
UNIVERSITY OF CALIFORNIA
RIVERSIDE

Acceleration of Streaming Applications on FPGAs from High Level Constructs

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Abhishek Mitra

December 2008

Dissertation Committee:
Dr. Walid Najjar, Chairperson
Dr. Laxmi Bhuyan
Dr. Vassilis Tsotras

Copyright by
Abhishek Mitra

2008

The Dissertation of Abhishek Mitra is approved:

Committee Chairperson

University of California, Riverside

Acknowledgements

PhD. is an interesting journey, chock full of twists, turns, crossroads, and unchartered ter-

ritories, and I would like to profusely thank my advisor Prof. Walid Najjar for guiding me

through and for ensuring my reaching of the final destination. I am also extremely grateful

to Prof. Laxmi Bhuyan for his able guidance, help and encouragement. I am also thankful

to Prof. Vasillis Tsotras for his guidance during the last leg of my research. Finally I am

thankful to Prof. Satish Tripathi for providing me an opportunity to study at UC Riverside.

Over the course of last five years I have had the honor of working with excellent col-

leagues, to whom I am grateful for their constructive criticisms and suggestions. I would

like to thank my colleagues (Anirban Banerjee, John Cortes, Jason Villarreal, Petko Bakalov,

Marcos Vieira, David Sheldon, Edward Fernandez, Scott Sirowy, Joon Lee, Thomas Repan-

tis, Jingnan Yao, and Roger Moussali).

I am grateful and thankful to my parents Anjusree Mitra and Vishwajit Mitra and my

sister Ahana Mitra for their constant encouragement. Moreover I am extremely thankful to

Poulomi Dasgupta. She was a real catalyst whenever the going got slow or things didnt work

out that well. I am grateful to my best friend Dr. Karuppiah Ramkumar for his constant

encouragement.

Due thanks go to Terri, Amy, Madie, Vanoohi from CSE Deparment and Kelly and Deja

from IEC for helping me out with administrative tasks.

My classmates from college Kumar Kartikeya, Ashish Gupta, Nitin Agarwal, Subhek

Garg, Sampan Arora, Sheetendu M. Mani and Abhay P. Singh were always there with a

iv

helping hand, and I would like to thank them for their help and motivation.

Finally I would also like to thank my current and past room mates Shalendra Chhabra,

Varun Kohli, Arinder Arora and Anirban Banerjee for all their help outside of the school.

v

ABSTRACT OF THE DISSERTATION

Acceleration of Streaming Applications on FPGAs from High Level Constructs

by

Abhishek Mitra

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2008

Dr. Walid Najjar, Chairperson

Field Programmable Gate Arrays (FPGA) based Reconfigurable Computing hardware are

programmed with specialized Hardware Description Language (HDL). FPGAs are increas-

ingly being made available as co-processors on high-performance computation systems. The

generation of HDL from high-level software languages is way too complex for a human de-

veloper to handle in a reasonable amount of time due to incompatibilities in the execution

paradigm between a traditional CPU and on an FPGA. This error prone process manifests it-

self as the main impediment to a wider use of reconfigurable platforms in high-performance

computing. Compilation frameworks are thus a valuable tool for translating traditional high-

level software constructs to HDL for implementation on FPGAs.

This dissertation details how we leverage FPGAs for accelerating PERL Compatible Reg-

ular Expressions (PCRE), SNORT Intrusion Detection System (IDS), Common Processing

vi

Functions, and XML Filtering, by compiling high-level software language to HDL.

In this dissertation, we detail the implementation of a tool that translates PCRE code into

hardware that is mapped to an FPGA. Our compiler generates VHDL code corresponding to

the opcodes generated from regular expressions. We have tuned our hardware implementa-

tion to utilize an NFA based regular expression engine using greedy quantifiers in much the

same way as the software based PCRE engine does.

The SNORT IDS system, incorporates the software based PCRE engine for regular ex-

pression matching on the payload. We benchmark the performance of regular expression

based rules from SNORT IDS using software only execution on a multi-processor system.

We demonstrate the case when 30% or more number of network packets trigger regular ex-

pression matching, the software based IDS cannot maintain 10 Gbps throughout, and thus

requires hardware acceleration.

Using our PCRE to HDL compilation system, we implement regular expressions from

the SNORT ruleset on to the FPGA. These rulesets are organized into one of 16 banks on

the FPGA and all operate in parallel. We have implemented more than two hundred PCRE

engines based on a plethora of SNORT IDS regular expression rules. These were mapped

to the Xilinx Virtex-4 LX200 FPGA on the SGI RASC RC 100 Blade connected to the SGI

ALTIX 4700 supercomputing system as a testbed. We obtain an interface throughput of 12.9

GBits/s and a speedup of 353X over software based PCRE execution. We also show that it is

possible to scale down the processing related power consumption of an IDS by two orders of

magnitude using an FPGA .

vii

In this dissertation we describe software tools as well as an IDS architecture that leverages

reprogrammability of FPGA hardware. Our software tools for Configurable System on a

Chip (CSoCs) generates the communication interface between the software running on the

CPU and a tightly coupled IP core based co-processing system. Our tool generates hardware

wrappers for the IP Cores that makes them look like a C function invocation in the source

code. We also use our tool to support partial reconfiguration: the same wrapper is used for a

multitude of IP Cores and the user selects the core to be invoked in the program.

We also demonstrate an adaptable regular expression based IDS using Virtex-4 LX 200

FPGAs that have been floor-planned for partial reconfiguration. Our novel design allows

partial reprogramming across 16 banks of regular expression rule-sets. We implement 448

different regular expressions on two FPGAs and perform multiple partial and full recon-

figurations. We measure the throughout of the integrated Field Programmable Gate Array

(FPGA) and multiprocessor SGI Altix system with varying number of reconfigurations per

minute. The adaptive IDS can provide better than 10 Gbps throughput even with 32 partial

reconfigurations per minute.

In this dissertation we demonstrate a four step approach that converts user profiles ex-

pressed as XPath queries into HDL, suitable for implementation on FPGA. We convert

XPaths to PCRE, cluster them by their common prefixes, compile the PCRE to HDL and

finally synthesize and implement them on FPGA. This hardware is usable for XML filter-

ing in pub-sub applications. Our benchmarks reveal orders of magnitude improvement in

running time while running XML filtering on FPGA, when compared to the state of the art

viii

software based XML filtering systems.

Finally, in this dissertation we demonstrate a FPGA based implementation of Prüfer se-

quence generation hardware for streaming XML document. We match the stream with several

Prüfer sequence blocks obtained from twig queries.

