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Abstract
We analyze what ridehail drivers do when searching for paid fares. We use a dataset of 5.3 
million trips in San Francisco and partition each search trip into cruising, repositioning, 
and parking segments. We find that repositioning accounts for nearly two-thirds (63%) of 
the time between trips, with cruising and parking accounting for 23% and 14% respectively 
(these figures exclude short trips). Our regression models suggest that drivers tend to make 
reasonable choices between repositioning and parking, heading to high-demand locations 
based on the time of day. However, we also find evidence of racial disparities, supporting 
previous studies of both taxis and ridehailing that indicate that drivers tend to avoid neigh-
borhoods with high proportions of residents of color.

Keywords Ridehailing · Transportation network companies · Cruising · Parking · Curb 
management

Introduction

App-based ridehailing services, often known as Transportation Network Companies 
(TNCs), have revolutionized the customer experience in urban centers in recent years. TNC 
firms such as Uber and Lyft often provide more abundant, reliable, and cheaper service 
than taxis, their closest competitor (Brown and LaValle 2021), leading to rapid growth in 
ridership. Within San Francisco, for example, ridehailing accounted for 15% of intra-city 
vehicle trips in 2016 (SFCTA 2017).

A large number of studies have analyzed the consequences of ridehailing for travel 
behavior and congestion. The most common finding is that ridehailing induces users to 
make more trips, and that it shifts trips away from private cars, walking, and public transit 
(Rayle et al. 2016; Hampshire et al. 2017; Clewlow and Mishra 2017; Gehrke et al. 2019; 
Babar and Burtch 2020; Bradley et al. 2022). In San Francisco, ridehailing has been the 
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largest contributor to increased congestion in recent years (Erhardt et al. 2019). However, 
ridehailing can improve mobility, particularly in neighborhoods where car ownership is 
low (Brown 2019a) and for older adults (Leistner and Steiner 2017). In some cases, ride-
hailing can also complement transit use by filling gaps in the reach of scheduled bus and 
rail services or providing first mile/last mile access (Hall et  al. 2018; D. A. King et  al. 
2020), although most studies find that ridehailing takes trips away from transit (e.g. Dong 
2020; Jin et al. 2019).

Less attention, however, has been paid to the strategies of ridehailing drivers, and in 
particular what they do between paid rides. Most analyses focus on the paid, with-passen-
ger portion of a ridehail trip, but deadheading—such as driving to the next pick-up location 
and cruising while waiting for a trip request—may have major consequences for the envi-
ronment and congestion (Ward et al. 2021). Driver choices regarding whether and where 
to park while waiting for the next trip also affect curbspace and parking availability. Thus, 
understanding deadheading behavior is important for developing municipal policies for 
regulating and pricing ridehail services, such as congestion surcharges, and for allocating 
and pricing curbspace (Strong 2015; Li et al. 2019; Marsden et al. 2020).

In this paper, we quantify the choices that ridehail drivers make between paid trips. We 
focus on the period of time when the driver is available (the app is turned on, but the driver 
has not yet accepted a trip request), which we call search travel or search time, and is 
sometimes referred to as Period 1 or P1. We do not quantify other types of deadheading, 
which we define as any period when the ridehail vehicle is not occupied by a passenger.

We develop a method to partition search travel into cruising, repositioning, and park-
ing segments, and apply it to a dataset of 5.3 million trips in San Francisco. We find that 
while almost all trips involve repositioning (traveling to another location where demand is 
expected to be higher), a surprising portion (29%) entail at least some cruising. We develop 
a regression model to quantify the factors associated with driver choices, and find that ride-
hail drivers appear to reposition to neighborhoods where ridehail demand is high, but the 
model also suggests that drivers may avoid neighborhoods with high proportions of resi-
dents of color. A key limitation of our analysis is that we have no way to assess a driver’s 
intent or reasoning; we are limited to examining their paths of travel.

The rapid growth of ridehailing mean that our findings are relevant to policymakers 
dealing with present-day transportation challenges. However, our results also provide a 
preview of what might be expected in a future with autonomous vehicles, whose transpor-
tation and environmental consequences may bear many parallels to those of ridehailing.

Driver behavior: comparing taxis and ridehail

Taxi drivers in large cities often cruise along busy streets in search of a street hail, or repo-
sition to major trip generators such as airports and hotels. In New York City, for example, 
cruising and repositioning account for 44% of miles driven by taxicabs, with an average 
of 2.9 miles of deadheading between trips (Abrams et al. 2007, p. 124). Driving around 
rather than waiting at a taxi stand may be rational from the taxi driver’s perspective, as it 
makes the vacant taxicab visible to prospective passengers, but its impacts from a social 
welfare perspective are mixed. On the one hand, a ready supply of available taxis reduces 
wait times for passengers, but cruising taxis are highly visible contributors to congestion. 
Thus, limiting cruising has often been a key goal of taxicab regulators and a justification 
for limits on the number of taxicabs (Shreiber 1975; Yang et al. 2005; Abrams et al. 2007).
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Another long-standing regulatory challenge has been to ensure the availability of taxis 
in low-income neighborhoods and communities of color, which typically experience longer 
wait times. Drivers often decline to accept calls for service to such neighborhoods, and 
also tend to reposition away from them after dropping off a passenger due to perceptions 
of lower demand, fears for their personal safety, and racial profiling (Davis 2003; Ingram 
2003; Brown 2019b). Regulatory responses have included enforcement “stings,” but also 
programs such as New York City’s “green cabs,” which can only pick up passengers out-
side of the high-demand areas of Lower Manhattan and the airports (King and Saldarriaga 
2018).

