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ABSTRACT OF THE DISSERTATION 

 

Maxent Harmonic Grammars and Phonetic Duration 

 

by 

 

Lee Michael Lefkowitz 

Doctor of Philosophy in Linguistics 

University of California, Los Angeles, 2017 

Professor Bruce P. Hayes, Chair 

 

Research in phonetics has established the grammatical status of gradient phonetic patterns in 

language, suggesting that there is a component of the grammar that governs systematic 

relationships between discrete phonological representations and gradiently continuous acoustic or 

articulatory phonetic representations. This dissertation joins several recent works in proposing that 

these relationships can be represented with constraint grammars, but moves from the harmonic 

grammars used in previous work to maxent grammars, already in common use by phonologists, 

describing how these can be adapted to the phonetic realm. Unlike existing models, maxent 

grammars allow phonetic variation to be modeled explicitly, outputting probability distributions 

over the realizations of phonetic variables instead of single values. The maxent formalism is shown 

to make a number of interesting empirical predictions regarding phonetic variation, defining a 

restrictive typology of possible phonetic patterns. 
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As a substantial case study, a grammar of this sort is developed for phonetic duration. Duration 

is known to be subject to a very large variety of (often conflicting) phonetic and phonological 

effects, and so this empirical domain is a rich testbed for theoretical research. A review of the 

empirical literature on duration is conducted, and a surprising generalization with regards to how 

effects on duration interact is discovered.  

A production experiment on front vowel duration in English is conducted in order to shed 

light on how duration is computed by the grammar when multiple duration-related process are at 

play. The results replicate some of the interaction effects found by prior authors, and are 

remarkably consistent with the empirical predictions of the maxent framework in a number of 

respects. 

Finally, a maxent learning algorithm for estimating the weights and the targets of phonetic 

constraints is described and implemented in Python, and this algorithm is trained, using several 

different constraint sets, on the data from the production experiment, yielding grammar fragments 

for English front vowel duration. 

These endeavors serve, on the empirical side, as a new investigation of the how factors 

affecting duration interact and how they should be modeled, and on the theoretical side as an 

exploration of how maxent grammars behave when they are used to model continuous phonetic 

variables, uncovering a powerful new tool for generative phonetics. 
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1. Introduction 

1.1. The case for phonetic grammars 

This dissertation uses phonetic duration as a case study in developing a particular type of 

formalism for the portion of the grammar which governs speakers’ knowledge of phonetics, as 

distinct from phonology. The need for such a formalism is not historically uncontroversial. In their 

seminal work, Chomsky and Halle (1968) justify the use of phonetic symbols to the exclusion of 

phonetic measurements in their grammars by positing that the details of phonetic implementation 

are subsumed by general physiological facts about motor planning, are not language specific, and 

are therefore extra-grammatical: 

Even if the phonetic transcription were as faithful a record of speech as one could desire, there 

is still some question whether such a record would be of much interest to linguists, who are 

primarily concerned with the structure of language rather than the acoustics and physiology 

of speech. It is because of this that many structural linguists have felt that phonetics has very 

little to offer them and have therefore assigned to it a secondary, peripheral role. (p. 293)  

...in [our] view, phonetics is concerned with grammatically determined aspects of the 

signal....thus it is no longer a problem that the transcription is composed of discrete symbols 

whereas the signal is quasi-continuous, or that the transcription provides information only 

about some properties of the signal and not about others. (p. 294) 

Even if we concede that linguists should only be concerned with grammatically determined 

aspects of the signal, Chomsky and Halle make the crucial assumption that grammars only ever 

need manipulate discrete symbols, and that, in the process of producing from these symbols the 
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quasi-continuous signal that is speech, only general, physiological, extra-grammatical processes 

are involved. 

As others have argued (Keating, 1985; Flemming, 2001), these assumptions turned out to be 

unfounded: non-categorical patterns of phonetic targets and phonetic variation, such as the degree 

and timing of final devoicing (Keating, 1985), differences between the inherent duration of vowels 

(Lehiste, 1970; Westbury and Keating, 1980; Maddieson, 2004), pre-voiced-obstruent vowel 

lengthening (Keating, 1979; Klatt, 1973; Lehiste, 1970), and the degree of overlap or articulation 

between adjacent consonants (Zsiga, 2000), to name just a few,2 occur to different degrees in 

different languages. Because languages’ sound systems can differ by phonetic degrees, and not 

just categorically, some continuous phonetic parameters must be language-specific, and therefore 

learned. Unless these patterns reside solely in the lexicon, they must be governed by some part of 

the grammar. 

Exactly how this phonetic component of the grammar should be studied or represented is an 

as yet unanswered (and, too often, unasked) question. A few explicit proposals do exist: in the 

domain of intonation and phrase-level prosody, Pierrehumbert (1980; 1981) and Beckman and 

Pierrehumbert (1986) use phonetic rules to transform ToBI-style prosodic transcriptions into a 

discrete number of real-number value articulatory targets, which are then connected by an 

interpolation mechanism, and may be under- or overshot. Keating (1990a) proposes a more flexible 

model in which, in any particular articulatory dimension (e.g. velum height), sounds or phonetic 

categories have grammatically determined ranges, or “windows”, rather than targets, within which 

                                                 

2 It is interesting that these examples, some of the most clear-cut arguments for language-specific phonetics, 

are all related to duration and timing in one way or another. 
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variation is permitted, and this approach is adopted by later authors in work on segmental 

alignment (Byrd, 1996b; Zsiga, 2000). Alternatively, the approach in the Articulatory Phonology 

framework (Browman & Goldstein, 1992) is to do away with much of the phonological component 

as traditionally imagined, replacing phonological features with articulatory gestures. Both phonetic 

and phonological processes in this model apply to temporally extended muscular events, which 

have continuous representations from the outset. Regardless, a holistic, formal, predictive, and 

explanatorily adequate account of how phonetic targets are mathematically determined by the 

grammar is needed. 

In this dissertation, I will investigate the line of reasoning that maximum entropy harmonic 

constraint grammars, already in use by phonologists, are suitable for modeling phonetic 

knowledge and phonetic variation. 

1.2. Duration as a testbed 

Phonetic duration, defined as the size in the time dimension of individual speech events (be 

they segments, gestures, or larger prosodic constituents), is a fertile testbed for research on the 

nature of phonetic grammars for several reasons. First, it is comparatively easy to measure: all 

segments and larger prosodic constituents have durations, and some segment boundaries are 

reliably observable from acoustic data alone. Second, duration uncontroversially exists in both the 

articulatory and the acoustic domain, unlike other acoustic or articulatory phonetic dimensions. 

This fact allows me to remain agnostic on the highly controversial question of whether production 

grammars involve phonetic representations that are fundamentally articulatory or acoustic. In other 

words: time is time. 
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Last, and perhaps most importantly, many phonological factors are known to affect duration 

(such as segmental context, accentuation, etc.), and the effects of each of the factors individually 

(in English and few other languages) are already well-documented (see Chapter 2 of this 

dissertation for an overview). However, the way in which these factors interact is not well 

understood, and capturing any such interactions is exactly the job of a phonetic grammar. In this 

dissertation, the eventual durations of segments or prosodic constituency subject to multiple, 

sometimes opposed, duration-related effects will be modeled as the result of constraint interaction. 

1.3. Roadmap of the dissertation 

Chapter 2 defines phonetic duration, and gives a literature review of the many segmental, 

prosodic, intonational, and extra-grammatical factors that are already known to influence duration, 

and also reviews a few holistic mathematical models of duration that have been used by speech 

synthesis researchers. A surprising generalization regarding how various factors can be seen to 

interact in determining duration is found. 

Chapter 3 reviews the small literature on phonetic constraints and phonetic constraint 

grammars, providing a typology of the possible approaches to adapting phonological constraint 

grammars to the domain of phonetics.  

Chapter 4 explores how maxent grammars could be used to model the realization of 

continuous phonetic variables like duration, discusses potential constraints, violation functions, 

spaces of candidates, and evaluation functions that these grammars might employ, demonstrates 

using toy examples how such a grammar would work in practice, and argues that the proposed 

framework and constraints in fact make a number of interesting and testable empirical predictions 

regarding the behavior of the phonetic variables they govern. 
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Chapter 5 presents the results of a production experiment that investigates the nature of the 

interaction between various phonological factors known to affect duration. The experiment 

investigates the duration of English front vowels in monosyllables with varying segmental, 

prosodic, and intonational contexts. The experimental results are shown to confirm the 

generalization from Chapter 2, and, encouragingly, to be consistent with several theoretical 

predictions from Chapter 3. The results are also used as training data for a maxent learner 

developed in Chapter 6. 

Chapter 6 adapts maxent learning algorithms of the sort already used by phonologists to the 

phonetic domain, discussing certain theoretical and implementational challenges that present 

themselves, and applies this adapted learning algorithm to the experimental data from Chapter 5. 

Investigation of learned grammar fragments reveals that choices as to which model parameters are 

set in advance, and especially which constraints and constraint families are used, affect the ability 

of the resulting grammars to successfully model the data. Grammars consisting of constraints 

which involve phonetic targets for duration are found to fit the data well, so long as the learner is 

allowed to manipulate these targets. However the target values it learns are often counterintuitive, 

and shed new light on how phonetic constraints and constraint parameters should be interpreted. 

Chapter 7 summarizes the main findings of the dissertation, and suggests directions for future 

research. 
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2. Duration as a phonetic variable 

2.1. Duration defined 

Duration as defined here refers to the size in the time dimension of speech events. In the 

empirical work that is to follow, I will choose to focus on events that correspond to segments, but 

focus only on segments that are, in the right context, well-defined acoustically—in other words, 

speech segments that are internally homogeneous in some way and have relatively clear acoustic 

boundaries that separate them from the immediately preceding and following material. 

That the duration in time of these sorts of acoustic events in particular is in fact relevant for 

speakers and listeners is intuitive. Sounds are considered by most to be the starting point to 

perception and recognition, and since we presumably “speak in order to be heard, and need to be 

heard in order to be understood” (Jakobson & Waugh, 1979), it would be advantageous for 

speakers to have a fairly good idea of what noises they are trying to make. Explicit arguments for 

the centrality of acoustic representations to both perception and production are not hard to find 

(e.g. Keating, 1990b; Boersma, 1998), and speakers can even make drastic, ad-hoc adjustments to 

their articulatory strategies to meet acoustic / auditory goals when the articulators are physically 

impeded (Mayer et al., 2009). 

Nevertheless, this is a matter of some contention. Linguists who take the basic units of speech 

to be articulatory gestures, rather than featurally defined phones, consider the relative timing of 

individual gestures and the amount of overlap in time of such gestures to be central, and the 

particulars of the acoustic correlates of these gestures to be largely irrelevant for production, and 

important in perception only in so far as they aid in the recovery of articulatory gestures (Browman 

& Goldstein, 1992; Gafos, 2002). A few espouse an “ecological” or “direct realist” approach to 
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perception (Best, 1995), taking a more extreme view: that acoustic information is never 

grammatically represented and is not a part of language cognition at all, but that listeners instead 

have direct access to the articulatory events themselves.  

I will not weigh in on this ongoing debate in this dissertation. To those in the articulatory 

camp who see the decision to measure acoustic events as a fatal flaw, dooming my empirical work 

and subsequent model-fitting to failure and uninterpretability, I justify my decision as follows: in 

some cases, articulatory events and acoustic events are fairly well aligned (for example, stop 

closures and releases), allowing the times of acoustic measurements to serve as accurate surrogates 

for the times of certain corresponding articulatory events. Of course, whether articulatory events 

such as points of contact or release for stops are the “right” events to be studying is itself a point 

of contention, in part due to issues like articulatory under- or overshoot. Furthermore, the duration 

of an articulatory event thus defined is not necessarily a primitive in the grammar: for example, a 

jaw-lowering gesture will be longer if it is performed more slowly, but will also be longer if the 

target is a lower jaw height, or if it is performed with less gestural stiffness, and in fact these 

articulatory parameters are known to be somewhat independently targetable by different prosodic 

factors (Edwards et al., 1991; Byrd & Saltzman, 1998). 

Nevertheless, consistent, phonologically-determined patterns of phonetic duration in the 

acoustic signal should reflect qualitatively similar patterns of variation in the timing or size of 

articulatory gestures, so any qualitative patterns discovered with respect to significant duration 

differences between categories which are phonologically minimally different should be theory-

neutral empirical results. 

A more substantive problem is the following: it is unclear to what extent the acoustic or 

articulatory representations in the minds of speakers and listeners “match” their actual productions 
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and the acoustic signals picked up by a microphone, since physical articulatory and auditory 

systems intervene between these grammatical representations and the observable performance 

data. Once again, for convenience, I will make the simplifying assumption that speakers’ phonetic 

representations of duration generally match their performance, at least qualitatively: when a sound 

in some environment or with some property is systematically longer or shorter, and especially 

when the presence or extent of this effect is known to be language specific, this variation should 

be explainable with reference to some part of the grammar. Formal work in physiology and in 

language processing could alleviate the need for this simplifying assumption by combining explicit 

physical models of the mechanical, extra-grammatical components of the speech apparatus (see, 

for example, Vogt et al. 2005) with the models of acoustic duration targets presented here, but this 

is beyond the scope of this dissertation. 

Finally, it’s not clear on what scale or with which units duration should be represented in the 

grammar, or whether these representations have a linear relationship with time in the actual speech 

signal (Katz, 2012). Many perceptual scales in language (loudness, pitch, vowel formants) relate 

to the corresponding physical dimension (intensity, f0, formants) in a roughly logarithmic way 

(e.g. the Mel scale for pitch; Stevens & Volkmann, 1940), and it is quite possible that duration 

may behave this way as well. With respect to  perception, for example, Small and Campbell (1962) 

find that the just noticeable difference (JND) for non-linguistic stimuli (silence, a tone, or noise) 

increases logarithmically with the duration of the stimuli, meaning listeners are more attuned to 

durational differences when comparing stimuli of shorter duration. A linguistic argument for 

modeling duration logarithmically is provided by Rosen (2005), who argues that segment durations 

tend to obey lognormal distributions, and that effects on duration are proportional (log-linear) 
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rather than additive. In the empirical and model-fitting chapters of this dissertation, therefore, both 

duration and log duration will be considered potential outputs of the grammar. 

2.2. Factors affecting duration in English 

In this section, I give a brief literature review of the many linguistic factors that might affect 

the duration of English speech sounds, including the segmental features of the sounds themselves, 

lexical prosody, sentence-level prosody, lexical features, discourse factors, and speech rate. 

Additionally, I review what is known about how some of these factors interact. 

2.2.1. Segmental factors 

2.2.1.1. Segmental features 

Even in languages which are thought to lack a phonological length contrast, such as English, 

different segments and their subparts can have systematically different durations. For example, 

English fricatives are much longer than stops (Klatt 1973a), at least in onset position, and the lax 

vowels of English are significantly shorter than the tense vowels, with further differentiation by 

vowel height (Peterson & Lehiste, 1960). Klatt (1975) finds that among the stressed vowels of 

English, as much as half of the total variance in duration in fluent speech can be attributed to 

segment identity alone. Small but reliable phonetic differences in VOT between stops at different 

places are also widely attested, and even argued to be universal (Cho & Ladefoged, 1999). 

A popular way to account for phoneme-by-phoneme durational variation is to posit that each 

phoneme (or perhaps each allophone, or each gesture) of a particular language has an “intrinsic” 

or “inherent” duration (Lehiste, 1970, 1975a). This is the approach taken by essentially everyone 

interested in fully predictive models of duration (Klatt, 1973b, 1976; en, 1997; van Santen et al., 
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1997). However, reporting the mean duration of each phoneme, while perhaps an observationally 

adequate approach, misses various generalizations that can be made about subsets of phonemes. 

For example, it seems likely that speakers know that vowels are generally longer than consonants, 

that “tense” vowels are longer than “lax” vowels, that low vowels are longer than high ones, and 

so forth. In the “intrinsic duration” account, in so far as target durations for each phoneme are 

simply stored in a list, these generalizations are treated as being incidental, or at least are not 

encoded anywhere in the model. This is a drawback that needs to be addressed if our goal is a 

descriptively adequate, human-like grammar, and not merely a speech synthesis system. Even from 

an empirical standpoint, it seems possible that, upon encountering a foreign word with an 

unfamiliar phoneme, the duration (and other phonetic properties) of that borrowed phoneme could 

be influenced by its membership in natural classes in the native language, just as its phonological 

behavior can be so influenced (Halle, 1978). 

2.2.1.2. Segmental context 

The features of neighboring segments can influence segmental duration. The voicing of a 

following obstruent affects the durations of vowels (e.g. Lehiste, 1970; Klatt 1973b, 1976; Crystal 

& House, 1988; De Jong, 2004), so much so that vowel duration is a strong acoustic cue for coda 

voicing (e.g. Crowler & Mann, 1992; Moreton, 2004). The manner has an effect as well, with coda 

nasals associated with longer vowels than coda stops (Umeda, 1975; Katz, 2010; Crystal & House, 

1988),3 as does its place of articulation, with longer vowels occurring before bilabial codas than 

before alveolar or velar ones (Luce & Charles-Luce, 1985; Crystal & House, 1988). 

                                                 

3 The duration of vowels before stops as compared to fricatives has conflicting results in the literature, with 

longer vowels before stops reported by several authors, but with subsequent failures to replicate this finding, and 
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The features of preceding onset consonants also affect vowel duration, with shorter vowels 

appearing after voiceless onsets than after voiced ones, and after sonorant onsets than after 

obstruent ones (Crystal & House, 1988; Katz, 2010). 

2.2.2. Word-internal prosodic factors 

2.2.2.1. Syllable structure / compensatory shortening 

The complexity of a syllable and of its constituent parts, as well as the phonological properties 

of the segments within a syllable, can have a large effect on the duration of its segments. The most 

well-known example is closed syllable vowel shortening: vowels in many languages differ in 

length depending on whether they are in an open or a closed syllable, even controlling for 

segmental environment (e.g. in pairs like “beak age” and “bee cage”). 

Katz (2010, 2012) thoroughly investigates compensatory vowel shortening in English, and 

finds that both onsets and codas induce vowel compression, and furthermore that adding additional 

consonants to create branching onsets or codas sometimes but not always induces an additional 

compensatory shortening effect on the vowel, termed “incremental compression,” depending on 

the quality of the consonant closest to the vowel. In particular, he finds that:  

All consonants are associated with some amount of simple vowel-compression, but not all 

strings induce incremental compression. Clusters including liquids induce incremental 

compression in both onset and coda position relative to liquid singletons, clusters including 

nasals do so only in onset position, and clusters containing only obstruents do not condition 

                                                 

with large differences depending on the phrasal-position in which these comparisons are made, among other 

factors (Chrystal & House, 1988). 
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incremental compression in either position. For instance, the vowels in /brod/ and /dɔrb/ are 

significantly shorter than those in /rod/ and /dɔr/, but the vowel in /donz/ is not shorter than 

that in /don/. (Katz, 2012; p. 7).  

Katz posits that these facts are the direct result of a perceptual asymmetry: consonants like 

liquids, which exhibit longer and more audible coarticulation with the vowel, contain in them cues 

for the vowel, and so the vowel proper can be shortened without much harming recoverability. 

Asymmetries between onset and coda position on incremental vowel compression are similarly 

explained. 

Consonants themselves have different durations depending on whether they appear in onset 

or coda position, and can also exhibit compensatory shortening, decreasing in duration as the 

syllable onset or coda becomes more “crowded,” with some exceptions. In onsets, for example, 

increasing the number of consonants generally shortens all of the onset consonants (compared to 

their duration in singleton onsets), but those closest to the nucleus are shortened the most (Klatt 

1973a, 1974). Additionally, compensatory shortening affects different consonants differently, with 

labial consonants, for example, being relatively incompressible, forcing consonants which share a 

cluster with a labial (like the [l] in ‘kelp’ or the [ɹ] in ‘pry’) to shorten more than they would in a 

cluster without a label in order to accommodate this incompressibility (Klatt 1973a). Byrd and Tan 

(1996) demonstrate that, articulatorily speaking, compensatory shortening of consonants in 

clusters is achieved via a combination of both shortened consonant gestures and increased overlap 

between consonantal gestures (when such overlap is possible), a result that underscores the 

significance of the “duration vs. timing” distinction. 
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These compensatory shortening results very strongly suggest that prosodic constituents larger 

than segments, such as syllables, have target durations, a hypothesis that will be explored in the 

chapters that follow. 

2.2.2.2. Lexical stress 

In English, the vowels of syllables with primary stress4 are longer than those in syllables with 

secondary stress, which in turn are longer than unstressed vowels (e.g. Klatt, 1976; De Jong, 2004). 

Additionally, consonants are longer in the onsets of stressed syllables than they are in the onsets 

of unstressed syllables (Oller, 1973). English consonants’ durations can also show sensitivity to 

stress. For example, English /s/ in onset position has a shorter and more variable duration in 

stressless syllables than in stressed syllables, where it is both longer and more stable (Klatt, 1974).  

2.2.2.3. Word length 

Stressed syllables in disyllabic trochaic words are shorter than identical syllables in 

monosyllabic words, at least in English (Klatt, 1973b). In fact, this shortening effect applies not 

only to the vowel, but to (at least) onset consonants as well (Klatt, 1973a, 1974).5 Once again, this 

compression suggests that larger prosodic constituents, such as the prosodic word, have target 

durations. 

                                                 

4 It is worth mentioning here that the location of English stress is not always entirely lexical, as evidenced 

by metrical phenomena like the “rhythm rule” of English (cf. ‘fifteen men’ vs. ‘nine-fifteen’). 

 
5 This result could be attributed to word-final lengthening, rather than shortening in polysyllabic words, so 

long as the domain of word-final lengthening includes the onset consonants of the final syllable. These 

possibilities could be distinguished empirically by running the same experiment with iambic words included. 
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2.2.3. Phrase-level prosodic factors 

2.2.3.1. Prosodic location 

The right edges of a various prosodic domains, such as a prosodic word, accentual phrase, 

intermediate phrase, or intonation phrase, are associated with lengthening (Lehiste, 1972; Byrd & 

Saltzman, 2003), and more lengthening occurs in larger domains. At least four such domains, each 

associated with a different degree of lengthening, are relevant for English (Wightman et al; 1992), 

and this lengthening affects the duration of consonants (e.g. Klatt, 1974) as well as vowels. 

Conversely, syllable-, word-, phrase-, or utterance-initial positions are associated (in English 

and perhaps universally) with articulatory strengthening and fortition (Keating et al., 2003). This 

fortition can, directly or indirectly, result in longer consonant durations in domain-initial positions. 

For example, Keating et al. find that English /n/ has both more peak articulatory contact and a 

longer contact duration when it is domain initial, and the degree of lengthening depends on the 

type of prosodic domain it initiates. 

2.2.3.2. Accentedness 

Pitch-accented syllables have longer duration than lexically stressed but unaccented syllables 

(e.g. Anderson et al., 1984). Duration, along with amplitude, are primary cues for accentedness in 

English (Turk & Sawusch, 1993). 

2.2.4. Lexically specific and discourse-level factors 

In this section, various factors that affect phonetic reduction or phonetic hyperarticulation in 

general are discussed, since reduction and hyperarticulation can involve changes in segment 

duration. It is not always clear whether these factors belong in the grammar per se; they may 
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instead be universal and/or be attributable to facts about language processing. For example, Baese-

Berk & Goldrick (2009) posit that lexical neighborhood effects in production, and possibly lexical 

effects in general, are best explained by way of competition that occurs during lexical access.  

It is worth noting that in some models (e.g. Pierrehumbert, 1981), focus and other discourse-

level factors contribute to prominence, a numerical value assigned to words or phrases. This real-

number value, as interpreted by the intonational component of the grammar, in turn affects the 

pitch ranges of prosodic phrases and the pitch targets of accented words, as well as their durations. 

Aylett and Turk (2004; 2006) posit that the expected retrievability of a word in context is in fact 

the single most important factor for durational variance in production: in their estimation, the 

primary function of intonation is to spread informativity evenly over an utterance, an idea they call 

the “smooth signal” hypothesis. 

2.2.4.1. Focus 

Focus in English is marked by a number of intonational factors, including increased prosodic 

prominence, which is realized in part through lengthening. 

2.2.4.2. Discourse salience 

Tokens of words that are more salient or more discourse-given are reduced compared to those 

that are less salient or discourse-new (Hawkins & Warren, 1994; Fowler, 1988). It is unclear, 

however, to what extent this effect is distinct from that of discourse level focus more generally. 
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2.2.4.3. Lexical frequency 

High-frequency words show more phonetic reduction than phonologically similar low-

frequency words (e.g. Pluymaekers et al., 2005). This may or may not be merely a special case of 

contextual predictability (see below). 

2.2.4.4. Lexical neighborhood density 

Words for which there are many similar-sounding words or “lexical neighbors”, which are as 

a result more confusable with other words, are produced with less reduction (Wright, 2004), and 

with more consonant-vowel coarticulation (Scarborough, 2004), both of which could affect 

segment duration. 

2.2.4.5. Contextual predictability 

Tokens of words which are predictable from context are reduced compared to tokens which 

are not predictable (Lieberman 1963; Aylett & Turk 2006). 

2.2.4.6. Location in a discourse 

Some results from reading-style speech show that the last sentence of a paragraph will be read 

more slowly than other sentences (Lehiste, 1975b). However, this is almost certainly best 

described as a global change in speech rate. 
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2.2.5. Speech rate 

While changes in speech rate might be extra-grammatical or even extra-linguistic (Klatt, 

1976), faster speech obviously necessitates shorter duration for some or all of the sounds involved.6  

Perhaps the simplest hypothesis for how this might occur would be that segments shorten 

proportionally, such that when a sentence uttered at twice the rate, its segments will each be half 

as long. This is almost certainly not the case. For instance, in slower speech, pauses account for a 

disproportionate amount of the added time (Goldman-Eisler, 1968), and, conversely, in fast speech 

prosodic boundaries are not as strongly marked (Fougeron & Jun, 1998), such that phrase-final 

material is disproportionately affected by changes to speech rate. 

In faster speech, consonants and vowels are both shortened, but not to the same degree 

(Goldman-Eisler, 1968), and finer grained distinctions can be made between sonorants, fricatives, 

and stops with regard to their duration in faster speech taken as a percentage of their duration in 

slower speech (Crystal and House, 1988). 

In the articulatory domain, Gay et al. (1974) find that, in fast speech, the articulatory gestures 

for (labial) consonants are actually strengthened, while the gestures for vowels show a decrease in 

articulatory strength, and are more likely to exhibit articulatory undershoot (Lindblom, 1963). 

Byrd & Tan (1996) report increased overlap of consonantal gestures in consonant clusters in fast 

speech, but that the degree to which this overlap happens is dependent on the segmental features 

of the consonants involved. 

                                                 

6 Unless of course a different spell-out is produced, in which some segments delete entirely or are replaced 

by free variation allophones which are inherently shorter—a clear interaction between speech rate and 

phonology. In a gestural framework, increased speech rate could in theory also be effected merely by increasing 

gestural overlap rather than shortening gestural duration, but empirically there is evidence that both of these 

strategies are used in conjunction (Byrd & Tan, 1996). 
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A more plausible hypothesis regarding speaking rate, therefore, is that rate is a “knob” which 

affects the parameters of some part of the production grammar, changing durational targets in a 

non-uniform way that depends on the structure of the grammar and the segments and prosodic 

structures involved. A more specific version of this hypothesis, if the grammar is taken to involve 

constraints (Chapters 3 and 4), is that the parameters thus affected are constraint weights, or even 

the weight of a single constraint on the duration of some large prosodic constituent. As far as I 

know, nobody has directly implemented this hypothesis. 

The extent to which different classes of sounds and prosodic constituents are affected 

differently by changes in speech rate is a largely open question (and one worthy of 

experimentation!), but it is clear that it cannot be considered independently from the grammar 

when production data is being modeled. 

2.3. Additional factors affecting duration across languages 

While a thorough overview of the typology of phonetic duration is far beyond the scope of 

this dissertation, it is worth mentioning a few phonological features which are absent from English, 

but which have an effect on duration in the languages where they do occur.  

In many languages, length is a contrastive phonological feature. Generally, the distinction is 

a binary one, between singleton and geminate consonants or vowels, but three-way contrasts in 

vowel and consonant length are attested (though exceedingly rare), appearing in languages such 

as Estonian (Prince, 1980), and Dinka (Remijsen & Gilley, 2008).7 It goes without saying that 

                                                 

7 Less controversially, three-way phonological contrasts in voice onset time, effectively a subsegmental 

duration or timing contrast, are widely attested. 
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phonetic duration is affected by phonological length, but the phonetic realization of phonological 

length can be language-specific (Smith, 1993), and is therefore arguably part of the phonetic 

component of the grammar. 

In languages like Japanese, where length is indicated orthographically, written words can 

sometimes be emphasized by elongating sounds in them to an arbitrary degree (“no” vs. “nooo” 

vs. “noooooooo”). In these cases, greater than ternary length “contrasts” can purportedly be 

produced by speakers and distinguished by listeners: Kawahara & Braver (2013) report that 

Japanese speakers, when presented with the appropriate orthography, can produce and distinguish 

at least 6 degrees of emphatic vowel length.8 

Japanese short vowels also lengthen to satisfy a minimum word length requirement, namely, 

when they are the only vowel of a monomoraic word. While this might seem at first like a purely 

phonological process, in which the phonological length feature of the vowel is changed, Braver 

(2013) demonstrates that in the case the lengthening process is only near-neutralizing, such that 

lengthened short vowels having a shorter duration than long vowels in the same prosodic context. 

In tone languages, lexical tones can have systematic durational differences, and these are used 

as perceptual cues (e.g. Liu & Samuel, 2004). Zhang (2000) argues that the complexity of contour 

tones is related to the duration of their realization in Mandarin. Flemming and Cho (2017) posit 

that contour tones have targets for the steepness of the rise in addition to initial and final pitch 

targets, which, taken together, are effectively tone-specific targets for duration, and that these can 

account for the degree of misalignment between tones and their segmental anchors. 

                                                 

8 It is unclear to me how linguistically meaningful this ability is. 
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2.4. NLP models of duration 

While much research has been done on individual factors contributing to duration, holistic, 

mathematical models of duration as a function of all of these factors in unison are harder to find 

in the academic literature (although some will be discussed on Chapter 3). However, in Natural 

Language Processing, and in particular in Speech Synthesis, such mathematical models are a 

practical necessity if any degree of prosodic naturalness is to be achieved in the synthetic voice. 

These, then, are examples of the first explicit proposals for holistic models of duration. 

Klatt (1973, 1976) lays out the essentials of an algorithm for computing target durations for 

speech sounds that was ultimately used in the speech system DECtalk (previously KlattTalk or 

MITalk). It works as follows: each phoneme in the language has an inherent duration, as well as a 

minimum duration. The inherent duration is altered by a series of rules corresponding to individual 

lengthening or shortening effects. Each of these rules takes the amount by which the duration 

exceeds the minimum duration, and multiplies it by a constant K associated with that rule. The 

result after all of this is the duration target. 
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Figure 1: Table III from Klatt, 1976, p. 1217. 

This algorithm amounts to a “multiplicative” or log-linear model of segment duration, except 

that what is calculated by the log-linear model is duration above a minimum duration threshold for 

that phoneme. If the minimum duration for each phoneme is known ahead of time, the appropriate 

constants K for each rule could be learned from duration data taken from a large speech corpus by 

fitting a basic multinomial linear regression with no interactions, where the dependent variable is 

the logarithm of the amount that observed segment durations exceed their minimum durations. 

Klatt, for his part, opts to adjust these parameters by hand until the results are subjectively 

satisfactory, probably due to the lack of available speech corpora with suitable coverage or rich 

enough prosodic annotation. 
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Van Santen et al. (1997) describe a language-independent procedure for developing generative 

models of duration, which was used by the Bell Labs Text-to-Speech system. After the 

phonological factors and classes of sounds relevant to the language in question have been selected, 

log duration is computed with a “sums of products” model: a linear model with many-way 

interactions. The overall shape of the model (essentially, what interactions should be included) 

needs to be determined by the researcher on a language-by-language basis, after which the 

parameters of the model are learned with a regression. 

The main differences between the two models, aside from their approach to parameter 

estimation, are Klatt’s use of a “minimum duration”, and Van Santen et al.’s allowing for the 

possibility of interaction effects. However, both are essentially “template based” (Van Santen et 

al., 1997, pp. 228-30) log-linear models of duration, and therefore predict that the durational 

change of a segment undergoing two lengthening or shortening processes is in some sense 

proportional to the product of the changes that would occur if it underwent each of the processes 

individually. The truth of this prediction is an empirical question. 

2.5. Interaction effects and the failure of linear models 

While much is known about how various phonological factors influence duration individually, 

less is known about how they interact, and the workings of the grammar that determines durational 

targets from these factors. The applied models in the previous section assume that these durations 

are the result of multiplying coefficients together, each representing some such phonological 

factor. 

Klatt (1973b) is one of the first (and perhaps only) attempts to explicitly investigate this very 

assumption. He devises an experiment to test the interaction between two factors already known 
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to affect the length of stressed vowels in English: the voicing of the following consonant (vowels 

are shorter before [t] than before [d]), and whether the vowel is part of a mono- or a disyllabic 

word (vowels are shorter in disyllabic words). He selects 40 pairs of monosyllabic and disyllabic 

words, such that the disyllabic word contains the phonological content of the monosyllabic word 

at its left edge (need / needle; guess / guessing; room / rumor; etc.).9 He then computes duration 

averages for vowels in four contexts: in monosyllables with post-vocalic voicing (+V1), in 

disyllables with post-vocalic voicing (+V2), in monosyllables without post-vocalic voicing (-V1), 

and in disyllables without post-vocalic voicing (-V2). He assumes that the longest category, +V2, 

is the least marked case, and treats both effects as shortening effects. Since this experiment was 

conducted prior to the introduction of minimum duration into the model, his prediction was that 

the magnitude of two shortening effects individually, as determined by observing the durations of 

-V2 and +V1 as percentages of +V2, could be multiplied to predict the duration of -V1, the 

category to which both shortening effects had applied. In other words, by looking at the results for 

three of the four categories, Klatt’s equation should predict the fourth.  

                                                 

9 In the selection of these words there was no attempt to counterbalance the stimuli for vowel quality, or 

for the features (other than [voice]) of the consonants following the vowel. The relevant consonant was also 

sometimes [t] or [d], which was probably tapped in some of the disyllabic items, interfering with the supposed 

voicing distinction on the following consonant. 
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Figure 2: Interaction Results (Klatt 1973b, p. 1103). 

This turned out not to be the case: the shortest tokens, vowels in disyllables before voiceless 

consonants, exhibited much less shortening than expected (in other words, there was a positive 

interaction effect). Klatt explains this result by positing that vowels are simply not infinitely 

compressible and therefore have a minimum duration below which they cannot easily be shortened 

further. The shortest category would have turned out as predicted, but ran against this maximum 

compressibility threshold. As discussed above, minimum durations were incorporated into his 

model and ultimately into the Klattalk text-to-speech system (Klatt, 1982), itself the basis for many 

of the systems that followed. While Klatt’s stipulation about maximum compressibility is plausible 

as a reason for his model’s over-predicting of the length of the shortest case, it is ad hoc in the 

context of this experiment: using inherent vowel duration, two effect sizes, and a minimum 

duration—a model with four features—any experimental results consisting of four data points can 

be fit perfectly. However, Klatt’s fundamental question about how segment’s durations are 

affected when they are affected by multiple shortening or lengthening processes, each of which is 

understood individually, is a crucial one. 

A scattering of results related to interactions between intonational, prosodic, and segmental 

effects on duration can be found in the empirical literature, mostly from studies of moderately 
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sized corpora of reading-style speech. Some representative results are described here,10 categorized 

by which factors were found to interact. For the most part, only results related to English are 

discussed. 

