
UNIVERSITY OF CALIFORNIA SAN DIEGO

Arithmetic of Algebraic Curves

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Mathematics

by

Mingjie Chen

Committee in charge:

Professor Kiran Kedlaya, Chair
Professor Alina Bucur
Professor Russell Impagliazzo
Professor Dragos Oprea
Professor Cristian Popescu

2022

Copyright

Mingjie Chen, 2022

All rights reserved.

The dissertation of Mingjie Chen is approved, and

it is acceptable in quality and form for publication

on microfilm and electronically.

University of California San Diego

2022

iii

TABLE OF CONTENTS

Dissertation Approval Page . iii

Table of Contents . iv

List of Figures . vii

List of Tables . viii

Acknowledgements . ix

Vita . x

Abstract of the Dissertation . xi

I Coleman integration on modular curves 1

Chapter 1 Preliminaries . 2

1.1 Modular curves . 2

1.2 Modular forms . 5

1.3 Hecke operators . 6

1.4 Coleman integration . 8

Chapter 2 Coleman integration on modular curves . 11

2.1 Introduction . 11

2.2 Main strategy . 13

2.3 X0(N) . 16

2.3.1 Example – X0(37) . 17

2.4 X+
0 (N) . 19

2.4.1 Preliminaries . 19

2.4.2 Expected rational points . 20

2.4.3 Basis of H0(X,⌦1) . 20

2.4.4 Hecke operator action . 20

2.4.5 Uniformizer . 21

2.4.6 Example – X+
0 (67) . 21

2.5 X+
ns(N) . 23

2.5.1 Preliminaries . 23

2.5.2 Expected rational points . 24

iv

2.5.3 Basis of H0(X,⌦1) . 25

2.5.4 Hecke operator action . 25

2.5.5 Example – X+
ns(13) . 26

2.6 Remarks on computation . 29

II Supersingular elliptic curves and isogeny graphs 32

Chapter 3 Preliminaries . 33

3.1 Elliptic curves with complex multiplication 33

3.2 Elliptic curves over finite fields . 35

3.2.1 Ordinary and supersingular elliptic curves 35

3.2.2 Isogeny class . 36

3.2.3 Kernel ideals and quotients . 38

3.2.4 Reduction of CM elliptic curves . 40

3.3 Isogeny graph . 41

3.3.1 Ordinary case . 41

3.3.2 Supersingular case . 43

Chapter 4 Orienteering with one endomorphism . 45

4.1 Introduction . 45

4.1.1 Main theorem . 47

4.1.2 Other algorithms presented . 49

4.1.3 Comparison with [99] . 50

4.1.4 Other contributions . 52

4.1.5 Outline . 52

4.2 Background . 53

4.2.1 Notations and conventions . 53

4.2.2 Runtime lemmata . 55

4.3 Oriented isogeny graphs . 57

4.3.1 Orientations . 58

4.3.2 Oriented isogeny graphs . 58

4.3.3 Frobenius and class group actions 59

4.3.4 Volcano structure . 62

4.3.5 From oriented isogeny graph to isogeny graph 63

4.3.6 Graph statistics and heuristics . 64

4.4 Navigating the K-oriented `-isogeny graph 66

4.4.1 Conjugate orientations and orientations from endomorphisms . . . 66

v

4.4.2 `-primitivity, `-suitability, and direction finding 67

4.5 Representing orientations and endomorphisms 69

4.5.1 Representations and functionality 69

4.5.2 Functionality for rationally represented endomorphisms 71

4.5.3 Functionality for isogeny chain endomorphisms 71

4.5.4 Poly-rep runtime . 77

4.6 Orientation-finding for j = 1728 . 78

4.6.1 In terms of 1, i, j, k . 79

4.6.2 As an isogeny chain endomorphism 85

4.6.3 Curves other than j = 1728 . 86

4.6.4 Heuristics . 86

4.7 Supporting algorithms for walking on oriented curves 87

4.7.1 Computing an `-primitive endomorphism 87

4.7.2 Rim walking via the class group action 88

4.7.3 Ascending to the rim using an orientation 91

4.7.4 Ascending and walking the rim using the endomorphism ring . . . 93

4.8 Classical path-finding to j = 1728 . 95

4.9 Proof of the Main Theorem and Special Cases 99

4.9.1 Proof of Theorem 4.1.1 . 99

4.9.2 Special cases . 99

4.10 Division by [`] . 101

Chapter 5 On Fp-roots of the Hilbert class polynomial modulo p 108

5.1 Introduction . 108

5.2 Reinterpretation of the Fp-roots . 110

5.3 The Pic(O)[2]-action on Hp and the nonemptiness criterion 117

Bibliography . 123

vi

LIST OF FIGURES

Figure 4.1: On the left hand side is a component of GK for p = 179, ` = 2 and K =
Q(
p
�47). On the right hand side is the supersingular 2-isogeny graph over Fp2 .

The green 5-cycle represents the rim of the volcano. 60

vii

LIST OF TABLES

Table 2.1: Coleman integrations on X0(37) . 19

Table 2.2: Two rational points on X+
0 (67) . 21

Table 2.3: Coleman integrations on X+
0 (67)) . 23

Table 2.4: Coleman integrations on X+
ns(13) . 30

viii

ACKNOWLEDGEMENTS

There are many people whom I would like to express my sincere thanks to. First of all,

I would like to thank my advisor, Dr Kiran Kedlaya, for long-term support and many helpful

advice. Especially for suggesting computing Coleman integrations on modular curves as my research

project, which turns out to be very interesting and suitably challenging.

I am very grateful to my parents for their constant support and unconditional trust in me

throughout my life. I am also grateful to my boyfriend Woonam Lim for his love and for being

there whenever I needed. There are also many friends who have taken important parts in my life at

San Diego. Lots of my memorable moments in San Diego were shared with Jun Bo Lau, Zeyu Liu,

Nandagopal Ramachandran, Sindhana P.S., Shubham Sinha, Wei Yin, Minxin Zhang and many

others. It is my great fortune to have met them and became close friends with them.

Chapters 2 is, in full, being prepared for submission for publication. The dissertation author

was the collaborator and the coauthor for the material below.

• Mingjie Chen, Kiran S. Kedlaya, Jun Bo Lau “Coleman integration on modular curves”.

Chapters 4 is, in full, being prepared for submission for publication. The dissertation author

was the collaborator and the coauthor for the material below.

• Sarah Arpin; Mingjie Chen; Kristin E. Lauter; Renate Scheidler; Katherine E. Stange;

Ha T. N. Tran ”Orienteering with one endomorphism”.

Chapters 5 is, in full, being prepared for submission for publication. The dissertation author

was the collaborator and the coauthor for the material below.

• Mingjie Chen, Jiangwei Xue “On Fp-roots of the Hilbert class polynomial modulo p”.

I would like to thank all the collaborators – Sarah Arpin, Kiran Kedlaya, Jun Bo Lau, Kristin

Lauter, Renate Schidler, Kate Stange, Ha Tran, Jiangwei Xue – for many helpful conversations and

permitting to include the materials to this dissertation.

ix

VITA

2016 B. S. in Mathematics, Wuhan University

2016-2022 Graduate Teaching Assistant, University of California San Diego

2022 Ph. D. in Mathematics, University of California San Diego

x

ABSTRACT OF THE DISSERTATION

Arithmetic of Algebraic Curves

by

Mingjie Chen

Doctor of Philosophy in Mathematics

University of California San Diego, 2022

Professor Kiran Kedlaya, Chair

In this dissertation, we present a collection of results regarding the arithmetic of algebraic

curves. More specifically, the curves involved are modular curves and elliptic curves. In the first

part, we present an algorithm that computes a p-adic integration called Coleman integration on

modular curves. Di↵erent from other methods, our algorithm does not require the knowledge of a

model of the curve. The ability of computing such integrals aids the problem of finding rational

points on modular curves. In the second part, we consider elliptic curves defined over finite fields

of characteristic p. In particular, we are interested in supersingular elliptic curves. We first present

a work on path-finding on supersingular `-isogeny graphs using the theory of orientations. We then

present a work on counting the number of Fp-roots of the Hilbert class polynomial HO(x) modulo

p, in the case when the Fp2-roots are supersingular j-invariants.

xi

Part I

Coleman integration on modular

curves

1

Chapter 1

Preliminaries

1.1 Modular curves

One way to define a modular curve is to define it as the quotient of the extended upper half

plane H+ := H [Q [{1} where H := {z 2 C : Im z > 0}. We define the action of SL2(Z) on H+

to be �(z) = az+b

cz+d
, where z 2 H and � =

�
a b

c d

�
2 SL2(Z). To define a modular curve as a quotient,

we need the following definitions of subgroups of SL2(Z).

Definition 1.1.1. Let N be a positive integer. The principal congruence subgroup of level N is

�(N) = {
�
a b

c d

�
2 SL2(Z) :

�
a b

c d

�
⌘
�
1 0
0 1

�
(mod N)}.

Definition 1.1.2. A subgroup � of SL2(Z) is a congruence subgroup if �(N) ✓ � for some N 2 Z+,

in which case � is a congruence subgroup of level N .

Example 1.1.3. Besides �(N), the two most important congruence subgroups are:

�0(N) = {
�
a b

c d

�
2 SL2(Z) :

�
a b

c d

�
⌘
�
⇤ ⇤
0 ⇤

�
(mod N)},

�1(N) = {
�
a b

c d

�
2 SL2(Z) :

�
a b

c d

�
⌘
�
1 ⇤
0 1

�
(mod N)}.

Example 1.1.4. One also considers congruence subgroups �H that are lifted from subgroups H

2

of GL2(Z/NZ) defined by

�H = {
�
a b

c d

�
2 SL2(Z) :

�
a b

c d

�
(mod N) 2 H}.

Definition 1.1.5. For any congruence subgroup � 2 SL2(Z), the modular curve Y (�) is defined to

be the set of orbits �\H = {�⌧ : ⌧ 2 H}. If � = �(N), �0(N) or �1(N), we denote the quotients

of H by Y (N), Y0(N) or Y1(N) respectively.

According to [37, Chapter 2], Y (�) has a structure of connected Riemann surface. We define

cusps of � as �-orbits of Q [{1}. Adjoining cusps to the modular curve Y (�) by considering the

quotients �\H+ turns it into a compact Riemann surface, and therefore an algebraic curve over C.

This is again called as a modular curve and is denoted by X(�). If � = �(N),�0(N) or �1(N), we

denote the quotients of H+ by � by X(N), X0(N) or X1(N) respectively. When � is of the form

�H for some H ✓ GL2(Z/NZ), we also denote the curve Y (�H) by YH and the compact Riemann

surface X(�H) by XH .

The most interesting point of view to take for modular curves is to view them as moduli

space of elliptic curves with torsion data. Recall that a complex elliptic curve E is isomorphic to

C/⇤⌧ for some ⌧ 2 H where ⇤⌧ is the lattice generated by 1 and ⌧ . Moreover, C/⇤⌧1 ⇠= C/⇤⌧2 if and

only if there exists � 2 SL2(Z) such that �(⌧1) = ⌧2. This establishes an one-to-one correspondence

between the set of isomorphism classes of complex elliptic curves and the SL2(Z)-orbits of H.

Associating each complex elliptic curve with di↵erent torsion data gives various bijections

between elliptic curves with torsion data and complex points on modular curves. We illustrate the

case when the modular curve X is X0(N). An enhanced elliptic curve for �0(N) is an ordered

pair (E,C) where E is a complex elliptic curve and C is a cyclic subgroup of E of order N . Two

pairs (E1, C1) and (E2, C2) are equivalent if there exists an isomorphism between E1 and E2 that

takes C1 to C2. We denote the set of these equivalence classes by S0(N). [37, Theorem 1.5.1]

demonstrates the bijection between S0(N) and Y0(N).

So far, the discussion about modular curves are all done from the transcendental point of

view. In fact, X0(N) and X1(N) have models defined over Q. In [37, Chapter 7], the nonsingular

projective algebraic curves X0(N)alg and X1(N)alg over Q are defined by specifying the function

3

fields. Extending the field to C gives rise to two complex curves X0(N)alg,C and X1(N)alg,C. They

are shown to be isomorphic to the previously defined curves X0(N) and X1(N) as the corresponding

curves have the same function fields.

In general, let H be any subgroup of GL2(Z/NZ) such that:

1. �I 2 H;

2. the determinant map det : H ! (Z/NZ)⇥ is surjective.

Taking the approach as in the previous paragraph where one considers the function field, the

modular curves XH defined earlier can be shown to be smooth projective algebraic curves over Q as

well. In fact, the modular curves X0(N) and X1(N) can be also be viewed this way. One can verify

that X0(N) corresponds to the choice H = {
�
a 0
c d

�
2 GL2(Z/NZ) : a, d 2 (Z/NZ)⇥, c 2 Z/NZ},

and X1(N) corresponds to H = {
�
a 0
c ±1

�
2 GL2(Z/NZ) : a 2 (Z/NZ)⇥, c 2 Z/NZ}.

The noncuspidal Q-points on XH corresponds to isomorphism classes of pairs (E,�) where

E is an elliptic curve defined over Q and � is an isomorphism between E[N] and Z/NZ ⇥ Z/NZ.

Here two pairs (E1,�1), (E2,�2) are isomorphic if there is an isomorphism of elliptic curves and

element h 2 H such that the following diagram commutes:

E1[N] (Z/NZ)2

E2[N] (Z/NZ)2.

�1

 h

�2

There is a natural definition of the absolute Galois group Gal(Q/Q) action on non-cuspidal

Q-points on XH . Let � 2 Gal(Q/Q), then

� · (E,�) := (E�,� � ��1).

We say that a point (E,�) is Q-rational if it is invariant under the Gal(Q/Q) action. Clearly, a

necessary condition for (E,�) to be Q-rational is that E is defined over Q. In the case of X0(N),

the Q-rational points can be described more explicitly. They are elliptic curves E defined over

Q such that E has a cyclic N -subgroup that is invariant under Gal(Q/Q) action. Equivalently,

Q-rational points on X0(N) are elliptic curves E defined over Q such that E admits an outgoing

4

degree N isogeny defined over Q.

1.2 Modular forms

In this section, we give a brief introduction to modular forms. All the contents presented

here can be found in [37] with more details.

For any � 2 SL2(Z) and any integer k, we define the weight-k operator [�]k on functions

f : H! C by

(f [�]k)(⌧) = (c⌧ + d)�kf(�(⌧)).

Definition 1.2.1. [37, Definition 1.2.3] Let � be a congruence subgroup of SL2(Z) and let k be

an integer. A function f : H! C is a modular form of weight k with respect to � if

1. f is holomorphic;

2. f is weight-k invariant under � (i.e., f [�]k = f for all � 2 �);

3. f [↵]k is holomorphic at 1 for all ↵ 2 SL2(Z).

The set of modular forms of weight k with respect to � is denoted by Mk(�).

Each congruence subgroup � contains a matrix of the form
�
1 h
0 1

�
for some minimal positive

integer h and obviously h is at most N . In fact, h might be a proper factor of N . This indicates

that a modular form f 2 Mk(�) is hZ-periodic and has a Fourier expansion
P

1

n=0 anq
n

h
where

qh = e2⇡i⌧/h.

Definition 1.2.2. Let f be a modular form of weight k with respect to �. If a0 = 0 in the Fourier

expansion of f [↵]k for all ↵ 2 SL2(Z), then f is a cusp form. We denote the set of cusp forms of

weight k with respect to � by Sk(�).

Example 1.2.3. The j-invariant is a modular function (i.e. weight 0) on the upper half plane

j : H! C, j(⌧) = 1728
(g2(⌧))3

g2(⌧)3 � 25g3(⌧)2
=

1

q
+ 744 + 196884q + · · ·

5

where

q = e2⇡i⌧ ,

g2(⌧) = 60
X

(m,n) 6=(0,0)

1

(m+ n⌧)4
,

g3(⌧) = 140
X

(m,n) 6=(0,0)

1

(m+ n⌧)6
.

We denote the C-vector space of holomorphic di↵erentials of a modular curve X(�) by

H0(X(�),⌦1). This space can be related to the space of weight 2 cusp forms S2(�) as follows.

Proposition 1.2.1. [37, Section 3.3] There is an isomorphism of C-vector spaces

S2(�)
⇠�! H0(X(�),⌦1)

f(⌧) 7�! f(⌧)d⌧ .

1.3 Hecke operators

Hecke operators are important operators for modular curves. They play a vital role in

Chapter 2 when designing the algorithm for computing Coleman integration on modular curves.

There are several ways one could define an Hecke operator, and the way we choose here is the

transcendental one, via double coset operator.

Definition 1.3.1. Let �1,�2 be two congruence subgroups of SL2(Z), ↵ 2 GL2(Q)+. We define the

double coset operator [�1↵�2]k from Mk(�1) to Mk(�2) by

f [�1↵�2]k :=
X

f [�i]k,

where f 2Mk(�1), {�i}i is a set of coset representatives of �1\�1↵�2 and f [↵]k(⌧) = det(↵)k�1(c⌧+

d)�kf(↵ · ⌧) is the slash-k operator.

The following two lemmas combined show that this union is finite.

Lemma 1.3.1. [83, Lemma 5.1.] Let � be a congruence subgroup of SL2(Z) and let ↵ be an element

of GL2(Q)+. Then (↵�1�↵ \ SL2(Z)) is again a congruence subgroup of SL2(Z).

6

Lemma 1.3.2. [83, Lemma 5.1.2] There is a bijection between the coset space �1\�1↵�2 and the

coset space (↵�1�1↵ \ �2)\�2, with the map given by �1� 7! (↵�1�1↵ \ �2)↵�1�.

Let H be a subgroup of GL2(Z/NZ) and �H ✓ SL2(Z) be the lift of H to SL2(Z). Let p be

a prime does not divide N . [6, Section 4.4.1] gives an adelic description of the Hecke operator Tp as

a correspondence. They also relate this description to double cosets, which we use as a definition

of Tp.

Definition 1.3.2. [6, Lemma 4.4.15] Let p - N be a prime and ↵ 2 M2(Z) be such that det(↵) = p

and ↵(mod N) 2 H. The Hecke operator Tp is defined to be T↵. Here T↵ denotes the double coset

operator [�H↵�H].

The coset representatives of �H\�H↵�H can be hard to compute directly, the following

lemma provides a bijection that makes the computation easier.

Lemma 1.3.3. [79, Lemma 3.29(5)] Let ↵ be as in Lemma 1.3.2. If �H↵�H = [i�H↵i is a

disjoint union, then SL2(Z)↵ SL2(Z) = [i SL2(Z)↵i.

It follows immediately from this lemma that if SL2(Z)↵ SL2(Z) = [i SL2(Z)↵i with ↵i 2 �H ,

then �H↵�H = [i�H↵i holds. Therefore, the computation of Hecke operators Tp for a subgroup

H ✓ GL2(Z/NZ) can be broken into the following steps.

1. Find ↵ 2 M2(Z) such that det(↵) = p and ↵(mod N) 2 H.

2. Compute ↵i’s such that SL2(Z) = [i(SL2(Z) \ ↵�1 SL2(Z)↵)↵i.

3. Use lemma 1.3.2 and compute �i’s such that SL2(Z)↵ SL2(Z) = [i SL2(Z)�i.

4. For each �i, find �i 2 SL2(Z) such that �i�i 2 �H . The set {�i�i} will be the set of the

desired coset representatives of �H\�H↵�H .

Hecke operators Tp also act on the divisor group of modular curve X(�). For a point P

given as a coset �⌧ ,

Tp(�⌧) :=
X

i

��i(⌧). (1.3.1)

7

Here {�i}i is a set of coset representatives �1\�1↵�2.

Example 1.3.3. Let N be an integer and p a prime such that p - N , we consider the modular

curve X0(N). For the Hecke operator Tp, ↵ can be taken to be
�
1 0
0 p

�
. The coset representatives

are given by {
�
1 0
0 p

�
,
�
1 1
0 p

�
, . . . ,

� 1 p�1
0 p

�
,
�
p 0
0 1

�
}. It is worth mentioning that in this example we have

a clear moduli interpretation of the Hecke operator action on divisors. Recall that a point on the

modular curve X0(N) is a pair (E,C), where E is an elliptic curve and C is a cyclic subgroup of

order N . Then

Tp(E,C) =
X

D✓E[p], |D| = p

(E/D, (C +D)/D).

More generally, for H GL2(Z/NZ) and p coprime to N , we obtain the modular curve XH

and its fiber productXH(p) := X0(p)⇥X(1)XH . There are two degeneracy maps ↵,� : XH(p)! XH

defining the Hecke operator at p where one forgets the cyclic group of order p and the other quotients

out by the cyclic group. By Picard functoriality, for a point (E, n) 2 XH where the level structure

n is determined by H, we have an algebraic description of the Hecke operator at p:

Tp(E, n) := ↵⇤�⇤(E, n) =
X

f :E!E0,deg(f)=p

(E0, f(n)).

This will be used in our computations since the j-invariants of the elliptic curves E0 appearing

in the summation are p-isogenous to E, which implies that their j-invariants satisfy p-th modular

polynomial, i.e., �p(j(E), j(E0)) = 0.

1.4 Coleman integration

In the 1980s, Coleman wrote a series of papers [24–26] where he developed a theory of

p-adic line integration on curves and varieties with good reduction at p, which are now known as

Coleman integrals. There are many arithmetic applications of Coleman integrals, among which are

the abelian Chabauty method and quadratic Chabauty method. We record useful properties of the

Coleman integral.

8

Theorem 1.4.1. (Coleman) Let X/Qp be a nice1 curve with good reduction at p, let J be the

Jacobian of X.Then there is a p-adic integral

Z
Q

P

! 2 Qp

with P,Q 2 X(Qp),! 2 H0(X,⌦1) satisfying:

1. The integral is Qp linear in !.

2. There is an open subgroup of J(Qp) such that
R
Q

P
! can be computed in terms of power series

in some uniformizer by formal term-by-term integration. In particular,
R
P

P
! = 0.

3. Z
Q

P

! +

Z
Q

0

P 0

! =

Z
Q

0

P

! +

Z
Q

P 0

!

Thus, we can define
R
D
!, where D 2 Div0

X
(Qp). Also, if D is principal,

R
D
! = 0.

4. The integral is compatible with the action of Gal(Qp/Qp).

5. Let P0 2 X(Qp) be fixed. Then the set of P 2 X(Qp) reducing to X(Fp) such that
R
P

P0
! = 0

is finite.

6. We have additivity of endpoints:

Z
Q

P

! =

Z
R

P

! +

Z
Q

R

!.

7. If U ✓ X,V ✓ Y are wide open subspaces of the rigid analytic spaces X,Y , ! a 1-form on

V , a rigid analytic map � : U ! V , then we have this change of variables formula:

Z
Q

P

�⇤! =

Z
�(Q)

�(P)
!.

8.
R
Q

P
df = f(Q)� f(P).

9. If P,Q 2 X(Qp) then
R
Q

P
! 2 Qp.

1
smooth, projective, and geometrically irreducible

9

Definition 1.4.2. In the case when P and Q reduce to the same point in XFp
(Fp), i.e., they lie in

the same residue disc. We say that the integral
R
Q

P
! is a tiny integral.

Remark 1.4.3. Explicitly, if P and Q are in the same residue disc, then the tiny integral can be

computed easily by formally integrating the power series and evaluating at the endpoints:

Z
Q

P

! =

Z
t(Q)

t(P)
!(t) =

Z
t(Q)

t(P)

X
ait

idt =
X ai

i+ 1
(t(Q)� t(P))i+1.

Coleman’s construction is quite suitable for explicit computation. In [10], the authors gave

an algorithm for computing single Coleman integrals for hyperelliptic curves. Their method is based

on an algorithm developed by Kedlaya [51] for computing the Frobenius action on the de Rham

cohomology of hyperelliptic curves. In [13], this algorithm is generalized to arbitrary smooth curves,

building on the algorithms of [90, 91] that generalize the computation of the Frobenius action on

the de Rham cohomology on hyperelliptic curves to smooth curves. Despite recent developments

of explicit computation of Coleman integration, these algorithms can not be applied to modular

curves with large level. The reason being that such modular curves tend to have large gonality,

hence it is hard to find nice plane a�ne models. However, such models are required in current

implementation of the algorithms. This is the motivation of Chapter 2 where we introduce a new

method for computing Coleman integration that does not require such models.

10

Chapter 2

Coleman integration on modular

curves

2.1 Introduction

In the 1980s, Coleman developed a p-adic theory of line integrals on curves and higher

dimensional varieties with good reduction at p [24–26]. This has found many applications in,

for example, computing torsion points on Jacobian of curves (Manin-Mumford conjecture), p-adic

heights, and so on. One of the most recent applications lie in explicit Mordell, more specifically, the

abelian Chabauty and Kim’s nonabelian Chabauty program in finding rational points on curves of

genus g � 2.

In this chapter, the curves we are interested in are modular curves, which are special types

of algebraic curves whose Q-rational points classify elliptic curves E over Q with torsion data.

Therefore, understanding rational points will provide information on the possible Galois actions on

the torsion subgroup Etors of E. Regarding this, Serre has made the famous uniformity conjecture.

Conjecture 2.1.1. (Serre’s uniformity conjecture). There is a positive constant C such that, the

representation

⇢E,p : Gal(Q/Q)! GL2(Fp),

of the absolute Galois group Gal(Q/Q), is surjective for every elliptic curve E over Q without

11

complex multiplication and for all prime numbers p > C.

This was shown by himself to be implied by the following [77].

Conjecture 2.1.2. Let H be a proper subgroup of GL2(Fp) such that det: H ! F⇥
p is surjective.

There is a positive constant CH such that, for all primes p > CH , the only rational points on

modular curves XH(p) of level p, defined over Q, are the “expected points”.

Expected points on modular curves are CM elliptic curves with extra conditions imposed

on End(E) depending on the H we are considering, and any points that are not expected are called

as exceptional. As suggested by the name, expected points are easy to find, thus finding rational

points on modular curves is mainly about finding exceptional points.

By the classification of maximal subgroups of GL2(Fp), it is enough to consider the following

H for Conjecture 2.1.2: Borel, normalizer of split Cartan, normalizer of non-split Cartan and

exceptional subgroups. The current status of Serre’s uniformity conjecture is that it has been

verified (see [15, 16, 64, 66]), except for the case when H is the normalizer of the non-split Cartan

subgroup C+
ns(p) in GL2(Fp).

As a generalization of Serre’s uniformity question, Mazur’s Program B [65] asks for all of

the possible Galois actions on torsion subgroups of elliptic curves without complex multiplication.

This roughly amounts to determining the rational points on all modular curves.

One of the computational tools in finding solutions of diophantine equations is the Quadratic

Chabauty method developed by Balakrishnan, Dogra, Müller, Tuitman, and Vonk [7,8,11,12]. The

Quadratic Chabauty Method is developed to allow curves X with r = g and it has proven itself

to be a powerful tool. One example is the successful application of this method on the “cursed”

curve X+
ns(13) to provably find all the rational points there [8]. Curves on which the Quadratic

Chabauty Method can be applied have to satisfy a Quadratic Chabauty bound given in terms of

the rank of Jacobian, genus of the curve and Néron–Severi rank of the Jacobian. Modular curves

are considered as ideal playground for the Quadratic Chabauty Method in the sense that most of

them satisfy the Quadratic Chabauty bound [82].

Even though most modular curves satisfy the Quadratic Chabauty bound, it seems imprac-

tical to apply this method to modular curves with large level. The main reason is that these curves

12

have large gonality and there seems to be no good way to write down nice a�ne plane models, which

are required as the inputs of the current Quadratic Chabauty algorithm. Thus it would be ideal

to get around the di�culty in finding nice a�ne patches, and instead develop a model-free version

of the Quadratic Chabauty method. An important arithmetic value to compute in the Quadratic

Chabauty algorithm is the Coleman integration. In Chapter 2, we present a model-free algorithm

that computes Coleman integration on modular curves, the main idea is to take advantage of the

Hecke operator to break these integrals into a sum of simpler ones, which are tiny integrals.

2.2 Main strategy

In this section, we explain the main strategy of our model free calculation, which works

for all modular curves as well as their the Atkin-Lehner quotients, but the details can vary for

each type of modular curves. We will later explain our algorithms in detail for the cases when the

modular curves are of the form X0(N), X+
0 (N) and X+

ns(N) with N being an integer prime.

Let X/Q be a modular curve that corresponds to a congruence subgroup �. Let Q, R be

two Q-rational points and {!1, . . . , !g} be a Q-basis of H0(X,⌦1). Let p be a prime where X has

good reduction (p - N). We denote the Hecke operator Tp action matrix with respect to this basis

by A, i.e.,

T ⇤

p

0

BBBB@

!1

...

!g

1

CCCCA
= A

0

BBBB@

!1

...

!g

1

CCCCA
.

Therefore,

0

BBBB@

R
Q

R
T ⇤
p!1

...
R
Q

R
T ⇤
p!g

1

CCCCA
= A

0

BBBB@

R
Q

R
!1

...
R
Q

R
!g

1

CCCCA
.

13

On the other hand, for any ! 2 H0(X,⌦1), we have

Z
Q

R

T ⇤

p (!) =

Z
Tp(Q)

Tp(R)
! =

pX

i=0

Z
Qi

Ri

!,

where Tp(Q) =
P

p

i=0Qi and Tp(R) =
P

p

i=0Ri.

We substitute
R
Q

R
T ⇤
p (!j) by

P
p

i=0

R
Qi

Ri
!j and subtract both sides from (p + 1)

R
Q

R
T ⇤
p (!j)

which leads to the following:

0

BBBB@

P
p

i=0

R
Q

Qi
!1 �

P
p

i=0

R
R

Ri
!1

...
P

p

i=0

R
Q

Qi
!g �

P
p

i=0

R
R

Ri
!g

1

CCCCA
= ((p+ 1)I �A)

0

BBBB@

R
Q

R
!1

...
R
Q

R
!g

1

CCCCA
.

Note that due to Eichler-Shimura relation [37, Theorem 8.7.2], the integrals on the left hand

side are all tiny integrals and therefore local power series expansions which are easy to compute.

Also, the matrix (p + 1)I � A is invertible due to the Ramanujan bound |ap| 2
p
p. Therefore,

we have converted the problem of computing Coleman integral into the problem of finding a basis

of S2(�) and computing tiny integrals of the form
P

p

i=0

R
Q

Qi
! on the basis (in fact, computing

P
p

i=0

R
Q

Qi
! for a basis element ! is not di↵erent from doing that for an arbitrary ! 2 H0(X(�),⌦1)).

In the following sections, we will address these problems for modular curves X0(N), X+
0 (N)

and X+
ns(N) respectively. Our strategy takes a transcendental approach. The main tasks are the

following:

Task 2.2.1. Let X denote the modular curve defined by the congruence subgroup �.

1. Find a Q-rational point Q on X and find ⌧ 2 H such that �⌧ corresponds to Q.

2. Compute a basis for the C-vector space S2(�), which gives rise to a Q-basis of H0(X(�),⌦1)

via Proposition 1.2.1. The Q-basis exists since we are considering modular curves defined

over Q.

3. Compute the Tp action on the basis elements of S2(�) as well as rational points Q of X. This

boils down to a double coset space computation.

4. Compute the summation of tiny integrals
P

p

i=0

R
Q

Qi
! for ! 2 H0(X(�),⌦1).

14

We will address the first 3 tasks for the aforementioned modular curves separately as the

methods vary for each type. Before going into the details, we first present a general algorithm

which solves Task 4, assuming the knowledge of Task 1, 2 and 3.

Algorithm 2.2.2. Computing
P

p

i=0

R
Q

Qi
!.

Inputs:

• A good prime p which does not divide j(Q) and j(Q)� 1728.

• A cusp form f 2 S2(�) given by its qh-expansion where q = e2⇡i⌧/h. We denote the corre-

sponding 1-form by !.

• ⌧0 2 H such that �⌧0 corresponds to a rational point Q on X, and q0 := e2⇡i⌧0/h.

Outputs:

• The sum of tiny Coleman integrals
P

p

i=0

R
Q

Qi
! 2 Qp, where Tp(Q) =

P
p

i=0Qi.

Steps:

1. Write !i’s as a power series of an uniformizer u. I.e. find xi 2 Q, i = 0, . . . , n (n is some fixed

precision depending on the p-adic precision required) such that

! = (
nX

i=0

xi(u)
n +O((u)n+1))d(u). (2.2.1)

These xi’s can be found using the following steps:

(a) Write u, !i as power series expansions of q� q0 by di↵erentiating their q-expansions and

evaluating at q0:

u =
C1X

i=1

ai(q � q0)
i +O((q � q0)

C1+1),

! =
C2X

i=0

bi(q � q0)
i +O((q � q0)

C2+1)dq,

d(u) = (
C1X

i=1

iai(q � q0)
i�1 +O((q � q0)

C1))dq,

15

where C1, C2 are some fixed precision determined by n and the norm of q0. The coe�-

cients ai, bi’s are in C.

(b) Replace !, u, d(u) in equation (2.2.1) by their power series expansions in q � q0. Com-

paring the coe�cients of (q � q0)k on both sides gives us the following linear system:

2

66666666664

a1 0 0 . . . 0

2a2 a21 0 . . . 0

3a3 3a1a2 a31 . . . 0
...

...
...

. . .
...

(n+ 1)an+1
P

n

i=1 ai(n+ 1� i)an+1�i ⇤ . . . an+1
1

3

77777777775

·

2

66666666664

x0

x1

x2
...

xn

3

77777777775

=

2

66666666664

b0

b1

b2
...

bn

3

77777777775

(c) Solve this linear system and get complex approximations of xi’s.

(d) Recover xi’s as elements in Q using algdep from PARI/GP. This is likely to succeed given

enough complex precision.

2. Calculate j(Qi) as algebraic integers. This can be computed transcendentally by evaluating

the q-expansion of the j-function on �i(⌧0) as in equation (1.3.1) and then obtain the algebraic

approximation. On the other hand, the roots of the modular polynomial �p(x, j(Q)) = 0 are

the j-invariants of elliptic curves that are p-isogenous to Q. This gives an algebraic method

to compute j(Qi). The reason for computing j(Qi) is due to the fact that the j-function is

often used as an uniformizer.

3. Compute the sum of tiny integrals
pP

i=0

R
Qi

Q
! ⇡

pP
i=0

R
u(Qi)
0 (

P
n

j=0 xjt
jdt) and its p-adic expan-

sion.