To what extent do these findings translate from taxis to ridehailing? Both sets of drivers 
should seek to maximize the expected net revenue from their next paid trip, and minimize 
search time and travel. The options open to taxi and ridehail drivers are also similar. They 
can park (or equivalently, wait at a taxi stand), cruise around while remaining in the same 
general neighborhood, or reposition to a different neighborhood where they expect demand 
to be higher. Cruising and repositioning are often conflated in the literature (e.g. Henao and 
Marshall 2019; Nair et al. 2020), but conceptually the two categories of search behavior 
(cruising and repositioning) are distinct.

While the options of taxi and ridehail drivers may be similar, their optimal strategies 
are likely to be considerably different because their costs and sources of information dif-
fer in four main respects. First, while taxi drivers must normally be conspicuous to pas-
sengers hailing a taxi on the street,1 the app-based system used by ridehail firms renders 
such visibility unnecessary. Second, a first-in, first-out rule typically applies at taxi stands 
at hotels, airports, and other major trip generators. In contrast, ridehail drivers are subject 
to the opaque methods that ridehail firms use to match drivers with passengers, and the 
incentives that the firms use to encourage drivers to head to specific locations and to start 
or extend their shifts. Third, while taxi drivers might rely on heuristics or experience to 
identify high-demand locations, ridehail drivers have access to real-time information on 
demand patterns through their smartphone app. Fourth, taxi drivers may have lower costs 
for repositioning if, as in cities such as San Francisco, they have access to bus lanes or 
dedicated taxi stands.

As a result, one would expect ridehail drivers to cruise less frequently than taxi driv-
ers. For a ridehail driver, parking is likely to provide similar prospects to cruising in terms 
of obtaining the next paid ride, without the costs of fuel and vehicle wear and tear. Since 
drivers can easily move if and when an enforcement officer arrives, they have little need 
to pay for parking either. Indeed, many online guides and fora for ridehail drivers (such as 
Reddit’s r/uberdrivers) exhort drivers to save money by parking rather than driving around 
in circles. However, the online fora also provide examples of drivers who are unsure of the 
optimum strategy, or who prefer to cruise. One Reddit user says: “I keep moving…I have 
loops I drive. I would probably park if I wasn’t getting 40 mpg.”2

The relative advantages of repositioning for taxis and ridehailing, in contrast to 
those for cruising, are not intuitively clear, but one might expect shifts in the destina-
tions and times of repositioning. Given the dynamic information available to ridehail 
drivers, they might be expected to reposition to a broader range of destinations, not 

1 This discussion focuses on street hail taxis, rather than telephone dispatch systems which are more similar 
to ridehailing in the incentive structures that they provide to drivers.
2 www. reddit. com/r/ uberd rivers/ comme nts/ jz1eu4/ wanted_ to_ get_ drive rs_ viewp oints_ on_ this_ is_ it/, last 
accessed December 5, 2021.

http://www.reddit.com/r/uberdrivers/comments/jz1eu4/wanted_to_get_drivers_viewpoints_on_this_is_it/
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just the hotels and airports that are obvious sources of demand for taxis (Dempsey 
1996; Schaller 2007).

Little empirical work, however, exists to support or refute these hypotheses. Data 
sharing by ridehail firms such as Uber and Lyft has been extremely limited, meaning 
that most researchers have focused on the paid portion of the trip which is easier to 
observe through field or household surveys (e.g. Grahn et al. 2020; Brown and LaValle 
2021). Deadheading behavior is harder to identify, and often, the distance driven while 
searching for rides is simply assumed (e.g. Tirachini and Gomez-Lobo 2020) or simu-
lated based on assumptions of rational driver behavior (e.g. Komanduri et  al. 2018; 
Gurumurthy et al. 2020). In almost all travel demand models, the vehicle dematerial-
izes after dropping off a passenger, only to reappear on the network at the start of the 
next paid trip.

Among the exceptions, Henao and Marshall (2019) find that deadheading accounts 
for 41% of the miles driven by ridehail drivers, but this estimate is based on data from 
a single driver—the first author. Several studies use a dataset released by RideAustin 
to impute deadheading based on pick-up and drop-off locations. While the actual paths 
taken by drivers are uncertain, the data indicate that 37–45% of total miles driven were 
by deadheading vehicles (Komanduri et  al. 2018; Wenzel et  al. 2019). In California 
as a whole, analysis of data provided by ridehail firms (under a legal requirement) 
indicates that deadheading accounts for 39.5% of miles driven (CARB 2019). In Man-
hattan, a similar analysis puts the proportion at 40% (Schaller 2021). Geographically, 
the broadest estimates are made by Cramer and Krueger (2016) using proprietary data 
provided by Uber; they find that deadheading accounts for 39% of miles by Uber driv-
ers across five major cities. Proprietary data from Uber and Lyft are also used by Mar-
tin et  al. (2021), who find that search travel (a subset of deadheading) accounts for 
an average of 34% of total miles in three regions—San Francisco, Los Angeles, and 
Washington, DC. Finally, a study commissioned by Uber and Lyft puts the proportion 
of deadheading at 38–46% in a set of six metropolitan regions (Fehr and Peers 2019). 
Their breakdown indicates that 28–37% of the distance is driven while waiting for a 
ride request (i.e., search travel), and 9–10% while driving to the pick-up location after 
accepting a request.

