadelphia’s SSB tax, several authors have conducted various analyses on this

30Goldszmidt et al. (2020) find a higher value of time at $19 per hour using natural field experiments
with the ridesharing company Lyft. One possible reason for the difference between our estimate and that
of Goldszmidt et al. (2020) is that Lyft passengers considered in their study may differ from the household
sample in our data. Additionally, the value of time may vary across different types of activities.
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topic. Cawley et al. (2018) and Roberto et al. (2019) find pass-through rates of 55% and 68%,

respectively, while Bleich et al. (2020) and Cawley et al. (2020) find higher pass-through rates

of 120% and 105%, respectively. More recently, Seiler et al. (2021) find a pass-through rate

of 97%, relying upon their finding that the region more than 6 miles away from Philadelphia

does not exhibit an increase in SSB sales in response to Philadelphia’s SSB tax. They proceed

by treating this region as their control: it is close enough to Philadelphia to experience similar

marketing and demand shocks while uninfluenced by cross-border shopping. Similarly, our

Appendix B1 demonstrates that the stores present in the Nielsen data that are located

in ZIP Codes 8+ miles from Philadelphia do not exhibit a positive SSB sales response to

Philadelphia’s SSB tax.

We progress with the estimation of the pass-through rate as observed in Seiler et al. (2021),

treating the stores 8+ miles from Philadelphia yet still within the surrounding 3-digit ZIP

Code prefixes (see Subsection 2.3.1) as the control group for the per-ounce price of SSBs.

When performing the pass-through rate analysis, we work with quantity-weighted per-ounce

prices at the product-store-week level (similar to Roberto et al. (2019) and Cawley et al.

(2020)) rather than aggregating per-ounce prices to the SSB status-store-week level (as in

Seiler et al. (2021)), and we obtain category-level estimates of the pass-through rate rather

than an average across all categories.

Specifically, for each of the seven categories containing SSBs, we regress price observed at the

product-store-week level on the interaction Post-Tax × Philadelphia as well as store fixed

effects and their interactions with the diet, medium, and large dummy variables, week fixed

effects, and additional product characteristics including sugar and caloric content. Detailed

results are reported in Appendix B5. The interaction Post-Tax × Philadelphia provides

the mean increase in SSB prices in Philadelphia compared to the control group. We find

category-level price increases ranging from 1.09¢ per ounce (tea) to 1.59¢ per ounce (energy

drinks), corresponding to pass-through rates of 72.7% to 106% of the 1.5¢-per-ounce tax
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rate. A Wald test rejects (p < .01) the null hypothesis of the same pass-through rate across

the seven categories containing SSBs. Differences across category-level pass-through rates

likely arise from a combination of factors including different price elasticities on the demand

side and different levels of competition on the supply side. Furthermore, our category-level

estimates fall within the range observed in prior research (e.g., Cawley et al. (2018), Roberto

et al. (2019), Bleich et al. (2020), Cawley et al. (2020), and Seiler et al. (2021)).

Our estimation contributes to the expanding literature of tax pass-through and serves as an

input for our policy evaluation. For the remainder of this study, we assume category-level

pass-through rates equal to those obtained here when performing counterfactual analyses.

2.7.2 Substitution Patterns

As our first counterfactual of interest, we examine how the SSB tax induces categorical and

locational substitution. To perform this analysis, similar to how we found travel time elas-

ticity, we simulate 100 draws from the distribution of ϵ̄ijt for each combination of simulated

household i, beverage option j, and post-taxation month t = 25, . . . , 48 (January 2017 to

December 2018). We then determine product-level utility with and without the SSB tax

holding the ϵ̄ijt draws constant. That is, product-level utility takes the form

uwith tax
ijt = δwith tax

jt + µwith tax
ijt + ϵ̄ijt, and (2.12)

uwithout tax
ijt = δwithout tax

jt + µwithout tax
ijt + ϵ̄ijt. (2.13)

Thus, beverage choice with and without the tax is given by the maximal value of the utilities

found in Eqs. (2.12) and (2.13), respectively.

In both equations, the coefficients are the estimated coefficients from our demand estima-

tion, and the household and beverage option characteristics are the observed characteristics.
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In Eq. (2.12), the prices are the observed prices, while in Eq. (2.13), for each SSB sold

in Philadelphia, the tax amount calculated according the relevant pass-through rate is sub-

tracted from the observed price to obtain the counterfactual price in the no-tax scenario,

and the variables “tax amount” and “tax saving” are set to zero for all beverage options.

Holding ϵ̄ijt to be the same between the two equations when examining beverage choices with

and without the tax allows us to isolate the effects of the tax on households’ beverage choices.

In comparison, tracking how the households in our household dataset actually change their

choices from the pre-taxation period to the post-taxation period would not paint an accurate

picture of the tax-induced substitution patterns, because households’ idiosyncratic prefer-

ences ϵ̄ijt, product availability, and demand shocks all have changed between the two periods.

Likewise, relying on the retail data would not allow us to track how households switch from

one category to another and/or from one location to the other as a result of the tax.

We report our findings in Table 2.6. The first column of the table provides the category mar-

ket shares for Philadelphia SSBs under the counterfactual scenario of no taxation, averaged

across the 24 post-taxation months. The next four columns provide the first, second, third

and fourth location × category × SSB status choices with taxation, given the household

would have chosen the leftmost item of that row without taxation. For example, without

taxation, sweetened carbonated soft drinks would have made up 43.3% of the market share

for Philadelphia SSBs; with taxation, 66.78% of the households who would have chosen

sweetened Philadelphia carbonated soft drinks continue to choose sweetened Philadelphia

carbonated soft drinks (no substitution), 13.07% choose sweetened carbonated soft drinks

in the non-Philadelphia location (geographic substitution), 12.46% choose the outside op-

tion (consumption reduction), and 4.45% choose non-sweetened carbonated soft drinks in

Philadelphia (product substitution). Information like this can be particularly useful to pol-

icymakers for understanding people’s behavior patterns in response to the implementation

of a policy.
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Table 2.6: Model Predicted Substitution Patterns

Choice W/o Tax Top Four Choices With Tax

Phil. SSBs 1st Choice 2nd Choice 3rd Choice 4th Choice

Carb. (43.30%) P Carb. S (66.78%) NP Carb. S (13.07%) Outside Op. (12.46%) P Carb. NS (4.45%)

Coffee (2.21%) P Coffee S (90.90%) Outside Op. (3.90%) NP Coffee S (2.91%) P Coffee NS (1.67%)

Energy (6.65%) P Energy S (90.58%) Outside Op. (4.86%) NP Energy S (3.92%) P Water NS (0.45%)

Flav. (2.52%) P Flav. S (83.51%) Outside Op. (7.17%) NP Flav. S (6.71%) P Flav. NS (1.26%)

Juice (18.67%) P Juice S (61.38%) P Juice NS (18.97%) Outside Op. (8.63%) NP Juice S (6.12%)

Sports (7.75%) P Sports S (73.27%) Outside Op. (12.09%) NP Sports S (12.05%) P Water NS (1.04%)

Tea (18.91%) P Tea S (69.79%) Outside Op. (13.53%) NP Tea S (11.75%) P Tea NS (1.72%)

P, NP, S, and NS denote Philadelphia, non-Philadelphia, SSB, and non-SSB, respectively.

As expected, for all SSB categories, the primary choice with taxation remains the same

as that without. We observe that the categories of Philadelphia SSBs that are the most

responsive to taxation are juice, carbonated soft drinks, tea, and sports drinks, as measured

by the proportion of households who switch away. Excluding carbonated soft drinks and

juice, the primary choice of substitution is the outside option, followed by the same category

of SSBs in the alternative location. For Philadelphia SSBs, the proportion of households

who transfer their consumption to the same category of SSBs in the alternative location is

almost as large as those who switch to the outside option, or, in the case of carbonated soft

drinks, larger. This provides clear evidence towards a willingness to cross-border shop in the

presence of an SSB tax.

The Philadelphia SSB categories of coffee and energy drinks retain the greatest proportion of

original consumers. We hypothesize that this pattern is due to the heterogeneous interaction

of taxation policy with product size. Coffee and energy drink products are primarily sold in

small, single serving containers with relatively high per-ounce prices; thus, the price increase

due to the tax is proportionally smaller than those observed in other categories, where

products on average come in larger sizes with lower per-ounce prices.

Supportive evidence is provided in Table 2.7, which displays simulated market shares for

SSBs and non-SSBs by size and location with and without taxation. Unlike Table 2.6, for
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Table 2.7: Simulated Market Shares by SSB Status, Size, and Location

SSB Status × Size × Bev. Location Without Tax With Tax Difference % Change
Philadelphia Bev. Options
Non-SSB × Small 0.63% 0.80% +0.17 26.97%
Non-SSB × Medium 1.27% 1.59% +0.32 25.27%
Non-SSB × Large 1.06% 1.20% +0.13 12.46%
SSB × Small 3.03% 3.48% +0.45 15.01%
SSB × Medium 4.36% 3.10% -1.26 -28.88%
SSB × Large 2.89% 0.67% -2.22 -76.75%
Non-Philadelphia Bev. Options
Non-SSB × Small 0.63% 0.64% +0.01 2.33%
Non-SSB × Medium 1.89% 1.94% +0.05 2.37%
Non-SSB × Large 1.70% 1.71% +0.01 0.87%
SSB × Small 3.08% 3.26% +0.18 5.69%
SSB × Medium 5.42% 5.85% +0.42 7.80%
SSB × Large 3.08% 3.50% +0.42 13.67%
Outside Option 70.96% 72.26% +1.30 1.84%

Table 2.7 we do not need to keep track of how each simulated household switches from one

choice to another in response to the tax, and so the market shares reported in Table 2.7

are found by averaging the choice probabilities of the original 4000 Halton draws across the

24 post-taxation months without directly simulating product choices. The “without tax”

counterfactual is conducted with the effect of taxation removed from the individual-level

utility.

From Table 2.7 we observe that the effect of the SSB tax is heterogeneously distributed among

differently sized SSBs. The tax increases the market share of small Philadelphia SSBs while

decreasing the market shares of medium and large Philadelphia SSBs, with large Philadelphia

SSBs seeing the biggest drop. SSBs in the non-Philadelphia location experience an increase

in market share regardless of size; so do non-SSBs in Philadelphia. These are intuitive

results. Consider Philadelphia SSBs, which are subject to the SSB tax. Compared to small

products, large products are typically sold at a “quantity discount” and have a lower per-

ounce price. Consequently, the SSB tax—levied at 1.5¢ per ounce—results in proportionally

larger price increases for large products, thereby having a more negative impact on large

products’ market shares. Some of the market share that leaves large Philadelphia SSBs goes
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to small Philadelphia SSBs due to their proportionally smaller price increases and relatively

high substitutability, giving rise to an increase in the market share of small Philadelphia

SSBs.

2.7.3 Effects of SSB Tax on Beverage Consumption

We now consider the effects of Philadelphia’s SSB tax on households’ beverage consumption

as well as their cross-border shopping and tax avoidance behavior. For each simulated

household in each post-taxation month, we compute the household’s expected consumption

(in ounces) of Philadelphia SSBs, Philadelphia non-SSBs, non-Philadelphia SSBs, and non-

Philadelphia non-SSBs, respectively, based on the model predicted choice probabilities and

adjusting the amounts to account for the expected numbers of products and units purchased

per trip and the expected number of trips in that month. We then sum over the 24 post-

taxation months and compute the average per household over all households, Philadelphia

households, and non-Philadelphia households, respectively.31 We do this twice, without tax

and with tax, respectively, and then calculate the differences. The results are reported in

Table 2.8.

Turning first to Table 2.8’s estimates pertaining to the average across all households in

both locations, our counterfactual simulation shows that Philadelphia’s SSB tax reduces

an average household’s purchase of Philadelphia SSBs by 55%. 23% (= 509/2, 219) of this

reduction is offset by an increase in the purchase of non-Philadelphia SSBs, leading to a

net reduction equal to 42% of the purchase of Philadelphia SSBs in the no-tax scenario. Of

course, considering only the average household does not provide a full picture. Instead, a

primary benefit of our structural estimation using a combination of retail and household data

is the ability to explore how the taxation policy affects households’ behavior conditional on

31The same procedure for computing the expected amount for each simulated household and then averaging
across simulated households is used in subsequent analyses when we compute the average amount of tax paid,
loss in consumer surplus, and sugar and caloric consumption.
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Table 2.8: Average Beverage Consumption per Householda

SSB Status × Bev. Location Without Tax With Tax Difference % Change

All Households
Philadelphia Bev. Options
Non-SSB 2,158 2,428 +270 12.51%
SSB 4,026 1,807 -2,219 -55.12%
Non-Philadelphia Bev. Options
Non-SSB 3,332 3,364 +32 0.96%
SSB 4,600 5,109 +509 11.07%

Philadelphia Households
Philadelphia Bev. Options
Non-SSB 3,827 4,341 +514 13.45%
SSB 7,097 3,306 -3,791 -53.42%
Non-Philadelphia Bev. Options
Non-SSB 770 824 +54 7.11%
SSB 1,009 1,483 +474 47.00%

Non-Philadelphia Households
Philadelphia Bev. Options
Non-SSB 521 551 +30 5.69%
SSB 1,012 335 -677 -66.85%
Non-Philadelphia Bev. Options
Non-SSB 5,846 5,856 +10 0.17%
SSB 8,124 8,668 +544 6.69%

aIn ounces; aggregate amount over the post-taxation period January 2017 to December 2018.

the location of their residence.

As expected, Philadelphia households on the whole favor Philadelphia beverage options.

In the case without taxation, 88% of Philadelphia households’ SSB purchase is for SSBs

sold within the city limits. The implementation of the SSB tax reduces their purchase

of Philadelphia SSBs by 53% and increases their purchase of non-Philadelphia SSBs by

47%. Since Philadelphia households’ purchase of non-Philadelphia SSBs without taxation

is relatively small, a 47% increase in their non-Philadelphia purchase offsets only 13% of

the reduction in their Philadelphia purchase. When considering the change in SSB purchase

in the two locations combined, Philadelphia households experience an average reduction of

41%.