ix

Contents

List of Tables xv

List of Figures xvi

1 Introduction 1

1.1 FPGAs for Code Acceleration . 2

1.2 Regular Expression to HDL . 6

1.3 FPGA Reprogrammability . 8

1.4 XML Filtering on FPGA . 10

1.5 Contributions . 12

1.5.1 Compiling PCRE to FPGA and accelerating SNORT IDS 12

1.5.2 Dynamic Co-Processor Interface Automation 15

1.5.3 Adaptive Hardware/Software Regular Expression Based IDS 16

1.5.4 Boosting XML filtering with a scalable FPGA-based architecture . . 18

2 Related Work 21

x

2.1 Network Intrusion Detection Systems . 21

2.1.1 IDS engines with String Matching 22

2.1.2 IDS engines with Regular Expression Matching 24

2.2 Interfacing IP cores on FPGA . 28

2.3 Partial Reconfiguration on FPGA . 28

2.4 XML Filtering . 34

2.4.1 Software Based Filtering . 34

2.4.2 Hardware Based Filtering . 36

3 Compiling PCRE to FPGA via opcodes and accelerating SNORT 38

3.1 Regular Expressions, IDS and FPGA Acceleration 38

3.1.1 PCRE . 39

3.1.2 SNORT IDS and PCRE . 39

3.1.3 Accelerating PCRE on FPGA . 40

3.1.4 Finite Automaton on FPGA . 42

3.2 SNORT IDS . 42

3.2.1 PCRE rules in SNORT . 43

3.3 Compiling PERL Compatible Regular Expressions to FPGA 46

3.3.1 PCRE Opcodes . 48

3.3.2 PCRE Opcode Frequencies in SNORT Rules 49

3.4 Compilation Flow . 50

xi

3.4.1 Compilation Overview . 52

3.4.2 Common Prefix Optimization . 54

3.4.3 Hardware Implementation of PCRE Opcodes 54

3.4.4 NFA Implementation on FPGA . 65

3.5 Experimental Results . 69

3.5.1 Software only performance with multi-cpu load balancing 70

3.5.2 Hardware Benchmark and Comparison with Single Threaded Soft-

ware Execution . 75

3.5.3 Single Processor Power Consumption Analysis 80

3.6 Conclusion . 82

4 Partial Reconfiguration on FPGA 84

4.1 Dynamic Co-Processor Interface Automation 85

4.2 System Overview for IP Core Wrapper Generation and Partial Reconfiguration 88

4.2.1 The CSoC platform . 88

4.2.2 APU (Auxiliary Processing Unit) on Virtex-4 FX 89

4.2.3 IP Cores . 90

4.2.4 ROCCC Overview . 92

4.2.5 Interface Synthesis . 93

4.2.6 Experimental Results . 99

4.3 Adaptive Hardware/Software Regular Expression Based IDS 101

xii

4.3.1 The FPGA Architecture . 104

4.3.2 Xilinx Partial Reconfiguration Flow 104

4.3.3 The Hardware/Software Integrated Test System 105

4.3.4 Hardware Performance . 107

4.3.5 Hardware/Software Performance with Reconfiguration 109

4.4 Conclusion . 111

5 Boosting XML filtering with a scalable FPGA-based architecture 113

5.1 XML Pub-sub . 113

5.1.1 Using FPGA for XML Filtering . 116

5.2 Compilation System Overview . 119

5.2.1 XPath Expressions . 119

5.2.2 XPath on FPGA . 120

5.2.3 Dictionary Replacement . 121

5.2.4 XPath to Stack-enhanced Regular Expressions 122

5.2.5 Common Prefix Optimization . 125

5.2.6 Area Efficient Character Decoder Hardware 126

5.2.7 Regular Expression to VHDL compilation 127

5.2.8 FPGA Implementation . 128

5.3 Twig Profiles on FPGAs . 130

5.3.1 Overview of Prüfer Sequences . 131

xiii

5.3.2 FPGA implementation of Prüfer subsequence matching 133

5.4 Experimental Evaluation . 136

5.4.1 Performance and Speedup . 142

5.5 Conclusion . 143

6 Conclusions 145

6.1 PCRE to FPGA compiler . 145

6.2 Accelerating regular expression of SNORT IDS 146

6.3 Dynamic Co-Processors on FPGA . 147

6.4 Adaptive Hardware-Software Regular Expressions based IDS 148

6.5 Scalable Architecture for XML Filtering on FPGA 149

Bibliography 150

xiv

List of Tables

3.1 Example Rules in SNORT DB 2.4 . 45

3.2 Format of a typical PCRE Rule in SNORT IDS with the optional modifiers . . 45

3.3 Example snippets from SNORT Rules highlighting the use of PCRE operators 46

3.4 Occurences of important PCRE operators in our target SNORT DB 2.4 48

3.5 Simple Quantifiers Occurrence Table . 59

3.6 Ranged Quantifiers Occurrence Table . 60

3.7 Unbounded Quantifiers Occurrence Table 61

4.1 Area Covered by the Dynamically instantiated IP Cores 100

4.2 The Area Covered by IP Wrappers and Wrapped IP Cores. 101

5.1 PCRE operators used for implementing XPath profiles on FPGA 122

xv

List of Figures

1.1 Demonstration of the throughput of a CPU and FPGA: A Highway Analogy.

An FPGA with a ten times slower clock rate can offer 10X the throughput

of a dual core CPU by implementing two hundred parallel data paths on the

fabric. 3

3.1 A Finite Automata Implemented on FPGA using LUTs. 43

3.2 SNORT IDS and PCRE Engine usage on a software only Implementation.

pcre compile function compiles the regular expression while pcre execute

function runs the engine of the payload . 45

3.3 Frequency Distirbution of PCRE opcodes in SNORT DB 2.4. The most fre-

quently occurring opcode is the character-match opcode. 50

3.4 Cumulative Distirbution of PCRE OPCODES in SNORT DB 2.4. The five

OPCODES viz. Match, star, Character Class, Alternation and constrained

repetition make up for the most frequently occurring cases of OPCODES. . . 51

xvi

3.5 The Character(s) Match Opcode. The input (i register) is compared with the

data in the ROM and the output (match out) is triggered high in case of a

match. 55

3.6 Implementation Speed in (MHz) of the character-match opcode versus char-

acter size sets for the two implementation types. Implementing using IP

Core provides a faster clock speed, as compared to the synthesized design

for match sizes greater than 2 Bytes. 56

3.7 Implementation area in FPGA slices of the character-match opcode versus

character size sets for the two implementation types. The area of the opcode

block increases linearly with increasing match size. Moreover the synthe-

sized hardware is more area efficient as compared to the IP Core based block

for a given match size . 56

3.8 The Character Class Match Opcode. 57

3.9 The * repetition Match Opcode. 57

3.10 The + repetition Match Opcode. 58

3.11 The quantifier Match Opcode. 59

3.12 Speed of unrestricted counters in (MHz) with increasing count size and the

two implementation types. For counts until 8 bit the synthesized counters are

faster, while for 9 and 10 bit counters, the IP Core is slightly faster. 61

xvii

3.13 Speed of restricted counters in (MHz) with increasing sizes and the two im-

plementation types. The 4 bit and 6 bit restricted counters are faster when

synthesized while the performance of the synthesized and IP core is compa-

rable for higher count sizes . 62

3.14 Variation of Area of un-restricted counters on FPGA with increasing count

size and the two implementation types. The area of the counters implemented

using IP Core is lesser when compared to the area of synthesized counters. . 63

3.15 Variation of Area of counters with restricted count on FPGA with increasing

count size and the two implementation types. Restricting the count i.e. count-

ing before the maximum range of the counter, imposes substantial penalty on

the size of the counter which results in more than doubling the area of counts

up to 8 bit and almost triples the area for the 9 and 10 bit counters. 64

3.16 The backreference Opcode. 65

3.17 Multiple NFA engines executing in parallel on a FPGA. 66

3.18 The NFA derived from the SNORT Rule ‘NetBus\s+\d+\x2E\d+’. This

NFA occupies 71 slices and can run at 331MHz. The NFA controller im-

plements flip-flops to enable subsequent stages in the NFA and generates the

match output at the final flop. The NFA controller occupies 2 slices in this

regular expression. 66

xviii

3.19 Architecture of parallel PCRE Engines on Virtex-4 LX 200 FPGA. Each of

the sixteen byte-wide bank obtains a character from the Memory Interface

Module and sends them to the 14 NFA engines on that bank. The BRAM is

utilized by NFAs implementing the back reference opcode. 67

3.20 Overall system using SNORT IDS and PCRE Engines on FPGA 69

3.21 Comparison of system throughput with varying number of regular expression

rules executing per TCP payload. The results are shown for software based

execution in presence of minimal malicious activity in the network payload

dump. 71

3.22 Comparison of system throughput per processor thread with varying number

of regular expression rules executing per TCP payload. The results are shown

for software based execution in presence of minimal malicious activity in the

tcp payload dump. 72

3.23 Comparison of system throughput with varying number of regular expression

rules executing per TCP payload. The results are shown for software based

execution in presence of moderate amounts of malicious activity in the tcp

payload dump. 73

3.24 Comparison of system throughput per processor thread with varying number

of regular expression rules executing per TCP payload. The results are shown

for software based execution in presence of moderate amounts of malicious

activity in the tcp payload dump. 73

xix

3.25 Comparison of system throughput with varying number of regular expression

rules executing per TCP payload. The results are shown for software based

execution in presence of high amounts of malicious activity in the tcp payload

dump. 73

3.26 Comparison of system throughput per processor thread with varying num-

ber of regular expression rules executing per TCP payload. The results are

shown for software based execution in presence of high amounts of malicious

activity in the tcp payload dump. 74

3.27 Throughput of the PCRE engines on the SGI RASC RC100 Blade as func-

tion of the number of regular expressions. The speedup is in comparison to

software execution on a 3.0 GHz Xeon. The throuput improvement is 353x

using 200 regular expressions. 77

3.28 Area (in slices) occupied by PCRE engines on the Virtex-4 FPGA on SGI

RASC RC100 Blade. The lower dark section is the fixed area cost dedicated

to the RASC Core services on the FPGA (11,012 slices). 79

3.29 Picture of the RASC RC100 Blade usable on the SGI Altix 4700 81

4.1 System Architecture of the dynamic co-processor system on FPGA 89

4.2 An example Floating Point IP Core, demonstrating the I/O interface 91

4.3 ROCCC system overview . 92

4.4 The C function call to the co-processor and the #pragma directive 94

4.5 Data flow using FSL from the Virtex-4 APU to the static wrapper 94

xx

4.6 Data flow using FSL from the Virtex-4 APU to the static wrapper 95

4.7 A compiler generated dynamic wrapper for CORDIC engine 96

4.8 The Partial Reconfiguration Module Generation Flowchart for FPGA 97

4.9 SLICE macros placed on the Dynamic / Static logic boundary 98

4.10 SLICE usage for various IP Cores, and PR Block occupancy 98

4.11 Architecture of the Sixteen Partial Reconfigurable Area blocks on the Virtex-

4 LX 200 FPGA. Each PR block consists of fourteen NFA engines. A PR

Block, expanded on the right hand side of the figure, obtains one byte payload

data through the SLICE Macro each clock cycle and outputs 14-bit match

data on completion of a match. 103

4.12 Using regular expression engines with an integrated FPGA hardware and

multiprocessor software flow . 106

4.13 System Throughput with increasing number of FPGA reconfigurations / minute.

During the FPGA reconfiguration, the software based PCRE engines are uti-

lized. Data is plotted for both partial one bank reconfiguration and complete

FPGA reconfiguration. 108

4.14 Projected System throughput with increasing numbers of DPR per minute.

With DPR, only the regexes corresponding to the NFA bank being repro-

grammed need to be run in software. 111

5.1 An XML Publish Subscribe System. A published XML document stream is

parsed and filtered through multiple subscriber profiles. 115

xxi

5.2 An example XML tree . 119

5.3 Compilation Flow of XPath expressions to FPGAs. The XPATH profiles go

through a four step compilation process to generate the HDL. The lower gray

section denotes the hardware flow for converting HDL to a bitstream for the

FPGA. 121

5.4 The block diagram for XPath <a0>//<b0>, showing the implementation of

the ancestor-descendant axis . 123

5.5 The block diagram for XPath <a0>/<b0>, showing the implementation of

the parent-child axis. The additional hardware includes the tag filter, stack

and TOS match blocks . 125

5.6 Block diagram of the Character Match Hardware Block for a tag <a0>. The

hardware is a 8-bit x 4 comparator block. 127

5.7 Block diagram of the Character Pre-Decoder Hardware Block for a tag <a0>.

The hardware is a 1-bit x 4 comparator block. 128

5.8 An example FPGA organization denoting the input / output data path with

sixteen XPath expressions. 129

5.9 XML document, Tree and Prufer sequence representation. 130

5.10 The block diagram for twig matching hardware. This block generates Prüfer

sequence of the XML tags from a streaming document and matches it with

Prüfer sequences of the queries in twig form. This figure is an example of

the query a0[b0]/c0. 135

xxii

5.11 The graph on the top demonstrates variation of FPGA area (in SLICES)

with increasing number of two tags long XPaths. The graph at the bottom

demonstrates the variation of throughput of the FPGA hardware in MHz

with increasing number of two tags long XPaths. The four cases consid-

ered are common prefix optimized and unoptimized XPaths with character

match blocks and character decoding hardware. 138

5.12 The graph on the top demonstrates variation of FPGA area (in SLICES)

with increasing number of four tags long XPaths. The graph at the bot-

tom demonstrates the variation of throughput of the FPGA hardware in MHz

with increasing number of four tags long XPaths. The four cases considered

are common prefix optimized and unoptimized XPaths with character match

blocks and character decoding hardware. 139

5.13 The graph on the top demonstrates variation of FPGA area (in SLICES)

with increasing number of four tags long XPaths. The graph at the bot-

tom demonstrates the variation of throughput of the FPGA hardware in MHz

with increasing number of four tags long XPaths. The four cases considered

are common prefix optimized and unoptimized XPaths with character match

blocks and character decoding hardware. 140

xxiii

5.14 The graph on the top demonstrates variation of FPGA area (in SLICES) with

increasing number of four tags and eight tags long sequence matching paths

for twig queries. The graph at the bottom demonstrates the variation of clock

speed of the FPGA hardware in MHz with increasing number four tags and

eight tags long sequence matching paths for twig queries. 141

xxiv

Chapter 1

Introduction

Stream data processing and inspection involves executing a set of pre-defined processing

steps on the streamed sequence of data. Examples of network oriented stream content pro-

cessing applications include IDS (Intrusion Detection Systems), XML (eXtensible Markup

Language) data filtering, video transcoding, image compression, etc. Due to the nature of

stream content processing, it involves very low storage overhead during the actual process-

ing step. Moreover stream data processing is highly parallelizable because a stream can

be processed across multiple independent engine threads. In fact multiple streams can be

processed by multiple parallel threads, all independent of each other. Such kind of appli-

cations are amenable for hardware acceleration using silicon devices such as FPGA (Field

Programmable Gate Array), ASICs (Application Specific Integrated Circuit) and GP-GPUs

(General Purpose Graphics Processing Unit) [127].

1

1.1 FPGAs for Code Acceleration

FPGA based reconfigurable computing systems are being commonly used to speed up CPU

(Central Processing Unit) intensive applications. FPGAs allow speedup of slow sequential

software by efficient hardware implementation. Streaming applications are highly suitable

for speedup on FPGAs, because the required processing steps can be implemented efficiently

as a datapath on the FPGA. Moreover a datapath implemented on FPGAs alleviate the inef-

ficiencies of Von Neumann computing paradigm, by trimming down load store and branch

instructions from the traditional CPU datapath.

Modern FPGA devices benefit from Moores’ Law, latest silicon processes and feature

size. FPGAs provide immense amounts of programmable logic blocks which can be ex-

ploited for implementing parallel datapaths from CPU intensive algorithms. Another impor-

tant advantage of FPGA with respect to other available acceleration devices is its reconfig-

urablity. FPGAs are programmable hardware devices, and various innovative and custom

digital circuits can be implemented on them. FPGAs can be also be reprogrammed to obtain

a multitude of hardware capabilities, at different times, as required by the implementation

scenario. One drawback of an FPGA when compared to an ASIC or a CPU is its low clock

speed, usually an order slower than the highest performing CPUs. Nevertheless, FPGAs can

more than make up for the slow clock rate by implementing several parallel datapaths.

Figure 1.1 demonstrates a simple explanation of how an FPGA, compares to a dual core

CPU operating at ten times the clock rate of the FPGA. A datapath could be analogous to a

2

highway and the traffic on the highway is analogous to data moving on the datapath and the

speed limit is analogous to the clock speed of the device. A dual core CPU implements two

parallel data path at a clock rate of 100 units. The datapath could be two threads of regular

expression matching engines. On an FPGA, several of these engines can be optimized and

implemented. Each engine operates in parallel, running at a clock rate of 10 units. If we

measure the overall throughput of both the approaches, it can be ascertained that the FPGA

provides ten times the throughput than what is provided by the CPU.

2 parallel Highways

SPEED
LIMIT

100

CPU Throughput = 2 x 100 = 200.

Processor (Dual core)

200 parallel Highways

SPEED
LIMIT

10

FPGA Throughput = 200 X 10 = 2000 !

200 Datapaths on a FPGA

Figure 1.1: Demonstration of the throughput of a CPU and FPGA: A Highway Analogy. An
FPGA with a ten times slower clock rate can offer 10X the throughput of a dual core CPU
by implementing two hundred parallel data paths on the fabric.

FPGAs are increasingly being made available as co-processors on high-performance

computation systems. In one kind of configuration, the FPGAs are available in blades, which

are directly plugged into the backplane of a server. The SGI RASC Blade [4] available on

SGI Altix 4700 [151] shared memory computing system is one such example. The available

maximum data throughput for this blade is 6.4 GBytes/s. In other kinds of implementa-

tions, FPGAs are usually packaged in modules, which are dropped in CPU sockets on server

3

motherboards. Examples include bridged FSB-FPGA [123] on Intel Xeon platforms, Quick-

path interconnect [191] on new Intel platforms and Hypertransport [12] interfaced FPGA on

AMD Opteron platforms. One of the first systems of this kind is the Cray XD-1 supercom-

puter [1]. The Intel FSB FPGA architecture provides upwards of 8.5GBytes/s throughput.

The Xtremedata [5] XD1000 coprocessor device [210] using a single channel 8-bit Hyper-

transport provides 0.5 GBytes/s throughput.

High density FPGAs such as Xilinx Virtex-4LX 200 [195], Virtex-5 LX [207] and Al-

tera Stratix II EP2S80F [9] containing millions of logic gates, abundant high speed dual port

memory hardware ALU blocks on current feature sized silicon fabric (90nm, 65nm, 40nm)

have been used in these accelerator systems. Modern FPGAs also integrate a (hard or soft)

processor core, with the reconfigurable fabric. These FPGAs provide multiple specialized

I/O transceivers [206] [10] which can operate from 600Mbps to 6 Gbps. The acceleration

architecture involves streaming input data from a host processor to the FPGA, which is then

processed by the various hardware datapaths, with the eventual streaming out of the results

back to the host processor. The host processor is relegated to the simple task of setting up

DMA based data transfer from memory to the FPGA, thus resulting in very high through-

puts [10] [206]. A typical FPGA based application acceleration scenario includes profiling /

inspecting the software code to ascertain the slowest executing program components. These

program components are transformed to equivalent HDL (Hardware Description Languages)

for implementation on FPGA. The HDL code is synthesized and implemented on FPGA.