These estimates are remarkably consistent. They suggest that deadheading by ride-
hail vehicles is substantial at about 40% of the total distance driven. This consistency 
comes in spite of different methodologies, data sources, and scopes—for example, 
whether they consider travel between a driver’s home and the first activation of the 
ridehail app, or whether they consider cruising or assume shortest-path travel dis-
tances. Surprisingly, estimates of deadheading for ridehail services are not much less 
than those for taxis in the pre-ridehail era, in spite of the information advantages held 
by the former.

Studies of racial equity, meanwhile, suggest that discrimination still exists in the 
ridehail market, although perhaps to a lesser extent than with conventional taxis. At 
the individual level, field audits that requested rides in Boston and Washington, DC 
found that cancellations doubled when using an African American-sounding name 
rather than a white-sounding name (Ge et al. 2020; Mejia and Parker 2021). Studies of 
wait time are mixed: aggregate wait times for ridehailing requests in Austin are longer 
in neighborhoods with a higher proportion of people of color, after controlling for resi-
dential and employment densities and average income (Yang et al. 2021), but a study 
in Seattle found no such effect (Hughes and MacKenzie 2016).
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Research approach

Ridehail data

We used a unique dataset of 5.3 million ridehail trips in San Francisco from November 
12, 2016 through December 21, 2016, compiled by researchers at Northeastern Univer-
sity by querying the Uber and Lyft Application Programming Interfaces (APIs) which give 
access to vehicle locations. The data returned by the servers includes a unique identifier, 
vehicle type, and a vector of timestamped latitude and longitude coordinates that reflects 
each vehicle’s recent path. When a vehicle driver has accepted a ride and is no longer avail-
able, or has ended their shift, the vehicle no longer appears in the information returned by 
the servers. Similarly, when a vehicle driver drops off a passenger and becomes available 
again, or when a driver starts a shift, the vehicle appears in the information from the server. 
An important distinguishing difference between the data revealed by Uber and Lyft is that 
while Uber appears to assign a new unique identifier to every vehicle after it has completed 
a trip, Lyft allows the vehicle identifiers to persist across the entire sampling period.3

Further details of data acquisition, processing, and validation are elaborated in Cooper 
et al. (2018), and a summary is given in the Online Appendix. The dataset has been used in 
several empirical analyses, most notably an assessment of the congestion impacts of ride-
hailing in San Francisco (Erhardt et al. 2019), and a profile of TNC activity in San Fran-
cisco (SFCTA 2017). However, those analyses focus on the occupied (paid) portions of the 
rides, rather than the search portions on which we focus here.

Each trip in the dataset consists of a sequence of points with geographic coordinates and 
a timestamp. On average, the points are 3.0 s apart. We cleaned the dataset to drop points 
with invalid coordinates, restricted the dataset to trips within the city of San Francisco, 
and excluded shared (e.g., Lyft Line) and delivery (e.g., Uber  Eats) trips. Note that the 
dataset only includes points when the ridehail app is turned on and the driver is available 
to accept a ride, which we call search trips (so-called “P1” miles in California regulatory 
parlance). Our data does not capture travel between ride acceptance and passenger pick-up 
(“P2” miles).

We map-matched each trip to the OpenStreetMap road network in order to provide more 
accurate estimates of driving distances that are not affected by irregularities in the GPS 
trace. We used a three-stage process: (1) matching GPS points to OpenStreetMap (OSM) 
links using Mapillary’s publicly available map-matching algorithm,4 (2) dropping links 
where the preceding and succeeding links directly connect, in order to eliminate out-and-
back detours down side streets, and (3) interpolating gaps in the link sequence using the 
turn-restricted shortest path function in the pgRouting software package.

Classification of behavior

We classified each point5 as short, parking, cruising, or repositioning as follows:

3 This discussion is based on Cooper et al. (2018).
4 Code is available at https:// github. com/ caomw/ map_ match ing
5 We did not classify the first point in each GPS trace, because the classification of each point is based on 
the driver’s behavior between that point and the previous point.

https://github.com/caomw/map_matching
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Short points are those on trips where either (1) there are fewer than six GPS points or 
(2) the trip duration is less than two minutes. For these trips, it was not possible to deter-
mine the driver’s intent. Except where indicated, short trips are excluded from the subse-
quent analysis.

Parking points are defined as a cluster of points within any three-minute interval where 
at least 90% of the points are within 7.5 m of each other. After identifying these clusters, 
each point within the cluster was classified as parking, and the parking location was defined 
as the closest point to the centroid of the cluster. To avoid classifying vehicles stuck in 
congested traffic as parked, we created exceptions where time- and location-specific traffic 
speeds (obtained from INRIX) were less than three mph, or where the GPS point was on a 
freeway. In these instances, the parking classification was not applied.

Cruising points are those that involve circling or backtracking. We first identified cruis-
ing at the trip level using the definition in Weinberger et al. (2020)—trips where the actual 
(map-matched) distance is at least 200 m longer than the shortest-path network distance. 
Within each cruising trip, however, the driver may not be cruising the entire time. There-
fore, we identified the cruising portion of each trip as a function of the path of the squared 
displacement—the squared (Euclidean) distance from each point to the origin. This met-
ric is often used in movement ecology studies to distinguish the movements of individual 
animals, such as deer collared with a GPS tracker, and can distinguish between migratory, 
non-migratory, and dispersing behavior (Killeen et al. 2014; Singh et al. 2016).

