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WING IMAGINAL DISC
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Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University Beijing, 100084, P.R. China

Frederic Y. M. Wan,
Department of Mathematics, Center for Complex Biological Systems University of California,
Irvine, California, 92697-3875, USA

Arthur D. Lander, and
Department of Developmental and Cell Biology, Center for Complex Biological Systems
University of California, Irvine, California, 92697-2300, USA

Qing Nie
Department of Mathematics, Center for Complex Biological Systems University of California,
Irvine, California, 92697-3875, USA

Abstract
Quasi-stable gradients of signaling protein molecules (known as morphogens or ligands) bound to
cell receptors are known to be responsible for differential cell signaling and gene expressions.
From these follow different stable cell fates and visually patterned tissues in biological
development. Recent studies have shown that the relevant basic biological processes yield
gradients that are sensitive to small changes in system characteristics (such as expression level of
morphogens or receptors) or environmental conditions (such as temperature changes). Additional
biological activities must play an important role in the high level of robustness observed in
embryonic patterning for example. It is natural to attribute observed robustness to various type of
feedback control mechanisms. However, our own simulation studies have shown that feedback
control is neither necessary nor sufficient for robustness of the morphogen decapentaplegic (Dpp)
gradient in wing imaginal disc of Drosophilas. Furthermore, robustness can be achieved by
substantial binding of the signaling morphogen Dpp with nonsignaling cell surface bound
molecules (such as heparan sulfate proteoglygans) and degrading the resulting complexes at a
sufficiently rapid rate. The present work provides a theoretical basis for the results of our
numerical simulation studies.

Keywords
Morphogen gradient; nonlinear boundary value problem; robustness; mathematical modeling

1. Introduction
During the initial phase of embryonic development, identical cells simply divide to
reproduce more of the same. At some stage, signaling protein molecules known as
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morphogens (aka ligands) are synthesized at a localized site. These morphogens disperse
from their production site; some bind to cell receptors along the way, generally resulting in
different receptor occupancies at different cell locations. The spatial concentration gradient
of morphogen-receptor complexes (aka bound morphogens) induces spatially graded
differences in cell signaling. The differential cell signaling in turn gives rise to different
gene expressions from which follow different stable cell fates and visually patterned
arrangements of tissues and organs during development.

In principle, the process of forming morphogen gradients leading ultimately to tissue
patterning consists of syntheses of transportable morphogens and membrane bound cell
receptors, their binding and dissociation, endocytosis and exocytosis of morphogen-
receptors and their intracellular degradation. This collection of biological processes that
explicitly include endocytosis and exocytosis has been modeled mathematically as System C
in [18] from which we have deduced by analysis and computation how the shape of the
signaling gradient depends on the system parameters such as synthesis rates of morphogens
and receptors, binding and degradation rate constants, etc. We also see from the
mathematical model that small changes of these system parameters may cause substantial
changes in gradient shape [18]. In contrast, embryonic patterning is usually highly robust,
resisting not only substantial changes in the expression level of individual genes, but also
fluctuating environmental conditions (e.g., unseasonal heat waves). This suggests that
additional biological processes must also be at work to ensure such robustness. Identifying
the cause of robustness and ways of producing robust morphogen gradients have become a
major research effort in recent years [6, 7, 8, 13, 14, 15, 23, 24, 31, 32].

A reasonable supposition would be that robustness is the result of various types of feedback
control mechanisms. For example, the amount of signal received by a cell may influence the
amount of receptors it makes for the particular type of signaling morphogen. Another
feedback mechanism may be the up-regulation of receptor-mediated degradation rate by cell
signaling. The Drosophila wing imaginal disc is patterned by the gradient of the
decapentaplegic (Dpp) morphogen, a member of the bone morphogenetic protein branch of
the transforming growth factor-β superfamily. Dpp signaling represses synthesis of its
receptors, but enhances Dpp degradation [5, 22]. Analytical and numerical simulations of a
model system that includes feedback [15, 20] showed that repression of receptor synthesis
rate alone (without enhancing morphogen degradation) does not sustain the expected
robustness. This is supported by the results in [7] showing that additional biological
activities were needed to attain robustness for the morphogen gradient and prompted
considerations for alternative paths to morphogen gradient robustness in [20]. A major
finding by numerical simulations of various model problems in [20] is that feedback control
is neither necessary nor sufficient for robustness for the Dpp gradient in wing imaginal disc
of Drosophilas. In addition, the numerical results suggest that robustness of the Dpp gradient
can be achieved by substantial binding of the signaling morphogen Dpp with nonsignaling
cell surface bound molecules, such as cell surface heparan sulfate proteoglycans, called non-
receptor for brevity, and degrading them at sufficiently rapid rate. (The former is to be the
consequence of high occupation of receptors and low occupation of non-receptors while the
latter means a high degradative flux of non-receptor relative to that of the receptors.) No
feedback is required throughout this slightly more complex process of gradient formation.
That non-receptors can be solely responsible for robustness may explain, in part, existing
and growing evidence that nonsignaling molecules are usually present and participating
actively in morphogen gradient formation (through binding with the signaling morphogen)
[25].

The robustness of a morphogen gradient is relevant only if the morphogen gradient is
biologically capable of inducing differential cell signaling (multi-fate signaling). A multi-
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fate signaling should broadly distribute pattering information over the entire field of cells so
that multiple types of cells can be developed. A quantitative measure of biologically realistic
multi-fate signaling morphogen-receptor gradients was first introduced in [18] in terms of
the magnitude, steepness and convexity of the gradient. The measure is further quantified
numerically in [20, 21] to give numerical yardsticks to geometrical features of “too steep/too
narrow” “too wide” and “too convex”. In [20], numerical simulations were carried out for
220 (or more than more than 106) random sets of parameter values for each of the model
systems. After discarding the parameter sets that result in biologically unrealistic gradients
that would result in most cells in the wing disc developing into the same cell type, the
robustness of the remaining (biologically multi-fate signaling) cases were examined with
respect to a range of discrete values of one of the five important normalized parameters for a
very large number of random sets of the other parameters. These plots enabled us to see the
existence of robust multi-fate gradients with the addition of non-receptors alone (without
feedback) to System C and the nonexistence of robust multi-fate gradients with down
regulating feedback alone (without non-receptors).

The findings in [20] positioned us to develop a theoretical foundation for the conclusions
suggested by the numerical simulations. Specifically, we develop an existence proof of
robust multi-fate gradients in a non-empty region of the parameter space of the biological
system, the Dpp-receptor gradient in the imaginal disc of Drosophilas, with respect to a
substantial (two-fold) change of ligand synthesis rate. We will use the same criterion for
robustness introduced in [20, 21] but will work with a more general set of criteria for a
multi-fate gradient. Together, they will enable us to analytically locate a region of multi-fate
gradients in the parameter space which are robust with respect to the ligand synthesis rate.
As such, we will have a considerably more complete and explicit understanding of the
dependence of multi-fate and robustness on the system parameters. It is expected that the
same analytical method will also enable us to extract useful information on robustness with
respect to other system parameters.