Simulation after Place and Route can provide an accurate representation of the theoretical

4

speedup, provided by the FPGA. Various application from a wide range of domain have been

successfully accelerated on FPGAs. The application domain for utilizing FPGA based code

acceleration include computer databases [209], regular expressions [116] [162], molecular

dynamics [186] [185], image and signal processing [73] [117] [115], bio-infomatics [55][44],

option pricing models [211], signature detection, [168], etc.

The transformation from a high level language description to HDL is a very challenging

task, due to incompatibilities in the execution paradigm between a traditional CPU and on

an FPGA. Architectural limitations on an FPGA based accelerator includes lack of pointer

based memory addressing, lack of dynamic memory allocation, limited stack size, lack of an

ISA (Instruction Set Architecture) and absence of cached memory access. Thus, to accelerate

a program written in high level language on FPGA the above mentioned limitations have to

be factored in before conversion to HDL. As an example, pointers need to be converted to

array accesses in C loop nests and regular expression that demand nesting on a stack need to

be simplified. Manual translation from high level programming language to HDL has been

used in the past, but it quickly manifests itself as an impediment to a wider use and is prone

to errors. Compilation frameworks thus are a valuable tool for translating traditional high

level description languages to FPGA.

5

1.2 Regular Expression to HDL

An example of a widely used inspection and parsing application is regular expression. In

regular expression matching process, the input stream is inspected for the existence of one or

more member strings of a given regular expression. Regular expressions are usually imple-

mented as one of DFA or NFA in software based systems. DFA implementation is unsuitable

for hardware due to the state space explosion of implementing a DFA, and the accompanying

memory requirements. NFA based implementations try to mimic parallelism on software ba-

sed execution by using a stack. Since the software can evaluate only one transition at a given

time, a stack based implementation can store the other transitions for future evaluation at a

later time. On the other hand FPGA provides inherent hardware based parallelism, which

allows an automata to evaluate more than one state transition at the same time. Therefore

NFA based implementations are extremely suitable on FPGAs. One area which has seen

a rapid growth in use of regular expressions is Intrusion Detection System (IDS). Increase

in malicious activities using computer networks as a medium, has also resulted in an in-

creased deployment of IDS that scan and intercept network packets containing signatures of

such activities. SNORT IDS, one the most popular open source IDS uses PERL compatible

regular expressions (PCRE) for its regular expression based rules. Network payload data

are streamed to a PCRE engine and is tested with a regular expression deemed suitable by

SNORT. The NFA based regular expression model used by PCRE imposes a high demand

on the computation power needed to execute regular expression matches. With current net-

6

work data links approaching 10 Gbps and higher, software based regular expression engines

working on network payloads are unable to cope up with the link throughput while looking

for malicious signatures within network packets, especially during an active attack. Thus a

FPGA based implementation of regular expression rules can result in speeding up of an IDS.

More so, since a network payload is frequently tested on more than one regular expression

rule, an FPGA based accelerator can parallelize the regular expression matching, by testing

the payload through the required rules simultaneously.

Our compilation tool converts a PCRE to HDL via PCRE opcodes. This tool solves a very

important limitation towards implementation of PCRE on FPGA. This tools uses the front

end parser of the PCRE compiler which produces opcodes based on the regular expression

operands which are in turn obtained from a regular expression. In the original software

implementation, these opcodes are executed by a software based PCRE engine running on

a processor. In order to accelerate PCRE, our tool allows us to implement the opcodes on

a FPGA based PCRE engine. The current implementation of the tool operates within the

limitations of FPGA hardware and does not currently support regular expression operations

that could require nesting / recursion. Our tool compiles the PCRE opcodes obtained from

a regular expression and creates HDL code for each of them. Our compilation tool then

integrates the hardware opcode blocks with a NFA controller which is then implemented

on a FPGA. Moreover multiple regular expression rules are connected to the same input

data stream, allowing a network payload to be tested against multiple rules at the same time.

Multiple input data streams can also be matched in parallel banks on suitable FPGA hardware

7

that supports multiple input streams, for example SGI RASC Blade.

In a load balanced software implementation of SNORT, multiple IDS processes generate

multiple network payload test requests, which are processed by multiple instances of PCRE

engines in parallel. We solve the problem of accelerating such systems by implementing

multiple banks of regular expressions, with each regular expression bank catering to one of

the IDS process. With a 128-bit wide input data bus (available on SGI RASC Blade), a single

FPGA can cater to sixteen 8-bit input payload threads. Additional FPGAs can implement

many more regular expression banks or can replicate the banks, as deemed necessary.

1.3 FPGA Reprogrammability

Unlike ASICs and hard silicon devices, FPGAs allow reprogrammability of the hardware.

This powerful feature increases the versatility of FPGAs, and increases the number of ap-

plications that can be accelerated. FPGA based accelerators typically utilize a fixed width

input / output data interface. The accelerator hardware block connects to this interface and

thus is able to send / receive data from the host processor. Interfacing the available library

of accelerator blocks to the FPGA interface is a time-consuming and tedious task which al-

most always, needs to be taken care of manually. The system designer is left with the task of

interfacing each and every accelerator blocks, (usually available as IP cores) to the data in-

terface. In order to solve this problem, we have developed a tool that automatically generates

the communication interface between the data interface and a tightly coupled IP core based

8

accelerator (co-processor) system on a CSoC (Configurable Systems on a Chip) i.e. Virtex-4

FX FPGA. It generates hardware wrappers for the IP core that makes the hardware look like

a C function invocation in the host processor source code. Thus a ‘C’ function call in the host

processor can change the functionality of the FPGA base co-processor by reprograming the

required bitstream. The SGI RASC library uses a similar mechanism by which an API call

can reprogram the Virtex-4 LX 200 FPGA on the blade with a new bitstream.

Partial reconfiguration on the FPGA makes it possible to create a system that allows

reconfiguration of pre-assigned parts of the FPGA without affecting the static parts, or in-

ducing a system-wide reset. It is a very powerful tool to overcome the area limitation of a

single FPGA platform across multiple applications. The system designer is usually left with

the task of generating the interface between static and dynamic regions of the FPGA as re-

quired for partial reconfiguration. We extend the aforementioned interface generation tool to

support partial reconfiguration, by generating an interface wrapper that delineates the static

and dynamic regions on the FPGA. This feature is useful on CSoCs that implement basic

hardware peripherals along with a co-processor on the same reconfigurable fabric.

Another application for utilizing partial reconfiguration on an FPGA are situations that

demand quick adaptability. Software defined cognitive radios have used this functionality for

a while to adapt the hardware towards external changes in the air interface.

There is a limitation to the number of regular expressions that can be implemented on an

FPGA. Fast changing network activity scenario, can lead to the IDS selecting among differ-

ent rulesets in a short period of time. Reconfiguration of the FPGA with the type of intrusion

9

detection engines required at the moment enables adaptability to change with network condi-

tions. Partial reprogrammability of the FPGA can be used to cater to such dynamic situations,

when only few rulesets of regular expression rules changes over short intervals of time. IDS

that employ these FPGA can maintain execution through software threads during the brief

moment, when the FPGA is being reconfigured Moreover an IDS with two or more FPGAs

can maintain execution on the other FPGA(s) while one of them is either partially or fully re-

configured with a different set of regular expression engines. In order to implement an adapt-

able IDS that allows a single bank of regular expression to be re-programmed keeping the

other banks intact, we have added modularity to our aforementioned regular expression ar-

chitecture. With our modular architecture, regular expression banks can be quickly swapped

in order to adapt to changing networks scenarios.

1.4 XML Filtering on FPGA

Streaming XML filtering is being used abundantly for publish/subscribe applications (or sim-

ply pub-sub). In pub-sub, the message transmission on the internet is guided by the message

content, rather than its destination IP address. Selective deliverance of parts of XML docu-

ments, is obtained by filtering the document through multiple filters described in high level

language such as XPath. In pub-sub systems, each individual subscriber interest is described

by an XPath expression. XPath expressions consists of a sequence of XML tags and the

relationship between the tags are expressed as axes. XPath infers a a tree based naviga-

10

tion over an XML document, and involves a parent-child axis and ancestor-descendant axis.

XPath profiles can be easily converted to PCRE. The XML tags are converted to character

match blocks, while the axes define the regular expression sequence. We have used a conver-

sion process to convert XPaths to PCRE. Thereafter we have employed our PCRE to HDL

compiler to implement XPath profiles on hardware. The only other addition required would

be a XML tag STACK to verify a parent-child axis. Pub-sub involves streaming the same

document across multiple XPath profiles, and thus all the subscriber profiles can execute in

parallel on a FPGA. Moreover XPath profiles share commonality in their prefix, and hence

are optimized to share the common prefix and reduce the area occupied on FPGAs.

Implementing XPath profiles on FPGAs mainly involves implementing character match-

ing blocks to identify XML tags in the input document stream. The character matching

hardware block compares sequences of characters from the input stream to a given sequence

that define an XML tag. The implemented character matching blocks for the XML tags con-

sist of many redundant blocks, the prime examples being the open tag ‘<’, close tag ‘>’,

and end tag ‘/’ characters. It is possible to simplify the design with a 8-bit stream ASCII

decoder. This decoder can be used to decode the 8-bit XML data input into one of each 256

1-bit output per clock cycle. Identifying an XML tag in the input stream would thus involve

a simple controller, one that checks for a given sequence of 1-bit decoder symbols. Due to

this simplification, the XML filter design using a ASCII decoder is area efficient and it runs

at a higher clock rate when compared to the design using character match blocks.

XML queries are also formed from twig structures, which include multiple path queries

11

in a single query. Such queries can be converted to a sequence of tags / tree nodes also

known as a Prüfer sequence. An XML document is also converted to its Prüfer sequence.

Thus the problem of matching a twig query would now involve matching the given Prüfer

sub-sequence of the twig with the Prüfer sequence of the document.

1.5 Contributions

1.5.1 Compiling PCRE to FPGA and accelerating SNORT IDS

We present a novel method to compile PCRE Operation Codes (opcodes) directly to VHDL

for parallel implementation on FPGA hardware. We implement the PCRE regular expres-

sions from the SNORT IDS using a two stage translation process. In the first stage, the

SNORT IDS rulesets are compiled using the PCRE compiler to generate PCRE opcodes. In

the second stage the PCRE opcodes are translated to VHDL hardware blocks suitable for

implementation on FPGA and connected together using a NFA based control logic. Our sys-

tem maintains the execution semantics of the software based regular expression engine on

the FPGA hardware, thus ensuring compatibility with the SNORT IDS ruleset. The interface

throughput suffices for wire-speed payload scanning of even the fastest available ethernet

interfaces. Our design is a compile once, NFA based design, with re-compilation necessary

only for new and updated rules. We obtain more than 350X speedup with our FPGA based

regular expression engine architecture when compared to a baseline state of the art CPU, the

Intel Xeon 5160. Our design can sustain a throughput of 12.9 Gbps.

12

The specific contributions include:

• Compilation of PCRE opcode to hardware. We modified the PCRE compiler v6.7 by

adding an opcode dump module to the PCRE compilation library. We then process the

generated opcodes and related operands using successive compilation steps and convert

them to VHDL blocks. The VHDL opcode blocks are tied together in an NFA and are

synthesized and implemented on the FPGA.

• Quantitative Evaluation of PCRE opcodes. We investigate the frequency of the opcodes

which make up regular expression rules in SNORT DB2.4 using the modified version

of the PCRE compiler. We have removed the NETBIOS rules from the database since

it is suggested by the security community [54] that this ruleset be disabled because the

rules may generate a lot of false positives, and these rules are not pertinent to Internet

based traffic. We have ascertained, using the results, that the character match is the

most prominent opcode (34%) followed by the Kleene closure operator ’*’ (26%).

Our design is currently limited to the frequently occurring opcodes in SNORT DB.

Moreover due to hardware limitations, we concentrate on regular expressions that do

not involve backtracking.

• Implementation Details of the PCRE opcodes. We discuss detailed FPGA based im-

plementation of important PCRE opcodes. We compare two important implementation

paradigms i.e. utilizing IP core based opcode generation and secondly by synthesizing

the opcodes from VHDL code. We provide data on the variation of area and speed of

13

important opcodes generated using the two paradigms. We provide additional details

with respect to quantifier opcodes. We provide data on the size of counters required

to deal with the specific range of counts that occur after the compilation of SNORT

rules. We also document the variation of FPGA area with increasing number of regular

expressions.

• Implementation of SNORT Regular Expression Rules on FPGA Platform. We have

designed an FPGA based regular expression IDS with clock speed of 155MHz and

128bit payload I/O per clock cycle. It is possible to run regular expression based IDS

on the Virtex-4 LX 200 FPGA at a maximum sustained throughputs of 19.84 Gbps.