2.3 X0(N)

We will consider modular curves X0(N) in this section. We will denote X0(N) by X. The

noncuspidal rational points on X can be found via LMFDB [61], given as elliptic curves E over Q

such that E admits a Q-rational isogeny to E0 of degree N . Given one such point Q, the correct

coset representative �0(N)⌧0 can be found by first computing ⌧̃0 such that SL2(Z)⌧̃0 corresponds

16

to E (i.e., j(⌧̃0) = j(E)) and then iterate through coset representatives �i of �0(N)/ SL2(Z) to find

i such that �i(⌧̃0) satisfies:

j(�i(e⌧0)) = j(N�i(e⌧0)) = j(E).

We then choose ⌧0 = �i(⌧̃0).

The basis of S2(�0(N)) is easy to find, see [86]. We have also discussed the Hecke operator

Tp action in Example 1.3.3. Note that computing both the basis of S2(�0(N)) and the Hecke

operator Tp action on forms are implemented in SageMath [89].

Let ! 2 H0(X,⌦1), Q 2 X(Q). We follow Algorithm 2.2.2 to compute
P

p

i=0

R
Q

Qi
!. In this

case, we choose the uniformizer u to be j(⌧)� j(Q).

2.3.1 Example – X0(37)

Curve data In this example, we consider the modular curve X = X0(37). X is a hyperelliptic

curve and has a plane model y2 = �x6 � 9x4 � 11x2 + 37 [67]. There are four rational points

Q = (1,�4), R = (�1,�4), S = (1, 4), T = (�1, 4), where Q, R are noncuspidal rational points

and S, T are cuspidal rational points. [67] also gives the q-expansion of x, y.

Rational points Using the fact that the modular j-function is a modular function on X0(37)

and that X0(37) is hyperelliptic, we express j-function as a rational function of coordinates x, y

and compute that j(Q) = �9317 = �7 · 113, j(R) = �162677523113838677 = �7 · 1373 · 20833.

The points Q, R correspond to elliptic curves E together with a cyclic subgroup of order

37, or equivalently, with a degree 37-isogeny. This information could be found in LMFDB [61].

Following the method in Section 2.3, we obtain the upper half plane representatives of Q, R as

follows:

⌧Q ⇡ 0.5 + 0.17047019819380 · i 2 H,

⌧R ⇡ 0.5 + 0.39635999889406 · i 2 H.

17

Basis of di↵erential forms The computation of a basis of the space S2(�0(N)), as well as the

Hecke operator action on forms in S2(�0(N)) can be done using SageMath. This way, we obtain an

eigenbasis {f0, f1} of the vector space S2(�0(37)). Explicitly:

f0 = q + q3 � 2q4 +O(q6),

f1 = q � 2q2 � 3q3 + 2q4 � 2q5 +O(q6).

Hecke action We choose p to be 3, and T3(f0) = f0, T3(f1) = �3f1. Therefore the Hecke

operator matrix T3 is
�
1 0
0 �3

�
.

Algorithm 2.2.2 and results Let !0, !1 be 1-forms that correspond to cusp forms �1
2f0, �

1
2f1

respectively. We compute Coleman integrals on !0, !1. The reason for multiplying the cusp forms

by �1
2 is that this way, !0 =

dx

y
and !1 =

xdx

y
.

Now we explain in detail how to calculate
P

p

i=0

R
Q

Qi
!1 using Algorithm 2.2.2. In Step 1, we

obtain rational coe�cients xi in the expansion of !1 about j = j(Q):

!1 =(�9317) + 717409

2 · 37 · 47(j � j(Q)) +
253086749261192

372 · 473 (j � j(Q))2

+
176804544077038351043955

373 · 475 (j � j(Q))3 +O((j � j(Q))4) d(j � j(Q)).

In Step 2, we compute the j-invariants j(Qi) of Qi’s for i = 0, . . . , 3. They are roots of the modular

polynomial �3(j(Q), X) = 0. In Step 3, substitute the roots in below expression, which is a sum

of local power series:

3X

i=0

Z
Q

Qi

!1 =
3X

i=0

Z 0

j(Qi)�j(Q)
(�9317) + 717409

2 · 37 · 47 t+
253086749261192

372 · 473 t2

+
176804544077038351043955

373 · 475 t3 + · · · dt.

Our results are listed in the table. We can verify them by comparing with the results

given by using the hyperelliptic model of this curve. They are also verified by comparison with

Balakrishnan-Tuitman’s implementation in MAGMA [9].

18

Table 2.1: Coleman integrations on X0(37)

P3
i=0

R
Q

Qi
!0 O(314)

P3
i=0

R
Q

Qi
!1 32 + 33 + 39 + 310 + 2 · 311 + 312 + 2 · 313 +O(314)

P3
i=0

R
R

Ri
!0 O(314)

P3
i=0

R
R

Ri
!1 32 + 33 + 39 + 310 + 2 · 311 + 312 + 2 · 313 +O(314)

2.4 X
+
0 (N)

2.4.1 Preliminaries

We review briefly some background on the curves X+
0 (N) which is necessary for our algo-

rithm. We then talk about the model free algorithm for Coleman integrals on these curves. We

will sometimes denote X+
0 (N) by X for convenience.

The Atkin-Lehner involution WN = 1
p
N

�
0 �1
N 0

�
is a well defined map on �0(N)-orbits of

H. This map is an involution, i.e., WNWN gives the identity map on orbits. Compactifying the

quotient of H by �+0 (N) := �0(N)[WN�0(N) gives us a modular curve, denoted by X+
0 (N). This

modular curve has a moduli interpretation:

Proposition 2.4.1. Suppose �0(N)⌧ 2 X0(N) corresponds to the elliptic curve with torsion data

(E1,� : E1 ! E2), then WN (�0(N)⌧) corresponds to (E2, �̂ : E2 ! E1), where �̂ is the dual

isogeny.

Proof. �0(N)⌧ corresponds to (E⌧ , h 1N , ⌧i) up to isomorphism. As WN (⌧) = �1
N⌧

, WN (�0(N)⌧)

corresponds to [E 1
N⌧

, h 1
N
, 1
N⌧
i]. Note that the relation between complex tori over �0(N) and elliptic

curves with a cyclic subgroup of order N is captured by the following isomorphism E⌧/h 1N , ⌧i ⇠=

C/h 1
N
, ⌧i. It is clear that h 1

N
, ⌧i = ⌧h1, 1

N⌧
i, hence E 1

N⌧

is indeed isomorphic to E⌧/h 1N , ⌧i. What

is left to do is to check that the dual isogeny of � : E ! E⌧/h 1N , ⌧i is indeed the isogeny induced

by E 1
N⌧

. This can be checked by first computing the dual isogeny and comparing kernels. ⇤

19

2.4.2 Expected rational points

LetN be a prime. For locating the expected pointsQ that correspond to CM elliptic curve E

on X = X+
0 (N), we follow Mercuri’s method [70] as follows. We start with the list of discriminants

of orders in imaginary quadratic number fields with class number one (see for instance [85]):

D = {�3, �4, �7, �8, �11, �12, �16, �19, �27, �28, �43, �67, �163}. (2.4.1)

Let E be an elliptic curve with complex multiplication such that the discriminant �E of its endo-

morphism ring OE is a class number one discriminant, i.e. E� 2 D. Elliptic curves E such that p

splits or ramifies in OE give rise to rational points on X [43]. Having found such a discriminant

�E , we denote the corresponding rational point by Q and we use the following steps to find the

correct coset representative.

Step 1: Let us denote ⌧E to be the generator of OE . We factor (N) to be the product of two principal

ideals NN̄ in OE . Denote by ↵ the generator of N.

Step 2: Find integers c, d such that ↵ = c⌧E + d. Find another two integers a, b such that the matrix

� =
�
a b

c d

�
2 SL2(Z).

Step 3: Let ⌧Q = �(⌧E). Then ⌧Q will be our choice of coset representative for our point.

2.4.3 Basis of H0(X,⌦1)

The basis of H0(X,⌦1) can be found using the following lemma.

Lemma 2.4.1. [42, Chapter 2, Lemma 2] The holomorphic di↵erentials ⌦1(X0(N)/WN) on X

are isomorphic as a C-vector space to the C-span of the set

S = {f 2 S2(N)|f |WN = f}.

2.4.4 Hecke operator action

Lemma 2.4.2. The coset representatives of (↵�1�+0 (N)↵ \ �+0 (N))\�+0 (N) is the same as that of

(↵�1�0(N)↵ \ �0(N))\�0(N).

20

Proof. We first simplify the set ↵�1�+0 (N)↵ \ �+0 (N).

↵�1�+0 (N)↵ \ �+0 (N) = ↵�1(�0(N) [WN�0(N))↵ \ (�0(N) [WN�0(N))

= (↵�1�0(N)↵ \ �0(N)) [(↵�1(WN�0(N))↵ \WN�0(N))

We prove the lemma by first listing the coset representatives of �0(N)↵�0(N), and then we show

that these matrices are in di↵erent ↵�1�+0 (N)↵ \ �+0 (N)-orbits. Last we show that any matrix in

�+0 (N) is in one of the orbits in the list. We omit the details as they are straightforward. ⇤

Remark 2.4.1. Lemma 2.4.2 implies that the Hecke operator Tp for X has the same coset represen-

tatives as Tp for X0(N). I.e., {
�
1 0
0 p

�
,
�
1 1
0 p

�
, . . . ,

� 1 p�1
0 p

�
,
�
p 0
0 1

�
}.

2.4.5 Uniformizer

LetQ be a rational point that corresponds to an unordered pair {� : E1 ! E2, �̂ : E2 ! E1}.

Unlike the case for X0(N), one can no longer choose j(⌧) as the uniformizer. Instead one uses

j(⌧) + jN (⌧) where jN (⌧) := j(N · ⌧), which is invariant under WN . Therefore, in Step 2 of

Algorithm 2.2.2, instead of computing j(Qi), one needs to compute j(NQi) + j(Qi). j(Qi)’s are

the roots of �p(x, j(E1)) = 0, and j(NQi)’s are the roots of �p(x, j(E2)) = 0. To match the

correct pairs of roots for each Qi, we should combine the information given by roots of modular

polynomials with the result given by the transcendental method as explained in Algorithm 2.2.2

Step 2.

2.4.6 Example – X
+
0 (67)

Curve data We consider X+
0 (67), a hyperelliptic curve with equation y2 = x6+2x5+x4�2x3+

2x2 � 4x+ 1. We consider the following rational points and their upper half plane representatives

and discriminants:

Table 2.2: Two rational points on X+
0 (67)

D (x, y) ⌧

R �8 (0,�1)
p
�2+2

3
p
�2+7

S �12 (1, 1)
p
�3+9

p
�3+8

21

Uniformizers Compared to the X0(N), we use j + jN instead as the uniformizer since it is

invariant under the Atkin-Lehner involution.

Expected points We explain how we obtained the following two rational points and their upper

half plane representatives. R is the pair {�1 : E1 ! E1, �̂1 : E1 ! E1}, with j(E1) = �2183353.

E1/Q has CM by the ring of integers OK1 of K1 = Q(
p
�43). The fact that 67 splits in OK1 implies

that such pair of isogenies uniquely exists. Similarly, S is the pair {�2 : E2 ! E2, �̂2 : E2 ! E2},

with j(E2) = 2653. E2/Q has CM by the ring of integers OK2 of K2(= Q(
p
�2)), 67 splits in OK2

as well. Note that both R and S are not fixed by the Atkin-Lehner involution, as that corresponds

to the case when 67 is ramified.

Recall that we have j(R) = 2653, D(R) = �8, hence ⌧R =
p
�2. Following the steps

described in Section 2.4.2, we have (67) = (7 + 3
p
�2)(7 � 3

p
�2), 7 + 3

p
�2 = 7 + 3 ·

p
�2 =)

�̂ = (1 2
3 7) =) ⌧̂R = �̂⌧R =

p
�2+2

3
p
�2+7

⇡ 0.298507462686567 + 0.0211076651100462 · i.

Similarly, we have j(S) = 243353, D(S) = �12, ⌧S =
p
�3. (67) = (8+

p
�3)(8�

p
�3), 8+

p
�3 = 8 + 1 ·

p
�3 =) �̂ =

�
�1 �9
1 8

�
=) ⌧̂S = �̂⌧S = �

p
�3+9

p
�3+8

⇡ 1.11940298507463 �

0.0258515045905802 · i.

Basis of di↵erential forms From the 5-dimensional space of cusp forms for �0(67), one could

compute the action of W67 on the space and find a 2-dimensional subspace spanned by cusp forms

invariant under the Atkin-Lehner involution (for example, by using SageMath [89]):

!0 = f0 dq/q = 2q � 3q2 � 3q3 + 3q4 � 6q5 +O(q6) dq/q,

!1 = f1 dq/q = �q2 + q3 + 3q4 +O(q6) dq/q.

Hecke action Let p = 13 be a good prime. The Hecke matrix on this subspace is T13 =
⇣

�7/2 15/2
3/2 �7/2

⌘
.

22

Algorithm 2.2.2 and results Following Step 1 of Algorithm 2.2.2, we list, for example, a power

series expansion of the di↵erential form !0 at j = j(R):

!0 =
�1

27 · 52 · 72 +
3047

215 · 55 · 76 (j � j(R)) +
�38946227
224 · 58 · 710 (j � j(R))2

+
33888900627

232 · 510 · 714 +
�110823337943341

242 · 513 · 717 (j � j(R))3 +O((j � j(R))4) d(j � j(R)).

In the modification of Step 2, we follow 2.4.5 to find the Hecke images. Next, we compute

the integrals as in 3 and the values of the Coleman integrals can be easily verified with Balakrishnan-

Tuitman’s implementation on MAGMA since X+
0 (67) is hyperelliptic.

Table 2.3: Coleman integrations on X+
0 (67))

P3
i=0

R
R

Ri
!0 2 · 13 + 132 + 3 · 133 + 7 · 134 + 11 · 135 + 8 · 136 + 8 · 137 + 7 · 138 +O(139)

P3
i=0

R
R

Ri
!1 11 · 13 + 8 · 132 + 6 · 133 + 8 · 134 + 3 · 135 + 6 · 136 + 6 · 137 + 7 · 138 +O(139)

P3
i=0

R
S

Si
!0 10 · 13 + 8 · 132 + 2 · 135 + 5 · 136 + 10 · 137 + 2 · 138 +O(139)

P3
i=0

R
S

Si
!1 3 · 13 + 7 · 132 + 2 · 133 + 10 · 134 + 8 · 135 + 5 · 136 + 8 · 138 +O(139)

2.5 X
+
ns(N)

2.5.1 Preliminaries

We first recall the definition of a non-split Cartan subgroup and its normalizer in GL2(Z/NZ).

Let {1,↵} be a basis of the 2-dimensional Fp-vector space F⇥

p2
. Let � 2 F⇥

p2
and � = x+ y↵. Sup-

pose ↵ has minimal polynomial X2� tX + n over Fp, define the following map that sends � to the

matrix that corresponds to multiplication by � under basis {1,↵}.

i↵ : F⇥

p2
! GL2(Fp)

� 7!
�
x �ny

y x+ty

�
.

Given the choice of basis {1,↵}, the nonsplit Cartan subgroup Cns of GL2(Fp) is the image

of i↵. The normalizer C+
ns of Cns in GL2(Fp) is obtained by adjoining the conjugation matrix on

23

F⇥

p2
. Note that changing the basis will change Cns and C+

ns by conjugation.

It would be easier to choose ↵ in basis {1,↵} to be a square root ✏ of a quadratic non-residue

in Fp. Then ✏ satisfies X2 � ✏2 = 0, and C+
ns is of the following form:

{
⇣

x ✏
2
y

y x

⌘
,
�
1 0
0 �1

�
, where (x, y) 2 Fp ⇥ Fp � {(0, 0)}}.

Suppose that � is chosen to be a generator of the cyclic group F⇥

p2
. Then we can easily

write down the generators of C+
ns.

For example, if p = 13 and ✏ =
p
7, one generator of F⇥

132 is 1 + ✏. Hence in this case, we

have

C+
ns(13) = h

�
1 7⇥1
1 1

�
,
�
1 0
0 �1

�
i.

2.5.2 Expected rational points

We assume we already have a basis of weight 2 cusp forms on X+
ns(N).

Step 1: Among the list of imaginary quadratic discriminants of class number 1 (2.4.1), those

discriminants � such that N is inert in the corresponding quadratic order O� give rise to

expected Q-points on X+
ns(N) [65]. Let {P1, · · · , Pr} be the expected points, then we can

easily get corresponding {⌧P1 , · · · ⌧Pr
} that gives the SL2(Z)-orbits for each Pi on the upper

half plane.

Step 2: Take P, ⌧ from the lists above, SL2(Z)⌧ = [�+ns(N)⌧j , where �+ns(N) is the lift of

C+
ns(N) in SL2(Z). We know that there is one-to-one correspondence

H/�+ns(N)! noncuspidal C-points of X+
ns(N),

hence there is a unique ⌧jQ such that �+ns(N)⌧jQ corresponds to P . To get each ⌧j , we need

24

to compute coset representatives of �+ns(N) in SL2(Z). We consider the following map:

SL2(Z)/�+ns(N)! SL2(Z/NZ)/C+
ns(N) \ SL2(Z/NZ)

�+ns(N)g 7! (C+
ns(N) \ SL2(Z/NZ))ḡ.

This map is well defined and a bijection. Hence to find coset representatives of �+ns(N) in

SL2(Z), it su�ces to find coset representatives of C+
ns(N) \ SL2(Z/NZ) in SL2(Z/NZ).

Step 3: Suppose we found that {g1, · · · , gs} is a set of coset representatives of �+ns(N) in

SL2(Z), then ⌧j := gj(⌧). We find the correct ⌧j0 by evaluating the Q-basis {f1, f2, f3} at

each ⌧j to see which one gives us a rational point.

2.5.3 Basis of H0(X,⌦1)

In [104], Zywina explains how to compute the action of the slash-k operator of the matrices

S :=
�
0 �1
1 0

�
and T := (1 1

0 1) (via a numerically approximated matrix) on S2(�(N),Q(⇣N)). For

a group H GL2(Z/NZ) with det(H) = (Z/NZ)⇥ and �I 2 H (e.g., the nonsplit Cartan),

one could compute the action of the generators of H on S2(�(N),Q(⇣N)). This can be essentially

broken down into understanding the actions of SL2(Z/NZ) and matrices of the form
�
1 0
0 d

�
on the q-

expansions of the cusp forms. Then, using the isomorphism S2(�(N),Q(⇣N))H ! H0(XH ,⌦1), one

finds a basis of di↵erentials needed for our computation. We use Zywina’s algorithm implemented

in MAGMA to compute the basis of di↵erentials.

2.5.4 Hecke operator action

There are two sides to the Hecke operator action Tp: on modular forms and on points.

Before we begin, we assume that the double coset representatives �+ns(N)\�+ns(N)↵�+ns(N) have

been computed for some ↵ of determinant p, following the steps in Section 1.3.

1. On modular forms. Let f 2 S2(�+ns(N)). Recall that the after obtaining the coset rep-

resentatives {↵i, i = 0, · · · , p} for �+ns(N)\�+ns(N)↵�+ns(N), we have the double coset op-

erator [�+ns(N)↵�+ns(N)]2f =
P

f |[↵i]2 where the slash-k operator is defined as f [↵](⌧) =

25

det(↵)k�1(c⌧ + d)�kf(↵ · ⌧) in Section 1.3. As we shall see in the next example, the double

coset representatives for Tp will have the form ↵i = ""0
�
1 0
0 p

�
� or ""0�

�
p 0
0 1

�
where ", "0 are

determinant 1 matrices related to the computation of ↵ and � comes from the standard cosets

of �0(p)\ SL2(Z). The computation breaks down as follows:

Step 1: Let B be a basis of S2(�(N),Q(⇣N)). Zywina’s code will output a basis B0 = {fj}j

of S2(�(N),Q(⇣N))�
+
ns(N). We use the code again to compute f̃j := fj |2[""0]. Denote by

C the matrix of linear operator ""0 with respect to the basis B and by vj the coordinate

of fj under the basis B, then the coordinate of f̃j is Cvj and hence f̃j = BCvj .

Step 2a: We compute f̃j |[
�
1 0
0 p

�
�] following the formulas in Section 2 of Chapter 5 in [37].

Step 2b: For the last coset, we take advantage of the fact that
�
1 0
0 p

�
(mp n

N 1) = (m n

N p)
�
p 0
0 1

�
.

So ↵p is of the form ""�
�
p 0
0 1

�
which is a product of three determinant 1 matrices and a

determinant p matrix. The slash operators on the left three matrices can be computed

via Zywina’s code and the last action can be computed easily: it corresponds to the

shift-by-p operator.

Step 3: The matrix corresponding to the Hecke operator Tp on cusp forms can be

obtained by linear algebra.

2. On points. There are two ways of doing this. Either we can use the explicit double coset

representatives or we use the p-th modular polynomial. Each approach has its (dis)advantages:

we can evaluate cusp forms on explicit representatives but this will require a closer analysis of

the group structure of C+
ns(N) and high enough complex precision; the modular polynomials

give us the j-invariants of p-isogenous points but the polynomials have large coe�cients.

2.5.5 Example – X
+
ns
(13)

Curve data from basis of cusp forms In this example, we consider the curve X = X+
ns(13),

known as the “cursed” curve [8]. Let C+
ns(13) be defined by choosing the quadratic non-residue to

be 7 as in Section 2.5.1, and let �+ns(13) be the lift of C+
ns(13) in SL2(Z). Using Zywina’s MAGMA

26

implementation [104] , we obtain a basis of cusp forms as follows:

f0 =(3⇣1113 + ⇣913 + 3⇣813 + ⇣713 + ⇣613 + 3⇣513 + ⇣413 + 3⇣213 + 1)q

+ (�⇣1013 � 2⇣913 � ⇣713 � ⇣613 � 2⇣413 � ⇣313 � 2)q2 +O(q3),

f1 =(4⇣1113 + 2⇣913 + 5⇣813 + 5⇣513 + 2⇣413 + 4⇣213)q

+ (�3⇣1113 � 5⇣1013 � 4⇣913 � 4⇣813 � 4⇣713 � 4⇣613 � 4⇣513 � 4⇣413 � 5⇣313 � 3⇣213 � 2)q2 +O(q3),

f2 =(⇣1013 � 2⇣713 � 2⇣613 + ⇣313)q

+ (�⇣1113 � 2⇣1013 � 2⇣813 � 2⇣513 � 2⇣313 � ⇣213 + 2)q2 +O(q3),

where ⇣13 is a 13-th primitive root of unity and q = e
2⇡i⌧

13 . Following the method in [42] and using

the basis found above, we can find the canonical model of X to be

X4 � 7

12
X3Y � 37

30
X2Y 2 +

37

30
XY 3 � 3

10
Y 4 � 61

60
X3Z +

41

15
X2Y Z

� 103

60
XY 2Z +

19

60
Y 3Z � 23

6
X2Z2 +

87

20
XY Z2 � 14

15
Y 2Z2 � 199

60
XZ3

+
97

60
Y Z3 � 11

15
Z4 = 0,

(2.5.1)

here X, Y and Z corresponds to f0, f1 and f2 respectively. The rational points can be found by a

box search to be: {(35 : 2 : 1), (�2 : 2 : 1), (�2 : �9
2 : 1), (�2 : �7

3 : 1), (73 : 2 : 1), (54 : 2 : 1), (11 :

43
2 : 1)}.

Uniformizers Since S2(�+ns(13)) ✓ S2(�(13)), the j-function is a uniformizer for the nonsplit

Cartan curve.

Expected points Among the discriminants D in list (2.4.1), we find D such that 13 is inert in

the corresponding order OD. This list {�7,�8,�11,�19,�28,�67,�163} contains discriminants

that give rise to 7 expected rational points on X. We pick Q to be the point that corresponds

to discriminant �7, and R to be the point that corresponds to discriminant �11. Following the

notations in Section 2.5.2, we have ⌧7 = 1
2 + 1

2

p
�7 and ⌧11 = 1

2 + 1
2

p
�11. We then compute the

27

coset representatives of SL2(Z)/�+ns(13),

{g0, . . . , g77} = {T i, (T 2)ST i, (T 3)ST i, (T 4)ST i, (T 5)ST i, (T 12)ST i for i = 0, . . . , 12},

here T = (1 1
0 1) , S =

�
0 �1
1 0

�
are the two generators of SL2(Z). By evaluating f0, f1, f2 at gi(⌧7)

and gi(⌧11) for i = 0, . . . , 77, we obtain the correct �+ns(13)-orbit representatives for Q and R,

⌧Q = 4+2
p
�7

3+
p
�7

, ⌧R = 13+
p
�11

2 . The way to locate the correct coset in the case of Q is to find the

unique i such that f0(gi(⌧7))
f2(gi(⌧7))

and f1(gi(⌧7))
f2(gi(⌧7))

are rational numbers. Applying the same method to all

the 7 discriminants, we get their corresponding rational points as computed from the model above.

Double coset We choose p to be 11. Let ↵ =
�
�778 �241
297 �1012

�
(1 0
0 11) be the element ↵ 2 M2(Z)

with det(↵) = 11, ↵(mod 13) 2 C+
ns(13). To find the double coset representatives we start with

finding the coset representatives for S := (↵�1 SL2(Z)↵ \ SL2(Z))\ SL2(Z) = �0(11)\ SL2(Z). For

each � 2 S, we found a corresponding � 2 �0(11) such that the representative �0 = �� 2 �+ns(13).

We define the set of coset representatives to be S 0 := (↵�1�+ns(13)↵\�+ns(13))\�+ns(13) and the set

of corresponding �’s to be �.

S = {(1 i
0 1) , i = 0, 1, . . . , 10} [{(66 5

13 1)},

� = {(1 0
0 1) ,

�
1 0
�2 1

�
, (1 11

0 1) ,
�
1 �55
0 1

�
, (1 22

0 1) ,
�
1 �44
0 1

�
, (1 33

0 1) ,
�
1 �33
0 1

�
, (1 44

0 1) ,
�
1 �22
0 1

�
,
�
�1 �55
0 �1

�
,

�
1 �44
0 1

�
},

S 0 = {(1 0
0 1) ,

�
1 1
�2 1

�
, (1 13

0 1) ,
�
1 �52
0 1

�
, (1 26

0 1) ,
�
1 �39
0 1

�
, (1 39

0 1) ,
�
1 �26
0 1

�
, (1 52

0 1) ,
�
1 �13
0 1

�
,
�
�1 �65
0 �1

�
,

�
�506 �39
13 1

�
}.

From the bijection

�+ns(13)\�+ns(13)↵�+ns(13)! (↵�1�+ns(13)↵ \ �+ns(13))\�+ns(13)

�+ns(13)� 7! (↵�1�+ns(13)↵ \ �+ns(13))↵�1�,

28

we can get the double coset representatives of �+ns(13)\�+ns(13)↵�+ns(13):

S↵ = {
�
�13 4
42 �13

�
(1 0
0 11) (

1 0
0 1) (

1 0
0 1) ,

�
�13 4
42 �13

�
(1 0
0 11)

�
1 0
�2 1

�
(1 1
0 1) , . . . ,

�
�13 4
42 �13

�
(1 0
0 11)

�
�1 �55
0 �1

�
(1 10
0 1) ,

�
�13 4
42 �13

�
(1 0
0 11)

�
1 �44
0 1

�
(66 5
13 1)}

= {
�
�13 4
42 �13

�
(1 0
0 1) (

1 0
0 11) (

1 0
0 1) ,

�
�13 4
42 �13

� �
1 0

�22 1

�
(1 0
0 11) (

1 1
0 1) , . . . ,

�
�13 4
42 �13

� �
�1 �5
0 �1

�
(1 0
0 11) (

1 10
0 1) ,

�
�13 4
42 �13

� �
1 �4
0 1

�
(1 0
0 11) (

66 5
13 1) =

�
�13 4
42 �13

� �
1 �4
0 1

�
(6 5
13 11) (

11 0
0 1)}.

Hecke operator action on forms The reason for the presentation of elements in S↵ is our use

of the Hecke operators as double coset operators as mentioned earlier in this section. The action of

the right two matrices is well known [37] while the left two matrices can be computed via Zywina’s

code. The output is the Hecke matrix A =
⇣ 0 �1 2

4 �4 3
�1 1 4

⌘
.

Algorithm 2.2.2 and results Now we explain in detail how to calculate
P

p

i=0

R
Q

Qi
! using Algo-

rithm 2.2.2. In Step 1 of Algorithm 2.2.2, we compute a power series expansion of the di↵erential

form !0 at j = j(Q):

!0 =
1

34 · 52 · 13 +
23

310 · 55 · 13(j � j(Q)) +
4

313 · 57 · 13(j � j(Q))2

+
437174

322 · 510 · 133 (j � j(Q))3 +
138504533

328 · 513 · 134 (j � j(Q))4 +O((j � j(Q))5) d(j � j(Q)).

The Hecke images can be found by computing the roots of the modular polynomial equation

�11(j(Q), x) = 0. Next, we compute the integrals as in Step 3. We record our results in the following

Table.

2.6 Remarks on computation

Choice of p Aside from avoiding the bad primes of the modular curves, we omit those primes

appearing in the denominators of xi’s for xi’s in equation 2.2.1. In practice, we omit the bad primes,

prime factors of j(P) and prime factors of j(P) � 1728. We do not have an explanation for this,

but it has been verified repeatedly in our computational experiments.

29

Table 2.4: Coleman integrations on X+
ns(13)

P11
i=0

R
Q

Qi
!0 10 · 11�1 + 9 + 9 · 11 + 6 · 112 + 7 · 113 + 9 · 114 +O(115)

P11
i=0

R
Q

Qi
!1 8 · 11�1 + 7 + 7 · 11 + 2 · 112 + 6 · 113 + 6 · 114 +O(115)

P11
i=0

R
Q

Qi
!2 10 · 11�1 + 8 + 8 · 11 + 112 + 9 · 114 +O(115)

P11
i=0

R
R

Ri
!0 7 · 11�1 + 2 + 3 · 11 + 9 · 112 + 3 · 113 + 5 · 114 +O(115)

P11
i=0

R
R

Ri
!1 6 + 6 · 11 + 113 + 5 · 114 +O(115)

P11
i=0

R
R

Ri
!2 7 · 11�1 + 4 + 11 + 10 · 112 + 10 · 113 + 5 · 114 +O(115)

Choice of the upper half plane representative In computing ! =
P

xj(j � j(P))idj, we

compared Taylor expansions of both sides at q = q(P) and used linear algebra over C to recover

the coe�cients xi. Therefore, the accuracy of the xi’s depends on the convergence of the Taylor

expansions. To achieve faster convergence, we want the imaginary part of ⌧(P) to be as large as

possible. Therefore, we might try to find a better upper half plane representative for the point in

the same coset. However, in practice, it is not easy to find an improvement.

Remark 2.6.1. In the case of X+
0 (N), the Atkin-Lehner involutions can be used in to perform the

task. However, for a CM elliptic curve E with discriminant �E , the situation is not so ideal. Let

(c, d) be an integer solution to the norm equation |c⌧E + d|2 = N and let �̂ be the lift of (c, d)

in SL2(Z). Then the upper-half plane representative has imaginary part Im(⌧̂) = Im(�̂ · ⌧E) =

Im(⌧E)
|c⌧E+d|2

=
p
��E

2 · 1
N
, so the imaginary part decreases as O(1

N
).

Fast algorithm for di↵erentiating j-function We recall some formulas from [23].

a(q) = 1 +
X

n>0

(�1)n(qn(3n�1)/2 + qn(3n+1)/2),

�(q) = qa(q)24,

f(q) =
�(2q)

�(q)
,

j(q) =
(256f(q) + 1)3

f(q)
.

Our goal is to compute the Taylor series expansion of j at q0 := e2⇡i⌧0 for some ⌧0 in upper

30

half plane. As the coe�cients of the q-expansion of the j map are very large, we can not evaluate

the j map (and the derivatives of j) by plugging in q0 to the q-expansion, especially when q0 has

absolute value close to 1. Instead, the exponents in the q-expansion of a(q) grow quadratically,

which ensures better convergence. So we try to express the j map and its derivatives as an algebraic

expression of that of a(q) using the above formulas and hence compute the Taylor series of j by

first computing that of a(q).

Chapter 2 is, in full, being prepared for submission for publication. The dissertation author

was the collaborator and the coauthor for the material below.

• Mingjie Chen, Kiran S. Kedlaya, Jun Bo Lau “Coleman integration on modular curves”.

31

Part II

Supersingular elliptic curves and

isogeny graphs

32

Chapter 3

Preliminaries

3.1 Elliptic curves with complex multiplication

Most of the materials presented here can be found in [29].

Let E/C be an elliptic curve and let End(E) denote its endomorphism ring consisting of

endomorphisms defined over C. Let O be an imaginary quadratic order in an imaginary quadratic

field K, we say that the elliptic curve E has complex multiplication (CM) by O if End(E) ⇠= O.

We also define the endomorphism algebra of E to be End(E)⌦Q, this is isomorphic to K when E

has CM by O.

Consider the set of CM elliptic curves over C with isomorphic endomorphism rings

E``O(C) := {elliptic curves E/C : End(E) ⇠= O}/ ⇠,

where E ⇠ E0 if they are isomorphic over C. The set of two-dimensional lattices ⇤ ✓ C up to

homothety is in bijection with the set of isomorphism classes of elliptic curves over C, where one

sends the lattice ⇤ to C/⇤. One can show that End(C/⇤) ⇠= O if and only if ⇤ is an invertible

ideal of O. Therefore, this implies the existence of a bijection

C`(O) ! E``O(C)
[a] 7�! Ea := C/a.

Moreover, it turns out that E``O(C) is a C`(O)-torsor. Let a be an invertible O-ideal, we

33

define the action of a on Eb to be

aEb = Ea�1b.

This induces an action of C`(O) on E``O(C) and one can show that this action is free and transitive.

The following theorem shows that CM elliptic curves are all defined over some number

fields.

Theorem 3.1.1. [29, Theorem 11.1] Let O be an order in an imaginary quadratic field K, and

E/C be an elliptic curve with complex multiplication by O. Then the j-invariant j(E) is an algebraic

integer and K(j(E)) is the ring class field of the order O.