2. Formulation
2.1. The Initial-Boundary Value Problem

The Dpp-receptor gradient system in the wing imaginal disc of Drosophilas analyzed in [18]
involves concentrations of free ligands (Dpp) [L], cell membrane bound receptors (Tkv) in
extracellular space [R]out and cell interior [R]in, and the extra- and intracellular morphogen-
receptor complexes [LR]out and [LR]in. The morphogen-receptor complexes inside cells
[LR]in provide the signal to activate the target genes potomotorblind ( omb) and spalt (sal);
it is the gradient of [LR]in that determines the fate of cells. Synthesized locally over a few
cells between the posterior and anterior compartment at a rate V uniformly in the directions
orthogonal to the anterior-posterior axis, the ligands diffuse away from the source and bind
to signaling cell receptors along the way with the ligand-receptor complexes transcytosing
and degrading in the cell interior. Receptors are synthesized at a constant rate ωR to
replenish losses through degradation of both [LR]in and [R]in. The evolution and interaction
of ligands and receptors will be as characterized by the space-time model System C of [18].
Given the nature of the morphogen source, morphogen activities essentially vary only in the
direction of anterior-posterior axis X, from the ligand source to the edge of the wing disc.

For the present robustness study, we add to System C concentrations of non-receptors [N]out
and [N]in, morphogen-non-receptor complexes [LN]out and [LN]in; they transcytose and
degrade in a way similar to the morphogen-receptor complexes. For this extension of
System C, we have the following spatially one-dimensional system of differential equations
first introduced in [20]:
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(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

for −d0 < X < Xmax with V (X) given in terms of the Heaviside unit step function H(z):

(10)

where v0 is a constant so that morphogens are synthesized uniformly in the region −d0 ≤ X <
0 only. The synthesis rates of receptors and non-receptors are taken to be uniform in time
but ωR and ωN may be piecewise constant in X. No feedback is considered in the present
model.

We consider here the development of only the posterior compartment of the wing disc
including half of the morphogen production region. At the border between the two
compartments, X = −d0, we have the no flux conditions

(11)
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as a consequence of the condition of symmetry relative to the border. At the other end, there
are very few free ligand molecules not bound to a receptor or non-receptor; hence we may
treat the edge as a sink so that:

(12)

With V (X) discontinuous at X = 0, we stipulate also the continuity of [L] and ∂[L]/∂X at X
= 0.

Before the onset of morphogen production at T = 0, we have no morphogen concentration of
any kind so that

(13)

The receptors and non-receptors are expected to be in steady-state prior to the onset of
ligand production so that

(14)

These conditions lead to the steady state values that constitute the remaining initial
conditions:

(15)

for the concentrations of receptor and non-receptor.

The system above, designated as System CN, is formally a straightforward extension of
System C and reduces to the latter in the absence of non-receptors. However, they differ
substantively from System C in that we have included as in [19] the region of morphogen
synthesis as a part of the solution domain. In acknowledging the presence of a region of
ligand synthesis and the need to consider the molecular dynamics in that region in
conjunction with the other ligand activities, we have made the problem more complicated
and must deal with its consequences, including allowing the morphogen-production cells to
have receptors and non-receptors that bind with some of the morphogens they produced [10,
11].

2.2. Steady-State Behavior
After the onset of morphogen production, concentration gradients of the different
concentrations form rapidly reaching some quasi-steady state configuration in a matter or
hours or less. It is the robustness of the steady state gradients that is of current interest in
development. Upon setting all time partial derivatives to zero, all but the first of the set of
governing partial differential equations become algebraic equations that can be solved to
obtain

(16)

(17)
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where the intrinsic parameters are

Upon setting

(18)

(19)

(20)

(21)

we obtain from 1, with ∂[L]/∂T = 0, the following dimensionless ODE for the normalized
steady state free ligand concentration a(x):

(22)

with

(23)

where β = (v0/Ro)/kdegobs is the ratio of the (normalized) ligand production rate to the
(normalized) observed degradation rate of the ligand-receptor complexes first introduced in
[18] to help characterize the steady state level of ligand concentration.

For the second order ODE with a discontinuous forcing term, we have the boundary
conditions

(24)

and the continuity conditions of a and a’ at x = d. The normalized concentration of the
signaling morphogen-receptor complexes is given by

(25)

Lei et al. Page 6

Discrete Continuous Dyn Syst Ser B. Author manuscript; available in PMC 2013 October 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Hereafter, we will use uppercase letters (X, [L], [LR], etc.) to denote the original variables,
and lowercases (x, a(x), b(x)) to denote the normalized/dimensionless variables; they are
related by 18–21. Note that this convention does not apply to the system parameters.

Biologically, free and bound morphogens form gradients outside the production region
rapidly. At steady state, the gradient of the signaling ligand-receptor concentration should be
capable of inducing different cell fates at different cell locations. Moreover, the signaling
gradient and the resulting tissue pattern should be highly robust notwithstanding substantial
system parameter changes (e.g. a two-fold change in the expression of individual genes)
resulting from fluctuation of environmental conditions (e.g. unseasonably high or low
temperature). In this paper, we will be concerned with the role of non-receptors in the
robustness of signaling gradients. In the next section, what constitutes an admissible
signaling gradient for multi-fate development (or multi-fate gradient for brevity) will be
defined quantitatively and an analytical measure of robustness will be introduced for
signaling gradients. Together, they will provide us with the quantitative criteria for
analyzing how non-receptor affects the robustness of multi-fate gradients.

In the boundary value problem (BVP) for the steady state free ligands defined by 22–24,
there are five parameters d, γ, λ, p, and v. The parameter d is the relative width of the
production region of the morphogen. In this paper, we will always take d to be a prescribed
quantity (with d = 0.06 corresponding to the width of 12μm of the production region
compare with 200μm, the width of the Drosophila wing imaginal disc). The parameter v is
the only one involving the rate of morphogen infusion v0 and may be taken as normalized
ligand synthesis rate. The parameter λ = ηR km/ηN jm, is seen to be the ratio of the saturation
level of receptors to that of non-receptors found to be important factors for robustness in
[20]. Similarly, the ratio

is seen to be of the order of the ratio of degradative fluxes of the receptor, ФR =
kdegobs[LR]out, to that of non-receptor, ФN = jdegobs[LN]out, previously introduced in [20]
when the steady state ligand concentration is relatively low. (We may also consider the ratio
to characterize the relative magnitude of the (normalized) synthesis rate of ligand receptor
and that of nonreceptor since p/(1 − p) = O(ωR/ωN).) In the degradative flux interpretation,

 is seen to be of the order of the sum of these fluxes. The numerical results in
[20] suggested that for System CN, only a certain combination of these flux and saturation
factors would induce robust signaling gradients capable of differential cell signaling. We
will provide an analytical validation for the observations in [20] and quantify more precisely
the conditions for their validity. For these and other results on robustness of signaling
gradients, we will need some specific properties of the solution of the steady state BVP 22–
24. These will be developed in next few subsections.