Specifically, if we plot the squared displacement over time, a positive slope indicates 
that the driver is moving away from the origin. A negative slope shows that the driver is 
returning towards their origin (i.e., the start of the search trip). After smoothing the stand-
ardized slope,6 consecutive points with a slope of +1 form a positive segment, and consec-
utive points with a slope of -1 form a negative segment. We therefore classified a point as 
cruising if the trip involves cruising per the definition above and either (1) the point is on a 
negative segment, or (2) the point is on a positive segment, but its squared displacement is 
offset by a subsequent negative segment. Figure 1 provides an example.

Repositioning points constitute the remainder of the data set. In other words, all other 
points (i.e., those that are not classified as parking, cruising, or short) were classified as 
repositioning.

One key limitation of our analysis, discussed further in the conclusion, is that we are 
unable to link these patterns of behavior to driver reasoning and specific intent. Further 
uncertainty is added by the scraped nature of the data; while the validation discussed in 
the Online Appendix suggests that estimated trip volumes and patterns are consistent 
with independent data sources on ridehail activity, we could not directly verify that our 
data fully reflect search travel. In addition, our classification depends on several arbitrary 
thresholds, in particular the 200 m difference between the actual distance and the shortest 
path network distance, which is set to be longer than the typical 100 to 150 m long San 
Francisco blocks. The sensitivity analysis in the Online Appendix, however, shows only 
modest effects from varying this threshold. Eliminating it altogether increases our estimate 
of distance cruised from 23 to 25% of search travel, while doubling the threshold to 400 m 
reduces cruising to 20%.

6 The smoothing method considers five points before and after the current point. If these points have the 
same normalized slope of square displacement, and the current point is also within 30 s of these points, we 
assign the same value of the normalized slope of these 10 points to the current point.
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Other data sources

We attached the covariates shown in Table 1 to each point. For most variables, we used 
data at the level of the Transportation Analysis Zone (TAZ), the geographical unit used in 
analysis by the San Francisco County Transportation Authority. We produced a weighted 
average for each point by aggregating the values for the TAZ containing the point and 
neighboring TAZs where the neighboring values were weighted using a distance decay 
function. This smoothing algorithm avoids abrupt changes in the values of the variables 
at TAZ boundaries, and also reflects how drivers are likely to perceive gradual changes in 
neighborhood demographics and parking supply. There are 981 TAZs in San Francisco, 
with a mean surface area of 0.12  km2. We merged the TAZ level covariates to the point 
level data, and added lagged dependent variables (indicating prior driver behavior) and 
time of day and day of week variables for each point. For Lyft trips, we also calculated 
driver experience, measured as the number of trips by that particular driver observed in the 
dataset. (The Uber API does not provide a persistent driver identifier.)

Regression analysis

We used multinomial logistic regression to estimate the effects of covariates in Table 1 and 
interaction terms on the driver’s decisions to reposition, cruise, or park. We use these vari-
ables because both basic theory and previous studies (e.g. Ghaffar et al. 2020; Grahn et al. 
2020; Hughes and MacKenzie 2016) suggest their importance for ridehail demand and/or 
ridehail availability, in turn implying that they may affect a driver’s decision to reposition, 
cruise, or park. We include several measures of parking supply due to their effect on both 
ridehail demand and a driver’s ability to park.

To avoid serial correlation of the error terms, we downsampled the data to 1-min resolu-
tion. The downsampled dataset is about 5% of the full dataset. For computational reasons, 

Fig. 1  Example of cruising and repositioning segments. The driver’s route is shown in the left panel, with 
the right panel showing how squared displacement changes over the route. The first segment (marked in 
black) is classified as repositioning because the squared displacement keeps increasing, indicating move-
ment away from the origin. The subsequent segments are classified as cruising because backtracking is 
involved. Each of the three pairs of cruising segments has a positive segment which is offset by a subse-
quent negative segment, as shown by the three pairs of segments labeled in the figure. For the pink cruising 
segment, the positive segment (1+) is offset by the negative segment (1−). Similarly, for the blue segment, 
(2+) is offset by (2−), and for the orange segment (3+) is offset by (3−)
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our regressions use a 40% subsample of this downsampled dataset. Because the distribu-
tions of most non-ratio numeric covariates are right-skewed, we applied a log transforma-
tion on the non-ratio covariates. This can further avoid serial correlation and strong effects 
from extreme values. Since the magnitudes of covariates have a large variation, we also 
normalized all numeric covariates by subtracting the mean and then dividing the value by 
the standard deviation of each covariate.

We also tested the robustness of our results to key modeling assumptions in two ways. 
First, we used a nested logistic regression to model a process where drivers first choose 
between repositioning and remaining in the same area, and if the latter, choosing between 
cruising and parking. The hypothesis is that with low demand, drivers would prefer to 
reposition to another place, while with high demand the driver would choose between 
parking and cruising. Second, we aggregated the point level data to the TAZ level with dif-
ferent times of day and days of week, and then ran a fractional multinomial logistic regres-
sion of the ratio of points for each behavior on the covariates. Fractional logistic models 
are designed for aggregate data where the dependent variable is a proportion, rather than a 
binary or categorical outcome.

Results

Classification of driver behavior

We begin by presenting the broad patterns of driver behavior in terms of the choices 
between parking, cruising, and repositioning. Table 2 and Fig. 2 show the percentage of 
time and distance driven in each of the categories. Repositioning accounts for the majority 
of search time and distance traveled, and almost all trips involve at least a small amount 
of repositioning. Perhaps surprisingly given the fuel and wear-and-tear costs of cruising, 
more time is spent cruising than parking, and the average search trip cruises for nearly half 
a kilometer.