As observed with Philadelphia households, non-Philadelphia households also prefer beverage

options in their home location. In the case without taxation, the purchase of Philadelphia
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SSBs accounts for only 11% of non-Philadelphia households’ SSB purchase. Furthermore,

non-Philadelphia households are more responsive to the SSB tax, reducing their purchase of

Philadelphia SSBs by 67% in response to the tax and offsetting 80% of this reduction through

an increase in non-Philadelphia SSB purchase. This is an intuitive result, as non-Philadelphia

households already live in a region without taxation and travel carries an inherent cost. When

considering non-Philadelphia households’ SSB purchase in the two locations combined, we

find that the tax leads to a drop of only 1.5%.

Finally, from Table 2.2 we know that non-Philadelphia households comprise 50.25% of all

households in our market, and from Table 2.8 we find that relative to Philadelphia house-

holds, non-Philadelphia households display a greater tendency to transfer their SSB purchase

from Philadelphia to the surrounding region in response to the SSB tax. It is then not sur-

prising that a majority (54%) of the increase in the purchase of non-Philadelphia SSBs

comes from non-Philadelphia households avoiding the taxed region rather than cross-border

shopping by Philadelphia households. Prior studies of SSB taxation typically consider the

increase in SSB sales in the surrounding untaxed region to be a result of cross-border shop-

ping by residents of the taxed region. Our results shed light on the multiple sources of such

an increase and suggest that SSB taxation may be more effective than previously thought, if

we consider that the tax’s intended target is those households residing within the city limits.

Two prior papers, Roberto et al. (2019) and Seiler et al. (2021), also use retail scanner

data to examine the SSB tax and sales of SSBs in and around Philadelphia. There exist

several similarities and dissimilarities between our works. In particular, our counterfactual

simulation finds a decrease in volume sales of Philadelphia SSBs greater than that suggested

by either prior paper. Roberto et al. (2019) find that volume sales of Philadelphia taxed

beverages decline by 51% after the taxation policy and that 24% of this reduction is offset

by an increase in volume sales in the surrounding region for a net reduction of 38%, while

Seiler et al. (2021) find a decrease of 46% in volume sales of Philadelphia taxed beverages,
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with 52% of this reduction offset by an increase in volume sales in the surrounding region for

a net reduction of 22%. In comparison, we find that the SSB tax results in a 55% reduction

in volume sales of Philadelphia taxed beverages, with an increase in volume sales in the

surrounding region offsetting 23% of this reduction for a net reduction of 42%.

Differences in the estimated impact of the SSB tax can result from a multitude of factors.

Firstly, to the best of our knowledge, our paper is the first to analyze the effects of an SSB tax

in a structural context where geographic substitution plays a primary role in determining

consumers’ choices. The works of Roberto et al. (2019), Cawley et al. (2020), and Seiler

et al. (2021), among others, employ reduced form estimations that consider the change from

pre-taxation to post-taxation SSB volume sales. Using a structural model, we complement

prior works by forming our counterfactual estimation directly on the post-taxation months

and incorporating the presence of shocks unrelated to changes in tax policy; thus, we model

purchase as it would have been in the post-taxation period barring the presence of taxation.

Secondly, both Roberto et al. (2019) and Seiler et al. (2021) use data obtained from IRI

whereas our data is provided by Nielsen; differences in the retail stores covered by the

different data sources can contribute to differences in the expected outcome. Finally, to

more accurately account for households’ heterogeneous responsiveness, we rely upon both

retail and household data, which is another potential source for differing results between our

work and those of others.

2.8 Welfare Implications

In this section, we consider the welfare effects of the SSB tax for consumers shopping at gro-

cery stores, drug stores, and discount stores, including the amount of tax paid by households,

the change in their consumer surplus, and the effects on their sugar and caloric consumption.

We first present our findings at the location level and later, when focusing on the regressivity
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Table 2.9: Average Tax Paid and Loss in Consumer Surplus per Householda

All Households Phil. Households Non-Phil. Households

Tax Paid $27.10 $49.59 $5.04
∆CS -$55.83 -$106.32 -$6.27
aAggregate amount over the post-taxation period January 2017 to December 2018.

of the SSB tax, consider them at the income status × location level.

2.8.1 Welfare Effects by Household Location

We begin by evaluating the average amount of tax paid and loss in consumer surplus per

household during the 24 post-taxation months, where the loss in consumer surplus is the

difference between the expected utility (the “inclusive value” Iit in Eq. (2.7)) without and

with taxation, divided by the household’s marginal utility of money αi. Table 2.9 presents

our findings averaged across all households, Philadelphia households, and non-Philadelphia

households, respectively.

As expected with local taxation, households paying the most taxes are those living within the

city limits, with an average Philadelphia household paying over 9 times that of an average

non-Philadelphia household. This difference follows from non-Philadelphia households’ lower

demand for Philadelphia SSBs (as discussed in Subsection 2.7.3) and the fact that they can

purchase in the untaxed location without incurring travel costs.

For households in both locations, the expected loss in consumer surplus is noticeably greater

than the expected amount of tax paid, but the ratio is heterogeneous across household loca-

tions. While an average non-Philadelphia household experiences a loss of consumer surplus

equal to 124% of their tax amount, an average Philadelphia household’s loss of consumer

surplus is 214% of their tax amount. The discrepancy in this ratio between the two locations

arises primarily from the difference in how costly geographic substitution is. Switching from
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Philadelphia SSBs to non-Philadelphia SSBs in response to the tax necessitates traveling for

Philadelphia households but not for non-Philadelphia households, and therefore Philadelphia

households incur a larger proportion of their consumer surplus loss in the form of travel costs

as opposed to tax paid.

Even among Philadelphia households, there is a large degree of heterogeneity in terms of

travel costs, which depend on households’ proximity to the city border. In addition, another

factor impacting households’ welfare changes is their preference for SSBs. Figure 2.3 illus-

trates how these two factors interact and jointly influence Philadelphia households’ loss of

consumer surplus resulting from the SSB tax. The figure presents a scatter plot of Philadel-

phia households’ loss in consumer surplus versus their travel time cost to reach the alternative

location (equal to a household’s travel time to reach the non-Philadelphia location times its

marginal disutility of travel time and divided by its marginal utility of money). It shows

that across all Philadelphia households, the magnitude of a household’s consumer surplus

loss increases in the household’s travel time cost. Moreover, an increase in travel time cost

is particularly detrimental for households with a high preference for SSBs, as they are more

“attached” to SSBs and therefore more likely to engage in cross-border shopping to purchase

SSBs. In Figure 2.3, among low SSB preference households the line of best fit has a slope

of 7.3, whereas among high SSB preference households the slope is much higher at 23.3,

implying that a $1 increase in travel time cost leads to a $23.3 increase in consumer surplus

loss (recall that the consumer surplus loss is the aggregate amount over the 24 post-taxation

months).32 These results thus shed light on the intricate relation between geographic and

product substitution as well as the SSB tax’s heterogeneous welfare implications for different

types of households.

All is not bad for those consumers of SSBs, as we consider how the taxation policy reduces

32High SSB preference households are defined as those Philadelphia households whose average utility de-
rived from SSBs, in the simulation without taxation, is greater than the median for Philadelphia households.
The rest are low SSB preference households.
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Figure 2.3: Loss in Consumer Surplus vs. Travel Time Costa

aFor simulated Philadelphia households. High SSB preference households are those whose average utility
derived from SSBs, in the simulation without taxation, is greater than the median for Philadelphia
households. The rest are low SSB preference households.

sugar and caloric consumption—a side benefit of the SSB tax, whose stated primary goal is to

generate tax revenue. According to the US Center for Disease Control and Prevention, SSBs

are the leading source of added sugars in the American diet, and frequent consumption of

sugary drinks is associated with obesity, type 2 diabetes, heart disease, and kidney diseases,

among a plethora of other negative health effects.33 Table 2.10 presents the change in sugar

and caloric consumption from beverages during the 24 post-taxation months, averaged across

all households, Philadelphia households, and non-Philadelphia households, respectively.

We find that, for an average household living in Philadelphia and the surrounding region,

there is an expected reduction in the consumption of sugar by 18%. This effect is strongest for

Philadelphia households, who have an average reduction of 36%, whereas non-Philadelphia

households—who are not the targeted population of the SSB tax—experience an average re-

duction of 1.7%. To put this reduction in context, we consider the expected caloric reduction.

For Philadelphia households, the implementation of the SSB tax translates to a decrease in

caloric intake equal to 27,020 calories—approximately 13.5 days’ worth of caloric intake (un-

33See https://www.cdc.gov/nutrition/data-statistics/sugar-sweetened-beverages-intake.html.
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Table 2.10: Average Sugar and Caloric Consumption from Beverages per Householda

Without Tax With Tax Difference % Change

All Households

Sugar (g) 20,080 16,483 -3,597 -17.91%

Calories (cal) 81,822 67,774 -14,048 -17.17%

Philadelphia Households

Sugar (g) 19,148 12,252 -6,896 -36.01%

Calories (cal) 77,212 50,192 -27,020 -34.99%

Non-Philadelphia Households

Sugar (g) 20,995 20,636 -359 -1.71%

Calories (cal) 86,345 85,030 -1,315 -1.52%

aAggregate amount over the post-taxation period January 2017 to December 2018.

der a 2,000-calories-a-day diet). The sizeable reduction in sugar and caloric consumption

among Philadelphia households attests to the substantial public health benefits of the SSB

tax. Note that our results only consider the decrease in sugar and caloric consumption from

beverages purchased at grocery stores, discount stores, and drug stores; overall reduction

will be larger when considering other avenues of purchase. Also note that our analysis does

not consider substitution to sugary non-beverage alternatives.

2.8.2 Differences between High- and Low-Income Households

We now consider to what extent households with different income status differ in their

amount of tax paid, loss of consumer surplus, and reduction in sugar and caloric consumption.

This will in turn inform us about the degree to which the taxation policy exhibits regressive

tendencies, which is particularly relevant in this context, as a primary concern for opponents

of Philadelphia’s SSB tax was its potential impact on the city’s poor—households who, as

found in past studies, generally display a greater demand for SSBs, the products to be taxed.

From our structural setup, there are several mechanisms by which low-income households

may react differently to the implementation of an SSB tax. First, we know from our model
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Table 2.11: Price Elasticity of Demand by Income Status

Average Level Own-Elasticity Cross-Elasticity

Same Category
All Bev.
Options

All Bev. Same Different

Options Location Location

High-Income

All Bev. Options -1.8820 0.0101 0.0179 0.0023 0.0015

Low-Income

All Bev. Options -2.2696 0.0138 0.0233 0.0042 0.0020

estimates reported in Table 2.3 that low-income households display a greater demand for

inside options excluding medium- and large-sized tea products. Second, our results suggest

that low-income households incur less disutility in regard to travel, which may result in a

greater willingness to cross-border shop. Finally, price sensitivity may differ between those

with means and those without.

Price Elasticity of Demand We begin by considering price elasticity of demand by

income status. Table 2.11 presents our findings. Unlike in Table 2.4, here we consider own-

and cross-elasticities of demand averaged only at the “all beverage options” level to highlight

the differences between high- and low-income households in terms of their responsiveness to

price increases. As before, cross-elasticities of demand are reported for beverage options from

the same category, same category and same location, same category and different location,

and all beverage options.

We find that low-income households display a greater price sensitivity than high-income

households, with respect to both own-elasticity and cross-elasticities. For example, low-

income households’ own-elasticity of demand is 21% greater than high-income households’.

This finding is intuitive, as one would expect those with less income to display a greater

sensitivity to changes in price. However, despite their greater price sensitivity, regardless of

location low-income households still display a greater preference for SSBs under taxation, as
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Table 2.12: Average SSB Consumption per Household, by Location and Income Statusa

Income Status × SSB Location Without Tax With Tax Difference % Change

Philadelphia Households

High-Income

Philadelphia SSBs 7,030 3,148 -3,882 -55.22%

Non-Philadelphia SSBs 745 1,192 +447 59.95%

Low-Income

Philadelphia SSBs 7,152 3,434 -3,718 -51.98%

Non-Philadelphia SSBs 1,223 1,719 +496 40.59%

Non-Philadelphia Households

High-Income

Philadelphia SSBs 768 220 -548 -71.41%

Non-Philadelphia SSBs 8,059 8,559 +500 6.20%

Low-Income

Philadelphia SSBs 1,468 552 -916 -62.41%

Non-Philadelphia SSBs 8,246 8,871 +626 7.59%

aIn ounces; aggregate amount over the post-taxation period January 2017 to December 2018.

demonstrated by Table 2.12.

SSB Consumption Table 2.12 shows that low-income households are less responsive to

the taxation policy than high-income households. Regardless of household location, low-

income households reduce their consumption of Philadelphia SSBs at a lower rate. Among

Philadelphia households, low-income households reduce their consumption of Philadelphia

SSBs by 52% in response to the tax, 3 percentage points lower than their high-income

counterparts. Among non-Philadelphia households, the two types of households exhibit

an even greater discrepancy in their responses, with low-income households reducing their

consumption of Philadelphia SSBs by 62% in response to the tax, 9 percentage points lower

than their high-income counterparts.

High- and low-income households’ geographic distribution may go towards explaining the

discrepancies between their responses. Figure 2.4 shows the percentage of high-income

households for each ZIP Code in and around Philadelphia. From the figure, we observe
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Figure 2.4: Percentage of High-Income Households by ZIP Codea
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[0,20]

aThe city of Philadelphia is the area outlined in red.

that within Philadelphia, low-income households tend to live near the city center, while

outside Philadelphia, low-income households tend to live near the city border. Therefore,

when the tax is in effect, among Philadelphia households, low-income households find it more

costly to cross-border shop in the non-Philadelphia location since their travel costs would

be higher, while among non-Philadelphia households, high-income households find it more

beneficial to avoid cross-border shopping in Philadelphia since their saving of travel costs

would be higher. Such a pattern therefore offers an explanation for the greater tendency

among low-income households in both locations to continue buying Philadelphia SSBs under

taxation.

Amount of Tax Paid and Loss in Consumer Surplus Following directly from the

differences in purchasing behavior, we consider the differences between high- and low-income

households in the amount of tax paid and loss in consumer surplus. Table 2.13 presents these

results.