Theorem 3.1.2. [29, Corollary 11.37] Let O be an order in an imaginary quadratic field K, and

let L be the ring class field of O. Let E be an elliptic curve with complex multiplication by O that

corresponds to an invertible O-ideal b, i.e., E ⇠= Eb. Let a be an invertible O ideal, define �a(j(Eb))

by the formula

�a(j(Eb)) = j(Ea�1b).

Then �a is a well-defined element of Gal(L/K), and a 7! �a induces an isomorphism

C`(O)
⇠�! Gal(L/K).

Let us denote by HO(x) the minimal polynomial of j(E) over Q. HO(x) has integer co-

e�cients as j(E) is an algebraic integer. As a simple corollary of 3.1.2, we obtain the following

formula for HO(x).

HO(x) =
Y

E2E``O(C)
(x� j(E)),

where E 2 E``O(C) should be interpreted as choosing one representative from each isomorphism

class.

This polynomial HO(x) is called as the Hilbert class polynomial of O, and will be the main

object of study in Chapter 5. We end the discuss here by stating some useful results regarding the

discriminant of HO(x).

Theorem 3.1.3. [29, Theorem 13.28] Let O be an order in an imaginary quadratic field K and

34

let D be its discriminant. Let p be a prime dividing the discriminant of HO(x). Then p |D|.

3.2 Elliptic curves over finite fields

In this section, p will denote a prime integer, k will denote a finite field of characteristic p.

 will be a finite extension of k and k̄ will be the algebraic closure of k.

3.2.1 Ordinary and supersingular elliptic curves

Let E be an elliptic curve defined over k. We will denote the endomorphism ring of E

consisting of endomorphisms over k̄ by End(E). If we want to consider endomorphisms defined

over a specific field , we will denote the corresponding endomorphism ring as End(E).

Elliptic curves defined over finite fields are divided into two types – ordinary and supersin-

gular. We present here the definition given in terms of endomorphism ring, for more equivalent

definitions, see [83, Section V.3].

Definition 3.2.1. An elliptic curve E over k is supersingular if End(E) is a maximal order in a

quaternion algebra. If E is not supersingular, E is called ordinary. In the ordinary case, End(E)

is an order of a quadratic imaginary field.

The following is an useful fact about the defining field of supersingular elliptic curves.

Lemma 3.2.1. [83, Section V.3, Theorem 3.1] Let E be a supersingular elliptic curve, then the

j-invariant j(E) 2 Fp2.

In fact, the endomorphism algebra of supersingular elliptic curves E/k is the unique (up

to isomorphism) quaternion algebra over Q that is ramified at p and 1. We will fix one such

quaternion algebra and denote it by B. We will see that each maximal order in B arises as the

endomorphism ring of some supersingular elliptic curve E.

Lemma 3.2.2. [95, Lemma 42.4.1] Let R ✓ B be a maximal order. Then there exist one or two

supersingular elliptic curves E up to isomorphism over Fp such that End(E) ⇠= R. There exist two

such elliptic curves if and only if j(E) 2 Fp2\Fp and if and only if the unique two-sided ideal of R

of reduced norm p is not principal.

35

3.2.2 Isogeny class

In this section, we will investigate isogeny classes of elliptic curves over finite fields. Two

elliptic curves E, E0 over k are said to be isogenous over k if there exists an isogeny ' : E ! E0

and ' is defined over k. Let #k = q, we define the Frobenius endomorphism ⇡p on E to be

E �! E
P = (x, y) 7�! ⇡q(P) = (xq, yq).

Theorem 3.2.2. [87, Theorem 1] Let E and E0 be elliptic curves defined over k, and let f and f 0

be the characteristic polynomials of their Frobenius endomorphisms. Then the following statements

are equivalent:

(a) E and E0 are k-isogenous.

(b) f = f 0.

(c) The zeta functions of E and E0 are the same.

(d) E and E0 have the same number of points in for every finite extension of k.

We can give the explicit formula of the number of -rational points on E via the character-

istic polynomial.

Theorem 3.2.3. [83, Theorem 2.3.1] Let E/k be an elliptic curve and #k = q. Let t = q + 1 �

#E(k).

1. The Frobenius endomorphism ⇡q satisfies

⇡2q � t⇡q + q = 0 in End(E).

2. Let ↵,� 2 C be the roots of the polynomial X2�tX+q. Then ↵ and � are complex conjugates

satisfying |↵| = |�| = pq, and for every n � 1,

#E() = qn + 1� ↵n � �n, n = [: k].

36

We will from now on refer t in Theorem 3.2.3 as the trace of the elliptic curve E/k. Clearly,

the possible values for t determine the possible characteristic polynomials of ⇡q and therefore the

isogeny classes for elliptic curves over k. Note that due to Hasse’s bound [83, Section V.1, Theorem

1.1], t satisfies that |t| 2
p
q. The following theorem discusses the possible values of t within this

range and divide them into di↵erent types.

Theorem 3.2.4. [98, Theorem 4.1] The isogeny classes of elliptic curves over k where #k = q = pn

are in one-to-one correspondence with the rational integers t having |t| 2
p
q and satisfying some

one of the following conditions:

(a) (t, p) = 1;

(b) if n is even: t = ±2
p
q;

(c) if n is even and p 6⌘ 1(mod 3): t = ±pq;

(d) if n is odd and p = 2 or 3: t = ±p
n+1
2 ;

(e) if either (i): n is odd or (ii): n is even and p 6⌘ (mod 4): t = 0.

The first of these are not supersingular; the second are and have all their endomorphisms defined

over k; the rest are but do not have all their endomorphisms defined over k.

Note that in case (b), the Frobenius endomorphism ⇡q is a rational integer
p
q, while in all

other cases, ⇡q is an imaginary quadratic element of degree 2.

Theorem 3.2.4 did not talk about the defining field of endomorphisms in the first case, i.e.,

the ordinary case. We will see that all endomorphisms are defined over k. Before proving this, we

first recall a result of Lenstra.

Theorem 3.2.5. [57, Theorem 1] Let k be a finite field, let E be an elliptic curve over k, and

put R = Endk(E). Let ⇡q 2 R be the Frobenius endomorphism of E. Further, let be a finite field

extension of k, and denote by n = [: k] the extension degree. Suppose ⇡q 62 Z. Then R has rank

2 over Z, and there is an isomorphism E() ⇠= R/R(⇡nq � 1) of R-modules.

Lemma 3.2.3. Let E be an ordinary elliptic curve defined over a finite field k, and let be a finite

extension of k of degree n. Then Endk(E) = End(E).

37

Proof. Denote Endk(E) by R and End(E) by R0. Clearly, R ✓ R0. Let ⇡q denote the Frobenius

endomorphism on E/k and ⇡0 denote the Frobenius endomorphism on E/. Then ⇡0 = ⇡nq . Clearly

⇡q, ⇡0 62 Z. According to Theorem 3.2.5, we have E() ⇠= R/R(⇡nq � 1) = R/R(⇡0 � 1). On the

other hand, if we view E as an elliptic curve defined over , we would have E() ⇠= R0/R0(⇡0 � 1).

Therefore, R/R(⇡0 � 1) ⇠= R0/R0(⇡0 � 1) and this implies that R = R0. ⇤

3.2.3 Kernel ideals and quotients

In this section, we will consider an elliptic curves E over a finite field k together with an

isomorphism ◆E : A ⇠= End(E) ⌦ Q where A is some semi-simple algebra. The algebra A could

be an imaginary quadratic field or a quaternion algebra depending on whether E is ordinary or

supersingular. Given an isogeny ' : E ! E0, we have ◆E0 : A! End(E0)⌦Q naturally induced by

◆E as follows:

◆E0(a) =
1

n
' � ◆E(a) � '̂ for a 2 A,

where n is the degree of ' and '̂ is the dual isogeny of '. Let R denote the preimage of End(E)

under ◆E . R is an order in an imaginary quadratic field when E is ordinary, and a maximal order

in a quaternion algebra when E is supersingular. Let I be a left ideal in R, we define

E[I] = \↵2I ker(↵),

here we are implicitly identifying ↵ with ◆E(↵) 2 End(E), and we will be making this identification

repeatedly in the following discussions without explanation. This is a finite set, and this induces

an isogeny 'I : E ! EI , where EI := E/E[I]. The quotient elliptic curve EI depends only on the

R-module structure of I.

Proposition 3.2.1. [98, Proposition 3.7] If I and J are isomorphic R-modules, then EI
⇠= EJ .

The converse implication of Proposition 3.2.1 is also true if we impose extra conditions on

I.

Definition 3.2.6. Let I be a left ideal in R, I is a kernel ideal if I = {⇢ 2 R | ⇢(E[I]) = 0}.

Theorem 3.2.7. [98, Theorem 3.11] Let I and J be kernel ideals. Then EI
⇠= EJ if and only if

38

I and J are isomorphic R-modules, if and only if I = J� for some invertible element � 2 A.

Naturally, the isogeny 'I induces an isomorphism ◆EI
: A! End(EI)⌦Q. We are interested

in how End(EI) is related to End(E). The best way to see this is to compare the preimages

R = ◆�1
E

(End(E)) and RI := ◆�1
EI

(End(EI)) in A.

Proposition 3.2.2. [98, Proposition 3.9] RI contains the right order of I, and equals to it if and

only if I is a kernel ideal.

Ordinary case

Let us now consider the case when E/k is an ordinary elliptic curve. Things are easy in

this case as R is commutative and a left ideal in R is always a two-sided ideal.

Theorem 3.2.8. [98, Theorem 4.5] Let E/k be an ordinary elliptic curve and R is an imaginary

quadratic order that is isomorphic to End(E). Then every ideal I ✓ R is a kernel ideal. Moreover,

quotienting by ideals I ✓ R induces a free and transitive action of C`(R) on the set of isomorphism

classes of ordinary curves over k with endomorphism ring isomorphic to R.

Supersingular case

We consider now the case when E/k is a supersingular elliptic curve. Recall that A is a

quaternion algebra and R is a maximal order. For the interest of Chapter 5, we will discuss left

ideals I ✓ R that arise in a particular way.

Let K ✓ A be an imaginary quadratic field, O ✓ K be an imaginary quadratic order such

that K \R = O. Let a be an invertible O-ideal. We define an left ideal I to be Ra.

Lemma 3.2.4. [98, Theorem 3.15] I = Ra is a kernel ideal.

Lemma 3.2.5. RI = a�1Ra ✓ A.

Proof. According to Proposition 3.2.2, RI equals to the right order of I.

Or(I) := {x 2 A | Ix ✓ I} = {x 2 A | Rax ✓ Ra} = a
�1Ra.

39

⇤

3.2.4 Reduction of CM elliptic curves

Let O be an order in an imaginary quadratic field K. In this section, we will investigate

the relation between elliptic curves in characteristic 0 and characteristic p via reduction. We will

pay special attention to the relation between endomorphism rings.

Theorem 3.2.9. [56, Section 13.4, Theorem 12] Let E be an elliptic curve over a number field

L with complex multiplication by O. Let p be a prime in L over p such that E has good reduction

modulo p, and we denote the reduction by Ē. The curve Ē is supersingular if and only if p does not

split in K. Suppose that p splits completely in k. Let c be the conductor of O, and write c = prc0

where p - c0. Then:

(a) End(Ē) = Z+ c0OK is the order in K with conductor c0.

(b) If p - c, then the map ' 7! '̄ is an isomorphism of End(E) onto End(Ē).

The following is a simple generalization of the result in 3.2.9 to the case when the reduction

Ē is supersingular. We will need this for Chapter 5. Let us fix an isomorphism ◆ : K ! End0(E),

the reduction induces an injective map from K to End0(Ē). In the following theorem, we will

identify elements in K with their images in End0(Ē).

Theorem 3.2.10. Let us continue with the setting in 3.2.9 and instead assume that p does not

split in K. Then

End(E) \K = Z+ c0OK .

We end this section with an important theorem of Deuring.

Theorem 3.2.11. (Deuring’s lifting theorem) Let E0 be an elliptic curve over a finite field k of

characteristic p, and let '0 be an endomorphism that is nontrivial. Then there exists an elliptic

curve E defined over a number field, an endomorphism ', and a prime p over p where E has good

reduction, such that E0 is isomorphic to Ē and '0 corresponds to '̄ under the isomorphism.

40

3.3 Isogeny graph

Let p be a prime and k be a finite field with cardinality equals to q = pn for some n � 1.

Let ` be a prime that’s di↵erent from p. In this section, we will consider the `-isogeny graph G`(k)

of elliptic curves defined over k.

Precisely, we are interested in elliptic curves defined over k up to k̄-isomorphism, therefore

we will use j-invariants of elliptic curves as vertices of the `-isogeny graph. The pair (j, j0) is an edge

if j0 is a root of the modular polynomial �`(j, x). The multiplicity of an edge is determined by the

multiplicity of j0 as a root of �`(j, x). The `-isogeny graph G`(k) a directed graph. The existence

of the dual isogeny ensures that if (j, j0) an edge in G`(k) then so is (j0, j). If j, j0 6= 0, 1728, then

(j, j0) and (j0, j) have the same multiplicity.

This graph G`(k) will not be connected, there is no isogeny between an ordinary curve

and a supersingular one. In what follows, we will consider two subgraphs, the ordinary subgraph

O`(k) and the supersingular one S`(k). We will look at their properties and the structure of their

connected components. In fact, we will see that the supersingular subgraph S`(k) is connected.

3.3.1 Ordinary case

In order to explain the structure of the connected components of the ordinary `-isogeny

graph O`(k), let us first introduce the definition of a certain type of graph – volcanoes.

Definition 3.3.1. An `-volcano V of depth d is a connected undirected graph whose vertices are

partitioned into one or more levels V0, . . . , Vd such that the following hold:

(i) The subgroup on V0 (the surface) is a regular graph of degree at most 2.

(ii) For i > 0, each vertex in Vi has exactly one neighbor in the level Vi�1 and this accounts for

every edge not on the surface.

(iii) For i < d, each vertex in Vi has degree `+ 1.

It turns out that the connected components of ordinary `-isogeny graph has volcano struc-

ture, and one level Vi corresponds to a fixed imaginary quadratic order Oi for i = 0, . . . , d. We

41

also call the 0-th level the rim of the volcano. Note that there are several possibilities for the rim:

a singleton with up to 2 self loops, two vertices connected by one or two edges, and three or more

vertices that form a simple cycle.

Definition 3.3.2. Let ' : E ! E0 be an isogeny of degree ` and let O, O0 ✓ K be two orders such

that End(E) ⇠= O, End(E0) ⇠= O0. One of the following holds:

(a) O ✓ O0, and we say that ' is ascending ;

(b) O = O0, and we say that ' is horizontal ;

(c) O ◆ O0, and we say that ' is descending.

Recall that E has `+1 `-isogenies, the following proposition counts the number of `-isogenies

that are ascending, horizontal and descending respectively.

Proposition 3.3.1. [55, Proposition 23] Let K be an imaginary quadratic field with discriminant

D and O ✓ K be an order. Let E/k be an ordinary elliptic curve such that End(E) ⇠= O. We use
�
D

`

�
to denote the Legendre symbol. If ` does not divide the conductor of O, E has no ascending `-

isogeny,
�
D

`

�
+1 horizontal `-isogenies, and `�

�
D

`

�
descending `-isogenies. If ` divides the conductor

of O, E has exactly one ascending `-isogeny, no horizontal `-isogeny, and ` descending `-isogenies.

Furthermore, every codomain of a descending `-isogeny has exactly [O⇥ : (Z + `O)⇥] `-isogenies

from E.

The following proposition gives information about the size, and the depth of the `-isogeny

volcano.

Theorem 3.3.3. [55, Proposition 23] Let V be an component of O`(k), then V is an `-volcano

for which the following hold:

(a) The vertices in level Vi all have the same endomorphism ring Oi. ` - [OK : O0] and [Oi :

Oi+1] = ` for 0 i < d.

(b) If
�
D0
`

�
� 0, then | V0 | is the order of [l] in C`(O); otherwise | V0 |= 1.

(c) The depth of V is d = ⌫`((t2 � 4q)/D0)/2, where t2 = (tr⇡q)2 for E 2 V .

42

Remark 3.3.4. In the definition of O`(k), two elliptic curves E, E0 over k are connected by an edge

when there is an `-isogeny ' defined over k̄ between them. In fact, we can show that the isogeny '

is always defined over k (assuming j(E) 6= 0, 1728). Consider the action of Frobenius on ', which

gives rise to another `-isogeny '(p) : E ! E0. However, there is only one unique `-isogeny between

E and E0 according to Proposition 3.3.1, therefore, ' = '(p) and we can conclude that ' is defined

over k.

Remark 3.3.5. The vertices in O`(k) are k̄-isomorphism classes of ordinary elliptic curves defined

over k, and one k̄-isomorphism class corresponds to two k-isomorphism classes — two representa-

tives E, E0 over k are the quadratic twists of each other. Combining this with Remark 3.3.4, we

see that the ordinary elliptic curves in one ordinary `-isogeny volcano belong to two isogeny classes,

with trace being t, �t respectively. However, two ordinary curves being in the same isogeny class

does not imply that they are in the same `-isogeny class.

Example 3.3.6. Let p = 3571 and ` = 3. The components of the graph O3(Fp) lie in 119 di↵erent

isogeny classes, note that we are identifying the isogeny classes corresponds to t and �t (t 6= 0) for

the reasons explained in Remark 3.3.5. Let us consider the isogeny class for t = 25. We then have

4p = t2�f2D where f2D will be the discriminant of the order Z[⇡p]. This equation gives that f = 3

and D = �1451. This isogeny class consists of one type of 3-volcano of depth 1 where the 0-th

level corresponds to O0 = OK = Z[1+
p
�1451
2] and the 1st level corresponds to O1 = Z[

p
�1451].

Moreover, there is only one such 3-volcano as #C`(K) equals to the order of [l] in the class group

where l is one of the prime ideals sitting above 3.

3.3.2 Supersingular case

Recall that the j-invariants of supersingular elliptic curves are all in Fp2 , we will consider

the supersingular `-isogeny graph S`(Fp2). This is a regular graph of degree `+ 1, precisely, every

vertex has out-degree `+ 1 and vertices not adjacent or equal to 0 or 1728 have in-degree `+ 1 as

well.

Theorem 3.3.7. [55, Corollary 78] The supersingular `-isogeny graph S`(Fp2) is connected.

43

Fp-supersingular `-isogeny graph Now we focus on supersingular elliptic curves defined over

k = Fp. Di↵erent from the definition of S`(Fp2), we will consider Fp-isomorphism classes instead of

Fp-isomorphism classes, and we will consider isogenies defined over Fp instead of over Fp. We will

denote this Fp-supersingular ` isogeny graph by Sp,`. We emphasis here that the graph Sp,` is not

a subgraph of S`(Fp2) as two elliptic curves being isomorphic over Fp does not imply that they are

isomorphic over Fp. Since we require both the curve and the isogeny to be defined over Fp, this

graph Sp,` is no longer connected. In [36], Delfs and Galbraith described a volcano structure for

Sp,` as follows.

Theorem 3.3.8. Let p > 3 be a prime.

(a) p ⌘ 1(mod 4): There are h(�4p) Fp-isomorphism classes of supersingular elliptic curves over

Fp, all having the same endomorphism ring Z[p�p]. From every one there is one outgoing

Fp-rational horizontal 2-isogeny as well as two horizontal `-isogenies for every prime ` > 2

with
�
�p

`

�
= 1.

(b) p ⌘ 3(mod 4): There are two levels in the supersingular isogeny graph. From each vertex

there are two horizontal `-isogenies for every prime ` > 2 with
�
�p

`

�
= 1.

(i) If p ⌘ 7(mod 8), on each level h(�p) vertices are situated. Surface and floor are

connected 1 : 1 with 2-isogenies and on the surface we also have two horizontal 2-isogenies

from each vertex.

(ii) If p ⌘ 3(mod 8): we have h(�p) vertices on the surface and 3h(�p) on the floor.

Surface and floor are connected 1 : 3 with 2-isogenies, and there are no horizontal 2-isogenies.

44

Chapter 4

Orienteering with one endomorphism

4.1 Introduction

The security of isogeny-based cryptosystems depends upon a constellation of hard problems.

Central are the path-finding problem (to find a path between two specified elliptic curves in a

supersingular `-isogeny graph), and the endomorphism ring problem (to compute the endomorphism

ring of a supersingular elliptic curve). Only exponential algorithms are known for general path-

finding, in the absence of information beyond the j-invariants. However, if the endomorphism rings

are known, the KLPT algorithm allows for polynomial-time pathfinding [54]. In fact, it is known

that the pathfinding and endomorphism ring problems are equivalent [38, 100].

A natural question to ask is whether knowledge of a single explicit endomorphism (which

generates only a rank 2 subring of the rank 4 endomorphism ring) can be used for path-finding. An-

swering this question is the goal of this chapter: we give explicit algorithms transforming knowledge

of one endomorphism into a way-finding tool that can detect ascending, descending and horizontal

directions with regards to the corresponding orientation, and use this to walk to j = 1728.

The question of the security of one endomorphism has recently been ‘in the air,’ for example,

with the uber isogeny assumption of [33]. Knowledge of a small explicit endomorphism is known to

be a weakness [63]. As this work was being completed, a related study was also made available [99];

see Section 4.1.3 for a comparison with this paper.

45

By explicit endomorphism, we mean one given in some form in which its action on the

curve is computable, and its minimal polynomial is known (but note that, given an endomorphism,

both its norm and trace are in many cases computable; see Section 4.2.2). For example, such an

endomorphism may be given as a rational map, or a composition chain of rational maps, and these

are the two cases we focus on in this chapter. The data of such an endomorphism is equivalent to

the data of an orientation of the supersingular elliptic curve, namely a map ◆ : K ! Q⌦Z End(E),

where K is the imaginary quadratic field generated by a root of the minimal polynomial of the

endomorphism.

The study of orientations provides some structure to the supersingular isogeny graph, which

has recently been exploited [27, 72]. In particular, the `-isogeny graph of oriented supersingular

elliptic curves over Fp has a volcano structure familiar from the ordinary case. This graph maps

onto the supersingular `-isogeny graph over Fp. Our approach is to use the orientation provided

by a given explicit endomorphism to discern ascending, descending and horizontal directions with

regards to the volcano. This provides a sort of tool for ‘orienteering.’

The core result of our work is an algorithm that finds an `-isogeny path from a given

supersingular elliptic curve E to an initial curve Einit, given a single explicit endomorphism of

E. We take Einit to be the curve with j-invariant j = 1728, but other choices are possible (see

Section 4.6.3). The overall plan is as follows. First, climb the oriented volcano from E, oriented by

the given endormorphism, to the volcano rim (using the given endomorphism as our ‘orienteering

tool’). Then, by orienting the curve j = 1728 with the same field, we can climb to the rim from

there also. Finally, we attempt to meet by circling the rim.

This approach is limited by our ability to traverse a potentially large segment of the rim,

or to hit the same rim in a large cordillera of volcanoes, whose size is generally equal to the class

number of the corresponding quadratic order. If we simply walk the rim, then, classically, the

runtime depends linearly on this class number, which can be expected to be exponential in log p.

We show that a large endomorphism which nevertheless walks us to a rim of small class number

introduces a vulnerability to isogeny based cryptosystems.

46

4.1.1 Main theorem

We rely on a number of heuristic assumptions: (i) The Generalized Riemann Hypothesis

(hereafter referred to as GRH). (ii) Powersmoothness in a quadratic sequence or form is as for

random integers (a powersmooth analogue of the heuristic assumption underlying the quadratic

sieve; see Heuristics 4.5.7. (iii) The orientations of a fixed j-invariant are distributed reasonably

across all suitable volcanoes (Heuristic 4.3.3). (iv) This distribution is independent of a certain

integer factorization (Heuristic 4.6.5). (v) The aforementioned integer factorization is prime with

the same probability as a random integer (Heuristic 4.6.3; this heuristic is similar to those used

in [35] and [54]).

We state our main results, whose proofs can be found in Section 4.9.1. We use the notation

Lx(y) = exp(O((log x)y(log log x)1�y)). The following theorem gives a classical algorithm for `-

isogeny pathfinding that is subexponential in log p times a certain class number, for a wide range

of input endomorphisms.

Theorem 4.1.1. Choose a small prime ` and assume the heuristic assumptions1 given above. Let

✓ 2 End(E) be an endomorphism of degree d, such that that Ld(1/2) � poly(log p). Suppose ✓

can be evaluated on points P 2 E(Fpk) in time T✓(k, p). Let �0 be the `-fundamental part of

the discriminant � of ✓ (obtained2 by removing the largest even power of `), and assume that

|�0| p2. Let h�0 be the class number of the quadratic order of discriminant �0. Then there is a

classical algorithm that finds an `-isogeny path of length O(log p + h�0) from E to the curve Einit

of j-invariant j = 1728 in runtime T✓(Ld(1/2), p) + h�0Ld(1/2).

Note that the runtime depends on the class number h�0 which can be significantly smaller

than h�. This allows for poly(log p) time algorithms for some large endomorphisms, which we

discuss in a moment.

Note also that the point evaluation condition on ✓ is for generality. Any ✓ which is repre-

sented in terms of rational maps has T✓(k, p) = poly(d, k, log p), hence the final runtime would be

h�0 poly(d log p). But ✓ could be represented as a composition chain of isogenies in such a way that

T✓(k, p) is subexponential in d, leading to a runtime of h�0Ld(1/2) poly(log p).

1
See Proposition 4.8.1 for the exact subset of heuristics needed.

2
Except when ` = 2, if � = 2

2k
�

00
where 4 - �00

and �
00
⌘ 2, 3(mod 4), then we set �

0
:= 4�

00
.

47

Furthermore, we have a polynomial-time algorithm if the endomorphism has small degree,

or even just small discriminant (Theorem 4.9.1); the cryptographic weakness caused by such en-

domorphisms is already known by other methods [63]. There are also some large endomorphisms

which are insecure, in the sense that they admit polynomial-time algorithms if they can be evaluated

in polynomial time. Specifically, modifications of the algorithm lead to special cases:

1. If ` is inert in the field associated to �, the runtime improves for endomorphisms in suitable

form to Ld(1/2) + h�0 poly(log p), and the path-length is improved to O(log p) (Proposi-

tion 4.8.1).

2. If, in addition to the above, �0 = �, then the runtime improves further to h�0 poly(log p)

(Proposition 4.8.1).

3. If the norm of the endomorphism has B(p)-powersmooth factorization and its discriminant is

coprime to `, then the runtime improves to h�0 poly(B(p) log p) (Theorem 4.9.4).

4. If the input endomorphism is of size poly(log p) (in trace, norm and discriminant), then the

runtime improves to poly(log p) (Theorem 4.9.1) (these endomorphisms were already known

to present a security risk [63]).

5. If norm and discriminant have suitable factorizations, then the runtime can improve to

poly(log p) even for non-small endomorphisms (Theorem 4.9.2). This shows that there are

large insecure endomorphisms (Corollary 4.9.3) (to our knowledge, this is the first time

this has been demonstrated, although it is possible to deduce this using similar methods

from [99]; see Section 4.1.3).

A corollary to Theorem 4.1.1 is that these insecure large endomorphisms exist for every

supersingular curve. We state an informal version here.

Corollary 4.1.2 (Corollary 4.9.3). Under the same heuristic assumptions as before, every super-

singular curve admits an endomorphism which can be revealed in polynomial space in a form that

allows for polynomial-time evaluation, and gives rise to a classical algorithm to walk to Einit in

poly(log p) time.

48

The classical algorithm of Theorem 4.1.1 first transforms the input endomorphism to a

powersmooth isogeny chain, which to our knowledge is the most e�cient type of representation.

However, we have endeavoured to write our component algorithms to handle an abstract notion

of an input endomorphism o↵ering certain functionalities (Section 4.5.1), in anticipation of their

potential application to di↵erent types of endomorphism representations.

4.1.2 Other algorithms presented

Some of the explicit building blocks of the results above may have independent applications.

In particular, we provide algorithms for the following tasks, among others:

1. Section 4.4 provides methods for detecting ascending, descending and horizontal directions

in general.

2. Section 4.5.3 presents a technique for obtaining a prime-power powersmooth isogeny chain

endomorphism from the same quadratic order as a given endomorphism (Algorithm 4.5.3).

3. Section 4.6 discusses an algorithm which computes an orientation on the elliptic curve of

j-invariant 1728 (or other suitable curves; see Section 4.6.3) by an `-power multiple of a given

discriminant (Algorithm 4.6.1). In other words, given a quadratic order O, it finds j = 1728

somewhere in the cordillera of an order containing O. In fact, it finds arbitrarily many such

orientations, moving gradually further ‘down’ the volcanoes. This algorithm runs in heuristic

polynomial time when the discriminant is coprime to p and less than p2 in absolute value.

4. Section 4.7.2 concerns a method for computing the class group action of Cl(O) on SSO, the

set of curves primitively oriented by O. In fact, we demonstrate how to navigate SSO using

the class group action of Cl(O0) for any O0 ✓ O.

5. Section 4.10 contains an e�cient algorithm for dividing an isogeny by [`] (Algorithm 4.10.2),

originally outlined by McMurdy, which is more e�cient than naive algorithms for this task.

We make McMurdy’s approach explicit for arbitrary ` (he only made explicit the case ` = 2,

which is more straightforward.).

49

4.1.3 Comparison with [99]

The only other work that pertains to path-finding algorithms using an orientation is found

in the excellent article [99], which covers a web of reductions between a wide variety of hard

problems related to orientations, and appeared as this paper was nearing completion. That work

is largely concerned with theoretical complexity reductions, although one can derive classical and

quantum pathfinding algorithms from these reductions, for an abstract class of orientations (see

item (4)). By contrast, in this article we focus on explicit algorithms, runtimes, and endomorphism

representations, as well as numerical examples. However, it is possible to compare the region of

overlap between the two articles, which is runtimes for classical and quantum path-finding in the

presence of one endomorphism. To do so, there are several important points about the method of

comparison:

1. The paper [99] actually provides reductions from the endomorphism ring problem, which

is known to be polynomially equivalent to the path-finding problem. We will ignore this

distinction.

2. The paper [99] solves the endomorphism ring problem by reducing it to the vectorization

problem and solving that by the best known classical or quantum algorithms. Our algorithms

can’t strictly be interpreted as reductions to the vectorization problem. For example, in the

classical Algorithm 4.8.1, we attempt to relate two oriented curves without knowing their

common class group orbit (see Remark 4.8.1).

3. The paper [99] uses methods largely contained in the theory of quaternion algebras, overlap-

ping very little with our methods.

4. The paper [99] applies to an abstract class of e�ciently representable endomorphisms, and

provides reductions which are polynomial in the length of the representation. The definition

permits endomorphisms which are exponentially large. In our paper we discuss explicit rep-

resentations and their concrete practical e�ciency (Section 4.5), and our algorithm runtimes

take the conversion of arbitrary endomorphisms into suitable representations into account.

Therefore, in order to compare, we will assume that input endomorphisms are in powersmooth

50

prime-power isogeny chain form (see Section 4.5.3). To change into such a form can incur a

subexponential runtime, depending on the form of the input endomorphism (Algorithm 4.5.3).

For the above reasons, we compare only runtime statements. Overall, the runtimes implied

for pathfinding in the presence of an endomorphism are reassuringly similar between the two papers.

1. The paper [99] assumes the stronger hypothesis that the discriminant of the input endo-

morphism has a known factorization. We do not assume this. Although the reduction to

vectorization in [99] requires a factorization, in practice vectorization is more di�cult than

factorization, so this does not a↵ect the runtime comparison.

2. In contrast to our work, the work [99] is not heuristic beyond a dependence on GRH and the

solution to the vectorization problem ([99, Proposition 4]). We plan to address some of our

heuristics in a follow-up paper [4].

3. Comparing the classical algorithm of Theorem 4.1.1, namely Algorithm 4.8.1, with the algo-

rithm implied by [99, Proposition 7, Section 3 Subsection ‘Computing the action’, Theorem

4], we obtain similar runtimes, with the following distinctions. Both algorithms depend poly-

nomially on the size of the representation of the endomorphism. In the case that � = �0 (the

endomorphism is already at the rim), both algorithms depend on the class number h�; ours

linearly, and [99] in square root. In the case that � 6= �0, both depend instead on the smaller

class number h�0 , but ours depends on the smoothness bound of the relative conductor, while

that of [99] depends upon the powersmoothness bound of the relative conductor. (We ascend

volcanoes, so that our relative conductors are typically `-power, but one can also alternate

choices of `; see the proof of Theorem 10.2 for a discussion.)

4. Continuing the comparison of item (3), our classical algorithm directly produces a path whose

length depends on the class number (since it traverses a volcano rim). A reduction to the

vectorization problem as in the algorithm implied in [99] produces a path of poly(log p) length,

by solving the vectorization problem to find a smooth isogeny, and then, by an equivalence

implied in [100], tranforming that into an `-isogeny. See Remark 4.8.1.

5. For every curve, we show that certain large degree endomorphisms can be expressed in

51

poly(log p) space and admit a classical path-finding algorithm in poly(log p) time (Corol-

lary 4.9.3). In fact, these same endomorphisms would be susceptible to the methods of [99],

although this implication is not considered there.

6. Finally, [99, Proposition 6] describes a probabilistic polynomial-time algorithm for comput-

ing a primitive orientation of an elliptic curve by some quadratic order of discriminant �.

However, that algorithm only applies to orders with |�| < 2
p
p � 1 and relies on lattice re-

duction to find the smallest element in the order. Our method works for |�| < p2 and finds

orientations further ‘down the volcano,’ but is presented for j = 1728 only (but generalizes

to other initial curves with good endomorphism rings in the sense of Section 4.6.3).

4.1.4 Other contributions

We give careful runtime analyses for various tasks related to endomorphisms represented as

rational functions or as composition chains of isogenies, including evaluation, translation, division-

by-[`], and Waterhouse twisting. Additionally, we provide a review and some modest extensions to

the theory of orientations as described in [72]; see Section 4.3, in particular Section 4.3.3.

In a follow-up paper [4], we establish a theoretical bijection between volcano rims and cycles

in the `-isogeny graph, and address some of the aforementioned heuristics for oriented supersingular

`-isogeny graphs used in this chapter.

Throughout the chapter we demonstrate our algorithms with a running example first intro-

duced in Example 4.3.2. The examples are given in more detail in SageMath [89] worksheets with

accompanying PDF details, available on GitHub [5].