2.5.1. Prosodic position x accent 

Li & Post (2014), in a paper on L2 acquisition of rhythm, establish L1 baselines by collecting 

vowel duration data for native speakers, reporting average vowel durations in accented, 

unaccented, phrase-final, and phrase-medial positions. 

 unaccented accented 

non-final 100% (baseline) 155.5% 

final 162% 233.7% 

Table 1: Mean English vowel duration by accentuation and phrase-finality reported by Li & Post 

(2014). 

While in medial position, accented vowels are 55.5% longer than their unaccented 

counterparts, in final position, accented vowels are only 44.2% longer. 

2.5.2. Prosodic position x lexical stress 

In phrase-final two syllables words, the final syllable lengthens more when it is stressed, i.e. 

when the word is an iamb, than when it is stressless, i.e. when the word is a trochee (Turk & 

Shattuck-Hufnagel, 2007). 

                                                 

10 See Fletcher (2010), section 2.2.2, for another overview. 
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2.5.3. Lexical stress x accent x vowel height / coda voicing 

Word accentuation affects the length of both stressed and unstressed vowels, but its effects on 

stressed vowels are proportionally stronger—stressed vowels lengthen quite a bit due to 

accentuation while stressless vowels lengthen relatively less (Van Santen, 1992; Turk and White, 

1999). 

The difference in vowel length between vowels in primary stressed syllables and those in 

secondary stress syllables is greater for /æ/ than for /ɛ/ (De Jong, 2004).  

The effect coda voicing on vowel duration is strongest in syllables with primary stress, less 

strong in syllables with secondary stress, and weakest (perhaps non-existent) in unstressed 

syllables (De Jong, 2004). 

De Jong (2004) also finds three-way interactions between lexical stress, pitch accent, and 

vowel height, as well as between lexical stress, pitch accent, and coda voicing—all in the positive 

direction. In other words, stressed accented syllables are longer than predicted by model with only 

main effects, and this asymmetry is exaggerated for /æ/ as compared to /ɛ/, and for vowels 

preceding voiced obstruents as compared to voiceless. 
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Figure 3: Figure 3 from de Jong, 2004 (p. 503). Average vowel durations for vowels before 

voiced and voiceless stops (left panel) and for /æ/ and /e/ (right panel). Plotted here are 

interactions between focus condition (x-axes) and stress (symbol size). Error bars indicate 

standard errors. 

2.5.4. Accent x vowel height x coda voicing 

Lengthening due to accentuation (nuclear pitch accent, as compared to pre-nuclear 

unaccented) is greater for /æ/ than for /ɛ/ (De Jong, 2004).  

Lengthening due to accentuation is also greater for pre-voiced vowels than pre-voiceless ones 

(De Jong, 2004; Choi et al., 2016). Alternately stated, coda-voicing has a greater effect on vowel 

length in accented words than in unaccented ones—Choi et al. (2016) find that the effect of voicing 

is almost completely absent in deaccented words that occur before a focused word later in the 

phrase. 

Choi et al. (2016) also find a significant three-way interaction between vowel height (/æ/ vs. 

/ɛ/), coda voicing, and accentuation, as shown in the leftmost (NAE) boxes in Figure 4. 
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Figure 4: Figure 1 from Choi et al. (2016), p. 624. Effects of coda voicing on vowel duration. (A) 

Voicing × Focus interactions; (B) Voicing × Focus × Vowel type interactions, as produced by (1) 

native speakers of English, (2) Korean advanced learners of English, and (3) Korean 

intermediate learners of English (∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05). 

2.5.5. Prosodic position x coda voicing 

Vowel lengthening in response to the segmental features of a following consonant (such as 

voicing or manner) is more prevalent phrase-finally than it is phrase-medially (Umeda, 1975; 

Cooper and Danley, 1981; Crystal & House, 1988), and, among phrase-medial vowels, more 

prevalent in word-final syllables (monosyllables and the stressed syllables of iambs) than in initial 

ones (Umeda, 1975), as well as in accented syllables compared to unaccented ones (Van Summers, 
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1987). Umeda (1975) finds that this interaction between segmental environment and phrase-

finality holds even for reduced stressless vowels, with the effect of a following consonant on the 

length of schwa being much more evident in phrase-final position. 

2.5.6. Vowel tenseness x coda voicing 

Tense vowels lengthen more in response to a following voiced consonant than lax vowels do 

(Crystal & House, 1988). 

2.5.7. Coda voicing x coda manner 

Not only do both voicing and manner of coda consonants affect the length of the preceding 

vowel, but the voice value of stops matters more for vowel length than the voice value of fricatives 

(Crystal & House, 1988). 

2.5.8. Phonemic length x syllable structure 

English does not have contrastive length, but languages that do may show interactions 

between phonemic vowel length and other features influencing duration. For example, Broselow 

et al. (1997) examining cross-linguistic durational evidence for moraic structure, compare the 

effects of closed syllable shortening in a number of languages. They report that Arabic shows 

relatively little closed syllable shortening compared to other languages they examine, but of 

interest here is the fact that the closed syllable shortening effect was apparent for long /aː/, but not 

for short /a/, an interaction between the effects of syllable structure and phonological length. 

2.6. An empirical generalization: hyperadditive lengthening 

There is a surprising and hitherto unreported generalization hidden in these findings: nearly 

all of the reported interactions between duration-affecting phonological variables are positive, in 
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the sense that the segments undergoing multiple lengthening processes are longer than expected: 

already long segments are disproportionately susceptible to further lengthening. Put another way, 

if any pair of processes are taken to both have shortening effects on a segment (as in Klatt, 1973b), 

the interaction between them when both apply is such that the segment is not as short as expected. 

The only clear example of a negative interaction, where a segment undergoing two 

lengthening effects turns out to be not as long as predicted (or where a segment undergoing two 

shortening effects is shorter than predicted), is the interaction between accentedness and phrase-

finality seen in the data from Li & Post (2014). Interestingly, both of these factors relate in some 

way to intonation, or at least to phrase-level prosody.11 

                                                 

11 An additional potential exception is the interaction between coda voicing and coda manner (stop vs. 

fricative) on vowel duration; however, the existence and direction of the main effect of obstruent manner on 

vowel duration is debatable (see discussion in Chrystal & House, 1988). Because one of the main effects is 

putative, it is unclear whether the interaction reported by those authors is consistent with the present 

generalization. 
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 vowel 

features 

coda 

features 

coda 

complexity 

lexical stress accent phrasal position 

two-way interactions 

word-length 

(syllables) 

 Klatt (1975)     

vowel 

features 

 Crystal & 

House, 1988; 

Choi et al., 

2016 

 De Jong, 2004 De Jong, 2004; 

Choi et al., 2016; 

 

coda  

features 

 Crystal & 

House, 1988 

Katz (2010) De Jong, 2004 De Jong, 2004; 

Choi et al., 2016 

Umeda, 1975; Cooper 

& Danley, 1981; 

Crystal & House 

coda 

complexity 

      

lexical stress     De Jong, 2004; 

Van Santen, 

1992; Turk and 

White, 1999 

Turk & Shattuck- 

Hufnagel, 2007 

 

accent      Li & Post, 2014 

three-way interactions 

lexical stress 

× accent 

De Jong, 

2004 

De Jong, 2004     

vowel 

features × 

accent 

 Choi et al., 

2016; 

    

Table 2: Reported “interactions” between effects between factors affecting vowel duration. All 

interactions were in the positive direction (if the effects are treated as both being lengthening or 

both being shortening effects), except for the interaction between pitch accent and phrasal 

position, and potentially the interaction between coda manner and coda voicing. 

This apparent asymmetry is perhaps unexpected, since negative interacts seems just as 

plausible as positive ones a priori, and could just as easily be fit by any linear or log-linear model 

that includes interaction effects, such as those proposed by Van Santen et al. (1997). 

I will henceforth refer to this empirical pattern as the “Hyperadditive Lengthening 

Generalization,” though it could just as well be named the “Hypoadditive Shortening 
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Generalization,” depending on whether the effects interacting are taken to be lengthening or 

shortening effects. It is stated formally as follows: 

The Hyperadditive Lengthening Generalization 

The duration of a segment taken to be undergoing both of two lengthening processes will be 

longer than the duration predicted by a multiplicative model, given the magnitude of the 

processes when they apply individually, and using the case where neither applies as the baseline. 

Equivalently, the duration of a segment taken to be undergoing both of two shortening processes 

will not be as short as predicted. 

In Chapter 5, further experimentation will corroborate a number of these interactions. In the 

discussion section of that chapter, potential mechanisms for deriving the Hyperadditive 

Lengthening / Hypoadditive Shortening pattern will be explored, including an explanation couched 

in the framework of phonetic harmonic grammars with asymmetric constraints developed in 

Chapter 4. 

2.7. The task at hand 

Any holistic model of the phonetic component of the language apparatus needs to include a 

way for this very diverse set of factors, ranging from phonetics, to segmental phonology, to 

prosodic, metrical, and intonational phonology, to speech rate, to be a part of the computation of 

duration and timing in speech. More importantly, it must make a claim about the mechanism by 

which these factors can and cannot interact, in a way that is consistent with our (thus far limited) 

empirical knowledge about such interactions. 
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The use of log-linear models for computing duration, in which each factor is essentially a 

multiplier on the duration12 of the segment(s) it affects, is ubiquitous in the speech technology 

literature, possibly due to their simplicity and implementability. This choice, however, is not 

theoretically motivated, and may not even be observationally adequate (Klatt, 1973b).  

The ensuing chapters take an approach in line with an emerging framework that one might 

call “Harmonic Phonetics”, following recent authors (Flemming, 2001; Braver, 2013; Windmann 

et al., 2015; Flemming & Cho, in print) in employing harmonic constraint grammars, already 

widely in use by phonologists, to map from phonological representations to phonetic ones. These 

models naturally accommodate multiple, potentially competing constraints on the durations of 

segments and of larger constituents, predict interesting nonlinearities as a necessary outcome of 

the constraint-based nature of the model itself, and come with a well-understood algorithm for 

learning the model parameters (constraint weights) from example data. 

  

                                                 

12 Or the duration above a baseline, in the case of Klatt (1973, 1976) 



34 

3. Phonetic constraint grammars 

There are several existing proposals for adapting or expanding varieties of constraint 

grammars in common use by phonologists (in particular, Classical Optimality Theory and 

Harmonic Grammar), to the domain of phonetics. In addition to adapting different flavors of 

optimality theory, these proposals also differ significantly in their formulation of phonetic 

constraints, particularly in how they assign violations to candidates, and in how GEN and EVAL 

are treated. 

Phonetic constraints differ crucially from the kinds of constraints employed in phonology in 

that the linguistic objects they penalize are articulatory or acoustic representations which contain 

real-number values, rather than symbols which fall into discrete categories. Relatedly, while 

phonological constraints tend to be formulated so as to assign to any particular candidate an integer 

number of violations corresponding to how many pieces of the candidate’s structural description 

violates the constraint, it is less obvious how a constraint on, say, tongue height, or F1, should 

assign violations to a candidate pronunciation with a phonetic value that differs from what the 

constraint would consider optimal. 

There is also the question of where phonetic constraints fit into the overall grammar, and how 

they interface with the phonological component, if these components are in fact separable. A 

theoretical choice must be made about what linguistic representations phonetic constraints should 

map from, and what they map to. 

Prior authors have taken a variety of approaches, differing on all of these issues. This chapter 

outlines several existing proposals, and concludes with a summary or “taxonomy” of the various, 

pseudo-independent theoretical and implementational choices that need to be made in formulating 
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phonetic constraint grammars, where the existing proposals fall in this taxonomy, and what other 

combinations might be possible. 

3.1. Proposing phonetic constraints 

One of the first authors to propose that constraint grammars be used in phonetics was Zsiga 

(2000), who did so in the context of investigating empirical patterns related to the alignment and 

degree of overlap in adjacent consonants at word-boundaries in Russian and English. Zsiga finds 

that the two languages behave phonetically differently given the same phonological conditions, 

both in the way consonants align and in the kinds of phonetic variation that can occur with respect 

to these alignments. Zsiga proposes that there must indeed be a phonetic grammar, separate from 

the phonological grammar, and that the best way to model her data in particular is with language-

specific phonetic alignment constraints. These constraints are analogous to alignment constraints 

in phonology, but which govern phonetic-level phenomena like consonant overlap and 

coarticulation, and contain real-number phonetic values. The particular alignment constraints 

proposed are consistent with the “articulatory window” view of phonetics: an anchor point in one 

consonant is required by a constraint to lie within some temporal range defined in relation to an 

adjacent consonant, but there can be free variation within this range, or variation in response to 

other phonological factors. 

Because phonetic values are subject to multiple pressures, and the resulting pattern is often 

one of compromise, Zsiga argues that the strict dominance found in many varieties of OT is not as 

well-suited to capturing patterns of phonetic variation as constraint weighting, which allows for 

compromise candidates to win out over more extreme candidates. 
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3.2. Classical OT with categorical constraints 

Boersma (2009, 2011) employs “cue constraints” (2009) as part of a larger framework, 

Bidirectional OT (2008, 2011), a grammatical architecture in which various levels of phonetic and 

phonological representations are mapped to and from each other using a series of ranked constraint 

grammars. These same grammars are used for both perception and production (thus the 

“bidirectionality”). In the phonological levels of this framework, underlying forms are mapped to 

and from surface forms by way of ranked faithfulness and markedness constraints, as in classical 

OT. However, surface forms are also mapped to auditory forms by another level of the grammar, 

consisting only of ranked cue constraints. Yet another level, which is relevant only for production 

and not for perception, maps from auditory forms to articulatory forms, which are then interpreted 

by the motor system. 

 

Figure 5: Figure 2 from Boersma 2009, p. 60. 

Auditory forms are here essentially sequences of distinct auditory cues, such as periodic 

vibration, silence, or aperiodic noise. Describing the process by which a Russian word, [.tak.], 

would be perceived and eventually loan-adapted as /.ta.ku./ by Japanese speakers, Boersma (2009) 

gives the following example: 
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“In a narrower transcription, the auditory form is [ _ta_k]: as you can see in a spectrogram, 

this sound consists of (at least) a silence ([ _ ]), followed by a high frequency brief noise (“burst”) 

([t]), followed by a loud periodic (“sonorant”) sound with formants around 1000 Hz ([a]), followed 

by another silence, followed by a burst with a peak around 2500 Hz ([k]).” (p. 10) 

Cue constraints, therefore, govern the relationship between a surface form which is a sequence 

of symbols (each standing for a bundle of binary phonological features), and an auditory form 

which is also for the most part a sequence of symbols standing for acoustic features such as silence, 

noise, periodic sound, but which crucially also includes parameters, such as formant frequency 

(and  presumably other acoustic variables such as duration and intensity), that have associated real-

number values in units like Hz.  

 

Figure 6: Boersma 2009, p. 30 

Figure 6 demonstrates how perception of a vowel would work using cue constraints. Because 

the tableau is demonstrating perception, the input is an acoustic representation, and the candidates 

are potential surface representations. Since Boersma’s grammars are bidirectional, the same cue 

constraints with the same ranking are used for production, so we can easily imagine a similar 

tableau for vowel production, with a surface representation input and very many acoustic 

representation outputs, perhaps one for each minimally distinguishable F1 value in Hz.  
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There are several things worth noting here. The first is that violations in this theory are 

categorical, just as in the other levels of the grammar. The second is that, wherever real-number 

values such as formant frequency are concerned, very large families of constraints will need to be 

present, such as  */i/ 460 Hz, */i/ 380 Hz, and */i/ 320 Hz, identical to each other except for the 

numerical targets they penalize. Thus, in even a production grammar for determining a single 

formant of a vowel in isolation has very many constraints,13 and the formant values associated 

with a particular vowel category result from their ranking.  

While the evaluation function EVAL works much the same way as in Classical OT, the nature 

of GEN depends on the directionality of the grammar. For perception, since the cue constraints are 

mapping acoustic to surface representations, it enumerates possible SRs much as in the 

phonological component, but for production it must generate all possible acoustic representations, 

including ones which differ only in numerical values such as formant frequency.  

3.3. Harmonic grammar with gradiently violable constraints 

Flemming (2001), followed by others (Katz, 2010; Braver, 2013; Flemming & Cho, 2017), 

propose phonetic constraint grammars of a very different sort, wherein a single constraint 

associated with a phonetic target can penalize a candidate gradiently as a function of how far off 

that candidate is from the target. These authors employ this framework in modeling a number of 

phonetic and/or phonological phenomena, including duration and timing (Katz, 2010). 

                                                 

13 The exact number of constraints in each family is presumably constrained by limitations on the precision 

of our perceptual and articulatory system. While constraints may not need to be spaced as closely as 1Hz apart, 

the spacing cannot be much coarser if we are to explain any empirical data where relatively small changes to 

acoustic cues can cause category differences, or where phonological factors can have rather small effects on 

articulatory targets. 
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Windmann et al. (2015) similarly employ gradiently violable constraints, albeit with very 

different violation functions and without appealing to phonetic targets (or, equivalently for some 

of the functions, fixing this target at zero), in their own model of speech timing. 

3.3.1. Flemming’s parabolic constraints 

Flemming’s larger program is a push towards a unified model of phonetics and phonology, in 

which underlying forms are mapped directly to acoustic ones, using the same constraints to explain 

categorical “phonological” phenomena (such as assimilation) and gradient “phonetic” ones (such 

as coarticulation). However, the kinds of constraints he proposes work equally well as a model of 

just the phonetic component of the grammar, on the more conservative view that this is distinct 

from the phonological component and takes phonologically derived surface representations as its 

input, as is assumed by Zsiga (2000) and Boersma (2009). 

Two key innovations define this class of phonetic grammar. The first is that it is an 

implementation of Harmonic Grammar (Legendre et al., 1990), wherein constraints are weighted 

rather than ranked, and the winning candidate is the most harmonic. The second is that phonetic 

constraints can have in their formulation numerical phonetic targets (such as a specific target value 

for f2 for some vowel), and are gradiently violable. In particular, candidates subject to a constraint 

incur violations proportional to the square of the distance between the phonetic value of the 

candidate and the target phonetic value specified by the constraint. 

To give the simplest possible example, we could imagine a grammar with two constraints on 

some phonetic value (say, vowel duration). Constraint 1 has a target T1 and weight w1, and the cost 

of violating this constraint C1(x) = w1(x - T1)
2 where x is the candidate phonetic value. Note that 
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when x = T1, no violations are incurred. Constraint 2 is identical, but has its own target T2 and 

weight w2. 

The total cost C incurred by a candidate phonetic value x in this grammar is simply the sum 

of the costs of the two constraints, given in (1), and visualized in Figure 7. 

(1) 𝐶(𝑥) = 𝑤1(𝑥 − 𝑇1)2 + 𝑤2(𝑥 − 𝑇2)2 

 

Figure 7: The sum of two constraints’ violation functions. Red: cost of violating C1(x) where T1 

= 5, w1 = 4. Blue: cost of violating C2(x) where (T2 = 15, w2 = 1). Orange: the total cost C(x). 

Note that the minimum of the total cost function does not lie at the target of either constraint, but 

in between the two targets. 

The most harmonic phonetic value for x can then be found by taking the derivative of C with 

respect to x, setting this derivative to zero (since the first derivative is zero when the cost function 

is minimized), and solving for x. 

(2) 𝐶′(𝑥) = 2𝑤1(𝑥 − 𝑇1) + 2𝑤2(𝑥 − 𝑇2) = 0 

(3) 𝑥 =
𝑤1𝑇1+𝑤2𝑇2

𝑤1+𝑤2
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Note that the most harmonic value will always be a compromise between the two constraint 

targets (unless one of the constraint weights is zero), and the distance of this value from a 

constraint’s target will be smaller if that constraint has a larger weight, as we might expect. In fact, 

the ratio of distances between the optimal value and the two constraint targets is exactly the inverse 

of the ratio of the weights of the constraints, as can be seen in (4). 

(4) 
𝑥−𝑇1

𝑇2−𝑥
=

𝑤2

𝑤1
 

The situation becomes slightly more complicated when multiple phonetic values are selected 

by the grammar in parallel. In an example given by Flemming (2001), coarticulation is modeled 

as adjustment of the F2 of a vowel and the F2 locus of an adjacent consonant in order to better 

satisfy a constraint MINIMISEEFFORT, which assigns violations proportional to the square of the F2 

distance between adjacent sounds in CV sequences, penalizing large formant transitions. 

Competing with this constraint are two IDENT constraints, which require vowel formants and 

consonant loci to match predetermined targets (T and L, respectively) which correspond to the 

most “faithful” renditions of these sounds.14 Since Harmonic Grammar is being used, constraint 

violations are multiplied by the weight of the constraint. The costs of violating each of these three 

constraints are summarized in Table 3. 

                                                 

14 There is some question here as to where exactly these targets / loci should reside. In order for Flemming’s 

IDENT constraints to literally be faithfulness constraints, the targets would need to be part of the lexical 

representations that are inputs to the grammar, which would introduce numerical values into the representations 

of individual lexical items. Flemming instead posits something like a phoneme inventory (or inventories, since 

contrast is contextually limited) to be a part of the grammar, and for these inventories to contain the phonetic 

targets, which are themselves subject to meta-constraints on entire systems of contrast which enforce dispersion 

(Flemming, 2004). In the chapters that follow, I will take an alternate approach, taking these targets to simply 

be parameters of the “faithfulness” constraints themselves, much like their weights. 
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Table 3: (11) from Flemming, 2001, p. 19 : Cost functions for the three constraints. 

Once again, as demonstrated in the following tableau, candidate values for the beginning and 

end of an F2 transition in a CV sequence which compromise among the three constraints, violating 

each of them to some degree, will outperform values which fully obey any one constraint to the 

detriment of the others. 

 

Table 4: Table I from Flemming, 2001, p. 21. Evaluation of example  candidate values for F2(C) 

and F2(V), with L = 1700 Hz, T = 1000 Hz, and all weights set to 1. 

The total cost is here a function of two phonetic values in the candidate, F2(V) and F2(C), 

given in (5). The cost function is also visualized in Figure 8, where it can be seen to have a bowl-

like shape, with a global minimum. 

(5) 𝐶 = 𝑤𝑐(𝐹2(𝐶) − 𝐿)2 + 𝑤𝑣(𝐹2(𝑉) − 𝑇)2 + 𝑤𝑒(𝐹2(𝐶) − 𝐹2(𝑉))2  (p. 20) 
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Figure 8: Figure 3 from Flemming, 2001, p. 21. Cost plotted against F2(C) and F2(V). The 

minimum is located at F2(V) = 1233 Hz, F2(C) = 1467 Hz. 

The maximally harmonic values for F2(V) and F2(C), i.e. the global minimum of the bowl in 

Figure 8, can once again be found with calculus, but in this case this requires taking partial 

derivatives of the cost function with respect to F2(V) and F2(C), setting both partial derivatives to 

zero, and solving the resulting system of equations. The solutions to these equations, which are the 

maximally harmonic phonetic values given this grammar fragment, are given in (6-7). 

(6) 𝐹2(𝐶) = 𝑢𝑐(𝐿 − 𝑇) + 𝐿  where 𝑢𝑐 =
𝑤𝑒𝑤𝑣

𝑤𝑒𝑤𝑐+𝑤𝑣𝑤𝑐+𝑤𝑒𝑤𝑣
 

(7) 𝐹2(𝑉) = 𝑢𝑣(𝐿 − 𝑇) + 𝑇  where 𝑢𝑣 =
𝑤𝑒𝑤𝑐

𝑤𝑒𝑤𝑐+𝑤𝑣𝑤𝑐+𝑤𝑒𝑤𝑣
 (p. 22) 

3.3.2. A note on GEN and EVAL 

It is here worth taking a moment to ponder what GEN and EVAL are like under this account. 

While the tableau in Table 4 includes only a few choice candidates selected for the purpose of 
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illustration, the actual candidate set is assumed to be continuous: all real-number values for all the 

acoustic features being determined are possible outputs of the grammar. If two acoustic features 

are being selected, the candidate set comprises at the very least15 a 2-dimensional vector space, 

each candidate being represented by a vector composed of its values for these two features. This 

makes GEN in these grammars different from GEN in Classical OT, as the number of candidates 

is uncountably infinite, even when only considering candidates which have the same general 

phonetic shape (what would traditionally be called a Surface Representation). 

EVAL, similarly, is generally construed in optimality theoretic accounts as enumerating the 

candidates or a subset thereof, and (in the case of HG) selecting the most harmonic. However, as 

pointed out, the points in a vector space are not enumerable. Flemming’s method for implementing 

EVAL—computing the most harmonic phonetic values directly—involves differentiation and, 

when multiple phonetic values are involved, linear algebra (in that it involves solving the system 

of equations that results from taking multiple partial derivatives). While this method demonstrates 

how a winner can be found for these simple examples, for more sizable constraint grammars and 

for candidates in which multiple acoustic values are computed in parallel, this step can become 

computationally very complex as compared to the traditional mechanism for EVAL, especially 

since the algebraic form of the harmony equation is not the same in all cases, but rather depends 

on the shape of the input and of the constraints, the number of phonetic values being derived, their 

relationship to each other in the input, and so on. This concern about implementability, not only 

                                                 

15 For Flemming, since these grammars must also govern alternations which are more traditionally 

considered phonological (deletion, epenthesis, changes in phonetic category, metathesis, stress alternations, and 

so on), the sequence of acoustic events also needs to be selected, in addition to these events’ exact phonetic 

targets. The candidate set is presumably therefore all the points in the various vector spaces projected by all 

possible sequences of phonetic events, and not just one vector space. 
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for human speakers and learners of these grammars but even for linguists interested in 

algorithmically learning the parameters of such grammars from data, will be discussed again in the 

immediately following chapter. 

3.3.3. Parabolic constraints on duration and timing 

Katz (2010) employs similar constraint grammars to model the data from an empirical study 

of “compression” effects in English—primarily compensatory vowel shortening in response to 

combinations of adjacent onset and coda consonants—as a function of onset and coda complexity 

and of the properties of the specific consonants involved.  

As might be expected by the name “compression”, the idea is that segments have some optimal 

duration, but that larger constituents such as syllables do as well, and when the segments in a 

syllable would at their optimal durations together exceed the preferred length for a syllable, one or 

more of them has to shorten, or the syllable must have a duration longer than optimal, or both. This 

intuition can be captured straightforwardly with parabolic phonetic constraints on the durations of 

syllables and of the segments therein, such that the maximally harmonic candidate involves a 

compromise—the result of “trying to fit partially-malleable objects into a partially-malleable 

container” (Katz, 2010, p. 91). 

The prediction of such an account is that as more and more material is added to a syllable, the 

segments in it should all continue to shorten, though some might do so less than others due to the 

weights on the segmental constraints. Empirically, looking at compression of the vowel as 

consonants are added to the onset and coda, Katz finds that the addition of a simplex onset or coda 

does result in compensatory shortening (of a “simplex” sort, i.e. compared to a similar syllable in 

which the onset or coda is empty), but that the degree depends on the consonant involved. The 
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concatenation of additional consonants to the periphery of the syllable, creating complex onsets or 

codas, sometimes but not always induces further “incremental” compensatory shortening of the 

vowel, depending on the sonority of the consonant closest to the vowel, and whether the cluster is 

in onset or coda position. Katz finds that “liquids condition incremental CS in both onset and coda 

position, nasals do so only in onset position, and obstruents don’t clearly induce incremental CS 

in onset or in coda position.” He also finds that “the amount of incremental CS for items with 

liquids as the inner consonant appears to be greater in coda than in onset position, especially for 

/l/” (p. 90). 

A second issue arises with respect to segmentation of the data (a necessary step if durations 

are to be measured). As anyone who has annotated phonetic production data can attest, there are 

rarely clear boundaries between segments, especially between vowels and sonorant consonants, 

and substantial parts of the duration of the speech signal are best described as transitions rather 

than steady states which clearly belong to one segment only. Rather than taking the approach of 

placing segment boundaries in the middle of these transitions, Katz uses a finer grained 

segmentation in which both steady states and transitions are coded for, and in fact posits that these 

transitions and their perceptual properties might help to explain some of the asymmetries seen in 

the data.  

Katz posits that the constraints on segment duration are fundamentally constraints on the 

recoverability of acoustic cues for the segment. These cues are taken to present in the segment 

itself, but due to coarticulation, can also be present in segmental transitions and even in adjacent 

segments. The presence and quality of such cues, however, depend on the segments. Therefore, 

Katz takes the recoverability to be equal to the duration of the steady state of the segment times 

some coefficient i, plus the duration of an adjacent segment transition multiplied by some 
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coefficient j, plus the duration of the adjacent segment times some constant k, where i, j and k 

depend on the acoustic and coarticulatory properties of the segments, and represent the extent to 

which the steady state, transition, and adjacent segment contain cues for the segment in question. 

Katz’s model, in summary, contains two constraint types, one on syllable duration (C1), and 

one on segment recoverability (C2), defined in (8) and (9). 

(8) C1 =w1 • (tσ - dσ)2 (p. 98) 

(9) C2 = w2 • (ts – (i ds + j dt + k da))
2 (p. 100) 

…where w1 and w2 are the constraint weights, tσ and ts¸ are the target durations for the syllable 

and the segment, dσ, ds, and da are the candidate durations of the syllable, segment, and segment 

transition. 

The combined cost of a candidate with just a consonant x and an adjacent vowel y is therefore the 

sum of the costs incurred by the syllable duration constraint, which involves the total duration (the 

duration of the consonant, vowel and transition), and two copies of the segment recoverability 

constraint: one for the consonant and one for the vowel (following Flemming (2001), Katz 

considers these to be in some sense the same constraint, so they share a weight, w2). 

(10) total cost = w1 • ((dx + dt + dy) – tσ)2 + w2 • (n dy + m dt + l dx) – tx)
2 + w2 • ((k dx + 

j dt + i dy) – ty)
2    (p. 101) 

Since it is primarily vowel duration that is being investigated, Katz makes several 

simplifications for the purposes of illustration. One is to assume that consonant cues are only 

present in the steady state of the consonant. Another simplification is that the baseline 

recoverability coefficient of the steady state of the vowel, i, is equal to 1—this does no harm, since 

what is important is the ratio between i, j, and k. These two simplifications reduce the equation to 

(11) below. Lastly, the duration of the transition is held constant, and assumed not to vary (though 
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it of course does systematically vary in Katz’ data). These simplifications are made so the 

predictions of the model with regards to compensatory shortening effects on the duration of the 

vowel proper in response to syllable complexity can be feasibly investigated. 

(11) total cost = w1 • ((dx + dt + dy) – tσ)2 + w2 • (dx – tx)
2 + w2 • ((k dx + j dt + dy) – ty)

2 

(p. 102) 

Once weights for the constraints and recoverability coefficients have been selected by hand, 

along with the fixed transition duration, the result is a grammar that can assign a cost to any 

candidate consisting of just a pair of durations—one for the steady state of the consonant and one 

for that of the vowel. As in Flemming (2001), the winning candidate can then be found by 

calculating the durations for these segments which minimize the total cost function in (11), taking 

partial derivatives and solving the resulting system of equations. For reasons already discussed, as 

long as none of the weights are set to zero, the winning candidate will generally be one which 

obeys none of the constraints entirely, but one in which the segments have each adjusted in 

duration as needed to create a syllable duration preferred by the syllable level constraint, thus 

accounting for the general pattern of compensatory shortening. 

The differences between adjacent consonants in their propensity to induce simplex (i.e. not 

incremental) compensatory shortening on the vowel can now be explained as well: if the 

coefficient on the recoverability of the vowel from the transition, j, is set to a higher value, the 

optimal duration of the steady state of the vowel predicted by the grammar will reduce. This is 

because, since the transition contains better vowel cues, the vowel duration constraint can be 

satisfied with less duration in the steady state portion of the vowel. The same is true of the 

coefficient on the recoverability of the vowel from the adjacent consonant, k. This prediction 

closely matches Katz’ empirical findings: the consonants that are a priori expected to contain 
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better vowel cues induce less (simplex) compensatory shortening. In a later chapter, Katz confirms 

experimentally that the consonants which induce more shortening do in fact contain better vowel 

cues. 

 

Figure 9: Figure 3.4. from Katz, 2010 (p. 112). Data from the production experiment (left) and 

model predictions (right) for consonant manners with high (rightmost bars) and low (center bars) 

vowel-recoverability coefficients. For production data, durations are in seconds. The upper bars 

for vowel-initial items represent closure and transition durations, in realizations where these 

categories are applicable. 

The differences between consonants in their propensity to induce incremental compensatory 

vowel shortening is also framed as a result of their perceptual properties, but the failure of some 

types of consonants to induce any incremental shortening at all is unexpected given the constraints: 

because of pressure from the constraint syllable duration, additional crowding should result in 

additional compression. To remedy this situation, Katz appeals to floor effects on the duration of 

vowels, positing that since vowels are not arbitrarily compressible, incremental shortening has its 

limits. Interestingly, this is same solution proposed by Klatt (1973b) in response to the same 

problem, namely that Klatt’s (completely different) duration model was also over-predicting the 

degree to which vowel shortening should occur in the cases where shortening effects should be the 

strongest. This pattern of hypo-additive shortening is in fact consistent with the Hyperadditive 

Lengthening Generalization described in Chapter 2. Explanations for such patterns which do not 
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rely on maximum compressibility effects will be hinted at in Chapter 4, and in the discussion 

section of Chapter 5. 

Another author who uses parabolic constraints on duration is Braver (2013), who does so in 

the context of investigating a vowel lengthening process in Japanese wherein phonologically short 

vowels are lengthened in monomoraic words, presumably in response to a phonological 

requirement that words be at least bimoraic. As Braver demonstrates, short vowels lengthened in 

this way do not become as long as underlyingly bimoraic long vowels, resulting in near-

neutralization of length in these environments.  

 

Figure 10: (8) from Braver, 2013 (p. 127). Three degrees of phonetic vowel length in Japanese. 

In order to model his duration data, Braver also uses a weighted constraint grammar with the 

parabolic durational constraints from Flemming, 2001, with which the reader is by now familiar. 

However, his grammars make use of a phonetic version of Output-Output correspondence, or 

“transderivational identity.” In particular, he employs a constraint (12) which governs the similarly 

of the phonetic durations of corresponding vowels in members of a morphological paradigm: the 

durations of vowels in less frequent paradigm members should, according to these constraints, not 

be too far off from the durations observed in the more frequent paradigm members. 
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(12) OO-ID-DUR: “The duration of a segment in the candidate should be faithful to the 

duration of the same segment in the base—the most frequent type in the candidate’s 

inflectional paradigm as applied to the candidate’s root.” (p. 134). 

Because monomoraic noun stems are in Japanese most often followed by function words 

called “particles,” which form a prosodic word with the stem to which they attach, these stems 

generally find themselves in bimoraic prosodic words such that no lengthening is necessary, and 

that it is only in the comparatively rarer case that these words are not followed by a particle (such 

as when they are spoken in isolation) that an additional mora must be inserted, and lengthening 

occurs. In these cases, where underlyingly short vowels are associated with an additional mora due 

to the bimoraic word requirement, OO-ID-DUR would nevertheless prefer that they not lengthen, 

since this would result in phonetic paradigm non-uniformity compared to the more frequent tokens 

of these words where the vowel is associated only to one mora. In competition with OO-ID-DUR 

are more general constraints ((13)-(14) which govern the relationship between morae and duration, 

ensuring that long vowels are in fact longer in the language. 

(13) DUR(μ) = TARGETDUR(μ): “The duration of a mora-bearing unit in the 

candidate, which bears a single mora in the output, should match the target 

(canonical) output duration of that mora-bearing unit (when it bears one mora) in 

the language at large.” (p. 129-30). 