We find that low-income households bear the largest tax burden. Within Philadelphia,

low-income households pay 9% more taxes than their high-income counterparts, while out-
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Table 2.13: Average Tax Paid and Loss in Consumer Surplus per Household, by Location
and Income Statusa

All Households Phil. Households Non-Phil. Households

High-Income

Tax Paid $21.01 $47.22 $3.29
∆CS -$45.29 -$108.26 -$2.71
Low-Income

Tax Paid $34.55 $51.51 $8.28
∆CS -$68.71 -$104.75 -$12.89
aAggregate amount over the post-taxation period January 2017 to December 2018.

side Philadelphia, low-income households pay an astounding 152% more taxes than their

high-income counterparts. Among Philadelphia households, the difference in tax paid arises

primarily from the pattern that low-income households have a greater preference for SSBs

and tend to purchase more SSBs with or without taxation. Among non-Philadelphia house-

holds, in addition to the greater preference for SSBs displayed by low-income households,

another factor that contributes to the difference in tax paid is a household’s home location.

As shown in Figure 2.4, outside Philadelphia, low-income households tend to live close to the

city border; their proximity to Philadelphia coupled with their lower disutility from travel

time (as found in Table 2.3) contributes to their much larger purchase of Philadelphia SSBs,

with or without taxation, than their high-income counterparts (as shown in Table 2.12).

This, in turn, is the primary driver behind the difference in the amount of tax paid between

high- and low-income non-Philadelphia households.

This border proximity also helps explain the significantly larger loss in consumer surplus

observed for low-income non-Philadelphia households. For them, compared to their high-

income counterparts who tend to live farther away from the city and have a lower preference

for SSBs, Philadelphia SSBs are more likely to be the most preferred among all options in

their choice set when there is no tax, and therefore the imposition of a tax on Philadel-

phia SSBs has a more negative impact on their consumer surplus. As supporting evidence,

Table 2.12 shows that in response to the tax, low-income non-Philadelphia households on
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average reduce their Philadelphia SSB purchase by 916 ounces, much higher than the reduc-

tion of 548 ounces by their high-income counterparts; in other words, the distortion to the

optimal consumption is greater for low-income non-Philadelphia households than for their

high-income counterparts.

Interestingly, we find that low-income Philadelphia households experience a smaller loss in

consumer surplus compared to their high-income counterparts, although the difference is not

large ($104.75 vs. $108.26). Relative to high-income Philadelphia households, low-income

Philadelphia households have a greater preference for SSBs, which tends to exacerbate their

loss in consumer surplus, but at the same time, as we discuss below, they incur lower travel

costs associated with cross-border shopping, which alleviates their loss in consumer surplus.

Our simulation shows that despite living closer to the city center, due to their lower disutility

from travel time, low-income Philadelphia households’ expected cost of travel to the region

outside Philadelphia is $5.27, lower than the $6.08 for high-income Philadelphia households,

indicating that cross-border shopping is less costly for low-income Philadelphia households.

Supporting evidence is provided by Table 2.12, which shows that, with and without taxation,

low-income Philadelphia households exhibit a greater tendency to cross-border shop in the

non-Philadelphia location, relative to their high-income counterparts.

Regressivity of the SSB Tax Although low-income Philadelphia households on average

incur a loss of consumer surplus similar to that for their high-income counterparts, the large

income difference between these two groups of households needs to be taken into account

when assessing the regressivity of the SSB tax.34 According to data from the 2018 ACS,

the average annual income for low-income Philadelphia households is $22,783, whereas their
34Due to the unavailability of joint income and household size data at the ZIP Code level in the ACS, we

are not accounting for household size in our model. Research suggests households with less income generally
have higher birth rates (Balbo et al., 2013). As such, this would only exacerbate the difference in income
per capita between the two types of households, and therefore our estimate of the regressivity of the tax is
likely an underestimate.
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high-income counterparts have a much higher average of $112,380.35 These numbers, together

with the loss-in-consumer-surplus numbers reported in Table 2.13, show that when measured

as a percentage of annual income, low-income Philadelphia households on average incur a loss

of consumer surplus 4.8 times as large as their high-income counterparts’, suggesting that

the tax is highly regressive. Similarly, among those living outside the city limits, low-income

households have an average annual income of $26,440, whereas high-income households have

a much higher average of $131,974. Therefore, when measured as a percentage of annual

income, low-income non-Philadelphia households again incur a much larger loss of consumer

surplus than their high-income counterparts. These findings highlight the regressive nature

of the SSB tax: those that bear the greatest burden from the tax are those with the least

means.

Changes in Sugar and Caloric Consumption Lastly, we consider changes in sugar

and caloric consumption from beverages for high- and low-income households by home lo-

cation. We find that among Philadelphia households, high-income households on average

consume less sugar and fewer calories and experience a greater percentage reduction in their

consumption, while among non-Philadelphia households, high-income households on average

consume less sugar and fewer calories but experience a smaller percentage reduction in their

consumption. Detailed results are reported and discussed in Appendix B6.

2.9 Alternative Scenarios

We examine several alternative scenarios to further our understanding of Philadelphia’s SSB

tax. We first vary the tax rate to identify the one that maximizes the tax revenue. We then

35We fit a generalized beta distribution of the second kind (GB2) to the grouped income data from the
2018 ACS (Jorda et al. (2021) show that GB2 is particularly suitable for modeling income distributions).
We then compute the average incomes according to the fitted GB2 distribution. We do this for Philadelphia
households and non-Philadelphia households, respectively.
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examine the changes in sugar and caloric consumption, consumer surplus, and the revenue-

maximizing tax rate if diet products are not subject to taxation (as in the original proposal

of the Philadelphia SSB tax). We also explore the impact of taxation on SSB consumption

and consumer surplus if not only Philadelphia but also its surrounding region are subject to

the same tax (as would be the case if the tax is implemented in a broader region, for instance

as a national tax). Lastly, we consider how changes in travel time (resulting from improved

roads, for example) would affect SSB consumption and cross-border shopping behavior.

2.9.1 Revenue-Maximizing Tax Rate

Here we use our estimates of beverage demand and taxation responses to predict outcomes

under counterfactual tax rates. To simplify analysis, when computing prices under coun-

terfactual tax rates, we maintain the category-level pass-through rates found earlier. This

assumption of a constant pass-through rate is not beyond that observed in prior literature

(Allcott et al. (2019) and Seiler et al. (2021)). Unlike prior works, our counterfactual esti-

mates of demand responsiveness to taxation account for consumer heterogeneity in terms of

beverage preferences, travel costs, and locational and categorical substitution.

Given any hypothetical tax rate and the corresponding beverage prices computed according

to the category-level pass-through rates, we calculate the average amount of SSB tax payment

per household during the 24 post-taxation months for each income status/location combi-

nation. We use these averages and the demographic distribution of households provided

in Table 2.2 to obtain the total tax revenue in each income status/location combination.

Summing over the four income status/location combinations provides the total tax revenue

for the given tax rate. We also compute the reduction in Philadelphia SSB volume sales

and average loss in consumer surplus per household during the 24 post-taxation months in

a similar fashion. Figure 2.5 plots those three variables against the tax rate.
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Figure 2.5: Tax Revenue, SSB Volume Sales, and Consumer Surplus: Alternative Tax Rates

(a) Tax Revenue vs. Tax Rate (b) Reduction in Phil. SSB Volume Sales vs.
Tax Rate

(c) Average Loss in CS per Household vs. Tax
Rate

Notes: Tax revenue is normalized relative to the maximum, and reduction in Philadelphia SSB volume
sales is normalized relative to the volume sales without tax.

We obtain a revenue-maximizing tax rate of 3.14¢ per ounce—much closer to the initially

proposed tax rate of 3¢ per ounce than the current tax rate of 1.5¢ per ounce. We find that

the current tax rate generates a revenue of $32.5 million during the 24 post-taxation months,

which equals 90% of the $36.1 million that would be generated at the revenue-maximizing tax

rate, whereas the initially proposed tax rate of 3¢ per ounce would generate a revenue more

than 99% of the maximal revenue. We note that these revenue figures account for revenue

generated at the stores in our sample, namely grocery stores, discount stores, and drug
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stores; we do not consider revenue from other sources such as supercenters, gas stations, and

dollar stores, nor non-retailer locations such as restaurants, fast-food outlets, and theaters.

With respect to SSB volume sales, under the revenue-maximizing tax rate, there would be a

76% reduction in Philadelphia SSB volume sales, 29% of which would be offset by an increase

in the volume sales in the surrounding region, for a net reduction of 54%; under the current

tax rate, those figures are noticeably smaller at 55%, 23%, and 42%, respectively. The larger

reduction in SSB sales associated with the revenue-maximizing tax rate would be an added

benefit for those lawmakers and public health advocates concerned with the consumption

of products that contribute to unhealthy lifestyles. However, such a large reduction in SSB

sales could be damaging to retailers located in Philadelphia, especially since consumers may

take not only their SSB purchase but also their grocery shopping altogether to stores outside

Philadelphia.

Furthermore, we find that the revenue-maximizing tax rate demonstrates even bigger regres-

sive tendencies, with 60% of the tax revenue generated coming from low-income households,

compared to 57% under the current tax rate. Additionally, the revenue-maximizing tax rate

would lead to an average consumer surplus loss of $82.77, constituting a 48% increase when

compared to the current tax rate’s average loss of $55.83.

Differences between the revenue-maximizing tax rate found in our work and those found

in other research likely arise from differences in the structure of the demand curve. Of

particular note is Seiler et al. (2021), who found a revenue-maximizing SSB tax rate of 1.63¢

per ounce for Philadelphia, when assuming a linear demand curve. Our findings, however, are

derived from our demand estimates based on the RCNL modeling structure. We contend that

our higher revenue-maximizing tax rate is driven primarily by the persistent consumption of

Philadelphia SSBs from a subset of Philadelphia households who lack inexpensive substitutes

for SSBs within their home region, many of these households experiencing large travel costs

and high SSB preferences. This pattern leads to such households’ low price sensitivity with
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respect to Philadelphia SSBs, which in turn gives rise to a higher figure for the revenue-

maximizing tax rate.

In terms of structural modeling, Allcott et al. (2019) consider the optimal SSB tax rate for a

government with preferences for wealth redistribution. They determine an optimal tax rate

between 1¢ and 2.1¢ per ounce. In contrast to their findings, our analysis is concerned with

the revenue-maximizing tax rate rather than the socially optimal tax rate. Furthermore,

they focus on a national SSB tax imposed on sugar-sweetened beverages only, whereas our

analysis is concerned with the city of Philadelphia and includes diet products containing

artificial sweeteners. A more appropriate comparison between our work and Allcott et al.

(2019) is found in Appendix B7.1, where we report a revenue-maximizing tax rate of 2.33¢

per ounce under the assumption that diet products are excluded from the tax.

2.9.2 Additional Counterfactuals

Next we consider three additional counterfactual scenarios. Detailed results are reported

and discussed in Appendix B7; here we summarize the main findings.

We find that removing diet products from the tax (Appendix B7.1) induces a greater re-

duction in households’ sugar and caloric consumption, reduces households’ loss in consumer

surplus, and lowers the revenue-maximizing tax rate. The main intuition here is that sugary

beverages and their diet counterparts are good substitutes for some households, therefore

when diet products are excluded from the tax, these households are able to switch from

sugary beverages to their diet counterparts in order to avoid the tax, rather than having to

travel for cross-border shopping or switch to less substitutable products.

We also consider a counterfactual in which the tax is levied upon both Philadelphia and its

surrounding region (Appendix B7.2), and a counterfactual in which the travel time experi-
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enced by all households is varied proportionally from 50% to 200% of the baseline (Appendix

B7.3). Results from those counterfactuals indicate that a taxation policy’s geographic cover-

age as well as households’ travel costs have significant impact on households’ responses and

the consumption and welfare outcomes.

Together, our counterfactual analyses show that policymakers need to pay careful attention

to the scope of the tax—in terms of product and geographic coverage—as well as households’

cross-border shopping behavior when designing taxation policies.

2.10 Conclusion

In this work, we employ a structural modeling framework that combines both retail and

household data to study the relationship between local taxation and households’ tax avoid-

ance behavior including cross-border shopping and product substitution, focusing on Philadel-

phia’s SSB tax.

We find that travel time to the untaxed region surrounding Philadelphia plays an important

role in determining households’ substitution patterns. In response to the implementation of

an SSB tax, our results quantify households’ reduction in the consumption of taxed beverages

in Philadelphia and their willingness to seek untaxed products in locales beyond the city

border. Accounting for household location, we find that a majority 54% of the rise in SSB

sales in the surrounding region is due to an avoidance of Philadelphia SSBs by those residing

in the surrounding region, rather than cross-border shopping by Philadelphia households.

We also show that price responsiveness alone does not fully account for observed consumer

behavior; instead, we provide evidence that tax salience has a noticeable impact on consumer

demand, particularly in highly publicized and politicized taxes such as the SSB tax our work

studies.
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Our model and estimation allow for heterogeneous consumer behavior based on their demo-

graphic characteristics and proximity to the city border. Taking into account consumers’

heterogeneous responses to the tax, we show that the current tax rate 1.5¢ per ounce is well

below the revenue-maximizing tax rate 3.14¢ per ounce. Our results suggest that, without

readily available substitutes and facing large travel costs associated with cross-border shop-

ping, a subset of Philadelphia households are persistent in their consumption of Philadelphia

SSBs, willing to pay the higher prices resulting from the tax. Their low price sensitivity with

respect to Philadelphia SSBs is a main factor behind the high revenue-maximizing tax rate.

Based on our demand estimates, we calculate the average amount of tax paid and the average

loss in consumer surplus for households at different locations and different income levels.

Taking into account travel costs and the switch to less preferred products, Philadelphia

households on average incur a loss in consumer surplus more than twice the amount of

tax paid, with low-income households bearing the largest burden. When measured as a

percentage of annual income, low-income Philadelphia households on average incur a loss of

consumer surplus 4.8 times as large as their high-income counterparts’, suggesting that the

tax is highly regressive.