4.1.5 Outline

In Section 4.2, we set some notations and conventions and also state a few runtime lem-

mata. In Section 4.3, we introduce the main object of study, namely oriented `-isogeny graphs

and their properties, including some heuristic behaviour. In Section 4.4, the relationship between

an endomorphism and an orientation is explained, and we also introduce a few new definitions

that aid in navigating the oriented `-isogeny graph. In Section 4.5, we discuss the representation

52

of endomorphisms, along with the basic functionalities for these representations required for later

algorithms. We then compute orientations for the supersingular elliptic curve of j-invariant 1728 in

Section 4.6. In Section 4.9, we discuss the proofs of our main theorem as well as some special cases.

Lastly, we leave to Section 4.10 the technical explanation of McMurdy’s division-by-` algorithm and

provide its runtime analysis. Throughout the chapter, to aid in reading, important assumptions

will be rendered in bold.

4.2 Background

4.2.1 Notations and conventions

Throughout the chapter, let p be a cryptographically sized prime (upon which runtimes

will depend), and let ` be a small prime (whose size will be assumed O(1) for runtimes). In

particular, ` 6= p. We will assume both p and ` are defined once throughout the chapter

(so, for example, they will not be repeated as an input to every algorithm).

Every elliptic curve considered in the chapter is to be assumed to be a supersingular

curve over Fp. All such curves can be defined over Fp2 . Every isogeny and endomorphism is

assumed to have domains and codomains which are curves of this type. We use the notation

End(E) for the endomorphism ring of the elliptic curve E over Fp, and End0(E) := Q⌦Z End(E)

for the endomorphism algebra of E. We use the notation OE for the identity element of an elliptic

curve E, and j(E) for the j-invariant. We use the variables ' and to denote isogenies, while ✓ is

generally reserved for endomorphisms. The dual isogeny to an isogeny ' is denoted by b'. Let E(p)

denote the curve obtained by the action of Frobenius on E (acting on the Weierstrass coe�cients).

Let ⇡p : E ! E(p) denote the Frobenius isogeny, given by ⇡p(x, y) = (xp, yp). Note that Frobenius

is an endomorphism if E is defined over Fp. Frobenius also acts on any isogeny ' : E ! E0 (acting

on its coe�cients) to give '(p) : E(p) ! (E0)(p) of the same degree. Unless otherwise specified (such

as Frobenius), isogenies will be assumed to be separable throughout the chapter (many of

the algorithms herein would not apply to inseparable endomorphisms or isogenies).

There is only one fixed supersingular `-isogeny graph under consideration at any time, which

we denote simply by G. Namely, this is the graph whose vertices are Fp-isomorphism classes of

53

supersingular elliptic curves (which we will often refer to simply by their j-invariants), and whose

directed edges are `-isogenies (when there are no extra automorphisms, we can identify dual pairs

to create an undirected graph).

We consider imaginary quadratic fields K = Q(
p
�), where � < 0 is a fundamental dis-

criminant. Then the ring of integers has the form OK = Z[!], where

! =

8
>><

>>:

1+
p
�

2 � ⌘ 1 (mod 4),

p
�
2 � ⌘ 0 (mod 4).

Since we sometimes have multiple quadratic orders under consideration, we use the notation

(↵,�)O for the ideal generated by ↵ and � in O. The (possibly non-maximal) orders O of K

are parametrized by a positive integer called the conductor. If O has conductor f , then O = Z[f!].

If ` - f , then we say that both O and its discriminant are `-fundamental. Given a discriminant �,

its `-fundamental part is the unique `-fundamental discriminant dividing �.

Write Bp,1 for the rational quaternion algebra ramified at p and 1. Every quadratic

field K is assumed to embed in the quaternion algebra Bp,1, i.e. to be an imaginary

quadratic field in which p does not split [95, Proposition 14.6.7(v)]; the only exception is in the

discussion of Heuristic 4.6.3. Every quadratic order O is assumed to generate such a field K, and

to have discriminant not divisible by p. Every quadratic discriminant is assumed to be the

discriminant of such a quadratic order O, and we write �O. We denote by OK the maximal order

of the quadratic field K and reserve �K for the discriminant of OK .

Complex conjugation (which is also the action of Gal(K/Q)) is denoted by an overline:

↵ 7! ↵. We use the notation Cl(O) and hO for the class group and class number, respectively, of a

quadratic order O.

The reduced norm and trace of Bp,1 coincide with the norm and trace of an element when

it is considered as a quadratic algebraic number; when we discuss norm and trace it is always this

we refer to.

For runtime analyses we use big O notation, including soft eO for absorbing log factors. The

notation M(n) will indicate the runtime of field operations (addition, multiplication, inversion) in

54

a finite field of cardinality n; here, we note that M(nk) = O(M(n)) when k is constant. In the later

portions of the chapter we are mainly concerned with the distinction between polynomial, subex-

ponential and exponential algorithms. We write runtime as poly(x) if there exists a polynomial f

so the runtime is O(f(x)). When we are concerned only with whether runtime is polynomial, we

will suppress the notation M, by assuming that M(n) = poly(log n). For subexponential runtimes,

we use notation Lx(y) = exp(O((log x)y(log log x)1�y)).

For general background on isogeny-based cryptography and supersingular isogeny graphs,

we will assume the reader is familiar with a resource such as [38, Section 2] or [32].

4.2.2 Runtime lemmata

In this section, we recall some basic runtimes for isogenies and torsion points, etc. The first

lemma is standard.

Lemma 4.2.1. Given P,Q 2 E[N], and 0 a, b < N , computing [a]P + [b]Q takes time

O((logN)M(pN
2
)).

Lemma 4.2.2 ([14, Corollary 2.5]). Let ' : E ! E0 be an isogeny between two supersingular

curves, both defined over Fp2. Then ' is defined over Fp12. If neither of j(E) or j(E0) are 0 or

1728, then ' is defined over Fp4.

Lemma 4.2.3. Let t denote the smallest integer such that E[N] ✓ E(Fpt). In particular, t N2�1.

Finding a basis of E[N] has runtime eO(N4(log p)M(pN
2
)).

Proof. This can be proven by adapting the second paragraph of the proof of Lemma 5 in [44].

In particular, the limiting runtime is the call to [97], which takes time eO(N4(log p)M(pN
2
)). See

also [14, Lemma 6.9]. ⇤

Lemma 4.2.4. Consider an isogeny ' : E ! E0 of degree d, and a point P 2 E(Fpt), where 12 | t.

Then computing '(P) takes time O(dM(pt)). In particular, if P 2 E[N], then the time taken is

O(dM(plcm(12,N2))).

Proof. Write ' as a rational map '(x, y) = ('1(x),'2(x)y); here the denominators and numerators

of '1(x) and '2(x) are polynomials in x of degree at most 3d. By Lemma 4.2.2, we can assume

55

that their coe�cients are in Fp12 ✓ Fpt . To compute '(P), we apply Horner’s algorithm [53, p.

467], which requires O(d) operations in the field. Assume that P is an N -torsion point on E. Then

t can be chosen such that t lcm(t,N2) by Lemma 4.2.3. ⇤

In the case that ' = [n] for some integer n, it is more e�cient to use a standard a double-

and-add approach, which will also take polynomial time in the degree.

Lemma 4.2.5 ([93], [81, Theorem 3.5], [48, Section 5.1]). Vélu’s formulas for an isogeny of degree

d compute the isogeny in time eO(dM(pd
2
)).

By Lemma 4.2.2, the isogeny created has coe�cients in the field Fp12 .

Lemma 4.2.6. Let ' : E ! E0 and : E0 ! E00 be isognies represented as rational maps, of

respective degrees d and d0, where E,E0, E00,' and are defined over some finite field F. Then

computing the composition � ' : E ! E00 as a rational map takes time eO(dd0M(#F)).

Proof. As usual, write ' =
⇣
u(x)
v(x) ,

s(x)
t(x) y

⌘
where u(x), v(x), s(x), t(x) 2 F[x] are polynomials of

degree O(d) with gcd(u, v) = gcd(s, t) = 1. Similarly, write =
⇣
u
0(x)

v0(x) ,
s
0(x)
t0(x) y

⌘
with analogous

conditions on u0(x), v0(x), s0(x), t0(x) 2 F[x]. Then

 � ' =

0

@
u0(u(x)

v(x))

v0(u(x)
v(x))

,
s0(u(x)

v(x))

t0(u(x)
v(x))

s(x)

t(x)
y

1

A .

Obtaining � ' requires computing four compositions of the form f(u(x)
v(x)) where f 2 {u0, v0, s0, t0}

has degree O(d0). Writing f(x) =
P

n

i=0 fix
i with n = O(d0), we have

f

✓
u(x)

v(x)

◆
=

F (u(x), v(x))

v(x)n
where F (x, y) =

nX

i=0

fix
iyn�i .

The computation of F (u(x), v(x)) is dominated by computing the powers of u(x) and v(x) which

can be accomplished in time eO(dd0M(#F)) using fast polynomial multiplication [46]. An alternative

way to compute F (u(x), v(x)) that is slightly faster but has asymptotically the same runtime is via

the Horner-like recursion

Fn(x) = fn , Fi�1(x) = fi�1v(x)
n�i+1 + Fi(x)u(x) (n � i � 1) ,

56

where it is easy to see that F0(x) = F (u(x), v(x)). ⇤

Lemma 4.2.7. Let E be an elliptic curve defined over some finite field F, ✓ 2 End(E) an endo-

morphism represented as a rational map, and N an integer. Then computing the endomorphism

✓ + [N] 2 End(E) as a rational map takes time eO(max{deg ✓, N2}M(#F)).

Proof. By [83, Exercise 3.7, pp. 105f.], we have

[N](x, y) =

✓
�N (x)

 N (x)2
,
!N (x, y)

 N (x, y)3

◆
,

where �N = x 2
N
� N+1 N�1, !n = (N+2 2

N�1 � N�2 2
N+1)/4y and n is the n-th division

polynomial on E. The required division polynomials have degree O(N2) and can be computed in

O(log(N)) steps using the recursive formulas

 2n+1 = n+2
3
n � n�1

3
n+1 , 2n =

1

2y
 n(n+2

2
n�1 � n�2

2
n+1) .

Using the point addition formulas on E and fast polynomial multiplication techniques [46], the

rational map ✓ + [N] can be computed using eO(max{deg ✓, N2}) operations in F. ⇤

Throughout the chapter, we will assume that all endomorphisms are provided with a

trace and norm (which is the same as degree) that carries through computations; see Section 4.5.1.

If the trace is not provided, then it can be computed using [99, Lemma 1], [38, Lemma 4], [14,

Theorem 3.6].

4.3 Oriented isogeny graphs

In this section, we recall and strengthen basic results about oriented isogeny graphs, mainly

based on work of Colò-Kohel [27] and Onuki [72], and provide some minor new extensions of the

general theory.

57

4.3.1 Orientations

Fixing a curve E, we have End0(E) ⇠= Bp,1. The field K embeds into Bp,1 if and only

if p does not split in K. There may be many distinct such embeddings. We define a K-orientation

of an elliptic curve to be an embedding ◆ : K ! End0(E). If O is an order of K, then an O-

orientation is a K-orientation such that ◆(O) ✓ End(E). We say that a K-orientation ◆ is a

primitive O-orientation if ◆(O) = End(E) \ ◆(K). It will often be expedient to have a local notion

of primitivity: for a prime `, we say that a K-orientation ◆ is an `-primitive O-orientation if it is

an O-orientation and the index [End(E) \ ◆(K) : ◆(O)] is coprime to `. In particular, a primitive

O-orientation is exactly one which is `-primitive for all primes `.

If ' : E ! E0 is an isogeny of degree `, where ◆ is a K-orientation of E, then there is an

induced K-orientation ◆0 = '⇤(◆) on E0 defined '⇤(◆)(!) :=
1
`
'� ◆(!)� b' 2 End0(E0) for any ↵ 2 K.

4.3.2 Oriented isogeny graphs

A K-oriented elliptic curve is a pair (E, ◆) where ◆ : K ! End0(E) is a K-orientation.

An isogeny of K-oriented elliptic curves ' : (E, ◆) ! (E0, ◆0) is an isogeny ' : E ! E0 such that

◆0 = '⇤(◆); we call this a K-oriented isogeny and write ' · (E, ◆) = ('(E),'⇤(◆)). One verifies

directly that '2 ·'1 · (E, ◆) = ('2 �'1) · (E, ◆). A K-oriented isogeny is a K-isomorphism if it is an

isomorphism of the underlying curves.

Fixing a quadratic field K, we define the graph GK of K-oriented supersingular curves over

Fp. This is the graph whose vertices are K-isomorphism classes of pairs (E, ◆) and which has an

edge connecting (E, ◆) and (E0, ◆0) for each K-oriented isogeny (defined over Fp) of degree ` between

these oriented curves. If ' : (E, ◆)! (E0, ◆0) is a K-oriented isogeny, then b' : (E0, ◆0)! (E, ◆) is also

one (since b'⇤(◆0) = b'⇤('⇤(◆)) = [`]⇤(◆) = ◆). Therefore the edges may be taken to be undirected by

pairing isogenies with their duals, when the vertices involved are not j = 0 or 1728. Also, isogenies

are taken up to equivalence, meaning we quotient by the same isomorphisms as for the vertices;

see [72, Definition 4.1]. The graph has (out-)degree ` + 1 at every vertex. (Note that our graph

di↵ers slightly from the definition in [72, Section 4], where only the images of curves over a number

field with complex multiplication are included; we discuss this distinction in the next section.)

58

Every K-orientation is a primitive O-orientation for a unique order O := ◆(K) \ End(E).

Therefore, the set of vertices of GK is stratified by the order O by which a vertex is primitively

oriented.

Definition 4.3.1. Let SSO denote the set of isomorphism classes of K-oriented curves for which

the orientation is a primitive O-orientation.

This is a simplification of the notation SSpr
O
(p) found in the literature [72, Section 3] [27,

Section 3]. This set is non-empty if and only if p is not split in K and does not divide the conductor

of O [72, Proposition 3.2]. As mentioned in Section 4.2.1, we make those assumptions throughout

the chapter.

Let ' : (E, ◆) ! (E0, ◆0) be a K-oriented `-isogeny. Suppose that ◆ is a primitive O-

orientation and ◆0 is a primitive O0-orientation. There are exactly three possible cases:

1. O = O0, in which case we say ' is horizontal,

2. O) O0, in which case [O : O0] = ` and we say ' is descending,

3. O (O0, in which case [O0 : O] = ` and we say ' is ascending.

Example 4.3.2 (Introducing our running example). To illustrate the algorithms in this chap-

ter, we consider supersingular elliptic curves defined over Fp for p = 179. As p ⌘ 3 (mod 4), the

curve E : y2 = x3�x with j(E) = 1728 is supersingular. This curve is well-known to have extra au-

tomorphisms, and its endomorphism ring is generated by the endomorphisms [1], [i], [1]+⇡p2 , [i]+[i]�⇡p
2 ,

where [i](x, y) := (�x, iy) and ⇡p is as defined in Section 4.2.1. We define K := Q(
p
�47) with

� = �47 and ! = 1+
p
�47
2 . We consider the oriented 2-isogeny graph of supersingular elliptic

curves with respect to this imaginary quadratic field K.

4.3.3 Frobenius and class group actions

In this section, we slightly strengthen results of Onuki [72] to give an action on oriented

isogenies by a direct product of the class group with Frobenius.

Consider the e↵ect of the Frobenius isogeny on an oriented curve, namely ⇡p · (E, ◆) =

(E(p), ◆(p)) where ◆(p) := (⇡p)⇤(◆). For any isogeny ', we have ⇡p � '(x, y) = '(p)(xp, yp) = '(p) �

59

Figure 4.1: On the left hand side is a component of GK for p = 179, ` = 2 and K = Q(
p
�47). On

the right hand side is the supersingular 2-isogeny graph over Fp2 . The green 5-cycle represents the
rim of the volcano.

⇡p(x, y). Hence, one has (⇡p)⇤(◆)(↵) =
1
p
⇡p � ◆(↵) �c⇡p = 1

p
◆(↵)(p) � ⇡p �c⇡p = ◆(↵)(p). Since ' 7! '(p)

gives an isomorphism End(E) ⇠= End(E(p)), we see that ⇡p is horizontal, so this gives an action on

SSO for any O by the two-element group {1,⇡p} = h⇡pi. In fact, it is an action on the graph, not

just the vertices, i.e. it preserves adjacency.

Let O be a quadratic order of K. Next we define an action of Cl(O) on SSO. For an

invertible ideal a of O embedded into End(E) via a K-orientation ◆, there exists a horizontal

isogeny 'a defined by the kernel E[◆(a)] := \✓2◆(a) ker(✓) [72, Proposition 3.5], and we write

a · (E, ◆) := 'a · (E, ◆).

A di↵erent choice of 'a with the same kernel gives an isomorphic oriented curve [72, Section 3.3],

so this is well-defined on the oriented `-isogeny graph.

Proposition 4.3.1. The definitions above give a transitive action of Cl(O) ⇥ h⇡pi on SSO whose

point stabilizers are either all trivial or all h⇡pi. In particular, #SSO 2 {hO, 2hO}.

Proof. We have ⇡p · 'a · (E, ◆) = ('a)(p) · ⇡p · (E, ◆). To avoid confusion we momentarily use the

60

more specific notation 'E
a to denote the isogeny 'a with domain E. Then

ker(('E

a)
(p)) = ker('E

(p)

a)(p) = E[◆(a)](p) = \✓2◆(a) ker(✓)(p)

= \✓2◆(a) ker(✓(p)) = \✓2◆(p)(a) ker(✓) = E(p)[◆(p)(a)]. (4.3.1)

The calculation above implies that ('E
a)

(p) = 'E
(p)

a . Thus

⇡p · a · (E, ◆) = a · ⇡p · (E, ◆). (4.3.2)

The definition of a · (E, ◆) gives a transitive action of Cl(O) on a subset SS0
O
of SSO which contains

at least one of (E, ◆) or ⇡p · (E, ◆) [72, Theorem 3.4]. In particular, SS0
O

forms one orbit under

Cl(O). But by (4.3.2) above, the action is also well defined as an action of classes on all of SSO.

Hence there is a well-defined action of Cl(O) on SSO.

The restriction of this action to Cl(O) acts freely and transitively on a subset of SSO which

contains at least one of (E, ◆) or (E(p), ◆(p)) [72, Theorem 3.4], from which the rest of the statement

follows. Transitivity implies that the stabilizers are all of the same size. ⇤

Suppose O0 ✓ O are two quadratic orders. Then there is a homomorphism ⇢ : Cl(O0) !

Cl(O). Using the previous proposition, this immediately gives a group action of Cl(O0) ⇥ h⇡pi on

SSO. It turns out that the explicit form of this action can be computed in the same way as the

original action in the following sense.

Proposition 4.3.2. Let O0 ✓ O with index f . Let a0 2 Cl(O0) have norm coprime to f . Suppose

that E has a K-orientation ◆ which is O-primitive. Let 'a0 be defined as the isogeny with kernel

\✓2◆(a0) ker(✓). Then a0 · (E, ◆) = 'a0(E, ◆).

Proof. Let a := a0O be the extension to O. In particular, ◆(a0) ✓ ◆(a) ✓ End(E). We will show

\✓2◆(a0) ker(✓) = \✓2◆(a) ker(✓). From that, we would complete the proof, since

a
0 · (E, ◆) = a · (E, ◆) = 'a(E, ◆) = 'a0(E, ◆).

We immediately have \✓2◆(a0) ker(✓) ◆ \✓2◆(a) ker(✓). We will show the index between these two

61

groups must divide a power of f . But the larger of the groups has cardinality coprime to f by

hypothesis. So this would imply they are equal.

Write a0 = ↵1O0 + ↵2O0 and O = Z+ g!Z using the notation of Section 4.2.1. Then

\✓2◆(a0) ker(✓) = ker(◆(↵1)) \ ker(◆(↵2)) \ ker(◆(↵1fg!)) \ ker(◆(↵2fg!)),

\✓2◆(a) ker(✓) = ker(◆(↵1)) \ ker(◆(↵2)) \ ker(◆(↵1g!)) \ ker(◆(↵2g!)).

We have ker(◆(↵ig!)) ✓ ker(◆(↵ifg!)) with index f2. Thus the index of \✓2◆(a) ker(✓) inside

\✓2◆(a0) ker(✓) must divide a power of f . ⇤

This has the consequence that one need not know O in order to compute the action of O0

on SSO.

4.3.4 Volcano structure

Any component of the oriented `-isogeny graph has a volcano structure (see Figure 4.1),

which is made precise by the following statement. (This behaviour is similar to the ordinary `-

isogeny graph, except here volcanoes have no floor; they descend forever.) Here we remind the

reader that p 6= ` throughout the chapter.

Proposition 4.3.3 ([72, Proposition 4.1]). Consider a vertex (E, ◆) of the oriented `-isogeny graph

associated to K, a quadratic field of discriminant �. Suppose that ◆ is a primitive O-orientation

for E. If ` does not divide the conductor of O, then the following hold.

1. There are no ascending edges from (E, ◆).

2. There are
�
�
`

�
+ 1 horizontal edges incident with (E, ◆).

3. There are `�
�
�
`

�
descending edges from (E, ◆).

If ` divides the conductor of O, then the following hold.

1. There is exactly one ascending edge from (E, ◆).

2. The remaining ` edges incident with (E, ◆) are descending.

62

Furthermore, it is possible for the descending edges to be multiple, i.e. two descending edges

may go to the same vertex. This occurs if and only if the unit group changes cardinality between

the two relevant orders [72, Proposition 4.1]. In particular, this phenomenon may only occur if

descending from a rim corresponding to the Gaussian or Eisenstein maximal orders, so it is quite

limited. Further, by definition, edges which di↵er in type (ascending, horizontal or descending)

cannot have the same oriented codomain.

Proposition 4.3.3 implies that each connected component of the oriented `-isogeny graph

is a volcano, containing a rim (comprised of the vertices with no ascending edges). From each

vertex on the rim a tree radiates infinitely downward. Furthermore, only elements of SSO for which

O is `-fundamental can be at a rim. Fixing such an order O, we can define a subgraph of the

full K-oriented `-isogeny graph given by those components whose rims consists of (E, ◆) with ◆ a

primitive O-orientation. Since the components are volcanoes, we refer to this as the O-cordillera.

The vertices at the rims are exactly SSO.

The action of an ideal class [a] 2 Cl(O) gives a permutation on SSO, which we can visualize

as a directed graph. This consists of cycles, all of which are the same size, given by the order of [a] in

Cl(O). Applying this to a prime ideal l of O lying above `, the rims of the O-cordillera are exactly

these cycles. The rims are individually singletons, single– or double-connected pairs, or cycles, and

are all of the same size dividing hO. If ` is inert, they are each singletons. If ` is ramified, they

are each of size 2 with one connecting edge (the isogeny and its dual are identified). If ` splits into

two classes of order 2, we obtain a rim of size two with two connecting edges. Otherwise, the rims

are non-trivial cycles in the oriented `-isogeny graph, of size equal to the order of [l] 2 Cl(O). We

summarize the discussion as follows.

Proposition 4.3.4. Let O be `-fundamental. Let R` be the order of [l] 2 Cl(O), for l a prime of

O lying above `. The O-cordillera consists of #SSO /R` volcanoes of rim size R`.

4.3.5 From oriented isogeny graph to isogeny graph

There is a graph quotient GK ! G induced by forgetting the orientation.

Proposition 4.3.5. Under this quotient, every component of GK (i.e. every volcano) covers G.

63

Proof. Fix a volcano V ⇢ GK . Choose a vertex (E, ◆) 2 V. The image E under the above map lies

on G. Since both V and G are regular of degree ` + 1 at every vertex, the image of V must be all

of G. ⇤

As a corollary, every j-invariant occurs on every volcano infinitely many times. Given p,

a result of Kaneko [50, Theorem 2’] implies that the multiple occurrences of a given j-invariant

cannot occur too quickly as one descends the oriented `-isogeny volcano. In fact, there is at most

one occurrence in the range |�| < p (here � is the discriminant corresponding to a certain level in

the volcano).

4.3.6 Graph statistics and heuristics

In the `-isogeny graph G, two vertices are at distance d if the shortest path between them

in the graph consists of d edges. This is known to be 2 log p [73, Theorem 1]. In fact, for most

pairs of vertices, the distance between them is at most (1 + ✏) log p (see [75, Theorem 1.5] for a

precise statement).

We will use the following heuristic to justify the runtimes in the chapter. In a follow-up

paper [4], we discuss this and some related heuristics in more detail.

Heuristic 4.3.3. Let O be a quadratic order. Consider the finite union S of O0-cordilleras for all

O0 ◆ O. Fix a j-invariant j0. Consider the set

Jj0,L = {(j0, ◆) 2 S : appearing at level L}.

Let v : Jj0,L ! {V : volcano of S} be the function taking a vertex to the volcano upon which it

lies. Then, as L ! 1, the probability that v((j0, ◆)) = V for any volcano V is proportional to the

number of descending edges from the rim of V .

Briefly, one expects this because su�ciently long random walks from any rim vertex will

visit all vertices with a uniform distribution [44, Theorem 1]. This observation su�ces to prove the

case the rims are singletons; other cases should behave similarly.

The following lemma is useful for runtime analyses of our main algorithms (Proposition 4.8.1.

64

It states that the Hurwitz class number H(O) (approximately the cardinality of the union of the

sets SSO involved in S in Heuristic 4.3.3) is only marginally bigger than the regular class number

hO (approximately the size of the largest SSO in the union).

Lemma 4.3.1. Let O be an imaginary quadratic order of conductor f in some quadratic field K

with class number hO and Hurwitz class number

HO =
X

O✓O0✓OK

2

w0
hO0 ,

where the sum ranges over all the quadratic orders O0 containing O and where hO0 and w0 denote

the class number and order of the unit group of O0, respectively. Then HO hO O((log log f)2) as

f !1.

Proof. Let O0 be a quadratic order containing O and f 0 = [O0 : O] the index of O in O0. Then f 0

divides f . By [29, Corollary 7.28], we have

hO =
f 0hO0

w0/w

Y

q|f
0

q prime

✓
1�

✓
�

q

◆
1

q

◆
,

where w 2 {2, 4, 6} is the size of the unit group O⇤. Thus,

hO0 w0

wf 0
hO0

Y

q|f
0

q prime

✓
1� 1

q

◆�1

=
w0

w'(f 0)
hO,

were '(·) denotes Euler’s phi function. It follows that

HO
X

O✓O0✓OK

2

w

1

'(f 0)
hO =

0

@
X

f 0|f

1

'(f 0)

1

A 2

w
hO .

By [2, Exercise 3.9 (a)], we have

n

'(n)
<
⇡2

6

�(n)

n

for all integers n � 3, where �(·) is the sum of divisors function. From Robin’s Theorem [74], we

65

obtain �(n)/n < c log log n for all n � 3 and some constant c. Therefore,

X

3f 0|f

1

'(f 0)
<

c⇡2

6

X

3f 0|f

log log f 0

f 0
<

c⇡2

6
(log log f)

X

f 0|f

1

f 0
=

c⇡2

6
(log log f)

�(f)

f
<

(c⇡)2

6
(log log f)2 ,

and hence HO = hO O((log log f)2). ⇤

4.4 Navigating the K-oriented `-isogeny graph

4.4.1 Conjugate orientations and orientations from endomorphisms

Motivated by our computational goals, we replace the abstract data of an orientation with

the more computational data of an endomorphism. Given an element ✓ 2 End(E) along with its

minimal polynomial f(x), we can infer a unique Z[✓]-orientation only up to conjugation. Namely,

if ↵ is a quadratic irrational root of f(x), then we define ◆✓(↵) = ✓ and extend to a ring homo-

morphism. The conjugate orientation is defined by b◆✓(↵) = b✓, or equivalently, by b◆✓(↵) = ✓. An

example in [72, Section 3.1] demonstrates a pair of Gal(K/Q)-conjugate K-oriented curves which

are not isomorphic. In other words, given ' 2 End(E), one may be in either of two locations in the

oriented `-isogeny graph: (E, ◆) or (E,b◆). However, locally at least, navigating from either location

looks the same, in the sense of ascending/descending/horizontal edges and j-invariants.

Lemma 4.4.1. The map (E, ◆) 7! (E,b◆) is a graph isomorphism and an involution, taking SSO

back to itself for each O. If ' : (E, ◆)! (E0, ◆0) is a K-oriented `-isogeny, then ' : (E,b◆)! (E0, b◆0)

is a K-oriented `-isogeny, and the type (ascending, descending, or horizontal) is the same.

Proof. The map is clearly a bijection on vertices. Observe that the dual of b'� ◆�' is b'�b◆�'. From

this it follows that the map is a graph isomorphism. The observation about type follows from the

fact that SSO is taken back to itself. ⇤

As consequences of this lemma, for two vertices (E, ◆) and (E,b◆), we have the following:

1. the j-invariant is the same at both vertices;

2. both vertices are at the same volcano level;

66

3. if the vertices are not at a rim, the ascending isogeny from either vertex is the same;

4. if the vertices are at the rim, the pair of horizontal isogenies from either vertex is the same;

5. if we apply any fixed sequence of `-isogenies from both vertices, the sequence of j-invariants

appearing on the resulting paths is the same.

For these reasons, it will not, in practice, be necessary for us to know which of two conjugate

orientations we are dealing with. Therefore we do not make any choice between the two. In the

remainder of the chapter, we will not dwell on this distinction, and will work with endomorphisms

instead of orientations.

Remark 4.4.1. It is a natural question to ask when a subset of the four oriented curves (E, ◆),

(E(p), ◆(p)), (E,b◆) and (E(p),b◆(p)) coincide. This question may have importance to a more detailed

runtime analysis than we present in this paper, for example. See the thesis of the first author [3].

4.4.2 `-primitivity, `-suitability, and direction finding

Having associated an endomorphism to an orientation, we can now define the following.

Definition 4.4.2. Let ✓ 2 End(E) be an endomorphism and ↵ the corresponding quadratic element

(up to conjugation). Then ✓ (as well as ↵) is called `-primitive if the associated orientations

◆✓ : ↵ 7! ✓ and b◆✓ : ↵ 7! ✓ are `-primitive Z[↵]-orientations. Moreover, ✓ (as well as ↵) is called

N -suitable, for an integer N , if ↵ is of the form f!+kN where k is some integer, f is the conductor

of Z[↵], and f! is the generator of Z[↵] as described in the conventions of Section 4.2.1.

The purpose of this definition is made clear by the following lemma.

Lemma 4.4.2. If ✓ 2 End(E) is `-suitable, then ✓ is not `-primitive if and only if ✓/` 2 End(E).

Proof. The endomorphism ✓ is not `-primitive if and only if there exists a (unique) order O0 ✓

End(E) of index ` = [O0 : Z[✓]]. But this happens if and only if ✓/` 2 End(E), since under the

`-suitability hypothesis, Z[✓/`] is precisely this order O0. ⇤

67

Lemma 4.4.3. Let ↵ 2 OK \ Z with trace t and norm n. Let f be the conductor and �K the

fundamental discriminant of Z[↵]. Then

{T 2 Z : ↵+ T is N -suitable} =

8
><

>:

f�t

2 +NZ �K ⌘ 1 (mod 4)

�t

2 +NZ �K ⌘ 0 (mod 4)

.

In our algorithms, we sometimes choose an optimal T in the sense of the following definition.

Definition 4.4.3. If ↵ + T has the smallest possible non-negative trace amongst all `-suitable

translates of ↵, we say that ↵+ T is a minimal `-suitable translate.

Proposition 4.4.1. Suppose : E ! E0 is an `-isogeny and ✓ 2 End(E) is an `-suitable `-

primitive endomorphism. Then

1. is ascending if and only if [`]2 | � ✓ � b in End(E0).

2. is horizontal if and only if [`] | � ✓ � b but [`]2 - � ✓ � b in End(E0).

3. is descending if and only if [`] - � ✓ � b in End(E0).

Proof. Let ◆0 be the induced orientation on E0 of ◆ : ↵ 7! ✓ via . Let O, O0 ✓ K be two orders

such that ◆ is O-primitive and ◆0 is O0-primitive. The three cases in the proposition corresponds to

the cases when O (O0, O = O0 and O) O0 respectively. Therefore, is ascending, horizontal

and descending correspondingly. ⇤

The previous proposition demonstrates that it is enough to check the action of � ✓ � b on

E[`] to determine whether the isogeny is ascending or descending. However, we can also write down

the ascending or horizontal endomorphisms directly by analysing the eigenspaces of ✓ on E[`], as

follows. Note that a version of this for Frobenius is used in CSIDH [18] to walk horizontally, earlier

used in [52, Section 3.2] and [34, Section 2.3].

Proposition 4.4.2. Suppose ✓ 2 End(E) is `-suitable and `-primitive. Let : E ! E0 be an

`-isogeny with kernel hP i ⇢ E[`]. Then is ascending if and only if ✓(P) = 0, and is horizontal

if and only if P is an eigenvector of the action of ✓ on E[`] having non-zero eigenvalue. Otherwise

 is descending.

68

Proof. Suppose ↵ 7! ✓ gives aK-orientation on E, forK = Q(↵). Then for each non-zero eigenvalue

� 2 Z/`Z of ✓ acting on E[`], the ideal l := (↵ � �, `)O is an invertible prime ideal above (`) in

O := Z[↵]. The isogeny with kernel E[l] is horizontal [72, Proposition 3.5] and has kernel hP i where

✓(P) = [�]P and [`]P = OE . No other `-isogenies are horizontal [72, Proposition 4.1]. (Note that,

as usual, [72] only uses the class group action on the image of curves over number fields with CM,

but by the more general action including Frobenius described in Proposition 4.3.1, it holds in our

case also.)

Next, suppose that � = 0. Then l := (↵, `)O is a non-invertible ideal, and the corresponding

ideal action is ascending [72, Proposition 3.5]. In this case E[l] = hP i where [`]P = OE and

✓(P) = 0. There is only one ascending isogeny [72, Proposition 4.1]. ⇤

4.5 Representing orientations and endomorphisms

4.5.1 Representations and functionality

We remind the reader that throughout the chapter, isogenies and endomorphisms will be

assumed separable unless otherwise stated (see Section 4.2.1). In this section, we discuss two types

of representations of an endomorphism. The first is the most basic.

Definition 4.5.1. A rationally represented isogeny is an isogeny given by a rational map. A

rationally represented endomorphism is an endomorphism which is rationally represented as an

isogeny.