2.3. Monotonicity of the Unique Steady State Solution
For a given set of the non-negative values of the parameters d, γ, λ, p, and v, the following
existence and uniqueness theorem for the BVP 22-24 can be proved by the same method as
that used in [19] (see also Theorem A.1 of the Appendix of this paper):

Theorem 2.1—A unique non-negative solution a(x) exists for the BVP 22-24 with 0 ≤ a(x)
≤ au(x) where the upper solution au(x) for the problem is given by
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(26)

To study the properties of the steady state solution, we introduce the abbreviation

It is easy to see that

(27)

(28)

for all a > 0. The following monotonicity properties of a(x) are less straightforward:

Proposition 1—Let a(x; λ, v) be the unique steady state solution of 22–24 (which of
course depends also on the parameters p and γ as well). Then for all positive λ and v, we
have

(29)

Proof: Upon differentiating 22-24 with respect to v and setting φ(x; λ, v) = ∂a/∂v, we see
that φ is determined by the BVP

(30)

where H(z) is the Heaviside unit step function and

(31)

Apply Theorem A.1 to the BVP 30, we have φ(x) = ∂a/∂v > 0 for all x ∈ (0, 1).

The inequality ∂a/∂λ < 0 is proved similarly.

Since a(1) = 0 and a(x) > 0 for 0 < x < 1, we have a’(1) < 0 and, with

a’(x) < 0 for d < x < 1. Furthermore, it follows from the fact that a’(x) is continuous at x = d
we have also a’(d) < 0. We will prove a’(x) < 0 for x ∈ (0, d) as well. Note that a’(x) is
continuous in [0, d] with a’(0) = 0 and a’(d) < 0. Suppose the contrary with a’(x1) ≥ 0 for
some 0 < x1 < d, then there would exist a value x2 ∈ [x1, d], such that a’(x2) = 0. In that
case, there would exist x3 ∈ (0, x2), such that a”(x3) = 0. Hence, a(x3) satisfies
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(32)

We consider separately the two cases a’(x) > 0 and a’(x) < 0 for all x ∈ (0, x3):

Case 1—a’(x) > 0 for all x ∈ (0, x3). In this case, for any x ∈ (0, x3), we have a(x) < a(x3)
and

by 31. With a’(0) = 0 and a’(x) decreasing with x in (0, x3), it follows that a’(x) < 0 for x ∈
(0, x3). This contradict the Case 1 scenario of a’(x) > 0 for all x ∈ (0, x3).

Case 2—a’(x) < 0 for all x ∈ (0, x3). Then for any x ∈ (0, x3), we have a(x) > a(x3), and
therefore

by 31. It follows that a’(x) > 0 for x ∈ (0, x3) which contradict to the Case 2 scenario of a’
(x) < 0 for all x ∈ (0, x3).

Since neither scenario is possible, we must have a’(x) < 0 for x ∈ (0, d) and the third part of
29 is proved.

3. Explicit Steady State Solutions
3.1. Exact Steady State Solution

The second order ODE 22 is autonomous and can be integrated to give x as a function of a:

Proposition 2—The exact solution of the BVP 22–24 may be written as

(33)

(34)

where

(35)

with

(36)
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The three unknown constants of integration a0 ≡ a(0), ad ≡ a(d) and s1 ≡ a’(1) are
determined by a(1) = 0 and the continuity of a and a’ at x = d with the last of these three
conditions requiring

(37)

The derivation of this exact solution is similar to that for the case of no non-receptors in [19]
and will not be given here.

3.2. Low Ligand Synthesis Rate (LLSR)
Though equations 33-35 give the exact solution of the BVP, insight to steady state behavior
is not readily accessible from these expressions. We obtain in this subsection an explicit
solution which is a leading term perturbation solution (and an adequate approximation) of
the exact solution for low normalized morphogen synthesis rates (corresponding to low
occupation for both receptors and non-receptors in [20]). As we shall see, it also provides a
useful tool to decipher the implications of the exact solution for intermediate range of
morphogen concentration.

For a sufficiently small normalized synthesis rate, we expect 0 ≤ a(x) ≪ 1 and 0 ≤ γa(x) ≪
1 (corresponding to [L] ≪ ηRkm and [L] ≪ ηNjm). In that case, a leading term approximate
solution of the steady state problem is determined by

(38)

Similar to the method in [19], we have for this low ligand synthesis rate (LLRS) case aL(x)
= v K(x; λ) with

(39)

The monotonicity properties of a(x) of Proposition 1 apply to K(x; λ). Some of these can be
seen directly from the explicit solution above. For example, we have K’(x; λ) < 0 from

(40)

Consistent with the leading term LLSR approximation, we have

(41)

Note that in the LLSR range, b(x) ≃ bL(x) = vK(x; λ) depends only on v and λ (and of
course the synthesis region width d which is assumed to be fixed in this paper) and not on p
and γ. Furthermore, the dependence on v is linear so that the magnitude of b(x) ≃ bL(x)
varies in proportional to the ligand synthesis rate. It follows that development would be
sensitive to a variation in v (caused by environmental changes for example) and therefore in
some sense not “robust”. On the other hand, the sensitivity with respect to the ligand
synthesis rate would vary with the convexity of the gradient and hence with the value of the
parameter λ. The significance of the actual variation from the combined effect would depend
on how we quantify robustness. We will address the issue of an appropriate measure of
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robustness in the next section. For that purpose, the following properties of K(x; λ) will be
useful:

Lemma 3.1—For λ > 0 and 0 < d < 1, we have

Proof: The first properties follows from a straightforward calculation of the relevant partial
derivative with respect to λ:

A corresponding calculation gives

where

with

The last two properties of h(λ, d) imply h(λ, d) < 0 for any 0 < d < 1, and the second
property is proved.

For the third inequality of this lemma, we have

where
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with

The last two properties of k(λ, d) imply k(λ, d) < 0 for any d in (0, 1), and the third property
is proved.

3.3. High Ligand Synthesis Rate (HLSR)
At the other end of the spectrum where the ligand synthesis rate is sufficiently high so that
vd is large compared to max {1, λ2, λ2/γ}, we have a case of high occupation of receptors
and non-receptors discussed in [20]. In that case, the leading term approximation aH(x) for
the steady state solution is determined by the BVP

(42)

or

(43)

Correspondingly, we have

(44)

But unlike the LLSR case, the approximation of b(x) by bH(x) ≡ 1 is valid only for x away
from a narrow interval adjacent to the x = 1 end. With a(1) = 0, a(x) is not large compared to
unity near x = 1. Except in the boundary layer adjacent to the wing disc edge, b(x) is seen
not to depend on any of the four parameters λ, γ, v and p to a first approximation for the
HLSR range. As such, development is essentially insensitive (and therefore robust with
respect) to system and environmental changes that may affect the system parameters. (A
formal validation of this observation will be given after we have formulated a quantitative
measure of robustness.)