We obtain more than 350X speedup with our FPGA based regular expression engine

architecture when compared to a baseline state of the art CPU viz. the Intel Xeon 5160

and our design can sustain a throughput of 12.9 Gbps on the SGI RASC Blade.

• Detailed Benchmark of a Load Balanced IDS with Regular Expression. We conduct

detailed benchmark of software based regular expression IDS, under various network

scenarios, using three different multiprocessor systems. We demonstrate, with a first

of a kind comprehensive experiment, that, even on a thirty core Distributed Shared

Memory (DSM) system, a software based IDS using regular expression, can reduce the

network throughput from 10 Gbps to nearly 150 Mbps when the amount of malicious

activity increases in the network. We demonstrate the case when 30% or more number

of network packets trigger regular expression matching, the software based IDS cannot

14

maintain 10 Gbps throughout, and thus requires hardware acceleration.

• Comparative Evaluation of CPU and FPGAs. Multi-CPU load balanced IDS approach[63]

entails huge cost in terms of the hardware infrastructure, with the cost of components

like memory, motherboards, disk drives and also power consumption and cooling costs

adding up. We provide an analysis into the projected performance of a FPGA vis-a-

vis a high end dual core processor while executing regular expression matches, and in

this dissertation, we estimate the power savings enabled by the use of FPGAs in such

designs.

1.5.2 Dynamic Co-Processor Interface Automation

In this dissertation. we describe a software tool for automatically generating the communica-

tion interface between the software running on the CPU and a tightly coupled IP core based

co-processing system on the Virtex-4 FX FPGA. We use the software tool to extend our com-

piler for FPGA-based reconfigurable systems, ROCCC [72] which leverages the huge wealth

of IP cores by allowing the user to import these cores into the software source code. Our tool

generates hardware wrappers for the core that makes it look like a C function invocation in

the source code. Using this tool, the compiler automatically generates a wrapper structure

that would hide the timing and stateful nature of the IP Cores and makes each available to

the C language compiler, as an un-timed side-effect free function call.

We extend this tool to support partial reconfiguration: the same static wrapper is used for

multiple cores and the user selects a given core to be invoked in the ’C’ program. We support

15

run-time reconfiguration by automating the generation of the interface between static and dy-

namic regions of the FPGA. The user can switch between multiple functional units by calling

the appropriate C function in the code, thus entailing the use of the same hardware wrapper

for multiple IP Cores. Utilizing our software tool along with the ROCCC infrastructure we

have been able to automatically configure multiple IP-cores on the fabric viz. FP (Floating

point) Adder, FP Multiplier, Integer divider CORDIC engine and an FFT engine.

Moreover using partial reconfiguration we have been able to overcome the area limitation

of a single FPGA platform (Virtex-4 FX12), using five different IP Cores. We have allocated

a region of 1800 slices for the co-processor, thus resulting in a reduction in the floor area

by 2656 slices due to partial reconfiguration. Moreover the area dedicated for the hardware

wrapper is no more than 14 slices, quite miniscule, when compared to the actual IP Core

area.

1.5.3 Adaptive Hardware/Software Regular Expression Based IDS

FPGAs can be reprogrammed to change it’s functionality. This allows reconfiguration of the

FPGA with the type of the intrusion detection engines required at the moment i.e. adaptability

to the current network conditions. Additionally Xilinx FPGAs and some custom developed

FPGAs [161] also support partial reconfiguration flow, so that a part of the FPGA could

be reconfigured. This reduces the hardware re-programming time, when only a part of the

FPGA needs to be modified. IDS that employ these FPGA can maintain execution through

software threads while the FPGA is reconfigured during the brief moment. Moreover an IDS

16

with two or more FPGAs can maintain execution on the other FPGAs while one of them is

either partially or fully reconfigured with a different set of regular expression engines. An

FPGA system supporting partial reconfiguration can respond to new types of network attack

much faster than FPGA systems that only support full reconfiguration.

With our proof of concept hardware system, our novel design allows partial reprogram-

ming across 16 banks of regular expression rule-sets can successfully maintain throughput

at 10 Gbps scale even under a range of partial and full reconfiguration scenarios running

on a proof-of-concept platform. We use our PCRE to HDL compiler to compile regular ex-

pression based rules to VHDL. Similar rules are grouped together in banks of rule-sets. We

implement our adaptive IDS on a Virtex-4 LX 200 FPGA that has been floor-planned for

partial reconfiguration across 16 banks of regular expression rule-sets.

We have also benchmarked our proof of concept FPGA accelerated regular expression ba-

sed IDS test-bed using a thirty-two core SGI Altix 4700 supercomputer with a RASC Blade

consisting of two FPGAs. We implement 448 different regular expressions in 32 modular

rule-sets, on the two FPGAs. Such an architecture is a first of a kind demonstration of an

adaptable hardware/software regular expression based IDS. We show that by utilizing our

architecture, it is possible to avert concerted attacks and also to adapt towards changing net-

work activities, by performing multiple partial and full reconfigurations. We measure the

throughout of the integrated Field Programmable Gate Array (FPGA) and multiprocessor

SGI Altix system with varying number of reconfigurations per minute. The maximum sus-

tainable throughput of our design is 19.84 Gbps per FPGA. Our adaptive IDS can provide

17

better than 10 Gbps throughput even with 32 partial reconfigurations per minute. Our system

can also sustain 10 Gbps throughput with four full-reconfigurations per minute. Our IDS

design can be extended to similar FPGA accelerated multi-processor system.

1.5.4 Boosting XML filtering with a scalable FPGA-based architecture

The growing amount of XML encoded data exchanged over the Internet increases the im-

portance of XML based publish/subscribe (pub-sub) and content based routing systems. The

input in such systems typically consists of a stream of XML documents and a set of user

subscriptions expressed as XML queries. The pub-sub system then filters the published doc-

uments and passes them to the subscribers.

Pub-sub systems are characterized by very high input XML data rates and therefore the

processing time is critical. Given the high volumes of messages and profiles, the filtering pro-

cess becomes a critical performance requirement for pub-sub systems. Since pub-sub XML

filtering involves multiple parallel queries processed over a single document data-stream, it is

possible to utilize FPGAs for improving the filtering performance. Each query can be imple-

mented on the FPGA unit as a hardware datapath circuit and with appropriate optimizations

it is possible to fit thousands of queries on a single FPGA chip. This results in accelerated

query processing and leads to substantial savings in general purpose computation infrastruc-

ture, and thus reducing the amount of power required by the infrastructure.

We utilize a four step approach that converts user profiles expressed as XPath queries into

hardware description language, suitable for implementation on FPGA. The first step involves

18

conversion of an XPath query to PERL compatible regular expressions. The regular expres-

sions are clustered by their common prefixes in order to produce more compact representa-

tion on the board and are then translated to VHDL using our “PCRE to VHDL” compiler.

Moreover, in order to support parent-child relationships, we introduce the use of stacks and

modify the regular expression hardware to use them. The highly optimized VHDL code is

then deployed on the Virtex-4 LX 200 FPGA on SGI RASC Blade. The stream of docu-

ments is forwarded to the RASC Blade where it is processed with high degree of parallelism.

Our experimental evaluation reveals that this architecture achieves orders of magnitude im-

provement in the terms of running time compared to the state of the art software based XML

filtering systems.

We investigated the XPath filter architecture and came to the conclusion that most of

the FPGA area was being used by XML tag match blocks, which in turn consist of 8-bit

character match blocks. In order to further improve the area efficiency of the XPath hardware

we incorporated a stream ASCII decoder, which would decode the incoming XML stream

at the input and produce 256 1-bit outputs. The character decoder hardware block simplifies

the design of the XML tag match blocks by replacing a 8-bit character match comparator

with a 1-bit comparator. Moreover using multiple 1-bit data lines instead of routing the 8-bit

input stream over the FPGA, reduces the routing overhead, which in turn leads to a design

with faster clock speed. The average area improvement by using a character decoder at the

input over distributed character matching blocks is 1.5X while the clock speed improvement

is 2.5X.

19

We have also with described our hardware implementation of streaming Prüfer sequence

conversion of an XML document. We also describe how we can execute twig pattern match-

ing using the generated Prüfer sequence. Our hardware can accurately match parent-child

relationship in the twig patterns.

20

Chapter 2

Related Work

In this chapter we describe related work with respect to implementation of efficient IDS sys-

tems using string and regular expression based approaches. We also discuss various hardware

based approaches for accelerating string and regular expression matching. We also discuss

software based load balanced IDS systems, and hardware based approaches to accelerate

SNORT IDS.

2.1 Network Intrusion Detection Systems

Network Intrusion Detection Systems originated as software string matchers which worked

with the NIC drivers and LIBPCAP [184] to filter malicious packets from the ingress / egress

links on a location. Very soon the throughput of the software based NIDS began to dwindle,

mainly due to the serial execution approach on a Processor. Moreover executing Regular

Expression engine in addition warranted a hardware oriented approach to deal with ever

21

increasing number of rules which a network payload goes through.

2.1.1 IDS engines with String Matching

Initial versions of SNORT started with string based pattern matching on a ruleset comprising

of string matches. These string matching algorithms are continuously being optimized for

Software execution, on newer processors. A very important algorithm for state based string

matching is the Aho Corasick [6] method. Worst case performance improvement over Aho

Corasick was improved with [179] by Tuck, Sherwood, et al, by utilizing path-compression

on the Aho Corasick algorithm. Commentz - Walter [51] and Wu [193], propose similar

string matching algorithms which preprocess the data structure.

Various improved versions of string matching algorithms are implemented on a variety of

Hardware such as FPGA and ASICs. Since hardware execution provides orders of magnitude

improvement over software execution of string matching algorithms, thus it is imperative to

utilize optimized hardware for current multi GBits/s rate network interfaces. FPGAs provide

the dual benefits of fast optimized hardware execution along with great flexiblity to com-

pile and re-program the hardware quickly and efficiently. The use of parallel bloom filter

[35] architecture on FPGA has been introduced by [58]. [168] have documented a method

to compile C code of bloom filter based text scanners to VHDL and achieve high through-

put (18 Gbps) on Virtex II FPGA. [175] and [88] detail on a high throughout design of the

Aho-Corasick engine for string matching based IDS on Application specific silicon by con-

verting the Aho Corasick algorithm into multiple binary state machines. Also known as

22

the bit-split optimization for string matching this optimized engine is documented in detail

in [174]. [163], detail a CAM-based pattern matcher FPGA design that additionally pre-

decodes characters. [164] also target Virtex-2 FPGA with a fine grained pipelined string

matching hardware to achieve 10Gbps throughput. [47] detail out a silicon to implement a

hardware based string matching coprocessor for SNORT IDS that runs at 7 Gbps. Their ASIC

design provides a high performance platform for pattern matching. [16][15] demonstrate an

FPGA implementation of the Knuth-Morris-Pratt algorithm for string matching suitable for

IDS applications at 2.4Gbps. Area constraints on string matching hardware on FPGAs have

been solved in [213] by utilizing bit-level hardware sharing CAM. The authors also men-

tion on the performance and space efficiency of many other approaches towards efficient

high speed hardware implementation of string matching which are proposed in an 2.88Gbps

FPGA based hardware in [48], and in an 2Gbps FPGA based hardware in [68]. Novel hard-

ware oriented methods namely Hash Boyer Moore algorithm implemented on Intel IXP net-

work processors with a throughput in close vicinity of 2Gbps have been researched by [125].

A programmable systolic array based FPGA implementation of Knuth-Morris-Pratt string

matching by [18] provides 2.4Gbps throughput for use as an IDS. [49] have developed a

Platform FGPA based embedded intrusion detection system that includes the network packet

decoder as well as the SNORT rules based IDS on a single platform FPGA chip.

23

2.1.2 IDS engines with Regular Expression Matching

Research initiatives over the past decade have resulted in optimized Regular Expression en-

gines in software as well as hardware which result in fast execution, in order to keep up with

increasing data rates of network interfaces.

Song, et al.[160] have also identified the core problem with NIDS, that the throughput

reduces drastically while processing malicious packets. Software optimizations have been

proposed to mainly target the 1Gbps throughput barrier on general purpose processors. [212]

suggest optimizing techniques on DFAs generated from regular expressions to reduce their

execution times and achieve 50 to 700 times speedup. But their method also asks for rewriting

of the SNORT rulesets, which may not be supported by the community due to their adherence

to PCRE standards. [95] have demonstrated graph theoretic algorithm to generate D2FA from

DFA by combining multiple transitions in order to reduce the memory requirements of DFAs

by more than 95%. Their design enhances Cisco network appliance by reducing embedded

memory requirements. [94] have categorized three deficiencies viz. Insomnia, Amnesia and

Acalculia, in DFA based execution paradigm and have proposed relevant mechanisms to deal

with such problems. Networked cluster based approach for load balancing NIDS has been

well documented in[183],[189] and [190]. Katashita et al.[91] explore the potential of porting

SNORT rule-set 2.3 using a space efficient NFA hardware on FPGAs and suggest a theoret-

ical maximum throughput of 10 Gbps on a Virtex2-8000 with 64bit datapath. DFA based

regular expression engines have been targeted towards FPGAs mainly for parallel execution

on smaller FPGAs by Moscola et al. in[122] and Lockwood et al. in[104][103]. The authors

24

utilize the JLex library to generate description of regular expressions from SpamAssassin

rules.