These findings are especially relevant for governmental entities weighing the benefits of a

revenue-generating, healthy-habit-inducing tax against the drawbacks of a strongly regres-

sive taxation policy. Additionally, through counterfactual analyses in which we vary the

geographic coverage of the tax as well as travel times to the alternative region, we provide

supportive evidence for the notion that policymakers must carefully consider geographic

coverage and geographic substitution when assessing the effects of local policies.

Lastly, our model’s applicability extends beyond the context studied in this work. Any

local tax or subsidy susceptible to cross-border shopping offers an opportunity for study

under our framework, which facilitates rich modeling and sensible estimation of individuals’

heterogeneous travel costs and substitution patterns, as well as the policy’s potentially vastly

104



different welfare implications for different individuals.
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Chapter 3

Two-Stage Structured Probit Demand

Estimation for Application to Large

Choice Sets

3.1 Introduction

Three issues are increasingly in the forefront of the estimation of individual level demand

models: first, the presence of dynamic consumer behavior, second, random coefficients, and

third, realistic substitution patterns. Ignoring these issues can lead to biased and inconsis-

tent estimates of the causal relationship between observed covariates and consumer choice.

Many models of consumer choice employ overly restrictive assumptions designed to simplify

estimation that may otherwise be infeasible... for instance, logit specifications or restric-

tive substitution patterns in the case of probit models. Given that the foundation of firm

behavior relies on the demand functions of various marketplace agents, it is of the utmost

importance that derived consumer demand be as accurate as possible for economic and mar-
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keting analysis. The purpose of this article is to develop a structured two-stage multinomial

random coefficient probit model that allows for the estimation of large alternative sets with-

out overbearing substitution pattern restrictions.

In this paper, the proposed model allows a household’s purchase decision and product choice

to be separately estimated with common unobservables that affect both outcome decisions.

The main methodological contribution of this paper is to structure the covariance between

product level utilities in terms of observed characteristics to maintain the feasible estimation

of substitution patterns between product choices in the presence of large alternative sets.

Finally, household level heterogeneity is introduced through the use of random coefficients,

which allow for differing responses to covariates common to both stages of the modeling

process. This portion of the model is standard, however it should be noted that this paper

builds upon the work of Chib et al. (2009) and Fong et al. (2014) by estimating the indi-

vidual level parameters of both stages simultaneously through a Gibbs sampling process.

These household level parameters in both the purchase incidence and product choice stage

are allowed to be correlated through the distribution of individual level heterogeneity.

Beginning with the consumer’s problem, it is assumed an individual follows two decisions

steps when making a purchase. First, the individual must decide to purchase a product in a

specific choice set. Second, conditioned on the decision to purchase, the individual chooses

a product within the set of considered alternatives. The benefits to this two-stage process is

clear. Models that focus only on the product choice stage of estimation, without accounting

for the decision to purchase, are justifiable only if unobservables that drive the purchase

incidence are uncorrelated with product choice. If the unobservables are correlated, then

the single stage estimation can lead to biased estimates. ? best describes this as sample

selection bias; where the observed product choice is no longer a randomly selected sample.

While correcting for this bias can be accomplished by allowing the no purchase decision to

make up the outside option of a consumer’s choice set, there are several advantages to this

paper’s multi-stage estimation.
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First, the two-stage process allows for the introduction of dynamic consumer behavior, which

would otherwise not be considered if only the static one-stage model was estimated. For ex-

ample, Hendel and Nevo (2006a) maintain that a traditional static demand model is likely to

mis-measure long-run own-price and cross-price elasticities when applied to storable goods

due to intertemporal substitution. It is entirely conceivable that a price decrease may result

in a large demand increase due to forward purchasing behavior. If this is the case, then the

true long-run response to a permanent price decrease may be less than that suggested by a

static demand model. Hendel and Nevo hold that this mis-specification results from a static

model’s lack of relevant history, such as consumer inventories and past pricing.

Furthermore, segmenting the purchasing process allows for differing responses in both the

purchase incidence and product choice equation; this is especially important in the presence

of heterogeneous parameters. Bucklin and Gupta (1992) consider the behavior of two differ-

ent consumers. One consumer tends to buy in the category of interest at regular intervals,

but switches among products when in the presence of promotional activity (this consumer

could be considered as insensitive at purchase incidence, and sensitive at the product level).

A second consumer consistently purchases the same product irregularly, but more so in the

presence of promotional activity (this individual is considered as sensitive at the purchase

incidence level and insensitive at the product level). By conceptualizing the purchasing pro-

cess through these two-stages, researchers may better understand how promotional activity

(price-cuts, advertising, displays, etc.), in conjunction with demographic characteristics, de-

termines a consumer’s willingness to switch between products and/or increases their propen-

sity to purchase in the category of interest.

For example, Buklin and Gupta (1992) posit that if 90% of consumers are insensitive at the

product choice level, and instead are sensitive at the purchase incidence level, then promo-

tional activity merely subsidizes a product with their own loyal consumers who are forward

buying. In contrast, if 90% of the consumers are sensitive at the product level, and insensi-

tive at the decision to purchase, then promotional activity encourages switching behavior. In
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support of the hypothesis that consumers have differing sensitivities to promotional activity

during different parts of the decision process; Buklin and Gupta find evidence that individ-

uals with high sensitivities to promotional activity at the purchase incidence are not always

sensitive at the brand level.Finally, a plethora of additional research (Bucklin and Lattin

(1991), Chintagunta (1993), Arora et al. (1998), Bucklin et al. (1998), Andrews and Currim

(2009), etc.) demonstrates the importance of such multistage consumer decision models.

However, most studies of multistage consumer models, and in particular those that estimate

the purchase incidence and product choice, generally rely on the Extreme Value type 1 dis-

tribution. This approach is first seen as a nested logit model in Bucklin and Lattin (1991)

and Bucklin and Gupta (1992), where an individual’s purchasing behavior is modeled as

the product of two probabilities; the probability of purchasing and the conditional choice of

alternative. The error term on the purchase probability and choice of alternative are then

assumed to be distributed Extreme Value Type 1. Other models, such as those in Chinta-

gunta (1993) and Arora et al. (1998), assume a translog bivariate utility function between

the purchase incidence and alternative choice equations with an Extreme Value Type 1 error.

This results in a model almost identical to that of the aforementioned nested logit specifi-

cation. While these models are advantageous in terms of computational burden; Chib et al.

(2004) discusses the myriad of problems that arise from the logit specification.

First, in a nested logit framework, the link between the purchase incidence and brand choice

is achieved through the inclusive value - the expected utility for product choice alternatives.

Acting as a relative measure of product attractiveness, the inclusive value restricts the house-

hold level responsiveness to observed product-level covariates during the purchase incidence

stage. For instance, during the product choice stage price may be more important than

observed advertising, however during the purchase incidence stage the opposite may be true.

Since the product level covariates enter the purchase incidence stage through the inclusive

value, such behavior cannot be observed. This restriction can impede efforts to discover how

consumers may employ differing responses to economic and marketing variables during the
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steps of the decision process. In contrast, under the probit framework, observables such as

price and promotional activity can make up both the covariates in the purchase incidence

and product choice stage of estimation. Furthermore, the inclusive value provides the most

influence in the purchase incidence level to the product that provides the highest utility in

the product choice stage of the model; thus further restricting a consumer’s responsiveness

to observables.

Finally, the structure of a nested logit model ignores the presence of unobserved correlations

between the purchase incidence and product choice utilities. For example, a weekend dinner

party can incentivize a consumer to purchase cheaper store brand products; resulting in

an unobserved correlation between the purchase incidence and product choice. This sam-

ple selection effect can bias a researcher’s findings unless captured by a flexible correlation

structure between the purchase incidence and product choice utilities. While the translog

utility function can allow for correlation structures that arise from unobservables common

to the purchase incidence and brand choice utilities, its structure results from the first order

conditions of product choice and purchase incidence decisions, and is restrictive in nature.

In lieu of the nested logit and translog utility, Chib et al. (2004) introduced a two-stage

random coefficient probit model that demonstrated a better in-sample fit compared to the

nested logit alternative. The authors maintain that the probit error assumption allowed for

a flexible correlation structure between the purchase incidence and product choice utilities,

removing bias that would otherwise be present. However, unlike the model proposed in this

paper, Chib et al. (2004) avoid introducing substitution patterns between the product level

utilities. They argue that such correlations are difficult to identify when the number of al-

ternatives is large. However, ignoring substitution patterns between product level utilities is

unrealistic and an overly restrictive assumption.

The challenge of this paper was therefore to incorporate substitution patterns into the co-

variance matrix, while maintaining the feasibility of estimation offered by more restrictive

probit or logit models. This is accomplished by structuring the covariance between product
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level utilities based on the importance of perceived distances between choice alternatives.

This is similar to the strategy presented in Dotson et al. (2018) and Cohen (2010), where

the authors structure the probit covariance as a correlation matrix defined in terms of dif-

ferent measures of product similarity. They find that modeling substitution patterns in this

way provides a better in-sample fit when compared to the logit specification. Finally, in

the model proposed in this paper, heterogeneity is introduced through the use of random

coefficients estimated via a Gibbs sampler as shown in Fong et al. (2014), and modified as

described in Chib et al. (2009) to fit the two-stage estimation process. Modeling household

heterogeneity in this way allows researchers to identify how demographic characteristics may

influence consumer behavior.

This paper’s model is estimated using Bayesian Markov Chain Monte Carlo (MCMC) tech-

niques similar to those seen in Fong et al. (2014), Chan and Jeliazkov (2009), Chib et al.

(2009), and Chib and Ramamurthy (2010). The remainder of this paper is organized as

follows; in section 2, the model is described in detail, as well as common identification re-

strictions. In section 3 the algorithm behind the MCMC estimation process is detailed. In

section 4, a comparison between the proposed model and unstructured probit specification

is then provided. Section 5 concludes with some directions for future research.

3.2 Model

Assume that there exist J alternatives and N individuals in a panel data set containing

purchase history with Ti time periods for i = 1, . . . , N . This paper posits that decision to

purchase among the bundle of alternatives is itself a choice of interest. Each time period,

it is assumed an individual i faces two potential decisions; first, whether to purchase a

product in a specific set of alternatives. Second, conditioned upon the decision to purchase,

individual i must choose one alternative among the j = 1, . . . , J alternatives. Let y1it
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be the observed decision to purchase and y2it = [y12it, . . . , y
j
2it, . . . , y

J
2it]

′ denote the J × 1

vector corresponding to the observed choice of alternative for subject i and t = 1, . . . , Ti.

Allowing z1it to denote the latent utility accompanying the decision to purchase, it follows

that y1it = I(z1it > 0) where I(·) is the indicator function. Conditioned on y1it = 1, and

with z2it = [z12it, . . . , z
j
2it, . . . , z

J
2it]

′ denoting the latent utilities of choice alternatives, it must

be that yj2it = I(zj2it > max{z−j
2it}). Else, if y1it = 0 then y2it = 0; the decision to purchase

determines if an individuals choice of alternative is observed.

The latent utilities z1it and z2it are assumed to follow the multivariate regression detailed

below:

z1it = x′
1itβ1i + ε1it

z2it = X2itβ2i + ε2it

(3.1)

where x1it and X2it = [x1′
2it, . . . ,x

j′

2it, . . .x
J ′
2it]

′ are a k1 × 1 and J × k2 matrix of covariates

and product characteristics, respectively. The parameters β1i and β2i represent a k1 × 1

and k2 × 1 vector of individual i’s coefficients corresponding to the preceding matrices for a

total of k1 + k2 = k individual regression coefficients. Finally, ε1it represents the error term

for the purchase incidence equation, while ε2it is the 1× J vector representing the error for

the product level latent utility. It is assumed that [ε1it, ε2it]
′ ∼ N (0,Ω), where ε1it and ε2it

are jointly distributed with mean vector 0 and covariance matrix Ω. This joint distribution

between the decision to purchase and the alternative of choice is an important feature of the

model, reducing selection bias from potential sources such as unobserved advertising, sales,

changing consumer tastes and preferences, etc.

In general, the parameters β1i, β2i and Ω are non-identified without any additional as-

sumptions about the level and scale of the latent utilities (Train (2009)). It should noted,

however, that the level of z1it is already normalized as the outside option is defined to be

the decision not to purchase corresponding to a utility of 0. Only the level of z2it, the latent

utility corresponding to choice of alternative, needs to be normalized.

To set the level of z2it one of the J alternatives is taken to be the outside option with a
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utility 0. Let the 1st alternative be considered the outside option, then define z̃2it to be the

J − 1 vector of relative utilities where z̃j2it = zj2it − z12it for j = 2, . . . , J . It then follows that

y12it = I(max{z̃2it} < 0) and yj2it = I(z̃j2it > max{0, z̃−j
2it}) for j = 2, . . . , J . The final model

analyzed is:

z1it = x′
1itβ1i + ε1it

z̃2it = X̃2itβ2i + ε̃2it

(3.2)

where X̃2it = [x̃1′

2it, . . . , x̃
j′

2it, . . . x̃
J ′

2it]
′, with each element x̃j

2it = xj
2it−x1

2it, and ε̃j2it = εj2it−ε12it

for j = 2, . . . , J . It is assumed [ε1it ε̃2it]’∼ N (0, Ω̃); ε1it and ε̃2it are jointly distributed with

the mean vector 0 and covariance matrix Ω̃. Tthe scale of the latent utility is set by

normalizing the first two diagonal entries of Ω̃ to one. Under these assumptions Ω̃ can be

broken down into the following components:

Ω̃ =

 1 Ω̃
′
21

Ω̃21 Ω̃22

 , where Ω̃21 =


σ21

...

σJ1

 and Ω̃22 =



1 σ32 . . . σJ2

σ32 σ33 . . . σJ3

...
...

. . .
...

σJ2 σJ3 . . . σJJ


.

(3.3)

Each element of Ω̃21 is the normalized covariance between the decision to purchase and the

corresponding choice of alternative; that is, σj1 represents cov(ε1it, ε̃
j
2it) = cov(ε1it, ε

j
2it) -

cov(ε1it, ε
1
2it) for alternatives j = 2, . . . , J . While Ω̃22 is the (J − 1) × (J − 1) covariance

matrix, associated with the product level latent utilities of the J − 1 alternatives, that helps

define the substitution patterns between product choice.