(14) DUR(μμ)=TARGETDUR(μμ): “The duration of a mora-bearing unit in the 

candidate, which bears two moras in the output, should match the target (canonical) 

output duration of that mora-bearing unit (when it bears two moras) in the language 

at large.” (p. 131). 
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While in the simpler cases (short vowels corresponding to a single mora and long vowels 

corresponding to two) vowel duration is straightforwardly governed by one of the DUR 

constraints, in the lengthening case there is competition between OO-ID-DUR, which prefers a 

shorter vowel, and D(μμ)=TARGETDUR(μμ), which prefers a longer one. Since these constraints 

use the (by now familiar) parabolic violation functions based on deviance from durational targets, 

the winner in these cases will show compromise between short and long. The 

DUR=TARGETDUR constraints are taken, however, to have a higher weight, such that derived 

lengths will be closer to those of the underlying long vowel category. In this way, near-

neutralization is explained. 

Flemming & Cho (2015) use the Flemming (2001) framework to provide an account of the 

phonetic realization of both the F0 and timing aspects of the rising tone in Mandarin across 

multiple speech rates. Prior authors had variously described the phonetic realization of this contour 

tone as being determined by the alignment of the endpoints of the rise to segmental anchor points 

(AL and AH), the slope of the rise (Ts), and the magnitude of the rise (TM), with different authors 

employing different subsets thereof in their models of tone. The four specifications mentioned here 

cannot all be specified independently, because any three of them predict the fourth, as illustrated 

in Figure 11. 
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Figure 11: Figure 12 from Flemming & Cho 2017 (p. 20): “Schematic illustration of the conflict 

between realizing the magnitude, slope, and alignment targets for a rising tone. The dashed lines 

show the shape of the rise that satisfies the targets for rise magnitude and slope, while the solid 

lines schematize the actual slope and magnitude of the rise appropriate for the illustrated 

intervals between the alignment targets AL and AH.” 

Flemming and Cho therefore first empirically investigate which of these properties might be 

invariant across speech rate. Surprisingly, they find that in fact none of them are invariant, and that 

instead, as segmental material is made longer or shorter by changes in speech rate, all four 

properties vary. In particular, as speech rate increases, the beginning and endpoints of the rise 

come further before and after their segmental anchors, respectively, the slope increases, and the 

overall magnitude decreases, all compensating in tandem for the shortened duration of the 

segmental material.  

The authors suggest that this is because all four of these specifications (the two alignment 

anchors, slope, and magnitude) are constrained by the grammar, in that speakers are aware of 

optimal values for each, such that realization of the tones is phonetically over-specified. Since the 

four tonal specifications cannot all be satisfied absolutely, actual realizations will involve 

compromise. To model their data, they propose four phonetic constraints, with targets and 

parabolic violation functions, which again turn out to be best satisfied by compromise candidates 

in cases where the constraints cannot all be satisfied. The authors take the empirical facts in this 
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case, namely the lack of phonetic invariants in contour tone specification, to support their phonetic 

HG framework. 

3.3.4. Targetless constraints with heterogeneous violation functions 

Windmann et al. (2015) propose a model for duration which also uses the Harmonic Grammar 

formalism, and phonetic constraints on duration with continuous violation functions. However, the 

violation functions used are very different from those already discussed, and the shapes of these 

functions are constraint-specific. In particular, the authors treat realization of segment duration as 

arising from the compromise between three types of constraints: reduction effort (E), perceptual 

efficiency (P), and a limit on the overall duration of time available for speech (D). The definitions 

and violation functions of these types of constraints are summarized in Table 5 below. 

Constraint Definition Violation function  

E Minimize phonatory effort at 

the syllable level 
𝐸 = ∑ 𝜂𝑖√𝑠𝑖

𝑖

 
(square root) 

Ps Maximize perceptual clarity at 

the syllable level 
𝑃𝑆 = ∑ 𝑒−𝜓𝑖𝑠𝑖

𝑖

 
(inverse exponential) 

Pw Maximize perceptual clarity at 

the word level 
𝑃𝑤 = ∑ 𝛼𝑤𝑗

𝑒−𝜓𝑖𝑤𝑗

𝑗

 
(inverse exponential) 

D Transmit efficiently (controls 

speech rate) 
𝐷 = ∑ 𝛿𝑖𝑠𝑖

𝑖

 
(linear) 

Table 5: Constraints and cost functions used by Windmann et al. (2015), where…  

si is the duration of the ith syllable,  

wj is the duration of the ith word,  

ηi is an effort coefficient for the ith syllable,  

ψi  and ψj  are perceptibility coefficients for the ith syllable and jth word,  

αwj is a coefficient for the strength of word prominence in the jth word,  

and δi is a speech rate coefficient for the ith syllable. 
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The first constraint, E, which regulates phonatory effort, prefers syllable durations which are 

shorter, on the assumption that, over certain length, longer productions of syllables are more 

effortful. The authors, for abstraction, ignore factors related to articulatory effort, which they 

presume are only relevant for “the lower end of the temporal scale”, and can be ignored when 

considering only syllable durations which are long enough to avoid articulatory difficulties.16 

Somewhat arbitrarily, E assigns violations proportional to the square root of the duration of the 

syllable. The violations are scaled by a coefficient ηi which allows the constraint to penalize 

different syllables at a different rate, presumably depending on their articulatory properties. 

The second type of constraint, P, which regulates perceptual clarity, applies both at the level 

of syllables and at the level of words. It always prefers longer syllables and longer words, on the 

assumption that longer utterances contain more perceptual cues. However, lengthening in order to 

provide better cues has diminishing returns: a syllable that is, for instance, 500 ms long will likely 

already be very perceptible, so increasing the length further does not very much increase 

perception. Therefore, the authors posit that the violation function for this family of constraints is 

the inverse exponential function, 𝑃𝑠 = 𝑒−𝜓𝑖𝑠𝑖 for the syllabic version, so that it assigns one 

violation when duration is zero and decreasing violations as the duration increases, but with a 

smaller slope the greater the duration. Once again, a syllable-specific coefficient is used to make 

this constraint apply differently to different kinds of word and syllables, for example to 

differentiate between syllables with different prosodic or metrical properties. The word-level 

perceptual constraint, Pw, is analogous. 

                                                 

16 Windmann et al.’s assumption that short syllables are always less effortful to produce is admittedly not 

a good one, since quicker productions will often be harder to articulate faithfully. However, the authors assume 

that short syllables will be phonetically reduced when this is the case, counterbalancing the increase in effort  

and, after this is taken into account, the effort expended on a syllable will indeed correlate with its duration. 
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The last constraint, D, is a constraint on the overall time of an utterance, treating time as a 

“shared resource.” Similarly to the constraint on phonatory effort, it is violated more the longer 

the utterance, and contains a syllable-specific coefficient to regulate local changes in speech rate, 

but in this case the authors decide to make the violations it assigns a linear function of duration. 

The weight of this constraint will also function as the mechanism by which the grammar regulates 

global speech rate. 

 

Figure 12: Figure 2 from Windman et al., 2015 (p. 82). Model architecture. Cost functions D 

(utterance level), PW (word prominence; only shown for accented word WACC, as parameter xwj is 

set to 0 elsewhere) and E/PS (syllable level; σ; apostrophe denotes stresses) as well as stress 

parameter ψi (other parameters assumed to be constant) are plotted as a function of respective 

constituent durations for a hypothetical SUUSUUUS sequence. The y-axes show the costs as a 

function of duration (x-axis). 

The overall cost of an utterance containing one or more words or syllables is the weighted 

sum of the violations of the articulatory, perceptual, and speech rate / efficiency constraints, scaled 

by how important each one is to the grammar (essentially its weight), the equation for which is 

given below in (12): 

(15) 𝐶 = 𝛼𝐸𝐸 + 𝛼𝑃𝑃 + 𝛼𝐷𝐷 (p. 79) 

For some input with a number of syllables, given some particular values for the various 

coefficients, the cost is a function of the durations of each of the syllables. The set of syllable 
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durations which minimize the cost function is taken to be the winner. To get a sense for how this 

composite cost function, the sum of several very different functions, looks, consider the simplest 

possible case: an utterance consisting of just a single syllable. In this case, the cost function is 

merely a function of s, the duration of the syllable (13). 

(16) 𝐶 = 𝛼𝐸𝜂√𝑠 + 𝛼𝑃𝑒−𝜓𝑠 + 𝛼𝐷𝛿𝑠  (excluding the Pw term for simplicity) 

Figure 13 plots two versions of this function, using two values for ψi (in this case the values 

for stressed and for stressless syllables) demonstrating how changing this coefficient will result in 

a longer or shorter optimal syllable length. 

 

Figure 13: Figure 8 from Windmann et al., 2015 (p. 83): "Solid lines: cost function C (excluding 

PW) for stressed (black) and unstressed (gray) syllable with above parameter settings, with circles 

marking optimal durations. Dashed lines: partial cost functions PS for stressed (black) and 

unstressed (gray) syllable with above parameter settings.” 

Note that this function has two local minima: one at zero, and another which varies depending 

on the coefficients in the grammar. This, the authors argue, “reproduces the key qualitative 

property of the natural data: the emergence of the incompressibility bifurcation, as is evident from 
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the existence of deletions despite the positive regression intercept ...and the absence of durations 

that lie in the ‘‘incompressible region” between zero and the regression intercept” (p. 83). 

Windmann et al’s model also makes an interesting prediction with regards to how multiple 

factors influencing duration should interact. They consider the effects of accentedness on stressed 

syllables and unstressed syllables. As discussed in Chapter 2, stressed syllables are lengthened in 

accented environments to a proportionally greater degree than are unaccented syllables, which are 

less affected by accent, and, with the right model parameters, Windmann et al’s model predicts 

this to be the case. 

 

Figure 14: Figure 7 from Windmann et al., 2015 (p 85): “Absolute (left) and proportional (right) 

amount of accentual lengthening in stressed and unstressed syllables in the simulated utterance 

(bisyllabic accented word).  

The authors offer the following explanation of how their model derives the asymmetry: “PW 

requires lengthening of all syllables within its scope. This, in turn, allows the model to save on PS 

for the individual syllables within the accented word. Yet this applies only as long as lengthening 

an individual syllable still makes for a sufficient reduction in PS . Crucially, optimal duration is 

closer to this point for the unstressed than for the stressed syllable already without the influence 
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of PW , due to the different gradients of PS that stem from the syllable prominence parameter ψi. 

This can be observed in Fig. 8.” (p 85). In other words, in an unaccented position, the location of 

the minimum of the composite cost function for stressless syllables is at a location where the 

syllable’s contribution to PS is rather shallow: lengthening a stressless syllable from this duration 

has diminishing returns with regards to its perceptibility. The same is less true for stressed 

syllables: the location of the minimum of the composite cost function in accented position is at a 

location where the PS component is still quite steep: at this duration, the perceptibility of a stressed 

syllable would benefit a lot from lengthening. Therefore, when accented, a word level pressure to 

lengthen, applies to a word with stressed and stressless syllables, a synergistic response to this 

pressure is to lengthen the stressed syllables more than the stressless ones, since this lengthening 

satisfies two of the constraints (PW and PS) at once. 

In summary, Windmann et al. outline a harmonic grammar for the duration of syllables in 

larger utterances which uses very different constraints than prior authors working within the 

phonetic HG framework. In particular, their constraints variously make use of square root, linear, 

and inverse exponential violation functions, and have syllable- and word-specific coefficients. 

Two of the constraints, E and D, have a monotonically increasing cost function, while one family 

of constraints P, has a monotonically decreasing cost function. None of the constraints have 

Flemming-style targets (or, stated another way, all the targets are at 0)—instead, the effect of a 

phonological factor (say, syllable stress) is incorporated using the coefficients, effectively 

adjusting constraints’ weights, rather than the location of their optima. When added together, the 

three monotonic constraints generally sum to a composite cost function which has one local 

minimum at zero, and another local minimum which is not at zero or infinity, allowing the 

grammar (in cases where the second minimum is smaller) to predict that syllables will have a 
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duration which depends on the shape of the input, the constraints, and their parameters. The square 

root, linear, and inverse exponential violation functions were in fact admittedly chosen by the 

authors in part because their sum has this desirable property. Nevertheless, the eschewal of the 

need for constraint targets could be a desirable property for a grammar to have with respect to 

learnability, as will be discussed in Chapter 6. 

3.4. A taxonomy 

Clearly, in developing a constraint-based account for phonetic phenomena, a number of 

theoretical and implementational decisions need to be made. Three such decisions which are 

approached differently by different authors are discussed here. 

Firstly, there is the question of what sort of constraint grammar framework to use. The authors 

just discussed have described grammars resembling Classical OT, with ranked constraints 

(Boersma, 2009, 2011), or Harmonic Grammar, with weighted constraints (Zsiga, 2000; 

Flemming, 2001; Katz, 2012; Braver, 2013; Flemming & Cho, 2017), but additional “flavors” of 

Optimality Theory abound: Stochastic OT (Boersma, 2003), Noisy Harmonic Grammar (Beorsma 

& Pater, 2008), and Maxent (Goldwater & Johnson, 2003), for example, are all variants that 

explicitly model variation. Orthogonally to this, each of the previously discussed versions of OT 

can be treated as a single parallel grammar, or a series of grammars as posited by proponents of 

Harmonic Serialism (McCarthy, 2000), and many other finer-grained bifurcations of the 

grammatical taxonomy are possible. 

Secondly, there is the question of how to handle the phonetic candidate space. It can be treated 

as a vector space of phonetic values, or as a discretization of this space into a finite number of 

candidates that represent ranges or “bins” of possible phonetic values. Both approaches have their 
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challenges: the former necessitates a sophisticated EVAL function which calculates winners rather 

than selecting them from a candidate set (Flemming, 2001), while the latter arbitrarily chunks what 

is more naturally seen as a continuum, and may itself run into implementational problems when 

several phonetic values are being calculated in parallel, such that the candidate space is 

multidimensional, making the number of bins very large. 

Thirdly, there is the issue of constructing the constraints themselves, and in particular deciding 

how they should assign violations. They can do so in a categorical way, akin to the constraints 

used in most phonological grammars, or in a continuous way. If they do so in a continuous way, it 

is generally a function of the degree of deviance of some phonetic measurement from some 

predetermined target. This target can be itself a parameter of the grammar/inventory, or it can be 

constant, for example set always to 0. The number of violations assigned could in principle be any 

function of this deviance, for example a linear function (this probably won’t work well; see 

discussion below), a parabolic function (Flemming, 2001; Katz, 2010; Braver, 2013; Flemming & 

Cho, 2017), a hemiparabolic function, in which violations are only assigned when the value falls 

to one side of the target (this dissertation; Hayes & Schuh, MS), or a variety of heterogeneous 

violation functions depending on the constraint involved (Windmann et al., 2015). 

Table 6 below summarizes just a part of this possible space of grammars, classifying the 

accounts given by some of the authors discussed. The rows represent OT formalisms, while the 

columns represent the constraint violation functions used. Each cell is broken into two regions 

representing the possibilities of discretizing the candidate space (top) for the purposes of 

implementing GEN and EVAL, or leaving it continuous (bottom). 
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 Categorical 
Linear about 

Targets 

Parabolic about 

Targets 

Hemiparaboli

c about 

Targets 

Sqrt, Linear, 

Inverse Exp. 

Classical OT 

Boersma 2 2 2 2 

1 2 2 2 2 

Harmonic 

Grammar 

Zsiga17 3
    

1  3
 

Flemming, Katz, 

Braver, 

Flemming & Cho 

 Windmann et al 

Stochastic OT, 

Noisy HG 

 3    

1 3    

Maxent 

 3 4 

Chapter 6,  

Hayes & 

Schuh 

 

1 3 4 5 5 

Table 6: A taxonomy of some possible formulations of phonetic constraint grammars. Where 

cells are divided into pairs, the top one represents an implementation with a discretized candidate 

space. Shaded areas denote theoretical combinations judged impossible. 

It is worth noting that certain combinations, shaded in grey, either aren’t workable, or are 

degenerate in the sense that they achieve the same effect as a much simpler grammar—these cases 

are discussed below. However, as can be seen, of the possible combinations only a few have been 

tried.  I make this point to try to convince the reader that each of the proposed formalisms for 

                                                 

17 While Zsiga ends up advocating for alignment constraints which use phonetic “windows”, following 

Byrd (1996b), and Keating (1990a), the violation functions of these constraints are not discussed explicitly, and 

so are assumed here to be categorical (i.e. uniform within the regions inside and outside of these windows). Zsiga 

does not specifically mention Harmonic Grammar, but does argue for the use of weighted constraints instead of 

ranked ones, in response to the need to account for phonetic compromise. 
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phonetic grammars, Chapter 4 of this dissertation included, is best viewed as a constellation of 

quasi-independent theoretical decisions, and that rather than investigating the predictions and 

successes and failures of these accounts wholesale, it would be better to try to investigate the 

properties and predictions of the theoretical decisions themselves. To this end, the following 

paragraphs briefly discuss a few notable properties of particular regions of the taxonomy. 

1) When using constraints that penalize candidates categorically based on whether the 

candidates phonetic value equals (or approximately equals, or falls into a window 

around) some phonetic value, only a finite number of candidates or categories of 

candidates can be distinguished from each other. For example, if the violations are 

binary, there are only 2n possible violation profiles. Viewing the candidate space as 

continuous is not useful in these accounts, since the cost function is discrete (local 

regions of the candidate space will be flat with respect to how many violations they 

incur), so methods for algebraically minimizing the cost function are not applicable to 

these cases. 

2) With strict ranking, the winning candidate will completely satisfy the top-ranked 

constraint, so only the location of the minimum of its violation function is relevant, 

and not the shape. This makes constraints with continuous violation functions 

degenerately equivalent to families of categorical constraints in which constraints 

barring all but one phonetic value (the optimal one) are undominated. 

3) As already discussed by other authors (Flemming, 2001; Katz, 2010; Braver, 2013; 

Hayes & Schuh, MS), if violations are assigned as a linear function of the deviation 

from a phonetic target, whenever two constraints conflict with respect to some 
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phonetic target, the optimal candidate will be the one that exactly achieves the target 

of the higher ranked constraint, as shown in Figure 15.  

 

Figure 15: Taken from Hayes & Schuh (MS), p. 38; adapted from Flemming & Cho (2017): 

Violation functions for two constraints and their summed violations, comparing parabolic with 

linear violation functions. Linear violation functions fail to predict compromise between targets. 

This makes these violation functions degenerately similar to categorical ones in terms of the 

outputs selected by harmony-maximizing grammars such as HG, contravening the primary 

advantage of using continuous violation functions in the first place, which is the ability to capture 

the empirical patterns of phonetic compromise reported throughout the literature.  In OT variants 

which predict variation (such as maxent), however, the predictions of a model with linear violation 

functions are not completely degenerate: while the most probable candidate will still be the one 

which matches the target of the highest-weighted constraint, since variation in the output is 

predicted by these grammars, the other constraints will still be able to influence how often non-

optimal candidates are predicted to occur. 
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4) If only parabolic violation functions are used in a maxent grammar, the (free-)variation 

of any one phonetic value in a particular phonological context is predicted to be 

normally distributed (section 4.1.3). This prediction of normal distributions of 

phonetic variables across multiple tokens is in fact an empirically testable one, and 

will be revisited in the discussion section of Chapter 5. 

5) Calculating the probability distribution over an actually continuous space of 

candidates in maxent grammar (rather than simply calculating the most harmonic 

candidate, as in HG) is in principle possible, but runs into mathematical obstacles 

related to computing the normalizing constant Z that is needed to convert between 

eharmony values and probabilities, a problem that does not arise if the candidate space is 

discretized (section 4.1). 

The following chapter extends the growing literature on phonetic constraint grammars by 

putting forth a proposal which investigates both a novel row of the taxonomy, moving from 

harmonic grammars to maxent grammars, and a novel column, moving from parabolic constraints 

to hemiparabolic ones, and explores some predictions about the behavior of phonetic duration that 

emerge from the maxent framework and from choices about constraints and constraint violation 

functions within this framework. 
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4. Maximum entropy phonetic harmonic grammars 

This chapter lays out a proposal for moving from the Harmonic Grammars proposed by 

Flemming and others (Katz, 2010; Flemming & Cho, in press) to Maxent Grammars, also already 

in use by phonologists, which have the advantage of being able to learn from and model data which 

contains variation.18 The feasibility of using Maxent Grammars to predict not only optimal values 

but probability distributions over the values of acoustic phonetic targets, such as segment duration, 

will be demonstrated. 

The first part of this chapter discusses the application of Maxent to the realm of Phonetics, 

discussing the potential advantages of this approach over the use of other similar phonetic 

constraint grammars, as well as some of the issues related to GEN and EVAL that arise when using 

Maxent to select phonetic candidates as opposed to phonological ones. 

The second part of this chapter lays out the constraint families for duration that will be used 

in this dissertation. These are similar to the constraints used by Flemming (2001), Katz (2010), 

and others, but differ in that they are asymmetrical, or “hemiparabolic,” and that constraints can 

therefore specifically call for shortening or lengthening. 

Finally, demonstrations of how these grammars would work in practice are provided in the 

form of toy examples with maxent grammar fragments, their outputs are investigated, and some of 

the empirical predictions of this kind of model discussed. 

                                                 

18 The same approach is taken in a concurrent work, Hayes & Schuh (MS), who use Maxent grammars to 

model several aspects of the rajaz meter of Hausa, including the phonetic durations of the syllables produced. 

In their grammar, general linguistic constraints on duration interact with metrical constraints that enforce 

rhythmic consistency at several levels. 
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4.1. Using maxent for phonetics 

Maximum Entropy (Goldwater & Johnson, 2003) is an OT framework which assigns 

candidates probabilities, rather than selecting a single optimal candidate. The idea is that any given 

candidate x should occur with a probability that is related to its harmony, that more harmonic 

candidates occur more often than less harmonic ones. This decision also allows the grammar to 

assign a likelihood to any particular set of observed data, and this ability is in turn the basis for a 

learning algorithm for these grammars. 

The applicability of Maxent to the current program, modeling phonetic values with 

constraints, is intuitive, because phonetic values unquestionably exhibit lots of unconditioned 

variation across tokens. If this variation is, from a linguistic perspective, purely random, then a 

simpler model which predicts a single winner for each input to the grammar can be argued to be 

sufficient, so long as “noise” is introduced into the model. If, however, the pattern of variation is 

found not to be random, and in particular if the shape of the distribution of some phonetic variable 

is found to be linguistically meaningful, single-winner models will be at a loss to account for this 

without appealing to some additional mechanism. Maxent, on the other hand, explicitly models 

and predicts probability distributions over the candidates for each input, and in fact assigns no 

special status to any single optimal candidate. 

Another advantage of Maxent19 Grammars relates to their learnability. Given a set of data 

annotated with violation profiles, the objective function over the space of constraint weights is 

                                                 

19 Though Flemming and Cho (2017) automatically learn the weights and targets of their HG grammar 

fragment by treating the single “winner” phonetic values output by the grammar as instead being the centers of 

normal distributions, such that experimental data can be assigned probabilities as a function of particular model 

parameters rather than simply matching or not matching the output, and the best model can be learned via log-

likelihood maximization, much as in Maxent learning.  
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provably convex, and the weights which maximize the likelihood can therefore be easily learned 

by any number of optimization algorithms (Goldwater & Johnson, 2003; Hayes and Wilson, 2008). 

4.1.1. Computing probabilities in maxent phonetic grammars 

In order to understand the challenges unique to applying the maxent grammar formalism to 

phonetic variables like duration, it is first necessary to understand the processes by which maxent 

assigns probabilities to candidates in the more familiar case where the candidates are categorical. 

First, the harmony for each candidate is computed by taking the weighted sum of its violations 

(here assumed to be a positive number, where a larger number is less harmonic, and 0 is the most 

harmonic value; note that in some other accounts harmonies are treated as negative numbers). 

Then, for each candidate x, a “maxent value” equal to e-harmony(x) is generated. The probability of 

the candidate occurring is taken to be exactly proportional to this maxent score, such that a 

candidate with double the maxent score of some other candidate is exactly twice as likely to occur. 

However, the maxent scores of the candidates do not sum to one, so even though they are 

proportional to these candidates’ probabilities, in order to convert them into actual probabilities, 

they have to be normalized. To do this, a normalizing constant Z is computed by summing over 

the maxent values of all candidates, and the individual maxent values are then divided by Z. 

/UR/ C1 (w = 2) C2 (w = 5) harmony e-harmony probability 

[x1] 2  2 0.135 0.946 

[x2]  5 5 0.00674 0.047 

[x3] 2 5 7 0.000912 0.006 

 
Z = 0.143 

Table 7: Maxent grammar example. 
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In the phonetic domain, if the candidate space is taken to be a continuous vector space—a 1-

dimensional space if the grammar is determining a single phonetic value, or a multidimensional 

one if more than one phonetic value is being determined in parallel—the situation is somewhat 

different. As in the categorical case, any one candidate can easily be assigned a harmony and a 

maxent value by assessing its violations. However, doing so for each of the infinitely many 

candidates in the candidate set is obviously not feasible. Furthermore, even if one were to do so, 

the sum of their maxent scores would be infinite, and the probability of any particular candidate 

would therefore necessarily be zero. This makes sense: if candidates are point objects in a vector 

space, they should each only be infinitesimally likely. However, regions of the candidate space do 

have probability. For example, while the probability that a vowel will turn out to be exactly 89 ms 

long is infinitesimal, the probability that it will be between 89 ms and 90 ms is not. 

This state of affairs leads to two different approaches to computing probability distributions 

over the infinitely many candidates, which are described in the sections that follow. 

4.1.2. Computing probability with a discretized candidate set 

The first approach is to simply discretize the candidate space, à la Boersma (2009). If the 

vector space, be it one- or multi-dimensional, is broken into bins, the set of (plausible) candidates 

becomes finite. For example, if the duration of one segment is being modeled, the candidate set 

can be approximated by a list of the durational regions 0-5ms, 5-10ms, 10-15ms, etc. These bins 

could be larger or smaller, but in any case, there will be a finite number of them, assuming no 
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negative durations are possible,20 and that there is also some upper bound on phonetic duration.21 

The process of computing probabilities in this case is just the same as in the phonological case. 

To illustrate, consider a grammar which has a single constraint, with a weight w = 1. Following 

Flemming and others, let’s set the cost of violating this constraint (and therefore the total cost in 

this grammar) to be the square of distance between the duration x of the candidate (expressed in 

centiseconds, for ease of illustration), and a target duration value, t = 7.5 cs. If the candidate space 

is discretized with a resolution of 2 cs, and capping duration at 20 cs, the following tableau contains 

the complete list of candidates, along with their violations, harmony, maxent score, and 

probabilities. 

                                                 

20 Durations of exactly 0 are plausible if some cases of deletion are taken to be phonetic processes rather 

than phonological ones (Windman et al., 2015), for example where some process of phonetic reduction applies 

to a variable degree and can result in apparent deletion in the most extreme cases. A hypothetical negative 

segment duration could perhaps be thought of as an even more extreme case, where a drive for phonetic syncope 

is so strong that it is also responsible for gestural overlap between the (now-adjacent) surrounding sounds, but 

this is far-fetched. 

 
21 The Guinness World Record for longest continuous vocal note is, at the time of writing, an [u] produced 

in 2016 by a Turkish man named Alpaslan Durmuş for 1 minute and 52 seconds, so it’s probably safe to exclude 

durations exceeding 2 minutes from the candidate set. Alternatively, since any descriptively adequate grammar 

should already penalize very long durations, there will necessarily be some duration above which the grammar 

assigns less than 0.000000001% of the probability mass, such that excluding candidates longer than this duration 

will have a negligible effect on the predicted probability distribution. 
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[x] 

DUR[x]  

w = 1, t = 7 cs harmony e-harmony probability 

0-1 cs 49 49 0.0000 0.0000 

1-2 cs 36 36 0.0000 0.0000 

2-3 cs 25 25 0.0000 0.0000 

3-4 cs 16 16 0.0000 0.0000 

4-5 cs 9 9 0.0001 0.0001 

5-6 cs 4 4 0.0183 0.0103 

6-7 cs 1 1 0.3679 0.2075 

7-8 cs 0 0 1.0000 0.5641 

8-9 cs 1 1 0.3679 0.2075 

9-10 cs 4 4 0.0183 0.0103 

10-11 cs 9 9 0.0001 0.0001 

11-12 cs 16 16 0.0000 0.0000 

12-13 cs 25 25 0.0000 0.0000 

13-14 cs 36 36 0.0000 0.0000 

14-15 cs 49 49 0.0000 0.0000 

Z = 1.7726 

Table 8: Violations maxent values, and probabilities for a single-grammar constraint with a 

discretized candidate set. 
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Figure 16: Violations, maxent values, and probabilities as a function of duration for a single-

constraint maxent grammar with a discretized candidate set 

Note that, using this discretized approach, we are in effect creating a model of what will appear 

in a histogram of the phonetic values that will be observed for a given input across multiple tokens. 

4.1.3. Computing probability density with a continuous candidate set 

The second approach is to leave the candidate space continuous, treating each candidate as a 

point object. The violations assigned are already a continuous function of candidate duration, as 

are the maxent values, so there is no need to compute these on a candidate-by-candidate basis. 
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Figure 17: Violations and maxent values as a function for duration for a single-constraint maxent 

grammar with a continuous candidate set. 

However, since the probability of each possible phonetic value is infinitesimal, a change needs 

to be made to our conception of the relationship between maxent values and candidate probability. 

In particular, the conceptual change is as follows: instead of taking a candidate’s maxent value to 

be proportional to its probability, we must instead take it to be proportional to that candidate’s 

probability density. 

For readers unfamiliar with probability density, it may help to momentarily consider what is 

meant by density in the physical realm. Imagine for a moment that you are a Greek philosopher 

unaware of (or perhaps just opposed to) the idea of atomism, and believe simple substances, like 

water or lead, to be undifferentiated masses. Being familiar with the work of Zeno of Elea, 

however, you realize that since volumes of these substances could theoretically be halved, and 

then halved again, forever, that there must be an infinite number of parts to even a small object. 

Since the weight of an object is distributed throughout it, each of these parts, you reason, must 

have weight. However, since there are infinitely many of them, each must have, on average, no 

weight at all. Further complicating matters, similar volumes of water and of lead have very 
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different weights, despite both being composed of infinitely many weightless subparts. While one 

solution to this paradox would be to wait around for Isaac Newton to invent calculus, a stop-gap 

measure would be to conceive of weight as coming not from the many individual points in a 

substance, but collections of them, where the relationship between a volume of points and its 

weight is the substance’s density. Note that density need not be the same throughout an object: 

different parts of the object could have different densities, and the density could even vary 

continuously throughout the object (though in this last case computing the weight probably would 

require waiting for Isaac Newton, or at least the use of a scale).  

The same idea is applicable to the notion of probability distributions over vector spaces of 

phonetic values. Each point in phonetic space, rather than having a probability, will have a 

probability density: a ratio between the volume of the infinitesimal region around that candidate 

in phonetic space and the probability of that region, and it is this value which is computed by the 

grammar for any particular candidate. As a concrete example, take our single-constraint grammar 

for duration. Figure 18 graphs the probability density in Hz22 of the candidates. 

                                                 

22 The reader may be wondering why hertz have suddenly appeared in a dissertation on duration. The reason 

is that probability density is probability over some phonetic space, and, since the probability component is 

unitless, it will have units that are the inverse of the units of the phonetic space in question, which in this case 

are units of time. 1 Hz can be thought of as equivalent to the probability density of a candidate duration in a 

continuous uniform distribution 1 second wide. 
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Figure 18: Predicted distribution for a single-constraint maxent grammar with a continuous 

candidate set. 

Probability, a property of ranges of candidate durations, corresponds to the area under the 

relevant portion of the maxent value curve. The total area under the curve, therefore, must equal 

1. Since we take maxent values to be proportional to probability density, computing probability 

density simply involves dividing the maxent values by a normalizing constant Z, which must be 

the total area under the maxent value curve. Finding Z in these grammars therefore involves taking 

the definite integral of the maxent value function, itself the exponential function of the harmony 

function of the candidates. 

(17) ℎ(𝑥)  = (𝑥 − 𝑡)2 

(18) 𝑃(𝑥)  = 𝑒−ℎ(𝑥)  = 𝑒−𝑤(𝑥−𝑡)2
  where P(x) is the maxent value of x 

(19) 𝑍 = ∑ 𝑃(𝑥)𝑥 = ∫ 𝑒−𝑤(𝑥−𝑡)2∞

∞
= √

𝜋

𝑤
 

(20) 𝑝𝑑(𝑥) =
𝑃(𝑥)

𝑍
= √

𝑤

𝜋
𝑒−𝑤(𝑥−𝑡)2
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...where P(x) is the maxent value of the candidate with duration x, and pd(x) is its probability 

density.  This is exactly the equation for the normal (or Gaussian) distribution, with the mean of 

the distribution μ = t, and the variance of the distribution σ2 = 2/w.  

(21) 𝑓(𝑥 | 𝜇,  𝜎2) =  
1

√2𝜋𝜎2
𝑒

−
(𝑥−𝜇)2

2𝜎2  

A famous fact about the function 𝑒−(𝑥−𝜇)2
 is that its definite integral, taken from negative 

infinity to infinity, is √𝜋. This is notable because the integral of this function does not have a 

closed-form solution in the general case (its integral is rather opaquely named the “error function”), 

so that if the definite integral of such a function is taken over other ranges of values, like 0 to 

infinity, or 0 to 20, it can only be approximated. 

Because sums of violations due to constraints with parabolic violation functions like the ones 

proposed by Flemming (2001) will themselves be parabolas, Maxent phonetic grammars 

consisting of only these sorts of constraints will always output, for any particular phonetic variable, 

a predicted distribution which is Gaussian in nature. 

4.1.4. Excursus on the feasibility of continuous candidate sets 

While this method of computing Z appears to work for our very simple grammar, the 

feasibility of implementing this step more generally depends on the violation functions that are 

chosen for the constraints, and especially on the number of phonetic values being computed, since 

additional phonetic variables in the candidate will result in a multi-dimensional candidate space, 

making the space under the maxent curve a volume rather than an area. In this case a multiple 

integral would need to be taken to compute Z. 
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As a concrete example, consider the grammar from Flemming (2001) governing CV 

coarticulation. The two phonetic values that are output by the grammar are the F2(C), the F2 locus 

of the consonant, and F2(V), the second formant of the vowel, and these values are determined by 

the interactions of three constraints: ID(V), ID(C), and MINEFFORT. The overall cost (i.e. 

harmony) in this grammar is given by (15). 

(22) 𝐶 = 𝑤𝑐(𝐹2(𝐶) − 𝐿)2 + 𝑤𝑣(𝐹2(𝑉) − 𝑇)2 + 𝑤𝑒(𝐹2(𝐶) − 𝐹2(𝑉))2   p(20) 

For visual clarity and abstractness, let us replace the two phonetic values governed by this 

grammar with x and y, the constraint weights with w1, w2 and w3, and the targets and loci with t1 

and t2. From the cost (i.e. harmony) function, we can calculate the maxent value function P(x,y). 

This function is plotted in Figure 19. 

(23) ℎ(𝑥, 𝑦) = 𝑤1(𝑥 − 𝑡1)2 + 𝑤2(𝑦 − 𝑡2)2 + 𝑤3(𝑥 − 𝑦)2 

(24) 𝑃(𝑥, 𝑦) = 𝑒𝑥𝑝(−𝑤1(𝑥 − 𝑡1)2 − 𝑤2(𝑦 − 𝑡2)2 − 𝑤3(𝑥 − 𝑦)2) 

        

Figure 19: Maxent value as a function of F2(C) and F2(V) (x and y, respectively) in a maxent 

grammar with ID(V), ID(C), and MINEFFORT, with the consonant F2 locus set to 1700 Hz, the 

vowel F2 target set to 1000 Hz, and all weights set to 1, following Flemming (2001). Durations 

are represented in hectohertz (102 Hz), rather than hertz, for visual clarity. 
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Computing Z in a more complex case like these will, since Z is now a volume, necessitate 

integrating first over one of the phonetic variables, and then over the other. However, the result of 

integration by just one of the variables is not itself always integrable (depending on the constraints’ 

functions, and the range of durations considered). This presents a significant mathematical 

roadblock. While a way of reliably computing Z for maxent curves in arbitrary-dimensions may 

exist, after much effort, I have not been able to find one. 