We may also represent endomorphisms of large degree (e.g. not polynomial in log p) by

writing them as a chain of isogenies of manageable degree.

Definition 4.5.2. An isogeny chain isogeny ' : E0 ! Ek is an isogeny which is given in the

form of a sequence of rationally represented isogenies ('i : Ei�1 ! Ei)ki=1 which compose to ', i.e.

'k � 'k�1 � · · · � '2 � '1 = '.

Let B > 0. Recall that an integer is called B-smooth (or B-friable) if its largest prime factor

is less than B. It is called B-powersmooth (or B-ultrafriable) if its largest prime power factor is

69

less than B. In order to handle isogeny chain endomorphisms, we will generally refactor them,

meaning we will replace the chain with another chain representing the same endomorphism, but

whose component isogenies have coprime prime power degrees. Moreover, we also fix a powersmooth

bound B for the prime power degrees. In Section 6, we explain our choice of B for the best algorithm

runtime.

Definition 4.5.3. An isogeny chain whose component isogenies have coprime prime power degrees

is called a prime-power isogeny chain. Moreover, it is called a B-powersmooth prime-power isogeny

chain if its component isogenies have coprime prime power degrees less than B.

For isogenies represented in any manner, we will need the following functionality:

1. Evaluation at `-torsion: Given ✓ 2 End(E), and P 2 E[`], compute ✓(P) 2 E[`]. (See

Lemma 4.2.4.)

2. `-suitable translation: Given ✓ 2 End(E), compute ✓ + [t] 2 End(E), for some t 2 Z,

so that ✓ + [t] is `-suitable (Definition 4.4.2) and again separable. (See Lemma 4.2.7 for

rational representations and Algorithm 4.5.3 for isogeny chains.) Note that for powersmooth

prime power isogeny chains, by computing an `-suitable translation, we always mean that

we compute a translate that is a B-powersmooth prime power isogeny chain unless otherwise

specified. This is exactly what Algorithm 4.5.3 does.

3. Division by `: Given ✓ 2 End(E) such that ✓ = [`] � ✓0, compute ✓0 2 End(E). (See

Algorithm 4.10.2 for rational representations and Algorithm 4.5.2 for isogeny chains.)

4. Waterhouse twisting: Given ✓ 2 End(E) and ' : E ! E0 an `-isogeny, compute '� ✓ � b' 2

End(E0). (See Lemma 4.2.6 for rational representations and Algorithm 4.5.1 for isogeny

chains.)

We have endeavoured to write the chapter in a modular fashion, so that these two types

of representations — or another unforeseen type of representation, as long as it provides these

functionalities — can be used at will. In particular, we write our algorithms (Sections 4.7.1 onwards)

in terms of these functionalities (writing for example ✓ ✓/[`] for division by `, to be implemented

according to the endomorphism representation chosen).

70

Although isogeny chain endomorphisms may have large degree, we assume that for any type

of endomorphism representation, the overall degree, trace and discriminant are polynomi-

ally bounded in p.

As discussed in Section 4.2.2, it can be rather involved to compute the trace of an endomor-

phism. However, the manipulations we perform in our algorithms transform the trace predictably.

Therefore, it is to our advantage to attach the trace data to all endomorphisms under consideration

and update it as needed. For either rationally represented or isogeny chain endomorphisms, our

data type will be the following.

Definition 4.5.4. A traced endomorphism is a tuple of data (E, ✓, t, n) where ✓ 2 End(E) is either

rationally represented or an isogeny chain, and t and n are the reduced trace and norm (degree) of

✓, respectively.

4.5.2 Functionality for rationally represented endomorphisms

In the case of a rationally represented endomorphism, we can evaluate at `-torsion directly

(Lemma 4.2.4). We can translate by an integer by adding the rational maps under the group law

(Lemma 4.2.7). We canWaterhouse twist by composing the maps (Lemma 4.2.6). However, division

by ` requires a dedicated algorithm. In Section 4.10, we describe the algorithm of McMurdy [69] for

exactly this purpose, and analyse its runtime in greater detail. For the completeness of this section,

we record here that the runtime of dividing an isogeny ' : E1 ! E2 of supersingular elliptic curves

defined over Fp2 (Algorithm 4.10.2) is O(deg2(')M(p)).

4.5.3 Functionality for isogeny chain endomorphisms

An isogeny chain representation of an endomorphism can be more space e�cient than its

rational representation, and more e�cient to compute with. Computing the Waterhouse twist of

an isogeny chain endomorphism is essentially trivial: include the twisting isogenies in the chain.

To evaluate at `-torsion, we evaluate the sequence of maps one-by-one (Lemma 4.2.4); the runtime

depends polynomially on the largest degree of their component isogenies.

In this section, we give algorithms for the more onerous tasks of division-by-` and translation

71

by integers. Their runtimes will depend polynomially on the largest prime power appearing in the

degree of the endomorphism, which must therefore be kept small for e�ciency. To address this

problem, which arises when translating to something `-suitable, we use a search step to find a

translate of powersmooth degree.

In order to keep the largest prime power in the degree below a certain bound, we will be

interested in B-powersmooth prime power isogeny chains. In the lastsection of this section, we

balance the runtime considerations by choosing a subexponential powersmoothness bound B for

the degree of an isogeny chain endomorphism. Thus, working with a general such endomorphism

is a subexponential endeavour.

Although our concern is with endomorphisms, both Algorithm 4.5.1 and Algorithm 4.5.2

would work for an isogeny in general.

Refactoring an isogeny chain

If an endomorphism is not in the prime power isogeny chain form, we can refactor it. To

achieve this, one factors the degree, then builds the new chain from scratch kernel-by-kernel, as

described in Algorithm 4.5.1. In fact, any endomorphism that can be evaluated at arbritrary points

on the curve can be converted to an isogeny chain representation using this algorithm.

Remark 4.5.5. In principle, it is possible to refactor into degrees that are primes as opposed to

prime powers. However, this doesn’t circumvent the need for powersmoothness (in practice, it

would provide some savings, e.g. in Vélu’s formulas, but it wouldn’t avoid the overall polynomial

dependence on the powersmoothness bound). During refactoring, for any prime power factor qk of

the degree, the endomorphism needs to be evaluated on the qk-torsion, which should therefore be

defined over a field of manageable size. See [21, Section 5.2.1] for a nice discussion of this issue in

another context.

Proposition 4.5.1. Let B be the largest prime power dividing deg ✓. Then Algorithm 4.5.1 is cor-

rect and has runtime O(log deg ✓) times the maximum of the following three runtimes: O(B2(log p)),

O(B2(logB)M(pB
2
)) and the runtime of evaluation of ✓ on O(B)-torsion, and space requirement

of O(B2 log p). In particular, if ✓ is an integer translate of an isogeny chain with B-powersmooth

72

Algorithm 4.5.1: Refactoring an isogeny chain

Input: A traced endomorphism (E, ✓, t, n) in any form in which it can be evaluated
(such as rationally represented or a translation of an isogeny chain), of degree
coprime to p.

Output: The same traced endomorphism (E, ✓, t, n) 2 End(E) in prime-power
isogeny chain form.

1 H []
2 E0 E

3 Write n =
Q

u

j=0 q
kj

j
by factoring.

4 For j = 0, . . . , u do

5 Compute a basis for E[q
kj

j
].

6 Compute Gj = ker(✓) \ E[q
kj

j
] by evaluating ✓ on E[q

kj

j
].

7 Compute a rationally represented isogeny 'j : Ej ! Ej+1 given by the kernel
'j�1 � . . . � '0(Gj), using Velu’s formulas.

8 Append ('j : Ej ! Ej+1) to H.

9 Return (E, ✓, t, n) where ✓ is given by the isogeny chain H.

degree, then the runtime is O((log deg ✓)B2M(pB
2
)).

Proof. The For loop builds an isogeny chain for ✓. One can see this by induction: assuming

✓ = ⌫ 0 � ⌫ where ⌫ := 'j�1 � . . . �'0, we have by construction that ⌫(Gj) vanishes under ⌫ 0. Hence

✓ factors through 'j � ⌫.

To write the factorization of n is at worst O(B log2B) in time (by trial division), but

O(log n) in space. For each prime power factor (so at most log n times), we must do each of

the following: (i) Compute a basis for the torsion subgroup in time and space O(B2 log p) by

Lemma 4.2.3. (ii) Evaluate ✓ on the basis (iii) List the elements of the kernel Gj ; this involves

computing all linear combinations of the basis images and recording those combinations which

vanish; and then computing the corresponding linear combinations of the original torsion points,

a total of B2 + B linear combinations; by Lemma 4.2.1, this takes time O(B2(logB)M(pB
2
)).

(iv) Apply Vélu’s formulas in time O(BM(pB
2
)) by Lemma 4.2.5. Writing down the resulting

isogeny takes O(B) coe�cients in a subfield of Fp12 (Lemma 4.2.2), hence we use O(B log p) space

for each isogeny of the chain.

If ✓ is a translate of an isogeny chain whose component degrees are bounded by B, we can

further estimate the time taken to evaluate ✓ on the torsion basis. This involves one evaluation

73

for each component isogeny (at most log n such). Each evaluation of a component 'i takes time

O((deg'i)M(pB
2
)) by Lemma 4.2.4. (Evaluation of the integer translation is of smaller runtime

by Lemma 4.2.1; since the integer is taken modulo the torsion, its size is irrelevant.) ⇤

Remark 4.5.6. The exponent of the dependence on B can surely be improved here; for example,

if B is prime, then our bound on the number of linear combinations on which to evaluate ✓ is a

substantial overestimate.

Division by `

In this section, we demonstrate in Algorithm 4.5.2 how to divide an isogeny chain endo-

morphism by [`].

Algorithm 4.5.2: Dividing-by-[`] for an endomorphism given as a prime-power
isogeny chain.

Input: A traced endomorphism (E, ✓, t, n) in prime-power isogeny chain form , such
that ✓(E[`]) = {OE}.

Output: A traced endomorphism (E, ✓0, t0, n0) 2 End(E) such that ✓ = [`] � ✓0, in
prime-power isogeny chain form.

1 i the index at which the chain has `-power degree.
2 Modify the chain for ✓ by replacing 'i with 'i/[`] using Algorithm 4.10.2.
3 t t/`
4 n n/`2.
5 Return (E, ✓, t, n).

Proposition 4.5.2. Let B be an upper bound on the degrees of the prime powers in ✓. Then

Algorithm 4.5.2 is correct and runs in time O(B2 poly(log p)).

Proof. The runtime is negligible except for the call to Algorithm 4.10.2. By Proposition 4.10.3,

that algorithm runs in time O(deg2('i)M(p)) (and we bound M(p) by poly(log p) as discussed in

Section 4.2.1). ⇤

Finding a B-powersmooth `-suitable translate

As discussed, we wish to keep the powersmoothness bound B on the degree of an isogeny

chain endomorphism low when translating by an integer. Since our goal is to find `-suitable endo-

74

morphisms, and translation by ` preserves `-suitability, we may search amongst nearby translates

for one which is B-powersmooth for our desired bound B.

Algorithm 4.5.3: Computing a B-powersmooth `-suitable translate in prime-
power isogeny-chain form.

Input: A traced endomorphism (E, ✓, t, n) in prime-power isogeny chain form , and a
powersmoothness bound B (where B =1 is acceptable).

Output: A traced endomorphism (E, ✓0, t0, n0) which satisfies Z[✓0] = Z[✓] but where
✓0 is `-suitable, and is given as a separable prime-power isogeny chain, with
prime powers B.

1 Compute the minimal `-suitable translate T for ✓ (Lemma 4.4.3).
2 Try values n(b) = n+ (T + b`)t+ (T + b`)2 for small integers b, to find b such that n(b)

is B-powersmooth and coprime to p.
3 ✓0 a refactored prime-power isogeny chain for ✓ + T + b`, using Algorithm 4.5.1.
4 t0 t+ 2T + 2b`
5 n0 n+ (T + b`)t+ (T + b`)2.
6 Return (E, ✓0, t0, n0)

Proposition 4.5.3. Algorithm 4.5.3 is correct, and the runtime is that of Algorithm 4.5.1 plus the

time taken for Step 2.

Proof. The `-suitability of the output is guaranteed by Lemma 4.4.3. ⇤

Choosing a powersmoothness bound B

In practice, we need to balance the runtimes of the various functionalities of an isogeny

chain endomorphism by choosing an appropriate powersmoothness bound B.

The number of B-smooth and B-powersmooth numbers below a bound X is asymptotically

the same, provided that B/ log2X ! 1 [88] (another reference shows they are asymptotically

proportional, provided logB/(log logX) ! 1 [28, Section 3.1]). In our situation, we expect to

handle endomorphisms which may have degree as much as exponential in log p. Fortunately, we can,

at least heuristically, find subexponentially smooth translates in subexponential time [28, Section

3.1].

Heuristic 4.5.7. Given integers n, t, and T , values of the function f(b) = n+(T +b`)t+(T +b`)2,

as b!1, are powersmooth with the same probability as randomly chosen integers of the same size.

75

This is the powersmooth analogue of the heuristic assumption underlying the quadratic

sieve; see [30].

Proposition 4.5.4. Assume Heuristic 4.5.7. Let ✓ 2 End(E) have degree d such that Ld(1/2) >

poly(log p). Then Algorithm 4.5.3 produces a Ld(1/2)-powersmooth prime power isogeny chain of

total degree O(d). Furthermore, on Ld(1/2)-powersmooth prime power isogeny chains of total degree

O(d), the maximum runtime of Algorithm 4.5.1, Algorithm 4.5.2 and Algorithm 4.5.3 is Ld(1/2),

and the output of these algorithms is again an Ld(1/2)-powersmooth prime power isogeny chain of

total degree O(d).

Proof. We have seen that all the runtimes in Algorithms 4.5.1 through 4.5.3 are polynomial in B,

log deg ✓ (= poly(log p) by assumption), and log p, with the exception of Step 2 in Algorithm 4.5.3.

Hence, taking B = Ld(1/2), the runtime (except for this step) will be Ld(1/2).

As far as Step 2, under Heuristic 4.5.7, we can call on [28, Section 3.1] (note that the L-

notation in the reference di↵ers from ours here). According to [28, Section 3.1], the probability that

a random integer between 1 and d is B-powersmooth is 1/Ld(1/2). Testing values of b between 1

and Ld(1/2), we do indeed have n(b) < d. Thus, we expect to find a B-powersmooth integer, by

Heuristic 4.5.7. For each b-value, to see whether n(b) is B-powersmooth, we use naive division in

time O(B log2B). Therefore, in total, one will find Ld(1/2)-powersmooth integers in time Ld(1/2).

⇤

A few important notes for the remainder of the chapter: we will assume B = Ldeg ✓(1/2),

where ✓ is the initial input endomorphism, when dealing with isogeny chains, and that

whenever we perform an `-suitable translation on an isogeny chain, we choose a B-

powersmooth prime power `-suitable translate.

Example 4.5.8 (Computing an `-suitable translation via Algorithm 4.5.3). We continue with

our running example, computing an `-suitable translation of a degree-47 endomorphism ✓ on the

curve E1728 : y2 = x3 � x for ` = 2. Here ✓ is given as a rational map:

✓(x, y) =

✓
99x47 + 22x46 + · · ·+ 77

x46 + 40x45 + · · ·+ 77
,
113ix69 + 157ix68 + · · ·+ 63i

x69 + 60x68 · · ·+ 158
y

◆
.

76

The traced endomorphism is (E1728, ✓, 0, 47). In Step 1, we compute the minimal 2-suitable translate

T using Lemma 4.4.3. From the traced endomorphism, we compute �✓ = t2 � 4n = 02 � 4 · 47 =

�188. This implies that the fundamental discriminant is �47 and the conductor is 2. Therefore

the 2-suitable translates are of the form ✓+T for T in 1+2Z, and the minimal 2-suitable translate

is obtained for T = 1. In Step 2, we find b = 0 produces n(b) = 24 · 3, which is B-powersmooth for

B = 50. In Step 3, we factor ✓ + 1 into an isogeny chain ✓0 = '171 � '1728 where deg('1728) = 16

and deg('171) = 3, which requires a call to Algorithm 4.5.1. Here,

'1728(x, y) =

✓
x16 + (156i+ 63)x15 + · · ·+ 56i+ 36

x15 + (156i+ 63)x14 + · · ·+ 10i+ 71
,
x23 + (55i+ 95)x22 + · · ·+ 105i+ 82

x23 + (55i+ 95)x22 + · · ·+ 26i+ 87
y

◆

and

'171(x, y) =

✓
x3 + (102i+ 30)x2 + (31i+ 74)x+ 10i+ 158

x2 + (102i+ 30)x+ 98i+ 130
,
x3 + (153i+ 45)x2 + (3i+ 88)x+ 102i+ 108

x3 + (153i+ 45)x2 + (115i+ 32)x+ 45i+ 174
y

◆
.

The quantities in Steps 4 and 5 can be computed immediately from the values of t, n, T, b, and `,

yielding t0 = 2 and n0 = 48. The algorithm returns (E1728, ✓0, t0, n0).

4.5.4 Poly-rep runtime

In the last two sections, we computed the runtimes of the basic operations for rationally

represented and isogeny chain endomorphisms. We summarize here.

Proposition 4.5.5. Suppose ✓ is an isogeny whose trace t, norm n and discriminant � are all at

most polynomial in p. If ✓ is rationally represented, then:

1. Evaluating at `-torsion takes time O(n poly(log p)) (Lemma 4.2.4).

2. Waterhouse twisting by an `-isogeny takes time eO(n poly(log p)) (Lemma 4.2.6).

3. Dividing by ` takes time O(n2 poly(log p)) (Proposition 4.10.3).

4. Computing an `-suitable translate takes time eO(max{n, t2} poly(log p)) (Lemma 4.2.7).

If ✓ of degree O(d) is represented as a B-powersmooth prime power isogeny chain with B = Ld(1/2)

as described in Section 6, then, assuming Heuristic 4.5.7 (see Proposition 4.5.4):

77

1. Evaluating at `-torsion takes time Ld(1/2) (Lemma 4.2.4).

2. Waterhouse twisting takes time Ld(1/2) (Proposition 4.5.1).

3. Dividing by ` takes time Ld(1/2) (Proposition 4.5.2).

4. Computing a B-powersmooth `-suitable translate takes time Ld(1/2) (Proposition 4.5.3).

Of course, in individual situations, these runtimes may be much lower (for example, dividing

an isogeny chain by [`] may depend only on the power of ` if no refactoring is necessary).

In the following algorithms, we will need to call all of these operations many times. It will

be convenient to set the following definition.

Definition 4.5.9. We define the representation runtime of a given representation (rationally rep-

resented or isogeny chain) to be the maximum runtime of implementing the following operations:

evaluating at `-torsion, `-suitable translation, division-by-`, and Waterhouse twisting by an `-

isogeny. We say that an algorithm has poly-rep runtime if its runtime is bounded above by a

constant power of log p times the relevant representation runtime.

Note that our definition above means that, throughout the chapter poly(log p) poly-

rep.

4.6 Orientation-finding for j = 1728

For many cryptographic applications, a curve with known endomorphism ring is assumed.

Most commonly used is the curve with j = 1728, which is supersingular when p ⌘ 3 (mod 4). For

simplicity, this is the curve we will consider here, but our algorithm can be modified to suit other

situations (see below). We will use the model given by Einit : y2 = x3�x, which has endomorphism

ring ⌧
1, i,

i+ k

2
,
1 + j

2

�
, i2 = �1, j2 = �p,k = ij.

78

In particular, i is given by (x, y) 7! (�x,
p
�1y) and j is the Frobenius endomorphism3 (x, y) 7!

(xp, yp).

Let O be an imaginary quadratic order of conductor coprime to ` such that O embeds in

Bp,1. In this section we give an algorithm for finding an endomorphism ' 2 End(Einit), generating

a suborder O0 ✓ O of discriminant `2r�O for the minimal possible r. In other words, we wish to

find an `-primitive orientation by a suborder O0 of O. Or, rephrased again, we want to find an

orientation for Einit placing it at its highest level (nearest to the rims) in the oriented supersingular

isogeny graph cordillera with rims at O. Alternatively, the algorithm can be run continuously, to

return all `-primitive orientations by suborders of O in order of increasing r.

The algorithm we provide (Algorithm 4.6.1) has similarities to [54, Integer Representation,

Section 3.2], where the di↵erence arises because we seek a given discriminant instead of a given

norm. In fact, this algorithm applies more generally to curves over Fp satisfying the hypotheses

of [54, Section 3.2]; in Section 4.6.3 we make some comments on adapting this algorithm for other

initial curves of known endomorphism ring.

An algorithm for a similar problem appears in [99, Section 4.3]. However, that algorithm

finds the ‘smallest’ quadratic order only: it requires the discriminant be bounded above by 2
p
p�1.

We wish to find orientations by more general orders.

4.6.1 In terms of 1, i, j, k

The goal of Algorithm 4.6.1 is to find such an endomorphism as a linear combination of 1,

i, j, k.

The idea is to solve a norm equation for Einit under extra conditions that guarantee that

the result is an element of the desired quadratic order. The algorithm depends on Cornacchia’s

algorithm, which is discussed in [23, Section 1.5.2] and [41, Section 3.1]. It solves the equation

x2 + y2 = n when a square root of �1 modulo n is known (e.g., such a square root can be found if

n is factored).

Remark 4.6.1. Algorithm 4.6.1 can be adapted to run continuously, finding many K-orientations
3
Note that some papers use the model y2

= x3
+ x, such as [38, Section 5.1]; this model is a quartic twist of ours

and under the induced isomorphism of the endomorphism rings, the element which is realized as Frobenius is not

preserved. The model we choose for this chapter has 2-torsion conveniently defined over Fp. See [84].

79

Algorithm 4.6.1: Computing an orientation for the initial curve.

Input: A discriminant �O coprime to p, which is the discriminant of an
`-fundamental quadratic order O that embeds into Bp,1.

Output: (✓, r) where ✓ 2 End(Einit) is represented as a linear combination of 1, i, j,
k, with Z[✓] = O0 ✓ O where [O : O0] = `r. Furthermore, ✓ is `-primitive.
(Here Einit and i, j and k are as in the introduction to this section, namely
the specified model of j = 1728.)

1 r �1.
2 repeat
3 r r + 1.
4 Find the smallest positive x such that x2 ⌘ ��O`2r (mod p).

5 While x <
p
��O`2r do

6 D (��O`2r � x2)/p.
7 If D ⌘ 1 (mod 4) then
8 If D is prime then
9 Find a square root of �1 modulo D.

10 Use Cornacchia’s algorithm to find y and z such that y2 + z2 = D.
11 If y is odd then
12 Swap y and z.

13 If x is even then
14 ✓ 1

2 + x

2 i+
z

2 j+
y

2k.

15 else
16 ✓ x

2 i+
y

2 j+
z

2k.

17 break the While loop

18 x x+ p

19 until ✓ is defined
20 c 0
21 While c < r do
22 Translate ✓ to be minimally `-suitable (Lemma 4.4.3).
23 If ✓/` 2 End(Einit) then
24 ✓ ✓/`.
25 c c+ 1

26 else
27 break the While loop

28 Return ✓ as a linear combination, r � c

80

of 1728. Simply continue the loops instead of breaking them, returning a solution ✓ every time one

is found.

Remark 4.6.2. If one wishes to find all possible solutions, remove the requirements that D be a

prime congruent to 1 (mod 4), although this will adversely a↵ect runtime (Cornacchia’s algorithm

will require factoring D). Furthermore, we must make sure Cornacchia’s algorithm returns all

solutions, and we must include solutions obtained by changing the sign of x on each solution

already obtained. We must also be aware that later solutions may fail to be `-primitive; these can

be discarded. With these adjustments, every orientation of the form specified will eventually be

found by the algorithm (not every ✓, but every embedding of O0 into End(Einit) for all O0) – see

the proof of Proposition 4.6.1 for relevant details.

Because of the primality testing step, the algorithm terminates only heuristically. We

separately prove its correctness (if it returns) and then give a heuristic runtime.

In what follows, write � := �O for convenience.

Proposition 4.6.1. Any solution returned by Algorithm 4.6.1 is correct.

Proof. We attempt to solve the problem for each fixed r increasing from r = 0.

If the order O0 of index `r in O has even discriminant (namely �`2r), then we seek an

element of reduced trace zero and reduced norm ��`2r/4. Such an element must generate O0, and

O0 must contain a generator of this form. Write the element as ✓ = x

2 i+
y

2 j+
z

2k. Then, simplifying

the equation, the norm condition is

x2 + py2 + pz2 = ��`2r.

Any solutions must have x2 <
p
��`2r, and for a valid x, solutions y and z are found by Cornac-

chia’s algorithm applied to

y2 + z2 = (��`2r � x2)/p.

In order to be contained in End(Einit), we require x ⌘ z (mod 2) and y is even. The variable r

is incremented if no solution exists, or if Cornacchia’s algorithm is not applied because D is not a

prime congruent to 1 (mod 4) (in which case we may miss solutions).

81

If �`2r is odd, we instead seek an element of reduced trace 1 and reduced norm (��`2r +

1)/4. Such an element will again necessarily generate O0, and O0 must contain a generator of this

form. Writing the element as ✓ = 1
2 + x

2 i +
y

2 j +
z

2k, after slightly simplifying the norm equation,

we must solve the same equation as before:

x2 + py2 + pz2 = ��`2r.

However, in order to lie in End(Einit), such an element must satisfy the conditions that x ⌘ z

(mod 2) and y is odd (note the parity di↵erence). The rest of this case is as above.

If ✓ is not `-primitive, the algorithm will translate and divide by ` until it is. ⇤

For the runtime analysis, and the assertion that the algorithm returns a solution at all,

we need a heuristic similar to that used for torsion-point attacks [35, Heuristic 1] and the KLPT

algorithm [54, Section 3.2].

Heuristic 4.6.3. Fix integers D > 0 and b > 0, and a prime p coprime to Db that splits in the

real quadratic field Q(
p
D). Ranging through pairs

�
(r, x) : 0 < x, x2 < Db2r, 0 r,Db2r � x2 ⌘ 0 (mod p)

,

consider the value

N(r, x) =
Db2r � x2

p
.

The probability that N(r, x) is a prime congruent to 1 modulo 4 is at least O(1/(logD logN(r, x))),

where the implied constant is independent of p, D, and b.

We now give a brief justification for this heuristic by passing to the real quadratic field

Q(
p
D). Write D = f2d where d > 0 is squarefree. We have N(r, x) = q if and only if ±pq =

N(x + fbr
p
d). Hence we need to estimate the probability, given that N(x + fbr

p
d) is divisible

by p, that it is of the form ±pq for some other prime q. We analyse instead the probability, for

↵ 2 OQ(
p
d) (having no assumptions on the form of ↵), given that N(↵) is divisible by p, that it is

of the form ±pq for some prime q. Heuristically, we assume that this will be the same probability.

82

Given that p splits, we have a prime p above p in the maximal order of Q(
p
d). Hence

N(↵) has the form �pq if and only if there is a prime ideal q of norm q satisfying pq = (↵) (or

pq = (↵)). If p | N(↵), then replacing p with p if necessary, this occurs if and only if the integral

ideal (↵)p�1 2 [p]�1 has norm q.

Therefore, we estimate the probability that integral elements in [p]�1 of size X have prime

norm. This is bounded below by the probability that integers of size X have a norm which is a

prime represented by the class [p]�1. This in turn is bounded below by 1
h logX where h is the class

number of Q(
p
d). We apply this estimate with X = N(r, x).

Finally, following the Cohen-Lenstra heuristics for real quadratic fields, it may be reasonable

to expect the class number hQ(
p
d) to have an expected value bounded by O(log d), since the number

of prime factors of d is around log log d (see [101] for a result for prime discriminants and recall

that the 2-part of the class group is controlled by the number of prime factors of d).

Heuristic 4.6.3 has been confirmed numerically in some small cases; we will consider this

heuristic in more detail in [4]. The corresponding heuristic, in the case of the KLPT norm equation,

has been verified by Wesolowski [100]; it would be nice to know if similar methods apply here.

Proposition 4.6.2. Suppose Heuristic 4.6.3 holds and � is coprime to p. If |�| < p2, then Algo-

rithm 4.6.1 returns a solution of norm at most p2 log2+✏(p) with r = O(log p) in time O(log6+✏(p)).

If instead |�| > p2, then the algorithm will return a solution with r = O(1) and norm O(|�|) in

time O(
p
|�| log4+✏(�)(log p)p�1).

Running the algorithm continuously, subsequent solutions should be found in the same run-

time, with r expected to increase by 1, and their norms expected to increase by a constant factor of

`2 at each subsequent solution.

Proof. Suppose r is of size at most u log` p, where u is positive (otherwise r is not positive). Then
p
��`2r |�|1/2pu. Thus, we expect to iterate the While loop at Step 5 at most X(�, u) :=

d|�|1/2pu�1e+1 times. Each time we enter the loop, we obtain a value D = (��`2r�x2)/p of size

 pX(�, u)2. The probability that D is prime and 1 (mod 4) is heuristically 1/(4 log(p1/2X(�, u)))

(Heuristic 4.6.3). Hence we expect to reach Cornacchia’s algorithm once u is large enough such

83

that

X(�, u) � 4 log(p1/2X(�, u)) > 1.

Reaching it will terminate the algorithm. This is a mild condition, satisfied asymptotically when

X(�, u) � (log p)1+✏. In fact, it su�ces to take
p
|�|pu � p log1+✏(p), or equivalently,

u log p � log p� 1

2
log |�|+ (1 + ✏) log log p. (4.6.1)

In particular, u > 1 is always enough, and if |�| > p2+✏, then any positive value for u will su�ce.

(An informal explanation of this behaviour: even for a volcano with a trivial rim, distance (1+✏) log p

down its sides is enough to capture all j-invariants. At the same time, if � is large enough that the

rim likely captures all j-invariants, then we needn’t descend the volcano at all.) This shows that

the algorithm needs to increase r at most O(log p) times before it reaches Cornacchia’s algorithm.

For |�| p2+✏, the optimal value of u is given by (4.6.1). However, since u cannot be

negative, when |�| > p2+✏, the optimal value of u is 0. (Again, informally: the class group will be

of size ⇡
p

|�| > p, and we will find all ⇡ p

12 supersingular j-invariants already on the rim of an

isogeny volcano.)

We first determine the overall runtime in terms of X(�, u) and p. The primality test can

be run in time O(log4+✏D) for example, using the Miller-Rabin algorithm [76, Section 2]. This

algorithm is probabilistic, so there is a negligible possibility that Cornacchia’s algorithm may fail

on false positives.

Once D is a prime congruent to 1 (mod 4), we must find a square root of �1 with which

to run Cornacchia’s algorithm. There is a nice analysis of this exact situation in [41, Section 3.1],

which concludes that it takes probabilistic time eO(log2D), which is negligible compared to the

primality testing.

Thus, for the final runtime, we increment r at most O(log p) times, running a primality

test of cost O(log4+✏D) at most O(X(�, u)) times for each r, before reaching a point where Cor-

nacchia’s algorithm is invoked. Using D pX(�, u)2, this gives runtime O(X(�, u)(log p)(log p+

2 logX(�, u))4+✏).

In the case of large |�| > p2+✏, we put u = 0 and obtain X(�, u) = O(
p

|�|/p) and

84

asymptotically X(�, u) > p✏. This yields a runtime of O(
p
|�| log4+✏(�)(log p)p�1). In this case

r = O(1) and the norm of the solution is bounded by O(|�|).

In the case of small |�| p2, we optimize u according to (4.6.1) and obtain X(�, u) =

O(log1+✏(p)) and asymptotically X(�, u) < p. This gives O(log6+✏(p)). At the same time, the

norm of the solution found is bounded by |�|`2r p2X(�, u)2 p2 log2+2✏(p).

Once r has reached O(log p), we expect solutions for each r with high probability. Therefore,

running the algorithm continuously, subsequent solutions should be found in the same runtime as

the first, and their sizes should be increasing by an expected constant factor of `2 at each subsequent

solution. ⇤

Example 4.6.4 (Computing an orientation for the initial curve via Algorithm 4.6.1). We

return to our working example p = 179, � = �47, ` = 2, and E1728 : y2 = x3 � x. Note that

log`(p) ⇠ 7.48, so that we expect the algorithm to succeed reliably once r = 7 or 8, if not earlier.

Beginning with r = 0, in Step 4 we compute the smallest positive x such that x2 = 47 (mod 179),

namely x = 88. As x = 88 exceeds
p
47 ⇡ 6.9, we return to Step 3 and increment r to r = 1.

This reflects the fact that the curve E1728 does not admit a Q(
p
�47)-orientation on the rim.

Continuing, we find the smallest positive integer x such that x2 ⌘ 188 (mod 179), namely x = 3.

As x = 3 <
p
47 · 4 ⇡ 13.7, we define D = (47 · 4� 32)/179 = 1 in Step 6. Cornacchia’s algorithm

returns 12 + 02 = 1. We obtain the element 3i+k
2 2 End(E1728). This indicates (correctly) that

E1728 admits an orientation on level r = 1 of the Q(
p
�47)-oriented 2-isogeny volcano, see the node

with j-invariant 1728 in Figure 4.1. If we continue to run the algorithm, looking for pairs (r, ✓) for

r up to 8, we return three more pairs:

✓
r = 7, ✓ =

371

2
i+ 29j+

13

2
k

◆
,

✓
r = 8, ✓ =

153

2
i+ 27j+

119

2
k

◆
,

✓
r = 8, ✓ =

511

2
i+ 41j+

95

2
k

◆
.

4.6.2 As an isogeny chain endomorphism

Since i and j are known endomorphisms which can be evaluated at points, any combination

of these can also be evaluated at points. Therefore the output of Algorithm 4.6.1 can be fed into

Algorithm 4.5.3, and an `-suitable isogeny chain endomorphism will result. Thus, in poly-rep time

(that is, depending on B, the powersmoothness bound), we can obtain the output of Algorithm 4.6.1

85

as an isogeny-chain endomorphism.

4.6.3 Curves other than j = 1728

Algorithm 4.6.1 can be adapted to work for certain curves Einit other than the curve with

j = 1728. In particular, if the endomorphism ring End(E) of a curve E defined over Fp is of

the form O + jO, where j is the Frobenius endomorphism and O is a quadratic order, then the

adaptation of Algorithm 4.6.1 is clear, where we use the principal norm form of O in place of x2+y2.