To simplify future notation, consider this paper’s model written in vector form:

Zit
J×1

= Xit
J×k

βi
k×1

+ εit
J×1

, εit ∼ N (0, Ω̃) (3.4)
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with Zit =

z1it
z̃2it

, Xit =

x′
1it 0

0 X̃2it

, βi =

β1i

β2i

, εit =
ε1it
ε̃2it

, and yit =

y1it
y2it



3.2.1 Random Coefficients

To account for heterogeneity across consumers, a random coefficient framework is adopted,

with variations assumed to be driven by both an observed and unobserved individual com-

ponent. This allows βi to be modeled with the following multivariate regression framework:

βi = ΛHi + ηi, ηi ∼ N (0,Vβ), i = 1, . . . , N (3.5)

where Hi is a h×1 vector including an intercept term and individual i’s specific demographic

characteristics. Λ is a k×h matrix of coefficients corresponding to the aforementioned vector

Hi. The J × 1 error term ηi accounts for the unobserved individual component, and is

assumed to be distributed with mean vector 0 and covariance matrix Vβ. This specification

allows the parameter values to vary based on observed demographic variables, and whose

dispersion is determined by the variance of the unobserved component. As in Fong et al.

(2014), the following prior distributions for Λ and Vβ are assumed:

Λ|Vβ ∼ MN (Λ0,Vβ, A
−1
d ) (3.6)

where MN (Λ0,Vβ, A
−1
d ) is a matrix normal distribution with mean Λ0, row covariance Vβ

and column covariance A−1
d . Finally,

V−1
β ∼ W(v, V ) (3.7)

where W(v, V ) is a wishart distribution with the mean vV and v degrees of freedom.
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3.2.2 Covariance Matrix

As discussed above, this paper assumes a structured covariance matrix to allow for the

feasible estimation of substitution patterns based on product similarity in the face of large

alternative sets. The following structural assumptions reduces the dimensionality of Ω̃ from

J(J+1)−4
2

to 2J + C − 3 unknowns.

To structure Ω̃, a measure of product similarity is required. Let X∗ = (x∗
1, . . . ,x

∗
c , . . . ,x

∗
C)

be a (J−1)×C matrix of time and individual invariant product characteristics. To maintain

identification of the structured covariance, it must be that C ≤ J(J−3)+2
2

, generally not an

issue for large alternative sets. From X∗ the following distance measure is formed:

djhc =

√
(x̃∗,j

c − x∗,h
c )2

sd(xc)
(3.8)

between products h and j for characteristic c. Using this distance measure, Ω̃22is structured

as follows:

σjh =


C∑
c=1

exp{−djhc }γc if h ̸= j

σjj if h = j

(3.9)

where 2 ≤ h, j ≤ J and γc is the coefficient on the distance measure for characteristic c. The

C × 1 vector of coefficients, γ, is assumed to have the prior distribution:

γ ∼ N (γ0,Vγ). (3.10)

The variance of Ω̃22 is left to be freely determined, noting that σ22 = 1 for identification

purposes. It is assumed the variance of Ω̃22 has the prior distribution:

(σ33, . . . , σJJ)
′ ∼ N (σ2

0,Vσ). (3.11)
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This structured format gives a straightforward interpretation of the coefficient, γc. First,

note that as products are more similar, i.e. djhc → 0, then e−djhc → 1. As products are more

dissimilar, djhc → ∞, then e−djhc → 0. Thus, γc represents the role that similarity plays in

determining the covariance between products in Ω̃22. For instance, if γc >> 0, one can infer

that similarity in this characteristic implies greater substitution patterns between products.

If γc = 0, then similarity in this characteristic plays no role in determining the substitution,

and if γc << 0 then products who share this characteristic have more negative substitution

patterns than those that are more dissimilar.

Finally, following the advice of Chib et al. (2004), it is assumed that covariance between the

decision to purchase, and product level latent utility is left to be freely determined. From

(3.3) it is assumed that Ω̃21 is freely determined with the assumed prior distribution:

Ω̃21 ∼ N (Ω̃
0

21,VΩ21) (3.12)

3.3 Estimation

For notational convenience, let θ ≡ (βi,Λ,Vβ, Ω̃), and define θ\θk to mean the elements of

θ excluding θk. Thus, the proposed MCMC estimation is as follows:

Algorithm

step 1) Initialize Zit,βi,Λ,Vβ, and Ω̃.

step 2) Draw Zit |θ from a truncated normal distribution.

step 3) Draw βi |Zit,θ\βi from a multivariate normal distribution.

step 4) Draw Λ |Zit,θ\Λ from a matrix normal distribution.

step 5) Draw Vβ |Zit,θ\Vβ from a inverse wishart distribution.

step 6) Draw Ω̃ |Zit,θ\Ω̃ using a Tailored Metropolis Hastings approach.
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As in Chib et al. (2009) the unobserved outcomes are not involved in the algorithm; that is,

the missing z̃2it are not involved in the estimation if the individual decided not to purchase.

Alternatively, if an individual chose not to purchase then the unobserved outcomes, z̃2it,

could be simulated through a series of conditional draws. However, as Chib et al. (2009)

demonstrates, simulating the missing z̃2it is computationally burdensome and worsens the

mixing of the Markov chain. Finally, if some covariates are missing when the corresponding

observations are not observed, then there follows no clear way to sample the missing z̃2it.

With this in mind, the joint posterior distribution of the structured model is detailed below:

π(θ,Zit |yit)

∝
(∏

i

[ ∏
t∈Pi

f(Zit |θ)I(z1it > 0)
][ ∏

t∈P c
i

f(z1it |θ)I(z1it < 0)
])

N (βi |ΛHn,Vβ)

×MN (Λ |Λ0,Vβ, A
−1
d )W(V−1

β |v, V )N (Ω̃
0

21,VΩ21)N (γ0,Vγ)N (σ2
0,Vσ)

(3.13)

where Pi denotes the set of ti individual specific time periods in which the subject i chose to

purchase. Accordingly, P c
i denotes the set of tci individual specific time periods in which the

subject i chose not to purchase. An in depth examination of the sampling process is now

shown below.
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3.3.1 Sampling Zit

Given θ, Zit is sampled as follows:

If y1it = 1 then:

z1it | z̃2it,θ ∼ T N (0,∞)

(
E(z1it | z̃2it), var(ε1it | z̃2it)

)

z̃j2it |z1it, z̃
−j
2it,θ ∼


T N (max{0,z−j

2it},∞)

(
E(z̃j2it |z1it, z̃

−j
2it), var(ε

j
it |z1it, z̃

−j
2it)

)
, if yj2it = 1

T N (−∞, max{0,z−j
2it})

(
E(z̃j2it |z1it, z̃

−j
2it), var(ε

j
it |z1it, z̃

−j
2it)

)
, otherwise.

If y1it = 0 then:

z1it |θ ∼ T N (−∞,0)

(
E(z1it), var(ε1it)

)
.

As stated above, this estimation strategy relies only upon observed outcomes; when y1it = 0,

the missing z̃2it are not simulated.

3.3.2 Sampling β

The joint posterior distribution (3.13) implies that βi |Zit, θ\β ∼ N (bn, Bn), such that

bi =Bi

[∑
t∈Pi

X′
itΩ̃

−1
Zit +

∑
t∈P c

i

Rx1itz1it +V−1
β ΛHi

]
,

Bi =
[∑
t∈Pi

X′
itΩ̃

−1
Xit +

∑
t∈P c

i

Rx1itx
′
1itR

′ +V−1
β

]−1

,

R =

I
0

 .
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Where R is a J × k1 matrix and I is an identity matrix of dimension k1. The vector R

selects observations from which consumer purchase incidence and product choice decisions

are known. In this way, the estimate of βn relies only upon observed outcomes.

3.3.3 Sampling Λ

From the joint distribution (3.13), it can be shown that Λ |Zit, θ\Λ ∼ MN (d,Vβ, D) where

d =D
[
BH′ +Λ0Ad

]
,

D =
[
HH′ + Ad

]−1

,

and B = (β1, . . . ,βN) and H = (H1, . . . ,HN).

3.3.4 Sampling Vβ

From the joint distributions (3.13), it can be found that V−1
β |Zit, θ\Vβ ∼ W(q,Q) where

q = v +N + h,

Q =
[(
B−ΛH

)(
B−ΛH

)′
+
(
Λ−Λ0

)
Ad

(
Λ−Λ0

)′
+ V −1

]−1

,

and B, H and h are as defined before.

3.3.5 Sampling Ω̃

Consider Φ ≡ (Ω̃21,γ, σ33, . . . , σJJ) where Ω̃21, γ, and (σ33, . . . , σJJ) are as defined in section

3.2.2. The conditional densities of Φ have no known family of distribution. Hence, Φ is es-
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timated with a tailored M-H step as first introduced in Chib (1995) and Chib and Jeliazkov

(2001), and later expanded upon in Chib and Ramamurthy (2010) as a Tailored Random-

ized Block Metropolis-Hastings algorithm (TaRB M-H). The TaRB M-H process employed

helps reduce the degree of autocorrelation between iterations of the sampling process, and

efficiently explores the posterior distribution. As laid out in Chib and Ramamurthy (2010),

the algorithm is as follows: at each iteration, h, of the sampling process Φ is broken down

into a random number of randomly ordered blocks, Bh, and each block is then estimated

using a tailored Metropolis Hastings step described below.

Let Φh,b be the b
th block of Φ = (Φh,1, . . . ,Φh,b, . . . ,Φh,Bh

) for iteration h. Next, to form the

tailored proposal density for Φh,b first one must find Φ̂h,b, where

Φ̂h,b = arg max
Φh,b

{π(Zit |θ\Ω̃,Φh,b,Φh,−b)p(Φ)} (3.14)

where π(Zit |θ\Ω̃,Φh,b,Φh,−b) is as defined above, and p(Φ) are the assumed prior distribu-

tions on the elements of Φ. Once Φ̂h,b has been found, let Vh,b be the negative inverse hessian

of Φh,b evaluated at Φ̂h,b. Thus the tailored proposal distribution is as follows

f(Φh,b |θ\Ω̃,Φh,−b,Zit) = fT (Φ̂h,b,Vh,b, κ) (3.15)

where fT (·) is a multivariate t-density with κ > 2 degrees of freedom.. Given a candidate

draw, Φc
h,b, from this tailored proposal distribution, the draw is accepted with the probability

min

{
1,

π(Zit |θc)p(Φc
h,b)f(Φh,b |θ\Ω̃,Φh,−b,Zit)

π(Zit |θ)p(Φh,b)f(Φc
h,b |θ\Ω̃,Φh,−b,Zit)

}
. (3.16)

Finally, the algorithm is completed by repeating this process for each block in every iteration

h.
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3.4 Simulation Study

In this section, the behavior of the proposed model and the MCMC sampler is demonstrated

through a simulated market with J = 7 alternatives. The data is generated with N =

200 and 800; with a purchase incidence rate of 52%. Contrasting the proposed model is a

two-stage probit, whose covariance matrix is estimated through the techniques described in

Chan and Jeliazkov (2009), and a model with a structured covariance matrix similar to Chib

et al. (2004), where the covariance between product level utilities are normalized to zero.

The purchase incidence equation is taken to be a function of two covariates: an intercept

and a random normal. Letting the first alternative be the outside option in the product

choice equation; a model with 6 product-specific constants, one U({0, 1}) to simulate pro-

motional activity, and a constant value plus a random uniform to represent the price is

considered. T = 50 time periods are simulated for each consumer, where in every time

period all consumers faces the same set of covariates. An example of a choice outcome for a

single consumer appears as:

Y =



1

1

0

0

0

0

0



, X =



1 −.78 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1 .47

0 0 0 1 0 0 0 0 1 1.52

0 0 0 0 1 0 0 0 1 .2

0 0 0 0 0 1 0 0 1 1.1

0 0 0 0 0 0 1 0 0 1.39

0 0 0 0 0 0 0 1 1 2.9


where the first entry of Y corresponds to the purchase incidence, and the following entries

correspond to the choice of alternative excluding the outside option.

To simulate heterogeneity, βi is distributed with the mean vector β and covariance matrix

Vβ, where Vβ = I10 ∗ .4 . Substitution patterns between choice alternatives are formed as

described in section 3.2.2 with a set of three characteristics.

121



3.4.1 Estimation Results

The posterior means for the both the structured and unstructured covariance sampler are

found from an MCMC run of length 60,000 after a burn in period of 20,000. The computa-

tional burden of the structured sampler, which utilizes the TaRB M-H process, varies by the

number of individuals and time-period length. For example, with N = 200 and T = 50 the

computational cost is approximately 400 seconds per 1000 iterations of the sampler. The

unstructured two-stage probit’s computational burden is lesser, taking about 200 seconds

per 1000 iterations given the same N and T as before.

During the estimation process, a set of diffuse priors (similar to those used in Rossi et al.

(1996) and Fong et al. (2014)) are considered for the model. Let Λ0, γ0, Ω̃
0

21 be zero vectors,

σ0 be a vector of ones, VΩ21 = I6, Vσ = I5, A
−1
d = .001 ∗ I10, v = 12, and V = I10.

3.1 records the posterior mean and standard deviation of β for both the structured and

unstructured two-stage probit estimation. 3.2 gives the posterior mean and standard devi-

ation of γ and the elements of Ω̃21. Finally, 3.3 records the elements of Ω̃22, allowing for a

comparison of the estimated substitution patterns between the unstructured and structured

model. The models presented, from left to right, are the proposed model, the unstructured

probit, and a structured probit whose covariance matrix has had product level substitution

patterns normalized to zero.