While computing Z in order to normalize the height of the maxent value curve may seem like 

a formality, it is essential for maxent learning: fitting the parameters of such a grammar to data 

will necessarily involve computing Z many times for many tableaux with different parameter 

values. Since one of the goals of this dissertation is to algorithmically learn the parameters of 

maxent phonetic grammars, the continuous candidate space approach was ultimately abandoned 

in favor of discretizing the candidate space into “bins” (the first approach discussed in this section) 

and the implementation of the learning algorithm provided in Chapter 6 reflects this decision. To 

readers skeptical of the discretized candidate space approach (which admittedly is less 

mathematically elegant), I point out that, as the bins are made smaller, the predictions of the 

discretized approach converge with those of the continuous approach, and so the former can be 

viewed as an arbitrarily good approximation of the latter with fewer implementational barriers. 

4.1.5. Constraint violations and phonetic distributions 

The proposals for phonetic constraint grammars discussed in the previous chapter all have the 

property that they predict a single winner. For such models, the variation in phonetic values across 

tokens generated by the same grammar must therefore be explained via another mechanism, such 

as noise. For maxent phonetic grammars, however, phonetic token variation is a direct result of 
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the grammar. The exact shape of the distribution of any particular phonetic value depends on the 

constraints that regulate that value, and in particular on their violation functions. 

If all the constraints assign violations in a parabolic fashion, the distribution of any given 

phonetic variable will be a normal (or Gaussian) distribution. This is because the harmony of a 

candidate will be the sum of a number of parabolic violation functions, and the sum of several 

parabolas is itself a parabola. Thus, limiting violation functions to be of this form in a maxent 

grammar makes a strong empirical prediction: that random variation in phonetics, holding 

phonological factors constant, should be normally distributed.  

The use of other violation functions, for example the inverse exponential, square root, and 

linear functions employed by Windmann et al. (2015), would under a maxent account predict very 

different durational distributions: ones related to the inverse exponentials of these violation 

functions and their sum. For example, the harmony function given by their model for a single 

stressed syllable in isolation (using the parameters from p. 84) is given in (22), and the 

corresponding maxent value function in (23), both also plotted in Figure 20. Note that since this 

harmony function has two local minima—one at zero and one at some positive duration—the 

predicted distribution is bimodal, predicting deletion or near deletion in some tokens and a range 

of positive values in other cases, to the exclusion of durations in between.  

(25) ℎ(𝑥) = 3√𝑥 + 5𝑒−2𝑥 + 𝑥  

(26) 𝑃(𝑥) = 𝑒−ℎ = 𝑒𝑥𝑝(−3√𝑥 − 5𝑒−2𝑥 − 𝑥)   
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Figure 20: Harmony and maxent value functions in a hypothetical maxent grammar with the 

constraints proposed by Windmann et al. (2015). 

While the examples above demonstrate how the shape of predicted probability distributions 

is related to the choice of constraint violation functions, the maxent framework also makes certain 

predictions which do not depend on this choice. One such prediction involves the consequences of 

adjusting constraint weights in these grammars. In the simpler phonetic HG framework, where 

only one winner is predicted, the weights of phonetic constraints essentially determine how much 

the phonetic variables they constrain should adjust in response to pressure from competing 

constraints: phonetic variables governed by constraints with large weights will stay close to the 

targets of those constraints in a variety of phonological contexts, while those subject to constraints 

with small weights will show more accommodation to their phonetic or phonological context (i.e. 

to competing constraints). The weight parameter in these grammars is therefore empirically 

justified in so far as there are some categories of sounds which have realizations that are more 

consistent across contexts, while others show more variation. 

In maxent phonetic grammars, however, the weights of constraints do double duty: in addition 

to governing the amount of accommodation that will occur in response to different conditioning 

environments, the weight of a constraint will also determine the amount of “random” variation 
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seen in the durations of the tokens resulting from a single input. This means that the maxent 

framework has a mechanism for modeling situations in which the realization of some sound or 

class of sounds, even in a single context, shows less variance than some other sound or class of 

sounds.  

4.1.5.1. The Consistent Variation Hypothesis 

Because the weights of constraints do double duty in this way, the maxent phonetics 

framework in fact makes a strong general empirical prediction: the amount of variation that 

phonetic realization some class of sounds shows across phonological contexts should be directly 

related to the amount of “random” variance it shows within any one phonological context. In other 

words, the sounds whose realizations have very high standard deviations, even controlling for 

linguistic context, should be just the sounds that adjust their realizations more readily in response 

to external phonological conditions. Conversely, sounds which exhibit less variance should also 

be less responsive. This prediction is termed the “Consistent Variation Hypothesis.” 

The Consistent Variation Hypothesis 

When one category of sounds (or larger prosodic constituents), defined either by its 

phonological properties or by the context in which it occurs, shows more random, unconditioned 

variance in some phonetic variable than some other comparable category, it should also show 

more phonologically conditioned variation than that other category, appearing more susceptible 

to orthogonal phonological factors. 

No such prediction about the correlation between variance and conditioned variation is made 

by existing models of duration (including phonetic HG), which predict duration means, or a single 

winner, but make no special predictions about the shapes of probability distributions. 
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Empirical evidence suggesting that this hypothesis is correct, in the form of patterned variation 

in the shape of durational distributions, will be presented in Chapter 5. 

4.2. STRETCH and SQUEEZE: hemiparabolic constraints 

The constraint DURATION, used by Flemming and others, assigns violations in a parabolic 

fashion, based on distance from a duration target. It is formulated such that any given constraint is 

violated both by candidates which undershoot the target and those that overshoot it, and to an equal 

degree. When the targets in question are articulatory, or are acoustic targets which correspond well 

to articulatory targets, such as formant values, this is a plausible (though certainly unproven) 

assumption. With duration targets, it’s less clear that this symmetry is a good a prior assumption. 

Most processes relating to duration are currently thought to be directional, having either a 

lengthening or a shortening effect compared to what is assumed to be the default duration for a 

given unit. With symmetrical phonetic constraints, this would not be so. For example, the 

constraint that implemented phrase-final lengthening would penalize candidates under a certain 

duration, but also candidates over that duration. While overlong candidates should indeed violate 

some constraint in the grammar, it is perhaps strange to think that they violate a constraint which 

motivates lengthening.   

 However, the DURATION constraint family can be generalized slightly by splitting it into 

two families of constraints called STRETCH and SQUEEZE, which are explored in this chapter. 

Like DURATION, constraints in each of these families have two parameters: a structural 

description that must be met in order for the constraint to penalize the phonetic duration of some 

part of the candidate (for example, “high vowel”, or “phrase-final syllable”), and a durational 

target. Also like DURATION, these constraints assign violations proportional to the square of the 



83 

distance between the duration of the relevant part of the candidate and its durational target, except 

that STRETCH and SQUEEZE are asymmetrical: STRETCH penalizes durations only if they are 

shorter than the target duration, assigning 0 violations to candidates longer than this target, and the 

reverse is true for SQUEEZE. Each constraint, therefore, has a “hemi- parabolic” violation 

function.23 

 Definition Violation Function 

STRETCH[x, t] The duration of a part of the speech signal 

matching the structural description x should 

have at least duration t. 

(d - t)2           if d < t 

0                     otherwise 

SQUEEZE[x, t] The duration of a part of the speech signal 

matching the structural description x should 

have at most duration t. 

(d - t)2           if d > t 

0                     otherwise 

Table 9: Definitions of the durational constraints STRETCH and SQUEEZE. 

                                                 

23 Since STRETCH is a constraint which is violated by segments shorter than a certain duration, it could 

equivalently be named *SHORT, and SQUEEZE as *LONG; the reader is invited to conceive of these constraints 

in whichever way is more intuitive.  
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Figure 21: Hemiparabolic violation functions for STRETCH (left) and SQUEEZE (right), with 

weights set to 1 and targets set to 7.5. 

Note any given DURATION[x,t] constraint can be mimicked by a pair of STRETCH and 

SQUEEZE constraints with the same structural description, target, and weight. The grammars 

possible using these constraint families, therefore, are a superset of the grammars that would be 

possible using only parabolic duration constraints. 

This asymmetry allows the grammar to account for a number of hypothetical possibilities. For 

example, one could imagine a situation in which the duration of some sound or prosodic constituent 

occurs in an asymmetrical distribution, where there are plenty of tokens with duration above the 

most frequently observed value, and some tokens with durations that are much larger, but almost 

no tokens with durations below this value, or the converse, where durations longer than the optimal 

one seem to be dispreferred. This situation can easily be generated by a pair of STRETCH and 

SQUEEZE constraints with the same structural descriptions and durational targets, but with 

different weights, as in Figure 22. 



85 

 

Figure 22: Violations incurred by a STRETCH constraint with a high weight (red) and a 

SQUEEZE constraint with a low weight (blue), and the maxent values for candidates subject to 

both constraints (green). The resulting distribution has a positive kurtosis / skew. 

Because the overall cost function, the sum of STRETCH and SQUEEZE, is in this case steeper 

on one side of the optimal value, so too will be the probability density function, which will 

resemble the left and right halves of two Gaussians with different variance but the same mean, as 

seen in Figure 22. In other words, the predicted distribution will be skewed. 

Divvying up the work of constraining duration into STRETCH and SQUEEZE also allows 

the straightforward implementation of several ideas about phonetic targets that are already found 

in the literature. For example, in the phonetic window model proposed by Keating (1990a) and 

others, a phonetic value like duration can vary freely (at least in so far as one constraint is 

concerned) within some range, but should not be outside this range. A “soft” window can be 

constructed easily using a STRETCH and a SQUEEZE constraint with the same structural 

description but different targets and relatively high weights. The location and size of the window 

will correspond to the targets selected, and the egregiousness of falling outside this window on 

either side will correspond to the constraint weights. Within the window, the optimal phonetic 

value (or distribution of phonetic values) might then be determined by unrelated constraints. 
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Figure 23: A “soft” window model of duration, composed of a STRETCH constraint with a 

shorter target (red) and a SQUEEZE constraint with a longer target (blue). Maxent values for 

candidates subject to both constraints are shown in green: the predicted distribution (at least 

without any other constraints) is uniform variation within a duration range, with a small number 

of outliers, depending on the constraint weights. 

“Soft” maximum compressibility effects can be similarly modeled, since they are analogous 

to phonetic windows that open on one side. All that is needed to capture maximum compressibility 

is a STRETCH constraint with a short target but a very high weight: this will effectively enforce a 

minimum duration without imposing any preferences on the duration if it is above this minimum, 

allowing variation in the region where there is no danger of over-compression to be governed 

independently by separate STRETCH and SQUEEZE constraints. Note that while these constraints 

seem to create “walls,” which can be arbitrarily steep, their violation functions nevertheless still 

have slopes which are locally continuous, a property which will be helpful when it comes to 

learning grammars with these constraints. 

4.3. The unbounded duration pathology 

In order for a particular grammar composed of STRETCH and SQUEEZE constraints to 

function properly, the structural descriptions of the constraints must be such that adding duration 
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to any part of the output must violate at least one SQUEEZE constraint. If this is not the case—

that is, if there is some segment in the output which neither violates a SQUEEZE constraint nor is 

part of some larger prosodic constituent that does so, then all durations above the targets of the 

STRETCH constraints violated by this segment (if any) will be equally harmonic (and thus equally 

likely to occur). Since duration could then be arbitrarily long, the area under maxent value curve 

will not be defined, and it won’t correspond to a probability distribution. 

 

Figure 24: A pathological grammar with only a STRETCH constraint. Since the area under the 

maxent value curve is not defined, the probability distribution cannot be calculated. 

This is in fact a special case of a pathology described by Daland (2015) that occurs in maxent 

grammars generally whenever a candidate space is under-constrained—in particular, when some 

infinite subset of the candidates is equally harmonic. The solution proposed by Daland, who 

addresses this pathology as it arises in maxent grammars for phonotactic well-formedness, is to 

require a non-zero weight for a general structure-penalizing constraint, *STRUCT, which is 

violated by outputs in proportion to the amount of phonological material they contain. 

In the phonetic grammars considered, along the same lines, it is sufficient to posit that the 

grammars must have a either a pervasive SQUEEZE[S] which applies to all segments, or else a 
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constraint like SQUEEZE[σ] or SQUEEZE[Ft] which applies to all material at some higher level 

of the prosodic hierarchy, and which has a non-zero weight. Since all parts of the durations of all 

candidates will contribute to violations of these structure penalizing constraints, the pathology will 

be avoided. 

The independent need for a phonetic constraint prohibiting overly long productions seems 

obvious upon reflection: regardless of the specific grammatical properties of sounds being 

produced, producing them for an extremely long time should always be marked, since doing so 

would result, at best, in communicative inefficiency resulting from an undue expenditure of 

articulatory effort, and, at worst, in speaker death by suffocation. A strong bias toward obeying 

something functionally equivalent to a universal SQUEEZE constraint is therefore more or less 

mandated by Darwinian natural selection. 

4.4. Illustration of a maxent grammar for duration 

The following section has two purposes. The first is to further illustrate how durational maxent 

grammars with STRETCH and SQUEEZE can be used to model the duration and timing aspect of 

the speech signal by investigating cases more complex than the ones in the previous section, where 

more than one input to the grammar is considered. The second, however, is to explore what kinds 

of patterns in the realization of phonetic duration might be predicted to occur as necessary 

consequences of the maxent formalism and the constraint families hypothesized, and to begin to 

probe what can be thought of as the phonetic equivalent to a “factorial typology” for duration. 

In chapter 2, one of the central points was the importance of understanding how multiple 

factors interact with each other to influence duration, and how little we know about this subject 

empirically. To get a sense of how multiple factors would interact in maxent grammars with 
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STRETCH and SQUEEZE, let us use this formalism to model the data discussed by Klatt (1973b) 

in his paper specifically investigating effect interaction. In Klatt’s experiment, vowel duration is 

influenced by two independent variables: the [+/-voice] feature of the following consonant, and 

whether it occurs in a monosyllable or in the first syllable of a trochaic word.24 Klatt takes the 

unmarked case to be the phonetically longest one—vowels in a word-final syllables followed by 

voiced consonants—and the two effects at play to be monosyllabic (or non-word final) shortening, 

and pre-voiceless shortening.  

 

 1σ 2σ 

/__[-voice] 132 ms 103 ms 

/__[+voice] 198 ms 131 ms 

mean observed durations 

 

 1σ 2σ 

/__[-voice] (132 ms) 86 ms 

/__[+voice] (198 ms) (131 ms) 

durations predicted by Klatt’s original log-

linear model 

Table 10: Observed and predicted vowel durations, by context, in Klatt, 1973b. 

In his paper, Klatt makes the case that, with the right grammatical formalism, the duration of 

the vowel in the upper right cell, [2σ -v], where both effects are present, should be predictable 

from observing the base duration [1σ +v], and the duration that results when each of the effects 

apply independently, [2σ +v] and [1σ -v], since this should be enough to estimate the size of the 

effects, and the model should do the rest. Klatt’s original model, treating each effect as a multiplier 

on an inherent duration, turned out to significantly underpredict the length of the shortest category, 

                                                 

24 In Klatt’s data, since the two categories of words being tested are monosyllables and trochees, to the 

exclusion of iambs, word-finality of the syllable is conflated with polysyllabicity, so it is unclear to what extent 

each is at play here. Umeda (1975) finds that the final syllables of iambic words have similar durational 

characteristics to monosyllables, so the difference between the categories in Klatt’s data may be mostly due to 

word-final lengthening / word-medial shortening, rather than a factor of the number of syllables in the word. 
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over-predicting the amount of shortening that should occur when both effects were present, and 

leading him to add additional parameters to his duration equation in subsequent models related to 

the hypothesized minimum durations of vowels. 

Let us here undertake a similar endeavor using the formalism of maxent phonetic grammars. 

The goal will be to employ a number of STRETCH and SQUEEZE constraints, constructing the 

simplest possible constraint grammar of this sort which can account for three cases where none or 

just one of the two shortening effects is present, and, as Klatt did, investigate the predictions of the 

grammar with respect to the fourth case where they interact. A constraint grammar of just this sort 

is proposed in Table 11. 

Constraint Target Weight 

STRETCH[V] t = 0.198 s w = 155 

SQUEEZE[V] t = 0.198 s w = 155 

SQUEEZE[V/__σ] t = 0.052 s w = 155 

SQUEEZE[V/__[-voice]] t = 0.073 s w = 155 

Table 11: Constraints for a grammar governing the interaction between two durational effects. 

To explain how this grammar was constructed, first consider the word type that Klatt presumes 

to be the base case, [1σ +v] (i.e. the vowels in monosyllabic words before voiced consonants). If 

we assume that this case is the least marked, it should also be subject to the fewest constraints. 

However, for the reasons discussed in this chapter, even the duration of a completely unmarked 

segment must be subject to general constraints, or the distribution of its duration will be undefined. 

To this end, let us posit the presence of constraints which govern the duration of vowels generally, 

without respect to their context, namely STRETCH[V] and SQUEEZE[V]. Since these are the 

only constraints that apply to vowels in the unmarked [1σ +v] category, in order to get the mean 
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duration of this category to match Klatt’s data, the targets for these constraints must be set to 198 

ms. Since we don’t know the distribution of Klatt’s data points, let us make the assumption that 

they are normally distributed, and that therefore the two constraints should also share the same 

weight, together effectively forming a single parabolic duration constraint.  

Picking a reasonable number for the weight of these constraints requires making a guess as to 

the standard deviation of the duration of the vowel for this category, since constraint weight 

directly governs variability in these grammars. While the standard deviation for Klatt’s data is not 

reported, an experiment in Chapter 5 tests the duration of a variety of vowels in a large variety of 

segmental and prosodic contexts, including contexts in which the vowel was in a monosyllable 

followed by a voiced obstruent, and was phrase-medial, and was pitch-accented, closely matching 

the [1σ +v] condition in Klatt’s experiment. The mean duration for this subset of the data was 182 

ms (remarkably similar to Klatt’s result) and the standard deviation was 57 ms, so we can 

reasonably choose 57 ms as the standard deviation that our constraint weights should derive. If the 

data are expressed in seconds,25 the weight w for STRETCH[V] and SQUEEZE[V] that 

corresponds to this standard deviation is w = 155. For reasons of simplicity, and to further constrain 

the parameters of the model, all the constraints in the grammar are given this same weight. 

To model the two independent shortening effects that apply when a vowel occurs in a two-

syllable word (i.e. is in a non-word-final syllable) or occurs before a voiceless obstruent, two 

additional constraints SQUEEZE[V/__σ] and SQUEEZE[V/__[-voice]] are needed. Since the [1σ 

                                                 

25 The weights learned by a grammar depends on the units in which duration is measured. This is simply 

because the steepness of the parabolic violation function similarly depends on the units of the x-axis, so a 

constraint which assigns some number of violations to a candidate deviating from its target by one second will 

need to be made 1,000,000 (1,0002) times weaker to assign the same violations if this deviation is instead 

expressed as 1,000 ms. However, the ratios of the constraint weights, and therefore the general shape of the 

grammar, is (reassuringly) unaffected by the choice of units. 
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-v] and [2σ +v] cases turned out in Klatt’s experiment to have very similar average durations (132 

ms and 131 ms respectively) the targets for these constraints should also be very similar. Choosing 

targets for these case-specific SQUEEZE constraints such that the average durations for the [1σ -

v] and [2σ +v] cases turn out to be 132 ms and 131 ms is, however, difficult. Crucially, they 

should not be set to 132 ms and 131 ms. This is because these vowels are also subject to 

STRETCH[V] and SQUEEZE[V], which pulls them in a direction towards 198 ms, so the targets 

for the constraints specific to these constraints must be shorter, so that the observed durations are 

a compromise between the specific targets and the general targets.26 As it happens, the targets for 

SQUEEZE[V/__σ] and SQUEEZE[V/__[-voice]] that predict distributions with averages in the 

right places are 52 ms and 73 ms, respectively. 

In terms of harmony, the base case of [1σ +v] will incur violations from only the global 

constraints STRETCH[V] and SQUEEZE[V], while [2σ +v] and [1σ -v] will incur violations from 

these global constraints as well as from an additional SQUEEZE constraint, and [2σ -v] will incur 

violations from all four constraints. The violation functions for the constraints and the probability 

distributions that are predicted for all four of the inputs are plotted in Figure 25. The predicted 

means for each of these probabilities distributions is given in Table 12. 

                                                 

26 This foreshadows the difficulty that will arise in discovering the ideal targets for constraints in these sorts 

of grammars: there is often no set of sample duration data whose average can be taken to be the target for a 

particular constraint, because the tokens in those data were subject to additional constraints as well, such that 

their observed durations represent a compromise between the constraint in question, and other constraints, whose 

targets also need to be found! This makes target learning a kind of hidden structure learning problem. As will be 

shown in Chapter 6, targets and weights can however be learned simultaneously in a way which maximizes the 

entropy of the data, providing a solution to this problem, though one which sometimes produces surprising 

results. 
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Figure 25: maxent duration à la Klatt. Left: the violation functions for STRETCH[V] + 

SQUEEZE[V] (black), STRETCH[V/__[-voice]] (blue), and SQUEEZE[V/__σ] (red). right: the 

probability distributions for [1σ +v] (black), [1σ -v] (blue), [2σ +v] (red), and [2σ -v] (magenta). 

 1σ 2σ 

/__[-voice] (133 ms) 109 ms 

/__[+voice] (198 ms) (130 ms) 

Table 12: Predicted mean vowel duration, using the maxent grammar. 

Since we selected the model parameters so as to match the mean vowel durations for the three 

simplest cases (as did Klatt), it is not surprising that the means for these cases roughly match those 

observed. However, given that no information was used about the [2σ -v] case where both effects 

apply, the model makes a striking prediction: the mean vowel duration in this case is predicted to 

be 109 ms, a much longer duration than predicted by models where each effect is treated as a 

multiplier, like Klatt’s original model. Encouragingly, it is not far from the observed mean duration 

of 104 ms. 
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4.4.1. Constraint synergy 

In fact, the duration of any input to this sort of grammar that undergoes multiple shortening 

processes will not be as short as predicted by a log-linear model fit to the results of observing each 

shortening process alone. This is in fact an emergent property of the maxent framework itself, and 

is true for the following reason: parabolic or hemi-parabolic shortening constraints, like 

SQUEEZE[V/__σ], apply the strongest “pull” on vowels which are the longest, i.e. the furthest 

from the target of the constraint. A segment in a grammar with few such SQUEEZE constraints, 

or in which these constraints have a low weight, will naturally be rather long. If a SQUEEZE 

constraint is added with a target much smaller than this length, the duration of such a segment will 

shorten in a dramatic way, reflecting the egregiousness with which its rather long default duration 

would have violated this additional constraint. However, as more SQUEEZE constraints with 

small targets are added, the amount of incremental shortening seen will each time be less dramatic, 

since it is already relatively closer to these targets, and the slope of a violation functions in the 

region close to its target is relatively shallower. In the extreme case, a shortening constraint, even 

a very highly weighted one, would end up having no discernable effect on the mean duration of a 

segment at all if that segment were already caused by the other constraints of the grammar to have 

a mean duration exactly at the target for the incoming constraint. In other words, constraint 

satisfaction in maxent phonetic grammars is predicted to be synergistic in the sense that a candidate 

can satisfy two constraints at once by moving towards both of their targets, moving less than would 

be expected if the effects of the two constraints were thought of as independent and 

straightforwardly additive. 

Lengthening, of course, is similarly predicted to be synergistic. If two processes are assumed 

to be lengthening processes, the amount of lengthening that occurs when both apply is predicted 
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by maxent grammars to be less than would be expected if the effects were additive, since 

lengthening to fulfill one such constraint simultaneously helps to satisfy the other. For this reason, 

it is in fact crucial that the processes in the above example to be viewed as shortening processes, 

which apply to what in the unmarked case would be a more leisurely vowel, rather than lengthening 

ones, if the correct prediction about the fourth cell is to be made by a grammar fit to the other 

three. Treating the processes as monosyllabic lengthening and pre-voiced lengthening, modeled 

with STRETCH constraints on the relatively longer categories (Table 13), results in a grammar 

which massively under-predicts the duration of the [1σ +v] category (Figure 26), making 

predictions much worse than those of Klatt’s baseline multiplicative model. 

 

Pre-voiceless and disyllabic shortening 

Constraint Target Weight 

STRETCH[V] 0.198 s 155 

SQUEEZE[V] 0.198 s 155 

SQUEEZE[V/__σ] 0.052 s 155 

SQUEEZE[V/__[-voice]] 0.073 s 155 
 

Pre-voiced and monosyllabic lengthening 

Constraint Target Weight 

STRETCH[V] 0.109 s 155 

SQUEEZE[V] 0.109 s 155 

STRETCH[V/__(C)#] 0.142 s 155 

STRETCH[V/__[+voice]] 0.135 s 155 
 

Table 13: Grammars with two shortening constraints (left) and two lengthening constraints 

(right) based on the experimental results from Klatt, 1973b. 
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Figure 26: Probability distributions for the durations of vowels in the contexts [1σ +v] (black), [1σ 

-v] (blue), [2σ +v] (red), and [2σ -v] (magenta) in two maxent grammars, one where the two 

category-specific constraints are both SQUEEZE constraints and the longest category is the base 

case (top), and one where they are both STRETCH constraints and the shortest case is the base 

case (bottom). 

4.4.2. Asymmetrical constraints and kurtosis 

More careful investigation of Figure 26 reveals a set of empirical patterns regarding not only 

the means, but the shapes of the distributions of the four inputs to the grammar fragment described 



97 

in the previous section. The first is related to the discussion earlier in this chapter of the Consistent 

Variation Hypothesis: when more constraints apply to an input, its distribution will be narrower, 

meaning that less “random” variation is expected to be seen between tokens. In the grammar where 

the two effects are shortening effects, and the longest category (pre-voiced, monosyllabic) is 

treated as the “default” or “unmarked” case, this case is predicted to be the most variable, precisely 

because it is the least constrained, while the shortest category (pre-voiceless, disyllabic), being the 

most constrained, is predicted to be the least variable. Conversely, in the grammar where the two 

effects are lengthening effects, and the shortest category (pre-voiceless, disyllabic) is taken to be 

the default, it is predicted to be the most variable, and the longest category to be the least variable. 

This allows us, within the maxent framework, to make headway in characterizing individual effects 

on duration as either shortening or lengthening effects (or perhaps both), a distinction that, in many 

other frameworks, would be a completely arbitrary one. 

The second, less obvious prediction is one that results from the use of the asymmetrical 

STRETCH and SQUEEZE constraints. In the shortening grammar, where category-specific effects 

are achieved with SQUEEZE constraints, the predicted distributions for the shortest three cases 

are not normal, but instead are slightly negatively skewed, lying in a distribution which is 

asymmetrical, having a longer tail with a shallower slope on the left side than on the right. The 

opposite is true for the longest three cases in lengthening grammar, which are positively skewed. 

This is because not all parts of all the distributions are governed by the same set of constraints: in 

the shortening grammar, for example, the sections of the distributions in the duration range shorter 

than 0.052 s are governed only by STRETCH[V] and SQUEEZE[V], since the SQUEEZE 

constraints exert no influence on candidates in the duration range below their targets. In the 

duration range longer than the targets of applicable SQUEEZE constraints, the slope of the 
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distribution will be steeper, because the combined weight of the constraints applying is greater, 

giving the overall distribution a negative skew. 

This second result exposes another striking prediction of the maxent formalism: namely, that 

whenever two categories of segment vary only by whether or not they are subject to some 

SQUEEZE constraint (for example, [1 +V] as compared to [2 +V], with respect to the constraint 

SQUEEZE[V/__σ]), not only will segments subject to the constraint have shorter mean duration, 

their distribution should also have lower skewness, i.e. a steeper right side. STRETCH constraints 

are similarly able to result in higher skewness for the categories to which they apply. The result of 

all of this is that relatively longer categories—those to which more STRETCH and fewer 

SQUEEZE constraints apply, should have relatively higher skewness, if the grammar does indeed 

contain these kinds of asymmetrical constraints, and if these apply to only part of the range of 

realized durations of the candidate, as in the above example. 

Note that the targets must lie somewhere within what ends up being the realized distribution 

in order for this effect on kurtosis to be observable. Consider, for example, some category of 

sounds is subject to a symmetrical DURATION constraint27 (which, taken alone, produces a 

grammar that outputs a normal distribution), and additionally to an asymmetrical SQUEEZE 

constraint. When the target for SQUEEZE is similar to the target for DURATION, the distribution 

that results is no longer normal, but negatively skewed. This is because the left side of the 

distribution is more heavily constrained than the right side (Figure 27, top right). However, when 

the target for SQUEEZE is very small (set to 1, for the purposes of example), the predicted 

                                                 

27 Or, equivalently, to a paired STRETCH and SQUEEZE constraint. 
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distribution is almost symmetrical, since the part of the distribution with non-negligible probability 

all lies above zero, and all of the parts of  that duration range are subject to all the same constraints. 

 

Figure 27: Violation profiles for DURATION (blue) and SQUEEZE (red), and predicted 

duration distributions (green) for grammars with the constraints DURATION and SQUEEZE. 

All weights are set to 1, the target for DURATION is set to 3, and the target for SQUEEZE is 

either 3 (top) or 1 (bottom), also shown as a verticle line in red. 

In short: so long as the target values of asymmetrical constraints are not particularly extreme, those 

constraints are predicted to create asymmetries in the resulting distribution, such that additional 
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weight from SQUEEZE constraints leads to more negative skew, and vice versa for STRETCH 

constraints. 

4.4.2.1. The Skewness Hypothesis 

STRETCH and SQUEEZE constraints result in this effect on skewness while simultaneously 

contributing to differences in mean duration. As a result, languages generated by grammars with 

this constraint family should in principle show a correlation between mean and kurtosis: longer 

categories are necessarily subject to more STRETCH and fewer SQUEEZE constraints, creating, 

if anything, a more positive skew, and vice versa. This prediction is empirically testable, and is 

formalized here. 

The Skewness Hypothesis 

When one category of sounds (or larger prosodic constituents), is longer on average than some 

other comparable category, its distribution should have greater or equal skew to that other 

category, due to influence from more weight from STRETCH constraints, less weight from 

SQUEEZE constraints, or both. 

In Chapter 5, this hypothesis will be tested experimentally, and moderate support for it will 

be found.  

4.5. Summary of findings 

Maximum entropy phonetic harmonic grammars are a promising tool for modeling the 

distributions of phonetic variables like duration, rather than just their means, and in fact make a 

number of predictions regarding how these distributions should behave.  
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One such prediction is that the amount of variation that a phonetic variable for a some category 

of sounds is observed to exhibit across phonological environments (i.e. its malleability in the face 

of external pressure) should match the amount of variation seen across tokens in a sample for this 

variable even within one phonological environments (i.e. its variability in response to random 

noise), because the same durational constraints constrain these two types of variation. This 

prediction, deemed the Consistent Variation Hypothesis, is empirically testable, and will be 

supported in Chapter 5. 

Another prediction is that constraints which agree on a desired outcome will behave 

synergistically, in that candidates subject to both constraints will deviate less than would be 

expected if the effects of the two constraints were to be applied in an additive way. This property 

will be invoked in the discussion section of Chapter 5 to provide a potential explanation for the 

Hyperadditive Lengthening Generalization (Chapter 2, Chapter 5). 

Two families of durational constraints, STRETCH and SQUEEZE, are explored, similar to 

the phonetic constraints proposed by Flemming (2001) in all respects except that they assign 

violations hemiparabolically instead of parabolically, asymmetrically penalizing only the 

candidates on one side of the constraint’s target. This flexibility could be useful for implementing 

within maxent existing proposals in the phonetics literature which involve phonetic windows, the 

notion of maximum compressibility, and so on, without abandoning the many advantages of a 

harmony function which is locally continuous with respect to the phonetic variable in question. 

The STRETCH / SQUEEZE framework also results in the possibility of non-normality in the 

distribution of phonetic variables subject to multiple constraints, and further predicts that, in 

general, categories that undergo relatively more lengthening should also show higher skewness in 
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their distribution, while categories that undergo more shortening should show lower skewness: this 

fact is termed the Skewness Hypothesis. 

Moving from HG to maxent also presents an implementational challenge, in that the 

normalization constant Z, which is required for the grammar to calculate probability distributions 

over candidates (a step necessary for maxent learning), is generally very difficult to calculate when 

the space of candidates is treated as continuous. However, an arbitrarily good approximation of 

the probability distribution can be made by discretizing the data: “binning” the candidates into 

durational ranges, and predicting a histogram rather than the probability density function proper. 

This approach will be taken in Chapter 6, where the parameters of example maxent grammars for 

duration will be fit to the experimental data from Chapter 5.  
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5. Data 

The experiment described in this chapter investigates the effects on segment duration of a 

number of the independent variables described in Chapter 2, as well as what kinds of distributions 

appear for different segments in different segmental and prosodic contexts. The independent 

variables manipulated in these experiments all have main effects on duration that are already well 

documented, but the ways in which these variables actually interact to determine duration is 

somewhat less clear. Qualitative facts about the presence or absence of such interactions, as well 

as their directions, is of both empirical and theoretical interest. 

While investigating duration using naturalistic corpus data, rather than experimentation, 

seems like an attractive option, it is problematic for several reasons: firstly, the corpus data would 

need to be annotated prosodically in a way that few corpora are, since intonation and prosody are 

so important for duration. Even if a natural corpus were annotated in this way, the coverage of the 

possible combinations of contexts would very likely be spotty—as Van Santen et al. (1997) put it, 

“due to the combinatorial complexity of any unrestricted language domain, even the most 

sophisticated text selection algorithms produce training text with disappointing coverage of the 

domain. Sparsity of the training corpus remains a central problem in duration data analysis.” Rare 

combinations of conditioning phonological factors will almost certainly be missing or 

underrepresented. The experiment in this chapter has a Latin-square like design meant to avoid 

this sparsity, allowing the observation of many-way “interactions” between effects on duration. 

While not as naturalistic as other potential speech corpora, the highly targeted, fully intersective 

design of the experiments ensures that every possible phonological combination is represented in 

the training data, giving the learner better coverage even with a comparatively smaller training set, 

albeit one comprised of laboratory speech.  
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The results of the experiments are largely consistent with prior reports in the literature of 

interactions between various factors affecting duration (Chapter 2) and with the Hyperadditive 

Lengthening Generalization, the finding that most of these interactions are in the positive duration, 

such that the longest categories are longer than predicted by the main effects of these models, or, 

alternatively that the shortest categories are not as short as expected. In the discussion section, a 

number of potential explanations for this generalization are presented.  

Enough data points are collected for each condition that an investigation can also be made 

into the shapes of the duration histograms for each experimental condition. This allows empirical 

testing of two empirical predictions made in Chapter 0: the Consistent Variation Hypothesis 

(section 4.1.5.1), a strong general prediction of the maxent phonetics framework, and the Skewness 

Hypothesis (section 4.4.2.1), a prediction of the asymmetrical STRETCH and SQUEEZE 

constraint family. Statistical tests suggest that both of these predictions hold for the experimental 

results. 

In addition to answering empirical and theoretical questions about duration, the data collected 

double as training data for the phonetic learning algorithm developed in Chapter 6, serving as the 

input to learning for various grammar fragments for English front vowel duration. 

5.1. Overview of the experiment 

A production experiment was conducted in which five English front vowel phonemes were 

elicited in variety of segmental and prosodic contexts. The dependent variable was vowel duration 

(in statistical tests, log-duration was also modeled). The independent variables manipulated were 

the segmental features of the vowel, the number of consonants in the following coda (if any), which 

consisted of 0, 1, or 2 obstruents, the voicing of the following consonant (for the singleton codas 
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only), phrasal position, and pitch-accentedness, all of which are known to correlate with vowel 

duration. 

In order to manipulate phrasal position and pitch-accentedness, the two prosodic factors, target 

words were elicited in four different sentential frames designed to encourage subjects to either 

focus or to background the target word, and to produce it either phrase-medially or phrase-finally. 

