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Ewald Acceleration for the Dyadic Green’s Functions for a Linear Array of Dipoles 
and a Dipole in a Parallel-Plate Waveguide 

 
 

S. Steshenko(1), F. Capolino(1), D. R. Wilton(2), and D. R. Jackson(2) 

(1) Department of Information Engineering, University of Siena, 53100 Siena, Italy 
(2) Department of ECE, University of Houston, Houston, TX 77204-4005, USA 

 
 

Introduction 
 

We consider the Green function (GF) representation for the field at ˆ ˆzρ= +r ρ z  radiated 
by a linear array of point sources at ˆn nd′ ′= +r r z , 0, 1, 2,...n = ± ± , where ˆz′ ′=r z denotes 
the source in the reference array cell. The array is linearly phased along the z direction 
with wavenumber kz0, as shown in Fig.1. Due to the symmetry of the problem we use 
cylindrical coordinates ( , )z≡r ρ , where ˆ ˆx y= +ρ x y . Here the hat ∧ denotes unit 
vectors and we use the ( )exp j tω  time convention. 
The radiated field can be represented as a purely spatial sum of spherical waves or as a 
purely spectral sum of cylindrical waves. Both these representations are slowly 
convergent. Furthermore, the purely spatial sum cannot be applied for complex 
wavenumbers kz0 while the purely spectral sum can not be applied when the observation 
point is on the array axis (i.e., ρ = 0). The rapidly convergent representation of the scalar 
field devoid of these disadvantages was obtained in [1,2] using the Ewald method. 

 
We provide here the dyadic Green’s 
functions (GFs) for a linear array of 
dipoles in free space and for a dipole in a 
parallel-plate waveguide. Both GFs are 
expressed in a very convenient hybrid 
series representation involving both spatial 
and spectral terms, obtained by applying 
the Ewald method. Only a few terms are 
sufficient to obtained very high accuracy. 
This paper thus extends the work in [1,2]. 
 

 
Dyadic Green’s function for the linear array of dipoles 

 
The differential electric field produced by a linear array of arbitrary current sources can 
be represented as 
 
 ( ) ( ),E r G r r Jd dv′= ⋅ , (1) 
 
where J is the current density in a volume dv at r′  within the reference unit cell, G  is 
the dyadic GF for the linear array of dipoles represented in terms of the scalar periodic 
Green’s function  ( ) ( ) ( )0, exp / 4r r r - r r rn z nnG jk jk nd π∞

=−∞
′ ′ ′ = − − − ∑  (see [1,2]) 

as 

 ( ) ( ) ( ) ( )21, , ,k G G
jωε

 ′ ′ ′= + ∇∇ G r r r r I r r , (2) 
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Fig.1. The linear array of dipoles 
with period d 
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ε  is the permittivity of the host medium, ( ) ( ),G ′∇∇ r r  is the Hessian matrix of G  (the 
matrix of the second derivatives of G with respect to r ). 
Using the Ewald method the dyadic GF can be represented as the sum of the dyadic 
spectral and spatial series 
 ( ) ( ) ( )spectral spatial, , ,′ ′ ′= +G r r G r r G r r , (3) 
where  

 ( ) ( ) ( ) ( )2
spectral spectral spectral

1, , ,k G G
jωε

 ′ ′ ′= + ∇∇ G r r r r I r r , (4) 

 

 ( ) ( ) ( ) ( )2
spatial spatial spatial

1, , ,k G G
jωε

 ′ ′ ′= + ∇∇ G r r r r I r r . (5) 

 
and the scalar Ewald terms Gspectral(r,r′) and Gspatial(r,r′) have been derived in [1,2]. 
Differentiating in cylindrical coordinates leads to  
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 (6) 

 
with 
 

 0 2 /zq zk k q dπ= + ,              2 2
q zqk k kρ = − . (7) 

 
The sign of the root in (7) must be chosen such that Im kρq ≤ 0, assuming that we want 
proper (exponentially decaying) solutions. E is the Ewald splitting parameter, and Ep(x) 
is the pth order exponential integral. Differentiation of the spatial term leads to 
 

 ( ) ( ) 0
spatial ,

1,
8

zjk nd
spatial n

n
G e

∞
−

=−∞
′∇∇ =

π ∑r r F , (8) 

where 
 

 ( ) ( ) ( ) ( ) ( )
2 3 3 4 5

3 3n n n n n
spatial ,n n n

n n n n n

f R f R f R f R f R
R R R R R
′ ′′ ′   

= − + − +         
F I R R , (9) 