Since point estimates can be less informative about model parameters, figures 3.1-3.3 give

the histograms of several posterior densities across models. In 3.1, the top three histograms

gives the posterior density for β10 when N = 200 and the bottom three for N = 800; from

left to right is displayed the proposed model, the unstructured probit, and the structured

probit. 3.2 gives the histograms for σ5,5 for N = 200 and 800; whereas 3.3 displays the

histograms for γ1. Finally, to illustrate that model convergence is achieved with the TaRB

M-H algorithm applied to the proposed covariance matrix, the trace plots for γ1 are detailed

in 3.4.
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Figure 3.1: Posterior Density for β10

N = 200

Proposed Unstructured Structured

N = 800

Proposed Unstructured Structured

123



Table 3.1: Coefficient Estimates

Parameter True Value N = 200 N = 800

Proposed
Model

Unstruct.
Probit

Struct.
Probit

Proposed
Model

Unstruct.
Probit

Struct.
Probit

β1
(s.d.)

0.700 0.674
(0.050)

0.676
(0.050)

0.674
(0.050)

0.689
(0.027)

0.690
(0.023)

0.688
(0.027)

β2
(s.d.)

0.600 0.475
(0.047)

0.476
(0.047)

0.476
(0.047)

0.577
(0.024)

0.577
(0.021)

0.575
(0.024)

β3
(s.d.)

0.900 0.749
(0.124)

0.668
(0.122)

0.492
(0.118)

0.919
(0.071)

0.897
(0.053)

0.739
(0.071)

β4
(s.d.)

1.300 1.181
(0.124)

1.083
(0.115)

1.019
(0.120)

1.252
(0.071)

1.204
(0.053)

1.064
(0.072)

β5
(s.d.)

0.400 0.301
(0.125)

0.305
(0.110)

0.062
(0.113)

0.440
(0.067)

0.460
(0.058)

0.191
(0.065)

β6
(s.d.)

0.800 0.802
(0.104)

0.706
(0.102)

0.608
(0.094)

0.820
(0.064)

0.775
(0.049)

0.600
(0.062)

β7
(s.d.)

1.500 1.447
(0.132)

1.253
(0.121)

1.159
(0.134)

1.450
(0.078)

1.363
(0.065)

1.210
(0.086)

β8
(s.d.)

2.000 1.891
(0.141)

1.638
(0.142)

1.705
(0.147)

2.00
(0.081)

1.900
(0.073)

1.854
(0.086)

β9
(s.d.)

0.550 0.490
(0.050)

0.424
(0.048)

0.514
(0.054)

0.513
(0.029)

0.482
(0.028)

0.566
(0.033)

β10
(s.d.)

-1.200 −1.046
(0.073)

−0.906
(0.077)

−1.083
(0.080)

−1.170
(0.041)

−1.103
(0.036)

−1.254
(0.048)

Table 3.2: Covariance Parameters

Parameter True Value N = 200 N = 800

Proposed
Model

Unstruct.
Probit

Struct.
Probit

Proposed
Model

Unstruct.
Probit

Struct.
Probit

γ1
(s.d.)

0.500 0.551
(0.090)

- - 0.422
(0.067)

- -

γ2
(s.d.)

0.300 0.251
(0.115)

- - 0.353
(0.089)

- -

γ3
(s.d.)

-0.250 −0.339
(0.151)

- - −0.191
(0.091)

- -

σ21
(s.d.)

-0.200 −0.121
(0.106)

−0.066
(0.114)

−0.251
(0.107)

−0.211
(0.066)

−0.196
(0.055)

−0.334
(0.064)

σ31
(s.d.)

0.200 0.321
(0.104)

0.221
(0.109)

0.264
(0.124)

0.280
(0.069)

0.242
(0.063)

0.276
(0.072)

σ41
(s.d.)

-0.100 0.072
(0.109)

0.043
(0.137)

0.017
(0.119)

−0.068
(0.067)

−0.073
(0.063)

−0.106
(0.074)

σ51
(s.d.)

0.050 0.123
(0.098)

0.084
(0.114)

0.021
(0.112)

0.068
(0.106)

−0.013
(0.053)

−0.050
(0.067)

σ61
(s.d.)

0.200 0.120
(0.101)

0.055
(0.118)

0.122
(0.109)

0.256
(0.077)

0.241
(0.066)

0.315
(0.080)

σ71
(s.d.)

0.150 0.201
(0.100)

0.148
(0.124)

0.124
(0.096)

0.070
(0.071)

0.081
(0.064)

0.049
(0.077)

The findings presented in tables 3.1-3.3 suggest that, under the assumption that similarity

can determine substitution patterns, the model proposed in this paper offers an alternative

to more restrictive covariance assumptions. The proposed probit model estimates are closer
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Table 3.3: Covariance Parameters, Cont’d

Parameter True Value N = 200 N = 800

Proposed
Model

Unstruct.
Probit

Struct.
Probit

Proposed
Model

Unstruct.
Probit

Struct.
Probit

σ33
(s.d.)

1.250 1.039
(0.131)

0.696
(0.159)

0.755
(0.092)

1.242
(0.085)

1.125
(0.132)

1.189
(0.111)

σ44
(s.d.)

1.300 1.061
(0.136)

0.851
(0.194)

0.982
(0.092)

1.209
(0.093)

1.191
(0.123)

1.282
(0.112)

σ55
(s.d.)

1.000 0.723
(0.105)

0.484
(0.097)

0.580
(0.081)

0.923
(0.074)

0.766
(0.096)

0.930
(0.096)

σ66
(s.d.)

1.200 0.953
(0.149)

0.822
(0.172)

0.745
(0.084)

1.111
(0.102)

1.028
(0.118)

0.990
(0.103)

σ77
(s.d.)

1.000 0.657
(0.113)

0.459
(0.116)

0.488
(0.070)

0.968
(0.082)

0.838
(0.112)

0.899
(0.105)

σ32
(s.d.)

0.146 0.129
(0.038)

0.329
(0.118)

- 0.164
(0.028)

0.287
(0.080)

-

σ42
(s.d.)

0.277 0.230
(0.135)

0.393
(0.108)

- 0.263
(0.069)

0.386
(0.067)

-

σ52
(s.d.)

0.007 −0.022
(0.055)

0.083
(0.120)

- 0.029
(0.030)

0.012
(0.075)

-

σ62
(s.d.)

0.616 0.630
(0.093)

0.682
(0.094)

- 0.557
(0.069)

0.577
(0.065)

-

σ72
(s.d.)

0.257 0.223
(0.084)

0.199
(0.110)

- 0.305
(0.065)

0.295
(0.072)

-

σ43
(s.d.)

0.109 0.095
(0.028)

0.061
(0.133)

- 0.121
(0.019)

0.126
(0.103)

-

σ53
(s.d.)

0.484 0.475
(0.079)

0.233
(0.091)

- 0.442
(0.049)

0.358
(0.086)

-

σ63
(s.d.)

0.220 0.175
(0.087)

0.078
(0.140)

- 0.279
(0.065)

0.118
(0.108)

-

σ73
(s.d.)

0.472 0.443
(0.091)

0.262
(0.105)

- 0.453
(0.050)

0.438
(0.093)

-

σ54
(s.d.)

0.220 0.175
(0.087)

0.154
(0.098)

- 0.279
(0.065)

0.340
(0.084)

-

σ64
(s.d.)

0.541 0.561
(0.085)

0.487
(0.139)

- 0.470
(0.063)

0.500
(0.091)

-

σ74
(s.d.)

0.044 0.026
(0.034)

0.024
(0.113)

- 0.055
(0.018)

0.119
(0.098)

-

σ65
(s.d.)

0.109 0.095
(0.028)

0.017
(0.111)

- 0.121
(0.019)

0.040
(0.102)

-

σ75
(s.d.)

0.378 0.355
(0.096)

0.228
(0.081)

- 0.342
(0.051)

0.140
(0.078)

-

σ76
(s.d.)

0.176 0.148
(0.057)

0.087
(0.095)

- 0.210
(0.043)

0.256
(0.086)

-

to the true mean values, whereas those of the unstructured probit exhibit a greater degree

of bias, likely resulting from the infeasible estimation of a full probit covariance matrix.

As N increases to 800, we observe the parameters of the unstructured and proposed model

values converging towards the true values; this is unsurprising, as one would expect increased

observations to overcome the issues associated with estimating an unstructured probit model.

In contrast, increased observations do not provide the same boost to parameter estimation
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Figure 3.2: Posterior Density for σ5,5

N = 200

Proposed Unstructured Structured

N = 800

Proposed Unstructured Structured

Figure 3.3: Posterior Density for γ1

N = 200 N = 800

in the most restrictive fully structured model. This is likely due to the overly restrictive

substitution pattern assumptions, and suggests that such assumptions (as seen in Chib et al.
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Figure 3.4: Trace Plots for γ1

N = 200 N = 800

(2004)) may inhibit proper estimation of parameter values.

3.5 Conclusion

In this paper, a method of estimating a two-stage multinomial probit model of demand with

substitution patterns and individual parameter heterogeneity is proposed. In contrast to

other more restrictive modeling assumptions, this paper serves as a demonstration as to

how product similarity can be used to structure a probit covariance matrix. In addition,

described in this work is a method by which random coefficients can be introduced into the

two-stage estimation process.

In comparison to the existing literature, the model proposed in this paper displays three

key attributes: first, as in Chib et al. (2004) the probit structure allows for correlation

between the purchase incidence and product choice equations. Second, building upon the

work of Chib et al. (2009) and Fong et al. (2014) this paper demonstrates how individual

level coefficients in a multistage model can be estimated for a probit distribution through

a Gibbs sampling process. Finally, unlike prior works, the proposed model allows for the

feasible estimation of substitution patterns between product level utilities through a measure

of product similarity as defined above. An MCMC process is used to determine the posterior

distribution of parameter values.
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The model proposed in this paper was then compared to both an unstructured probit model

estimated through the techniques detailed in Chan and Jeliazkov (2009) and a structured

probit whose restrictions were similar to those seen in Chib et al. (2004). Simulating markets

of 200 and 800 individuals, the proposed model outperformed both the unstructured and

restrictive probit designation. Surprisingly, as the number of individuals grew, the expected

parameter values found from the posterior distribution of the model similar to that in Chib

et al. (2004) demonstrated a larger degree of bias; suggesting assumptions made to maintain

the feasible estimation of a probit covariance can be overly restrictive.

Finally, a multitude of methods for defining product similarity exist. For instance, the

work of Cohen (2010) and Dotson et al. (2018) demonstrate how similarity can be used

to define a probit correlation matrix; as in this paper, these methods of defining product

similarity can be extended to estimate full probit covariance matrices. Given the both the

flexibility of Bayesian probit modeling and the benefits of the TaRB MH algorithm, it stands

to reason that the feasible estimation of high-dimensional multinomial probit models and

their covariance matrices are achievable through such strategies. The primary intention of

this paper was then to offer a guide for such an estimation, and to demonstrate one method

by which a researcher could employ similarity to feasible estimate substitution patterns in

lieu of restrictive covariance assumptions.
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Appendix A

Chapter 1

A1 Purchase Frequency and Stockpiling

In analyzing the frequency of cigarette purchases and potential stockpiling behavior, I calcu-

late both the number of days between cigarette store trips and the occurrence of short-lived

price reductions, “sales”.A1 As suggested in Hendel and Nevo (2006b), if significant storage

behavior is observed, cigarette sale occasions should be positively correlated with the num-

ber of days between store trips (as households increase their stock of stored products when

prices are reduced). Controlling for outliers in my sample—particularly on-again, off-again

smokers—I subset my sample to those store trips where the difference between the current

and next purchase date is less than or equal to 4 weeks. I find the average number of days

between each trip to be 6.77, and 68% of all cigarette store trips fall within 7 days of a prior

purchase.

To address cigarette storability, I consider a regression of the number of days until the next

A1I define cigarette sale occasions similar to how they are defined in Hendel and Nevo (2006b)—any time
in which weekly cigarette price falls at least 5 percent below the modal price in each DMA. Weekly cigarette
DMA-level price is taken to be the quantity weighted average price of all observed sales at the DMA/week
level.
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store trips on cigarette sales occasions. To control for individual preferences, time trends,

and seasonality, I include household and week fixed effects, and cluster the errors at the

household level. Table A1 presents my results. I find the regression coefficient for sale oc-

casions to be negative and statistically insignificant—suggesting temporary price reductions

are uncorrelated with cigarette purchase frequency. Therefore, I conclude storability does not

appear to play a significant role in determining time between cigarette purchase occasions.

Table A1: Days Until Next Store Trip Regressed on Cigarette Sales occasions

Coefficient
Sale Occasion -.093

(0.083)
Week FEs Y
HH FEs Y
Mean DV 3.994
Num HH 10,344
Num Obs 487,307

***p<.01, **p<.05, *p<.1
Standard errors clustered at the household level are included in parentheses.

A2 Retail Data Step Estimation Procedure

Provided a candidate draw of Θ, for each market m and week t, I need to solve for δmt =

(δ1mt, . . . , δJmt)
′ such that

sjmt(δmt; Θ) = Sjmt,

for j = 1, . . . , J and m = 1, . . . ,M,

(A1)

where sjmt(·) are the predicted retail market shares from Eq. (1.11) and Sjmt are the observed

retail market shares. In solving this system of equations, I require two steps to be performed

iteratively each period, starting from t = 1, as state dependency causes the current period

purchase probabilities to rely on prior consumption status.
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Thus, for a given period, I start by calculating the left-hand side of (A1). In practice, I rely

upon Monte Carlo integration where Eq. (1.11) is approximated by

sjmt(δmt; Θ) =
1

R

∑
R

G∑
g=0

πrjmt(Crg,t−1 = 1)P (Crg,t−1 = 1). (A2)

Each simulated household r = 1, . . . , R is represented by Halton draw from the empirical

distributions of v and D, respectively. I draw R = 200 simulated households per market

to compute Eq. (A2). Finally, πrjmt(·) denotes the individual-level purchase probability

conditioned upon prior consumption status Crg,t−1 as well as x, pmt, hmt, δmt, Θ, Dr, and

vr.
A2

Next, I invert the system of equations (A1) to obtain δmt. This system of equations is non-

linear, and I solve it numerically. Grigolon and Verboven (2014) provides the contraction

mapping algorithm, based on that described in Berry et al. (1995), for the random coefficients

logit model with the inclusion of nesting parameters. In the case of a two-level nested model,

the algorithm iteratively solves

δk+1
mt ≡ δkmt + (1− λ)[ln(Smt)− ln(smt(δ

k
mt; Θ))], k = 1, 2, . . . ,

where Smt = (S1mt, . . . , SJmt)
′ and smt = (s1mt, . . . , sJmt)

′,

(A3)

until the relative difference between δk+1
mt and δkmt is less than my tolerance of 1e−13. Note,

λ represents a 1× J vector of nesting parameters where each element, j = 1, . . . , J , is given

by λg such that j ∈ Jg.