While speech rate was not manipulated, it was treated as a random variable, and was estimated 

for each utterance on the basis of the duration of the carrier phrase in which the vowel was elicited. 

5.2. Participants 

49 UCLA undergraduates, 16 male and 33 female, were recruited from a research subject pool 

maintained by the UCLA Psychology Department consisting of students taking introductory 

psychology and linguistics courses. All were self-reported native speakers of English, and all lived 

in California at the time of the experiment. No dialect information was collected, but it seemed to 

the researcher and research assistants that nearly all of these students spoke some variety of 

California English. One participant's data did not sound like that of a native English speaker to the 

researchers—however, this speaker’s data ended up being excluded on other grounds. 

5.3. Methods and materials 

5.3.1. Stimuli 

32 monosyllabic target words were monosyllables selected so as to place five target vowels 

in a variety of syllable types and segmental contexts. 

The five target vowels were the front vowels of English: /i/, /ɪ/, /eɪ/, /ɛ/, and /æ/. These vowels 

are known to show variation in their “inherent” phonetic duration. Phonologically, they vary in 
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height, in whether they are “tense” or “lax” (or peripheral or non-peripheral), and have varying 

degrees of diphthongization. 

These five vowels were intersected with four codas: /d/, /t/, /ts/, and ∅: from these, the effects 

of voicing can be observed with /d/ and /t/, and the effects of a syllable’s being open, closed, and 

doubly closed on the duration of the vowel can be measured. 

In order to produce more targets, the onset consonant was either /b/ or /m/, although this was 

not hypothesized to have a significant effect on vowel length. 

The target words are given in Table 14. 

 __Ø __d __t __ts   __Ø __d __t __ts 

[i] be bead beat beats   me mead meat meats 

[ɪ] --- bid bit bits   --- mid mitt mitts 

[e] bay bade bait baits   may made mate mates 

[ɛ] --- bed bet bets   --- --- met --- 

[æ] --- bad bat bats   --- mad mat mats 

Table 14: Target words 

Most of the “gaps” in space the onset / nucleus / coda combinations are the fault of English 

phonotactics: lax vowels do not occur word-finally in English. However, /mɛd/ and /mɛts/ are 

lexical gaps—while there are English words with these pronunciations, like ‘med’ (sometimes 

short for ‘median,’ ‘medical,’ ‘medieval’, etc.) and ‘Mets’ (the baseball team), these have lower 

frequency than the retained words, most of which were very common, and thus may not be familiar 

to all experimental subjects. 
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In order to manipulate the position of the target word within a frame, the target words were 

presented in two kinds of carrier sentence, one in which the target word occurs sentence-finally, 

and one in which it occurs medially.28 

(27) Carrier 1: “No, [name] spelled [target word] correctly.” 

Carrier 2: “No, [name] correctly spelled [target word].” 

The expectation was that, with the exception of the initial word ‘no,’ the entire sentence would 

be produced by most participants as a single intermediate phrase. As long as they did so, the target 

word would be both IP-medial and ip-medial in carrier 1, but IP-final in carrier 2. Furthermore, 

the two carriers are semantically and pragmatically very similar, and contain the same words and 

the same number of segments, to reduce the risk of confounds related to speech style, and to ensure 

that the length of the entire carrier sentence (excluding ‘no’) could be used as a proxy for speech 

rate. 

Pursuant to this second goal, the proper names used in these sentences were all trochaic two-

syllable names chosen from an online list of the most common English male and female given 

names. Since this name was always the first word in the part of the carrier phrase being used to 

estimate speech rate, only names beginning with an obstruent were included, in order to facilitate 

precise measurement of the timing of the left edge of this part of the carrier phrase. 

                                                 

28 [name] stands for a semi-randomly chosen proper name—this part of the carrier was used to manipulate 

focus, as part of a method described on the following page. 



108 

Barry 

Bertha 

Bradley 

Calvin 

Cindy 

Clara 

Clifford 

Connie 

Corey 

Curtis 

Debbie 

Derek 

Derrick 

Dustin 

Florence 

Francis 

Gladys 

Gordon 

Hazel 

Hector 

Herbert 

Herman 

Jacob 

Jamie 

Shannon 

Sherry 

Stanley 

Tony 

Tracy 

Travis 

Vernon 

Vincent 

Table 15: Proper names used in carrier sentences. 

In order to elicit both pitch-accented and non-pitch-accented tokens of each target word in 

each frame, the carrier sentences were presented as being the answer component of stimuli that 

consisted of question-answer pairs. The question component was a yes-no question of the form 

“Did [name] spell [filler word] correctly?” or “Did [alternate name] spell [target word] correctly?”  

In the former case, the target word in the answer is new information, and all other information 

is discourse-given, encouraging the subject to focus the target word. In the latter case, the target 

word is discourse given and the name is discourse new, encouraging the subject to focus the name. 

Because focused elements in English are likely to receive nuclear pitch accent, and because the 

nuclear pitch accent cannot be followed by any further accents within the same intermediate phrase 

in English (Beckman & Pierrehumbert, 1986), the target word in this case would be unlikely to be 

unaccented. 

To further encourage subjects to focus and accent the discourse-new word, this word was 

presented in ALL CAPS in the written stimuli. 

With two carrier sentences and two question-answer contexts, a total of four frames were 

possible for each target word. These are summarized in Table 16. 
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 Unaccented Accented 

Final Q: Did Bob correctly spell bed? 

A. No, SUSAN correctly spelled bed. 

Q: Did Susan correctly spell fish? 

A: No, Susan correctly spelled BED. 

Medial Q: Did Bob spell bed correctly? 

A: No, SUSAN spelled bed correctly. 

Q: Did Susan spell fish correctly? 

A: No, Susan spelled BED correctly. 

Table 16: The four prosodic frames, using “bed” as the target word, and “Susan” as the proper 

name. 

Since each of 32 target words could appear in four prosodic frames, a total of 128 

phonologically distinct stimuli were created.  

A short Python script was used to generate 128 question-answer pairs, randomly pairing 

names with target words and then inserting these pairs into the four question-answer frames above. 

Only 64 of these stimuli were presented to each subject, in order to make the length of the 

experiment manageable. This was done by splitting the 128 pairs into two sets of 64. Each set 

contained exactly two stimuli containing each target word, so all participants encountered every 

target word. However, for any given target word, a given set either used that word in just the two 

accented frames, or just the two unaccented frames. Thus, no participant was ever asked to produce 

the same word (or proper name, for that matter) as accented in one utterance and unaccented in 

another utterance. This was done on the off chance that it would help to avoid confusion, as reading 

sentences in a prosodically natural way is already a difficult task. 

5.3.2. Distractor items 

In addition to the 128 stimuli, 96 question-answer distractor items were created. They were 

designed to elicit a variety of prosodic patterns, to keep subjects from defaulting to any one tune 
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over the course of the experiment. In keeping with the ‘spelling bee’ theme of the stimuli, most of 

the distractor sentences were related to that topic. Examples are shown in Table 17. 

Q: Did Audrey arrive on time? A: Yes, but Ida arrived late. 

Q: Does the teacher like Clyde? A: No, but she likes Dean. 

Q: How do you spell "dogs"? A: It's spelled D-O-G-S. 

Q: What did Jorge have to spell? A: Jorge had to spell "goal". 

Q: What letter comes after E in the alphabet? A: F comes after E. 

Q: What's a fruit that rhymes with "tango"? A: Mango. 

Q: What's a word starting with S? A: Well, "snakes" starts with S. 

Q: What's the etymology of "radius"? A: It comes from Latin. 

Table 17: Examples of distractor items. 

Each subject was given either the stimuli from Set A or from Set B interspersed with all of 

the distractor items. The order of the stimuli and distractors was randomized for each subject, with 

the constraint that all stimuli had to be separated by at least one distractor item. 

Additionally, 10 warm-up items similar to the filler items were prepared, and prepended to 

the randomized stimuli and fillers for each subject. This was done in order to give subjects time to 

acclimate to the task and especially to establish a consistent speech style and speech rate before 

any data was collected. 

5.3.3. Equipment 

Subjects were recorded in one of two UCLA Phonetics Lab sound proof booths. Recordings 

were made using a head-worn Shure SM10A microphone, and run through an XAudioBox pre-

amplifier and A-D device. The recording was done through PCQuirer, with a sampling rate of 

11,000 Hz. Short sound files containing productions of individual stimuli were saved directly to 

disk in .wav format by a Matlab script. 
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5.3.4. Procedure 

Stimuli were presented on the screen using a Matlab script. For each item, the question part 

of the question-answer pair was displayed in the center of the screen. Participants were asked to 

read this question silently. After an interval of 1.5 seconds, the answer appeared below it in red. 

At this point, text instructing the subject to read the answer aloud appeared in smaller print at the 

bottom of the screen. When the speaker pressed a key to continue, the screen was cleared and the 

next item was similarly displayed. 

The Matlab script displaying the stimuli created individual recordings of the intervals between 

when the answer part of a stimulus was displayed and when the next stimulus appeared. These 

files were saved to disk with an appropriate filename generated by the script. 

The first items were always the 10 warm-up items, after which subjects saw the 64 stimuli 

from either Set A or Set B interspersed with the distractor items in a semi-randomized order. At 

the exact midpoint of the experiment, the script displayed a screen advising participants to take a 

short break, allowing them to continue recording when ready by pressing the spacebar. 

5.3.5. Forced alignment 

Because the (intended) content of each utterance was already known, segmental alignment 

was done by using FAVE-align (Rosenfelder et. al. 2011). The alignments were then hand-checked 

for accuracy, although only the alignment of the segments of the target word and the location of 

the start and end of the intermediate phrase containing it (all of the utterance except ‘no’) were 

checked, since only the duration of these elements was being modeled. None of the automatic 

alignments needed to be adjusted on these grounds—the only times the aligner made significant 
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mistakes involved items where the subject had mispronounced or repeated parts of the stimuli, 

which were independently excluded from the data because of that disfluency. 

5.3.6. Annotation and exclusion 

3,136 individual productions were recorded. In order to be included, these utterances had to 

meet several criteria. 

1. After the word ‘no,’ the utterance had to be a single prosodic phrase, with no 

perceivable juncture higher than word-level juncture. This was important to ensure 

phrase-mediality of the target words intended to be phrase-medial, and to make sure 

that speech rate, for which ip duration was used as a proxy, was measured consistently. 

2. The target word had to have the accentuation / lack of accentuation expected by the 

researchers based on the frame it was in: the focus context had to be accented, and the 

background context had to be unaccented. The exact type of pitch accent produced 

was not controlled. 

3. The utterance couldn’t contain any disfluencies that would noticeably affect the 

overall duration of the phrase,29 and couldn’t contain any disfluencies at all in the 

target word or syllables adjacent to it. 

4. If more than half of a speaker’s utterances failed on the criteria already listed, the rest 

of their data was discarded as well.30 

                                                 

29 Stuttered or repeated words were grounds for exclusion, for example, but mispronunciations of proper 

names were not, as long as the mispronunciation was also an obstruent-initial trochee. 
 
30 The reasoning here was that, since they probably didn’t understand the task (or at least were not able to 

competently perform it), the phonetic naturalness of data from these subjects was generally not reliable. 
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Both the author and an undergraduate research assistant listened to all of the data and flagged 

utterances that failed to meet any one of these criteria; these utterances were then discarded. During 

this process, as soon as half of a subject’s data were flagged for exclusion, the rest of their data 

was immediately excluded without being reviewed, to save time. 

299 (9.5%) items were excluded on the first criterion, having a phrase-level juncture 

somewhere within the carrier sentence. 74 (2.4%) of these were due to the subject producing a 

phrase-level juncture between every two words in the stimuli.  

460 (14.7%) were excluded on the second criterion, accentuation. Of these, 65 (2.1%) 

involved failing to accent the target word when it was supposed to be focused, and 395 (12.6%) 

involved accenting the target word when it was supposed to be backgrounded. 

172 (5.5%) were excluded on the third criterion, for containing non-trivial disfluencies. 

49 (1.6%) were excluded for failing on multiple criteria, and 28 (0.9%) were excluded for 

other reasons, such as clipping of the audio recording. 

909 (29.0%) were excluded on the fourth criterion—19 subjects’ data ware excluded 

wholesale in this way. Perhaps unsurprisingly, most of the unusable items were came from these 

same subjects: for many, reading aloud in a natural way proved quite difficult, especially when it 

came to prosodic focus. Many subjects chose to accent all words across the board, put phrase-level 

juncture between every pair of adjacent words, or both, treating the stimuli more like lists of words 

rather than sentences. Some failed to produce intonation patterns that were even remotely English-

like, and instead seemed to have embarked on random walks through the pitch / duration / intensity 

space. Others had relatively more natural intonation, but had trouble reading aloud without 

frequent false starts or segmental disfluencies. 
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Ultimately, 1,917 utterances (61%) were excluded, and 1,219 (39%) were retained. While 

somewhat disappointing, the upshot to this is that the retained data are a fairly high-quality corpus: 

the remaining subjects understood the task and were able to produce natural-sounding speech in a 

laboratory environment, the retained data have reliable annotation for the prosodic properties that 

the experiment was designed to manipulate, and there are at least a handful of tokens for each 

possible combination of the independent variables. 

5.3.7. Statistical tests 

5.3.7.1. Linear Models 

Two mixed effects linear regressions were run on the data, one with a dependent variable of 

vowel duration (the “linear” model), and one with a dependent variable of log duration (the “log 

linear” model). The log-linear model is in keeping with the idea that the factors influencing are 

multipliers, scaling the duration of a segment rather than addition to it, in line with the models 

proposed by Klatt (1973b) and Van Santen (1997), and others.  

The independent variables were the ones manipulated in the study: the target vowel, preceding 

onset, following coda (if any), prosodic position, accentedness, and the length of the overall 

intonation phrase, which served as a proxy for speech rate (in the log-linear regressions, log IP 

duration was used). In both cases the fixed effects were binary feature representations of the onset, 

nucleus, coda, and prosodic condition, summarized in Table 18. 

Onset Features Nucleus Features Coda Features Prosodic Features 

nasalonset (m_) tense (i, eɪ) 

high (i, ɪ) 

low (æ) 

closed (_d, _t, _ts) 

voiceless (_t, _ts) 

complex (_ts) 

accented 

final 

Table 18: Binary features used as fixed effects in the linear and log-linear regressions. 
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The duration of the whole intermediate phrase, which was the carrier phrase excluding the 

word “no” and excluding the target vowel, was used as a proxy for the speech rate of each 

utterance. This duration, termed “ip”, was included as a fixed effect in the linear model. The log 

of this duration, “ln ip”, was included as a fixed effect in the log linear model. A random effect of 

Subject was included in both models. 

5.3.7.2. Interaction Effects 

An observation was made in Chapter 2 regarding a tendency for effects on duration to interact 

positively with each other: the Hyperadditive Lengthening Generalization. In order to attempt to 

replicate the observations that lead to this generalization, a number of linear mixed effect 

regressions which included a single two- or three-way interaction were run, one for each 

interaction reported in the literature that involved factors that were part of the design of the current 

experiment. 

5.3.7.3. Testing the Skewness Hypothesis 

In Chapter 4, a prediction was made regarding the relative kurtosis of the probability 

distributions generated by the maxent formalism using the STRETCH and SQUEEZE family of 

constraints. The distribution of tokens subject to more SQUEEZE constraints should have both 

shorter means and smaller skewness, while the distributions of tokens subject to more STRETCH 

constraints should have both longer means and higher skewness. 

The design of the stimuli (32 words and 4 prosodic contexts) were such that there were 128 

experimental conditions (such as “meat” in accented final position, “beats” in unaccented medial 

position, and so on), and the durations for tokens from each of these subsets can be thought of as 
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a sample from a distribution. The mean and the skewness for each of the 128 samples was 

computed, and a Pearson’s test for correlation was performed between the two sets of values. 

5.3.7.4. Testing the Consistent Variation Hypothesis 

A strong empirical prediction of the maxent phonetics framework was that categories of 

sounds which are relatively more constrained (subject an additional constraints or to a constraints 

with higher weight) should show relatively less variation in two ways: less “random” or 

unconditioned variation, and less variation in response to phonological factors, compared to a 

similar category of sound that is relatively less constrained: the Consistent Variation Hypothesis 

(section 4.1.5.1). 

In order to test this prediction, we compared pairs of subsets of the experimental conditions 

which differ along only one phonological dimension (for example, comparing tense vowel data to 

lax vowel data, or open syllable data to closed syllable data), which in the maxent framework is 

the equivalent of observing the effects of just the constraint or constraints related to a single 

phonological factor. Each of these comparisons involved two sets of experimental conditions, 

which differ in one phonological dimension, but were pairwise matched along all the others.31 The 

subsets compared, one for each of the nine binary phonological factors, are given in Table 19. 

 

 

                                                 

31 This pairwise matching sometimes necessitated discarding some conditions in order to maintain a 

controlled comparison: for example, when comparing tense to lax vowels, all of the conditions with tense vowels 

in open syllables were omitted. 
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Feature Conditions compared 

nasalonset All the conditions with /b/ onsets except those with target words /bɛd/ or /bɛts/32 were 

compared to all the conditions with /m/ onsets. 

tense All the closed-syllable conditions with /eɪ/ or /i/ except those with target words /meɪd/ 

or /meɪts/ were compared to all of the conditions with /ɛ/. 

high All the conditions with /eɪ/ or /ɛ/ were compared to all the conditions with /i/ or /ɪ/ 

except those with target words /mɪd/ or /mɪts/, since the corresponding mid vowel 

categories, involving words of the form /mɛd/ and /mɛts/, were not present in the 

stimuli. 

low All the conditions with /æ/ except for those with target words /mæd/ or /mæts/ were 

compared to all the conditions with /ɛ/ (conditions with /eɪ/ were excluded from this set 

of mid vowel data since there were no low tense vowels). 

closed All the open syllable conditions were compared to all of the conditions with /t/-codas 

and tense vowels (conditions with lax vowels were excluded from the closed syllable 

set because lax vowels do not occur in open syllables, and /d/ and /ts/ data were 

excluded to eliminate effects of voicing and coda complexity). 

voiceless All of the conditions with /d/ codas except those with target word /mɛt/ were compared 

to all of the conditions with /t/ codas. 

complex All of the conditions with /t/ codas except those with target word /mɛt/ were compared 

to all of the conditions with /ts/ codas. 

accented All of the accented conditions were compared to all of the unaccented conditions. 

final All of the phrase-final conditions were compared to all of the phrase-medial conditions. 

Table 19: For each of the binary features in the experiment, the pair-wise matched sets of 

experimental conditions which were compared to test the consistent variation hypothesis. 

Each of these pairs of subsets differ in their mean duration. According to the maxent 

framework, those differences are necessarily the result of being subject to different constraints; for 

example, phrase-final vowel productions might be subject to a constraint DURATION[final], or 

                                                 

32 Because there were no matched conditions with nasal onsets, since */mεd/ and */mεts/ were lexical gaps. 

These gaps were responsible for many of the other omissions mentioned in this table. 
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phrase-medial productions might be subject to a constraint like DURATION[medial], or both. One 

of the two categories might, depending on the constraints and their weights, be more heavily 

constrained than the other. This would result in a difference between the longer and shorter 

category in terms the amount of unconditioned variation seen within each of the individual 

experimental conditions in this category, but it should also result in a difference in the amount of 

phonologically conditioned variation, which can be estimated by observing the degree of variation 

between the means of the different conditions within the category. 

The following example illustrates the method used to test this prediction, using the voiced 

coda and voiceless coda comparison. 

First, comparable sets of experimental conditions corresponding to “voiced coda” and 

“voiceless coda” were collected, as described above. For each of these experimental conditions, 

the mean and standard deviation was computed. The mean of all the standard deviations was taken 

to be a decent estimate for unconditioned variation, i.e. how much pre-voiceless or pre-voiced 

vowels tended to vary due to random noise, averaged over a variety of phonological conditions. 

The standard deviation of the means across conditions was taken to be a decent estimate for 

phonologically conditioned variation, or how much the other phonological effects not related to 

voicing were affecting the duration of pre-voiced and pre-voiceless vowels. The delta of the 

unconditioned variation between pre-voiced and pre-voiceless is in an indicator of which category 

shows more unconditioned variation, and how much more. The delta of the conditioned variation 

between the two is an indicator of which category is more responsive to the other phonological 

effects. The maxent formalism predicts that the signs of these two deltas should generally be the 

same, since they both correspond to which of the two categories is more constrained by the 

grammar.  
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Pre-voiceless Conditions Pre-voiced Conditions 

Condition 

Mean 

(s) 

SD 

(s) Condition 

Mean 

(s) 

SD 

(s) 

/bæt/, final, unaccented 0.196 0.044 /bæd/, final, unaccented 0.249 0.056 

/bæt/, final, accented 0.209 0.036 /bæd/, final, accented 0.313 0.055 

/bæt/, medial, unaccented 0.156 0.040 /bæd/, medial, unaccented 0.187 0.043 

/bæt/, medial, accented 0.179 0.031 /bæd/, medial, accented 0.232 0.033 

/bɛt/, final, unaccented 0.162 0.035 /bɛd/, final, unaccented 0.173 0.042 

/bɛt/, final, accented 0.157 0.031 /bɛd/, final, accented 0.235 0.052 

/bɛt/, medial, unaccented 0.124 0.029 /bɛd/, medial, unaccented 0.123 0.017 

/bɛt/, medial, accented 0.153 0.031 /bɛd/, medial, accented 0.176 0.047 

/beɪt/, final, unaccented 0.175 0.028 /beɪd/, final, unaccented 0.215 0.039 

/beɪt/, final, accented 0.204 0.031 /beɪd/, final, accented 0.291 0.040 

/beɪt/, medial, unaccented 0.154 0.026 /beɪd/, medial, unaccented 0.183 0.063 

/beɪt/, medial, accented 0.178 0.023 /beɪd/, medial, accented 0.214 0.038 

/bɪt/, final, unaccented 0.149 0.020 /bɪd/, final, unaccented 0.160 0.048 

/bɪt/, final, accented 0.137 0.037 /bɪd/, final, accented 0.193 0.040 

/bɪt/, medial, unaccented 0.107 0.030 /bɪd/, medial, unaccented 0.106 0.040 

/bɪt/, medial, accented 0.114 0.025 /bɪd/, medial, accented 0.140 0.032 

/bit/, final, unaccented 0.161 0.024 /bid/, final, unaccented 0.201 0.019 

/bit/, final, accented 0.163 0.031 /bid/, final, accented 0.253 0.041 

/bit/, medial, unaccented 0.125 0.025 /bid/, medial, unaccented 0.144 0.031 

/bit/, medial, accented 0.148 0.019 /bid/, medial, accented 0.183 0.038 

/mæt/, final, unaccented 0.162 0.052 /mæd/, final, unaccented 0.216 0.057 

/mæt/, final, accented 0.170 0.042 /mæd/, final, accented 0.244 0.037 

/mæt/, medial, unaccented 0.135 0.020 /mæd/, medial, unaccented 0.148 0.029 

/mæt/, medial, accented 0.150 0.023 /mæd/, medial, accented 0.208 0.054 

/meɪt/, final, unaccented 0.156 0.041 /meɪd/, final, unaccented 0.198 0.060 

/meɪt/, final, accented 0.151 0.045 /meɪd/, final, accented 0.232 0.055 

/meɪt/, medial, unaccented 0.108 0.011 /meɪd/, medial, unaccented 0.126 0.032 

/meɪt/, medial, accented 0.135 0.022 /meɪd/, medial, accented 0.190 0.062 

/mɪt/, final, unaccented 0.113 0.033 /mɪd/, final, unaccented 0.127 0.037 

/mɪt/, final, accented 0.090 0.020 /mɪd/, final, accented 0.162 0.027 

/mɪt/, medial, unaccented 0.090 0.019 /mɪd/, medial, unaccented 0.083 0.021 

/mɪt/, medial, accented 0.084 0.027 /mɪd/, medial, accented 0.108 0.038 
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/mit/, final, unaccented 0.158 0.034 /mid/, final, unaccented 0.184 0.033 

/mit/, final, accented 0.146 0.028 /mid/, final, accented 0.237 0.045 

/mit/, medial, unaccented 0.116 0.019 /mid/, medial, unaccented 0.157 0.029 

/mit/, medial, accented 0.128 0.023 /mid/, medial, accented 0.184 0.046 

 

Unconditioned Variation  

(Mean of SDs) 0.029 

Unconditioned Variation  

(Mean of SDs) 0.041 

Conditioned Variation  

(SD of means) 0.031 

Conditioned Variation  

(SD of means) 0.052 

 

Δ Unconditioned Variation 0.012 

Δ Conditioned Variation 0.021 

Table 20: Means and standard deviations of the durations in the corresponding pre-voiceless and 

pre-voiced experimental conditions. Pre-voiceless conditions with no corresponding pre-voiced 

condition, namely those involving the targets “met,” were excluded from the comparison. 

Here, the pre-voiced conditions showed more unconditioned variation, and also more 

conditioned variation, than the corresponding pre-voiceless conditions. In the maxent framework, 

this suggests that the duration of vowels in the pre-voiceless category is more heavily constrained. 

The same method was used to compare corresponding pairs of categories across of each of 

the other eight binary features, using the matched sets of conditions described in Table 19. The 

comparison was made using both duration and log duration. 

5.4. Results  

The number of tokens, means, standard deviations, and kurtoses for each of the 128 distinct 

categories are given in the appendix. Aggregate results are presented here. 



121 

5.4.1. Category means 

As expected, mean vowel length was different for different vowels. Since the lax vowels only 

occur in closed syllables, rather than comparing mean durations of vowels across all tokens, the 

mean durations and mean log durations of vowels in just the tokens with closed syllables were 

compared (Figure 28). In this context, the front vowels from longest to shortest were /æ/, /eɪ/, /i/, 

/ε/, /ɪ/. As determined by two-tailed Welch t-test, the mean durations for each adjacent pair of 

vowels were significantly different (p < 0.05) as were the mean log durations for each adjacent 

pair. 

 

Figure 28: Mean duration and log duration by vowel phoneme for just the closed syllable data. 

Error bars represent 95% confidence intervals. 

Mean vowel duration was different depending on the following coda, with open syllables 

being the longest, and closed syllables having length that varied by coda voicing and coda 

complexity. Since only tense vowels can be followed by all four coda types, /ts/, /t/, /d/, and Ø, 

means by coda type were compared for just the tokens with tense vowels, plotted in Figure 29 

below. The codas associated with vowel duration from longest to shortest for this subset of the 

data were Ø, /d/, /t/, and /ts/. As determined by two-tailed Welch t-test, the difference in mean 
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duration and log duration of vowels before Ø and before /d/ was not significant (p > 0.05), while 

the mean durations and log durations between/d/ and /t/ and between /t/ and /ts/ were all significant 

(p < 0.01). 

 

Figure 29: Mean duration and log duration by coda for just the tense vowel data. Error bars 

represent 95% confidence intervals. 

To compare the effect of onset, since there were no stimuli of the form /mεd/ and /mεts/, the 

data with targets /bεd/ and /bεts/ were excluded. As determined by two-tailed Welch t-test, in this 

subset of the data the duration and log duration of vowels after /b/ was significantly longer than 

that of vowels after /m/ (p < 0.001). 
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Figure 30: Mean duration and log duration by onset for all the data excluding targets “bed” and 

“bets.” Error bars represent 95% confidence intervals. 

The duration of vowels differed as a function of accentuation and phrasal position. As 

determined by two-tailed Welch t-test, the duration and log duration of vowels in the four prosodic 

positions were all pairwise significantly different (p < 0.01). 

 

Figure 31: Mean duration and log duration by prosodic condition for all the data. Error bars 

represent 95% confidence intervals. 



124 

5.4.2. Linear and log-linear models 

The effect sizes of the linear and log-linear main-effects only models are reported in Table 21. 

All of the fixed effects were significant (|t| > 2) for both models, and all were in the expected 

direction, with both degrees of vowel height inversely affecting duration, shortening effects of 

nasal onsets, closed syllables, voiceless codas, and complex codas, and lengthening effects of 

vowel tenseness, accentuation, phrase-finality, and longer ip duration (i.e. slower speech rate). 

In terms of goodness of fit, the models performed similarly: the marginal R2 values (Nakagawa 

& Schielzeth, 2013) for the linear and log-linear models were 0.59 and 0.61, respectively, with 

only slightly more variance being explained by the fixed effects of the log-linear model. 

Fixed effects (linear model) 

 Estimate Std.Error t-value 

(Intercept) 0.098354 0.012043 8.167 

nasal onset -0.03621 0.002215 -16.346 

tense 0.038589 0.002682 14.389 

high -0.014108 0.002424 -5.819 

low 0.060058 0.003483 17.241 

complex -0.010537 0.00287 -3.671 

voiceless -0.04436 0.002792 -15.889 

closed -0.018801 0.003944 -4.767 

accented 0.025913 0.002237 11.586 

final 0.048054 0.002432 19.761 

ip 0.043496 0.00714 6.092 
 

Fixed effects (log-linear model) 

 Estimate Std.Error t-value 

(Intercept) -2.08427 0.04272 -48.79 

nasal onset -0.23405 0.01314 -17.81 

tense 0.28193 0.0159 17.74 

high -0.09383 0.01437 -6.53 

low 0.39216 0.02067 18.98 

complex -0.0705 0.01703 -4.14 

voiceless -0.24572 0.01655 -14.85 

closed -0.05057 0.02339 -2.16 

accented 0.15627 0.01326 11.78 

final 0.26955 0.01457 18.5 

ln ip 0.32383 0.06704 4.83 
 

Table 21: The fitted parameters of linear and log-linear mixed effects regressions on the data, 

with a random variable of speaker. 



125 

5.4.3. Interaction effects 

In Chapter 2, an interesting generalization was found in the literature with regards to the ways 

effects on duration interact: namely, a category undergoing any two lengthening effects (or 

avoiding any two shortening effects) was almost always longer than expected—this was termed 

the Hyperadditive Lengthening Generalization. Examples included positive interactions between 

phrase-finality and coda voicing (Umeda, 1975; Cooper and Danley, 1981), and vowel tenseness 

and coda voicing, as well as a three-way interaction between these two factors and vowel tenseness 

(Crystal and House, 1988). One negative interaction was seen, between phrase-finality and 

accentuation (Li & Post, 2014). 

The data from the present study, in which many factors were independently varied, could 

potentially serve as a replication for some of these (and potentially many other) potential 

interactions between factors affecting duration. 

For experiments with just a few fixed effects, it is sensible to include an interaction effect in 

the linear model and attempt to interpret the results. The present experiment, however, has 10 fixed 

effects: while in principle interactions between all of the effects could be tested for, this would 

create up to 210 = 1024 interactions (almost the number of data points), the model would by 

definition compute the means for each experimental condition perfectly, and the results would be 

meaningless. However, the two- and three-way interactions reported in the literature, and other 

similar simple interactions, can each be tested for independently, using regressions which contain 

only main effects and the particular interaction to be tested. 
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5.4.3.1. final × accented 

Linear and log linear models identical to those above except that they included an interaction 

between final and accented showed a significant or marginally significant interaction (t = -1.25, t 

= -3.85). Accented vowels were less affected by phrase-final lengthening than were unaccented 

vowels, consistent with results from Li and Post (2014). 

5.4.3.2. voiceless × accented 

Linear and log linear mixed effects which included an interaction between voiceless and 

accented showed a significant interaction (t = -8.67, t = -6.92). As previously reported (De Jong, 

2004; Choi et al., 2016), the effects of pre-voiced lengthening (or pre-voiceless shortening) were 

greater in accented than in unaccented words. 

5.4.3.3. accented × low 

Linear and log linear mixed effects which included an interaction between low and accented 

did not show a significant interaction between the two (t = 1.28, t = 0.80). However, the direction 

of the (non-significant) effects were both positive, consistent with the results from De Jong (2004). 

5.4.3.4. voiceless × accented × low 

Linear and log linear mixed effects which included an interaction between low, accented, and 

voiceless did not show a significant three-way interaction (t = 1.16, t = 1.57). However, the 

direction of the (non-significant) effects were positive, consistent with results from Choi et al. 

(2016). 
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5.4.3.5. final × voiceless 

Linear and log linear mixed effects which included an interaction between final and voiceless 

showed a significant interaction (t = -10.19, t = -7.62). As previously reported (Umeda, 1975; 

Cooper and Danley, 1981; Crystal & House, 1988), the effects of pre-voiced lengthening (or pre-

voiceless shortening) were greater in phrase-final than in phrase-medial position. 

5.4.3.6. tense × voiceless 

Linear and log linear mixed effects which included an interaction between tense and voiceless 

showed a significant or near-significant interaction (t = -2.54, t = -1.93). As previously reported 

(Crystal & House, 1988), the effects of pre-voiced lengthening (or pre-voiceless shortening) were 

greater for tense than for lax vowels. 

5.4.3.7. Discussion 

While not all the results reached significance in both models, the directions of all of the 

interaction effects were, encouragingly, consistent with those reported by prior authors, and 

therefore also all consistent with the generalization made in Chapter 2, with the exception of the 

negative interaction between phrase-finality and accentuation, the two phrase-level prosodic 

factors in the study. 

If factors influencing duration tend to interact positively, we should also be able to see an 

indirect effect of this in the residuals of the main-effects-only models. In particular, many positive 

interactions should, all other things being equal, result in the data points predicted to be longest 

(i.e. those subject to multiple lengthening effects) being longer than predicted, or, equivalently, 

the data points predicted to be shortest (i.e. those subject to multiple shortening effects) being not 

as short as predicted.  
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As seen in Figure 32, exactly this pattern was observed for the residuals of the linear mixed 

effects model, but not for the log-linear mixed effects model, whose residuals were unpatterned 

with respect to predicted duration. 

 

Figure 32: Residuals as a function of predicted duration for the linear (left) and log-linear (right) 

mixed effects models with only main effects, with loess lines. 

This pattern suggests that part of the size of the interaction effects in the linear models can be 

explained by the fact that these models treat durational effects additively, when they should be 

treating them multiplicatively (or linearly in the log-domain), resulting in a number of apparent 

interactions which are really just artifacts of failing to transform the dependent variable 

appropriately. However, the fact that some interactions are present even in the log domain—i.e. 

the fact that effect sizes have been found to differ for different categories even when they are 

treated as proportions—is grounds to believe that this cannot be the full explanation. 
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5.4.4. Excursus on duration vs. log-duration as the dependent variable 

Throughout this chapter, I have been ambivalent as to whether duration or log-duration should 

be the variable predicted. This uncertainty is related to a deeper question raised in Chapter 1 about 

how speakers perceive and represent the time dimension of speech: namely, whether they represent 

it in a way which is closer to linear, or closer to logarithmic (of course, it is possible that some 

other completely different transformation is applied instead). 

From a quantitative perspective, the linear and log-linear models achieved about the same 

degree of model fit. However, some relevant qualitative observations can perhaps also be made. 

For example, as just discussed, the residual of the linear model shows a pattern which suggests 

that the vowel tokens predicted to be longest (those undergoing multiple lengthening effects) are 

longer than would be expected by a model which deals with duration in a non-logarithmic way, 

while the log-linear model shows no such patterned defect in its residual. The standard deviations 

across different vowels in different contexts are also more consistent when viewed in the log 

domain: if the data are split up into bins corresponding to the 128 experimental conditions (for 

example, “meat” in accented final position, “beats” in unaccented medial position, and so on), the 

128 mean durations are significantly positively correlated with the 128 standard deviations (r = 

0.67, p < 0.00001)—in other words, the contexts which produce longer vowels also have broader 

distributions. If an a priori assumption is made that different kinds of vowels in different sorts of 

phonological environments should show similar degrees of variation (and therefore similar 

standard distributions), the large positive correlation between mean duration and standard 

deviation could be taken as indirect evidence that speakers are not conceiving of the time 

dimension in a linear way, but in a proportional or logarithmic way, as argued by Rosen (2005). 