On the other hand, the concentration of morphogen-receptor complexes responsible for
signaling and development is effectively uniform in nearly the entire solution domain and
would not give rise to patterning. In other words, such a ligand-receptor gradient, though
insensitive to changes, is not a multi-fate signaling gradient and would not be of interest to
the study of real biological systems.

4. Robustness and Multi-fate Morphogen Gradients
4.1. Normalized Root-Mean-Square Displacement

We saw from the explicit solution for the LLSR range that the signaling ligand-receptor
gradient is generally sensitive to system parameter changes. Yet actual biological systems
are generally robust to such changes. It is our goal to investigate factors that are responsible
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for such robustness. We do so by focusing on robustness with respect to a two-fold change
in the ligand synthesis rate in our model problem as in [20]. The general methodology
developed for this parameter change should be helpful to our study of robustness with
respect to other parameter changes.

Let b(x) and  be the normalized signaling ligand-receptor gradients for synthesis rate v
and 2v, respectively and x1 and x2 the corresponding location where they attain the value ,

i.e., . With the change of ligand synthesis rate, x2 is generally different
from x1 with x2 − x1 = Δx. The root-mean-square of Δx over the range of b(x) would be a
meaningful measure of robustness. To minimize the effects of outliers, the range of b will be
taken to be the interval (b1/5, b4/5) with b1/5 = b(d)/5 and b4/5 = 4b(d)/5. The measure of
robustness for our analysis, Rv, is this root-mean-square deviation normalized by the interval
x(b1/5) − d:

(45)

In general, the displacement Δx depends on the normalized signaling ligand-receptor
gradients for the two different ligand synthesis rates v and 2v. Since these gradients
themselves depend also on the parameters p, γ and λ, we indicate these dependence by
writing Rv(p, γ, λ). It is seen from 45 that the smaller the value of Rv the more robust the
system would be. As suggested in [20], the system is considered to be acceptably robust
with respect to the ligand synthesis rate v if, for a two-fold increase in v, we have R < 0.2.

Numerical solutions obtained in [20] for the steady state behavior of System CN suggest that
the corresponding system without non-receptors (System C) does not have any robust multi-
fate gradients for any combination of parameter values. We will validate this observation in
the next section after we quantify multi-fate gradients. Before doing this, we will show that
with non-receptors, 1) the signaling gradient b(x) is generally robust for sufficiently high
ligand synthesis rates but the gradient itself is not a multi-fate gradient, and 2) at low ligand
synthesis rates, the signaling gradient b(x) is generally not robust with a value for Rv(p, γ, λ)
significantly above 0.2 (tending to 0.43 in the limit).

4.2. The HLSR Case
As indicated above, we will focus herein on the robustness corresponding to a two-fold
increase of the normalized synthesis rate of free ligands, i.e., when v is changed to 2v. For a
sufficiently high ligand synthesis rate so that vd ⪢ max{1, λ2, λ2/γ}, we have from 43

and therewith

(46)

in the region where ligand is not produced, d < x < 1. When the synthesis rate is changed
from v to 2v, the displacement Δx of gradient at concentration b is given by
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It follows that the relevant robustness measure Rv(p, γ, λ) is given by

(47)

where bd = b(d). It is easy to see from this expression that the robustness Rv can be made
smaller than any given positive number if v is large enough. The result summarized in the
following proposition provides a mathematical justification of the intuitive expectation in
subsection 3.3 using Rv as a measure of robustness.:

Proposition 3—For vd ⪢ max{1, λ2, λ2/γ}, the steady state behavior of the model
biological system 1–15 is robust.

However, as indicated in subsection 3.3, the signaling gradient [LR]in for such a high ligand
synthesis rate cannot form a “realistic” biological gradient for patterning since it is nearly
uniform for the entire solution domain except in a narrow region adjacent to the edge x = 1
and at the same time too steep in that narrow layer. While these observations may be evident
from a graph of 46, we need to have some quantitative measure for what constitutes a multi-
fate signaling gradient before we can direct our attention to study factors responsible for
robustness of such signaling gradients. We quantify in the next subsection what constitutes a
multi-fate gradient and use the criteria developed and the robustness measure Rv to
investigate robustness of multi-fate gradients for the three special cases of high ligand
synthesis rates, low ligand synthesis rates and systems without non-receptor. The role of
non-receptors in promoting robustness for multi-fate signaling gradients with moderate
ligand synthesis rates then be delineated.

4.3. Multi-fate Signaling Gradients
In order to induce spatially differential cell signaling, i.e., a multi-fate signaling gradient, a
steady state b(x) should have the following characteristics:

1. The slope of the normalized signaling gradient b(x) = [LR]in/ξR Ri that activates the
target gene should not be too steep. From 25, we have b(0) < 1. Therefore, the
average slope of b(x) over the interval (0, 1) is less than 1. The gradient is
considered not too steep if the magnitude of the relative slope ∣b’(x)/b(x)∣ in the
region of interesting is less than some threshold, i.e.,

for some δ > 0.

2. The concentration of a patterning signal [LR]in should be higher than a certain
threshold in the vicinity of the ligand production region. Before the onset of
morphogen, the concentration of receptors inside the cell ([R]in) equal to Ri. Thus,
the threshold can be assumed to be a fraction of Ri. From 25, we see that [LR]in is
generally less than ξR Ri and approaches ξR Ri from below when [L] is large
enough so that we are near receptor saturation. Hence, for differential cell
signaling, the concentration [LR]in threshold can only be a fraction of ξR Ri. We let
that threshold fraction be θ (< 1) so that mathematically the signal is activated if
b(d) ≥ θ with 0 < θ < 1.
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3. The slope of a(x) at x = 1 should be substantially less than unity. Experimental
results had shown that the Dpp form shallow gradient in the imaginal disc [9, 29].
These results suggest that the free ligand decays quickly in the imaginal disc in
steady state. Motivated by the corresponding relation for the LLSR case, we expect
that the slope a’(1) should be considerably less steep than the average slope of free
ligand gradient over the range [d, 1], i.e., ∣a’(1)∣ ≪ ad/(1 − d) where ad = a(d). It
seems reasonable to stipulate ∣a’(1)∣/aθ ≪ 1 with aθ = [a]b=θ = θ/(1 − θ).