After obtaining a unique δmt, in market m for a given period t, the evolving joint distribution

of consumer heterogeneity and consumption status for the period t + 1 is defined by Eq.

(1.13). Once the inversion has been completed iteratively for each t = 1, . . . , T , across all

A2In t = 1 prior consumption status is assumed to be P (Crg1 = 1) = 1/(G+1) ∀r ∈ R, and for subsequent
weeks evolves according to Eq. (1.13). I treat the first quarter of my sample as a burn-in period, and derive
my results only from data resulting from post burn.
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markets, a unique δ(Θ) has been obtained, and I proceed to the evaluation of our household-

level log-likelihood.

A3 Comparison of Results With and Without Pricing

Instrument

Table A2: Mean Utility Estimates With and Without Pricing Instrument.a

Mean Utility
Price IV OLS

Price -0.759*** -0.321***
(0.094) (0.028)

Cigarette 1.303** -1.511***
(0.606) (0.188)

E-cigarette -4.771*** -6.701***
(0.352) (0.159)

Cessation -1.749** -5.687***
(0.889) (0.329)

Menthol -0.718*** -0.789***
(0.051) (0.053)

Menthol × Ecig. -0.348*** -0.272***
(0.042) (0.033)

Flavored 0.451*** 0.098
(0.078) (0.064)

Category × Time FEs Y Y
Category × Market FEs Y Y
Num HH 15,223 15,223
Num HH Obs 2,317,585 2,317,585
Num Markets 100 100
Num Time Periods 226 226
Num Market Level Obs 135,600 135,600

***p<.01, **p<.05, *p<.1
a Standard errors are included in parentheses. My estimation
includes fixed effects at the category/time and category/market
level; for presentation purposes, and to avoid perfect collinearity,
I exclude the flavor tobacco, the final time period, and the last
market.

Table A2 presents a comparison of my results with, and without, my pricing instrument. As

discussed in Section 1.6, to account for the possible correlation between the price variable

and unobserved demand shocks, I use an instrumental variable technique. Specifically, I take
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the average product price over all DMAs not included in my estimation to be my pricing

instrument.

The use of this instrument generates substantial changes in my estimation. Category dum-

mies for cigarettes and cessation products now enter utility positively, and the parameter

value for e-cigarettes rises by a sizable amount. Moreover, the mean price response, in terms

of absolutes, increases significantly (more than doubles). These differences are those I would

expect if (1) there exists simultaneity between price and demand, and (2) my instrument

successfully corrects for this existence. Finally, with the inclusion of my instrument, all

parameters remain statistically significant at the 95% level or greater.

A4 Supply-Side Model

In this appendix, I detail how I calculate counterfactual prices provided in my demand

estimates found in Section 1.7. To begin, under the assumption that prices are set optimally,

marginal cost is inferred from observed prices, market shares, and expected price sensitivity.

Specifically, I assume that prices are set at the firm level, where each firm sets their product

prices to maximize the total profits over the weeks in my finite sample. In this case, the

FOCs are given by the vector ∂πf

∂pft
with the element corresponding to product j in the set

Fj of products sold by firm f in time t (I drop the m subscript, assuming prices are set at

the market level) being

0 =
∂πf

∂pjt
=

∂

∂pjt

T∑
k=1

∑
n∈Fj

Snk(pnk −mcnk) = Sjt +
T∑

k=1

∑
n∈Fj

∂Snk

∂pjt
(pnk −mcnk)

which can be rewritten in vector form as

0 = S +∆(p−mc), (A4)
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for S = (S11, . . . , SJ1, . . . , SJT )
′, p = (p11, . . . , pJ1, . . . , pJT )

′, andmc = (mc11, . . . ,mcJ1, . . . ,mcJT )
′.

Finally, ∆ is a (J × T )× (J × T ) matrix made up of J × J blocks, ∆k,t for k, t = 1, . . . , T ,

such that

∆ =



∆1,1 0 0 0 0

...
. . . 0 0 0

∆k,1
. . . . . . 0 0

...
. . . . . . . . . 0

∆T,1 . . . ∆T,t . . . ∆T,T


, (A5)

with the (n, j) elements of ∆k,t equal to
∂Snk

∂pjt
if both n and j are owned by the same firm,

and zero otherwise. Thus, the vector of marginal costs for all products, across all weeks, is

mc = ∆−1S + p. (A6)

Once the vector of marginal costs has been obtained, I can predict the impact of changes such

as the removal of flavorants or the impact of cigarette taxes. I assume that these changes

do not impact my demand parameters or marginal costs. Thus, provided a gradient vector

comprising the first order conditions of my firm’s profit maximization equation, I find the

vector of firm prices such that p̂f maximizes firm prices. In application, I iterate between

the firms, maximizing each firm’s profits with respect to the other firm’s choice of prices. I

continue iterating until p̂f converges for each firm.A3

A5 Illicit Cigarette Sales

A possible source of bias in my weighting procedure, when forming DMA-level weekly prod-

uct usage rates, is the presence of illicit cigarette sales. Research by the Committee on

A3My tolerance for convergence is set to 1e-7.

144



the Illicit Tobacco Market, appointed by the National Research Council and tasked by the

FDA, suggests that the sale of illegal cigarettes makes up 8.5% of the total cigarette mar-

ket (National Research Council, 2015).A4 At the DMA-level, if the sale of illegal cigarettes

remains a constant proportion of total cigarette sales over the course of my sample period,

then the population weight will account for the sale of illicit products when forming my

market/time-level product usage rates. In this case, my observed retail sales can act as a

proxy for illicit consumption. Supporting this notion, Paraje et al. (2022) suggests that the

world-wide market for illicit cigarettes, as a percentage of total consumption, has largely

stabilized over the past decade; with the consumption of illicit products trending similarly

to that of legal sales. However, research by the National Research Council (2015) found

the total proportion of illegal cigarette sales rose slightly over the latter half of their sample

period—from 7.1 percent in 2003 to 8.5% by 2011.

Further, of greatest concern to the formation of my market shares is the impact of DMA-

level price on the market for illicit cigarettes, as rising product price is considered a primary

motivation for the trade in illegal cigarettes (National Research Council, 2015). In this case,

legal and illegal sales may no longer trend similarly, and my observed sales can no longer

serve as a proxy for illicit consumption.

To this regard, I find that brand specific pricing strategies remain largely consistent across

all markets. Therefore, general increases in price may not encourage substitution to the

illicit cigarette market, as the presence of profit maximizing smugglers implies that illicit

cigarette prices increase alongside that of their legal counterpart. However, localized price

changes (predominantly in the form of taxation) have a possibility of encouraging cross-

border shopping and smuggling operations. If localized taxation increases the proportion of

illicit cigarette sales in a market, then my market shares formation procedure may under-

A4Estimates of the size of the illicit cigarette market ranges from 8.5 to 21 percent. The low end, 8.5
percent, is the committee’s own estimate and is found by comparing total tax paid sales with self reported
consumption.
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weight responsiveness to changes in price—stressing the importance of accounting for price

endogenity.

Further, the sale of illicit products may also bias my counterfactual results—bans and tax-

ation considered are common motives for illicit trade. However, to date, empirical research

has not found an increase in illegal sales after the implementation of a menthol ban. In

consideration of Massachusetts’ 2020 menthol ban, Ali et al. (2022) found no significant im-

pact on cross-border sales of neighboring states, where menthol products remain accessible

to consumers and smugglers interested in menthol cigarettes. Similarly, an analysis of the

2015 Nova Scotia menthol ban found no significant increase in the seizure of illicit cigarettes

pre- and post-ban; suggesting that the sales of illegal cigarettes is unlikely to be increasing

in response to the removal of mentholated products (Stoklosa, 2019). Finally, Fong et al.

(2022b) compared the purchases of Canadian smokers pre- and post-ban, in their respective

provinces, and found no increase in the reported purchasing of illicit products.

Although sales of illicit products may not respond significantly to the removal of men-

tholated tobacco, what remains less clear is consumer responsiveness to my counterfactual

taxation scheme. The National Research Council (2015) suggests much of the growth in

the illicit tobacco market is a function of taxation—smugglers purchasing products in low

tax states/territories and selling in high tax locations. However, my counterfactual taxation

scheme is proposed at the federal level, subjecting all markets to an increase in price, and

Paraje et al. (2022) hypothesizes that, on a global scale, common reductions in cigarette af-

fordability have largely stymied growth of illicit trade and led to similar reductions both legal

and illegal sales. Overall, due to the nature of illegal sales, the degree to which changes in

observed cigarette sales can act as a proxy for illicit transactions remains largely unknown,

and my results reflect an expectation formed by the assumption that my counterfactual

scenarios do not significantly change illicit consumption behavior.
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Appendix B

Chapter 2

B1 SSB Sales in Stores 8+ Miles from Philadelphia

To assess the exclusion of stores beyond the 8-mile band surrounding Philadelphia, we ex-

amine SSB sales in stores within the 3-digit ZIP Code prefixes (080, 181, 189, 190, 191, 192

and 194) pertaining to Philadelphia and its surrounding region. Specifically, we estimate

the impact of the SSB tax on SSB sales within Philadelphia, 0-8 miles from Philadelphia,

and 8-10 miles from Philadelphia, respectively. In addition to the 218 stores in the “city +

8 miles” region referenced in Section 2.3.1, we also observe the sales of 25 stores 8-10 miles

from the city, and 93 stores 10+ miles from the city which we use as the control group for

this analysis. SSB sales are aggregated at the store-week level for estimation purposes.

Results in Table B1 provide evidence that stores 8-10 miles from the city border are not

affected by cross-border shopping, as their SSB sales do not demonstrate a positive response

to the Philadelphia SSB tax. The variable “Post-Tax × (8-10 miles from Philadelphia)”

has a negative coefficient, inconsistent with what would be expected if the taxation induced

cross-border shopping in this region. Seiler et al. (2021, p. 35) report a similar finding.
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Table B1: Regression of SSB Volume Salesa

Dependent Variable: SSB Weekly Volume Sales (in Ounces)

Post-Tax × Philadelphia -51626.97***

(1629.77)

Post-Tax × (0-8 miles from Philadelphia) 10256.10***

(1643.79)

Post-Tax × (8-10 miles from Philadelphia) -15138.82***

(2612.22)

Store FEs Y

Week FEs Y

Observations 103,503

Weeks 209

***p<.01, **p<.05, *p<.1
aRobust standard errors are reported in parentheses. SSB sales are aggregated at
the store-week level.

B2 Multiple Purchases During a Single Trip

During some observed purchase opportunities, households buy multiple units of the same

product or choose to purchase multiple different products. However, in our retail data,

information pertaining to individual-level purchase variety and amounts is unavailable—we

only observe aggregate store sales. To make our model tractable under a discrete choice

framework, and to reconcile with the retail data, a couple of assumptions are required.

In the case where we observe multiple distinct product purchases during a single trip, we

treat them as arising from multiple purchase opportunities. Furthermore, when focusing

on household purchases, we follow the example of Tuchman (2019) and consider purchase

incidence—whether at least one unit was purchased—instead of purchase quantity.

Current literature involving the purchase of multiple units or multiple products under the

BLP framework considers bundling units of the same, or different, goods together as a sort of

composite product (e.g., Wang (2021)). This approach would be computationally infeasible

in our case given the large number of beverage products. As such, our rationalizations

described above (1) simplify our estimation, (2) make the model tractable under the BLP
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framework, and (3) are simply following those innately made by researchers working solely

with retail data (i.e., Berry et al. (1995), Nevo (2000), etc.).

B3 Estimation Procedure During the Retail Data Step

Provided a candidate draw of Θ, for each month t = 1, . . . , T we need to solve for δt =

(δ1t, . . . , δJtt)
′ such that

sjt(δt; Θ) = Sjt, for j = 1, . . . , Jt, (B1)

where sjt(·) are the predicted retail market shares from Eq. (2.9) and Sjt are the observed

retail market shares. In solving this system of equations, we require two steps.

We start by calculating the left-hand side of (B1). In practice, we rely upon Monte Carlo

integration where Equation (2.9) is approximated by

sjt(δt; Θ) =
1

R

R∑
r=1

πrjt(xt, pt, ht, Qzr , Dr, δt,Θ, vr). (B2)

Each simulated household r = 1, . . . , R is represented by Halton draws of vr, zr, and Dr from

the distributions of v, z, and D|z, respectively. We draw R = 4000 simulated households to

compute Eq. (B2).

Next, to obtain δt, we must invert our system of equations (B1). For the RCNL model, this

system of equations is non-linear and is solved numerically. Grigolon and Verboven (2014)

provides the contraction mapping algorithm for the random coefficients logit model with

nesting parameters. In the case of a one-level nested model, the algorithm iteratively solves

δk+1
t ≡ δkt + (1− ρ)[ln(St)− ln(st(δ

k
t ; Θ))], k = 1, 2, . . . ,

where St = (S1t, . . . , SJtt)
′ and st = (s1t, . . . , sJtt)

′,

(B3)
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until the relative difference between δk+1
t and δkt is less than our tolerance of .5e−12. Once

the inversion has been completed for each t = 1, . . . , T , a unique δ(Θ) has been obtained,

and we proceed to the evaluation of our household-level log-likelihood.

B4 Category Fixed Effects

Table B2 provides estimates for the category fixed effects not reported in the RCNL Demand

Estimates table found in Section 2.6. The first column of Table B2 provides the variable of

interest, followed by the mean utility and low-income interaction, respectively. The category

pure water was dropped to avoid perfect collinearity.