However, in the log-domain, mean log duration is in fact still significantly correlated with standard 
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deviation, just in the opposite direction: relatively longer categories show relatively less variance 

when viewed on the log scale (r = -0.27, p < 0.005), and this correlation could just as easily be 

seen as evidence that the data should not be transformed in this way. 

Of course, the assumption that different phonological categories should show the same degree 

of phonetic variation is not a theoretically motivated one: differences in degrees of phonetic 

variation could well be linguistic in nature. Longer segments could be relatively more variable in 

the standard time domain for various reasons: speakers could for example have a bias towards 

more heavily constraining shorter categories. This pattern even makes a certain degree of practical 

sense: making even small changes to the duration of comparatively shorter sounds could have an 

adverse impact on the articulatability and perceptibility of the phonetic output, while changes of 

the same absolute size wouldn’t effect long categories as adversely. 

5.4.5. The shapes of durational distributions 

While vowels with different segmental features or different segmental or prosodic 

environments showed differences in mean, they also showed differences in terms of the shapes of 

their observed distributions. As an example, Figure 33 shows histograms and probability density 

plots for all the tokens of /ɛ/ in unaccented phrase-medial position (relatively short vowels) and all 

the tokens of /eɪ/ in accented phrase-final position (relatively long vowels). In addition to having 

different mean durations (117 ms, 224 ms), the two subsets differ in standard deviation (29 ms, 80 

ms), and in skewness (0.004, 0.648). 
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Figure 33: Histograms and probability density plots for tokens of phrase-medial unaccented /ɛ/ 

(top) and phrase-final accented /eɪ/ (bottom). Red lines indicate mean durations. 

All this is of particular interest here because, in Chapter 4, symmetrical DURATION 

constraints were found to predict only normal distributions in maxent phonetic grammars, whereas 

constraints with asymmetrical violation profiles, such as STRETCH and SQUEEZE, were able to 

predict asymmetrical distributions. One specific prediction of these constraint families was that 

there could be a positive correlation between the duration of tokens in some phonological category 

and the skewness of the probability density function for that category. Another was a prediction 

of the maxent framework generally, independently of the constraint families used: a correlation 

between the unconditioned “random” variance in duration across tokens in some phonological 

category of segments, and amount of variation attributable to phonological effects. This was 
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because, in maxent, the very same constraints penalize random variance and phonologically 

conditioned variation, both of which involve deviation from constraint targets. 

5.4.6. Testing the skewness hypothesis 

The mean durations of the 128 samples were significantly positively correlated with their 

skewness (r = 0.21, p = 0.016). The mean log durations in each sample were similarly positively 

correlated with skewness of the log durations in that sample (r = 0.20, p = 0.026).  

The results are plotted in Figure 34. These data are noisy, but this is to be expected: the number 

of tokens in each sample was relatively small (9.5 tokens, on average), such that the actual 

skewness of the sampled distribution can be estimated only very crudely. It is therefore striking 

that this correlation was found to be significant, even in the log domain. 

 

Figure 34: Skewness of samples as a function of their mean duration (left) or mean log duration 

(right) across the 128 experimental conditions. 

5.4.7. Testing the uniform variation hypothesis 

For the pairwise comparisons of subsets of the data, each made on the basis of one of the 

binary features used to model the experimental manipulations, the differences in the amount of 
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unconditioned variation between the longer and shorter subset of the data, as well as the difference 

in the amount of conditioned variation between the two subsets, is given in Table 22, and plotted 

in Figure 35. 

Feature / Comparison 
Duration Log Duration 

Δ Uncond. Var. Δ Cond. Var. Δ Uncond. Var. Δ Cond. Var. 

high (high vs. mid) 0.0027 0.0074 -0.0116 0.0043 

low (ɛ vs. æ) 0.0063 0.0088 -0.0164 -0.0192 

tense (ɛ, ɪ vs. eɪ, i) 0.0000 0.0036 -0.0559 -0.0601 

nasal onset (m vs. b) 0.0006 0.0088 -0.0361 -0.0269 

closed (t vs. Ø) 0.0146 0.0457 0.0083 0.1854 

voiceless coda (t vs. d) 0.0116 0.0207 0.0068 0.0745 

complex coda (ts vs. t) 0.0036 -0.0046 0.0165 -0.0500 

accented 0.0051 0.0113 -0.0096 0.0180 

phrase-final 0.0084 0.0198 0.0122 0.0320 

Table 22: Differences between longer and shorter categories, across a number of phonological 

features, in their propensity toward conditioned variation, and toward unconditioned variation, 

for both duration (left) and log-duration (right). 

 

Figure 35: Differences between longer and shorter categories, across each of the nine binary 

phonological features, in their propensity to show conditioned and unconditioned variation, for 

both duration (left) and log-duration (right). 
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For actual durations, in all but one of the comparisons (coda complexity) the longer category 

(pre-voiced, phrase-final, etc.) showed both more unconditioned variation (in that the conditions 

in that category had larger standard deviations) and more conditioned variation (in that the means 

of the conditions had a larger standard deviation) than the corresponding shorter category (pre-

voiceless, phrase-medial, etc). Furthermore, the degree to which the longer category showed more 

unconditioned variation was significantly positively correlated with the degree to which it showed 

more conditioned variation  (r = 0.86, p = 0.003). 

For the log durations, for six of the nine comparisons, the category which showed more 

conditioned variation also showed more unconditioned variation, but for the remaining three the 

direction of the difference differed. The degree to which the longer category showed more 

unconditioned variation and the degree to which it showed more conditioned variation were 

positively correlated, but the effect in the log domain did not reach significance  (r = 0.52, p = 

0.162). The exception is once again coda complexity (the data point in the lower right quadrant), 

an apparent outlier. If the coda-complexity comparison is discarded, the correlation becomes 

significant (r = 0.76, p = 0.018).33  

This overall result is consistent with the Consistent Variation Hypothesis (section 4.1.5.1), an 

empirical prediction of the maxent phonetics framework. 

                                                 

33 It could be relevant here that coda-complexity was entirely conflated with morphological complexity in 

this study: all of the branching codas were regular plurals, and these were the only polymorphemic target words. 
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5.5. Discussion and summary of findings 

In line with prior literature, the duration of vowels were found to be affected by a wide range 

of factors, their segmental features, phrasal position, accentuation, speech rate, the manner of the 

preceding onset, syllable openness, and coda voicing.  

More interestingly, vowels before the complex coda /ts/ were found to be significantly shorter 

than those before /t/—what Katz (2010) terms “incremental shortening.” Incremental shortening, 

in which the vowel shortens in response to a non-adjacent consonant, is straightforwardly predicted 

by any model in which the durations of prosodic constituents like syllables are constrained, such 

that increasing the number of segments in a syllable should shorten the duration of each of them. 

Katz finds such incremental compensatory shortening effects for complex codas in general, but to 

different degrees, and did not find them at all for obstruent-obstruent codas like /st/, as compared 

to /s/ (/ts/ clusters were not tested). He explains some of the variation in the degree of compensatory 

shortening in terms of an asymmetry in the quality of perceptual cues for the vowel when the 

following consonant is a sonorant vs. when it is an obstruent, but notes that “even given this 

asymmetry, we might predict that obstruents induce less incremental CS for vowels, but we would 

still predict some. One possibility is that there really is a small effect, but the current study is not 

precise enough to uncover it; perhaps the effect is tiny in comparison to between-subject effects 

or random noise introduced by a failure to perfectly control for prosodic factors. In this case, there 

would be nothing left to explain.” The present study seems to support this line of reasoning—the 

effect size found was very small (a difference of around 10 ms), and would not have been 

detectable had the prosodic factors, which had very large effect sizes, not been carefully controlled. 

The linear mixed effects model (in which effects on duration were treated as additive) and log 

linear one (in which they were treated as multiplicative) achieved a relatively similar goodness of 
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fit. However, the linear model showed a pattern in its residual when plotted against predicted 

duration, whereas no such pattern was seen in the residual of the log-linear model, suggesting that 

the pattern seen in the former could be an artifact of failing to transform the data. 

Consistent with a generalization found in the literature, there were significant interaction 

effects between the phonological factors, and almost all of these were positive interactions, in the 

sense that the longest categories were longer than expected, and the shortest not as short as 

expected. Possible explanations for this generalization are discussed in the immediately following 

section. The exception to this pattern was the interaction between the two prosodic factors, 

accentuation and phrase-finality, which showed a negative interaction—accented phrase-final 

vowels were not as long as predicted by the two main effects. 

The skewness of distributions of duration across the 128 experimental conditions was 

correlated with their mean, suggesting that vowels subjected to multiple lengthening effects tend 

to be produced with distributions with higher skewness, and vice versa, consistent with the 

predictions of the maxent formalism combined with the STRETCH and SQUEEZE constraint 

family. 

Finally, when comparing corresponding experimental conditions on the bases of a single 

phonological dimension, the subset of the data with more unconditioned variation tended to be the 

subset which showed more conditioned variation (variation induced by orthogonal phonological 

factors). Even though only 9 such comparisons were made, the correlation between conditioned 

variation and unconditioned variation was significant with respect to simple duration, and showed 

a similar trend for log-duration. That these two types of variation should in fact be correlated is a 

strong prediction of the maxent phonetics framework, regardless of the constraint set used, since 

more constrained categories of sounds should show less variation of all kinds, by definition. 
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5.5.1. The Hyperadditive Lengthening Generalization revisited 

The results of the experiment in this chapter were consistent with the Hyperadditive 

Lengthening Generalization: a number of the interaction effects reported in the literature were 

confirmed to be significant, and for those that were not significant, the trend was in the right 

direction. The table from Chapter 2 summarizing these findings, to which the interaction results 

from the present study have been added, is reproduced below in Table 23. 
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 vowel 

features 

coda 

features 

coda 

complexity 

lexical 

stress 

accent phrasal position 

two-way interactions 

word-length 

(syllables) 

 Klatt (1975)     

vowel features  Crystal & 

House, 1988; 

Choi et al., 2016; 

(.) 

 De Jong, 

2004 

De Jong, 2004; 

Choi et al., 2016; 

 

coda  

features 

 Crystal & 

House, 1988 

Katz (2010) De Jong, 

2004 

De Jong, 2004; 

Choi et al., 2016;  

(*) 

Umeda, 1975; Cooper 

& Danley, 1981; 

Crystal & House;  

(*) 

coda complexity       

lexical stress     De Jong, 2004; 

Van Santen, 1992; 

Turk and White, 

1999 

Turk & Shattuck- 

Hufnagel, 2007 

 

accent      Li & Post, 2014;  

(*) 

three-way interactions 

lexical stress × 

accent 

De Jong, 

2004 

De Jong, 2004     

vowel features × 

accent 

 Choi et al., 2016; 

(.) 

    

Table 23: Reported “interactions” between effects between factors affecting vowel duration. A 

(*) indicates that a significant interaction (|t| > 2) was found, and a (.) indicates that a trend (|t| > 

1) was found, in the log-linear models of the experimental data from this chapter. All interactions 

were in the positive direction (if the effects are treated as both being lengthening or both being 

shortening effects), except for the interaction between pitch accent and phrasal position. 

The observed tendency for durational effects to interact positively can probably be explained 

in a number of ways, but many will fall into two broad categories of explanation: “over-

lengthening of the long” and “under-shortening of the short,” depending on whether the longest 

data or the shortest data are taken to be the baseline. 
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Figure 36: Two ways of understanding the Hyperadditive Lengthening Generalization. Blue bars 

indicate durations that would occur if the two effects combined multiplicatively with no 

interactions, where the longest duration (left) or the shortest duration (right) is predicted on the 

basis of the other three. Red bars indicate the deviation from this prediction that occurs for many 

pairs of durational factors, interpreted as unexpectedly long durations for either the category 

undergoing two lengthening effects (left) or two shortening effects (right). 

5.5.1.1. Over-lengthening of the long34 

One explanation for the generalization is that categories of sounds (and perhaps larger 

prosodic constituents) which are already long, due to some phonological feature or other, are 

affected more by additional lengthening processes than are comparatively shorter categories. In 

this case, the longest of the four categories, in which two lengthening factors are taken to apply 

together, comes out longer than expected, and is the “outlier” which causes there to be an 

interaction. 

One example of a theoretical motivation for a pattern of this sort, at least with respect to the 

interactions that in some way involve prosody, is the relationship between prosodic prominence 

                                                 

34 Or, equivalently, “under-lengthening of the short.” 
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and listener-oriented hyperarticulation. De Jong (1995), for example, describes prosodic 

prominence as “localized hyperarticulation,” positing that material that is prosodically more 

prominent (stressed or focused syllables and words), because it is the most important for successful 

communication, is produced in a way which maximizes its communicative potential. One 

component of this hyperarticulation is to maximally differentiate phonological contrasts, some of 

which are cued by phonetic duration. Other accounts (e.g. Aylett & Turk, 2004) also treat prosodic 

prominence, and the associated lengthening effects, as (at least in part) a perception-enhancing 

strategy. 

To explain why this predicts hyperadditive lengthening of the long, consider the following 

hypothetical example. One of the cues distinguishing /æ/ from /ɛ/ is the fact that it is a good deal 

longer. When placed in a prosodically prominent position (a position of localized 

hyperarticulation), this contrast is best preserved by lengthening /æ/ quite a bit, but not lengthening 

/ɛ/ by as much, since doing the latter would depreciate the durational cue that distinguishes the two 

vowels.  

For a phonetic constraint-based approach which explicitly inhibits lengthening of an 

inherently short category of segment based on output-output correspondence, see Braver (2013). 

5.5.1.2. Under-shortening of the short35 

A second explanation for the generalization is that categories which are already short, due to 

some phonological feature or other, are less affected or unaffected by additional shortening 

processes. In this case, the shortest of the four categories, in which two shortening factors are taken 

                                                 

35 Or, equivalently, “over-shortening of the long.” 
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to apply together, comes out longer (not as short) as expected, and is the “outlier” which causes 

there to be an interaction. At least two existing models of duration, as well as the phonetic 

constraint model laid out in Chapter 4, include a mechanism which directly or indirectly predict 

that already short segments will shorten to a lesser degree. 

Klatt (1975), after finding interactions of this sort, introduced into his duration model a 

“minimum duration” parameter for each category of speech sound, based on its segmental identity. 

His multiplicative (log-linear) model was changed to compute from the remaining factors not 

absolute duration, but duration above this minimum duration baseline. Say, for example, that the 

default duration of the vowel /i/ was 100 ms, its minimum duration was 90 ms, and the effects of 

stress and phrase-final lengthening were both multipliers of 150%. When only one effect applies, 

the vowel would be 90 ms + 10 ms * 1.5 = 105 ms, but when both apply, it would be 90 ms + 10 

ms * 1.5 * 1.5 = 112.5 ms. So the values in a 2x2 table describing the results of the two factors 

would be 100 ms, 105 ms, 105 ms, and 112.5 ms. The non-zero minimum duration baseline, then, 

effectively results in hyperadditive lengthening of the long: when applying final lengthening, 

unstressed /i/ goes from 100 to 105, an apparent 5% increase in duration, while stressed /i/ goes 

from 105 ms to 112.5 ms, an apparent 7.1% increase in duration. 

Katz (2010), along the same lines, includes a mechanism for enforcing minimum vowel 

duration in his phonetic constraint grammars. While constraints governing the durations of 

segments and syllables are at first assumed to have parabolic violation functions, following 

Flemming (2001), to account for a lack of shortening in some cases, these violation functions are 

taken to behave parabolically only above a certain minimum duration threshold, but to assign 

infinite violations below that threshold, effectively enforcing a minimum duration for the segment 

or syllable being constrained. A result of this mechanism is that if the constraints governing two 
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particular duration effects are such that the shortest category of sounds would (in the simple 

parabola model) fall below some minimum duration threshold, the output for that shortest category 

will be longer than otherwise expected: essentially, there are floor effects on duration. 

A different explanation for under-shortening of the short—one which does not involve 

minimum duration—was seen in Chapter 4. In that chapter, constraints were seen to behave 

synergistically in the phonetic maxent framework: when a segment had already shortened in 

response to one constraint, the effect of a second shortening constraint was weaker, because the 

segment was already relatively close to the second constraint’s target, and the slope of the parabolic 

violation function in that range was shallow. An unshortened segment would react more to the 

second constraint, because its duration would be further from the second constraint’s target, and 

the slope of the parabolic violation function in that range would be steep. 

Compounding two lengthening constraints on relatively longer categories should, according 

to this theory, also behave synergistically: segments should lengthen less to each additional 

lengthening constraint introduced. This, however, is the opposite of the pattern of interactions seen 

in most of the data. The Hyperadditive Lengthening Generalization is therefore only explicable in 

this framework by way of synergistic shortening, and not synergistic lengthening. In other words, 

if all or most of the effects in question are shortening effects enforced by constraints on the shorter 

of the two categories differentiated by any given effect (with the possible exception of either 

accentuation or phrase-final lengthening, which negatively interact with each other). For example, 

the effect that has been described by some pre-voiced lengthening would need to be recast as pre-

voiceless shortening, with vowels in pre-voiceless position being the ones subjected to an 

additional constraint. Likewise, relatively shorter vowel phonemes would need to be governed by 

more or more heavily weighted constraints, and longer vowel phonemes by fewer. 
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If lengthening and shortening processes do behave synergistically, it would therefore be 

necessary to assume that the “default” durations of segments and other prosodic constituents are 

in most cases reflected by their longest possible durations, and that the various segmental and 

prosodic factors which effect duration are all (or mostly all) compression effects, curtailing what 

would in the unmarked case be more leisurely productions.  

This idea that shorter categories are generally more constrained, in addition to being an 

explanation for hyperadditive lengthening, is right in line with another empirical result from this 

chapter: that the longer of two subsets of sounds was also generally the one which showed more 

variation—both more random variation, and more variation in response to phonological 

conditioning.  

In Chapter 6, in which a maxent learner is trained on the experimental data, it is found that, at 

least for grammars involving symmetrical DURATION constraints, the learner does in fact assign 

more weight to constraints on relatively shorter categories, and that constraint sets which include 

only these shortening constraints perform better than those which also include lengthening 

constraints. 
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6. Maxent phonetic learning 

This chapter describes an algorithm for the maxent learning of the parameters of phonetic 

constraint grammars for duration, given a corpus of training data. It is an adaptation of the 

phonological maxent learning algorithm described by Goldwater and Johnson (2003), modified to 

accommodate the aspects of phonetic grammars which differ from their phonological counterparts. 

Using this algorithm, the weights and/or targets of several different sets of constraints, 

including symmetrical DURATION constraints (Flemming, 2001) and STRETCH and SQUEEZE 

constraints (Chapter 4), are trained on the experimental results from Chapter 5, producing models 

(grammar fragments) for the phonetic duration of English front vowels in a variety of segmental 

and prosodic environments. 

The learner is much more successful in creating grammars which fit the training data when it 

is allowed to simultaneously learn targets and weights. Additionally, certain constraint sets are 

found to be superior to others. For the best of these, the grammars produced by the learner seem 

to fit the data well, modeling both variation in the means of different categories of sounds in 

different contexts, and variation in the shapes of the samples’ distributions, a capability special to 

the maxent variety of phonetic constraint grammars. 

6.1. Learning in the phonetic domain36 

For phonological maxent learners (Goldwater & Johnson, 2003; Hayes & Wilson, 2008), the 

goal of the grammar is to predict, as closely as possible, the observed frequencies of some set of 

                                                 

36 Hayes and Schuh (MS) have concurrently adopted a very similar formalism for phonetic constraints on 

duration (in particular, the durations of syllables in the rajaz meter of Hausa), and likewise use maxent learning 
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surface representations, which correspond either to possible realizations of some underlying 

representation (alternation learning), or all potential surface forms in the language (phonotactic 

learning). The linguist must provide the learner with a finite set of constraints,37 a finite38 set of 

candidates for each input, and violation profiles of the candidates with respect to the constraints—

in other words, OT tableaux. The model parameters to be learned are the weights of the constraints. 

In order to learn these weights, the learner makes use of an “objective function,” which in maxent 

is a function that computes the log-likelihood of the training data given some setting for the 

constraint weights. The learner learns optimal weights, i.e. those which maximize the log-

likelihood (or “entropy”) of the training data, via gradient descent—in other words, it starts with 

arbitrary weights, and repeatedly takes steps in a direction which is “downhill” from the 

perspective of the objective function, until it finds an optimum. In order to determine which 

direction is downhill, the objective function computes not only the probability of the data, but also 

the “gradient” or slope at the present location with respect to the constraint weights. 

The task of learning maxent grammars for phonetics, while somewhat analogous, is more 

complicated for several reasons. The first complication involves the nature of the phonetic 

candidate space. Phonetic variables are continuous, such that the set of possible outputs, rather 

                                                 

to fit the weights of these constraints (though not the targets, which are determined using aggregate statistics) to 

a corpus of Hausa song. 

 
37 Or, in the case of algorithms which tackle the problem of “constraint selection”, a set of possible 

constraints, from which an algorithm selects a subset to include in the grammar (Hayes & Wilson, 2008). This 

kind of approach is in some sense mathematically equivalent to training a grammar on a very large constraint 

set, but with the requirement that most constraints should have weights of zero. 

 
38 While GEN, in theory, is usually assumed to generate an infinite number of candidates, linguists in 

practice do not make use of infinite tableaux, instead generally opting to exclude candidates which will 

demonstrably be assigned vanishingly small probabilities by the grammar. In phonotactic learning, this is 

sometimes accomplished by only considering word forms shorter than a certain number of segments. 
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than being a discrete set, is better thought of as a vector space. As discussed in Chapter 3 and 4, 

while grammars could in principle operate on this vector space directly, the normalization step 

necessary for maxent learning may not be practically feasible. A practical solution to this is to 

discretize or “bin” the phonetic candidate space into equally sized intervals (say, into candidates 

with durations up to 10 ms, 10-20 ms, 20-30 ms, and so forth), making the candidate set once again 

finite, as discussed in Chapter 4. This simplification makes the task at hand more analogous to 

phonological learning (at least from the perspective of the learning software). While this 

“rounding” of phonetic variables could have some effect on the grammar learned, this effect can 

be minimized by reducing the size of the intervals, such that the results of learning would match 

those of a continuous learner arbitrarily well. 

The second, more significant complication is that phonetic constraints have targets in addition 

to weights,39 doubling the number of model parameters. In phonological learning, each candidate 

incurs a predetermined number of violations of each constraint, and the constraints’ violation 

profiles can be thought of as the features40 of the training data—the problem of learning constraint 

weights then becomes analogous to the problem of learning the best coefficients for the features 

of a logistic regression, as pointed out by Goldwater and Johnson (2003). By comparison, if 

constraints also have target parameters, the constraints are not properly features in this way until 

the target parameter has been set—DURATION[V, 40ms] and DURATION[V, 45ms], for 

example, are effectively two completely different features in the sense that they produce different 

                                                 

39 Though see Windmann et al., 2015, for a proposal involving phonetic constraints without targets. 

 
40 The term ‘features’ is here used in the machine learning sense of being dimensions of the x input vector 

to the model, not in the linguistic sense of phonological features. 
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violation profiles. Target learning can therefore be thought of as a special case of constraint 

selection, or model selection. 

For the linguist, two approaches to this complication can be taken. The first approach is to 

adopt a strategy for selecting or estimating targets first, based on the properties of the learning 

data, prior to the maxent learning step, which is (as in phonological learning) only used to learn 

the weights of constraints. The second approach is to simultaneously learn the targets and the 

weights for some set of constraints, using maxent learning. In the latter approach, the maxent 

learning step is much less straightforward, because the learning space (the shape of the objective 

function to be minimized through gradient descent) becomes qualitatively quite different from the 

well-behaved, convex space that occurs when only weights need to be learned. 

Versions of the learning algorithm which implement each of these learning approaches will 

be presented in this chapter, along with the results of applying them to the experimental data from 

Chapter 5 to produce grammar fragments for English front vowel duration. 

6.2. The learning algorithm 

This section describes an algorithm for learning model parameters for maxent phonetic 

constraint grammars. The user provides to this learner training data (like the data collected in the 

experiment in Chapter 5), constraint definitions, and, optionally, constraint target values. The 

learner finds the constraint weights (and the constraint target values, if not provided) that maximize 

the likelihood of the training data. 

6.2.1. Constraint definitions 

Phonetic constraints are formalized as functions from candidates (themselves I/O pairs, where 

the input is a set of phonological features, and the output is a duration) to violations. Constraints 
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have two hand-selected components: a criterion defining which sounds are to be constrained based 

on their phonological properties,41 and a “polarity” of either 1 (STRETCH), -1 (SQUEEZE) or 0 

(DURATION), the last case being a symmetrical constraint with parabolic violations, of the sort 

used by Flemming (2001) and others. The other two components of each constraint—its weight 

and its target—are the parameters to be learned or estimated. The unparameterized constraint 

SQUEEZE[+high], for example, would be defined as the tuple <nucleus ϵ {i, ɪ}, -1>, and the fully 

parameterized constraint  SQUEEZE[+high, w=2, t=0.8 ds] as the four-tuple as <nucleus ϵ {i, ɪ}, 

-1, 2, 0.8>. 

6.2.2. Constraints 

All of the constraints employed in this section are constraints on vowel duration, and constrain 

either all vowels, or a natural class defined by exactly one of the nine features used to categorize 

the experimental data (Table 18): high, low, tense, nasal onset, closed, voiceless coda, complex 

coda, accented, and phrase-final. For each of these features, both the positive and negative values 

define a natural class, so a total of 1 + 9 + 9 = 19 natural classes can be constrained in this way. 

Two families of constraints on duration are used: the symmetrical DURATION constraints 

(Flemming, 2001), and corresponding pairs of asymmetrical STRETCH and SQUEEZE 

constraints (Chapter 0), for a total of 57 possible constraints (Table 24). 

Treating all constraints as constraints on vowel duration is a drastic simplification, since some 

are “standing in” for what are probably in fact constraints on larger prosodic constituents like 

                                                 

41 For the purposes of the current data, this criterion itself had two components: a feature or column in the 

training data, like “nucleus” or “phrasal position,” and a set of values that an input needed to have in that column 

in order to be targeted, such as {i, ɪ}, getting the natural class [+high], or {final}, getting vowels in phrase-final 

syllables. 
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syllables or even words—closed syllables, for example, probably contain shorter vowels because 

of interplay between constraints on syllable duration and constraints on vowel duration (Katz, 

2010), rather than a contextually limited constraint on vowel. Unfortunately, the more principled 

approach taken by Katz and others involves a high-dimensional set of candidates, in which all of 

the sounds in a syllable are simultaneously governed by the grammar, which the learner described 

in this chapter is not quite up to handling at the time of writing, and for which there is perhaps not 

adequate training data in any case, since the durations of all of the sounds in the syllable would 

need to be measured accurately. However, constraints like DURATION[V/closed] can be thought 

of as modeling what would, in a more principled grammar, be the violations contributed to 

DURATION[σ] by the duration of a vowel in a closed syllable, above and beyond what is already 

contributed by DURATION[V]. 
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 DUR vowel SQUEEZE vowel STRETCH vowel 
C

o
n

st
ra

in
ts

 o
n

 l
o
n

g
er

 c
la

ss
es

 

DUR non-high SQUEEZE non-high STRETCH non-high 

DUR low SQUEEZE low STRETCH low 

DUR tense SQUEEZE tense STRETCH tense 

DUR open SQUEEZE open STRETCH open 

DUR singleton coda SQUEEZE singleton coda STRETCH singleton coda 

DUR pre-voiced SQUEEZE pre-voiced STRETCH pre-voiced 

DUR post b SQUEEZE post b STRETCH post b 

DUR accented SQUEEZE accented STRETCH accented 

DUR phrase-final SQUEEZE phrase-final STRETCH phrase-final 

C
o
n

st
ra

in
ts

 o
n

 s
h

o
rt

er
 c

la
ss

es
 DUR high SQUEEZE high STRETCH high 

DUR non-low SQUEEZE non-low STRETCH non-low 

DUR lax SQUEEZE lax STRETCH lax 

DUR closed SQUEEZE closed STRETCH closed 

DUR complex coda SQUEEZE complex coda STRETCH complex coda 

DUR pre-voiceless SQUEEZE pre-voiceless STRETCH pre-voiceless 

DUR post m SQUEEZE post m STRETCH post m 

DUR unaccented SQUEEZE unaccented STRETCH unaccented 

DUR phrase-medial SQUEEZE phrase-medial STRETCH phrase-medial 

Table 24: A superset of the constraints used in any one learning attempt. 

The whole set of constraints wasn’t used in any one training run: instead, different 

combinations of these constraints were used in an effort to determine which set of constraints was 

best able to capture the data (sections 6.4 and 6.5). 

6.2.3. Tableaux construction 

The algorithm first automatically generates a set of tableaux. The input for each tableau is a 

surface representation, representing some vowel in some phonological context. The candidate 

outputs are phonetic duration ranges or “bins,” with widths equal to a duration resolution specified 

by the linguist, and with the shortest and longest bin corresponding to minimum and maximum 
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durations, also specified. Duration is represented in deciseconds (tenths of a second), rather than 

seconds or milliseconds, throughout the algorithm.42 

Each tableau is first assigned a “basic” violation profile (Table 25)—a representation of which 

constraints are active at all in that tableau, given the phonological properties of the surface 

representation input. For example, while a candidate duration for the vowel in the word “cat” may 

incur violations of SQUEEZE[+low], depending on the duration of the candidate and of the 

constraint target, it will never violate SQUEEZE[+high]. 

The algorithm then reads in the training data, and sorts them into tableaux, one for each 

distinct surface representation. For each tableau it computes counts for each of the duration bin 

candidates, corresponding to how many data points with the relevant surface representation fall 

into each duration range. It also computes a basic violation profile for each tableaux (Table 25). 

                                                 

42 This was done because it was found that using seconds resulted in very small violations, such that the 

weights learned were very inconveniently large, while using milliseconds had the opposite problem. For 

example, a candidate with duration 0.1 s (100 ms) violating a STRETCH constraint with a target at 0.3 s (300 

ms) incurs 0.04 violations when represented in seconds, and 40,000 violations when represented in milliseconds. 

The optimal weights change correspondingly—they will be exactly 1,000,000 times smaller in the latter case. In 

both cases, the large discrepancy between the magnitudes of the weights and the magnitudes of the targets results 

in unnecessary amounts of information loss due to rounding, but also creates a situation where the optimal area 

in the weight/target search space used by the gradient descent function is very narrow in some dimensions, and 

very large in others, potentially making it more difficult for the gradient descent function to converge. 
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[mit] 

accented, 

phrase-final 

counts 
STRETCH 

[V] 

SQUEEZE 

[V] 
... 

STRETCH 

[+low] 

SQUEEZE 

[+high] 

i = 0 ds 0 

1 1 ... 0 1 

i = 2 ds 1 

i = 4 ds 3 

i = 6 ds 2 

i = 8 ds 1 

... 

i = 20 ds 0 

Table 25: Hypothetical example of a tableau prepared during initial tableaux construction, prior 

to learning, with duration range 0 - 500 ms and duration resolution 20 ms. 

If targets are to be learned simultaneously with weights during the maxent learning step, this 

is the extent of the pre-processing of the data that can be done before learning, and the input to the 

learner is this set of basic tableaux. If targets are pre-selected by the linguist, these tableaux can be 

augmented with actual violation profiles for each candidate based on the constraint targets and the 

candidates’ durations (for an example of what this would look like, see Table 26). 

6.2.4. The objective function 

As in phonological maxent learning, optimal parameters can be found by minimizing an 

objective function (or “cost function”), which is the negative log likelihood43 of the training data 

(given some arbitrary parameter values), plus a prior on the constraint weights. 

                                                 

43 While maximizing the likelihood and maximizing the log likelihood are equivalent, working in the log 

domain is computational faster, since sums are faster to compute than products, and less prone to rounding error, 

since many of the maxent values, being inverse exponentials, are vanishingly small. 
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The likelihood of the training data is simply the product of the predicted probability of all of 

the data points, and the log likelihood is therefore the sum of the logs of the predicted probabilities 

of all of the data points. 

Starting from the initial tableaux, and from some set of parameter values for the constraint 

weights and targets, the learner first computes actual violations for each cell in each tableaux, 

using the hemi-parabolic violation functions described in Chapter 4. After this, the log-likelihood 

is computed the same as it would be for phonological maxent grammars: overall harmonies are 

computed for each candidate, the negations of these harmonies are exponentiated, and the resulting 

numbers are normalized so that they add to one, and can be interpreted as probabilities (Table 26). 

The logs of these probabilities are multiplied by the counts, and summed, giving the log probability 

of the tableau in question, and this process is repeated for all the tableaux to find the log likelihood 

of the entire corpus of training data.44 

                                                 

44 It is common practice when using gradient descent to, whenever possible, compute the gradient of the 

objective function with respect to the model parameters, so that the gradient descent algorithm knows which 

direction is downhill, rather than having to estimate. While computing the gradients for the weights is 

unproblematic, and already part of the implementation of existing phonological maxent learners (e.g. Hayes & 

Wilson, 2008), computing the gradient for the targets proves much more difficult, in part because changing a 

target changes the probability of the observed data points both directly, in that it changes their harmony, and 

indirectly, in that it changes the harmonies of other candidates as well, which changes Z (the normalization 

factor), which in turn changes all the output probabilities. Therefore, a gradient descent function which estimates 

the gradient is used here. 
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[mit] 

accented, 

phrase-final 

counts 

STRETCH 

[V] 

w = 2 

t = 5 ds 

SQUEEZE 

[V] 

w = 1 

t = 2 ds 

... 

STRETCH 

[+low] 

w = 1  

t = 10 ds 

SQUEEZE 

[+high] 

w = 2  

t = 4 ds 

Harm- 

ony 

(ŵ · v̂) 

Pr 

(e-h) 

Prob 

(Pr/Z) 

i = 0 ds 0 52 0 

... 0 

0 25 
< 0.000000001 < 0.00000001 

i = 2 ds 1 32 0 0 9 
0.00012 0.018 

i = 4 ds 3 12 22 0 5 
0.0067 0.98 

i = 6 ds 2 0 42 22 20 
0.000000002 0.0000003 

i = 8 ds 1 0 62 42 52 
< 0.000000001 < 0.00000001 

... ... ... ... ... ... 
 

i = 20 ds 0 0 182 162 580 
< 0.000000001 < 0.00000001 

 Z = 0.0069  

Table 26: Hypothetical example of a maxent tableau created during learning. 

The prior cost was defined to be the sum of the constraint weights multiplied by a small 

number, 0.0001.45 The effect that the prior has on learning is to slightly penalize larger constraint 

weights, such that, all other things being equal, the learner prefer models with smaller weights. 

Constraints which are redundant or have no effect on candidate probabilities, which would 

otherwise have no optimal weight, will with the addition of the prior be assigned a weight of zero. 

If the same fit to the data could be accomplished either with one constraint with weight w, or with 

two constraints with combined weight > w, the prior will cause the learner to favor using a single 

                                                 

45 This prior is linear with respect to the constraint weights, where many implementations of maxent 

learning use a Gaussian prior in which each constraint weight is squared before the constraint weights are 

summed. Using a Gaussian prior, a high penalty is incurred when any one constraint has a large weight, such 

that, when multiple constraints have the same or a similar effect, the learner will prefer to spread weight across 

all these constraints to minimize the sum of their squared weights, even when some of those constraints are 

completely redundant to the model. By contrast, the linear prior will simply pick the constraint that works the 

best, and assign a weight of 0 to constraints that are not needed. The linear prior was used here because it made 

it easier to see in the results which constraints were redundant. 
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constraint. While strong priors can often used to bias a learner towards simpler models at the cost 

of optimizing the likelihood of the data (for example to model linguistic learning biases, or to 

prevent overfitting), the coefficient chosen here for the prior is so small that maximizing likelihood 

is treated as the first priority, and model simplicity as a secondary one, such that the prior 

practically only has an effect when multiple sets of parameters predict the data equally well. 