The observation above suggest that we quantify the characteristics of a multi-fate gradient
by the following definition:

Definition 4.1—The normalized signaling gradient b(x) is said to be a multi-fate gradient
if the steady state solution of the model System CN, defined by 22-25, satisfies the
following conditions:

I.
 if ,

II. b(d) ≥ θ,

III. ∣a’(1)∣ ≤ ∊aθ for some ∊ ≪ 1.

In terms of the free morphogen concentration a(x), the conditions above take the form

(I’)  if ,

(II’) ad ≥ aθ ≡ θ/(1 − θ

(III’) ∣a’(1)∣ ≤ ∊aθ for some ∊ ≪ 1.

For the purpose of obtaining specific results, we will take δ = 0.05, θ = 0.1(or aθ = 0.11), and
∊ = 0.002. While these choices of parameter values may seem somewhat arbitrary, we will
see that the results are not particularly sensitive to our choices.

Definition 4.2—For any p in [0, 1] and γ ≥ 0, the parameter pair (λ, v) is said to be
acceptable to (p, γ) if the signaling gradient of the model System CN for this particular set of
four parameters is a multi-fate gradient.

Upon application of this definition of a multi-fate gradient to the HLSR case, we see
immediately that

Proposition 4—If the normalized ligand synthesis rate is sufficiently high to ensure
robustness, the relevant signaling gradient b(x) is not multi-fate.

Proof: For this case, we have from 43 ∣a’(1)∣ = vd and ∊aθ < ∊ad = ∊[vd(1 − d)] < ∣a’(1)∣
(see also 47) so that the third condition for a multi-fate gradient above is not met.

Proposition 4 is a negative result. To gain insight to robust development, we need to
quantify the ranges of the four parameters p, γ, λ, and v for which the corresponding
gradients are capable of differential cell signaling, i.e., for which they are multi-fate, by the
requirements of Definition 4.1. The following theorem provides the quantification sought:

Theorem 4.3—For any p in [0, 1] and any γ ≥ 0, let
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(48)

and let λ* to be the (unique) positive solution of

(49)

(see Lemma 5.1 below). If any pair (λ, v) lies in the region

(50)

of the (λ, v) space, then (λ, v) is acceptable to (p, γ).

This theorem is proved by verifying the requirements of multi-fate gradients; the proof will
be given in Subsection A.3 of the Appendix.

The two parameters λ* and ad = a(d) depends on λ and v (and of course on the fixed
parameter d as well), the former by way of 49 while the latter by way of 37, or the
corresponding approximate relations

and

which follows from 34. Gp,γ as defined by 50 is therefore not an explicit specification of the
range of acceptable (λ, v). An explicit specification of Gp,γ is derived in Subsection A.3 of
the Appendix.

4.4. The LLSR Case
In this section, we examine how the quantitative requirements of a multi-fate gradient
applies to the LLSR case and what the resulting expression Rv(p, γ, λ) tells us about the
nature of steady state signaling gradient robustness when the normalized ligand synthesis
rate is increased two-fold. For this case, we have from 41 that bL(x) = aL(x) = vK(x; λ) with
K(x; λ) determined by the BVP 38. While K(x; λ) is given explicitly by 39, it turns out to be
more effective to work with x(a) as in Subsection 3.1 for the purpose of calculating Δx and
Rv(p, γ, λ). By the method of that subsection, it is straightforward to obtain

where
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(51)

emphasizes the dependence of s1 on the normalized ligand synthesis rate v (and of course on
λ as well). For the LLSR case, a(x; p, γ, λ, v) is proportional to v; it follows that

(52)

Correspondingly, we have from 45 and b ≃ a

(53)

with

For low ligand synthesis rates, we have from a1/5 = ad/5 and, from the second and third
condition for a multi-fate gradient, [s1(v)/λad]2 < [s1(v)/λa1/5]2 < [(5/λ)(a’(1)/aθ)]2 = O(∊2)
≪ 1 so that

In that case, 53 becomes

independent of the system parameters except for the LLSR requirement of

Since Rv(p, γ, λ) ≤ 0.2 is required for robustness, we have the following theorem:

Theorem 4.4—In the LLSR range with v/λ2 ≪ 1, any multi-fate signaling gradient is not
robust to a doubling of ligand synthesis rate.

See [21] for the possibility of size-normalized robustness for the LLSR range.
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5. Systems without Non-receptors
Theorem 4.4 ruled out the possibility of a robust multi-fate signaling gradient in the LLSR
range. At the HLSR range, it is possible to have robustness by taking vd sufficiently large.
However, Proposition 4 tells us that such a signaling gradient would not be a multi-fate
gradient; it would not be capable of inducing differential cell signaling for patterning.
Together, they limit the ligand synthesis rate to a moderate range of v values. In the
moderate v range however, the BVP for the steady state solution does not admit
simplifications that would lead to an explicit solution or useful tool such as a steady state
proportional to the ligand synthesis rate. Nevertheless, certain simplifications are still
possible in the robustness calculations. In this section, we deduce some of these
simplifications and use them to analyze the level of robustness possible for a system without
non-receptors, i.e., for System C (instead of CN).

5.1. Bounds on a(x; λ, v) and a’(x; λ, v)
To simplify the expression for Rv, we need to establish first some upper and lower bounds
on the steady state free ligand concentration a(x; λ, v) and its derivative a’(x; λ, v). Let

(54)

with K(0; λ) > 0 from 39, Since Theorem 2.1 requires 0 ≤ a(x; λ, v) ≤ au(x) for any λ > 0 and
hence  by the Comparison Theorem A.2 proved in the Appendix of
this paper, we have

With ∂K(0; λ)/∂λ < 0 from Proposition 3.1, we have also

and similarly

with the last inequality follows from the 54 and the fact that . The
monotone increasing positive sequence  bounded above by λ has a limit λ*; it is the
solution of the equation

(55)

Note that 55 has only one solution since the right hand side is a decreasing function of λ*.
Altogether, we have the following lemma:

Lemma 5.1—The monotone increasing positive sequence defined by 54 is bounded above
and therefore has a positive limit λ* (λ, v) < λ which is the unique solution of 55.
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The limit λ* (λ, v) enables us to deduce an upper and a lower bound for both a(x; λ, v) ≥ 0
and a’(1; λ, v) ≥ 0.

Lemma 5.2—For the solution λ* of 55, the two inequalities

(56)

(57)

hold (with vK(x; λ) ≥ 0 and vK’(1; λ) ≥ 0).

Proof: Let w1(x) = v K(x; λ) and . These two quantities satisfy the
equations

(58)

and

(59)

respectively. From Theorem 2.1, we have 0 ≤ a(x) ≤ v d which requires 
given F(vd) < F(a). Upon applications of the Comparison Theorem A.2 to the three BVP 58,
59 and 22-24, we obtain

Repeat the argument for i = 1, 2, ···, we have

for all i and 56 is obtained by letting i tend to infinity.