 
 ( ) ˆn nz z′= + −R ρ z , (10) 
 

 ( ) ( ) ( )erfc erfcjkR jkRf R e R e R−
+ −= β  + β     ,      ( )

2
jkR ER
E±β = ± . (11) 

 
 
 
 
 



Dyadic Green’s function for a dipole in a parallel-plate waveguide 
 

 
Fig 2. (a) A parallel-plate waveguide with height d/2 excited by a dipole at z’. (b) The equivalent 
problem of two arrays, each with a period d 
 
Consider an electric dipole in a parallel-plate waveguide (PPW) (Fig. 2). It is convenient 
to denote the distance between the plates of the waveguide by 2d . Using the method of 
reflection and image principle we obtain the equivalent d-periodic array of dipoles with 
two dipoles per period: current densities ˆ ˆ ˆx y zJ J J= + +J x y z  at the positions ( ) ˆz nd′ + z , 
and ˆ ˆ ˆx y zJ J J= − − +J x y z  at the positions ( ) ˆz nd′− + z , with n an integer. The 
differential electric field in the PPW from an arbitrary current source within the PPW can 
then be calculated by the formula 
 
 ( ) ( ) ( )ˆ ˆ, ,E r G r z J G r z Jd z dv z dv′ ′= ⋅ + − ⋅ , (12) 
 
where ( ), ′G r r  is the same as in (2) with 0 0zk = . The electric field dyadic GF for an 
electric current density J  in a volume dv at the position ˆz′z  in a PPW can be 
represented as  
 ( ) ( ) ( )ˆ ˆ, , ,G r r G r z G r z σPPW zz z′ ′ ′= − − ⋅ . (13) 
 
where ˆ ˆ ˆ ˆ ˆ ˆσ xx yy zzz = + −  is the operator of reflection with respect to the xy-plane.  
 
 

Numerical results: investigation of the convergence rate of the Ewald series 
 
The rate of convergence of the Ewald series for the dyadic GF is illustrated in Fig.3, 
where the relative error  
 
 (%) 100 Ewald exact exactrelative error G G G= × −  (14) 

 
is plotted versus the number N = Q, that indicates the total numbers 2N+1 = 2Q+1  of   n- 
and q-terms in the series (6), (8), for all the nonzero components of the dyad G. The 
reference values Gexact were evaluated in Fig. 3(a) via the pure spectral series 
when the observation point does not lie on the array axis (ρ ≠ 0), and in Fig. 3(b) 
via the pure spatial series when it lies on the axis (ρ = 0). A sufficiently large 
number of terms were used in the pure spectral and spatial series to achieve 
accuracy up to seven significant figures (2,000 terms in the spectral and 40,000 
terms in the spatial series were enough). The period of the array is d = 0.6λ0, 
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where λ0 is the free space wavelength, the phasing is kz0 = 0.1k, the n = 0 point 
source is at the coordinate origin, the observation point is at (x,y,z) = (0.1,0,0.1) d 
in Fig. 3(a) and at (x,y,z) = (0,0,0.1) d in Fig. 3(b).  
The same type of results for the GF of a dipole in a parallel-plate waveguide are shown in 
Fig.4. In Fig. 4(a), (x,y,z) = (0.1,0,0.2) d and (x′,y′,z′ ) = (0,0,0.1) d. In Fig. 4(b), 
(x,y,z) = (0,0,0.2) d and (x′,y′,z′ ) = (0,0,0.1) d, and the distance between the plates of the 
waveguide is d/2 = 0.3λ0. The relative error of the Ewald representation saturates because 
of the subroutine of the error function used, whose accuracy is fixed to 6 significant 
figures [2]. Note that an extremely small number of terms in (6) and (8) is needed to 
compute the dyadic GF. 

 
(a)      (b) 

Fig. 3. Convergence of the Ewald dyadic series (4) and (5) for the GF of a linear array of dipole 
sources in free space, showing the number of needed terms in (6) and (8). See text for the 
parameters in (a) and (b). 
 

 
(a)      (b) 

Fig.4. Convergence of the Ewald dyadic series for GF (13) of the dipole in the parallel-plate 
waveguide, showing the number of needed terms in (6) and (8). See text for the parameters in (a) 
and (b). 
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