Hardware oriented state of the art architectures utilize FPGAs, ASICs as well as GPG-

PUs. Tarari Inc. [182] have demonstrated a 6.2 Gbps using a state of the art GPU, to power

a malware scanning acceleration engine. FPGAs have been utilized on various IDS archi-

tectures, due to their ability to execute parallel regular expression based scanning engines,

and the possibility to compile regular expression based rules to hardware, thus leading to

immense flexibility vis-a-vis hardware generation and modifications. Compilation of regu-

lar expressions to hardware circuits were proposed more than two decades ago in a seminal

work by [66]. Regular expressions can be implemented on a given hardware by utilizing

two paradigms which are DFA and NFA. DFA entails faster execution, by sacrificing the

space requirements, which could exponentially blow up, while NFAs entails O(n2) space

requirements but by processing one character at a time.With the advent of FPGAs with sev-

eral hundred megahertz clock rates, and high speed I/O interface to the host processors, it

has been made possible to speed up NFAs on FGPAs. It is also possible to enable parallel

matching paths using NFAs on FPGA. Current research on NFAs used for regular expression

Matching have resulted in optimization of speed and area on FPGAs. Sidhu, Prasanna pro-

vide a highly detailed work on implementing and optimizing NFAs for use on FPGAs [154].

In fact they propose a fast algorithm that generates the NFA on the FPGA hardware, rather

than compiling it from software. Generation of several regular expression operators includ-

ing single character match, alternation, concatenation, and Kleene closure have been detailed

25

in this work. [169] improves the FGPA based NFA / Regular Expression model by imple-

menting very fast partial character decoders on the hardware. [120] implement a combined

pipelined character grid string matching as described in [15] combined with NFA based reg-

ular expression matching. [84] proposed optimized space usage of NFAs via common prefix

sharing, as well as a design philosophy built on [154] by including some additional regular

expression operators i.e. ‘?’, ‘.’, and ‘[]’. Their design involves a pipelined broadcast tree

for ensuring maximum throughput. [43] develop new hardware structures to implement FSM

based regular expression engine. On their actual hardware test they obtain a 4Gbps sustained

throughput on a 133MHz Virtex-II FPGA. [101] propose various optimization methods in-

cluding prefix infix and postfix sharing of regular expressions on an older version of the

SNORT ruleset. Overall their methods bring about 20% reduction in on chip area, but its

effect on clock speed is not discussed. [177] propose utilizing Block RAM resources on the

FPGA for storing LUT data, and hence free up LUT resources on the chip. It results in a

savings of 26% power compared to LUT based implementation of control logic for Finite

State Machines. [32] touch upon a VHDL generation scheme of NFAs from SNORT rule-

set. They utilize extensive size optimization on NFAs including prefix sharing, Character

Class Sharing and Static Pattern sharing. Their design results in a throughout of 2Gbps on a

Virtex-4 FPGA, which suffice for 1GbE or slower network connections. [162] describe three

building blocks that optimize constrained repetitions in regular expressions. They utilized

their VHDL based hardware blocks to generate overall area efficient IDS systems on FPGA.

The maximum throughput corresponding to their improved design is 3.2Gbps on a Virtex-4

26

FPGA. They also propose a space efficient FGPA specific counter namely the SRL16. [121]

demonstrate a state of the art 10+ Gbps capable regular expression architecture on Virtex-4

FPGA. Their design involves character pre-decoding and pipelining to optimize the space

speed up the design. They further re-use segments of the pipelined character match grids, in

a timed segment matching (TSM) grid. [91] explore the potential of porting SNORT rule-

set 2.3 using a space efficient NFA hardware on FPGAs and suggest a theoretical maximum

throughput of 10Gbps on a Virtex2-8000 with 64bit datapath. DFA based regular expression

engines have been targeted towards FPGAs mainly for parallel execution on smaller FPGAs

by [122], [104] and [103]. The authors utilize the JLex library to generate description of

regular expressions from SpamAssassin rules. The authors also propose the use of DFAs by

providing data on their compactness when compared to NFAs. Since DFAs can have only one

active stage the hardware may be faster. [17] demonstrate a microcontroller architecture on

hardware that executes specifically regular expressions using DFA and on-chip memories .

Moscola, Lockwood et al. also implement a reconfigurable regex parser based router in[119],

and the design can be implemented on Virtex-4 FPGA to run on 12.9 Gbps. Baker, Jung and

Prasanna demonstrate a microcontroller architecture on hardware that executes specifically

regular expressions using DFA and on-chip memories[17].

27

2.2 Interfacing IP cores on FPGA

Intellectual Property cores have been available for a while for FPGA based systems and have

been successfully used by developers of such systems. Xilinx Logicore series of IP Cores

are a library of highly available cores and have been extremely popular with designs ba-

sed on Virtex series FPGA[46] [195] [200]. The XILINX IPIF module attempts to target

connectivity of IP Cores to FPGA [203] [201], but does so only for the slower peripheral

busses. Targeting IP Cores to the FPGA peripheral bus using wrappers is discussed in [109]

[98] [201]. Since IP-cores provide a black / gray box paradigm, system verification and in-

tegration maybe an issue. These have been documented in light of popular simulation and

programming tools in [188] and the advantages and challenges in development of interface

synthesis has been targeted in [152]. IP Core Reuse has been effectively discussed in light

of a co-design paradigm in [65]. An automatic generator of interface synthesis for PowerPC

software to custom software accelerators is detailed in [136]. Standards based IP bus inter-

faces such as the VSIA (Virtual Socket Interface Alliance) specify interface standards allow

IP Cores to fit into virtual sockets [187]. However, the current condition is that numerous

standards exist and no standard is adopted widely [166].

2.3 Partial Reconfiguration on FPGA

Two popular FPGA configuration mechanisms required for Partial-Reconfiguration (PR),

Dynamic Partial Reconfiguration (DPR) or Run Time Reconfiguration (RTR) along with their

28

performances are discussed in [204] [34] [98]. [148] discuss the design space of reconfig-

urable hardware systems among various applications and the associated methodologies on

various platforms. Details on the methodology of PR for Xilinx FPGA is demonstrated in

this tutorial [80] .

Since development of a PR system on a FPGA entails working with a birds-eye view of

the chip for layout and interface planning, thus the use of graphical environment leads to

proper and efficient floor-planning and the process is documented in [60].

An early toolkit (PARBIT) targeted at the Virtex-E FPGA for enabling columnar partial-

reconfiguration is treated in [77]. High speed dynamic packet processing circuit modules can

be plugged-in on an FPGA using PARBIT and design methodology documented in [78]. Re-

configuration interfaces, modules and tools have been discussed in [173] [25]. Dynamic par-

tial reconfiguration is used for evolvable hardware systems, in which the hardware circuit is

able to self optimize, and can reprogram itself with an improved circuit bitstream [150]. [69]

describe the rationale for using PR for supporting a multitude of cryptographic algorithms on

the same FPGA. [76] demonstrate a twin flow path based run-time programmable architec-

ture that can run one java program flow on one flow while the other is reconfigured. Using

DPR [52] [53] demonstrate different behavior and controllers on a mobile robot. [172] use

DPR to achieve multiple PR modules for implementing varioius image filtering algorithms

on FPGA. In order to obtain hardware multitasking, [171] develop heuristic algorithms for

obtaining the best location for re-placing PR blocks on a floor-planned reconfigurable device.

[14] demonstrate a self-reconfiguration focussed multiprocessor cores processing system on

29

FPGA. [62] demonstrate an on-line multi-level fault tolerant design using PR and hardware

migration on the ORCA 2CA FPGAs [124]. [134] demonstrate a system that uses PR to

enable multiple test modules on an FPGA.[132] describe strategies for failure recovery based

including task migration among PR slots on the FPGA. [135] use JCAP that uses the external

JTAG port on Spartan-3 FPGA to support configuration readback for failure detection and

task migration. [133] demonstrate a FPGA based hardware design of a low power capacity

based level measurement system in a storage tank, that can swap the data processing mod-

ules. [131] optimize power dissipation of FPGA by adapting the on-chip signal lines using

2D placement of the PR Module. They use XPower tool to estimate power savings. [82]

demonstrate 2-Dimensional PR hardware modules for Virtex-II FPGA each containing func-

tional logic blocks and communication blocks. [83] solve signal routing problems that arise

due to the use of TBUFs at the PR module boundaries. They solve the problem by using

FPGA slices.

[156] have developed a bitstream generation tool for PR and bitstream reallocation. [126]

demonstrate a PR system for a adaptive lossless image compression. [37] present a method

to work around singe even upsets faults using PR. [81] provide a tool to visualize the space

time effect of an FPGA application using PR.

[29] provide a FPGA partition scheme to implement various functional modules using

PR. [64] provide a tool for implementing PR on an embedded CSoC. [28] have developed

a emulator that allows efficient scheduling of PR blocks on a FPGA. [42] use SystemC to

model and simulate PR on FPGA. [214] use PR to demonstrate an adaptable DWT hardware.

30

[114] use PR to implement an adaptable cryptographic hardware with certain countermea-

sures against attacks. [20] [22]develop tools to select FPGA PR task graph for JPEG applica-

tions to improve on execution time. They further optimize the performance of task chains by

selecting the granularity of data-parallelism. [21] formulate exact and heuristic partition and

scheduling schemes using task graphs for DPR on FPGA. [130] improve their work by en-

hancing it with pre-fetching and instruction forecasting. [23] [19] also demonstrate optimal

sharing of bandwidth among PR tasks by assigning suitable clock frequency to each task.

[100] demonstrate a bitstream prefetching scheme to overlap the computation on host pro-

cessor with reconfiguration of PR block and thus reduce the reconfiguration overhead. [170]

demonstrate the implementation details of a user-level process that configures the bitstream

on a CSoC at run-time. [112] define API interface for using PR cores on FPGA through a

RTOS.

[79] add hardware based fast routing to quickly route new PR hardware on FPGA. [192]

demonstrate a dynamic instruction set computer which can modify its instruction set on de-

mand, and allocate hardware resources using DPR. [89] [90] demonstrate vertically placed

PR blocks along a horizontal communication channel PR design that can be relocated on the

FPGA using bitstream manipulations. [137] demonstrate hardware-software task relocation,

and use PR modules for dynamically swapping hardware blocks on FPGA. The system is

demonstrated with encryption algorithms like DES, AES, etc. [96] demonstrate the concept

of dynamic partial reconfiguration to alleviate area limitations.

As described in [27], DPR can provide versatility and reliability in FPGAs. [40] demon-

31

strate a lightweight network protocol for implementing a remote bitstream server and net-

work protocol for supporting DPR. [92] developed an analytical model for placement costs

considering the constraints for PR modules on FPGAs.

[45] show reduction in PR module bitstream size for difference based PD by automating

the creation of designs at placement level to be as similar as possible. [113] demonstrate an

overlay based design that allows swapping of IP PR blocks by subsequent reconfiguration

calls. [111] demonstrate the applicability of DPR for efficient circuit-switched network for

use in WDM networks. [110] discuss the DPR problem as slot based allocation and demon-

strate a slot-oriented architecture called ‘Erlangen Slot machine’. [149] discuss program-

ming PR module bitstreams from an embedded OS running on a NIOS [8] soft-processor on

a Virtex-II FPGA. The system is called Aquarius, and also support full reconfiguration of the

FPGA. [143] detail their CAD tools that can be used with FPGA design tools to generate and

control PR designs. They demonstrate a PR Viterbi decoder design.

[153] demonstrate applicability of DPR towards on-the-fly routing of neural synaptic

connectivity on a Virtex-5 FPGA and thus realizing a spiking neural model on chip. [155]

describe the organization of dynamically modifiable processing pipeline on an FPGA using

DPR. [50] describe the use of PR for utilizing a variety of co-processing cores for accel-

erating video processing in driver assistance systems on vehicles. They demonstrate their

design with an ‘AddressEngine’ co-processor for processing pixels in a video stream. [36]

develop algorithms to analyze tasks from their Control Data Flow Graphs and extract tempo-

ral reusable modules. These can be used as temporally placrf PR modules on FPGAs. [215]

32

demonstrate an automatic adaptation method for programming clock frequency and dynam-

ically programmed PR modules to achieve power efficiency. They demonstrate their design

using IDWT (Inverse Discrete Wavelet Transform) hardware design. [181] demonstrate a

DPR architecture for use by automotive controller to support a multitude of in-vehicle func-

tionality, and interfaces with CAN (Controller Area Network) protocol. [56] demonstrate

using DPR to realize virtual pipelines, which are pipelines that are implemented incremen-

tally on the FPGA. Large designs, too big to be incorporated on a single FPGA can be sup-

ported by overlapping reconfiguration with pipeline stage execution. [67] demonstrate DPR

to reconfigure hardware configuration registers on a reconfigurable TPM (Trusted Platform

Module) platform.