As shown in Table 2, the average search distance traveled is 0.98 km (0.6 miles). The 
average paid ride is 4.2 km (2.6 miles), based on a previous analysis of the same dataset 
(SFCTA 2017). Therefore, the search portion accounts for 19% of ridehail vehicle travel. 

Table 2  Classification of driver search behavior

*Trips may include multiple behaviors. This column counts trips that have at least one point in a given 
behavior

% of trips Mean time per trip Mean distance per trip

Excluding short trips
Parking 10%* 0.9 min (14%) N/A
Cruising 29%* 1.5 min (23%) 0.35 km (22%)
Repositioning 86%* 4.1 min (63%) 1.22 km (78%)
All trips 100% 6.6 min 1.57 km
Including short trips
Short 44% 0.9 min 0.22 km
Not short 56% 6.6 min 1.57 km
All trips 100% 4.1 min 0.98 km
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Note that this estimate excludes travel before the driver activates the app, and between 
accepting a ride request and picking up the passenger.

Drivers for the two ridehail firms operating in San Francisco—Uber and Lyft—spend 
almost identical proportions of their time across the three categories of parking, cruising, 
and repositioning. However, search trips are longer for Lyft drivers (5.5 min and 1.35 km, 
compared to 3.6 min and 0.86 km for Uber drivers). Lyft drivers also have a smaller pro-
portion of short search trips (36% compared to 46% for Uber). Since Uber accounts for 
three-quarters of the trips in our sample, it is possible that economies of scale lead to their 
drivers obtaining a paid fare more quickly, reducing the amount of search travel required.

There is surprisingly little geographic variation in the three behaviors across the city 
(Fig. 3). Drivers finding themselves in the ring of dense residential neighborhoods around 
the downtown core are more inclined to park rather than reposition or cruise, but the effects 
are not strong. Northeastern San Francisco—the densest part of the city—accounts for the 
largest share of search time (Fig. 3) and trip starts and ends (Fig. 4). There is a noticeable 
concentration of trip starts on freeway corridors, perhaps reflecting drivers turning on their 
app as they enter the city. Otherwise, there is no obvious geographic pattern in the number 
of search trip ends minus the number of trip starts (net trip flows), with Fig. 4 showing a 
patchwork quilt across the city. The exception is along freeways, where for obvious reasons 
there is a net movement away from these facilities.

Parking

We now consider the characteristics of parking events. The map in Fig. 5 (left panel) 
shows a concentration in the inner ring of dense residential neighborhoods. Within 
this general area, however, drivers find a range of parking options. Off-street parking is 
most visibly concentrated in grocery store surface parking lots, gas stations, and similar 
locations, where drivers may be able to linger for a short time before being moved on 
by security staff or parking attendants. On-street parking is spread more diffusely, but 
concentrations are evident along neighborhood commercial corridors. In some cases, 
ridehail drivers park on blocks where driveways, fire hydrants, loading zones, or other 
restrictions preclude parking for regular vehicles, but mean that curb space is readily 

Fig. 2  Driver behavior when searching for rides. Short trips (defined as fewer than six GPS points or last-
ing less than two minutes) are not further categorized, as we have insufficient data to classify the drivers’ 
behaviour
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C Repositioning D Total time

Fig. 3  Geographic patterns in parking, cruising, parking, and repositioning. A, B and C shows the fraction 
of time within each TAZ spent parking, cruising, and repositioning respectively. Each category spans a ten 
percentage point range (e.g. 40–50% below average, 30–40% below, etc.) Most of the color hues are in the 
center of the distribution, especially for cruising, indicating that behavior is relatively uniform across the 
city. D shows the distribution of search time across the city, normalized to land area and expressed as thou-
sand hours per square kilometer

A Starts B Ends C Net Movement
Starts and Ends
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Fig. 4  Net search flows. A, B and C show the number of search trip starts and trip ends in each TAZ, nor-
malized to area and express as deciles. C shows the net movement, with red-shaded TAZs having more trip 
starts than ends (a net movement away) and blue-shaded TAZs having more trip ends than trip starts. (Color 
figure online)
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usable by ridehail drivers who can quickly move if needed. These concentrations are 
most visible in an interactive online version of the parking map (right panel of Fig. 5), 
available at https:// tncpa rking. sfcta. org.

Overall, almost all the time spent parking (93% of the total duration) occurs on-street. 
Non-metered on-street spaces (both legal and illegal) account for the majority of ridehail 
parking, with the largest share (31%) occurring on residential streets (Table 3 and Fig. 6). 
Parking at meters accounts for just over one-third of the aggregate time spent parked, but 
given that most drivers do not park at all while searching for a ride, this amounts to only 
12 s in the average trip, of which 5 s are during metered hours. Thus, on a per-trip basis, 

Fig. 5  Concentrations of parking locations. Each location is weighted by the length of time parked. The 
right panel shows a screenshot from the interactive online map available at https:// tncpa rking. sfcta. org. Blue 
symbols denote on-street parking, and red symbols denote off-street parking, with a gas station and surface 
lots at two grocery stores being readily apparent. (Color figure online)

Table 3  Time spent parked 
(hours per week)