As before, this will reduce to Cornacchia’s algorithm. Instead of primes that are 1 (mod 4), we

seek primes that split in the field and are coprime to the conductor of O; this requires a Legendre

symbol computation. The runtime is essentially unchanged. This adaptation follows the discussion

in [54, Section 3.2].

4.6.4 Heuristics

We now formalize a heuristic about the behaviour of Algorithm 4.6.1 needed for what

follows. This is a version of Heuristic 4.3.3 specific to the algorithm we use.

Heuristic 4.6.5. Let O be a quadratic order. Let S be the finite union of O0-cordilleras where O0 ◆

O. Then Algorithm 4.6.1 running continuously will (i) eventually produce solutions on every volcano

of S, and (ii) produce solutions which are approaching the distribution described in Heuristic 4.3.3

(i.e. with probabilities proportional to the number of descending edges from the rim).

If S has only one volcano, this heuristic is immediate as long as the algorithm produces

infinitely many solutions (which happens by Proposition 4.6.2, under heuristic assumptions from

Section 4.3.6). If Algorithm 4.6.1 returned all orientations of 1728, then this heuristic would follow

directly from Heuristic 4.3.3. The di�culty is that it finds only those solutions where the primality

testing step succeeds. In other words, we cannot rule out the unlikely possibility that the primality

condition causes all the orientations of 1728 to be missed on some individual volcano. Thus, we

seem to require a version of Heuristic 4.6.3 which asserts that the primality is independent of

whether the eventual solution is on any fixed volcano of the cordillera. We consider Heuristic 4.6.5

more closely in the companion paper [4].

86

4.7 Supporting algorithms for walking on oriented curves

4.7.1 Computing an `-primitive endomorphism

Recall from Definition 4.4.2 that an endomorphism ✓ is `-primitive if the associated orien-

tation is `-primitive. If ✓ is chosen to be `-suitable, then equivalently, ✓ is `-primitive if it cannot

be divided by [`] in End(E) (Lemma 4.4.2). Therefore, given ✓, we can translate it to become

`-suitable and then divide by [`] as often as possible to obtain an `-primitive endomorphism.

Algorithm 4.7.1: Computing an `-primitive endomorphism given an endomor-
phism.

Input: A traced endomorphism (E, ✓, t, n) providing the functionality of Section 4.5.1.
Output: A traced endomorphism (E, ✓0, t0, n0) which is `-primitive, and the

`-valuation of the index [Z[✓0] : Z[✓]].
1 If t2 � 4n is `-fundamental then
2 Return (E, ✓, t, n) and 0.

3 (E, ✓, t, n) an `-suitable translate of (E, ✓, t, n)
4 c 0
5 While [`] | ✓ do
6 (E, ✓, t, n) (E, ✓/[`], t/`, n/`2)
7 c c+ 1
8 If t2 � 4n is `-fundamental then
9 Return (E, ✓, t, n) and c.

10 (E, ✓, t, n) an `-suitable translate of (E, ✓, t, n)

11 Return (E, ✓, t, n) and c.

Proposition 4.7.1. Algorithm 4.7.1 is correct, and runs in poly-rep time (see Definition 4.5.9).

Proof. If t2� 4n is `-fundamental, then the conductor of the quadratic order generated by ✓ is not

divisible by `; in this case ✓ is already `-primitive. In order to check if any order of superindex

` contains Z[✓] within End(E), we first translate ✓ to be `-suitable, and then check whether it is

divisible by [`] within End(E). If it is, we divide by ` and repeat.

For runtime, the algorithm translates to an `-suitable translate, tests for divisibility by `,

and divides by `, at most a polynomial number of times (since we assume that the discriminant of

Z[✓] is bounded by a power of p; see Section 4.5.1). ⇤

Example 4.7.1 (Computing an `-primitive endomorphism via Algorithm 4.7.1). We apply

87

Algorithm 4.7.1 to the output of Example 4.5.8, namely (E1728, ✓0, t0, n0) where ✓0 = '171�'1728, t0 =

2, n0 = 48. This is not at the rim, but is already `-suitable. We find [2] - ✓0 by evaluating on E1728[2];

hence we return the input unchanged.

4.7.2 Rim walking via the class group action

In the case that an orientation is available, one can walk the rim of the oriented `-isogeny

volcano using the class group action. Walking a cycle generated by the class group action was first

described in Broker-Charles-Lauter [17] in the case of ordinary curves, which carry an orientation by

Frobenius. This was later used in CSIDH [18], and it was remarked that it extends to orientations

by Q(
p
�np) in Chenu-Smith [22]. In this section we provide a generalization of the same algorithm

to arbitrary orientations. The algorithm walks the rim from a specified start curve in an arbitrary

direction until it encounters a specified end curve. This path is computed using the action of the

class group on the oriented curves in the rim of the oriented volcano. As such, it requires knowledge

of the orientation, so the steps of the algorithm must pull the orientation (i.e. the endomorphism)

along with them. More precisely, the ideal we wish to apply to (E, ✓) is given in terms of ✓, so that

one can use the methods of Broker-Charles-Lauter [17, Section 3] with ✓ in place of Frobenius. One

can apply the Waterhouse twist of ✓, and divide by ` to carry along ✓ in the computation.

The algorithm works by applying the action of Cl(O) to a rim of elements primitively

oriented by a quadratic order O. In fact, using Cl(O) works just as well if the rim is primitively

oriented by O0 ◆ O, where ` - [O0 : O]. This allows us to walk on any rim associated to an `-

fundamental discriminant �, without knowing for sure that the orientation is primitive with respect

to �. See Proposition 4.3.2.

Calling Algorithm 4.7.2 on identical input curves (i.e. (Einit, ◆init) = (Etarget, ◆target) yields

the entire rim of the `-oriented isogeny graph.

Proposition 4.7.2. Algorithm 4.7.2 is correct. Each step of the rim walk has poly-rep runtime.

The number of steps is bounded O(hO). Furthermore, if ✓ is in prime-power isogeny chain form

with any powersmoothness bound B, then each step of the rim-walk has runtime polynomial in B.

Proof. If ` | t2 � 4n, then either we are not at the rim, or the field discriminant is not coprime

88

Algorithm 4.7.2: Walking along the rim of the oriented supersingular `-isogeny
graph

Input: An `-primitive traced endomorphism (E1, ✓1, t1, n1) providing the functionality
of Section 4.5.1, and a target curve E2.

Output: If E1 and E2 are on the same volcano rim in the oriented isogeny graph for
the field Q(✓), with discriminant coprime to `, the algorithm returns a path
of oriented horizontal `-isogenies from (E1, ✓1, t1, n1) to a vertex with curve
E2. Otherwise returns FAILURE.

1 If ` | t2 � 4n then
2 Return FAILURE.

3 H [].
4 If j(E1) = j(E2) then
5 Return H.

6 Compute O ⇠= Z[✓], the quadratic order generated by ✓ (using trace and norm),
together with an explicit isomorphism given in the form of ↵✓ 2 O corresponding to
✓.

7 If ` is inert in O then
8 Return FAILURE.

9 Compute ⌧ 2 O such that l = (`, ⌧)O is a prime ideal of O above `.
10 Compute a, b 2 Z so that ⌧ = a+ b↵✓.
11 (E, ✓, t, n) (E1, ✓1, t1, n1).
12 repeat
13 Compute E[`].
14 Compute E[l] E[`] \ ker(a+ b✓) by evaluating a+ b✓ on E[`].
15 Use Vélu’s algorithm to compute the `-isogeny ⌫ : E ! E0 with kernel E[l].
16 (E, ✓, t, n) (E0, ⌫ � ✓ � b⌫, t`, n`2).
17 (E, ✓, t, n) (E, ✓/[`], t/`, n/`2).
18 Append (⌫, (E, ✓, t, n)) to H.

19 until (j(E), ✓, t, n) = (j(E1), ✓1, t1, n1) or j(E) = j(E2)
20 If j(E) = j(E2) then
21 Return H

22 else
23 Return FAILURE

89

to `. If j(E1) = j(E2), we have already completed our task. Assuming neither of those cases, we

compute the abstract quadratic order O generated by ✓ using its minimal polynomial, and associate

an abstract element ↵✓ to ✓.

The volcano rim in question is contained in SSO0 for some O0 ◆ O, where the index of

containment f = [O0 : O] is coprime to ` (by `-primitivity). If ` is inert in O, then it is also inert

in O0. Hence the rim of the associated volcano is trivial; since j(E1) 6= j(E2), this indicates there

is no valid path to be found. Otherwise, ` is split or ramified in O, so we factor it and compute a

and b and ⌧ as in the algorithm. Namely, we have the factorzation `O = (`, ⌧)O(`, ⌧)O in O. Then

`O0 = (`, ⌧)O0(`, ⌧)O0 in O0. Therefore, the isogeny computed is the action of the ideal l 2 Cl(O0)

lying above ` in O0 on SSO0 as desired, which is thus a horizontal isogeny. The repeat clause walks

the rim step by step.

We stop if we meet E2 or return to our (oriented) starting point. The latter occurs only if

we have walked the entire rim, which means E2 was not on that rim.

For runtime, all individual steps are polynomial, except for calls to evaluate at `-torsion

points, Waterhouse twist and divide by `. The number of repeats is equal to the path length from

E1 to E2 along the rim. The size of the rim is O(hO) (Section 4.3.4).

For the final statement, note that no `-suitable translation is needed in the algorithm. In

fact, the norm of the endomorphism remains constant as one walks the rim. ⇤

Example 4.7.2 (Walking along the rim of the oriented supersingular `-isogeny graph

via Algorithm 4.7.2). As before, we have K = Q(
p
�47). We use Algorithm 4.7.2 on input ` = 2,

(E22, ✓22, t22, n22) and target curve E22 to compute the entire rim of the oriented 2-isogeny volcano

for purposes of demonstration. The endomorphism ✓22 is a primitive OK-orientation, so the curve

E22 lies on the rim of a OK-oriented isogeny volcano. Step 9 computes the prime ideal ` = (2,!)OK
.

In Step 13, we compute E22[2] = {OE22 , (2, 0), (156i + 178, 0), (23i + 178, 0)}. We obtain E22[l] =

h(156i+ 178, 0)i in Step 14. Velu’s formulas in Step 15 compute the isogeny '22 : E22 ! E99i+107.

The codomain of '22 is E99i+107 : y2 = x3 + (26i + 88)x + (141i + 104). In Step 16, we compute

the traced endomorphism (E99i+107, ✓99i+107, t99i+107, n99i+107) with ✓99i+107 := 1
2 '22 � ✓22 � '̂22,

an endomorphism of degree 12. Step 18 appends the isogeny '22 and the traced endomorphism

(E99i+107, ✓99i+107, t99i+107, n99i+107) to H.

90

In the next rim step, starting with (E99i+107, ✓99i+107, t99i+107, n99i+107), we compute the

isogeny

'99i+107 : E99i+107 ! E5i+109.

The isogeny '99i+107 and traced endomorphism (E5i+109, ✓5i+109, t5i+109, n5i+109) are appended to

H in Step 18.

In the next rim step, we find the isogeny '5i+109 : E5i+109 ! E174i+109 and corresponding

traced endomorphism (E174i+109, ✓174i+109, t174i+109, n174i+109) with ✓174i+109 =
1
2('5i+109)�✓5i+109�

'̂5i+109.

A fourth step along the rim produces the isogeny '174i+109 : E174i+109 ! E80i+107 and

traced endomorphism (E80i+107, ✓80i+107, t80i+107, n80i+107).

The final step along the rim produces the isogeny '80i+107 ! E0
22 with codomain E0

22 : y
2 =

(125i+98)x+(84i+152) and induced traced endomorphism (E0
22, ✓

0
22, t

0
22, n

0
22). The codomain E0

22

is isomorphic to E22 via an isomorphism ⇢, and we use the same isomorphism ⇢ to confirm that

E0
22 and E22 are in fact isomorphic as oriented curves by computing ✓022 = ⇢ � ✓22 � ⇢�1.

Algorithm 4.7.2 terminates and returns the rim cycle

E22
'22����! E99i+107

'99i+107�������! E5i+109
'5i+109������! E174i+109

'174i+109��������! E0

22
⇠= E22

of length 5 (see the green rim cycle in Figure 4.1). Indeed, K has class number 5, and the ideal

class of l generates the class group of K.

4.7.3 Ascending to the rim using an orientation

The other major component of navigating the supersingular `-isogeny graph using an ori-

entation is to walk to the rim. We can use Proposition 4.4.2 to determine the ascending direction

and walk up. This is described in Algorithm 4.7.3. The number of steps to the rim is expected to

be log(p) in general; see Section 4.3.6.

Proposition 4.7.3. Algorithm 4.7.3 is correct and has poly-rep runtime times the distance to the

rim.

91

Algorithm 4.7.3: Walking to the rim of the oriented `-isogeny graph.

Input: An `-primitive traced endomorphism (E, ✓, t, n) providing the functionality of
Section 4.5.1.

Output: The shortest path from (E, ✓, t, n) to the rim of the oriented `-isogeny
volcano upon which (E, ✓, t, n) lies.

1 H [].

2 k
j
⌫`(t2�4n)

2

k
.

3 If ` = 2 and (t2 � 4n)/22k 6⌘ 1 (mod 4) then
4 k k � 1

5 For j = 1, . . . , k do
6 Compute E[`].
7 (E, ✓, t, n) an `-suitable translate of (E, ✓, t, n).
8 Compute a generator P for E[`] \ ker(✓).
9 Use Vélu’s algorithm to compute the `-isogeny ⌫ : E ! E0 with kernel hP i.

10 (E, ✓, t, n) (E0, ⌫ � ✓ � ⌫̂, t`, n`2)
11 (E, ✓, t, n) (E, ✓/[`2], t/`2, n/`4)
12 Append (⌫, (E, ✓, t, n)) to H.

13 Return H

Proof. The number of steps to the rim is given by the number of times `2 divides the discriminant

of ✓ (we assume ✓ is `-primitive); this is k in Step 2. We translate ✓ to be `-suitable, which implies

that ⌫ � ✓ � b⌫ can be divided by [`] twice when ⌫ is ascending. Since there is no horizontal direction

(by the choice of k in Step 2), there exists a non-trivial P 2 E[`]\ ker(✓). This gives the ascending

isogeny by Proposition 4.4.2. Once we have found the ascending isogeny, we divide the Waterhouse

twist of ✓ by [`]2 (Step 11), and the result is `-primitive, in preparation for the next loop iteration.

For each iteration of the For loop, the work is clearly poly-rep. ⇤

Example 4.7.3 (Walking to the rim of the oriented `-isogeny graph for rationally repre-

sented endomorphisms via Algorithm 4.7.3). We apply Algorithm 4.7.3 to the output of Step 4

of Example 4.8.2, namely E120 and ✓120 having t120 = 0, n120 = 188. We find that we expect to take

two steps to the rim. Since ✓120 is already 2-suitable, we evaluate it on E120[2] and obtain the kernel

h(121i+ 4, 0)i for the ascending isogeny. The codomain is E171. Waterhouse twisting and dividing

by [2] twice, we obtain an endomorphism ✓0 which is not 2-suitable, but Lemma 4.4.3 shows that

✓171 := ✓0 + [1] is 2-suitable. The second ascending step is similar; this has kernel h(121i+ 131, 0)i

and codomain E5i+109. The two ascending steps are in blue in Figure 4.1.

Example 4.7.4 (Walking to the rim of the oriented `-isogeny graph for isogeny chain

92

endomorphisms via Algorithm 4.7.3). We begin with input (E1728,'171�'1728, 2, 48), from Step 8

of Example 4.8.2. This will require one step to the rim and is already [2]-suitable. Evaluating on

E1728[2], we obtain a kernel of h(178, 0)i for the ascending isogeny; the codomain is E22. Waterhouse

twisting yields an isogeny-chain which is not prime-power refactored, namely '0
1728 � '171 � '1728 �

b'0
1728 having component degrees 2, 3, 16, 2, respectively. We could apply Algorithm 4.5.1, but

we proceed in a slightly more expedient manner. We rewrite '0
1728 � '171, having degrees 2 and

3, respectively, in a form having degrees 3 and 2, respectively. Thus, we evaluate '0
1728 � '171 on

the 2-torsion to obtain the kernel h(29i + 50, 0)i determining '0
171 : E171 ! E174i+109. Then we

apply '0
171 to the generator of ker('0

1728 � '171) \ E171[3] = h(128i + 164, 28i + 90)i to obtain a

kernel for which Vélu gives '174i+109 : E174i+109 ! E22. We obtain the refactored isogeny chain

'174i+109�'0
171�'1728� b'0

1728. We can then divide the 2-power degree component '0
171�'1728� b'0

1728

by [2] twice and let '0
22 := '0

171 � '1728 � b'0
1728/[4]. Replacing this in our isogeny chain above, we

now have an isogeny that gives the one step up to the rim (see the red step in Figure 4.1):

(E1728,'171 � '1728, 2, 48)
'
0

1728�����! (E22,'174i+109 � '0

22, 1, 12).

4.7.4 Ascending and walking the rim using the endomorphism ring

When we find an orientation of j = 1728, we have more information than just the specified

orientation: we also know the endomorphism ring. This extra information allows us to navigate

the oriented graph in polynomial time using known algorithms.

Specifically, with Algorithm 4.7.4 given here, we can walk up the volcano and traverse

the rim (being careful not to back-track by comparing to our previous steps), where each step is

polynomial in log p and the length of the representation of ✓. To get started, we use Einit as the

curve defining Bp,1 as in [100], and take the path P to be the trivial path.

Proposition 4.7.4. Under GRH, Algorithm 4.7.4 is correct and runs in expected polynomial time

in the following quantities: log p, the size of the representation of ✓, and the length of the path P .

Proof. Each of the cited algorithms runs in the time specified under GRH. We determine which

steps are ascending or horizontal by testing whether �/`s+1,�/`s+2 2 O, by Proposition 4.4.1.

93

Algorithm 4.7.4: Extending a path from Einit by an ascending or horizontal step.

Input: A fixed endomorphism ✓ 2 End(Einit). An elliptic curve E and path P from
Einit to E, with no descending steps, and s equal to the number of ascending
steps in the path P .

Output: For each of the available horizontal or ascending steps E ! E0 (with regards
to the orientation induced by ✓), returns the data (E0, P 0, s0), where P 0 is
the path obtained from P by extending it by the extra step, and s0 is the
number of ascending steps in the path P 0.

1 H []
2 For each `-isogeny ⌫ : E ! E0 departing E do
3 P 0 the path formed by appending ⌫ to P .
4 (' : Einit ! E0) the isogeny associated to the path P 0.
5 Compute a Z-basis of the maximal quaternion order O of E0 and connecting ideal

I between Einit and E0 using [100, Algorithm 3] from the path P 0.
6 Compute End(E0) together with an isomorphism : End(E0)! O,

using [100, Algorithm 6].
7 � (' � ✓ � b') (The ability to evaluate (' � ✓ � b') for ✓ 2 End(Einit) is also

obtained when [100, Algorithm 6] is performed in the last step.)
8 � � + T where T 2 Z is chosen so that � + T is the minimal `s-suitable translate

of ' � ✓ � b' using Lemma 4.4.3.
9 If �/`s+1 2 O then

10 s0 s
11 If �/`s+2 2 O then
12 s0 s0 + 1

13 Append (E0, P 0, s0) to H.

14 Return H.

94

Since � is represented as a linear combination of a basis of End(E0), this involves dividing the

coe�cients, which is polynomial time. ⇤

4.8 Classical path-finding to j = 1728

We now present an algorithm which, given a suitable endomorphism on a curve in the su-

persingular graph, will find a path to the initial curve, under heuristic assumptions. An illustration

of the method is given in Figure 4.1: we walk from the initial endomorphism to its rim; find an

orientation of Einit and walk from that orientation of Einit to its rim; and hope to collide on the

same rim.

Algorithm 4.8.1: Finding a path to Einit.

Input: A traced endomorphism (E, ✓, t, n) providing the functionality of Section 4.5.1,
where the discriminant of ✓ is coprime to p.

Output: A path in the `-isogeny graph between E and Einit.

1 (E, ✓, t, n) (E, ✓/[`k], t/`k, n/`2k) which is `-primitive, using Algorithm 4.7.1.
2 �✓ t2 � 4n.
3 � the `-fundamental part of �✓.
4 Call Algorithm 4.7.3 on input (E, ✓, t, n) to produce an ascending path H2 from

(E, ✓, t, n) to (E1, ✓1, t1, n1) on the rim, i.e. where Z[✓1] ✓ End(E1) is `-fundamental.

5 Call Algorithm 4.7.2 on input (E1, ✓1, t1, n1) to walk the rim until we encounter E1

again, storing the j-invariants encountered as a list L.
6 repeat
7 Call Algorithm 4.6.1 on input �, to obtain a new solution ✓init = a+ bi+ cj+ dk.

(Algorithm 4.6.1 can be suspended and then resumed to find subsequent
solutions; see Remark 4.6.1)

8 Using the methods of Section 4.7.4, produce an ascending path H1 from Einit with
endomorphism ✓init up to the rim, i.e. to a traced endomorphism (E0, ✓0, t0, n0)
having `-fundamental Z[✓0] ✓ End(E0).

9 until E0 2 L or E(p)
0 2 L

10 Compute Hrim, the path from E1 to E0 or E(p)
0 , using L.

11 If Hrim joins E1 to E0 then
12 H H2H

�1
rim

H�1
1 , a path from Einit to E.

13 else

14 From H1, compute the conjugate path H(p)
1 from Einit to E(p)

0 .

15 H H2H
�1
rim

(H(p)
1)�1, a path from Einit to E.

Proposition 4.8.1. Assume GRH, Heuristic 4.6.3, and the assumptions of Section 4.5.1. Con-

95

sider an endomorphism ✓ 2 End(E) in rationally-represented or prime-power isogeny-chain form

as described in Section 4.5.4, whose discriminant is coprime to p and has `-fundamental part �

satisfying |�| < p2. Write O� for the order of discriminant �. Algorithm 4.8.1 produces a path of

length O(log p+ hO�) to Einit in the supersingular `-isogeny graph, under Heuristic 4.6.5 part (i).

The runtime is expected poly-rep times O(hO�), under Heuristic 4.6.5 part (ii). Furthermore, the

following hold:

1. If ` is inert in K, then the runtime improves to hO� poly(log p)+poly-rep, and the path length

improves to O(log p).

2. If ` is inert in K and the discriminant of ✓ is already `-fundamental, then the runtime

improves to hO� poly(log p) and the path length improves to O(log p).

3. If � is a fundamental discriminant, ` is split in K and a prime above ` generates the class

group Cl(O�), then the dependence on Heuristic 4.6.5 is removed.

Proof. Let ✓ be the input to the algorithm. The pair (E, ◆✓), where ◆✓ : K ! End(E) is the

orientation given by ✓, lies somewhere on the oriented `-isogeny graph associated to K. More

specifically, it lies on a volcano of the O-cordillera for some order O whose discriminant divides the

`-fundamental discriminant � computed in Step 3. In other words, if we write O� for the order

of discriminant �, then O ◆ O�. Since all endomorphisms throughout the chapter are taken to

have norm and discriminant at worst polynomial in p, the distance of (E, ◆✓) to the rim is at worst

polynomial in log p, and so walking to the rim (Step 4) is poly-rep by Proposition 4.7.3. Next, we

walk around the rim; the runtime depends on the size of the rim and we defer that question to

later in the proof.

When� is passed on to Algorithm 4.6.1 in Step 7, the result (which is returned in polynomial

time by Proposition 4.6.2 under Heuristic 4.6.3) is an endomorphism of End(Einit) which gives an

oriented elliptic curve lying somewhere on a volcano in an O0-cordillera, where again O0 ◆ O�.

(We do not necessarily have O = O0.) This has norm polynomial in p by Proposition 4.6.2. By

Proposition 4.6.2 again, the distance to the rim is O(log p), so walking to the rim is expected

polynomial time by Proposition 4.7.4. Hence each repeat iteration has expected polynomial time.

96

Walking to the rim in Step 8, E0 lies on the rim of a volcano. This volcano is somewhere

in the set of volcanoes S defined as the finite union of the O-cordilleras for all O ◆ O�. Note

that its conjugate E(p)
0 also lies on a rim in S. Now E1 also lies on a rim of S. If E0 (or E(p)

0)

and E1 lie on the same rim, the algorithm will discover this. If not, then one continues the calls

to Algorithm 4.6.1, and another endomorphism will be found. Under Heuristic 4.6.5 part (i),

eventually one of these will produce E0 or E(p)
0 on the same rim as E1. The algorithm will then

succeed.

Let R denote the number of descending edges from the rim containing E0, referred to in

this paragraph as the adjusted rim size (which is bounded above and below by a constant multiple

of the rim size). The sum of the adjusted rim sizes of all rims of SSO for all O ◆ O� is O(HO�)

(Propositions 4.3.1 and 4.3.4). By Lemma 4.3.1, this is O(hO�(log log |�|)2)) = O(hO�) poly(log p).

By Heuristic 4.6.5 part (ii), the number of times we must repeat is therefore O(hO�/R) poly(log p).

Each iteration performs Steps 7 and 8 and then checks membership in L. By Proposition 4.6.2,

under GRH, Step 7 runs in polynomial time in log p and provides a solution ✓init of norm at

most p2 log2+✏ p. Then ✓init can be written as a linear combination of the Z-basis of End(Einit)

with integer coe�cients of size O(log p). Hence Step 8 requires a runtime polynomial in log p by

Proposition 4.7.4; we store the j-invariant of the output for comparison to L. Thus, each iteration

is expected polynomial time times O(R) (to check membership in L). The walk to produce L in

Step 5 takes at most O(R) steps, each of which is poly-rep. Hence the runtime is poly-rep (for

Step 4) plus O(hO�) · poly(log p) +O(R) · (poly-rep).

This runtime is overall bounded by O(hO�) times poly-rep. But if ` is inert, then E0 lies on

a rim of size 1, so we don’t need Step 5, and we have poly-rep plus hO� poly(log p). If ✓ is already

at the rim, then we don’t need Step 4. Combined with inertness, this gives runtime hO� poly(log p).

Finally, if � is a fundamental discriminant, ` is split and a prime above ` generates Cl(O�),

then there is only one volcano, obviating the need for Heuristic 4.6.5. ⇤

The restriction that |�| < p2 is required to ensure that Algorithm 4.6.1 is heuristically

polynomial time. If |�| is larger, and ` is inert, this failure of polynomial time could become

the bottleneck. On the other hand, suppose ` is split in K. Under the Cohen-Lenstra heuristics,

class groups are usually cyclic, and most elements of a cyclic group are generators, so with high

97

probability, Heuristic 4.6.5 will not be necessary.

It is also possible to use Algorithm 4.7.3 at Step 4, instead of the methods of Section 4.7.4.

This results in a worse runtime, but removes the dependence on GRH.

Remark 4.8.1. One might hope to modify Algorithm 4.8.1 to produce a shorter path along with a

square-root runtime improvement, by removing Step 5, and in each repeat, attempting to solve a

vectorization problem between E0 and Einit. Unfortunately, we cannot: the problem is that we do

not know the correct quadratic order O with respect to which these oriented curves are primitively

oriented. To overcome this, one might try to factor � and ascend with respect to any square

factors, to guarantee that � is fundamental. Ascending would be polynomial in the largest squared

prime factor of �, which could be very costly. An alternative that would usually work may be to

try guessing �, working backward from the largest (and hence most likely) divisors. Just assuming

� is fundamental would work much of the time.

Example 4.8.2 (Finding a path to Einit via Algorithm 4.8.1). We again let p = 179, � = �47,

` = 2, and Einit = E1728 : y2 = x3 � x. As input, we consider the curve E120 : y2 = x3 + (7i +

86)x + (45i + 174) with j(E120) = 120, and a trace endomorphism given as (E120, ✓120, t120, n120)

with t120 = 20, n120 = 25 · 32 and

✓120(x, y) =

✓
(122i+ 167)x288 + (17i+ 68)x287 + · · ·+ 174i+ 157

x287 + (78i+ 156)x286 + · · ·+ 16i+ 54
,
(69i+ 109)x431 + (60i+ 178)x430 + · · ·+ 98i+ 124

x431 + (146i+ 53)x430 + · · ·+ 44i+ 89

◆
.

We apply Algorithm 4.8.1 to find a path from E120 to E1728 (see Figure 4.1). Step 1 on input

(E120, ✓120, t120, n120) produces the `-suitable and `-primitive traced endomorphism ✓120 ✓120 +

[�10] with t120 0 and n120 188. Here �0 = t2120 � 4n120 = �752 and its `-fundamental part

is � = �47. Step 4 calls Algorithm 4.7.3 on input (E120, ✓120, t120, n120) to produce the following

ascending path H2 to the rim, see Example 4.7.3:

H2 : (E120, ✓120, 0, 188)
'120����! (E171, ✓171, 0, 47)

'171����! (E5i+109, ✓5i+109, 1, 12).

Now we apply Algorithm 4.7.2 on input (E5i+109, ✓5i+109, t5i+109, n5i+109) to walk the rim in Step 5 as

in Example 4.7.2. The list of all the j-invariants is L = {5i+109, 174i+109, 80i+107, 22, 99i+107}.

In Step 7, calling Algorithm 4.6.1 on input �, we obtain ✓1728 = (3i+k)/2 as in Example 4.6.4. For

98

simplicity in this example, we use Algorithm 4.7.3 in Step 8, instead of the methods of Section 4.7.4.

We apply Algorithms 4.5.3 and 4.7.1 (see Section 4.6.2) to (E1728, ✓1728, 0, 47) to obtain an `-

primitive isogeny-chain endomorphism ✓01728 = '171 � '1728 where deg('1728) = 16, deg('171) = 3

and with t1728 = 2, n1728 = 48 as in Example 4.5.8. We call Algorithm 4.7.3 on input (E1728,'171 �

'1728, 2, 48) to produce the following ascending path (see Example 4.7.4):

H1 : (E1728,'171 � '1728, 2, 48)
'
0

1728�����! (E22,'174i+109 � '0

22, 1, 12).

Finally, since j(E22) = 22 2 L, joining the previous paths, we obtain a path from E1728 to E120

(see the whole path in Figure 4.1) as

H : E1728
'
0

1728�����! E22
'22����! E99i+107

'99i+107�������! E5i+109
'̂171����! E171

'̂120����! E120.

4.9 Proof of the Main Theorem and Special Cases

4.9.1 Proof of Theorem 4.1.1

Proof of Theorem 4.1.1. Suppose ✓ is such an endomorphism. Then set B = Ld(1/2). We can

apply Algorithm 4.5.3 (having Algorithm 4.5.1 as a subroutine) to ✓, whose runtime depends on

the evaluation of ✓ on inputs in a field F
pO(B2) . The runtime for this conversion is therefore

T✓(Ld(1/2), p). The result is a prime-power isogeny-chain representation of ✓. We can then use

Algorithm 4.8.1, with the representation runtime being Ld(1/2), by Proposition 4.5.5. The classical

runtime follows from Proposition 4.8.1. ⇤

4.9.2 Special cases

In this section, we refer to an endomorphism as insecure if access to such an endomorphism

allows for a polynomial time path-finding algorithm. Endomorphisms of small size are known to

be insecure [63]. We obtain a version of this from our methods also.

Theorem 4.9.1. Assume the situation of Theorem 4.1.1. In the following special cases, the runtime

and path length of Algorithm 4.8.1 is polynomial in log p:

99

1. The input endomorphism is rationally represented in polynomial space.

2. hO� = poly(log p) and ` is coprime to � and inert in K. In this case, the endomorphism is

not even needed as input; only its existence, trace and norm are needed.

Proof. The second case is a consequence of Algorithm 4.8.1 and Proposition 4.8.1, in which the

hypotheses imply Steps 4 and 5 are unnecessary. The first is a consequence of the observation that

such endomorphisms have polynomially sized discriminants and class numbers. ⇤

The following result demonstrates the existence of non-small endomorphisms which are

insecure.

Theorem 4.9.2. Suppose � = f2�0 where �0 is a discriminant of poly(log p) size, f is poly(log p)-

smooth, and ✓ is f -suitable with poly(log p)-powersmooth norm, and represented in some fashion so

that it can be evaluated in poly(log p) time on points of poly(log p) size. Then there is an algorithm

to find an O(log p)-powersmooth isogeny to Einit in time poly(log p).

Proof. The dependence on ` throughout the chapter has been suppressed by assuming ` = O(1),

but it is at worst polynomial throughout. We refactor ✓ in poly(log p) time (this is possible by

Proposition 4.5.1 and the evaluation runtime assumption), to obtain an isogeny chain. Taking each

prime ` dividing f in turn, we ascend as for as possible on the oriented `-isogeny volcano. By

f -suitability, we can ascend without any further translation or refactoring. Having ascended, we

obtain an endomorphism of discriminant �0 of poly(log p) size and trace zero, and hence call on

Theorem 4.9.1 with respect to some suitable `. ⇤

The following corollary guarantees that every elliptic curve has an insecure endomorphism.

Recall that most curves do not have small endomorphisms. It is known that there are curves

having no endomorphisms of norm smaller than p2/3�✏ (see [62, Proposition B.5], [40, Section

4], [103, Proposition 1.4]). Therefore the endomorphisms guaranteed by the following corollary are

frequently large.

Corollary 4.9.3. Let p be such that p ⌘ 3 (mod 4), and let E be any supersingular elliptic curve

over Fp2. The endomorphism ring End(E) contains an endomorphism which can be presented in

100

poly(log p) space and evaluated in poly(log p) time, and knowledge of that endomorphism allows for

a classical poly(log p)-time algorithm to find a path to j = 1728.

Proof. Consider the Gaussian field Q(i). Let L =
Q

i
`i be a product of the first O(log p) odd

primes. We claim that End(E) contains Z[Li]. To see this, we use [44, Theorem 1], which asserts

that E can be reached by a random walk from Einit of j = 1728 (which exists since p ⌘ 3 (mod 4))

with degree L. Then End(E) must contain Z[Li] (in fact, it may contain a strictly larger order,

if the steps are not all descending with respect to the Gaussian field). Taking the element Li,

represented as a poly(log p)-powersmooth isogeny chain, we apply Theorem 4.9.2. ⇤

This proof is not constructive, and it is indeed not easy to find such an endomorphism.

Examples of such endomorphisms exist in any field with poly(log p) discriminant; indeed one can

take any element of the form L(! + k) for k 2 Z and a poly(log p)-powersmooth L such that

N(! + k) is poly(log p)-powersmooth.