The relation 57 is deduced from the following two inequalities:

and

5.2. Simplification of Rv(p, γ, λ) for a multi-fate gradient
Lemma 5.2 above and the requirements of a multi-fate gradient place a restriction on the
magnitude of λ:
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Lemma 5.3—In order for the signaling gradient to be multi-fate that satisfies

 for some , it is necessary that  so that

.

Proof: Since a’(x; λ, v) ≤ 0, we have from 57 that ∣v K’(1; λ)∣ ≤ ∣a’(1; λ, v)∣ ≤ ∣v K’(1; λ*)∣
so that

(60)

if the third condition of a multi-fate gradient is met. Similarly, we have from 56 0 ≤ v K(x;
λ) ≤ a(x; λ, v) ≤ v K(x; λ*) so that

(61)

if the second condition is met. It follows from the hypothesis on ∊, the two conditions 60-61,
and Lemma 3.1,

Therefore, we must have  by Lemma 3.1 and therewith .

We are mainly interested in the application of the lemma to multi-fate gradients for which ∊

≪ 1. For example, we have  for ∊ = 0.002.

For a ≥ a1/5 = ad/(5 + ad) (corresponding to b = b1/5), we have from 35

when aθ ≪ 5 and, in view of Lemma 5.3,

given . In that case, the expressions 33, 37, and 34 may be approximated by

(62)

(63)

and

(64)
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respectively, and therewith

(65)

which is a constant (instead of a function of b or a) that depends only on the four parameters
p, γ, λ, v (and of course the known constant d). Here we write ad(v) for a(d; λ, v) and ad(2 v)
for a(d; λ, 2 v) for short. (Note that ad(v) and ad(2 v) also depend on the parameters p and γ
since E(u) depends on these two parameters as well.) This allows us to simplify the
robustness measure Rv(p, γ, λ) defined in 45 to

(66)

The simplifications are analogous to the corresponding results obtained previously for the
LLSR case but now for general v values. We will use the simplified expression 66 and the
original definition indistinguishably for Rv(p, γ, λ) in all subsequent analysis as we are
interested only in multi-fate signaling gradients. Use of 64 and 65 is then made in 66 to
result in

Definition 5.4—For a multi-fate signaling gradient, the robustness to the doubling of
ligand synthesis rate is defined as

(67)

Unlike the LLSR case, the steady state gradients a(x; λ, v) and b(x; λ, v) are not proportional
to the ligand synthesis rate v. Nevertheless we can establish the change in ad(v) when the
ligand synthesis rate is doubled:

Proposition 5—For x ∈ (0, 1),we have a(x; λ, 2v) > 2a(x; λ, v).

Proof: Let

then φ(x) satisfies

and

Since
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and

given a(x; λ, 2 v) > a(x; λ, v) by 29 and dF/da < 0 by 27, Theorem A.1 is applicable, and
hence φ(x) > 0 or a(x; λ, 2 v) > 2 a(x; λ, v).

5.3. Rv(p, γ, λ) for System C
Let

where minimization is taken over all acceptable pairs of {μ, v} that ensure a multi-fate
signaling gradient. Note that if R(p, ρ) > 0.2, then  is always larger than 0.2 for
any admissible pair (λ, v) that ensures a multi-fate gradient. In that case, it would not be
possible to find a parameter pair (λ, v) such that the steady-state is both multi-fate and
robust. On the other hand, if R(p, γ) < 0.2, there exist (λ, v) parameter pairs such that the
steady state signaling gradient is both multi-fate and robust. Consequently, the quantity R(p,
γ) provides a more succinct measure of robustness and is used subsequently whenever
appropriate.

In the absence of non-receptors so that p = 1, numerical simulations carried out in [20]
suggested that all multi-fate gradients are not robust with respect to a doubling of the ligand
synthesis rate (see also [21] for a different kind of robustness for low synthesis rates). The
theoretical lower bound of the robustness measure R(p, λ) in the absence of non-receptors is
given below to validate this observation:

Proposition 6—Let

Then for any p in [0, 1], and γ ≥ 0, we have , with J(1, γ)
> 0.35.

Proof: We have from Proposition 5 ad(2 v) > 2 ad(v). Then for any pair of (λ, v),

and hence R(p, γ) > J(p, γ). When p = 1, we have
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and J(1, γ) can be determined numerically to be (0.354527… or) greater than 0.35.

As a direct consequence of Proposition 6, the robustness measure  of System C
can not be lower than 0.35 for any acceptable pair of (λ, v). In other word, without non-
receptor, any multi-fate gradient of System CN (which, without non-receptor, is reduced to
System C) cannot be robust. Quantitatively, the robustness of System C (or System CN
without non-receptors) has a lower bound of 0.35 for  for all parameter sets
with a multi-fate signaling gradient. The simulation results of System CN show that this
lower bound for  can be lowered considerably to well below 0.2 with the
addition of non-receptor for certain parameter sets. Experimental results also show that non-
receptor is essential in forming robust morphogen gradients of Dpp in the wing disc of
Drosophila (see [1, 2, 3, 4, 10, 12, 14, 16, 17, 28, 30]). The theoretical results for System CN
of the last few subsections mean that robustness can only be attained for relatively moderate
values of the normalized ligand synthesis rate. They help to limit our search in the next
section for a region (or regions) in the parameter space where robust multi-fate gradients can
be found.

6. The Role of Non-receptors
From the results of the last section, we know that robust multi-fate gradients are not possible
when there is no non-receptors in System CN (leaving us with just System C). From the
earlier section, we also learned that multi-fate gradients are also not possible for low or high
occupation of both receptors and non-receptors. If non-receptors should be responsible for
robustness, the results of numerical simulations in [20] suggest that it would be occur at a
level of high receptor occupancy (by ligand) and low non-receptor occupancy. We prove in
the first subsection that low non-receptor occupation is necessary for robustness while
sufficiency requires some additional consideration as we show in the next subsection.

6.1. Non-robustness in Parameter Space

Given  by Proposition 6, signaling gradients cannot be
robust for pairs (p, γ) for which J(p, γ) > 0.2 (for all acceptable (λ, v)). The graph in Figure 1
shows that J(p, γ) is an increasing function of γ. Thus, the (p, γ) plane can be divided by the
curve J(p, γ) = 0.2 into two regions. Numerical computation shows that the curve J(p, γ) =
0.2 can be approximated by

(68)

In other word,  is always larger than 0.2 whenever  or . To bring
out the role of non-receptors in robustness more explicitly, we introduce a ratio of receptor-
to-non-receptor (effective) synthesis rate

(69)

and express the condition for robustness in terms of γ and ζ (instead of γ and p up to now).
In terms of γ and ζ, the condition p > p* (γ) becomes ζ > ζ* (γ) with
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(70)

and we have the following sufficiency result for non-robustness:

Proposition 7—If  or ζ > ζ*(γ) (> 0), then Rv(p, γ, λ) > 0.2 so that multi-fate
signaling gradients are not robust.