[26] present on-demand reconfiguration, diagnosis and recovery techniques for DPR

hardware. [129] demonstrate a DPR architecture for RSoC (Reconfigurable System on Chip).

Their architecture is tune for use in space applications. They demonstrate PR Modules for

packet forwarding network on FPGA for use by specific codecs for data compression. [105]

demonstrate a low power self-reconfigurable platform based on an Atmel FPGA which sup-

ports multiple profiles on onboard memories. [57] realize a reconfigurable cryptographic

system by separating algorithm blocks which are PR Blocks and the system architecture into

two components. [61] characterize the performance bounds of a DPR / RTR system with an

analytical model. They verify their analysis on a Cray XD1[2] [1] system. [180] show the

applicability of DPR for speeding up JPEG encoding on FPGA, when compared to software

execution. [38] demonstrate improvement in recovery time for TMR (Triple Modular Re-

33

dundancy) implementation on FPGA using DPR. [140] demonstrate additional improvement

in recovery time for TMR by using voting and check point states, and reconfiguration of only

the faulty domain. [39] demonstrate use of DPR in a FPGA based system, in order to be able

to cope with SEU (Single Event Upsets) faults by re-programming the partial bitstream of the

faulty module. [31] [30] demonstrate a design flow to realize partial reconfiguration by a al-

gorithm control data flow graph, in which vertices represent PR module operations and fixed

hardware operations. They used their methodology for efficient mapping, code generation

and resource estimation for a telecom application module (MC-CDMA).

Since DPR is a relatively new technology, [147] discuss a framework of steps required

for obtaining certifiable DPR designs for avionics, health, etc based applications.

2.4 XML Filtering

2.4.1 Software Based Filtering

Among the many works related to the XML filtering the XFilter [11] is one of the first of

its kind. It defines a Finite State Machine (FSM) for each XPath profile, where every tag in

the profile becomes a state in the FSM. The last tag of the user profile becomes the accept

state in the FSM. The machines are then executed concurrently for each message in the

input. When a machine finds the current state as an open tag in the user profile, it makes

a transition forward to the next element. When it finds the state as a closed tag it makes

a transition backward. Finally, if an accepted state is reached, the document is reported as

34

a match to the corresponding profile’s subscriber. Later, the YFilter [59] system improved

the matching performance by combining all profiles into a single Nondeterministic Finite

Automata (NFA). Common profile prefixes are combined and represented with a single set

of states. This allows dramatic reduction in the number of states needed to represent the set of

user profiles. It also improves the filtering performance of the system by processing common

profile paths only once.

Other FSM-based approaches use different techniques for building the machine as well

as different types of machines. For example, [75] builds a single deterministic push down

automata using a lazy approach, [70][128] employs a lazily built Deterministic Finite Au-

tomata (DFA), [107] builds a transducer, which employs a DFA with a set of buffers. [138]

[139] demonstrate a hierarchical organization of push down transducers with buffers in an

engine named XSQ processing streaming XML data.

All these solutions are similar in the sense that they traverse the provided input document

in a top-down fashion (i.e. in-order traversal) while advancing the state machine for each

XML element (or attribute) read. Another proposed approach is to use a bottom-up traversal

of the document. This idea takes into consideration the fact that an XML document typically

has its more selective elements located at its leaves and uses them to perform early pruning

in the query space. Examples of systems which utilize the bottom-up approach include FiST

[142, 97] and BUFF [118].

The NFA based approaches discussed above are entirely software based solutions using

the standard von Neumann organization. None of them takes advantage of specialized archi-

35

tectures to overcome the bottleneck problem which appears during XML document filtering.

2.4.2 Hardware Based Filtering

Previous works [108, 102, 165] that have used FPGAs for processing XML documents have

mainly dealt with the problem of XML parsing which in turn is transformed to implementing

regular expressions on FPGAs. In particular, [108] proposes the ZuXA engine to parse XML

documents. This engine employs state machines for efficient parsing based on set of rules.

The paper however does not provide any discussion how this engine can be adapted to work

with the XPath profiles used in the pub-sub systems.

There is also a large amount of research related to implementing regular expressions on

FPGAs [154, 101]. Here we build on our previous works [116] where we compiled PERL

Compatible Regular Expressions (PCRE) to VHDL for accelerating intrusion-detection sys-

tem rules using FPGAs. However, XPath query evaluation is more complex than plain regular

expressions. To this end we introduce appropriate stacks that are implemented on the FPGA

device.

The works in [165, 102] propose the use of a mixed hardware/software architecture to

solve simple XPath queries having only parent-child axis. A finite state machine imple-

mented in FPGAs is facilitated to parse the XML document and to provide partial evaluation

of XPath predicates. The results are then reported to the software part for further processing.

Similarly to the ZuXA engine, this architecture can only supports simple XPath queries with

only parent-child axis.

36

There are also approaches that use specialized parallel architectures for XML processing

[99, 106]. In particular, [99] uses the Cell Broadband Engine multi-processor which consists

of 8 independent processors (SPEs) that run the same software. This approach achieve paral-

lelism by parsing (eight) XML documents in parallel at a time. Each processor implements

the FSM of the ZuXA engine [108]. In addition to be only suitable for XML parsing, this

solution is a combination of hardware-software approach.

To the best of our knowledge our system is the first one to provide an entirely hard-

ware solution to the XML filtering problem in pub-sub systems. It is also the first one able

to efficiently evaluate complex XPath queries with different types of navigation directions

(parent-child ”/” as well as ancestor-descendant ”//” axis) over the stream of XML docu-

ments. While parallelism can be achieved with multi-core machines (as a software-hardware

solution), FPGAs offer a viable alternative due to their power efficiency (less power con-

sumption and cooling costs) [167, 85] as well as higher throughput. The work in [74], quan-

titatively demonstrates the benefits of using FPGAs over general purpose CPUs for streaming

applications. While multi-core systems come with 2 and 4 CPUs it is not always feasible to

achieve proportional speed-up due to the bottleneck in shared cache memory and the FSB.

37

Chapter 3

Compiling PCRE to FPGA via opcodes

and accelerating SNORT

We discuss our compilation flow for converting PCRE to VHDL. We discuss SNORT IDS

and the regular expressions subsysem. We discuss how our tool can be used to accelerate

regular expressions from SNORT IDS. In this chapter, we also demonstrates the mechanism

of a reconfigurable FPGA based streaming architecture that provides throughput greater than

10Gbps while matching PCREs.

3.1 Regular Expressions, IDS and FPGA Acceleration

Regular expressions are a systematic and effective process to encompass multiple similar

strings in to a single expression or a set. Regular expressions are an extension to the string

matching process. Unlike string matching wherein we look for a particular string in a given

38

input stream, in regular expression matching process, the input stream is inspected for the

existence of one or more string members of a given regular expression. PERL is a very

popular string oriented language with a rich set of regular expressions and it is widely used

for both regular expression matching and string matching. Due to its popularity, PERL is

frequently used for creating regular expressions based rules for IDS.

3.1.1 PCRE

PCRE is a open source ‘C’ based software library which is independent of the original PERL

distribution. PCRE is solely relegated to the compilation and software execution of PERL

regular expressions. PCRE software consists of two parts namely the PCRE compiler and the

PCRE Engine. The PCRE compiler compiles PERL based regular expressions into a set of

op-codes, which would then be suitable for execution on the PCRE engine. The engine exe-

cutes the regular expression represented as opcodes with a given string to recognize whether

the regular expression matches the string.

3.1.2 SNORT IDS and PCRE

Increase in malicious activities using computer networks as a medium, has also resulted in

an increased deployment of intrusion detection systems(IDS) to scan and intercept network

packets containing signatures of such activities. The SNORT[146] software is a popular and

widely used open source IDS for securing the network of an organization from malicious

activities.

39

Deep payload inspection systems, like SNORT and BRO, use regular expressions for

their high expressibility and compactness. Since SNORT IDS uses both fast string matching

as well as regular expression matching, we would like to emphasize that this chapter concen-

trates on accelerating the regular expression matching subsystem of SNORT. The SNORT

Intrusion Detection System (IDS) system, in addition to string matching, uses the PCRE

(Perl Compatible Regular Expressions) engine for regular expression matching on the pay-

load. The popularity of PERL in the user and developer community makes it highly suitable

for creating regular expressions based rules for SNORT IDS.

SNORT uses the software based PCRE engine, which can match the payload with a single

regular expression at a time, and needs to do so for multiple rules in the ruleset. Therefore

the throughput of the SNORT IDS system dwindles with increasing number of regular ex-

pressions, and increasing payload throughput.

In fact, with increasing use of regular expression based rules in Intrusion Detection Sys-

tems (IDS), it has been impossible for traditional CPUs to keep up with 10 Gbps throughput

due to the high computation complexity involved. Thus it has been necessary to utilize hard-

ware based accelerators for running regular expression engines.

3.1.3 Accelerating PCRE on FPGA

Multiple PCRE engines can be implemented on hardware, which can operate in parallel to

inspect, network payload across multiple regular expressions rules. Regular expression rules

for IDS are dynamic (due to ever changing network activity levels and scenarios), and thus

40

is the acceleration hardware needs to be reconfigurable. FPGA based hardware acceleration

of regular expression matching is an excellent choice to fulfill both of the aforementioned

conditions, since they allow parallel high speed hardware blocks to be implemented and also

allow reconfigurability.

To effectively convert multiple regular expressions to VHDL, and thus implement them

on FPGA, a compilation framework is required. Since no compilation framework existed that

could directly take a PCRE to VHDL, we implemented one, based on the PCRE compiler.

The original PCRE compiler generated opcodes for the software based PCRE engine. We

adapted the front-end of the PCRE compiler and used the generated opcodes to generate

VHDL hardware module, one opcode at a time. Thus our back-end compilation plug-in

effectively compiles the PCRE opcodes to VHDL and thus into hardware blocks.

In this chapter we first demonstrate our benchmark performance of regular expression

based rules from SNORT IDS using software only execution. We demonstrate the case when

30% or more number of network packets trigger regular expression matching, the software

based IDS cannot maintain 10 Gbps throughout, and thus requires hardware acceleration.

In order to demonstrate the efficacy of our compilation flow and the regular expression

matching architecture, we have also implemented a proof of concept two hundred PCRE

engines based on a plethora of SNORT IDS regular expression rules. These were mapped

to the Xilinx Virtex-4 LX200 FPGA on the SGI RASC RC 100 Blade connected to the SGI

ALTIX 4700 supercomputing system as a testbed. We obtain an interface throughput of 12.9

GBits/s and a speedup of 353X over software based PCRE execution. We also show that it is

41

possible to scale down the processing related power consumption of an IDS by two orders of

magnitude using an FPGA .

3.1.4 Finite Automaton on FPGA

The basic building block of regular expression engines implemented on FPGA are finite

automata. An example of a finite automata is depicted in Figure 3.1. The language of the

depicted finite automata matches a string with even numbers of zeros. The states of the

finite automata are encoded as ‘0’ corresponding to S1 and ‘1’ corresponding to S2. The

first lookup table of size four elements is addressed by the current state of the automata and

the current input data. As an example, if the automata is in state S1 and receives an input

character ‘1’, the corresponding address in the LUT is ‘01’. The data stored at address ‘01’

is ‘0’ and is routed to the next LUT on the right which contains two locations. Since the

corresponding data at address ’0’ in the second LUT is S1 hence the finite automata selects

state S1 as its next state. The gray section in Figure 3.1 demonstrates the state transitions as

the automata processes and accepts an example string “0110100”.

3.2 SNORT IDS

In this section we describe the mechanism by which SNORT IDS utilizes the PCRE compiler

for translating the regular expression based rules from the SNORT database. We also describe

the regular expression operations that are obtained from the rules in SNORT database.

42

Figure 3.1: A Finite Automata Implemented on FPGA using LUTs.

The SNORT [146][144] software is an is an open source (GPL), popular and widely used

IDS for securing the network of an organization from malicious activities. SNORT IDS

interacts with the TCP/IP stack on a computer or a security appliance. It identifies signatures

of malicious activities such as buffer overflow, denial of service, man in the middle and

other attacks on the network packets and thus avoid potential contingencies. SNORT IDS is

based on a community driven ruleset wherein the rules are updated frequently by the security

community thus capturing the signatures of the newest vulnerabilities and malicious packets.

3.2.1 PCRE rules in SNORT

Intrusion Detection Systems (IDS) such as SNORT and BRO [41] started as string matching

engines for deep payload inspection of network packets using a database of signature strings

known as the rulesets. As the database of string based signatures expanded, the efficiency

of the rules started to dwindle. Regular expressions are therefore being increasingly used

43

to chart out new rules, due to their higher expressibility and compactness. A single regular

expression can encompass tens and hundreds of individual string representations, and thus

they have become a highly popular method for constructing signatures for IDS. PERL based

regular expressions are being increasingly utilized for charting out the SNORT ruleset due to

their compact representation, excellent expressibility and wide usage across the community.