Finally, we remark on one more special case. When the norm of ✓ is well-behaved, and we

are already at the rim with respect to ` (perhaps by choosing ` judiciously), then we have improved

dependence on p. Note that in the following theorem, there is no requirement on the factorization

of �.

Theorem 4.9.4. Suppose the norm of ✓ has powersmoothness bound B(p), and suppose that � is

coprime to `. Then there is an algorithm to find an `-isogeny path of length O(log p+ hO) to Einit

in time hO poly(B(p) log p).

Proof. Use Algorithm 4.8.1. By the assumption on �, we need not ascend with ✓ (that is, we skip

Step 4). We only walk horizontally, and those steps are polynomial in B(p) by Proposition 4.7.2.

⇤

4.10 Division by [`]

We conclude with a detailed description and analysis of McMurdy’s algorithm (Algo-

rithm 4.10.2) which can be used to divide any isogeny (not just an endomorphism) by [`] if it is

101

a multiple of [`]. Given a rationally represented traced endomorphism, we apply Algorithm 4.10.2

and then adjust the trace and norm accordingly.

We follow the notation of McMurdy [69]. Let E1 and E2 be two supersingular elliptic curves

given by respective short Weierstrass equations

E1 : y
2 = W1(x), E2 : y

2 = W2(x).

with W1(x),W2(x) 2 Fp2 [x]. Denote by E1,` the `-division polynomial of E1, made monic, and

let Xi(x) and Yi(x) be the rational functions representing the multiplication-by-` map on Ei,

i.e. [`]Ei
(x, y) = (Xi(x), Yi(x)y) for i = 1, 2. For a polynomial P (x) = (x � r1) · · · (x � rn) with

coe�cients in some field F whose roots ri lie in some field extension F0 of F, and a rational function

T (x) over FF 0, define

P (x)
��T := (x� T (r1)) · · · (x� T (rn)) .

Given [`]' : E1 ! E2 as a pair of rational maps, where ' : E1 ! E2 is an isogeny, the rational

maps of ' are obtained as follows.

Proposition 4.10.1 ([69, Proposition 2.6]). Suppose that ' : E1 ! E2 is a separable isogeny such

that ([`]')(x, y) = (F (x), G(x)y) for rational functions F (x), G(x). Write F (x) in lowest terms,

i.e. as either cF ·P (x)
W1(x)Q(x) when ` = 2 or cF ·P (x)

 E1,`
(x)2Q(x) when ` 6= 2, with monic polynomials P (x), Q(x).

Set

p(x) = P (x)
��X1, q(x) = Q(x)

��X1.

Then p(x) = p0(x)`
2
and q(x) = q0(x)`

2
for monic polynomials p0(x), q0(x). Moreover, we have

'(x, y) = (f(x), g(x)y), where f(x) = cF `2 · p0(x)
q0(x)

and g(x) = G(x)
Y2(f(x))

.

Algorithm 4.10.1 computes the polynomials p(x) and q(x) as given in Proposition 4.10.1.

The main division-by-[`] process (Algorithm 4.10.2) then calls Algorithm 4.10.1 twice.

Division by ` = 2 has been implemented by McMurdy [69] (code available at [68]). Division

by odd primes ` > 2 is complicated by the non-vanishing of the y-coordinates of the `-torsion

points. Fix an odd prime ` > 2. In order to compute p(x) = P (x)
��X1 and q(x) = Q(x)

��X1 in

Steps 3 and 4 of Algorithm 4.10.2, we compute the rational map NP =
Q

i
P (xi) as a function of

102

Algorithm 4.10.1: Computing the polynomial P (x)
��X1

Input: An elliptic curve E1, a monic polynomial P (x) defined over Fpm , and the
rational map X1(x) associated to E1.

Output: P (x)
��X1.

1 Compute a root ⇣ of X1.
2 Compute the x-coordinates xi of the points Si = (xi, yi) 2 E1[`], indexed by

i = 1, . . . , `2 � 1 so that x
i+ `2�1

2

= xi, using the `-th division polynomial (note that

we do not compute the yi here). Let S0 = OE1 .

3 Compute the x-coordinates xi(x, y, yi) for 1 i `
2
�1
2 of the maps representing point

addition (x, y) + Si on E1, using the values of xi computed in step 2 but leaving yi’s
as indeterminates. Set x̄i(x, y, yi) = xi(x, y,�yi) which is the x-coordinate of the
point addition (x, y) + (�Si).

4 N(x) P (x) and D(x) 1.

5 For i = 1, . . . , `
2
�1
2 do

6 Compute P (xi(x, y, yi)) and P (x̄i(x, y, yi)) (as rational functions in x, y and yi)
using Horner’s algorithm.

7 Compute the numerator Ni and denominator Di of P (xi)P (x̄i) as polynomials in
x, y and yi.

8 Replace y2 with W1(x) and y2
i
with W1(xi) in Ni. Denote the result by Ni(x), as

no y’s or yi’s should remain.
9 Replace y2

i
with W1(xi) in Di. Denote the result by Di(x), as no y’s or yi’s should

remain.
10 N(x) N(x) ·Ni(x), and D(x) D(x) ·Di(x).

11 NP (x) N(x)
D(x) , i 0, p(x) 0.

12 For i = 0, . . . , deg(P (x)) do
13 ai NP (⇣).
14 p(x) p(x) + aixi.
15 NP (x) NP (x)� aixi.
16 NP (x) NP (x)/X1(x).

17 Return p(x).

103

Algorithm 4.10.2: Division by [`].

Input: Elliptic curves E1, E2, rational maps F (x) and G(x) where
([`]')(x, y) = (F (x), G(x)y) for some isogeny ' : E1 ! E2.

Output: Rational maps f(x) and g(x) such that '(x, y) = (f(x), g(x)y).

1 Determine cF , and the monic polynomials P (x) and Q(x) such that

F (x) = cF ·P (x)
W1(x)·Q(x)(` = 2) or F (x) = cF ·P (x)

(E1,`
(x))2·Q(x)(` 6= 2).

2 Compute X1(x) and Y2(x).
3 Compute p(x) P (x)

��X1 using Algorithm 4.10.1 on input E1, P (x), X1(x).
4 Compute q(x) Q(x)

��X1 using Algorithm 4.10.1 on input E1, Q(x), X1(x). In this
step we can skip Steps 1–4 in Algorithm 4.10.1 since they were already performed in
Step 3 of this algorithm.

5 Compute p0(x) p(x)1/`
2
and q0(x) q(x)1/`

2
using a truncated variant of Newton’s

method.

6 f(x) cF `2 · p0(x)
q0(x)

, g(x) G(x)
Y2(f(x))

.

7 Return f(x), g(x).

the variable x only. In contrast to the case of 2-torsion points, the `-torsion points on E1 have

non-zero y-coordinates, so some xi depend not only on x (as in the case ` = 2) but also on y and

yi for i (`2 � 1)/2. As a consequence, NP also depends on these variables. To overcome this

obstruction, we employ a new technique presented in Steps 5–11 of Algorithm 4.10.1. In these steps,

we compute the products xi · x̄i, and hence the products P (xi) ·P (x̄i). Each product P (xi) ·P (x̄i)

is a rational map in x, y2, and y2
i
(i (`2 � 1)/2) by Lemma 4.10.1. We replace y2 (respectively

y2
i
) with W1(x) (respectively W1(xi)) to obtain rational maps in the variable x only.

Example 4.10.1 (Computing the polynomial P (x)
��X1 via Algorithm 4.10.1). Let ` = 3,

p = 179, and E1728 : y2 = x3�x the supersingular elliptic curve over Fp with j = 1728. Let X1(x),

Y1(x) be associated to multiplication-by-3, i.e.

[3]E1728(x, y) = (X1(x), Y1(x)y) where X1(x) =
20x9 + 61x7 + 63x5 + 175x3 + x

x8 + 175x6 + 63x4 + 61x2 + 20
.

Let P (x) = x18+122x16+136x14+65x12+29x10+150x8+114x6+43x4+57x2+178. We compute

p(x) = P (x)
��X1 using Algorithm 4.10.1 as follows.

In Steps 1 and 2, we may choose ⇣ = 0. Let Fp4 be generated by a having minimal polynomial

x4+x2+109x+2. We obtain S0 = OE1728 , S1 = (103, y1), S2 = (76, y2), S3 = (24a3+39a2+119a+

102, y3), S4 = (155a3+140a2+60a+77, y4), S5 = �S1, S6 = �S2, S7 = �S3, S8 = �S4. In Steps 3,

104

we compute xi(x, y, yi) and x̄i(x, y, yi) as x0 = x, x̄i = xi(x, y,�yi), 8i, 1 i 4 where

x1(x, y, y1) =
�x3 + y2 � 2yy1 + y21 � 76x2 + 48x+ 68

x2 � 27x+ 48
,

x2(x, y, y2) = (�x3 + y2 � 2yy2 + y22 + 76x2 + 48x� 68)/(x2 + 27x+ 48),

x3(x, y, y3)

=
�x3 + y2 � 2yy3 + y23 + (24a3 + 39a2 � 60a� 77)x2 � 46x+ (30a3 + 4a2 � 75a+ 38)

(x2 + (�48a3 � 78a2 � 59a� 25)x� 46)
,

x4(x, y, y4)

=
�x3 + y2 � 2yy4 + y24 + (�24a3 � 39a2 + 60a+ 77)x2 � 46x+ (�30a3 � 4a2 + 75a� 38

x2 + (48a3 + 78a2 + 59a+ 25)x� 46
.

In Steps 4–11: We compute the norm NP (x) of P (x) by first computing P (xi) · P (x̄i) =

Ni

Di
, 1 i 4. We then have N(x) = P (x)

Q
i
Ni = 14x162 + 157x160 + · · · + 22x2 + 165 and

D(x) =
Q

i
Di = x144 + 107x142 + · · · + 90x2 + 75. Hence NP (x) =

N(x)
D(x) . Finally, we compute all

the coe�cients of p(x) by repeating Steps 13–16. The result is

p(x) = x18 + 170x16 + 36x14 + 95x12 + 126x10 + 53x8 + 84x6 + 143x4 + 9x2 + 178.

Example 4.10.2 (Division by ` = 3 via Algorithm 4.10.2). As before, let p = 179 and E1728 : y2 =

x3� x the supersingular elliptic curve over Fp of j-invariant j(E1728) = 1728 as in Example 4.10.1.

Then the endomorphism ring of E1728 contains the endomorphism [i] defined as [i](x, y) := (�x, iy)

with i 2 Fp2 and i2 = �1.

The map ✓ = 1+[i] is a separable endomorphism and we have ([3]✓)(x, y) =
⇣
F1(x)
F2(x)

, G1(x)
G2(x)

y
⌘
,

defined over Fp2 , with

F1(x) = 169ix18 + 33ix16 + 72ix14 + 66ix12 + 68ix10 + 111ix8 + 113ix6 + 107ix4 + 146ix2 + 10i

F2(x) = x17 + 8x15 + 45x13 + 124x11 + 110x9 + 124x7 + 45x5 + 8x3 + x

G1(x) = (58i+ 58)x26 + (170i+ 170)x24 + · · ·+ (170i+ 170)x2 + 58i+ 58,

G2(x) = x26 + 12x24 + 2x22 + 66x20 + 128x18 + 44x16 + 171x14 + 44x12 + 128x10 + 66x8

+ 2x6 + 12x4 + x2.

105

We apply Algorithm 4.10.2 to divide [3]✓ by 3 to obtain ✓ = [f(x), g(x)y] as follows.

In Step 1, we write F (x) = cF ·P (x)
(E1728,3(x))

2·Q(x) where cF = 169i, E1728,3(x) = x4+177x2+119

and

P (x) = x18 + 122x16 + · · · 57x2 + 178, Q(x) = x9 + 12x7 + 30x5 + 143x3 + 9x.

In Step 2, we compute X1 and Y2 using the formula for multiplication by 3 map on E1728.

Here, X1 is as given in Example 4.10.1 and

Y2 =
126x12 + 92x10 + 153x8 + 136x6 + 139x4 + 63x2 + 159

x12 + 173x10 + 11x8 + 175x6 + 56x4 + 59x2 + 53
.

Then we compute p(x) = P (x)
��X1 and q(x) = Q(x)

��X1 in Steps 3 and 4 using Algorithm 4.10.1 to

obtain p(x) = x18 + 170x16 + · · · + 9x2 + 178, and q(x) = x9. In Step 5, computing 9-th roots of

p(x) and q(x) yields p0(x) = x2 + 178 and q0(x) = x. The final output is

f(x) = cF `
2 · p0(x)

q0(x)
=

89ix2 + 90i

x
, g(x) =

G(x)

Y2(f(x))
=

(134i+ 134)x2 + 134i+ 134

x2
.

To determine the complexity of Algorithm 4.10.1, we first prove the following lemma which

is needed in the proof of Proposition 4.10.2.

Lemma 4.10.1. Fix 0 i `
2
�1
2 , the products xix̄i and P (xi)P (x̄i) are rational functions in

x, y2, and y2
i
.

Proof. By direct computation, both xi + x̄i and xix̄i are rational functions in x, y2, and y2
i
. As a

symmetric polynomial in xi and xi, the quantity P (xi)P (xi) is a polynomial in xi + x̄i and xix̄i,

hence also a rational function in x, y2 and y2
i
. ⇤

Proposition 4.10.2. Algorithm 4.10.1 is correct and has runtime O(deg2(P)M(pm)).

Proof. Algorithm 4.10.1 is correct by [69, Pages 8–9] and Lemma 4.10.1. Steps 1-3 are negligible

because they require a fixed number of operations in an extension of Fp2 of degree O(`2). Since

P (x) 2 Fpm [x] and E1[`] is defined over an extension of Fp2 of degree at most `2 by Lemma 4.2.3, all

106

the arithmetic in the remaining steps takes place in a field extension of Fp2 of degree lcm(`2,m) =

O(m).

In the first loop (steps 5-10), the most costly steps are 7 and 10 which both require

O(deg2(P)) operations; the remaining steps are linear in degP when Horner’s algorithm is used.

In the second loop (steps 12-11), p(x) is computed as described in [69, Page 9]. Step 13 requires

O(degP) field operations using Horner’s algorithm again. Since X1 has degree O(`2), step 11 also

takes O(degP) operations. Hence the second loop takes O(deg2(P)) field operations. ⇤

Proposition 4.10.3. Algorithm 4.10.2 is correct and has runtime O(deg2(')M(p)).

Proof. The correctness of Algorithm 4.10.2 follows from [69, Proposition 2.6]. By Lemma 4.2.2, '

is defined over Fp12 , so all the rational functions appearing in the algorithm belong to Fp12(x). We

also note that P (x) and Q(x) have degree O(deg'), hence so do p(x), q(x), p0(x) and q0(x).

Since E1,`(x) and W1(x) have fixed degree, step 1 requires O(deg') field operations.

Steps 5 and 6 take eO(deg') operations using fast polynomial arithmetic; see [46, Theorem 1.2].

Here, to extract an `2-th root of p(x), we apply a truncated variant of Newton’s method (see [96, Sec-

tions 9.4 and 9.6]) to the polynomial H(y) = y`
2 � p(x) and compute the sequence of polynomials

f0(x) = xdeg p , fi+1(x) = fi(x)�
�
H(fi(x))

H 0(fi(x)

⌫
(i � 0)

to obtain p0(x) after at most dlog2(deg p)e iterations; similarly for q0(x).

The runtime of Algorithm 4.10.2 is thus dominated by steps 3 and 4, which have runtime

O(deg2(')M(p12)) = O(deg2(')M(p)). ⇤

Chapters 4 is, in full, being prepared for submission for publication. The dissertation author

was the collaborator and the coauthor for the material below.

• Sarah Arpin; Mingjie Chen; Kristin E. Lauter; Renate Scheidler; Katherine E. Stange;

Ha T. N. Tran ”Orienteering with one endomorphism”.

107

Chapter 5

On Fp-roots of the Hilbert class

polynomial modulo p

5.1 Introduction

Let O be an order in an imaginary quadratic field K, and Pic(O) be the Picard group of

O, i.e. the group of isomorphism classes of invertible fractional O-ideals under multiplication. The

Hilbert class polynomial HO(x) attached to O is defined to be

HO(x) =
Y

[a]2Pic(O)

(x� j(C/a)), (5.1.1)

where [a] denotes the isomorphism class of the invertible fractional O-ideal a, and j(C/a) stands

for the j-invariant of the complex elliptic curve C/a. It is well known that HO(x) has integral

coe�cients, and it is irreducible over Q (see [29, §13] and [56, Chapter 10, App., p.144]).

Let p 2 N be a prime number, and eHO(x) 2 Fp[x] be the polynomial obtained by reducing

HO(x) 2 Z[x] modulo p. Suppose that p is non-split in K so that the roots of eHO(x) are supersin-

gular j-invariants, which are known to lie in Fp2 . It’s natural to ask how many of them are actually

in Fp. Castryck, Panny, and Vercauteren answered this question in [19, Theorem 26] for special

cases when p ⌘ 3(mod 4), K is of the form Q(
p
�l) with l prime, l < (p+ 1)/4 and O is an order

108

containing
p
�l. Their method as in [19, Section 5.2] counts the Fp-roots by constructing super-

singular elliptic curves over Fp. We take a di↵erent approach here by reinterpreting the Fp-roots in

terms of quaternion orders, which allows us to answer the question in more generality.

Our main result is as follows.

Theorem 5.1.1. Let K be an imaginary quadratic field and O be an order in K. Let p be a

prime inert in K and strictly greater than | disc(O)|, and Hp be set of Fp-roots of eHO(x). If Hp

is nonempty, then it admits a regular (i.e. free and transitive) action by the 2-torsion subgroup

Pic(O)[2] ⇢ Pic(O). In particular, the number of Fp-roots of eHO(x) is either zero or |Pic(O)[2]|.

Moreover, Hp 6= ; if and only if for every prime factor ` of disc(O), either condition (i) or

(ii) below holds for ` depending on its parity:

(i) ` 6= 2 and the Legendre symbol
�
�p

`

�
= 1;

(ii) ` = 2 and one of the following conditions holds:

(a) p ⌘ 7(mod 8);

(b) �p+ disc(O)
4 ⌘ 0, 1 or 4(mod 8);

(c) �p+ disc(O) ⌘ 1(mod 8).

The assumption that | disc(O)| < p immediately implies that p does not divide the discrim-

inant of HO(x) by an influential work of Gross and Zagier [45]. Therefore, eHO(x) has no repeated

roots. We provide an alternative proof of this fact under the current assumptions in Corollary 5.2.4.

Remark 5.1.2. After the first of version of this manuscript appeared on arXiv, Jianing Li kindly

informed us that a similar result to Theorem 5.1.1 has firstly been obtained in [102, Theorem

1.1] under the assumption that | disc(O)| < 4
p
p/3. Moreover, Li et al. used a method similar

to [102] and generalized it much further in a joint work [58]. Their result is as follows. Let

j0 = j(C/O), and put L := Q(j0). If p coprime to the index [OL : Z[j0]) (e.g. if p - disc(O)), then

they completely determined the factorization of eHO(x) in Fp[x]. Partial results are also obtained

without the co-primality condition. In particular, the results of Theorem 5.1.1 has been covered

in [58, Theorem 4.1]. On the other hand, the current project was initiated in May 2021 during an

online discussion between the authors. Unaware of the significant progress made by aforementioned

109

works, we worked independently and obtained Theorem 5.1.1 by a completely di↵erent method:

we count the Fp-roots by demonstrating a regular action using quaternion orders, whereas the

aforementioned works count by studying the factorization of p in L.

For the reader’s convenience, we reproduce the celebrated formula of Gauss on the order of

Pic(O)[2].

Theorem 5.1.3 ([29, Proposition 3.11]). Let r be the number of odd primes dividing disc(O).

Define the number µ as follows: if disc(O) ⌘ 1(mod 4), then µ = r, and if disc(O) ⌘ 0(mod 4),

then disc(O) = �4n, where n > 0, and µ is determined as follows:

µ =

8
>>>>>>>>>><

>>>>>>>>>>:

r if n ⌘ 3(mod 4);

r + 1 if n ⌘ 1, 2(mod 4);

r + 1 if n ⌘ 4(mod 8);

r + 2 if n ⌘ 0(mod 8).

Then |Pic(O)[2]| = 2µ�1.

This chapter is organized as follows. In section 5.2, we give a reinterpretation of Hp in

terms of quaternion orders. In section 5.3, we show that there is a regular action of Pic(O)[2]

on Hp whenever Hp 6= ;, and provide a nonemptiness criterion for Hp. Throughout the chapter,

the prime p 2 N is assumed to be non-split in K. The notation Bp,1 is reserved for the unique

quaternion Q-algebra ramified precisely at p and infinity. Given a set X and an equivalence relation

on X, the equivalence class of an element x 2 X is denoted by [x].

5.2 Reinterpretation of the Fp-roots

As mentioned before, we are going to reinterpret the Fp-roots of eHO(x) in terms of quater-

nion orders. For this purpose, we first describe more concretely the reduction of singular moduli

with complex multiplication by O. Assume that the prime p is non-split in K. For the moment,

we make no assumption on the discriminant of the order O ⇢ K.

110

Let E``(O) be the set of isomorphism classes of elliptic curves over Q with complex multipli-

cation by O. It is canonically identified with the singular j-invariants with complex multiplication

by O (i.e. the roots of HO(x) 2 Z[x]). The Picard group Pic(O) acts regularly on E``(O) via

a-transformation [80, §7] and [71, §1]:

Pic(O)⇥ E``(O)! E``(O), ([a], E) 7! Ea. (5.2.1)

More concretely, if we pick a to be an integral ideal of O and write E[a] for the finite group

scheme \a2aE[a], then Ea = E/E[a] by [98, Corollary A.4]. Here E[a] = ker(E
a�! E). See [71,

Proposition 1.26] and [98, Appendix] for the functorial characterization of Ea. Alternatively, since

a is an invertible O-ideal, Ea can also be identified canonically with the Serre tensor construction

a�1 ⌦O E (see [1, §1] and [20, §1.7.4]). Fix a member E0 2 E``(O). The regular action in (5.2.1)

gives rise to a Pic(O)-equivariant bijection ⇠ : E``(O) ! Pic(O) that sends E0 to the identity

element [O] 2 Pic(O).

Similarly, let E``ss
/Fp

be the set of isomorphism classes of supersingular elliptic curves over

Fp, which is canonically identified with the set of supersingular j-invariants in Fp2 . From [83,

Theorem V.3.1], an elliptic curve E/Fp is supersingular if and only if its endomorphism algebra

End0(E) := End(E) ⌦ Q is a quaternion Q-algebra. Assume that this is the case. Then End0(E)

coincides with the unique quaternion Q-algebra Bp,1 ramified precisely at p and infinity, and

End(E) is a maximal order in End0(E) by [98, Theorem 4.2]. For simplicity, put B := Bp,1 and

let Typ(B) be the type set of B, that is, the set of isomorphism (i.e. B⇥-conjugacy) classes of

maximal orders in B. We obtain the following canonical map, which is known to be surjective [95,

Corollary 42.2.21]:

⇢ : E``ss
/Fp

⇣ Typ(B), E 7! [End(E)]. (5.2.2)

Let R be a maximal order in B, and Cl(R) be its left ideal class set, that is, the set of isomorphism

(i.e. right B⇥-equivalent) classes of fractional left ideals of R in B. Given a fractional left ideal I

of R, we write Rr(I) for the right order of I, which is defined as follows:

Rr(I) := {x 2 B | Ix ✓ I}.

111

Sending a fractional left R-ideal to its right order induces a surjective map

⌥ : Cl(R) ⇣ Typ(B), [I] 7! [Rr(I)]. (5.2.3)

The Deuring correspondence [95, Corollary 42.3.7] establishes a bijection between Cl(R)

and E``ss
/Fp

. One direction of this correspondence goes as follows. From the surjectivity of ⇢, we

may always fix ER 2 E``ss
/Fp

such that End(ER) = R. Then the member of E``ss
/Fp

corresponding

to a left ideal class [I] 2 Cl(R) is the I-transform EI

R
of ER. If I is chosen to be an integral left

ideal of R, then EI

R
can be identified with the quotient ER/ER[I] by [98, Corollary A.4] again.

From [95, Corollary 42.3.7], we have

End(EI

R) ' Rr(I). (5.2.4)

Let P be a place of Q lying above p, and rP : E``(O)! E``ss
/Fp

be the reduction map modulo

P. For each E 2 E``(O), we write eE for the reduction of E modulo P. From [56, §9.2], reducing

E0 modulo P gives rise to an embedding ◆ : O ,! R0 := End(eE0). By an abuse of notation, we

still write ◆ for both of the following two induced maps:

K ,! B and Pic(O)
[a] 7![R0◆(a)]��������! Cl(R0). (5.2.5)

For simplicity, we identify K with its image in B via ◆ and write R0a for R0◆(a).

Now we are ready to give a concrete description of rP : E``(O)! E``ss
/Fp

.

Proposition 5.2.1. The reduction map rP fits into a commutative diagram as follows:

E``(O) E``ss
/Fp

Pic(O) Cl(R0) Typ(B).

'⇠

rP

'�

⇢

◆ ⌥

Here ⇠ is the Pic(O)-equivariant bijection that sends the fixed member E0 2 E``(O) to [O] 2 Pic(O),

and � is the Deuring correspondence obtained by taking ER0 = eE0.

112

Proof. According to [80, Proposition 15, §11], a-transforms are preserved under good reductions1.

This implies that for every [a] 2 Pic(O), we have

fEa
0 = (eE0)

a = (eE0)
R0a,

so the left square commutes. The right triangle commutes because of (5.2.4). ⇤

Corollary 5.2.1. For any [a] 2 Pic(O), we have End(fEa
0) ' a�1R0a.

Proof. This follows directly from Proposition 5.2.1 since the right order of R0a is precisely a�1R0a.

⇤

Remark 5.2.2. Let OK be the ring of integers of K, and f be the conductor of O so that O =

Z + fOK . Write f = pmf 0 with p - f 0, and put O0 := Z + f 0OK . According to [72, Lemma 3.1],

◆(K) \R0 = ◆(O0). For any invertible fractional ideal a of O, we have R0a = (R0O0)a = R0(O0a).

It follows that the map ◆ : Pic(O)! Cl(R0) factors through the following canonical homomorphism

$: Pic(O)! Pic(O0), [a] 7! [O0
a].

From this, one easily deduces that eHO(x) = (eHO0(x))| ker($)|.

Now assume that O is maximal at p (i.e. p - f). From Remark 5.2.2, ◆ : O ! R0 is an

optimal embedding of O into R0, that is, ◆(K) \ R0 = ◆(O). Given an arbitrary maximal order

R of B, we write Emb(O,R) for the set of optimal embeddings of O into R. The unit group R⇥

acts on Emb(O,R) by conjugation, and there are only finitely many orbits. Put m(O,R,R⇥) :=

|R⇥\Emb(O,R)|, the number of R⇥-conjugacy classes of optimal embeddings from O into R. We

recall below a precise formula by Elkies, Ono and Yang for the cardinality of each fiber of the

reduction map rP : E``(O)! E``ss
/Fp

.

Lemma 5.2.1 ([39, Lemma 3.3]). Suppose that O is maximal at p. Then for any member E 2

E``ss
/Fp

, we have

|r�1
P

(E)| = " ·m(O,R,R⇥),

1
A priori, the statement of [80, Proposition 15, §11] requires that O = OK , the maximal order of K. Nevertheless,

the result here holds for general O here since a is an invertible O-ideal by our assumption.

113

where R = End(E), and " = 1/2 or 1 according as p is inert or ramified in K.

A priori, [39, Lemma 3.3] is only stated for the maximal order OK . Nevertheless, the

same proof there applies more generally to quadratic orders maximal at p. Alternatively, using

Proposition 5.2.1 and the Deuring lifting theorem2 [56, Theorem 14, §13.5] [45, Proposition 2.7],

one easily sees that Lemma 5.2.1 is equivalent to to the following purely arithmetic result, whose

independent proof will be left for the interested reader.

Lemma 5.2.2. Keep O and " as in Lemma 5.2.1. Let R be a maximal order in B, and ' : O ,! R

be an optimal embedding. Denote the induced map Pic(O) ! Cl(R) by ' as well. Then for each

[I] 2 Cl(R), we have

|'�1([I])| = " ·m(O,Rr(I),Rr(I)
⇥).

We immediately obtain the following corollaries from Lemma 5.2.1.

Corollary 5.2.3. Suppose that O is maximal at p. The j-invariant of a supersingluar elliptic curve

E/Fp is a root of eHO(x) if and only if O can be optimally embedded into End(E).

This matches well with Corollary 5.2.1. Indeed, a classical result of Chevalley, Hasse and

Noether [47, §4] says that any maximal order of B that contains a copy of O optimally is isomorphic

to a�1R0a for some [a] 2 Pic(O).

Corollary 5.2.4. If p > | disc(O)|, then the reduction map rP : E``(O) ! E``ss
/Fp

is injective. In

particular, eHO(x) has no repeated roots.

We give a simple proof that is independent of the result of Gross and Zagier [45].

Proof. Since p does not split in K and is strictly greater than | disc(O)|, it is necessarily inert in

K. From Lemma 5.2.1, it su�ces to show that |Emb(O,R)| 2 for any maximal order R in

B. Since p > | disc(O)|, Kaneko’s inequality [50, Theorem 2’] forces any two optimal embeddings

','0 : O ! R to have the same image. On the other hand, ' and '0 share the same image if and

only if '0 = ' or '̄, the complex conjugate of '. The desired inequality |Emb(O,R)| 2 follows

immediately. ⇤
2
Here the Deuring lifting theorem guarantees that the optimal embedding ◆ : O ! R0 is “non-special”, that is,

every optimal embedding ' : O ! R is realizable as End(E) ! End(eE) for some E 2 E``(O).

114

Remark 5.2.5. In another direction, Elkies, Ono and Yang [39, Theorem 1.4] showed that there

exists a bound Np such that the reduction map rP : E``(OK) ! E``ss
/Fp

is surjective whenever

| disc(OK)| > Np. This bound is first e↵ectivized by Kane [49] conditionally upon the generalized

Riemann hypothesis. Liu et al. further improved this bound in [60, Corollary 1.3].

Let us return to the task of interpreting Fp-roots of eHO(x) 2 Fp[x] in terms of maximal

orders in B. For the rest of this section, we keep the additional assumption that p > | disc(O)|. We

recall from [36, Proposition 2.4] a classical result on supersingular elliptic curves in characteristic

p.

Lemma 5.2.3. Let p > 3 and let E be a supersingular elliptic curve over Fp. Then j(E) 2 Fp if

and only if there exists 2 End(E) such that 2 = �p.

Recall that Hp denotes the set of Fp-roots of eHO(x), which can be identified canonically

with a subset of E``ss
/Fp

.

Lemma 5.2.4. The map ⇢ : E``ss
/Fp

! Typ(B) in (5.2.2) induces a bijection between Hp and the

following subset Tp ✓ Typ(B):

Tp := {[R] 2 Typ(B) | Emb(O,R) 6= ;, and 9↵ 2 R such that ↵2 = �p}. (5.2.6)

Proof. Combining Corollary 5.2.3 and Lemma 5.2.3, we see that ⇢(Hp) = Tp. Now it follows

from [95, Lemma 42.4.1] that ⇢ : Hp ! Tp is injective, and hence bijective. ⇤

We give another characterization of Tp by presenting the quaternion algebra B = Bp,1

more concretely. Let d 2 N be the unique square-free positive integer such that K = Q(
p
�d). The

assumption that p is inert in K amounts to the equality
�
�d

p

�
= �1. Let

⇣
�d,�p

Q

⌘
be the quaternion

Q-algebra with standard basis {1, i, j,k} such that

i2 = �d, j2 = �p and k = ij = �ji. (5.2.7)

We identify K = Q(
p
�d) with Q(i), and O with the corresponding order in Q(i). Put ⇤ := O+jO,

which is an order (of full rank) in the above quaternion algebra. Consider the following finite set

115

of maximal orders:

Sopt :=

⇢
R ⇢

✓
�d,�p

Q

◆����R is a maximal order containing ⇤ and R \Q(i) = O
�
. (5.2.8)

Here the superscript “opt” stands for “O-optimal”.

Proposition 5.2.2. Let R be a maximal order in B. We have [R] 2 Tp if and only if R ' R for

some R 2 Sopt. In particular, Hp 6= ; if and only if
⇣
�d,�p

Q

⌘
' B and Sopt 6= ;.

Proof. Clearly, if R ' R for some R 2 Sopt, then [R] 2 Tp. Conversely, suppose that [R] 2 Tp,

that is, R contains a copy of O optimally, and there exists ↵ 2 R with ↵2 = �p. Then R↵ is the

unique two sided prime ideal of R lying above p. From [94, Exercise I.4.6], R is normalized by ↵,

which implies that O↵ := ↵O↵�1 is still a quadratic order optimally embedded in R. If O↵ 6= O,

then | disc(O)| � p by Kaneko’s inequality [50, Theorem 2’], contradicting to our assumption that

| disc(O)| < p. Thus O↵ = O, and conjugation by ↵ induces an automorphism � 2 Aut(O). If

� is the identity, then ↵ lies in the centralizer of O in B, which is just K. This contradicts to

the assumption | disc(O)| < p again. It follows that � is the unique nontrivial automorphism of

O, i.e. the complex conjugation. We conclude that ⇤R := O + ↵O ⇢ R is isomorphic to ⇤, and

B = ⇤R ⌦Z Q ' ⇤⌦Z Q =
⇣
�d,�p

Q

⌘
. Consequently, R is isomorphic to some member of Sopt. The

last statement follows from the bijection Hp ' Tp in Lemma 5.2.4. ⇤

Lemma 5.2.5. The isomorphism
⇣
�d,�p

Q

⌘
' B holds if and only if

�
�p

`

�
= 1 for every odd prime

factor ` of d.

Proof. For the moment, let ` be either a prime number or 1. Write (�d,�p)` for the Hilbert

symbol of �d and �p relative to Q` (where Q1 = R). From [94, Corollaire II.1.2],
⇣
�d,�p

Q

⌘
is split

at ` if and only if (�d,�p)` = 1. Clearly, (�d,�p)1 = �1.