The two sufficient conditions for non-robustness,  and ζ > ζ* (γ) (when ) may be
rephrased as the following necessary condition for robustness :

Proposition 8—For a multi-fate signaling gradient to be robust (with ,

it is necessary that (γ, λ) to be in the region  of the (γ, λ)-

plane (or (p,γ) in the region , where  is found numerically to be
0.05 for the set of values δ, θ and ∊ specified in Section 4.

Remark 1—Note that the boundary of the non-robustness region is found by solving the
equation J(p, γ) = 0.2. This boundary does not depend on the biological parameters λ and v,
and the parameters θ, ∊ and δ introduced in Subsection 4.3 to define a multi-fate gradient.
However, a multi-fate gradient is required when we write robustness in the form of 67
specified in Definition 5.4. As a consequence, the non-robustness range (with the parameter

) in Proposition 8 is insensitive to the choice of θ, ∊ and δ.

6.2. Region of Robust Multi-fate Gradients
As a direct consequence of Proposition 8, multi-fate gradients of System CN can be robust
only if the two nonnegative parameters γ and ζ are both small enough with 0 < ζ < ζ*(γ).
With ζ being a measure of the relative infusion of receptor to non-receptors, this means that
non-receptors should play dominant role in forming the multi-fate signaling morphogen
gradient. We show below that this condition is also sufficient for robustness.

Theorem 6.1—If G0,0, is not empty in the (λ, v) plane, there exists a neighborhood U of
the origin of the (λ, p) plane and a continuous function Cb(p, λ, λ) with Cb(0, 0, λ) = 0 such
that  for any pair (p, γ) in U and any acceptable pair (λ, v) (in Gp,γ for a
multi-fate gradient) with

(71)

Moreover, there exist a non-empty region  of the (p, γ) plane such that for any pair (p, γ) in
, there is at least one acceptable pair (λ, v) in Gp,γ for which .

Proof: From its defining expression, Rv(p, γ, λ) is continuous in all four variables shown. It
suffices therefore to prove that  for (λ, v) in G0,0 and for

(72)

At the origin, (0, 0) of the (p, γ) plane, we have
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Substitute E(u) = u2/2 into 67, we have

Since

the hypothesis 72 implies a(d; λ, v) > 27/4, and therefore .

It is easy to have

While we choose parameters ∊ = 0.002, δ = 0.05, aθ = 0.11 and d = 0.06, the set G0,0 is non-
empty(Fig. 2).

If we use another value Rc instead of 0.2 as the upper bound for robustness, then 71 should
be replaced by

(73)

possibly with a different function Cb(p, γ, λ) and the conclusion of Theorem 6.1 still holds.

When p and γ are small enough, we can, by Theorem 6.1, always find parameters (λ, v) in
Gp,γ such that the system has robust signaling gradients. The region  can be found
numerically from Theorem 9 in the Appendix. The results for sample points on the boundary

of  are given at Table 1 (see also Figure 3(a)). From Theorem 6.1, for any pair ,
there exists a function Ca(p, γ, λ) (depends on the parameters d, ∊, δ, θ as well) such that
when (λ, v) ∈ Gp,γ and is bounded above and below by two curves:

(74)

then the pair (λ, v) is acceptable to (p, γ). For parameters studied in this paper, numerical
computation shows that the curve v = Ca(p, γ, λ) is identical to the upper bound of the region
Gp,γ (See Figure 2).

From Table 1, the domain  can be given approximately by (see also Figure 3(a))
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(75)

Furthermore, from the numerical results (not included herein), the function Cb(p, γ, λ) can
be approximated by

(76)

where {Cbi(p, γ)} are, respectively, ratios of second and first degree polynomials of p and γ.
In particular, we have Cb(p, γ, λ) > 0. The function Cb(p, γ, λ) is found by minimizing the
square error χ2 = Σi ∣ri∣

2 where ri are the difference between each original data point and its
fitted value. In our sample study, we have used over 4300 data points giving only a 7%
square error for Cb (see Figure 4). The upper bound Ca(p, γ, λ) in 74 is consistent with the
upper bound of Gp,γ with analysis formulate given in Appendix A.3.2 (See Proposition 9).

In terms of ζ, the relations 74-76 can be rewritten as (see also Figure 3(b))

(77)

(and of course (λ, v) ∈ Gp,γ) and

(78)

with

(79)

The results in Proposition 7 and Theorem 6.1 and the relations 78 and 77 are summarized in
the following theorem.

Theorem 6.2—For System CN, we have either

1. Rv > 0.2 (and consequently no robust multi-fate gradients) if the positive parameter
ζ = pγ/(1 − p) satisfies the inequality

or

2. Rv < 0.2 (so that the relevant multi-fate gradients are robust) if (i) the condition 75
is met, (ii) the parameter pair (λ, v) is acceptable to (p,γ), or equivalently, the pair
(λ, v) satisfies 74 with the function Cb in 74 accurately approximated by 76 (with
Ca to be the upper bound of Gp,γ).

The two conditions (i) and (ii) in the part (2) of Theorem 6.2 may be given in terms of ζ
instead of p in which case 74, 75 and 76 would be replaced by 77, 78 and 79, respectively.
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7. Concluding Remarks
In this paper, we examine the robustness of steady state morphogen gradients capable of
differential cell signaling with respect to a two-fold change of morphogen production rate.
Quantitative measures of multi-fate signaling gradients and robust of signaling gradients are
specified and used to delineate the occurrence of robust multi-fate gradients in the parameter
space. By mathematical analysis, we succeeded in validating the simulation results in [20].
The main result is Theorem 6.2 which assures the existence of robust multi-fate signaling
gradients if and only if the two parameters ζ and γ,

are both sufficiently small in a specified range. Biologically, the required conditions are met
by

1. a receptor degradative flux sufficiently low relative to that of non-receptor, and

2. the synthesis rate of free ligand is sufficiently high(for high receptor occupancy at
the vicinity of the ligand production region), but not too high to saturate available
receptors in signaling cells.

Together, they imply that System CN can have robust multi-fate gradients only if the non-
receptors play a dominant role in forming the gradient.