Table B2: RCNL Demand Estimates - Category Fixed Effectsa

Mean Utility Low-Income Interaction

Carb. Soft Dr. 0.42** -0.18

(0.11) (0.18)

Coffee -1.82*** -0.40

(0.18) (0.31)

Energy Dr. -2.45*** 1.26***

(0.29) (0.35)

Flav. Water -1.45*** -0.25

(0.17) (0.27)

Juice 0.85*** -0.58***

(0.11) (0.20)

Sports Dr. -1.73*** -0.34

(0.23) (0.22)

Tea -0.22* -0.72***

(0.12) (0.20)

***p<.01, **p<.05, *p<.1
aRobust standard errors are reported in parentheses.
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Table B3: Pass-Through Rate of SSB Tax, by Category

Dependent Variable: SSB Per-Ounce Price (in Cents)

Carb.
Soft Dr.

Coffee Energy
Dr.

Flav.
Water

Juice Sports
Dr.

Tea

Post-Tax × Philadelphia 1.221*** 1.201*** 1.590*** 1.239*** 1.173*** 1.250*** 1.091***

(0.004) (0.048) (0.029) (0.056) (0.012) (0.011) (0.011)

Product Characteristics Y Y Y Y Y Y Y

Store FEs Y Y Y Y Y Y Y

Store FEs × Diet/Med./Large Y Y Y Y Y Y Y

Week FEs Y Y Y Y Y Y Y

Observations 2,150,691 142,320 550,246 162,800 844,697 268,785 777,840

Stores 229 229 229 229 229 229 229

Weeks 209 209 209 209 209 209 209

Products 114 25 38 27 87 23 63

***p<.01, **p<.05, *p<.1

There are 111 stores in Philadelphia and 118 in the region more than 8 miles from Philadelphia. The 209
weeks span the 4-year period from 2015 to 2018. In total, 377 products across seven categories are subject
to the SSB tax if sold in Philadelphia. Prices are aggregated to the product-store-week level for estimation
purposes. For the regression in each category, we also include store fixed effects and their interactions with the
diet, medium, and large dummy variables, week fixed effects, and additional product characteristics including
sugar and caloric content. Standard errors are reported in parentheses and clustered at the product-store-
week level.

B5 Category-Level Pass-Through Rates

To estimate category-level pass-through rates, for each of the seven categories containing

SSBs, we regress price observed at the product-store-week level on the interaction Post-Tax

× Philadelphia as well as store fixed effects and their interactions with the diet, medium, and

large dummy variables, week fixed effects, and additional product characteristics including

sugar and caloric content. Table B3 presents our results.
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Table B4: Average Sugar and Caloric Consumption from Beverages per House-
hold, by Location and Income Statusa

Without Tax With Tax Difference % Change

Philadelphia Households
High-Income
Sugar (g) 17,953 11,144 -6,809 -37.93%
Calories (cal) 73,062 46,096 -26,966 -36.91%
Low-Income
Sugar (g) 20,118 13,152 -6,966 -34.63%
Calories (cal) 80,579 53,515 -27,064 -33.59%

Non-Philadelphia Households
High-Income
Sugar (g) 19,826 19,655 -171 -0.86%
Calories (cal) 82,488 81,908 -580 -0.70%
Low-Income
Sugar (g) 23,167 22,458 -709 -3.06%
Calories (cal) 93,513 90,832 -2,681 -2.87%

aAggregate amount over the post-taxation period January 2017 to December 2018.

B6 Changes in Sugar and Caloric Consumption for

High- and Low-Income Households

Table B4 reports changes in sugar and caloric consumption from beverages for high- and low-

income households by home location. We find that among Philadelphia households, high-

income households on average consume less sugar and fewer calories and experience a greater

percentage reduction in their consumption. The pattern is different for non-Philadelphia

households, where high-income households on average consume less sugar and fewer calories

but experience a smaller percentage reduction in their consumption. Differences in the

outcomes in response to the taxation are best explained by Table 2.12, where we observe

that, in terms of the total volume of Philadelphia and non-Philadelphia SSBs consumed, low-

income Philadelphia households are less responsive to the tax compared to their high-income

counterparts, but the opposite is true for low-income non-Philadelphia households, who

experience a larger volume reduction in SSB consumption—and therefore a larger reduction

in sugar and caloric consumption—compared to their high-income counterparts.
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B7 Additional Counterfactual Analyses

Here we report the results from three additional counterfactual analyses.

B7.1 No Taxation on Diet Products

We now analyze the counterfactual policy in which diet products are not subject to the SSB

tax—as was originally proposed. The Philadelphia City Council has specified that their SSB

taxation policy is first and foremost a revenue-generating scheme; generally, however, taxes

imposed on sweetened beverages are designed to reduce consumption, as in the case of Berke-

ley, CA, Boulder, CO, and Seattle, WA, among others. Thus, except for Philadelphia, diet

products are normally excluded from SSB taxation, being regarded as healthier alternatives

to sugary products. We are therefore interested in how a policy under which diet products

remain untaxed in Philadelphia would change households’ consumption and welfare as well

as the revenue-maximizing tax rate.

As before, we consider average sugar and caloric consumption from beverages per household

during the 24 post-taxation months. We find that under the alternative policy, Philadel-

phia households would on average reduce their sugar intake by 40%, greater than the 36%

reduction under the current policy. They would experience an average reduction of 29,358

calories—approximately 14.7 days’ worth of caloric intake, a 9% increase compared to the

13.5 days under the current policy. These results show that from a public health perspec-

tive, leaving diet products untaxed is more beneficial by inducing a greater reduction in

households’ sugar and caloric consumption.

With respect to changes in consumer surplus, the alternative policy would leave households

better off when compared to the current policy. Among Philadelphia households, we find

an average consumer surplus loss of $80.95 and $80.09 for low- and high-income households,
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respectively, noticeably smaller than the $104.75 and $108.26 under the current policy (Table

2.13). Sugary beverages and their diet counterparts are good substitutes for some households,

therefore when diet products are excluded from the tax, these households are able to switch

from sugary beverages to their diet counterparts in order to avoid the tax, rather than

having to travel for cross-border shopping or switch to less substitutable products, and thus

households’ average loss in consumer surplus is reduced.

In addition to lessening the loss in consumer surplus, the alternative policy also has an

impact on the revenue-maximizing tax rate. The greater availability of untaxed substitutes

in the form of diet products leads to households’ higher price sensitivity with respect to

sugary beverages, and we find that the revenue-maximizing tax rate falls from 3.14¢ per

ounce under the current policy to 2.33¢ per ounce under the alternative policy. The tax

revenue generated under the respective revenue-maximizing tax rate falls from $32.5 million

to $24.6 million.

We note that our revenue-maximizing tax rate of 2.33¢ per ounce under the alternative policy

is similar to the 2¢-per-ounce SSB tax rate in Boulder, CO, where the SSB tax includes only

those products with added sugar, thus excluding diet products. Our revenue-maximizing tax

rate falls slightly above the range of optimal tax rates found by Allcott et al. (2019), who

study a national tax imposed on sugar-sweetened beverages only and determine an optimal

tax rate between 1¢ and 2.1¢ per ounce. Different from our setting, their optimal tax rate

is derived from a model interested in government redistribution of wealth.

B7.2 Both Locations Taxed

Next, we turn to our counterfactual analysis regarding the changes in SSB consumption and

consumer surplus if the tax is levied upon both Philadelphia and its surrounding region. This

counterfactual scenario can be interpreted as a national or multi-state SSB taxation policy
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(the region surrounding Philadelphia includes elements of both the state of Pennsylvania and

the state of New Jersey), which removes Philadelphia households’ ability to avoid taxation

by cross-border shopping in the surrounding region. To create our counterfactual, for each

beverage option sold in the non-Philadelphia location, we calculate the tax amount based

on the tax rate, adjust the price accordingly based on the relevant pass-through rate, and

set the variable “tax saving” to zero.

Results pertaining to the effects of this alternative tax coverage on households’ beverage

consumption are presented in Table B5. We observe that, given the widened tax coverage,

non-Philadelphia households now experience a reduction in SSB consumption similar to those

living in Philadelphia. Interestingly yet intuitively, Philadelphia households’ consumption of

Philadelphia SSBs becomes less responsive to the levying of an SSB tax: they reduce their

consumption of Philadelphia SSBs by 3,553 ounces when both locations are taxed, compared

to 3,791 ounces (Table 2.8) when the tax covers Philadelphia only. This result is primarily

driven by Philadelphia households who have strong preference for SSBs: when the widened

tax coverage removes their ability to avoid taxation through cross-border shopping, they

instead continue to purchase SSBs in their home location, willing to pay the higher prices.

Additionally, Philadelphia households’ purchase of non-Philadelphia SSBs decreases by 496

ounces, compared to an increase of 474 ounces when the tax covers Philadelphia only.

The removal of households’ ability to exploit the geographic nature of local taxation poli-

cies has a direct impact on households’ loss of consumer surplus. Under the widened tax

coverage, the loss in consumer surplus for low- and high-income Philadelphia households is

$128.35 and $123.93, respectively, representing an increase of 23% and 14% when compared

to the current tax coverage (Table 2.13). With cross-border shopping no longer a viable

strategy for tax avoidance, a lower disutility from travel time no longer benefits low-income

Philadelphia households as much, and their loss of consumer surplus is now greater than

their high-income counterparts’. Finally, among non-Philadelphia households, we find a loss
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Table B5: Average Beverage Consumption per Household: Both Locations
Taxeda

SSB Status × Bev. Location Without Tax With Tax Difference % Change

All Households
Philadelphia Bev. Options
Non-SSB 2,158 2,486 +328 15.17%
SSB 4,027 2,012 -2,015 -50.04%
Non-Philadelphia Bev. Options
Non-SSB 3,332 3,881 +549 16.49%
SSB 4,600 2,286 -2,314 -50.30%

Philadelphia Households
Philadelphia Bev. Options
Non-SSB 3,827 4,404 +577 15.09%
SSB 7,097 3,544 -3,553 -50.06%
Non-Philadelphia Bev. Options
Non-SSB 770 887 +117 15.29%
SSB 1,009 513 -496 -49.20%

Non-Philadelphia Households
Philadelphia Bev. Options
Non-SSB 521 603 +82 15.70%
SSB 1,012 507 -505 -49.88%
Non-Philadelphia Bev. Options
Non-SSB 5,846 6,819 +973 16.64%
SSB 8,124 4,027 -4,097 -50.44%

aIn ounces; aggregate amount over the post-taxation period January 2017 to December 2018.

of consumer surplus in the amount of $149.20 for low-income households and $141.38 for

high-income households when both locations are taxed.

B7.3 Travel Time Changes

We now consider how changes in travel time affect both the willingness to cross-border

shop and expected consumer surplus under the current taxation policy. This counterfac-

tual provides an analysis of the effects of increased ease of transportation, for example due

to improved roads, reduced traffic, better traffic control, etc. We calculate households’

consumption of beverages while proportionally varying the travel time experienced by all

households. Our findings are shown in Figure B1, with travel time being varied from 50%

to 200% of the baseline. The figure presents the percentage of the decrease in Philadelphia

SSB consumption that is offset by an increase in non-Philadelphia SSB consumption, the net

156



Figure B1: SSB Consumption and Consumer Surplus: Changes in Travel Time

(a) Percentage of Phil. SSB Reduction Offset (b) Net Reduction in SSB Consumption

(c) Phil. Household Expected Loss in CS

Notes: The percentage of Philadelphia SSB reduction offset (Panel a) measures the percentage of the
decrease in Philadelphia SSB consumption that is offset by an increase in non-Philadelphia SSB
consumption. The net reduction in SSB consumption (Panel b) measures the net reduction—after
accounting for the offset—as a percentage of Philadelphia SSB consumption in the no-tax scenario.

reduction in SSB consumption—after accounting for the offset—as a percentage of Philadel-

phia SSB consumption in the no-tax scenario, and the expected loss of consumer surplus for

Philadelphia households.

Travel time plays a large role in determining the degree to which households cross-border

shop. When travel time is halved, we find that 37% of the reduction in Philadelphia SSB

consumption due to taxation is offset by an increase in non-Philadelphia SSB consumption.

However, when travel time is doubled, only 11% of the reduction is offset. As such, travel
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time ties directly into the net effect of SSB taxation on the consumption of taxed products.

When travel time is halved, the net reduction in SSB consumption equals 38% of Philadelphia

SSB consumption in the no-tax scenario. In comparison, when travel time is doubled, we

find a net reduction of 46%. At this point, few Philadelphia households engage in cross-

border shopping; instead, much of the rise in non-Philadelphia SSB consumption is driven

by non-Philadelphia households, for whom purchasing in the non-Philadelphia location does

not involve travel costs.

Our findings provide supporting evidence towards the effectiveness, or lack thereof, of SSB

taxation policies in regions of differing sizes. For instance, Cawley and Frisvold (2015)

suggest that one possible reason the SSB tax pass-through rate found in Berkeley is so low

compared to other localities is consumers’ ability to evade city-level taxes through cross-

border shopping. Berkeley’s land area is only 10.4 square miles (compared to Philadelphia’s

134 square miles), and the authors note that the average US consumer travels 5.2 miles

when shopping for groceries. As such, we would expect Berkeley residents to act similarly

to Philadelphia households residing minutes from the city border. Comparatively, residents

of large cities may experience longer travel time when seeking to cross-border shop and

therefore, as our findings suggest, their rate of tax avoidance by cross-border shopping may

be significantly smaller.

Finally, travel time and the ease of cross-border shopping have a direct impact on the loss

in consumer surplus resulting from SSB taxation. We focus on Philadelphia households’

expected change in consumer surplus, as they reside in the taxed region and experience the

greatest change in utility resulting from a change in the ease of travel. As expected, a lower

travel time directly implies a smaller loss of consumer surplus associated with SSB taxation,

as increased ease of travel allows for greater tax avoidance behavior. When travel time is

increased from 50% to 200% of the baseline, an average Philadelphia household’s expected

loss in consumer surplus increases by 43.8% from $82.6 to $118.8, compared to $106.3 at
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the baseline. While an increase in the ease of travel is beneficial for consumers, from the

perspective of the Philadelphia government, providing for methods by which households can

more easily access the untaxed region is contrary to the stated revenue-maximizing intentions

of its SSB taxation.
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