Now assume that ` is an odd prime. By our assumption, p is an odd prime satisfying

116

�
�d

p

�
= �1. From [78, Theorem 1, §III.1], we easily compute that

(�d,�p)` =

8
>>>>>><

>>>>>>:

1 if ` - (dp);

�1 if ` = p;

�
�p

`

�
if `|d.

Therefore, if
⇣
�d,�p

Q

⌘
' B, then necessarily

�
�p

`

�
= 1 for every odd prime factor ` of d.

Conversely, if
�
�p

`

�
= 1 for every odd prime factor ` of d, then (�d,�p)2 = 1 by the

product formula [78, Theorem 2, §III.2]. Hence this condition is also su�cient for the isomorphism
⇣
�d,�p

Q

⌘
' B. ⇤

5.3 The Pic(O)[2]-action on Hp and the nonemptiness criterion

Throughout this section, we assume that p is inert in K = Q(
p
�d) and strictly greater

than | disc(O)|. Assume further that the quaternion Q-algebra
⇣
�d,�p

Q

⌘
is ramified precisely at p

and infinity, for otherwise Hp = ;. Denote
⇣
�d,�p

Q

⌘
simply by B henceforth and let {1, i, j,k} be

the standard basis of B as in (5.2.7). We identify K with the subfield Q(i) of B. Then conjugation

by j stabilizes K and sends each x 2 K to its complex conjugate x̄. Let ⇤ = O + jO, and Sopt be

the set of maximal orders in (5.2.8).

First, we assume that Hp 6= ; and exhibit a regular action of Pic(O)[2] on Hp. Since the

reduction map rP : E``(O) ! E``ss
/Fp

is injective by Corollary 5.2.4, the regular action of Pic(O)

on E``(O) induces a regular action of Pic(O) on the image rP(E``(O)) (or equivalently, on the full

set of roots of eHO(x)). We show that this action restricts to a regular Pic(O)[2]-action on Hp.

Proposition 5.3.1. Let E0 2 E``(O) be a member satisfying j(eE0) 2 Fp. Given [a] 2 Pic(O), we

have j(fEa
0) 2 Fp if and only if [a] is a 2-torsion. In particular, Pic(O)[2] acts regularly on Hp.

Proof. Put R0 := End(eE0) and R := a�1R0a so that End(fEa
0) ' R by Corollary 5.2.1. From

Lemma 5.2.3, it is enough to show that there exists ↵ 2 R with ↵2 = �p if and only if [a] 2

Pic(O)[2]. By Proposition 5.2.2, we may assume that R0 2 Sopt, that is, R0 is a maximal order in

117

B satisfying R0 ◆ O + jO and R0 \K = O. Then

R \K = a
�1(R0 \K)a = O, and R ◆ a

�1ja = a
�1

āj. (5.3.1)

First, suppose that [a] 2 Pic(O)[2]. Then a�1ā = Oa for some a 2 K⇥. Moreover,

NK/Q(Oa) = NK/Q(a
�1ā) = Z, so NK/Q(a) = 1. Therefore ↵ := aj 2 R satisfies that ↵2 = aāj2 =

�p.

Conversely, suppose that ↵ 2 R is an element satisfying ↵2 = �p. From the proof of

Proposition 5.2.2, we must have ↵x = x̄↵ for every x 2 O. Thus j�1↵ centralizes O, so there exists

a 2 K⇥ such that ↵ = ja. Moreover, NK/Q(a) = 1 since ↵2 = j2āa. Now we have

R � a
�1

āj · ↵ = a
�1

āj · ja = �paa�1
ā. (5.3.2)

We claim that R � aa�1ā. It su�ces to show that R` � aa�1
`

ā` for every prime ` 2 N, where

the subscript ` indicates `-adic completion at `. If ` 6= p, then (�p) 2 R⇥

`
, so the containment

follows directly from (5.3.2). If ` = p, then Rp coincides with the unique maximal order of the

division quaternion Qp-algebra Bp. More concretely, Rp = {z 2 Bp | nrd(z) 2 Zp}, where nrd(z)

denotes the reduced norm of z 2 Bp. On the other hand, for any xp 2 a�1
p and yp 2 ap, we

have xpyp 2 Op, and hence nrd(axpȳp) = nrd(xp) nrd(ȳp) = nrd(xpyp) 2 Zp. Since a�1
p āp is

generated by elements of the form xpȳp, it follows that Rp � aa�1
p āp. The claim is verified. Now

aa�1ā ✓ R \K = O, which implies that aā ✓ a. Comparing discriminants on both sides, we get

disc(aā) = NK/Q(a)
2 disc(ā) = disc(a). Therefore, aā = a, so [a] 2 Pic(O)[2]. ⇤

Now we drop the assumption thatHp 6= ; and derive a non-emptiness criterion forHp. From

Proposition 5.2.2,Hp 6= ; if and only if Sopt 6= ; (as we have already assumed that
⇣
�d,�p

Q

⌘
' Bp,1).

For each prime ` 2 N, let us put

Sopt
`

:= {R` ✓ B` | R` is a maximal order containing ⇤` and R` \K` = O`}.

The local-global correspondence of lattices [31, Proposition 4.21] establishes a bijection between

Sopt and
Q
`
Sopt
`

, where the product runs over all prime `. Since the reduced discriminant of B

118

is p and the reduced discriminant of ⇤ is p disc(O) by [59, Lemmas 2.7 and 2.9], ⇤ is maximal at

every prime ` coprime to disc(O). Moreover, for each such `, the maximal order ⇤` automatically

satisfies the condition ⇤` \K` = O` by its definition ⇤` = O` + jO`. Hence for ` - disc(O), the set

Sopt
`

has a single element ⇤`, and the bijection above simplifies as

Sopt !
Y

`| disc(O)

Sopt
`

. (5.3.3)

Lemma 5.3.1. Let ` be a prime factor of disc(O). Then Sopt
`
6= ; if and only if �p 2 NK/Q(O⇥

`
).

Moreover, if Sopt
`
6= ;, then there is a regular action of H1(K/Q,O⇥

`
) on Sopt

`
, so any fixed member

of Sopt
`

gives rise to a bijection Sopt
`
' H1(K/Q,O⇥

`
).

The Galois cohomological description of Sopt
`

is nice to know but not used elsewhere in this

chapter.

Proof. By our assumption, disc(O) is coprime to p, so B splits at the prime `. This allows us to

identify B` with the matrix algebra M2(Q`). Let V` = Q2
`
be the unique simple B`-module. Every

maximal order R` in B` is of the form EndZ`
(L`) for some Z`-lattice L` ✓ V`, and L` is uniquely

determined by R` up to Q⇥

`
-homothety. In other words, EndZ`

(L`) = EndZ`
(L0

`
) if and only if

L` = cL0

`
for some c 2 Q⇥

`
. If R` 2 Sopt

`
, then the inclusion ⇤` ✓ R` puts a ⇤`-module structure on

L`. Moreover, the ⇤`-lattice L` is O`-optimal in the sense that EndZ`
(L`) \K` = O`. Conversely,

if M` is an O`-optimal ⇤`-lattice in V`, then EndZ`
(M`) is a member of Sopt

`
. We have established

the following canonical bijection

Sopt
`
 !M := {O`-optimal ⇤`-lattices L` ⇢ V`}/Q⇥

`
. (5.3.4)

Recall that ⇤` = O` + jO`, where j2 = �p and jx = x̄j for any x 2 O`. If there exists

a 2 O⇥

`
satisfying aā = �p, then we can put a ⇤`-module structure on O` as follows:

(x+ jy) · z = xz + ȳz̄a, 8x, y, z 2 O`.

Since B` = ⇤` ⌦Z`
Q`, this also puts a B`-module structure on K` = O` ⌦Z`

Q`. Consequently, it

119

identifies K` with the unique simple B`-module V`, and in turn identifies O` with a ⇤`-lattice L` in

V`. Necessarily, L` is O`-optimal since EndZ`
(L`) \K` = EndO`

(L`) = EndO`
(O`) = O`. We have

shown that if �p 2 NK/Q(O⇥

`
), then Sopt

`
6= ;.

Conversely, suppose that Sopt
`
6= ; and let M` be an O`-optimal ⇤`-lattice in V`. The

inclusion O` ⇢ ⇤` equips M` with an O`-module structure satisfying EndO`
(M`) = O`. Being a

quadratic Z`-order, O` is both Gorenstein and semi-local. It follows from [92, Characterization B

4.2] that M` is a free O`-module of rank one. Pick a basis e so that M` = O`e. Since M` is at the

same time a module over ⇤`, we have je = ae for some a 2 O`. Necessarily, āa = �p because

�pe = j2e = j(je) = j(ae) = āje = āae.

This also implies that a 2 O⇥

`
since ` 6= p. Therefore, Sopt

`
6= ; if and only if �p 2 NK/Q(O⇥

`
).

Had we picked a di↵erent basis e0 for M`, then e0 = ue for some u 2 O⇥

`
. It follows that

je0 = j(ue) = ūje = ūae = u�1ūae0.

Correspondingly, a is changed to u�1ūa. Therefore, we have defined the following map:

� : M! {a 2 O⇥

`
| aā = �p}/⇠, (5.3.5)

where a ⇠ a0 if and only if there exists some u 2 O⇥

`
such that a0 = a(ū/u). We have already seen

that � is surjective. Suppose that �([M1]) = �([M2]) for [Mr] 2M with r = 1, 2. By the above

discussion, we can choose suitable O`-base er for Mr such that they give rise to the same a 2 O⇥

`
.

Then the O`-linear map sending e1 to e2 defines a ⇤`-isomorphism between M1 and M2. Since

AutB`
(V`) = Q⇥

`
, it follows that M1 and M2 are Q⇥

`
-homothetic, so � is injective as well.

Lastly, if the right hand side of (5.3.5) is nonempty, then it admits a regular action by

H1(K/Q,O⇥

`
) = {b 2 O⇥

`
| b̄b = 1}/⇠ via multiplication. The second part of the lemma follows by

combining the bijections (5.3.4) and (5.3.5) with the above action. ⇤

Lemma 5.3.2. Let ` be a prime factor of disc(O). Then �p 2 NK/Q(O⇥

`
) if and only if either

condition (i) or (ii) below holds for ` depending on its parity:

120

(i) ` 6= 2 and
�
�p

`

�
= 1;

(ii) ` = 2 and one of the following conditions holds:

(a) p ⌘ 7(mod 8);

(b) �p+ disc(O)
4 ⌘ 0, 1 or 4(mod 8);

(c) �p+ disc(O) ⌘ 1(mod 8).

Proof. For simplicity, put D := disc(O) and � = 1
2

p
D. We claim that O` = Z` + Z`�. It is well

known that O = Z + Z(D +
p
D)/2. The claim is obviously true if 4|D. If 4 - D, then ` 6= 2,

so the claim is true in this case as well. Given an element a + b� 2 O` with a, b 2 Z`, we have

NK/Q(a+ b�) = a2 � b2D/4. Therefore, �p 2 NK/Q(O⇥

`
) if and only if the equation

x2 � y2
D

4
= �p (5.3.6)

has a solution in Z2
`
.

First, suppose that ` is odd. Then equation (5.3.6) is solvable in Z2
`
if and only if

�
�p

`

�
= 1.

Indeed, suppose
�
�p

`

�
= 1 so that �p is a square in F`. By Hensel’s lemma [95, Lemma 12.2.17], the

equation x2 = �p has a solution x0 2 Z`. Hence (x0, 0) is a solution of (5.3.6) in Z2
`
. Conversely,

suppose (5.3.6) has a solution (x0, y0) 2 Z2
`
. Reducing (5.3.6) modulo ` shows that x0 (mod `) is a

square root of �p in F`, i.e.
�
�p

`

�
= 1.

For the rest of the proof we assume that ` = 2, which implies that 4|D. First, suppose that

(x, y) 2 Z2
2 is a solution of (5.3.6). Since x2, y2 ⌘ 0, 1 or 4(mod 8) and at least one of x, y lies in

Z⇥

2 because p is odd, we see that the pair (x2, y2) takes on five possibilities modulo 8:

(x2, y2) ⌘ (0, 1), (1, 0), (1, 1), (1, 4) and (4, 1) (mod 8).

Each possibility puts the following respective constraint on p and D:

�p+ D

4
⌘ 0 (mod 8), �p ⌘ 1 (mod 8), �p+ D

4
⌘ 1 (mod 8),

�p+D ⌘ 1 (mod 8), �p+ D

4
⌘ 4 (mod 8).

121

We have proved the necessity part of the lemma for the case ` = 2.

Conversely, let us show that the above congruence conditions are also su�cient. From the

discussion above, each of these conditions guarantees the existence of a solution (x̃, ỹ) of equation

(5.3.6) in (Z/8Z)2 such that either x̃ or ỹD/4 lies in (Z/8Z)⇥. Now from a multivariate version of

Hensel’s lemma [95, Lemma 12.2.8], the pair (x̃, ỹ) lifts to a solution of (5.3.6) in Z2
2. The su�ciency

is proved.

Therefore, �p 2 NK/Q(O⇥

2) if and only if one of the following conditions holds:

(a) p ⌘ 7(mod 8);

(b) �p+ disc(O)
4 ⌘ 0, 1 or 4(mod 8);

(c) �p+ disc(O) ⌘ 1(mod 8).

⇤

Proof of Theorem 5.1.1. If Hp 6= ;, then there is a regular action of Pic(O)[2] on Hp by Proposi-

tion 5.3.1. The criterion for the nonemptiness of Hp follows from combining Proposition 5.2.2 with

equation (5.3.3) and Lemmas 5.2.5, 5.3.1 and 5.3.2. ⇤

Chapters 5 is, in full, being prepared for submission for publication. The dissertation author

was the collaborator and the coauthor for the material below.

• Mingjie Chen, Jiangwei Xue “On Fp-roots of the Hilbert class polynomial modulo p”.

122

Bibliography

[1] Z. Amir-Khosravi. Serre’s tensor construction and moduli of abelian schemes. Manuscripta
Math., 156(3-4):409–456, 2018.

[2] T. M. Apostol. Introduction to analytic number theory. Undergraduate Texts in Mathematics.
Springer-Verlag, New York-Heidelberg, 1976.

[3] S. Arpin. PhD thesis, University of Colorado Boulder. In preparation for May 2022.

[4] S. Arpin, M. Chen, K. E. Lauter, R. Scheidler, K. E. Stange, and H. T. N. Tran. Orientations
and cycles in supersingular isogeny graphs, 2022. In preparation.

[5] S. Arpin, M. Chen, K. E. Lauter, R. Scheidler, K. E. Stange, and H. T. N. Tran. Win5 github
repository, 2022. https://github.com/SarahArpin/WIN5.

[6] E. Assaf. Computing classical modular forms for arbitrary congruence subgroups. arXiv:
Number Theory, 2020.

[7] J. Balakrishnan and N. Dogra. Quadratic chabauty and rational points ii: Generalised height
functions on selmer varieties. International Mathematics Research Notices, 04 2017.

[8] J. Balakrishnan, N. Dogra, J. S. Müller, J. Tuitman, and J. Vonk. Explicit Chabauty-Kim
for the split Cartan modular curve of level 13. Ann. of Math. (2), 189(3):885–944, 2019.

[9] J. Balakrishnan and J. Tuitman. Magma code. https://github.com/jtuitman/Coleman,
2022.

[10] J. S. Balakrishnan, R. W. Bradshaw, and K. S. Kedlaya. Explicit coleman integration for
hyperelliptic curves. In G. Hanrot, F. Morain, and E. Thomé, editors, Algorithmic Number
Theory, pages 16–31, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[11] J. S. Balakrishnan and N. Dogra. Quadratic Chabauty and rational points, I: p-adic heights.
Duke Math. J., 167(11):1981–2038, 2018. With an appendix by J. Ste↵en Müller.

[12] J. S. Balakrishnan and N. Dogra. An e↵ective Chabauty-Kim theorem. Compos. Math.,
155(6):1057–1075, 2019.

[13] J. S. Balakrishnan and J. Tuitman. Explicit coleman integration for curves. Math. Comput.,
89:2965–2984, 2020.

123

https://github.com/SarahArpin/WIN5
https://github.com/jtuitman/Coleman

[14] E. Bank, C. Camacho-Navarro, K. Eisenträger, T. Morrison, and J. Park. Cycles in the
supersingular l-isogeny graph and corresponding endomorphisms. In Research Directions in
Number Theory, pages 41–66. Springer, 2019.

[15] Y. Bilu and P. Parent. Serre’s uniformity problem in the split Cartan case. Ann. of Math.
(2), 173(1):569–584, 2011.

[16] Y. Bilu, P. Parent, and M. Rebolledo. Rational points on X+
0 (pr). Ann. Inst. Fourier

(Grenoble), 63(3):957–984, 2013.

[17] R. Bröker, D. Charles, and K. Lauter. Evaluating large degree isogenies and applications to
pairing based cryptography. In Pairing-based cryptography—Pairing 2008, volume 5209 of
Lecture Notes in Comput. Sci., pages 100–112. Springer, Berlin, 2008.

[18] W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes. CSIDH: an e�cient post-
quantum commutative group action. In Advances in cryptology—ASIACRYPT 2018. Part
III, volume 11274 of Lecture Notes in Comput. Sci., pages 395–427. Springer, Cham, 2018.

[19] W. Castryck, L. Panny, and F. Vercauteren. Rational Isogenies from Irrational Endomor-
phisms, pages 523–548. 05 2020.

[20] C.-L. Chai, B. Conrad, and F. Oort. Complex multiplication and lifting problems, volume 195
of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI,
2014.

[21] D. X. Charles, K. E. Lauter, and E. Z. Goren. Cryptographic hash functions from expander
graphs. J. Cryptology, 22(1):93–113, 2009.

[22] M. Chenu and B. Smith. Higher-degree supersingular group actions. Mathematical Cryptology,
2021.

[23] H. Cohen. A Course in Computational Algebraic Number Theory, volume 138 of Graduate
Texts in Mathematics. Springer-Verlag Berlin Heidelberg, 1993.

[24] R. Coleman and E. de Shalit. p-adic regulators on curves and special values of p-adic L-
functions. Invent. Math., 93(2):239–266, 1988.

[25] R. F. Coleman. E↵ective Chabauty. Duke Mathematical Journal, 52(3):765 – 770, 1985.

[26] R. F. Coleman. Torsion points on curves and p-adic abelian integrals. Ann. of Math. (2),
121(1):111–168, 1985.

[27] L. Colò and D. Kohel. Orienting supersingular isogeny graphs. J. Math. Cryptol., 14(1):414–
437, 2020.

[28] J.-S. Coron and D. Naccache. Security analysis of the gennaro-halevi-rabin signature scheme.
In EUROCRYPT, 2000.

[29] D. A. Cox. Primes of the form x2 + ny2. Pure and Applied Mathematics (Hoboken). John
Wiley & Sons, Inc., Hoboken, NJ, second edition, 2013. Fermat, class field theory, and
complex multiplication.

[30] E. Croot, A. Granville, R. Pemantle, and P. Tetali. On sharp transitions in making squares.
Annals of Mathematics, 175(3):1507–1550, 2012.

124

[31] C. W. Curtis and I. Reiner. Methods of representation theory. Vol. I. Wiley Classics Library.
John Wiley & Sons, Inc., New York, 1990. With applications to finite groups and orders,
Reprint of the 1981 original, A Wiley-Interscience Publication.

[32] L. De Feo. Mathematics of isogeny based cryptography. 2017. https://arxiv.org/abs/

1711.04062.

[33] L. De Feo, C. Delpech de Saint Guilhem, T. B. Fouotsa, P. Kutas, A. Leroux, C. Petit,
J. Silva, and B. Wesolowski. Séta: Supersingular Encryption from Torsion Attacks, pages
249–278. Advances in Cryptology – ASIACRYPT 2021. Springer International Publishing,
Cham, 2021.

[34] L. De Feo, J. Kie↵er, and B. Smith. Towards practical key exchange from ordinary isogeny
graphs. In Advances in cryptology—ASIACRYPT 2018. Part III, volume 11274 of Lecture
Notes in Comput. Sci., pages 365–394. Springer, Cham, 2018.

[35] V. de Quehen, P. Kutas, C. Leonardi, C. Martindale, L. Panny, C. Petit, and K. E. Stange.
Improved Torsion-Point Attacks on SIDH Variants, pages 432–470. Advances in Cryptology
– CRYPTO 2021. Springer International Publishing, Cham, 2021.

[36] C. Delfs and S. D. Galbraith. Computing isogenies between supersingular elliptic curves over
Fp. Designs, Codes and Cryptography, 78(425-440), 2016.

[37] F. Diamond and J. Shurman. A first course in modular forms, volume 228 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 2005.

[38] K. Eisenträger, S. Hallgren, K. Lauter, T. Morrison, and C. Petit. Supersingular isogeny
graphs and endomorphism rings: reductions and solutions. In Advances in cryptology—
EUROCRYPT 2018. Part III, volume 10822 of Lecture Notes in Comput. Sci., pages 329–368.
Springer, Cham, 2018.

[39] N. Elkies, K. Ono, and T. Yang. Reduction of CM elliptic curves and modular function
congruences. Int. Math. Res. Not., (44):2695–2707, 2005.

[40] N. D. Elkies. The existence of infinitely many supersingular primes for every elliptic curve
over Q. Invent. Math., 89(3):561–567, 1987.

[41] F. Fité and A. V. Sutherland. Sato-Tate groups of y2 = x8+c and y2 = x7�cx. In Frobenius
distributions: Lang-Trotter and Sato-Tate conjectures, volume 663 of Contemp. Math., pages
103–126. Amer. Math. Soc., Providence, RI, 2016.

[42] S. D. Galbraith. Equations for modular curves. DPhil thesis, University of Oxford, 1996.

[43] S. D. Galbraith. Rational points on X+
0 (p). Experiment. Math., 8(4):311–318, 1 1999.

[44] S. D. Galbraith, C. Petit, and J. Silva. Identification protocols and signature schemes based
on supersingular isogeny problems. J. Cryptology, 33(1):130–175, 2020.

[45] B. H. Gross and D. B. Zagier. On singular moduli. J. Reine Angew. Math., 355:191–220,
1985.

[46] D. Harvey and J. van Der Hoeven. Polynomial multiplication over finite fields in time
O(n log n). 2019. https://hal.archives-ouvertes.fr/hal-02070816/document.

125

https://arxiv.org/abs/1711.04062
https://arxiv.org/abs/1711.04062
https://hal.archives-ouvertes.fr/hal-02070816/document

[47] T. Ibukiyama. On maximal orders of division quaternion algebras over the rational number
field with certain optimal embeddings. Nagoya Math. J., 88:181–195, 1982.

[48] S. Ionica and A. Joux. Pairing the volcano. In Algorithmic number theory, volume 6197 of
Lecture Notes in Comput. Sci., pages 201–208. Springer, Berlin, 2010.

[49] B. Kane. CM liftings of supersingular elliptic curves. J. Théor. Nombres Bordeaux, 21(3):635–
663, 2009.

[50] M. Kaneko. Supersingular j-invariants as singular moduli mod p. Osaka J. Math., 26(4):849–
855, 1989.

[51] K. S. Kedlaya. Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology.
J. Ramanujan Math. Soc., 16(4):323–338, 2001.

[52] J. Kie↵er. Accelerating the couveignes rostovtsev stolbunov key exchange protocol. Master’s
thesis, l’Université Paris IV, 2018. https://arxiv.org/pdf/1804.10128.pdf.

[53] D. E. Knuth. The art of computer programming. Vol. 2. Addison-Wesley Series in Computer
Science and Information Processing. Addison-Wesley Publishing Co., Reading, Mass., second
edition, 1981. Seminumerical algorithms.

[54] D. Kohel, K. Lauter, C. Petit, and J.-P. Tignol. On the quaternion `-isogeny path problem.
LMS Journal of Computation and Mathematics, 2014.

[55] D. R. Kohel. Endomorphism rings of elliptic curves over finite fields. PhD thesis, University
of California at Berkeley, 1996.

[56] S. Lang. Elliptic functions, volume 112 of Graduate Texts in Mathematics. Springer-Verlag,
New York, second edition, 1987. With an appendix by J. Tate.

[57] H. W. Lenstra, Jr. Complex multiplication structure of elliptic curves. J. Number Theory,
56(2):227–241, 1996.

[58] J. Li, S. Li, and Y. Ouyang. Factorization of hilbert class polynomials over prime fields, 2021.
https://arxiv.org/abs/2108.00168.

[59] Q. Li, J. Xue, and C.-F. Yu. Unit groups of maximal orders in totally definite quaternion
algebras over real quadratic fields. Trans. Amer. Math. Soc., 374(8):5349–5403, 2021.

[60] S.-C. Liu, R. Masri, and M. P. Young. Rankin-Selberg L-functions and the reduction of CM
elliptic curves. Res. Math. Sci., 2:Art. 22, 23, 2015.

[61] T. LMFDB Collaboration. The L-functions and modular forms database. http://www.

lmfdb.org, 2022.

[62] J. Love and D. Boneh. Supersingular curves with small non-integer endomorphisms, 2020.
https://arxiv.org/abs/1910.03180.

[63] J. Love and D. Boneh. Supersingular curves with small noninteger endomorphisms. In ANTS
XIV—Proceedings of the Fourteenth Algorithmic Number Theory Symposium, volume 4 of
Open Book Ser., pages 7–22. Math. Sci. Publ., Berkeley, CA, 2020.

126

https://arxiv.org/pdf/1804.10128.pdf
https://arxiv.org/abs/2108.00168
http://www.lmfdb.org
http://www.lmfdb.org
https://arxiv.org/abs/1910.03180

[64] B. Mazur. Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math.,
(47):33–186 (1978), 1977. With an appendix by Mazur and M. Rapoport.

[65] B. Mazur. Rational points on modular curves. In J.-P. Serre and D. B. Zagier, editors,
Modular Functions of one Variable V, pages 107–148, Berlin, Heidelberg, 1977. Springer
Berlin Heidelberg.

[66] B. Mazur. Rational isogenies of prime degree (with an appendix by D. Goldfeld). Invent.
Math., 44(2):129–162, 1978.

[67] B. Mazur and P. Swinnerton-Dyer. Arithmetic of weil curves. Invent Math, 25:1–61, 1974.

[68] K. McMurdy. https://phobos.ramapo.edu/~kmcmurdy/research/SAGE_ssEndos/. Ac-
cessed Jan 10, 2022.

[69] K. McMurdy. Explicit representation of the endomorphism rings of supersingular elliptic
curves. https://phobos.ramapo.edu/~kmcmurdy/research/McMurdy-ssEndoRings.pdf,
2014.

[70] P. Mercuri. Equations and rational points of the modular curves X+
0 (p). The Ramanujan

Journal, 47:291–308, 2016.

[71] J. S. Milne. The fundamental theorem of complex multiplication, 2007. https://arxiv.

org/abs/0705.3446.

[72] H. Onuki. On oriented supersingular elliptic curves. Finite Fields Appl., 69:101777, 18, 2021.

[73] A. K. Pizer. Ramanujan graphs and Hecke operators. Bull. Amer. Math. Soc. (N.S.),
23(1):127–137, 1990.

[74] G. Robin. Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann. J.
Math. Pures Appl. (9), 63(2):187–213, 1984.

[75] N. T. Sardari. Diameter of Ramanujan graphs and random Cayley graphs. Combinatorica,
39(2):427–446, 2019.

[76] R. Schoof. Four primality testing algorithms. In Algorithmic number theory: lattices, number
fields, curves and cryptography, volume 44 of Math. Sci. Res. Inst. Publ., pages 101–126.
Cambridge Univ. Press, Cambridge, 2008.

[77] J.-P. Serre. Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Inv. Math.,
15:259–3319, 1972.

[78] J.-P. Serre. A course in arithmetic. Graduate Texts in Mathematics, No. 7. Springer-Verlag,
New York-Heidelberg, 1973. Translated from the French.

[79] G. Shimura. Introduction to the arithmetic theory of automorphic functions, volume 11 of
Publications of the Mathematical Society of Japan. Princeton University Press, Princeton,
NJ, 1994. Reprint of the 1971 original, Kanô Memorial Lectures, 1.

[80] G. Shimura. Abelian varieties with complex multiplication and modular functions, volume 46
of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1998.

127

https://phobos.ramapo.edu/~kmcmurdy/research/SAGE_ssEndos/
https://phobos.ramapo.edu/~kmcmurdy/research/McMurdy-ssEndoRings.pdf
https://arxiv.org/abs/0705.3446
https://arxiv.org/abs/0705.3446

[81] D. Shumow. Isogenies of elliptic curves: a computational approach. Master’s thesis, University
of Washington, 2009. https://arxiv.org/abs/0910.5370.

[82] S. Siksek. Quadratic chabauty for modular curves. Preprint, 1704.00473, 04 2017.

[83] J. H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathe-
matics. Springer, Dordrecht, second edition, 2009.

[84] K. E. Stange. Frobenius and the endomorphism ring of j = 1728, 2021. http://math.

colorado.edu/~kstange/papers/1728.pdf.

[85] H. M. Stark. On complex quadratic fields with class-number two. Mathematics of Computa-
tion, 29(129):289–302, 1975.

[86] W. Stein. Modular forms, a computational approach, volume 79 of Graduate Studies in
Mathematics. American Mathematical Society, Providence, RI, 2007. With an appendix by
Paul E. Gunnells.

[87] J. Tate. Endomorphisms of abelian varieties over finite fields. Invent. Math., 2:134–144, 1966.

[88] G. Tenenbaum. On ultrafriable integers. Q. J. Math., 66(1):333–351, 2015.

[89] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.4), 2022.
https://www.sagemath.org.

[90] J. Tuitman. Counting points on curves using a map to P1, I. Math. Comput., 85:961–981,
2016.

[91] J. Tuitman. Counting points on curves using a map to P1, II, volume = 45, journal = Finite
Fields and Their Applications, doi = 10.1016/j.↵a.2016.12.008. pages 301–322, 05 2017.

[92] C. U.Jensen and A. Thorup. Gorenstein orders. Journal of Pure and Applied Algebra,
219(3):551–562, 2015.

[93] J. Vélu. Isogénies entre courbes elliptiques. C. R. Acad. Sci. Paris Sér. A-B, 273:A238–A241,
1971.

[94] M.-F. Vignéras. Arithmétique des algèbres de quaternions, volume 800 of Lecture Notes in
Mathematics. Springer, Berlin, 1980.

[95] J. Voight. Quaternion algebras, volume 288 of Graduate Texts in Mathematics. Springer,
Cham, [2021] ©2021.

[96] J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University Press,
Cambridge, third edition, 2013.

[97] J. von zur Gathen and V. Shoup. Computing Frobenius maps and factoring polynomials.
Comput. Complexity, 2(3):187–224, 1992.

[98] W. C. Waterhouse. Abelian varieties over finite fields. Ann. Sci. École Norm. Sup. (4),
2:521–560, 1969.

[99] B. Wesolowski. Orientations and the supersingular endomorphism ring problem. Cryptology
ePrint Archive, Report 2021/1583, 2021. https://iacr.org/2021/1583.

128

https://arxiv.org/abs/0910.5370
http://math.colorado.edu/~kstange/papers/1728.pdf
http://math.colorado.edu/~kstange/papers/1728.pdf
https://iacr.org/2021/1583

[100] B. Wesolowski. The supersingular isogeny path and endomorphism ring problems are equiv-
alent. FOCS 2021-62nd Annual IEEE Symposium on Foundations of Computer Science,
2022.

[101] H. C. Williams and H. te Riele. New computations concerning the Cohen-Lenstra Heuristics.
Experimental Mathematics, 12(1):99 – 113, 2003.

[102] G. Xiao, L. Luo, and Y. Deng. Supersingular j-invariants and the class number of Q(�p).
International Journal of Number Theory. https://doi.org/10.1142/S1793042122500555.

[103] T. Yang. Minimal cm liftings of supersingular elliptic curves. Pure and applied mathematics
quarterly, 4(4):1317–1326, 2008.

[104] D. Zywina. Computing actions on cusp forms. arXiv: Number Theory, 2020.

129

https://doi.org/10.1142/S1793042122500555

	Dissertation Approval Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	I Coleman integration on modular curves
	Preliminaries
	Modular curves
	Modular forms
	Hecke operators
	Coleman integration

	Coleman integration on modular curves
	Introduction
	Main strategy
	X0(N)
	Example – X0(37)

	X0+(N)
	Preliminaries
	Expected rational points
	Basis of H0(X,1)
	Hecke operator action
	Uniformizer
	Example – X0+(67)

	Xns+(N)
	Preliminaries
	Expected rational points
	Basis of H0(X,1)
	Hecke operator action
	Example – Xns+(13)

	Remarks on computation

	II Supersingular elliptic curves and isogeny graphs
	Preliminaries
	Elliptic curves with complex multiplication
	Elliptic curves over finite fields
	Ordinary and supersingular elliptic curves
	Isogeny class
	Kernel ideals and quotients
	Reduction of CM elliptic curves

	Isogeny graph
	Ordinary case
	Supersingular case

	Orienteering with one endomorphism
	Introduction
	Main theorem
	Other algorithms presented
	Comparison with WesolowskiOrientations
	Other contributions
	Outline

	Background
	Notations and conventions
	Runtime lemmata

	Oriented isogeny graphs
	Orientations
	Oriented isogeny graphs
	Frobenius and class group actions
	Volcano structure
	From oriented isogeny graph to isogeny graph
	Graph statistics and heuristics

	Navigating the K-oriented -isogeny graph
	Conjugate orientations and orientations from endomorphisms
	-primitivity, -suitability, and direction finding

	Representing orientations and endomorphisms
	Representations and functionality
	Functionality for rationally represented endomorphisms
	Functionality for isogeny chain endomorphisms
	Poly-rep runtime

	Orientation-finding for j=1728
	In terms of 1, i, j, k
	As an isogeny chain endomorphism
	Curves other than j=1728
	Heuristics

	Supporting algorithms for walking on oriented curves
	Computing an -primitive endomorphism
	Rim walking via the class group action
	Ascending to the rim using an orientation
	Ascending and walking the rim using the endomorphism ring

	Classical path-finding to j=1728
	Proof of the Main Theorem and Special Cases
	Proof of Theorem 4.1.1
	Special cases

	Division by []

	On Fp-roots of the Hilbert class polynomial modulo p
	Introduction
	Reinterpretation of the Fp-roots
	The `3́9`42`"̇613A``45`47`"603APic(O)[2]-action on Hp and the nonemptiness criterion

	Bibliography