The SNORT IDS utilizes a plugin oriented architecture to enable regular expression match-

ing as well as various additional features. The results in this chapter are based on the VRT

Certified Rules for SNORT v2.4 dated 2007-09-11. SNORT supports PCRE libraries 6.0 and

later, and we have developed our PCRE to vhdl compiler on PCRE lib v6.7. Table 3.1 exem-

plifies two different PCRE rules from the SNORT database v2.4. More than four thousand

such rules make up the SNORT PCRE rulesets. SNORT uses a two-stage process for detect-

ing malicious activity in network payloads. In the standard configuration, all the non-PCRE

pattern matching rules are matched simultaneously that are loaded in at runtime into a fast

optimized set-wise pattern matching engine. The packets qualified as malicious would then

be matched with the relevant PCRE rules depending on the nature of the payload. [145].

The PCRE engine is used as a plugin by SNORT IDS to run a regular expression match

on the intercepted payload as depicted in Figure 3.2. Upon encountering a pre-qualified pay-

load SNORT invokes the PCRE compiler on selected regular expressions from the pertinent

ruleset. The PCRE compiler takes in a PCRE regular expression rule and compiles it to

op-codes. The compiled rule composed of opcodes along with the network payload is run

through a PCRE execution engine, and the match result is returned back to SNORT. There-

44

Figure 3.2: SNORT IDS and PCRE Engine usage on a software only Implementation.
pcre compile function compiles the regular expression while pcre execute function runs the
engine of the payload

Table 3.1: Example Rules in SNORT DB 2.4
Ruleset Regular Expression Rule Implication
backdoor ˆNetbus\s+\d+\x2E\d+ Captures the header of the Netbus

(Netbus Trojan) trojan i.e. Netbus followed by one
or more spaces, one or more digits,
character ‘.’ and one or more digits

web-misc ˆ[ˆ\x3e\x3f\x26]{63} Captures a McAfee specific buffer
(Buffer Overflow) overflow attack sequence i.e. Any 63

characters other than >, ? or &

after the IDS may make additional countermeasures or raise an alarm based on a positive

match.

Table 3.2 highlights the format of a typical PCRE rule in a SNORT IDS ruleset. The

commonly used PCRE flags include ‘i’ for case insensitive match, ‘s’ for inclusion of new-

lines in the dot operator, ‘m’ for enabling anchors to match immediately following a newline,

Table 3.2: Format of a typical PCRE Rule in SNORT IDS with the optional modifiers
pcre:“/<regex>/[ismxAEGRUB]”;

45

Table 3.3: Example snippets from SNORT Rules highlighting the use of PCRE operators
Operator Snippet Implication

“ˆ” ˆNetBus Netbus at the start of line
“{}” [\x26]“{63}” ‘&’ Exactly Sixty Three Times

“{n,x}” [ˆ\n]“{244,255}” Any character but newline, more than 244
but less than 255 times

“*” [ˆ\r\n]* Any character but CR,LF Zero or more
number of times

“+” \s+ White Space, one or more number of times
“\1,\2,\3,” (\x22 | \x27) If ‘ ” ’ i.e. (\x22) was matched earlier then
“\4,\5,\6 ” ... \1 match ‘ ” ’, alternatively if ‘ ’ ’ i.e. (\x27)

was matched, then match ‘ ’ ’
“[ˆ...]” [ˆ\r\n] Any character but CR,LF

and ’x’ to ignore whitespace between regular expression token.

3.3 Compiling PERL Compatible Regular Expressions to

FPGA

In this section we present information on PCRE and our method of compiling PCRE opcodes

directly to VHDL for parallel implementation on FPGA hardware.

PERL is a very popular string oriented language with a rich set of regular expressions,

thus making it highly suitable for creating regular expressions based rules for SNORT IDS.

The PCRE software consists of two parts: the PCRE compiler and the PCRE Engine. The

PCRE compiler compiles PERL based regular expressions into a set of op-codes, which are

then executed by the software based PCRE engine. The engine executes the regular expres-

sion represented as opcodes with a given string to recognize whether the regular expression

46

matches the string. 1

The PCRE engine executes a greedy quantifier matching NFA which conforms to the

PERL regular expression semantics. The important PCRE operators including the anchors,

ranged quantifiers, repetitions, back-references, character classes, and their occurences in the

SNORT rulesets are highlighted in Table 3.4 and example rule snippets demonstrating their

behavior is shown in Table 3.3.

Regular expressions can produce different results depending on the execution engine. As

an example a greedy NFA would provide a different result when compared to a non greedy

execution engine. PERL uses an NFA-based greedy quantifier match strategy as default and

the SNORT rules have been generated by the community to adhere to the PERL regular

expression standards. Thus it is extremely important for the accelerated regular expression

engine in hardware to adhere to the PERL regular expression standards in order to success-

fully detect malicious activity. It is possible that non-conforming implementations may result

in false negatives, which could result in potential security issues. As an example a greedy

quantifier regular expression engine, using the regular expression /test.*test/ on the string

“This test is testing greedy and lazy tests”, would match and return “test is testing greedy

and lazy test” while a lazy quantifier match would return “test is test” i.e. up until at the

fourth word which is “testing”.

We implement the PCRE regular expressions to hardware using a two stage translation

process. In the first stage, the regular expression is compiled using the PCRE compiler to

1The current revision of PCRE library is v7.2 as of writing this chapter. Since we had already started work
with PCRE v6.7 and the differences between the versions are minor, we have limited ourselves to PCRE v6.7.

47

Table 3.4: Occurences of important PCRE operators in our target SNORT DB 2.4
Regular Expression Operator Occurences PCRE Opcode

Character Match 8117 OP CHAR 21
Repetition Star “*” 6276 OP STAR 33

Character Class “[]” 2912 OP CLASS 59
Alternation “|” 2365 OP ALT 65

Ranged Quantifiers “{n,x}” 2011 OP UPTO 30
Repetition “+” 1218 OP PLUS 26

Back References “\1,\2,\3,\4,\5,\6 ” 262 OP REF 62

generate PCRE opcodes. A regular expression is translated by the PCRE compiler into an

unique series of regular expression opcodes that are processed by the PCRE engine with

the input data. To that end, we modified the PCRE compiler v6.7 by adding an opcode

dump module to the PCRE compilation library. In the second stage the PCRE opcodes are

translated to VHDL hardware blocks suitable for implementation on FPGA and connected

together using a NFA based control logic. Our system maintains the execution semantics

of the software based regular expression engine on the FPGA hardware, thus ensuring com-

patibility with software based PCRE execution. We then process the generated opcodes and

related operands using successive compilation steps and convert them to VHDL blocks. The

VHDL opcode blocks are tied together in an NFA and are synthesized and implemented on

the FPGA.

3.3.1 PCRE Opcodes

The PCRE opcodes are defined in the pcre internal.h file which is part of the PCRE library

package. These opcodes are instructions for the software based PCRE engine. Each of the

PCRE opcodes have an equivalent hardware implementation. As discussed earlier, since the

48

hardware implementation on an NFA is inherently parallel in nature, it is possible to process

one new character every clock cycle. The match output of the preceding opcode block in the

NFA engine enables the succeeding opcode block. The input character received each cycle is

copied to the input of each opcode. Moreover the output character bus of the opcode can be

used to gather the matched string from each of the opcode for debugging purposes. The most

important and commonly occuring opcodes in the SNORT rules database can be classified

into three groups: character-match opcodes, repetition opcodes and quantifier opcodes. We

detail the implementation details of these opcode groups, in the following four subsections.

3.3.2 PCRE Opcode Frequencies in SNORT Rules

The PCRE opcodes are at the heart of the machine that matches a particular regular expres-

sion in a packet. Using the SNORT v2.4 database we have measured the frequency of occur-

rence of the various opcodes. These results are shown in Figure 3.3. It can be observed that

that following opcodes namely character-match, star, character class, alternation, quanti-

fier, plus, and back reference make up more than 90% of the total opcodes. Therefore we

concentrate on the hardware development and optimization of these opcodes. A cumulative

distribution of PCRE opcodes in SNORT database is charted out in Figure 3.4. Currently our

PCRE to VHDL compiler is limited to the aforementioned opcodes tabulated in Table 3.4.

49

Figure 3.3: Frequency Distirbution of PCRE opcodes in SNORT DB 2.4. The most fre-
quently occurring opcode is the character-match opcode.

3.4 Compilation Flow

At the heart of our automated compiling system is the conversion of regular expressions

from the SNORT database to engines on FPGA. We detail the implementation of our tool

that translates PCRE code into hardware that is mapped to an FPGA for accelerating regular

expression matching subsystem of SNORT. Our compiler generates VHDL code correspond-

ing to the opcodes generated for the SNORT regular expression rules. We have tuned our

hardware implementation to utilize an NFA based regular expression engine using greedy

quantifiers in much the same way as the software based PCRE engine does. Our system

implements a regular expression only once for each new rule in the SNORT ruleset thus

50

Figure 3.4: Cumulative Distirbution of PCRE OPCODES in SNORT DB 2.4. The five OP-
CODES viz. Match, star, Character Class, Alternation and constrained repetition make up
for the most frequently occurring cases of OPCODES.

51

resulting in a fast system that scales well with new updates.

3.4.1 Compilation Overview

The SNORT IDS accesses the rules by rulesets when enabling PCRE based IDS. Each of the

rulesets are available as separate files in the available SNORT database. As a first step, our

compiler script extracts all rules from the SNORT database that have a pcre field and stores

them into local ruleset files for further processing. These rules contain the various regular

expressions which are used by SNORT IDS.

The compilation starts with extraction of opcodes and operands from PCRE rules. There-

after the extracted opcodes and operands are processed by the opcode to VHDL compilation

script, to generate opcode blocks such as comparators, counters, etc. The next script pro-

cesses the sequence of opcodes and generates a NFA based control logic in VHDL. A final

script combines them to a VHDL entity that interacts with the memory interface module.

The initial compilation step involves invoking PCRE compiler v6.7 that translates the

SNORT REs into PCRE opcodes. We have added a mechanism for the PCRE compiler to

emit compiled opcodes from regular expressions to a local database. An AWK script parses

the database and extracts the opcodes and operands corresponding to the regular expression

based rules.

In the second step, scripts are invoked to extract case-sensitive character-match opcodes

from the regular expression. The case sensitive character-matching blocks are implemented

as comparator circuits on hardware. These blocks receive characters from the payload mem-

52

ory via the memory controller module. Alternation opcodes involve unrolling the NFA into

multiple parallel character match paths. Also extracted are the corresponding token / charac-

ter match blocks for repetition, quantifier and back-reference opcodes. Finally the counters,

quantifiers and back reference opcodes are generated and connected to their respective char-

acter match blocks.

In the third step, a compiler script combines the generated opcode blocks, into one NFA

engine, that corresponds to the original regular expression. In this stage, the opcodes defining

the regular expression operators are iteratively analyzed by the script, and the control struc-

ture for the NFA is generated in VHDL. The NFA generating script converts the sequence

of opcodes into an extensive set of if - else statements in VHDL. The generated control

structure is a series of flip-flops that enable an opcode block, based upon the match output of

the previous opcode. Additionally the NFA controller enables the write signal on the back-

reference opcode when the reference is first matched, and thereafter enables the read signal

when a back referenced is enabled.

In the fourth step, a script generates a payload buffer and a matchdata buffer. The payload

buffer receives TCP/IP payload from the software and inserts a character into each regular

expression bank every cycle. The matchdata buffer is connected to the match output of each

of the NFA engines, and the data is sent back to the software once the complete payload has

streamed through the regular expression engines.

The NFA control structure is thereafter tied together with the opcode blocks in a single

VHDL file. The VHDL files are collected together and are mapped to the payload buffer via

53

the memory interface module.

3.4.2 Common Prefix Optimization

Since the SNORT IDS regular expressions are based on a collection of similar rules grouped

by the rulesets, some of which contain regular expressions that share a common prefix. These

prefixes are a potential point of design consideration which may lead to conservation of

on-chip area, and are discussed in [101]. We extracted the common prefixes from regular

expression in the rule sets of SNORT IDS, and compiled them together into a single hardware

block. The optimized design resulted in a savings of ∼26% area on the chip. However, its

impact on the circuit clock frequency was more than 50% lower because of the resultant

circuit size that implements the prefix tree. We have thus chosen not to enable the Common

Prefix Optimizations since it constrains the digital clock routes on the FPGA to operate at a

lower frequency, thus affecting the throughput of the regular expression engines.

3.4.3 Hardware Implementation of PCRE Opcodes

In this subsection we describe the detailed implementation of PCRE opcodes on FPGA hard-

ware. We compare two important implementation paradigms i.e. utilizing IP Core based

opcode generation and secondly by synthesizing the opcodes from VHDL code. We pro-

vide data on the variation of area and speed of important opcodes generated using the two

paradigms. We provide additional details with respect to quantifier opcodes. We provide data

on the size of counters required to deal with the specific range of counts that occur after the

54

Figure 3.5: The Character(s) Match Opcode. The input (i register) is compared with the data
in the ROM and the output (match out) is triggered high in case of a match.

compilation of SNORT rules.