6.2.5. Parameter learning 

Given the objective function just defined, optimal model parameters—just the weights if 

targets are provided by the linguist, or both the weights and the targets simultaneously—can be 

estimated using gradient descent. 

Parameter estimation was done using the function scipy.optimize.fmin_l_bfgs_b from the 

Python library SciPy (version 0.19.0, downloadable from https://www.scipy.org as of 6/3/17). 

The bounds for the constraint weights were 0 and 1000, precluding negative or extraneously 

large weights. When targets were to be learned as well, target values were bounded at -50 and 50 

ds (-5.0 and 5.0 s).46 Additionally, the targets of STRETCH constraints were given a lower bound 

of the minimum candidate duration, 0 ds, and the targets of SQUEEZE constraints were given an 

upper bound of the maximum candidate duration, 5.0 ds (500 ms). If the targets for these 

asymmetrical constraints stray outside of these bounds, the constraints would stop penalizing any 

candidates at all: this lack of any violations would then make the local gradient for the target value 

completely flat (since adjusting them slightly in one direction or the other would wouldn’t affect 

the likelihood of the data) which could prevent the learner from converging. 

                                                 

46 While the optimal constraint targets were initially expected to be positive, or at least 0, this assumption 

was not forced upon the learner, and in fact turned out to be incorrect. 

https://www.scipy.org/
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Initial weights for the constraints were random numbers between 0 and 0.2,47 and initial targets 

were set to the average duration of the sample data (1.66 ds), plus a random number between -0.2 

and 0.2 ds. 

The precision parameter of the fmin_l_bfgs_b function was set to 10.0 (very accurate). 

6.3. Criteria for assessing models 

To assess the relative merit of the models learned in the following section, I use Akaike’s 

Information Criterion (AIC), a measure of model informativity based on the log-likelihood of the 

data according to the model (its goodness of fit), and the number of degrees of freedom that model 

has. I take the number of degrees of freedom of the maxent model to be the number of constraint 

weights, plus the number of constraint targets when these targets are parameters set by the learning 

algorithm, but not when they are pre-selected by the linguist in some deterministic way, based on 

aggregate model statistics. 

6.4. Weight learning with pre-selected targets 

As already discussed, if the linguist (or human learner) can find a way to provide appropriate 

targets first, the constraint weight learning step becomes the same as in phonological learning, 

since candidate violation profiles are available at the outset of the learning step. The problem, of 

course, is how to select good constraint targets. 

                                                 

47 Using larger initial weights resulted, in the first few learning steps, in violent and oscillatory changes in 

the target values, which in turn had the effect of causing the learner to set the corresponding weights to 0, where 

they sometimes stayed for the remainder of the training run. 
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One simple and perhaps intuitive option is to use aggregate statistics over the training data: if 

vowels in open syllables are, on average, 216 ms in duration, then perhaps this is a good 

approximation of the target duration for the constraint or constraints on vowels in open syllables. 

From an acquisition perspective this strategy seems plausible as well: upon observing a number of 

tokens for some class of sounds or prosodic constituents, or tokens of sounds in some phonological 

context, the human learner would have access to their average duration, and, other things being 

equal, attempt to achieve that duration for phonologically similar tokens in their own grammar. 

A constraint grammar consisting of all 19 DURATION constraints (set Dfull) with target values 

set to be the mean duration of the tokens governed by the constraint in question, was trained on 

the data. Multiple training runs, with different random initial starting values for the weights, were 

conducted, and all of them converged to the same values. This is expected, because learning space 

of just the constraint weights is convex, in that it has no local optima, and there learner will 

therefore not get stuck anywhere that is worse than the global optimum (Della Pietra et al., 1997). 

The learning results are reported in Table 27.  

The learned model is very sparse in its use of constraints. Though no weight is given to the 

universal DUR[vowel], all of the 128 input SRs are at least subject to one constraint,48 avoiding 

any pathological “flat” predicted distributions. However, putting no weight on either DUR[low] 

or DUR[non-low], the model does not differentiate at all between /æ/ and /ɛ/, which is clearly a 

defect, since in reality these phonemes have very different mean durations (191 ms and 143 ms, 

respectively). 

                                                 

48 All SRs with tense vowels are constrained by DUR[tense], and lax vowels are constrained by either 

DUR[singleton coda] or DUR[complex coda]. 
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constraint weight target (ds)  constraint weight target (ds) 

DUR high 0.05 1.50  DUR non-high  1.77 

DUR non-low  1.60  DUR low  1.91 

DUR lax  1.55  DUR tense 0.32 1.81 

DUR closed  1.59  DUR open  2.16 

DUR complex coda 0.33 1.39  DUR singleton coda 0.38 1.68 

DUR pre-voiceless 2.00 1.42  DUR pre-voiced  1.93 

DUR post m  1.51  DUR post b 0.67 1.79 

DUR unaccented 0.26 1.48  DUR accented  1.79 

DUR phrase-medial 0.86 1.44  DUR phrase-final  1.89 

DUR vowel  1.66     

Neg. Log Prob. 3695.40      

AIC 7428.79      

Table 27: Learned weights for constraint set Dfull with targets pre-set to the means of the natural 

class they constrain. Weights of 0 are omitted for visual clarity. 

Perhaps, however, the failure of this grammar is to be expected. While initially intuitive, the 

mean duration of a natural class is, for these sorts of grammars, almost certainly not the best value 

for the target of a constraint on that natural class. Even in the very simple toy example given in 

Section 4.4, the targets constraints specific to vowels in disyllabic words and vowels before 

voiceless codas had to be set to vowels shorter than the means of these categories: this was because 

the actual realized duration was the result of not only these constraints, but of other constraints as 

well. In that example, the other constraints to which they were subject had targets longer than the 

means of these categories, so the category specific constraints had to have targets shorter than their 

means in order for the grammar to get the desired result. 

To test whether this might be the case in the more complex grammar currently at hand, two 

additional training runs were performed with targets estimated in a different way. For the 

DURATION[vowel] constraint, the target was still set to be the mean, but for the constraints on 
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longer than average categories, like DUR[low], the target was set to the mean plus either one or 

two standard deviations, and for the constraints on shorter than average categories, like DUR[non-

low], the target was set to the mean minus either one or two standard deviations. 

The model using targets adjusted by 1 SD in this way (Table 28) achieve a quantitatively much 

better fit than the original grammar, and the model using targets adjusted by 2 SDs (Table 29) 

achieves an even better fit. In addition, both assign a non-zero weight to DURATION[low], 

distinguishing between mid and low vowels. The 2 SD model, however, does not have any 

constraint which distinguishes between vowels in syllables with [t] vs. [ts] codas, missing a pattern 

which is empirically present in the data, despite achieving an overall much better fit. 

constraint weight target (ds)  constraint weight target (ds) 

DUR high 0.19 0.91  DUR non-high  2.42 

DUR non-low  0.96  DUR low 0.06 2.51 

DUR lax  0.94  DUR tense 0.79 2.45 

DUR closed  1.02  DUR open 0.66 3.01 

DUR complex coda 0.45 0.98  DUR singleton coda 0.16 2.29 

DUR pre-voiceless 1.56 1.00  DUR pre-voiced  2.60 

DUR post m 0.18 0.92  DUR post b 0.09 2.43 

DUR unaccented 0.52 0.94  DUR accented 0.55 2.46 

DUR phrase-medial 0.92 0.96  DUR phrase-final 0.18 2.59 

DUR vowel  1.66     

Neg. Log Prob. 3454.81      

AIC 6947.62      

Table 28: Learned weights for constraint set Dfull with targets pre-set to the mean (black), the 

mean plus 1 SD (red), or the mean minus 1 SD (blue) of the natural class they constrain. Weights 

of 0 are omitted for visual clarity. 
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constraint weight target (ds)  constraint weight target (ds) 

DUR high 0.25 0.31  DUR non-high  3.06 

DUR non-low  0.33  DUR low 0.12 3.11 

DUR lax  0.34  DUR tense 0.48 3.09 

DUR closed 0.33 0.45  DUR open 0.82 3.86 

DUR complex coda  0.57  DUR singleton coda  2.90 

DUR pre-voiceless 1.43 0.57  DUR pre-voiced 0.33 3.27 

DUR post m 0.21 0.32  DUR post b  3.08 

DUR unaccented 0.47 0.40  DUR accented 0.61 3.13 

DUR phrase-medial 0.94 0.47  DUR phrase-final 0.24 3.29 

DUR vowel  1.66     

Neg. Log Prob. 3364.82      

AIC 6767.64      

Table 29: Learned weights for constraint set Dfull with targets pre-set to the mean (black), the 

mean plus 2 SDs (red), or the mean minus 2 SDs (blue) of the natural class they constrain. 

Weights of 0 are omitted for visual clarity. 

In light of these results, we can at the very least conclude that it is not safe to assume that the 

mathematically optimal constraint targets lie near the means of the natural class of sounds that they 

constrain, and that this is due to the fact each output duration is the product of multiple, competing 

constraints. The remainder of the chapter will therefore focus on learning weights and targets 

simultaneously for various constraint sets—this turns out to produce grammars which achieve a 

much better fit and a higher degree of informativity. 

6.5. Simultaneous weight and target learning 

Learning constraint targets is a computationally more difficult endeavor than learning 

constraint weights alone. While the implementation of the gradient descent step is much the 

same—the optimization function gradually changes the weight and target parameters in a way 
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which improves model fit—it is no longer guaranteed to converge, or to converge at the globally 

optimal parameters, because the learning space is no longer guaranteed to be convex.  

Several sets of constraints are trained on the data: first, the full set of DURATION constraints, 

Dfull, then two subsets thereof, Dshort and Dlong, and finally several sets of STRETCH and 

SQUEEZE constraints: Sfull, Ssparse, Sshort, and Slong. 

6.5.1. DURATION grammar fragments 

6.5.1.1. Constraint Set Dfull 

The full set of DURATION constraints (set Dfull) was trained on the data, learning both 

weights and targets. Four training runs were conducted. The results of all four runs are given in 

Table 30, and the results of the second run (which had the best AIC by a tiny margin) are rearranged 

in Table 31,where the natural class means are also provide for ease of comparison. 
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 Run 1 Run 2 Run 3 Run 4 

constraint weight target weight target weight target weight target 

DUR vowel 0.01 1.58 0.05 2.28 0.00 1.46 0.00 1.71 

DUR non-high 0.10 2.36 0.07 2.48 0.06 1.91 0.08 2.62 

DUR low 0.28 4.38 0.27 4.33 0.27 4.38 0.05 1.66 

DUR tense 0.32 5.94 0.31 6.16 0.30 6.50 0.42 5.55 

DUR open 0.01 1.63 0.10 2.49 --- 2.44 0.00 1.86 

DUR singleton coda 0.72 1.77 0.28 2.30 0.70 1.72 0.52 1.45 

DUR pre-voiced 0.21 1.75 0.22 3.65 0.25 1.92 0.44 1.95 

DUR post b 0.32 4.73 0.32 4.96 0.36 3.00 0.36 4.82 

DUR accented 0.11 3.23 0.04 2.68 0.16 5.11 0.13 3.57 

DUR phrase-final 0.00 1.65 0.00 4.45 0.00 3.62 0.01 2.57 

DUR high 0.25 -0.11 0.23 -0.30 0.22 -0.58 0.23 -0.22 

DUR non-low 0.52 1.69 0.49 1.59 0.49 1.83 0.38 0.39 

DUR lax 0.14 1.02 0.12 1.02 0.12 1.75 0.24 2.43 

DUR closed 0.07 2.27 0.60 1.01 0.05 2.35 0.05 4.30 

DUR complex coda 0.79 1.26 0.34 1.01 0.77 1.20 0.58 0.79 

DUR pre-voiceless 2.08 0.92 2.09 1.13 2.12 0.96 2.30 1.04 

DUR post m 0.19 0.56 0.18 0.78 0.22 -1.53 0.22 1.36 

DUR unaccented 0.47 -0.02 0.41 -0.57 0.53 0.90 0.49 0.23 

DUR phrase-medial 0.81 0.01 0.81 0.01 0.81 0.01 0.82 0.03 

Neg. Log Prob. 3321.66 3321.66 3321.66 3321.66 

AIC 6719.32 6719.32 6719.32 6719.32 

Table 30: Learned weights and targets (in deciseconds) from four training runs for constraint set 

Dfull. Relative weight is shown in yellow shading, target values on a scale from blue (short) to red 

(long). Weights of 0 are omitted—0.00 indicates a positive value smaller than 0.005. 
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constraint weight target (mean)  constraint weight target (mean) 

DUR high 0.23 -0.30 1.50  DUR non-high 0.07 2.48 1.77 

DUR non-low 0.49 1.59 1.60  DUR low 0.27 4.33 1.91 

DUR lax 0.12 1.02 1.55  DUR tense 0.31 6.16 1.81 

DUR closed 0.60 1.01 1.59  DUR open 0.10 2.49 2.16 

DUR complex coda 0.34 1.01 1.39  DUR singleton coda 0.28 2.30 1.68 

DUR pre-voiceless 2.09 1.13 1.42  DUR pre-voiced 0.22 3.65 1.93 

DUR post m 0.18 0.78 1.51  DUR post b 0.32 4.96 1.79 

DUR unaccented 0.41 -0.57 1.48  DUR accented 0.04 2.68 1.79 

DUR phrase-medial 0.81 0.01 1.44  DUR phrase-final 0.00 4.45 1.89 

DUR vowel 0.05 2.28 1.66      

Neg. Log Prob. 3321.66        

AIC 6719.32        

Table 31: Learned weights and targets (in deciseconds) from training run #2 of constraint set 

Dfull, with mean durations of the class constrained for comparison. Relative weight is shown in 

yellow shading, target values on a scale from blue (short) to red (long). 0.00 indicates a positive 

value smaller than 0.005. 

As might be expected, learning targets automatically results in models which are more 

informative than those in which targets were pre-selected, even adjusting for the fact that these 

models have double the number of parameters. A few interesting observations can be made about 

the learned targets. First, rather than being near the means for the classes of sounds they constrain, 

the constraints on relatively longer classes have targets longer than the mean, and the constraints 

on relatively shorter classes have targets shorter than the mean. In some cases, these targets are 

quite extreme, reaching 616 ms for DURATION[tense] and -57 ms for DURATION[unaccented].  

Clearly, many of these learned “targets” cannot reasonably be actual phonetic targets in the 

traditional sense of being articulatory or acoustic goals for the speaker; after all, how would one 

attempt to produce a vowel with negative duration? However, this pattern of extreme targets will 

recur throughout this chapter, and even the best models found—models which turn out to fit the 
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data qualitatively very well—will make use of them. A discussion of why these targets are the 

ones learned, and how they should be interpreted, will be given at the end of the chapter. 

A second observation is that the four training runs converged on different parameters values, 

but found models which were equally good. This kind of inconsistent convergence behavior is 

indicative of a learning space which is not convex, but instead has multiple local optima. These 

optima could even lie along large “valleys” or “ravines” in which certain sets of parameters can 

be simultaneously adjusted in a way which doesn’t affect goodness of fit.  Flemming and Cho 

(2017), who use gradient descent to learn both weights and targets for a phonetic harmonic 

grammar, encounter the same behavior: they similarly find multiple distinct local optima, but the 

parameter values at these optima produce quantitatively and qualitatively similar results. It seems 

likely that, at least for constraint sets involving targets, phonetic grammars may simply have more 

than one way of accounting for the data. 

A final observation is that the model assigns less weight on average to the constraints on the 

relatively longer categories of sounds, and more to the relatively shorter categories. For example, 

DURATION[unaccented] is given a weight of 0.41, and  DURATION[accented] a weight of only 

0.04. This overall pattern—that shorter categories are more constrained—is in line with the 

“Synergistic Shortening” explanation offered for the Hyperadditive Lengthening Generalization 

in Section 5.5.1.2, which was that hyperadditive lengthening (really hypo-additive shortening) will 

always result when all or most duration effects are shortening effects (constraining phrase-medial 

vowels, and high vowels, and vowels in closed syllables, and so forth). 
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6.5.1.2. Constraint Sets Dshort and Dlong 

This last observation calls into question whether constraints on longer categories are needed 

at all, or whether a shortening-only grammar would in fact be more informative. To test this, a 

constraint set consisting of DURATION[vowel] and the nine DURATION constraints on 

relatively shorter categories (set Dshort) was trained on the data, learning both weights and targets. 

Four training runs were conducted. The results of all four runs are given in Table 32, and the results 

of the first run, which had the best AIC, are rearranged in Table 33. 

 Run 1 Run 2 Run 3 Run 4 

constraint weight target weight target weight target weight target 

DUR vowel 1.25 5.49 1.18 5.69 1.33 5.24 1.25 5.43 

DUR high 0.07 -5.92 0.09 -4.11 0.04 -10.37 0.03 -18.51 

DUR non-low 0.11 -18.83 0.17 -11.00 0.06 -31.84 0.11 -17.65 

DUR lax 0.05 -28.09 0.12 -10.58 0.05 -25.21 0.06 -24.78 

DUR closed 0.92 1.79 0.93 1.81 0.88 1.79 0.91 1.81 

DUR complex coda 0.03 -11.65 0.12 -1.72 0.01 -37.38 0.04 -7.56 

DUR pre-voiceless 1.87 0.82 1.78 0.78 1.86 0.82 1.81 0.80 

DUR post m 0.04 -25.06 0.08 -13.77 0.03 -32.77 0.04 -29.25 

DUR unaccented 0.42 -0.58 0.27 -1.92 0.34 -1.13 0.41 -0.65 

DUR phrase-

medial 0.75 -0.16 0.78 -0.06 0.77 -0.10 0.79 -0.04 

Neg. Log Prob. 3323.65 3324.32 3323.66 3323.75 

AIC 6687.29 6688.64 6687.32 6687.50 

Table 32: Learned weights and targets (in deciseconds) from four training runs on constraint set 

Dshort. Relative weight is shown in yellow shading, target values on a scale from blue (short) to 

red (long). 
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constraint weight target (mean) 

DUR high 0.07 -5.92 1.50 

DUR non-low 0.11 -18.83 1.60 

DUR lax 0.05 -28.09 1.55 

DUR closed 0.92 1.79 1.59 

DUR complex coda 0.03 -11.65 1.39 

DUR pre-voiceless 1.87 0.82 1.42 

DUR post m 0.04 -25.06 1.51 

DUR unaccented 0.42 -0.58 1.48 

DUR phrase-

medial 0.75 -0.16 1.44 

DUR vowel 1.25 5.49 1.66 

Neg. Log Prob. 3323.65   

AIC 6687.29   

Table 33: Learned weights and targets (in deciseconds) from training run #1 on the constraint set 

Dshort, with mean durations of the class constrained for comparison. Relative weight is shown in 

yellow shading, target values on a scale from blue (short) to red (long). 

This simpler “shortening only” model achieves almost as good a fit to the data as does the full 

model, using a much smaller number of parameters (20 instead of 38), and, as a result, is a more 

informative model by AIC. 

The learned target values are even more extreme than before, ranging from the target of 

DURATION[vowel] at half a second, and that of DURATION[lax] at a whopping -2.8 seconds. 

For completeness, and to show that this improvement in informativity is due to focusing on 

shortening constraints in particular, and not just removing half of the parameters arbitrarily, a 

constraint set consisting of DURATION[vowel] and the nine DURATION constraints on 

relatively longer categories (set Dlong) was trained on the data. The resulting models, in addition to 

being inconsistent between training runs, are both qualitatively and quantitatively awful (Table 

34). 
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 Run 1 Run 2 Run 3 Run 4 

constraint weight target weight target weight target weight target 

DUR vowel 2.65 0.39 2.57 0.42 1.82 0.22 2.39 0.27 

DUR non-high 0.01 50.0049 0.04 13.81 0.01 50.00 0.03 15.75 

DUR low 0.01 50.00 0.01 49.99 0.00 50.00 0.12 5.77 

DUR tense 0.02 50.00 0.02 47.95 0.03 50.00 0.03 33.34 

DUR open 0.04 50.00 0.11 17.93 --- 1.32 0.04 50.00 

DUR singleton coda 0.00 50.00 0.00 -50.00 0.78 1.27 0.31 2.16 

DUR pre-voiced 0.03 50.00 0.03 50.00 0.02 50.00 0.04 33.26 

DUR post b 0.02 50.00 0.02 50.00 0.02 50.00 0.06 18.46 

DUR accented 0.02 50.00 0.04 20.97 0.01 50.00 0.02 35.22 

DUR phrase-final 0.02 50.00 0.02 50.00 0.02 50.00 0.02 50.00 

Neg. Log Prob. 3482.75 3492.16 3573.19 3483.53 

AIC 7005.51 7024.32 7186.38 7007.05 

Table 34: Learned weights and targets (in deciseconds) from four training runs, using constraint 

set Dlong. Relative weight is shown in yellow shading, target values on a scale from blue (short) 

to red (long). Weights of 0 are omitted—0.00 indicates a positive value smaller than 0.005. 

6.5.2. STRETCH and SQUEEZE grammar fragments 

In Chapter 4, a generalization of the DURATION constraint family was proposed, splitting 

this constraint into STRETCH and SQUEEZE constraints, identical to DURATION constraints 

except that they do not penalize candidates which lie to one side of their target. As shown in that 

chapter, these asymmetrical constraints allow for the possibility of non-normality in the predicted 

distributions, and variation, for example, in these distributions’ kurtoses. Such variation was seen 

to be empirically present in the experimental results in Chapter 5. 

                                                 

49 Recall that 50.00 ds (5 s) was the upper bound on targets given to the optimization function. 
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6.5.2.1. Constraint Set Sfull 

First, a constraint set analogous to Dfull, but with each DURATION constraint replaced with 

one STRETCH and one SQUEEZE constraint, was trained on the data (set Sfull, ‘S’ standing for 

both ‘STRETCH’ and ‘SQUEEZE’). The results are shown in Table 35. 

 Run 1 Run 2 Run 3 Run 4 

constraint weight target weight target weight target weight target 

SQUEEZE vowel --- 2.01 --- 1.41 --- 1.66 --- 1.81 

SQUEEZE non-high --- 1.37 --- 1.64 --- 1.66 0.03 0.67 

SQUEEZE low 0.05 1.66 0.05 1.88 0.01 1.52 0.17 1.76 

SQUEEZE tense --- 1.86 0.18 1.15 --- 1.63 --- 1.82 

SQUEEZE open --- 1.51 --- 1.73 --- 1.89 --- 1.75 

SQUEEZE singleton coda 0.28 1.45 0.17 -0.06 0.45 1.40 0.14 1.56 

SQUEEZE pre-voiced 0.01 0.99 0.01 0.95 --- 1.93 0.12 -0.68 

SQUEEZE post b --- 1.84 --- 1.69 --- 1.68 --- 1.75 

SQUEEZE accented 0.16 1.03 0.06 1.37 0.23 1.48 0.24 1.61 

SQUEEZE phrase-final 0.01 1.55 0.24 1.59 --- 1.44 --- 1.95 

SQUEEZE high 0.11 -2.25 0.10 -2.77 0.13 -1.56 0.09 -3.99 

SQUEEZE non-low 0.08 -0.23 --- -0.49 0.07 -0.35 --- 1.70 

SQUEEZE lax --- 1.71 --- 1.65 --- 1.84 --- 1.54 

SQUEEZE closed 0.17 1.25 0.09 1.24 0.01 1.67 0.03 1.20 

SQUEEZE complex coda 0.23 0.04 0.19 -0.17 0.27 -0.36 0.27 1.44 

SQUEEZE pre-voiceless 0.74 -0.83 0.80 -0.50 0.93 -0.14 0.88 -0.66 

SQUEEZE post m 0.12 -1.44 0.13 -1.61 0.14 -0.84 0.10 -3.50 

SQUEEZE unaccented 0.21 -3.41 0.16 -4.27 0.24 -2.76 0.16 -4.89 

SQUEEZE phrase-medial 0.24 -3.65 0.22 -5.34 0.23 -3.92 0.17 -5.76 

continued on next page… 
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…continued 

constraint  weight target weight target weight target weight target 

STRETCH vowel  --- 1.06 3.02 0.71 0.94 0.63 3.98 0.65 

STRETCH non-high  0.65 1.57 0.19 2.08 0.58 1.63 0.32 1.50 

STRETCH low  0.34 3.46 0.30 4.21 0.42 3.20 0.17 6.36 

STRETCH tense  0.52 4.68 0.40 5.85 0.49 4.84 0.60 4.27 

STRETCH open  0.60 1.29 1.97 1.35 0.72 1.30 1.74 1.21 

STRETCH singleton coda  0.78 2.12 1.42 2.10 1.16 0.67 1.15 2.13 

STRETCH pre-voiced  0.00 0.54 --- 0.80 0.77 2.00 0.00 0.59 

STRETCH post b  0.64 3.10 0.83 2.70 0.71 2.95 0.75 2.70 

STRETCH accented  0.03 1.98 0.12 2.12 0.03 2.10 0.01 0.56 

STRETCH phrase-final  0.80 2.10 --- 0.91 0.48 2.26 0.96 2.07 

STRETCH high  1.89 0.74 --- 1.39 --- 1.19 --- 1.17 

STRETCH non-low  0.81 1.28 1.34 1.35 1.50 1.36 --- 1.62 

STRETCH lax  0.76 0.61 --- 1.24 0.52 0.60 --- 1.21 

STRETCH closed  1.99 0.74 --- 3.12 1.60 0.75 1.97 0.68 

STRETCH complex coda  0.74 1.98 1.83 1.70 --- 1.33 1.41 1.67 

STRETCH pre-voiceless  0.41 2.41 0.48 2.02 1.03 2.09 0.49 2.01 

STRETCH post m  0.42 0.13 0.39 0.46 1.03 0.57 1.49 0.60 

STRETCH unaccented  1.08 0.92 1.61 0.88 1.22 0.78 2.10 0.62 

STRETCH phrase-medial  2.53 1.46 1.10 1.42 1.91 1.44 3.46 1.40 

Neg. Log Prob.  3293.19 3293.93 3293.82 3291.77 

AIC  6738.39 6739.87 6739.63 6735.54 

Table 35 : Learned weights and targets (in deciseconds) from four training runs, using constraint 

set Sfull. Relative weight is shown in yellow shading, target values on a scale from blue (short) to 

red (long). Weights of 0 are omitted—0.00 indicates a positive value smaller than 0.005. 

While the learned grammars with the constraint set Sfull achieve a better fit to the data than do 

those with Dfull, they do so only because they have many more parameters (a whopping 76, not 

that far off from 128, the number of experimental conditions), and as a result have a worse AIC. 
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However, as before, it is easy to imagine that employing this full set of constraints might be 

extraneous. In particular, it may not be necessary to provide STRETCH constraints on short 

categories like phrase-medial, or, conversely, SQUEEZE constraints on longer categories like 

phrase-final. 

6.5.2.2. Constraint Set Ssparse 

A second set of constraints consisting of STRETCH[vowel], SQUEEZE[vowel], STRETCH 

constraints on the nine relatively longer categories, and SQUEEZE constraints on the nine 

relatively shorter categories (set Ssparse) was trained on the data. The results of all four runs are 

given in Table 36 and the results of the second run, which had the best AIC, are rearranged in 

Table 37. 



171 

 Run 1 Run 2 Run 3 Run 4 

constraint weight target weight target weight target weight target 

STRETCH vowel 4.38 1.31 4.54 1.29 4.44 1.33 4.19 1.37 

STRETCH non-high 1.06 1.29 1.08 1.28 0.50 1.54 0.33 1.91 

STRETCH low 0.11 6.31 0.12 7.62 0.13 7.46 0.26 3.38 

STRETCH tense 0.81 3.51 0.85 3.48 0.89 3.34 0.73 3.73 

STRETCH open 2.42 1.08 0.41 0.91 0.34 0.30 0.70 1.05 

STRETCH singleton coda 5.05 0.73 8.21 0.70 0.53 2.14 0.53 2.14 

STRETCH pre-voiced 0.80 2.13 0.74 2.17 0.22 0.54 --- 1.10 

STRETCH post b 0.65 3.20 1.10 2.20 1.19 2.17 0.70 3.13 

STRETCH accented 0.19 2.01 0.11 2.30 0.13 4.25 0.22 2.11 

STRETCH phrase-final 0.02 4.01 0.04 6.24 0.26 0.25 --- 2.68 

SQUEEZE vowel --- 1.68 --- 3.60 0.35 2.84 --- 1.92 

SQUEEZE high 0.08 -3.93 0.08 -4.13 0.08 -3.66 0.10 -2.46 

SQUEEZE non-low 0.06 -2.02 0.40 2.81 0.00 0.94 0.07 -2.47 

SQUEEZE lax 0.20 1.80 0.41 2.76 0.14 1.66 0.04 1.70 

SQUEEZE closed 0.41 1.22 0.48 1.32 0.48 1.42 0.49 1.44 

SQUEEZE complex coda 0.10 -2.29 0.13 -1.70 0.29 1.20 0.32 1.25 

SQUEEZE pre-voiceless 2.03 1.15 1.94 1.14 1.16 0.42 1.22 0.47 

SQUEEZE post m 0.07 -2.22 0.11 -4.09 0.13 -3.16 0.10 -1.19 

SQUEEZE unaccented 0.11 -6.12 0.11 -6.64 0.10 -5.17 0.14 -4.47 

SQUEEZE phrase-medial 0.20 -5.03 0.17 -5.54 0.16 -6.74 0.21 -4.89 

Neg. Log Prob. 3301.05 3299.67 3300.53 3302.85 

AIC 6682.11 6679.34 6681.06 6685.69 

Table 36: Learned weights and targets (in deciseconds) from four training runs, using constraint 

set Ssparse. Relative weight is shown in yellow shading, target values on a scale from blue (short) 

to red (long). Weights of 0 are omitted—0.00 indicates a positive value smaller than 0.005. 
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constraint weight target (mean)  constraint weight target (mean) 

SQ high 0.08 -4.13 1.50  STR non-high 1.08 1.28 1.77 

SQ non-low 0.40 2.81 1.60  STR low 0.12 7.62 1.91 

SQ lax 0.41 2.76 1.55  STR tense 0.85 3.48 1.81 

SQ closed 0.48 1.32 1.59  STR open 0.41 0.91 2.16 

SQ complex coda 0.13 -1.70 1.39  STR singleton coda 8.21 0.70 1.68 

SQ pre-voiceless 1.94 1.14 1.42  STR pre-voiced 0.74 2.17 1.93 

SQ post m 0.11 -4.09 1.51  STR post b 1.10 2.20 1.79 

SQ unaccented 0.11 -6.64 1.48  STR accented 0.11 2.30 1.79 

SQ phrase-medial 0.17 -5.54 1.44  STR phrase-final 0.04 6.24 1.89 

SQ vowel --- 3.60 1.66  STR vowel 4.54 1.29 1.66 

Neg. Log Prob. 3299.67        

AIC 6679.34        

Table 37: Learned weights and targets (in deciseconds) from training run #2 on the constraint set 

Ssparse, with mean durations of the class constrained for comparison. Relative weight is shown in 

yellow shading, target values on a scale from blue (short) to red (long). Weights of 0 are omitted. 

The Ssparse constraint set turned out to produce the most informative models, out of all of those 

tried, surpassing Dshort by a large margin. 

Targets here seem to have been employed in two very different ways here by the learner. The 

first is analogous to the way they are used by the Dfull model and especially the Dshort model: a 

rather extreme target is paired with a small weight, which results in a lengthening or shortening 

effect that applies over the whole range of duration candidates—this is true for constraints 

SQEEZE[high], STRETCH[low], and many others.50 

                                                 

50 It is interesting to note that the “flat” portion of each of these constraints lies way out in an extreme 

duration region, much shorter or longer than any candidate which is being given any significant probability. This 

means that if these constraints had been the symmetrical DURATION constraints instead of STRETCH or 

SQUEEZE, it would make no difference; the fact that they are asymmetrical has no consequence in these cases. 
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However, other constraints have targets on the opposite end of the duration spectrum, where 

they are active over only either the smallest or largest parts of the duration range. For example, 

STRETCH[singleton coda] has a very high weight, but only penalizes candidates shorter than 70 

ms. This constraint is acting as a kind of soft “minimum duration” or “maximum compressibility” 

constraint, serving only to rule out very short vowels (at least in singly-closed syllables)—and with 

good reason: in the training data, only 14 of the 736 singleton tokens in this natural class have 

durations shorter than 70 ms. On the shortening side, SQEEZE[pre-voiceless] applies only to 

candidates with duration greater than 114 ms: while its weight is not high enough to create a ceiling 

effect, this constraint nevertheless only effects part of the positive duration range, and is therefore 

being used in a different way than constraints like SQUEEZE[high], which here penalize all 

positive duration candidates. 

6.5.2.3. Constraint Sets Sshort and Slong 

Since using a “shortening only” grammar resulted in an improvement in informativity for the 

DURATION constraint family, the same could a priori be true for STRETCH and SQUEEZE 

grammars. A set of constraints consisting of STRETCH and SQUEEZE[vowel] along with 

SQUEEZE constraints on the nine relatively shorter categories (set Sshort) was trained on the data, 

and the results of all four runs are given in Table 38. 

As before, for the sake of symmetry, a “lengthening only” constraint set consisting of  

STRETCH and SQUEEZE[vowel] along with STRETCH constraints on the nine relatively longer 

categories (set Slong) was also trained on the data, and the results of all four runs are given in Table 

39.  
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 Run 1 Run 2 Run 3 Run 4 

constraint weight target weight target weight target weight target 

STRETCH vowel 1.57 3.19 1.39 5.23 1.53 4.91 1.43 5.14 

SQUEEZE vowel 0.00 0.95 0.00 2.04 0.00 1.47 0.00 2.78 

SQUEEZE high 0.04 -20.22 0.16 -1.73 0.15 -1.86 0.16 -1.78 

SQUEEZE non-low 0.32 2.86 0.16 -11.45 0.09 -21.60 0.15 -12.81 

SQUEEZE lax 0.02 -28.67 0.34 -2.39 0.13 -8.88 0.28 -3.20 

SQUEEZE closed 0.90 2.81 0.43 1.13 0.47 1.11 0.44 1.12 

SQUEEZE complex coda 1.96 4.27 0.27 0.25 0.24 0.13 0.30 0.35 

SQUEEZE pre-voiceless 1.56 0.75 1.63 0.75 1.67 0.76 1.67 0.77 

SQUEEZE post m 0.03 -25.37 0.10 -10.01 0.04 -26.76 0.06 -18.77 

SQUEEZE unaccented 0.39 -0.34 0.45 -0.44 0.46 -0.43 0.44 -0.52 

SQUEEZE phrase-

medial 0.77 0.22 0.91 0.18 0.92 0.17 0.90 0.15 

Neg. Log Prob. 3459.68 3334.78 3333.91 3334.08 

AIC 6963.36 6713.56 6711.81 6712.17 

Table 38: Learned weights and targets (in deciseconds) from four training runs, using constraint 

set Sshort. Relative weight is shown in yellow shading, target values on a scale from blue (short) 

to red (long). Weights of 0 are omitted—0.00 indicates a positive value smaller than 0.005. 
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 Run 1 Run 2 Run 3 Run 4 

constraint weight target weight target weight target weight target 

STRETCH vowel 8.00 1.17 4.60 1.62 5.94 1.38 5.43 1.61 

STRETCH non-high 0.78 2.12 1.20 1.78 0.73 2.18 0.08 8.96 

STRETCH low 0.08 11.38 0.18 5.92 0.20 5.79 0.04 14.31 

STRETCH tense 2.22 2.08 0.44 4.87 1.39 2.46 0.77 3.50 

STRETCH open 0.12 18.62 0.07 27.66 0.11 19.60 0.08 27.21 

STRETCH singleton coda 0.45 2.12 5.71 0.54 1.72 0.18 8.42 0.70 

STRETCH pre-voiced 0.11 14.05 0.08 20.00 0.10 16.18 0.11 16.01 

STRETCH post b 0.82 3.10 0.74 3.31 0.63 3.50 0.76 3.26 

STRETCH accented 0.12 9.49 0.13 8.61 0.05 20.47 0.05 21.20 

STRETCH phrase-final 0.08 18.96 0.06 22.52 0.09 15.93 0.08 19.88 

SQUEEZE vowel 0.20 -18.05 0.19 -23.42 0.27 -13.84 0.16 -30.68 

Neg. Log Prob. 3349.05 3347.93 3350.92 3341.64 

AIC 6742.10 6739.85 6745.84 6727.28 

Table 39: Learned weights and targets (in deciseconds) from four training runs, using constraint 

set Slong. Relative weight is shown in yellow shading, target values on a scale from blue (short) to 

red (long). Weights of 0 are omitted—0.00 indicates a positive value smaller than 0.005. 