*Typically Mon-Sat 9am-6 pm. A total of 37% of trips in our dataset 
take place during metered hours
Includes trips with no parking events. Time spent parked is calculated 
on a per-trip basis, and scaled up to a weekly aggregate based on 1.2 
million ridehail trips per week in late 2016 (SFCTA 2017)
Parking meter locations are defined as those within 10 m of a parking 
meter. We used OpenStreetMap (OSM) to identify residential streets 
and off-street parking locations (signified by a “service” classification 
in OSM, which typically consists of access roads or parking aisles in 
surface lots). We were unable to identify parking garages

Metered hours* Non-metered hours

Parking meter 1562 (37%) 2281 (37%)
On-street: residential 1303 (31%) 1918 (31%)
On-street: other 992 (24%) 1557 (25%)
Off-street 353 (8%) 368 (6%)
Total 4209 6124

https://tncparking.sfcta.org
https://tncparking.sfcta.org
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the impact on parking availability is minimal, as is the revenue loss to the City (less than 
half a cent). However, given the 1.2 million ridehail trips per week in late 2016 (SFCTA 
2017), aggregate meter revenue amounts to more than $200,000 per year, based on the 
typical meter rate of $2.50 per hour. This calculation also excludes time spent while load-
ing or unloading passengers at meters, and stays of less than three minutes (the minimum 
length of a parking event in our analysis).

Determinants of driver behavior

We now consider the associations between neighborhood characteristics and a driver’s 
decision to park, cruise, or reposition, using the logistic regression models discussed in the 
Research Approach section. Two coefficients are attached to each variable, indicating the 
associated change in the probability of repositioning and cruising respectively, compared 
to a baseline behavior of parking. All coefficients are shown in Table 4 and, with the confi-
dence intervals graphically represented, in Fig. 7.

The variables are standardized, and so each coefficient represents the effect of a one-
standard deviation change. A positive sign indicates that that behavior is more likely com-
pared to parking, and a negative sign that it is less likely. For example, drivers are less 
likely to reposition away from TAZs with a high proportion of White residents (coefficient 
of – 0.059), and slightly less likely to cruise (– 0.005), compared to parking.

Given the large sample size, most of the coefficients are statistically significant at con-
ventional levels. However, they are hard to interpret given that there are three separate 
behaviors (parking, cruising, and repositioning); and interaction terms that allow our den-
sity coefficients to vary by time of day and day of week. Therefore, Fig. 8 plots the effects 
of each variable in terms of the probabilities of each behavior. Several findings emerge 
from these analyses.

Ridehail drivers tend to reposition away from neighborhoods with more parking, espe-
cially on-street parking as shown in Fig. 8a. This perhaps indicates that individuals might 
choose to drive their own cars to neighborhoods with plentiful parking, meaning less 
demand for ridehail services in these areas. This demand-side effect appears to outweigh 
the advantage to ridehail drivers of readily available parking.

Drivers also tend to reposition away from neighborhoods with a higher proportion 
of residents of color, and do the opposite in neighborhoods with more White residents 

Fig. 6  Distribution of time spent parked
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Table 4  Regression coefficients

Covariate Reposition coefficient Cruise coefficient

(Intercept) 3.822*** 1.736***
Demographic and neighborhood variables
Fraction age 62 + – 0.048*** – 0.037***
HH density 0.031*** 0.022***
Fraction of working age – 0.013*** – 0.051***
Employment density – 0.184*** – 0.049***
Service and visitor employment density 0.044*** – 0.007
Fraction high income HHs – 0.110*** – 0.086***
On-street parking capacity 0.018*** – 0.012***
Off-street parking capacity (public) 0.011*** – 0.018***
Off-street parking capacity (residential) 0.013** 0.014**
Fraction Latinx residents 0.037*** 0.026***
Fraction African-American residents – 0.009*** – 0.021***
Fraction White residents – 0.059*** – 0.005
Driver experience (Lyft subsample only)
Driver experience 0.035*** 0.008**
Time and day of week variables
Time period: early AM – 0.303*** – 0.097***
Time period: AM – 0.086*** – 0.119***
Time period: midday – 0.092*** – 0.125***
Time period: PM 0.061*** – 0.040***
Time period: night 0.003 0.133***
Friday 0.063*** – 0.023***
Mon-Thurs – 0.065*** – 0.057***
Lagged dependent variables
Lag cruise – 1.378*** 1.769***
Lag park – 6.892*** – 5.064***
Interaction: with HH density
Weekday 0.035*** 0.003
Friday 0.029*** 0.008
Time period: early AM – 0.063*** – 0.009
Time period: AM – 0.158*** – 0.113***
Time period: midday – 0.018*** – 0.013*
Time period: PM 0.029*** 0.020**
Time period: night – 0.075*** – 0.029**
Interaction: with employment density
Weekday 0.067*** 0.071***
Friday 0.054*** 0.057***
Time period: early AM 0.358*** 0.257***
Time period: AM 0.524*** 0.392***
Time period: midday 0.287*** 0.183***
Time period: PM 0.073*** 0.027*
Time period: night – 0.125*** – 0.091***
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Table 4  (continued)

Covariate Reposition coefficient Cruise coefficient

Interaction: with service/visitor employment density
Weekday – 0.046*** – 0.038***
Friday – 0.028* – 0.036**
Time period: early AM – 0.277*** – 0.154***
Time period: AM – 0.237*** – 0.151***
Time period: midday – 0.143*** – 0.038***
Time period: PM – 0.018 0.044***
Time period: night 0.068*** 0.040*