To specify the role of non-receptor in robustness, we write down the equation for b(x) with x
in (d, 1):

(80)

for (d < x < 1) with b(1) = 0. Evidently, 80 is unaffected by any change of the normalized
ligand synthesis rate since v does not appear explicitly in the equation. Consequently, its
solution b(x; λ, v) depends on v only through the auxiliary condition at x = d. Let bd(v) =
b(d; λ, v) and bd(2v) = b(d; λ, 2v); then we would have good robustness as measured by
Rv(p, λ, γ) if bd(v) ≃ bd(2v). Recall that

For the LLSR case, we have from Subsections 3.2 and 4.4

so that we have bd(2v) ≃ 2bd(v) and hence the gradients are not robust. At the other end of
the spectrum, we have from Subsection 3.4 bd(v) ~ bd(2v) ~ 1 for the HSLR case except in a
narrow layer adjacent to the x = 1; the system is therefore robust. But we saw in Subsection
4.2 that the signal gradient is not multi-fate given vd ⪢ max{1, λ2, λ2/γ}. Thus, a robust
multi-fate signaling gradient requires a ligand synthesis rate v that is 1) high enough to
induce a sufficiently high receptor occupancy so that the (normalized) level of ligand-
receptor concentration is insensitive to a substantial variation of v, but at the same time 2)
not too high to saturate the available receptors so that the signaling ligand-receptor gradient
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remains multi-fate. As long as there are unoccupied receptors, high ligand synthesis rate
would continue to produce more ligand to saturate them unless these additional ligands can
be otherwise engaged and (proportionally) unavailable for binding with the unoccupied
receptors. The presence of abundance of non-receptor with strong affinity for binding with
ligand and for rapid degradation of the resulting non-signaling ligand-non-receptor
compounds provides the mechanism to derail free ligands from association with signaling
receptors. Numerical simulations in [20] support this scenario while the analysis of this
paper delimit the region in the four dimensional parameter (p, γ, λ, v) space favorable to the
occurrence of such robust multi-fate signaling gradients.

The presence of abundance of non-receptor with strong affinity for binding with ligand and
for rapid degradation of the resulting non-signaling ligand-non-receptor compounds can be a
mechanism to derail free ligands from association with receptors to result in robust
development of other biological organisms. While the mathematical analysis leading to the
delimitation of region in the parameter space favorable to the occurrence of such robust
multi-fate signaling gradients may or may not be applicable to other gradient systems, the
quantification of multi-fate signaling gradients and robust measures should remain central to
robustness studies of the biological developments based on appropriate signaling morphogen
gradients.
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Appendix A: Comparison Theorems

Theorem A.1
Consider the boundary value problem

(81)

If q(x, u) is continuous with respect to x and u, and

for all x in [0, 1] and u ≥ 0 with q,u = ∂q/∂u, then the solution of 81 exists and is unique.
Moreover, the solution u(x) satisfies the inequality

for all x in [0, 1].

Proof
Let

Lei et al. Page 28

Discrete Continuous Dyn Syst Ser B. Author manuscript; available in PMC 2013 October 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



It is easy to verify that  and  are, respectively, upper and lower solution of 81.
Existence of a solution follows from a theorem of Sattinger (Theorem 2.1 of [27]), and the

solution satisfies .

To prove the uniqueness, assume that we have two solutions u1(x), u2(x). Let w(x) = u1(x) −
u2(x); then w(x) satisfies

where

by q,u(x, u) ≥ 0. Hence, we have

Integration by parts gives

With both integrands non-negative, we conclude w(x) ≡ 0, for all xin [0, 1].

The following result for the comparison of solutions of two different BVP in differential
equation is a direct consequence of maximum principle (Theorem 4.1 of [26]).

Theorem A.2
If λ1(x) > λ2(x), and if w1(x) > 0 and w2(x) are solutions of the BVP

and

respectively, then w1(x) ≤ w2(x), ∀x ∈ [0, 1].

Lei et al. Page 29

Discrete Continuous Dyn Syst Ser B. Author manuscript; available in PMC 2013 October 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Appendix B: λ* Monotone Decreasing with v

Lemma B.1
Let λ* (λ, v) is the unique positive solution of 49, then

Proof
Upon differentiating 49 with respect to v, we obtain

where , and

Since F(a) > 0 and F’(a) < 0 for a > 0, it is sufficient to show that . We first
observe that w > −1. To this end, we note

from which we get w > −1.

Next, we see from F’(u) < 0 and 28

Hence, the theorem is proved.

Appendix C: Region of (λ, v) Acceptable to (p, γ)

C.1. Proof of Theorem 4.3
Proof

We prove the theorem by verifying the requirements {I’, II’, III’} of the definition of a
multi-fate signaling gradient are met. First of all, when (λ, v) ∈ Gp,γ, we have from 50 and
56
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(82)

and from 57 and 50

Therefore the requirements II’ and III’ are satisfied.

For I’, we note that the function

is an increase function when u ≥ 0 (see the proof below). If (λ, v) ∈ Gp,γ so that λ ≤ Λ(p, γ),
we have

when aθ/(5 + 4aθ) ≤ a(x) ≤ 4aθ/(5 + aθ), and hence I’ is also satisfied.

The fact that H(u) is an increase function is given below. We have

where

By h(0) = 0 and

we have h(u) > 0 and thus H’(u) > 0.

C.2. Explicit Characterization of Gp,γ

Let
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(83)

and v2(λ) to be the solution of following equation for v

(84)

where λ* is the solution of 49 and is therefore a function of p, γ, λ and v. In particular λ2
does not depend on v.

Proposition 9

(85)

Proof
First, for (λ, v) in the part of the parameter space originally defined in 50, we want to show
that (λ, v) is in Gp,γ as specified by 85. In this case, it is evident that λ ≤ λ2 and v ≥ v1(λ).
We only need to show that v ≤ v2(λ). But from Lemmas 3.1 and B.1, we have

(86)

and, given the upper bound on v in 50,

which implies v ≤ v2(λ).

Conversely, suppose (λ, v) is as specified by 84, then the condition on λ and the first half of
the condition on v in (50) are met. For the remaining upper bound on v, we have from

(87)

with the last inequality assured by 86 given v ≤ v2(λ). Thus, if the parameter pair (λ, v)
satisfies 85, it also satisfies 50.

To determine the set Gp,γ for a given pair of (p, γ) by Proposition 9, we only need to find
v1(λ) and v2(λ) for any λ ∈ [0, λ2] from the second relation in 83 and 84, respectively.
Sample regions for several pairs of (p, γ) are given in Figure 2.
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Figure 1.
The function J(p,γ) in Proposition 6.
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Figure 2.
The parameter ranges for multi-fate gradient and robust multi-fate gradient with given p and
γ (the points with robust multi-fate gradient are marked by dots).
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Figure 3.
The parameter range for good (region ‘R’) and bad (region ‘N’) robustness. (a) The range in
the (p, γ) space. (b) The range for the (γ, ζ) space. The region of ‘N’ means that for any (p,
γ) (or (ζ, γ)) from the region and any (λ, v) acceptable to (p, γ), the system is not robust for
the two fold of ligand synthesis (Rv(p, λ, v) > 0.2). The region of ‘R’ means that for any (p,
γ) (or (ζ, γ)) from the range, there exist (λ, v) that acceptable to (p, γ) such that the system is
robust for the two-fold increase of ligand synthesis (Rv(p, λ, v) ≤ 0.2). In (b), the circles are
original data from the simulations, and the dashed lines are fitted values through 70 and 78,
respectively.
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Figure 4.
The original data and fitted values of the function Cb(p, γ, λ) in 76.
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