In fact, neither of these models performed well, showing inconsistent convergence results with 

poor fits to the data, suggesting that both some STRETCH and some SQUEEZE constraints were 

in fact necessary conditions for the success of the Ssparse grammar. 

Table 40 summarizes the results of all grammars for which weights and targets were learned. 

Constraint 

Set 

Con-

straints 

Lowest 

AIC 

Highest 

AIC 

Notes 

Dfull 19 6719.32 6719.32 Viable models  

Dshort 10 6687.29 6688.64 Viable models (second best) 

Dlong 10 7005.51 7186.38 ! Inconsistant convergence 

Sfull 38 6735.54 6739.87 Too many parameters, likely overfitting 

Ssparse 20 6679.34 6685.69 Viable models (best) 

Sshort 11 6711.81 6963.36 ! Inconsistant convergence 

Slong 11 6727.28 6745.84 ! Inconsistant convergence 

Table 40: Model performance for the constraint sets learned. 
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6.6. Predictions of learned models 

6.6.1. Predictions of sample means 

The Ssparse grammar was able to fairly accurately predict the location of the mean durations of 

the 128 experimental conditions (Figure 37), accounting for 90% (R2 = .901) of their variation. 

Encouragingly, there doesn’t seem to be any pattern in the residual, meaning that the grammar is 

predicting the means of relatively longer and relatively shorter conditions equally well. 

 

Figure 37: The means of the duration distributions predicted by the Ssparse grammar compared 

with observed sample means from the 128 experimental conditions. 

However, focusing on means provides only a very limited picture. Unlike most models, 

maxent grammars do not just predict means for each input to the grammar, but entire probably 

distributions:  we can compare these directly to histograms of the training data. Six such 

comparisons, with a range of different targets and prosodic conditions, are given in Figure 38. 
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Figure 38: Predicted distributions of the Ssparse grammar (red), and observed histograms from the 

training data (blue), for six of the 128 experimental conditions. 
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6.6.2. Predictions of standard deviations and kurtoses 

As can be observed in Figure 38, the Ssparse grammar not only predicts that there will be 

differences in the means of the 128 conditions, but also differences in the shapes of their 

distributions. 

For example, the grammar predicts that there will be variation in these distributions’ standard 

deviations, and this predicted variation is correlated with variation in standard deviation seen in 

the training data (Figure 39), accounting for 45% (R2 = .450) of the observed variation. 

 

Figure 39: The standard deviations of the duration distributions predicted by the Ssparse grammar 

compared with observed sample standard deviations from the 128 experimental conditions. 

The grammar also predicts that there will be some variation in these distributions’ kurtoses, 

which is only possible due to the asymmetrical nature of STRETCH and SQUEEZE constraints. 

However, predicted kurtoses do not match those seen in the data very well (Figure 40), accounting 

for only 1% (R2 = .013) of the variation. In fact, all of the predicted values are positive, ranging 

from 0.04 to 0.62, while the observed ones range from -1.53 to 1.88. 
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Figure 40: The kurtoses predicted by the Ssparse grammar compared with observed sample 

kurtoses from the 128 experimental conditions. 

This may in part be because many of the samples were quite small, and accurately estimating 

the skewness of a population requires a fairly large sample. In other words, a good deal of the 

variation in kurtosis in the observed distributions was probably due to noise. 

6.6.3. Conditioned and unconditioned variation 

Empirical evidence was found (section 5.4.7) that, when comparing sets experimental 

conditions which differed only in one way (say, phrase-final vs. phrase-medial), the category of 

conditions which showed more phonologically conditioned variation (as estimated by the standard 

distribution of the sample means) was generally also the category which showed more random 

variation (as estimated by the mean of the sample standard deviations), and these two kinds of 

variation were correlated (Table 22, Figure 35). 
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The distributions generated by the Ssparse grammar also showed this correlation (R2 = 0.84) 

(Table 41, Figure 41). This is expected, since the degrees of both types of variation are determined 

by the weights of the very same constraints (section 4.1.5.1). 

Feature / Comparison 
Duration 

Δ Uncond. Var. Δ Cond. Var. 

high (high vs. mid) 0.056 0.218 

low (ɛ vs. æ) -0.031 -0.132 

tense (ɛ, ɪ vs. eɪ, i) 0.024 -0.014 

nasal onset (m vs. b) 0.010 0.063 

closed (t vs. Ø) -0.010 -0.124 

voiceless coda (t vs. d) 0.000 -0.038 

complex coda (ts vs. t) -0.009 -0.048 

accented 0.003 0.008 

phrase-final -0.003 -0.041 

Table 41 : Predicted differences between longer and shorter categories, across a number of 

phonological features, in their propensity toward conditioned variation, and unconditioned 

variation, for both duration (left) and log-duration (right), according to the Ssparse grammar. 

 

Figure 41: Predicted differences between longer and shorter categories, across each of the nine 

binary phonological features, in their propensity to show conditioned and unconditioned 

variation, for both duration (left) and log-duration (right), according to the Ssparse grammar. 
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6.7. Discussion 

Learning the parameters of maxent grammars with phonetic constraints appears to be feasible. 

This in and of itself is a novel and encouraging result, opening the door to future work on maxent 

phonetic grammars. 

With respect to modeling duration in particular, some of the constraint sets produce models 

which seem to fit the data well, as long as the learner is allowed to learn both the weights and the 

targets of the constraints. Of the grammars which used only the DURATION constraint family, 

models which contained only shortening effects (Dshort) were more informative than models with 

only lengthening effects (Dlong) and models with both shortening and lengthening effects (Dfull), 

and in the latter, shortening constraints are given more weight. There are a number of reasons that 

this is the case. In Chapter 5, it was shown that a bias towards shortening constraints would 

automatically derive the hyperadditive lengthening generalization, due to synergistic shortening 

(section 5.5.1.2). Constraining only or primarily the relatively shorter categories also allows the 

grammar to derive another pattern seen in the data: that relatively shorter categories have relatively 

narrower distributions (section 5.4.7). 

Even better models were achieved by employing the asymmetrical STRETCH and SQUEEZE 

constraints introduced in Chapter 4, specifically with the constraint set (Ssparse), which contained 

STRETCH constraints for natural classes which are comparatively long, and vice versa for 

SQUEEZE, as well as a global STRETCH and a SQUEEZE constraint, but omitted SQUEEZE 

constraints on longer classes and STRETCH constraints on shorter ones (leaving out constraints 

which would have effects like phrase-final shortening or phrase-medial lengthening: perhaps an 

intuitive omission). The fact that this constraint set (Ssparse) fit the data better than a similarly sized 

constraint set of symmetrical constraints (Dfull) is of interest, since only the former is able to capture 
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distributions which are not Gaussian. Some evidence from Chapter 5 pointed towards skewness 

being a non-arbitrary feature of the different samples in the experimental data, and therefore to 

non-normality in free variation for phonetic variables like duration. While the learned model in 

this case didn’t do a good job of capturing the observed variation is kurtosis (possibly due to there 

being too much noise), the existence of such variation, if it can be verified, is reason to suspect 

that asymmetrical constraints should have a place in phonetic grammars.  

While the learned models produce fairly good results, they do so by learning constraint targets 

which are extremely counter-intuitive, seriously calling into question the explanatory adequacy of 

these grammars. Negative durations, durations of over half a second, and so on are clearly not 

realistic values for phonetic targets in the traditional sense. Why the learner chooses these values, 

and what this means, deserves some explanation. 

6.7.1. Target learning: a post-mortem 

In prior work by linguists using targeted phonetic constraints, and harmonic grammars thereof, 

constraint targets are clearly thought of as representing the articulatory or acoustic goals of the 

speaker with respect to some sound or phonological constituent. For example, the proof of concept 

given by Flemming (2001) relating to CV coarticulation (reproduced here in section 3.3.1) 

involves a constraint IDENT(V) with a target representing the default F2 of some vowel, a constraint 

IDENT(C) with a target representing the default F2 locus of some consonant, and a constraint 

MINEFFORT penalizing F2 transitions in CV sequences. In the duration domain, Katz (2010) 

constructs examples of harmonic grammars consisting of DURATION constraints with targets 

which look reasonably like empirically observed duration averages for the kinds of syllables and 

segments they constrain, and Braver (2013) and Hayes and Schuh (MS) do the same. All manage 

to use these constraints to create grammar fragments which, with some adjustment, do a good job 
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of predicting qualitative patterns seen in the average durations of segments or syllables under 

investigation. 

Why, then, did the maxent learner developed here, when presented with duration data for front 

vowels in various phonological contexts, and with a set of constraints governing the duration of 

various natural classes thereof, fail to learn targets which were anywhere near the mean durations 

for these natural classes, instead learning apparently nonsensical ones that nevertheless yield 

grammars which predict the data well? Why, when forced to use these more reasonable targets (as 

in section 6.4), was the learner unable to learn weights which produced a quantitatively or 

qualitatively good fit to the data? There are two reasons for this. 

6.7.1.1. Target ganging in complex grammars 

The first reason relates to the complexity of the grammar, and in particular the highly 

orthogonal nature of the factors effecting front vowel duration, as compared to those which were 

modeled in earlier works. In Flemming’s coarticulation illustration, for example, if a vowel 

phoneme were to be produced in isolation, its F2 would be governed only by a single constraint: 

IDENT(V). In order to make the correct predictions, then, this constraint would need to use a target 

which represents the empirically observed realization of that vowel phoneme in isolation.  

The situation in grammars like Dfull and Ssparse is very different. Because so many factors are 

always at play in determining duration, any given input to the grammar will always be subject to 

multiple constraints, by virtue of being a vowel which has certain segmental properties, occurs in 

a certain segmental context, and occurs in a certain prosodic context, all of which have effects on 

duration that are enforced by constraints. Because of this, none of the constraints are the sole 

constraint active in any one tableau. The articulatory goals of the speaker for any sound or category 
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of sounds, rather than being determined by the target of a single constraint, are instead a function 

of the combined violation profiles of several constraints in tandem.  

For example, in the Dshort grammar, the constraints DUR[vowel] (w=1.25, t=5.49 ds) and 

DUR[lax] (w=0.05, t=−28.09 ds) both seem to have extremely unrealistic phonetic targets. 

However, all the lax vowels in the data are always subject to both of these constraints, as well as 

to DUR[closed] (w=0.92, t=1.79 ds) for phonotactic reasons. While the violation functions of these 

individual constraint individually are parabolas centered on unrealistic targets, the sum of the three 

violation functions is a parabola centered around 3.20 ds (320 ms), the weighted average of the 

three constraints’ targets. This number is a very reasonable articulatory target for what this 

grammar treats as the least marked lax vowel: /æ/ in the context /b_d/ in accented phrase-final 

position. (The experimentally observed mean is 313 ms.) 

The takeaway here is that, in models where it is always the case that many constraints are 

active at once, the concrete phonetic goals of the speaker will not generally correspond to targets 

of any one constraint, but instead to weighted averages of the targets of all of the constraints which 

govern the sounds being produced. 

6.7.1.2. Maxent grammars: slaves to variation 

The second reason is that maxent grammars are different from harmonic grammars. While 

harmonic grammars predict a single winning candidate for each phonological input, while maxent 

grammars predict probability distributions over candidates. In the maxent learning step, the learner 

is not trying to learn a grammar which merely makes the correct predictions about category means, 

but instead to learn a grammar with predicted distributions which closely matched the distributions 

in the training data, in order to maximize its likelihood. In particular, if a learned grammar makes 
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the correct predictions about means, but predicts very narrow distributions when in fact lots of 

variation is present in the training data, it will be treated as fitting the data poorly. With that in 

mind, consider that in the phonetic maxent framework it is the absolute weights of the constraints 

which determine the standard deviations of the predicted distributions: large weights create highly 

constrained distributions with small standard deviations, and vice versa for low constraints (section 

4.1.3). Therefore, the learner had to pick particular weights—relatively small ones, in fact—to 

accurately model the fact that the training data contained quite a lot of free variation.  

However, the learner also wants to predict effect sizes correctly: if phrase-final vowels are 

very much longer than phrase-medial ones, for example, then the constraints on these categories 

had better enforce that distinction. However, the weights of these constraints, for reasons just 

discussed, cannot be made too large. The learner is left with a conundrum: how to create a large 

phonological effect size without making the predicted distributions too narrow. The solution, of 

course, is to make the targets more extreme! This result is a constraint which provides a weak pull 

towards a distant target. This is a viable solution because, again, the actual phonetic goals of the 

speaker are weighted averages of the targets of many constraints. 

If the conditions in the training data had smaller standard deviations, the constraint weights 

would be larger, and the targets learned would be generally less extreme. Part of the reason for the 

small weights (and therefore extreme targets), then, might stem from the fact that I have used the 

grammar itself to model all of variance in the training data, when in fact much of this variance is 

probably not due to the grammar: the data were collected from multiple speakers, and these 

speakers varied in their speech rate, which was not modeled at all here, and instead treated as just 

a kind of free variation. Even if speech rate and every other linguistic variable were carefully 

controlled and modeled, though, it would still be difficult to determine how much of the variance 
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in the data should be attributed to the grammar. Since the distributions observed for different 

categories of sounds seem to differ, and to perhaps to be linguistically governed, the grammar 

probably has some role to play in governing variation—we need not abandon the maxent approach 

to phonetics simply because phonetic data is noisy—but at the same time a more plausible maxent 

phonetic grammar should probably output a distribution which has less variance than is actually 

observed. How to incorporate this insight into the maxent learning processes is a problem which 

is waiting to be solved. 

6.7.2. Variation between learned grammars 

When only constraint weights are learned, maxent grammars (including phonetic ones) have 

the attractive property that their parameter space is convex. This means that learning is guaranteed 

always to converge on the same set of weights, and these weights are guaranteed to be optimal. 

When both the targets and weights of phonetic constraints are treated as model parameters, this is 

no longer the case, and convergence behavior can be inconsistent, resulting in different sets of 

learned weights and targets each time. This kind of behavior is also reported by Flemming and 

Cho (2017) for weight and target learning using the HG framework. 

However, this inconsistency is not necessarily cause for alarm. For most of the constraint sets 

the parameters learned on different training runs, while variable, were not qualitatively very 

different, and also resulted in overall grammars with similar fits to the data. What this means is 

that, at least for some constraints sets and some data, there are simply multiple phonetic 

grammars—often similar ones—which get the job done. Perhaps this is not even a fluke, but a 

feature, considering the fact that human learners do not always acquire identical grammars, even 

when exposed to similar linguistic input. 
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7. Conclusions 

7.1. The long and the short of it51 

The overarching empirical question of this dissertation was how the many phonological 

factors which affect phonetic durations interact with each other. Existing models treat the effect of 

each such factor as a coefficient, or ratio, which the default duration for the sound in question is 

multiplied by when that factor is present. When more than one effect applies, they are predicted to 

stack in a multiplicative way: this is equivalent to treating each factor as a fixed effect in a log-

linear model. 

However, throughout the literature on phonetic duration there are reports of significant 

interaction effects, where the duration which results when multiple factors are present is not what 

would be predicted by such a model (several of these interactions are replicated in Chapter 5), 

suggesting that the right generative model for phonetic duration may not be one in which a default 

duration is multiplied by a number of coefficients, but instead take some other shape. 

7.1.1. Hyperadditive lengthening 

The interactions reported are far from random. Instead, with few exceptions, they result in 

patterns where the longest cases are longer than would be expected, and the shortest cases are not 

as short as would be expected by a simple multiplicative model: this pattern is termed the 

Hyperadditive Lengthening Generalization (section 2.6). There are various possible theoretical 

explanations for this pattern (section 5.5.1), but its existence is interesting in itself, especially if it 

                                                 

51 Duration-themed pun taken from Minkova, D. (2017, June). Personal interview. 
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turns out upon further investigation to be robust across even more pairs of factors, or if similar 

patterns can be found in phonetic variables other than duration. 

7.2. Maxent phonetics 

Maxent phonetic grammars, already in common use by phonologists, are potentially viable 

models for the realization of phonetic variables like duration. Like their phonological counterparts, 

they are able to predict variation over the possible realizations of these variables, rather than simply 

selecting winning candidates—an ability that is particularly relevant to modeling phonetic data, 

which always involves variation. 

If maxent phonetic grammars are paired with constraints with continuous violation functions 

(such as the DURATION constraint family), the languages that these grammars are capable of 

generating are restricted in their typology, in the sense that the framework and constraint families 

make empirical predictions about how phonetics variables like duration can and cannot pattern. 

Some of these typological predictions are very general, and independent of the specific constraints 

used, while others depend on choices regarding what constraints families are used, and especially 

on how constraints assign violations. 

7.2.1. The Consistent Variation Hypothesis 

One very general prediction is dubbed the Consistent Variation Hypothesis (section 4.1.5.1): 

because the same constraints govern phonologically-conditioned variation and “random” free-

variation, these two should be correlated. Classes of sounds or prosodic constituents which show 

a large degree of free variation in some phonetic variable should be just the classes of sounds for 

which that phonetic variable responds more readily to external conditioning factors. This 

prediction is wide in its scope, and is empirically testable. 
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Experimental results from this dissertation provide preliminary support for consistent 

variation in the duration domain (section 5.4.7): when paired natural classes which differ only in 

a single phonological feature or environment are compared, the class which shows more random 

durational variation across tokens is nearly always the category whose duration is more effected 

by various other phonological factors. 

7.2.2. Constraint synergy 

Another such prediction is that phonetic effects should combine synergistically: when a 

number of conditioning factors all induce similar phonetic effects—for example, are all associated 

with shortening—the more of these factors are already present, the smaller the effect of adding 

another such factor will be.52 This is because candidates can satisfy multiple constraints 

simultaneously (just as they can in phonological constraint grammars), alleviating the need for 

each constraint to have an independent contribution to an effect size in the case where both are 

present. 

This concept can be used to explain the Hyperadditive Lengthening Generalization: if all or 

most factors effecting duration are shortening effects, when two or more of these apply in tandem, 

synergistic shortening results in under-shortening of these shortest cases, which is equivalent to 

the hyperadditive lengthening interaction (section 5.5.1.2). 

                                                 

52 The empirical testability of this feature of maxent grammars relies on knowing what is the base case for 

any given phonetic effect (for example, knowing whether speakers are lengthening phrase-final syllables, 

shortening phrase-medial ones, or both). Unfortunately, this is rarely clear a priori. 
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7.2.3. Phonetic constraints and phonetic distributions 

While all maxent phonetic grammars output probability distributions over phonetic 

realizations, the shapes of these distributions depend on the choices of constraints, and especially 

the formulation of these constraints’ violation functions. Constraints with parabolic violation 

functions centered on a target, like the DURATION constraints proposed by Flemming (2001) 

have the interesting property that maxent grammars using sets of these constraints always output 

normal distributions.  

Because the more general constraint family STRETCH and SQUEEZE involves asymmetrical 

constraints, the distributions predicted by grammars of these constraints are not always normal, 

but can be asymmetrical. However, this asymmetry is itself rule-governed: relatively longer 

categories, since they are subject to more or more highly weighted STRETCH constraints and to 

fewer or less highly weighted SQUEEZE constraints, will have, if anything, relatively greater 

skewness (section 4.4.2) than comparable shorter categories. 

This pattern is in fact seen in experimental results, in that the duration means of the samples 

in the experiment are significantly positively correlated with their kurtoses (section 5.4.6). 

7.2.4. Phonetic learning 

Maxent phonetic grammars are learnable, at least in the narrow sense that it is possible to 

algorithmically determine their parameters so as to best fit a set of a phonetic training data. For 

constraints which involve targets, these targets can be learned simultaneously with constraint 

weights.  

Multiple local optima seem to exist in the learning space, and as a result the learner may not 

always learn the same grammar given the same data. However, for reasonable constraint sets, the 
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various local optima found are qualitatively similar, and produce similar fits to the data, suggesting 

that phonetic grammars simply have multiple ways of predicting a given set of data. 

The targets which end up being learned for the constraints of grammar fragments for English 

front vowel duration are, at first glance, counterintuitive: unlike in prior work on targeted phonetic 

constraints, the constraint targets cannot be phonetic targets in the traditional sense, since they are 

in many cases quite extreme, or even negative numbers. This is partly because the grammar 

fragments are complex enough that many constraints are active in determining the duration of any 

particular input to the grammar, such that the output is always a function of multiple constraints, 

and not any single constraint. It is also partly because, unlike harmonic grammars, maxent 

grammars are responsible for modeling the variation seen in the training data, and in some cases 

they can only do so by using very small constraint weights coupled with extremely long or 

extremely short constraint targets. 

7.3. New research directions 

This dissertation, like many, raises far more questions than it answers. I here hint at how some 

of the research threads that have been picked up might be followed, and invite (and encourage) 

readers with an interest in theoretical phonetics to follow them. 

7.3.1. Empirical 

The empirical predictions made in this dissertation have, as yet, only weak support. The 

Hyperadditive Lengthening Generalization, for example, is based on several interactions between 

pairs of effects influencing duration, but the way most pairs of phonetic effects interact is still 

unknown. Filling these empirical gaps would help to either support or to reject this generalization.  
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More broadly, the interplay between multiple phonetic processes of all kinds is not yet well 

understood. When interactions between independent variables are found in the empirical phonetics 

literature, they are often merely statistical footnotes in experimental work whose goal is to 

establish the importance of each variable independently. For linguists interested in generative 

models of phonetics, however, an empirical understanding about the way multiple factors 

governing the same phonetic variable interact with each other, and especially any generalizations 

that can be made about such interactions, is of tantamount importance to understanding what kind 

of generative model of phonetics is needed. 

Another prediction, the Consistent Variation Hypothesis—a broad prediction of maxent 

phonetic constraint grammars—is wide open for empirical testing, not only for phonetic duration, 

but for every other conceivable phonetic variable. 

7.3.2. Theoretical 

The learning of maxent phonetic constraint grammars is in its infancy, this dissertation serving 

only as a proof of concept, even when it comes to the duration domain. More realistic maxent 

grammars for duration would be more like the harmonic grammars used by Katz (2010), including 

constraints on the durations of both segments and on prosodic constituents larger than segments, 

such as syllables or feet, predicting the durations of multiple segments at once. Predicting multiple 

duration values would require a multi-dimensional candidate set, making GEN a bit more complex. 

The best way to formulate the phonetic constraints themselves is a topic ripe for additional 

research: unlike phonological constraints, phonetic constraints are relatively new, and which 

constraints should be used and how they should assign violations to candidates is an open 

theoretical question. For example, while parabolic and hemiparabolic violation functions have 
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been used throughout this dissertation, many other functions are plausible (cf. Windmann et al., 

2015), could easily be employed in the maxent phonetics framework, and once so employed would 

make their own empirically testable predictions about patterns in the distributions of phonetic 

variables (section 4.1.5). Investigation of this sort could also proceed in the opposite direction: if 

the distribution of some phonetic variable is already known to be interesting in some way (for 

example by being non-normal, or by showing more variation in one phonological category or in 

one context than in another) then these facts could be used as a basis for reverse engineering what 

sort of constraint or constraints would need to govern that phonetic variable in a phonetic grammar. 

7.4. Outlook 

While many of the particulars are as yet unclear, one thing at least seems certain: the maxent 

framework provides structural linguists with a powerful formalism for developing generative, 

restrictive, learnable grammars which govern not only the systematic relationships between levels 

of phonological representation, but also between these discrete phonological representations and 

quasi-continuous phonetic ones. 
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Appendix: experimental results 

This appendix provides aggregate statistics for the tokens in each of the 128 experimental conditions (see Chapter 5). 

Phrase-Medial, Unaccented 

 

Vowel Coda Word N 
Duration (s) Log Duration (s) m 

Vowel Coda Word N 
Duration (s) Log Duration (s) 

mean stdev skew mean stdev skew  mean stdev skew mean stdev skew 

æ 

_d 
bad 7 0.187 0.043 -0.229 -1.703 0.246 -0.466  

eɪ 

_∅ 
bay 4 0.125 0.005 0.000 -2.080 0.040 0.000 

mad 4 0.148 0.029 0.252 -1.933 0.195 -0.018  may 11 0.113 0.027 0.689 -2.207 0.227 0.317 

_t 
bat 7 0.156 0.040 -0.445 -1.900 0.298 -0.986  

_d 
bade 4 0.183 0.063 1.092 -1.749 0.301 1.037 

mat 8 0.135 0.020 0.457 -2.015 0.146 0.252  made 11 0.126 0.032 1.195 -2.097 0.229 0.926 

_ts 
bats 10 0.165 0.019 0.301 -1.808 0.115 0.250  

_t 
bait 9 0.154 0.026 0.321 -1.888 0.167 0.214 

mats 11 0.123 0.022 0.566 -2.107 0.171 0.195  mate 4 0.108 0.011 -0.652 -2.236 0.106 -0.749 

ɛ 

_d bed 7 0.123 0.017 -0.473 -2.106 0.144 -0.859  

_ts 
baits 10 0.140 0.020 0.356 -1.976 0.141 0.063 

_t 
bet 5 0.124 0.029 -0.121 -2.116 0.243 -0.205  mates 8 0.099 0.018 0.417 -2.334 0.184 0.278 

met 8 0.095 0.024 -0.348 -2.388 0.284 -0.881  

i 

_∅ 
bee 8 0.130 0.020 0.496 -2.053 0.151 0.136 

_ts bets 8 0.128 0.029 0.354 -2.083 0.229 0.017  me 8 0.113 0.027 -0.297 -2.215 0.268 -1.097 

ɪ 

_d 
bid 7 0.106 0.040 -0.173 -2.332 0.425 -0.417  

_d 
bead 8 0.144 0.031 0.534 -1.961 0.211 0.252 

mid 9 0.083 0.021 0.021 -2.519 0.265 -0.425  mead 7 0.157 0.029 -0.077 -1.868 0.192 -0.368 

_t 
bit 12 0.107 0.030 0.648 -2.274 0.271 0.205  

_t 
beat 11 0.125 0.025 -0.263 -2.105 0.213 -0.613 

mitt 6 0.090 0.019 0.425 -2.434 0.212 0.290  meat 10 0.116 0.019 -0.158 -2.167 0.164 -0.273 

_ts 
bits 12 0.089 0.017 0.229 -2.437 0.189 -0.178  

_ts 
beats 10 0.118 0.015 -0.520 -2.146 0.136 -0.660 

mitts 5 0.054 0.011 0.214 -2.935 0.200 -0.094  meats 9 0.117 0.024 -0.255 -2.169 0.224 -0.855 
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Phrase-Medial, Accented 

 

Vowel Coda Word N 
Duration (s) Log Duration (s) m 

Vowel Coda Word N 
Duration (s) Log Duration (s) 

mean stdev skew mean stdev skew  mean stdev skew mean stdev skew 

æ 

_d 
bad 11 0.232 0.033 0.909 -1.472 0.135 0.582  

eɪ 

_∅ 
bay 12 0.210 0.050 0.198 -1.592 0.246 -0.266 

mad 12 0.208 0.054 0.906 -1.600 0.243 0.632  may 10 0.185 0.046 0.973 -1.716 0.232 0.589 

_t 
bat 14 0.179 0.031 0.353 -1.733 0.169 0.130  

_d 
bade 11 0.214 0.038 0.435 -1.558 0.176 0.273 

mat 12 0.150 0.023 -0.488 -1.909 0.164 -0.706  made 14 0.190 0.062 0.852 -1.709 0.306 0.505 

_ts 
bats 12 0.188 0.023 0.102 -1.682 0.125 -0.084  

_t 
bait 14 0.178 0.023 0.081 -1.735 0.131 -0.109 

mats 14 0.149 0.017 0.586 -1.908 0.114 0.360  mate 12 0.135 0.022 1.020 -2.014 0.158 0.548 

ɛ 

_d bed 14 0.176 0.047 0.952 -1.768 0.251 0.473  

_ts 
baits 12 0.162 0.028 0.715 -1.832 0.168 0.245 

_t 
bet 12 0.153 0.031 0.351 -1.901 0.204 -0.050  mates 13 0.126 0.022 0.235 -2.087 0.174 -0.110 

met 12 0.100 0.020 -0.883 -2.328 0.242 -1.538  

i 

_∅ 
bee 12 0.188 0.052 0.174 -1.714 0.291 -0.367 

_ts bets 11 0.124 0.017 0.816 -2.092 0.129 0.556  me 10 0.189 0.050 0.126 -1.703 0.282 -0.493 

ɪ 

_d 
bid 12 0.140 0.032 0.169 -1.991 0.230 -0.150  

_d 
bead 11 0.183 0.038 -0.151 -1.724 0.224 -0.606 

mid 10 0.108 0.038 0.288 -2.292 0.371 -0.342  mead 11 0.184 0.046 0.439 -1.721 0.247 0.123 

_t 
bit 8 0.114 0.025 -0.064 -2.198 0.225 -0.284  

_t 
beat 11 0.148 0.019 -0.633 -1.916 0.137 -0.806 

mitt 8 0.084 0.027 1.690 -2.523 0.272 1.206  meat 11 0.128 0.023 -0.096 -2.073 0.194 -0.684 

_ts 
bits 13 0.122 0.032 0.099 -2.145 0.280 -0.529  

_ts 
beats 12 0.154 0.027 0.272 -1.889 0.177 0.139 

mitts 6 0.085 0.022 1.116 -2.497 0.240 0.729  meats 13 0.125 0.021 0.382 -2.096 0.170 0.014 
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Phrase-Final, Unaccented 

 

Vowel Coda Word N 
Duration (s) Log Duration (s) m 

Vowel Coda Word N 
Duration (s) Log Duration (s) 

mean stdev skew mean stdev skew  mean stdev skew mean stdev skew 

æ 

_d 
bad 9 0.249 0.056 -1.015 -1.423 0.274 -1.603  

eɪ 

_∅ 
bay 6 0.310 0.049 0.391 -1.183 0.154 0.282 

mad 10 0.216 0.057 1.588 -1.560 0.228 1.275  may 4 0.218 0.045 -0.426 -1.549 0.221 -0.619 

_t 
bat 9 0.196 0.044 0.190 -1.659 0.236 -0.358  

_d 
bade 8 0.215 0.039 0.876 -1.552 0.174 0.442 

mat 9 0.162 0.052 -0.660 -1.892 0.432 -1.625  made 10 0.198 0.060 0.826 -1.663 0.292 0.206 

_ts 
bats 4 0.228 0.033 0.579 -1.491 0.143 0.441  

_t 
bait 6 0.175 0.028 -0.383 -1.756 0.165 -0.552 

mats 5 0.110 0.036 -0.550 -2.277 0.400 -0.888  mate 7 0.156 0.041 -0.548 -1.903 0.306 -0.963 

ɛ 

_d bed 11 0.173 0.042 1.749 -1.782 0.214 1.043  

_ts 
baits 8 0.150 0.031 -1.201 -1.922 0.248 -1.610 

_t 
bet 12 0.162 0.035 0.258 -1.846 0.218 -0.213  mates 8 0.138 0.023 -0.452 -1.997 0.176 -0.558 

met 10 0.122 0.030 -0.635 -2.140 0.283 -1.162  

i 

_∅ 
bee 10 0.221 0.028 1.176 -1.516 0.119 0.806 

_ts bets 7 0.170 0.033 -1.150 -1.795 0.227 -1.409  me 3 0.210 0.022 -0.595 -1.566 0.107 -0.616 

ɪ 

_d 
bid 9 0.160 0.048 -0.048 -1.883 0.327 -0.482  

_d 
bead 13 0.201 0.019 0.422 -1.610 0.093 0.220 

mid 7 0.127 0.037 0.277 -2.110 0.304 -0.232  mead 7 0.184 0.033 0.747 -1.706 0.172 0.660 

_t 
bit 7 0.149 0.020 0.178 -1.915 0.136 0.038  

_t 
beat 9 0.161 0.024 -1.554 -1.839 0.176 -1.867 

mitt 3 0.113 0.033 -0.295 -2.226 0.320 -0.458  meat 12 0.158 0.034 -0.559 -1.874 0.245 -1.320 

_ts 
bits 9 0.112 0.030 0.449 -2.223 0.268 0.142  

_ts 
beats 6 0.130 0.026 -0.521 -2.065 0.227 -1.015 

mitts 4 0.108 0.027 0.657 -2.260 0.238 0.474  meats 8 0.125 0.032 -0.268 -2.116 0.282 -0.641 
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Phrase-Final, Accented 

 

Vowel Coda Word N 
Duration (s) Log Duration (s) m 

Vowel Coda Word N 
Duration (s) Log Duration (s) 

mean stdev skew mean stdev skew  mean stdev skew mean stdev skew 

æ 

_d 
bad 12 0.313 0.055 1.030 -1.174 0.165 0.798  

eɪ 

_∅ 
bay 11 0.349 0.057 0.333 -1.065 0.161 0.112 

mad 14 0.244 0.037 0.316 -1.423 0.151 0.134  may 13 0.250 0.062 0.482 -1.417 0.248 -0.097 

_t 
bat 13 0.209 0.036 0.391 -1.578 0.170 0.071  

_d 
bade 11 0.291 0.040 0.025 -1.244 0.137 -0.132 

mat 11 0.170 0.042 -0.664 -1.808 0.288 -1.249  made 13 0.232 0.055 1.704 -1.486 0.208 1.222 

_ts 
bats 10 0.221 0.032 0.347 -1.519 0.144 0.014  

_t 
bait 10 0.204 0.031 0.746 -1.601 0.148 0.549 

mats 11 0.168 0.050 -0.039 -1.832 0.325 -0.624  mate 13 0.151 0.045 -0.421 -1.952 0.376 -1.436 

ɛ 

_d bed 10 0.235 0.052 0.355 -1.472 0.219 0.145  

_ts 
baits 12 0.178 0.027 -0.503 -1.736 0.160 -0.873 

_t 
bet 10 0.157 0.031 -0.728 -1.876 0.226 -1.147  mates 10 0.141 0.021 0.271 -1.970 0.147 0.049 

met 13 0.105 0.022 0.479 -2.278 0.210 0.041  

i 

_∅ 
bee 12 0.313 0.064 1.883 -1.181 0.180 1.397 

_ts bets 8 0.132 0.024 -0.237 -2.039 0.189 -0.563  me 12 0.247 0.064 -0.057 -1.435 0.274 -0.384 

ɪ 

_d 
bid 12 0.193 0.040 0.856 -1.667 0.199 0.259  

_d 
bead 12 0.253 0.041 -0.177 -1.390 0.168 -0.352 

mid 10 0.162 0.027 -0.194 -1.834 0.173 -0.601  mead 9 0.237 0.045 0.276 -1.458 0.188 0.084 

_t 
bit 10 0.137 0.037 -0.132 -2.029 0.297 -0.727  

_t 
beat 7 0.163 0.031 0.019 -1.834 0.194 -0.143 

mitt 6 0.090 0.020 -0.125 -2.434 0.234 -0.394  meat 8 0.146 0.028 0.497 -1.941 0.189 0.228 

_ts 
bits 8 0.153 0.044 0.060 -1.926 0.311 -0.503  

_ts 
beats 10 0.163 0.018 0.229 -1.821 0.113 -0.071 

mitts 7 0.099 0.030 0.425 -2.363 0.304 0.069  meats 13 0.144 0.025 0.702 -1.952 0.168 0.355 
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