***p < 0.01; **p < 0.05; *p < 0.1
Residual Deviance: 6957399 on 15002084 degrees of freedom
Log-likelihood: − 3478700 on 15002084 degrees of freedom
A positive coefficient for repositioning indicates that the driver is more likely to reposition away from a 
TAZ than to park. Both cruising and repositioning coefficients are relative to the baseline of parking
Baseline (omitted) categories are the fraction of Asian residents, weekend days, and the evening time period
The estimates are from our preferred model (the point-level multinomial logistic regression at one-minute 
resolution). All coefficients are estimated from the full dataset, except that for driver experience, which is 
estimated from the Lyft subsample. For computational reasons, we use a random 40% subsample of the full 
dataset

0.8 1.0 1.2 1.4

Cruising vs. Parking

service/visitor employment density*night
service/visitor employment density*PM

service/visitor employment density*midday
service/visitor employment density*AM

service/visitor employment density*early AM
service/visitor employment density*Friday

service/visitor employment density*Weekday
employment density*night
employment density*PM

employment density*midday
employment density*AM

employment density*early AM
employment density*Friday

employment density*Weekday
HH density*night
HH density*PM

HH density*midday
HH density*AM

HH density*early AM
HH density*Friday

HH density*Weekday
Mon−Thurs

Friday
Time period: night
Time period: PM

Time period: midday
Time period: AM

Time period: early AM
Fraction White residents

Fraction African American residents
Fraction Latinx residents

Off street parking capacity (residential)
Off street parking capacity (public)

On street parking capacity
Fraction high income HHs

Service and visitor employment density
Employment density

Fraction of working age
HH density

Fraction age 62+

0.75 1.00 1.25 1.50 1.75

Repositioning vs. Parking

Fig. 7  Confidence intervals for regression coefficients. Note that the chart omits the lag behavior coeffi-
cients, which are much larger than the other covariates
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Fig. 8  Probability of specific behaviors given change in key variables. The plots show the probability of 
repositioning, cruising, and parking against changes in several key independent variables, which are nor-
malized so that the x-axis indicates standard deviations from the mean. All other variables are held at their 
means. For example, the upper-left plot shows that repositioning is the most common behavior, but even 
more so in high-residential density neighborhoods. As the prevalence of repositioning increases with den-
sity, that of cruising declines, while parking remains at similar levels
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(Fig. 8c–e).7 These findings provide suggestive evidence that drivers avoid neighborhoods 
with more people of color, supporting the findings of the earlier research on both ridehail 
and taxi drivers discussed above.

As seen in Fig. 8g–i, the effects of density are perhaps initially counterintuitive. Drivers 
are more likely to reposition away from neighborhoods with higher residential or service 
employment density, even though these types of neighborhoods might be expected to gen-
erate more ridehail trips, whether due to the presence of bar and restaurant customers or 
the lower car ownership rates seen in dense residential neighborhoods. In contrast, drivers 
are less likely to reposition away from neighborhoods with a higher density of non-service 
employment. However, a more intuitive picture emerges when we consider how the effects 
of density change over the course of the day and week, through the interaction terms in 
the regression model. As illustrated in Fig. 9, while there is little change in the effect of 
density throughout the week, there are strong time-of-day effects. Drivers are more likely 
to reposition away from dense residential neighborhoods in the afternoon and evening, and 
less likely to do so in the morning and at night, presumably when more people are at home 
to request ridehail trips. The opposite patterns are seen with employment density (but not 
service and visitor employment density), with drivers more likely to reposition away from 
job-rich areas in the mornings, presumably when potential customers are traveling from 
home to work. In addition to perceptions of demand, lack of parking and traffic congestion 
may also be factors that affect repositioning decisions.

Figure 8f also plots the effects of driver experience (estimated using the Lyft subsample 
only). Full-time drivers are less likely to cruise and more likely to reposition, suggesting 
that they are more aware of areas of high demand. A Lyft driver that handles one trip per 
day cruises for 27% of the time between paid trips, while one who handles 10 trips per day 
cruises 23% of the time.

Conclusions

The choices made by ridehail drivers about where to go between trips determine the overall 
impacts of ridehailing on vehicle travel and associated congestion and pollution, as well as 
on parking availability. At the level of the fleet as a whole, there is a tradeoff between the 
two—more time spent parked means less vehicle travel, but potentially greater impacts on 
the availability of space for parking, drop-offs and deliveries. More repositioning, on the 
other hand, decreases the pressure on curb space and off-street parking and allows the fleet 
to operate more intensively, but at the cost of more vehicle travel, congestion, and pollu-
tion. A certain amount of repositioning creates system-level efficiencies and is inherent 
in the business model of ridehailing (and in effect differentiates ridehailing from private 
chauffeur-driven cars), given that demand is not perfect symmetrical throughout the day. 
But a smaller fleet that parks less implies more repositioning.

7 The baseline category in the regressions is the fraction of Asian residents. The negative coefficient for 
the fraction of White residents shows that drivers are less likely to reposition away from a TAZ if it has a 
higher fraction of White residents compared to Asian residents. While the coefficient for Black residents is 
also negative, it is much smaller than that for White residents. The positive coefficient for Latinx residents 
means that repositioning away is even more likely, again compared to the baseline of Asian residents.
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Fig. 9  Effect of density on driver behavior by day of week and time of day. The plots show how the changes in 
probability (measured by odds ratios) for residential, employment, and service/visitor density vary with the time of 
day and day of week. Positive changes mean that the probability of cruising (red bars) or repositioning (blue bars) 
increases more than the baseline probability of parking, and vice versa. For example, the impact of household den-
sity is similar on weekdays and weekend days (top left plot). But drivers are more likely to cruise in and reposition 
away from higher-density neighborhoods in the afternoon and evening, and less likely at night and in the mornings 
(top right plot). (Color figure online)
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Such tradeoffs between parking demand and vehicle travel would also apply to future 
autonomous vehicles, as demonstrated by Kondor et al. (2020) in the Singapore context. 
For a given number of trips, the more that the deployment of autonomous vehicles lowers 
parking demand, the greater the distance driven by deadheading vehicles. In this paper, we 
provide the first analysis of how ridehail drivers make these tradeoffs using a dataset of 5.3 
million search trips in San Francisco.

We find that the average search segment between paid trips lasts 4.1 min, during which 
time drivers travel 1.0 km (0.6 miles). The average paid trip is 4.2 km (2.6 miles), meaning 
that searching for rides accounts for 19% of ridehail vehicle travel. Our estimated propor-
tion of 19% is lower than the roughly 40% typically cited in the literature, but our data 
excludes the portion of the trip between accepting a ride request and picking up the passen-
ger (i.e., “P2”). High demand and short distances within San Francisco may also account 
for our lower estimate, as previous studies have shown that deadheading tends to be lower 
in urban areas compared to suburbs and rural areas (e.g. Nair et al. 2020).

We classify points on each search trip as cruising, repositioning, or parking. Both repo-
sitioning and parking can represent rational behavior on the part of drivers seeking to mini-
mize downtime and maximize revenue from their next trip. Indeed, our regression mod-
els suggest that drivers tend to make apparently reasonable choices between repositioning 
and parking, heading to high-demand locations based on the time of day. For example, 
they reposition away from dense residential neighborhoods in the afternoon and evening 
when demand is likely to be higher in other areas, but stay within those neighborhoods in 
the morning and at night. However, we also find suggestive evidence of racial disparities, 
supporting previous studies of both taxis and ridehailing (Ingram 2003; Ge et  al. 2020) 
that indicate that drivers tend to avoid neighborhoods with high proportions of people of 
color. These disparities are relatively small and are not necessarily due to conscious or 
unconscious bias on the part of drivers. They may at least partly reflect the impact of other 
neighborhood characteristics that correlate with race, such as income and the presence of 
demand generators such as restaurants in predominantly White neighborhoods. Regardless 
of driver intent, though, the repositioning patterns that we identify are likely to lead to 
poorer availability and longer wait times in neighborhoods of color.

While cruising by traditional taxicabs makes them visible to potential passengers, 
it would seem to offer little advantage to a ridehail driver who can simply park instead. 
Therefore, perhaps our most surprising finding is that cruising accounts for 23% of search 
time and 22% of the search distance driven by ridehail drivers (excluding short trips). 
Cruising in lieu of parking means that the impacts on curb occupancy and meter revenue 
loss are smaller than might be expected, but those on congestion, pollution, and the other 
consequences of vehicle travel are greater.

Why do ridehail drivers cruise? This question is beyond our ability to answer with 
the present dataset, and future qualitative research might usefully probe driver decision-
making processes. In some cases, a lack of available curb space or high levels of parking 
enforcement may be the cause. Possibly, drivers believe that they can game the trip alloca-
tion system by driving around to be closer to potential passengers, and thus being allocated 
a trip. Alternatively, psychological factors may be at work. Full-time drivers cruise less, 
suggesting that drivers learn over time that cruising is a suboptimal strategy.

More generally, our analysis is limited by the lack of information on a driver’s intent. 
The nature of our data mean that we are limited to analyzing the paths of travel; we 
do not know why drivers park, cruise, or reposition, or to what extent their chosen 
strategies are successful in increasing their hourly earnings. Our results highlight the 
opportunity for future research, possibly qualitative, to investigate further the strategies, 
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heuristics, and reasoning that drivers employ in search of their next paid trip, and the 
roles of factors such as parking availability, parking enforcement, and the real-time 
driver information provided by ridehail firms through their apps.

A clearer understanding of motivations through further research would also inform 
policy responses. In broad terms, however, we suggest that cruising might partly be 
reduced through tweaks to driver-facing ridehail apps, prompting drivers to find a safe 
place to park while waiting for their next ride. It may also be possible for cities and 
other government agencies to regulate deadhead time. Cities, meanwhile, might con-
sider how ridehailing can take advantage of curbspace in front of residential driveways 
and other curb cuts that are used only occasionally. Some ridehail drivers already park 
in front of driveways on an informal basis, as they can quickly move if a resident needs 
to access their garage.

Ultimately, however, revising fee structures to be distance- and time-based, regard-
less of whether a passenger is in the vehicle, may be the most efficient way for cities to 
address the external costs of ridehailing including congestion and pollution. Ridehail 
firms would pay these fees, and determine whether and how to pass them on to passen-
gers. In addition, place-based time charges might be used as a proxy for parking fees, 
and to encourage drivers to park in locations where they do not compete with other 
curbspace users. While such fees would initially disadvantage ridehail firms, drivers, 
and passengers compared to private car trips, they could serve as a testbed for a broader 
congestion pricing scheme. Moreover, many cities already levy ridehail fees or taxes 
on a per-trip or percentage basis, but these charges only apply to the paid, with-pas-
senger portion of a trip. To more comprehensively address pollution, congestion, and 
other externalities caused by ridehailing, policy makers need to extend these policies to 
encompass what drivers do between trips.
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