Character-matching Opcodes

The character-match opcode is a comparator hardware blocks which match a single character

or a string. Since the PCRE hardware is not modified at run-time, we can use ROM based

hardware comparators which have smaller area and faster speed than RAM based compara-

tors. The structure of the character-match opcode is shown in Figure 3.5.

We compare the performance (clock speed) and areas of the character-match opcodes us-

ing two implementations: the Xilinx Logicore IPCORE and synthesized VHDL. Our building

blocks consist of 1, 2, 4, 8, 16 and 32-byte ROM based comparator blocks. As depicted in

Figure 3.6, the IPCORE implementation is marginally faster than synthesized VHDL, mainly

because IP Cores are heavily optimized by the FPGA vendors. The tradeoff in sizes can be

seen in Figure 3.7: the IPCORE blocks consume marginally more areas than the synthesized

versions. All the speed and area figures have been reported using the Xilinx ISE 9.2i tool af-

55

Figure 3.6: Implementation Speed in (MHz) of the character-match opcode versus character
size sets for the two implementation types. Implementing using IP Core provides a faster
clock speed, as compared to the synthesized design for match sizes greater than 2 Bytes.

Figure 3.7: Implementation area in FPGA slices of the character-match opcode versus char-
acter size sets for the two implementation types. The area of the opcode block increases
linearly with increasing match size. Moreover the synthesized hardware is more area effi-
cient as compared to the IP Core based block for a given match size

56

Figure 3.8: The Character Class Match Opcode.

Figure 3.9: The * repetition Match Opcode.

ter the Implementation Flow (i.e. hardware mapping and place and route). We have utilized

the IPCORE based comparator blocks in our character-match opcodes.

The character class match opcode, shown in Figure 3.8, essentially consists of multiple

comparator blocks the output of which is enabled high when either one of the comparator

matches.

57

Figure 3.10: The + repetition Match Opcode.

Repetition Opcodes

The star repetition opcode, depicted in Figure 3.9, matches 0 to any number of the given

character(s) from its input. The plus opcode, shown in Figure 3.10 matches one or more

number of the given character(s) from its input. Thus the plus opcode enables the succeeding

opcode after matching a repeating series of the given character / string. These opcodes are

essentially built from the character-match opcodes with additional logic to implement the

repetition. An important feature of PERL and thus PCRE is that, given a input and the

regular expression, only the first match (left most) is reported. This feature simplifies the

generated hardware with the star operator.

Quantifier Opcodes

Quantifiers are used in the PCRE language semantics to indicate quantifiable repetitions. An

example quantifier opcode block is depicted in Figure 3.11. The quantifier opcode may be

58

Figure 3.11: The quantifier Match Opcode.

Table 3.5: Simple Quantifiers Occurrence Table
Count Interval Occurrence Min Max

0 - 10 7 {1} {9}
10 - 99 49 {10} {69}

100 - 999 109 {100} {512}
1000 + 5 {1024} {1024}

59

Table 3.6: Ranged Quantifiers Occurrence Table
Count Interval Occurrence Maximum Range

0 - 9 2 {0,1}
10 - 99 0 N/A

100 - 999 2 {1,221}

classified into three categories viz. simple quantifiers, ranged quantifiers and unbounded

quantifiers. Using quantifiers we may specify either exact repetitions as in {n} (‘n’ is a

constant which indicates the number of repetition) or repetitions of characters with at least

one bound (lower and / or upper) as in {lb, ub}. As an example, the simple regular expression

“a{10}” indicates matching exactly 10 occurrences of the character ‘a’. We may also quantify

a regular expression token like, “[ab]{10}”. This regex would match a string of 10 characters

made up of any combination of ’a’ and ’b’ in the string. We follow the PCRE greedy match

quantification rules while matching using quantifiers i.e. we return the first possible match.

A detailed discussion of various semantics of regular expression quantifiers, other than the

one used by PERL would exceed the scope of this chapter and the interested reader may

refer to [162]. Simple quantifiers compute the repetition of the given character, string or a

token, a predefined/exact number of times. The occurrences of simple quantification in our

test SNORT database is tabulated in Table 3.5 in decimal ranges. The majority of the cases

are the counts between (100 - 199).

Ranged quantification involves the repetition of the given token in a pre-determined,

bounded range of occurrences. Table 3.6 shows that there are only four occurrences of ranged

quantifiers in the test SNORT database.

The most frequently occurring quantification is that of the unbounded quantification

60

Table 3.7: Unbounded Quantifiers Occurrence Table
Count Interval Occurrence Min Max

0 - 9 1 {3,} {3,}
10 - 99 12 {14,} {71,}

100 - 999 43 {100,} {512,}
1000 + 1857 {1000,} {1075,}

Figure 3.12: Speed of unrestricted counters in (MHz) with increasing count size and the two
implementation types. For counts until 8 bit the synthesized counters are faster, while for 9
and 10 bit counters, the IP Core is slightly faster.

which involves repetition of ‘n’ or more number of times, where ‘n’ is a constant related

to the given instance of an unbounded quantification. As an example the regular expression

“\x5C{1023 , }” would match a series of 1023 or more of the character Hex ‘5C’ viz. the ‘\’,

back-slash character. As seen in Table 3.7, the counting range of unbounded quantifiers start

from (3 and above) and ends at (1075 and above). The count interval of (1000 and above) is

the most frequently occurring case in the test SNORT database.

The essential hardware unit for the quantifier opcode is the binary counter. An n-bit

61

Figure 3.13: Speed of restricted counters in (MHz) with increasing sizes and the two imple-
mentation types. The 4 bit and 6 bit restricted counters are faster when synthesized while the
performance of the synthesized and IP core is comparable for higher count sizes

binary counter can count from 0 to 2n - 1. Since the counting range of many opcodes may

be less than 2n - 1, we need to add additional combinational logic to restrict the count range.

Therefore the size of such counters is greater than unrestricted binary counters.

We implemented unrestricted as well as restricted versions of 4, 6, 7, 8, 9 and 10-bit coun-

ters using both IPCORES and synthesized VHDL. The clock speed of the 4 bit unrestricted

as well as restricted counter generated from synthesized VHDL was considerably higher than

the IPCORE based one, as depicted in Figure 3.12 and Figure 3.13. The other counters viz.

6, 7, 8, 9 and 10-bit showed marginal difference in performance based on the implementation

method. The area of the synthesized counters was higher than the IPCORE counters, for the

case of unrestricted counters as shown in Figure 3.14. In case of the unrestricted counters, the

10 bit synthesized counter occupies relatively larger area when compared to the IPCORE ba-

62

Figure 3.14: Variation of Area of un-restricted counters on FPGA with increasing count size
and the two implementation types. The area of the counters implemented using IP Core is
lesser when compared to the area of synthesized counters.

sed counters, as shown in Figure 3.15. The 10 bit unrestricted counter which is also the most

frequently occurring (Table 3.7) is a good candidate for an IPCORE based implementation

due to the compact area and similar performance vis-a-vis synthesized counter.

Based on the performance data we utilize the synthesized counter for the case of 4 bit

counters (both restricted and unrestricted) while we utilized the IPCORE based ones for all

other ones.

Back References Opcode

The PCRE engine allows for back-references to be used primarily for the convenience of

recollecting the marshalling / enclosing meta-characters which are useful for payloads con-

taining programming language specific constructs. As an example, some programming lan-

63

Figure 3.15: Variation of Area of counters with restricted count on FPGA with increasing
count size and the two implementation types. Restricting the count i.e. counting before the
maximum range of the counter, imposes substantial penalty on the size of the counter which
results in more than doubling the area of counts up to 8 bit and almost triples the area for the
9 and 10 bit counters.

guages allow strings to be enclosed either in single quotes ‘ ’ or double quotes “ ”. A back-

reference on the enclosing quotes would store the opening quote in the memory, and would

recollect it while encountering the closing quote. The contents of the matched back reference

can be stored in a RAM, to be referred later on in the payload.

Two rulesets in the SNORT rules database, namely the oracle and the web-client rules

consist of 219 rules that include 262 back-reference opcodes. Such a long list of back-

reference opcodes is unsuitable for storage in the distributed logic on the FPGA, and due to

its large size, would cause over-mapping of logic resources. Our design uses the Block RAM

for storing back reference data for the aforementioned rulesets, thus mitigating the problem

of overmapping. While generating VHDL code of the regular expression engine from the

64

output_char

C i 
1KByte 
BRAM 

addr

Dout

Din

Addr gen 

input_char

match_out

Figure 3.16: The backreference Opcode.

PCRE opcodes, our compiler utilizes Block RAM for local storage of back reference. An

example back reference opcode block containing the comparator opcode and the associated

BRAM shown in Figure 3.16. The area cost of the back-reference opcode is 8 slices, plus

any additional area required by the comparator opcode which generates the back reference

data.

3.4.4 NFA Implementation on FPGA

A software implementation of regular expression engines process a single instance at any

one time on a CPU core. The FPGA implementation allows for multiple engines processing

regular expression matching to operate concurrently as shown in Figure 3.17, thus increasing

the throughput. Various optimizations to the engines are possible, including sharing of prefix,

common subexpressions and constant matches in the hardware [101] along with choice of

engines implemented as a DFA or as a NFA. Moreover, since the logic design on an FPGA

can be updated as and when required, it makes them an ideal platform for supporting newer

or updated regular expressions, and thus any modification to the SNORT IDS ruleset would

65

Figure 3.17: Multiple NFA engines executing in parallel on a FPGA.

N 
e 
t 
b 
u 
s 

i0 
.. 
i5 

\x
2E i 

\x20 

i2 

i1  \x30 
…. 
\x39 i2 

i1  \x30 
.. 

\x39 i2 

i1 

NFA Controller 

PAYLOAD

MATCH

char_out

char_out char_out

char_out

char_out match
_out

match_out match_out

match
_out

match_out

en en en

EN

en
en

Figure 3.18: The NFA derived from the SNORT Rule ‘NetBus\s+\d+\x2E\d+’. This NFA
occupies 71 slices and can run at 331MHz. The NFA controller implements flip-flops to
enable subsequent stages in the NFA and generates the match output at the final flop. The
NFA controller occupies 2 slices in this regular expression.

result in the re-compilation of the new or modified rule only. Due to the inherent parallelism

of hardware implementations, NFA based regular expression makes the most practical sense

on FPGA. Figure 3.18 depicts the internal organization of an NFA generated from a SNORT

rule implemented on the FPGA that takes one character as input every clock cycle.

66

Figure 3.19: Architecture of parallel PCRE Engines on Virtex-4 LX 200 FPGA. Each of
the sixteen byte-wide bank obtains a character from the Memory Interface Module and sends
them to the 14 NFA engines on that bank. The BRAM is utilized by NFAs implementing the
back reference opcode.

Implementation Architecture of PCRE engines on FPGA

PCRE engines from the SNORT rulesets are aggregated together in a single FPGA design,

to be implemented and run in parallel. As depicted in Figure 3.19, 214 NFA engines can

fit on a single FPGA chip. The NFA engines receive a character every clock cycle on the

8 bit payload line. The RASC RC 100 Blade allows for 128 bits to be retrieved from the

Payload buffer each clock cycle, thus a total of sixteen separate payload lines are generated,

that operate in parallel. As depicted in the architecture, the FPGA processes sixteen parallel

payload banks, and each bank except bank 16 has fourteen parallel NFAs. The banked regular

expression architecture is extendible to multiple FPGAs. It is possible to duplicate regular

expression banks on multiple FPGAs to improve the throughput by executing parallel regular

67

expression scans on multiple payloads. The memory interface module is an SRAM memory

controller that interfaces to Memory 1 on the RC 100 Blade. Memory 1 serves as a Payload

Buffer that receives the data worth sixteen payloads from the host CPU on the SGI Altix

4700. The payload buffer needs to store 16 * 65,536 Bytes or 1 MBytes, since the maximum

size of each payload is 64 KBytes, and 16 of them are processed in parallel on the FPGA.

The FPGA based PCRE engines containing regular expressions with back-references are

allocated memory space on the on-chip Block RAM. Each PCRE engine generates a 1 bit

output data that represents whether the payload matches the regular expression. A total of

224 bits are transferred back to the host upon completion of streaming of the packet through

the PCRE engines on the FPGA. The 224 bit match data is then decoded at the host to obtain

the individual match status of each regular expression engine.

Using the RASC hardware, it is also possible to send priority encoded match data in 16

groups, each consisting of 4 bit encoded data, as output every clock cycle. Such a method

can help capture multiple regular expression matches on the given payload data. In order

to process this data, we need to allocate additional software processing routines that would

decode the output data every clock cycle. A set of API known as RASC Abstraction Layer

manages the data transfer between the host processor on SGI Altix system and the RASC

RC 100 Blade. The block diagram in Figure 3.20 depicts the top level integration of the SGI

RASClib (RASC Abstraction Layer) APIs and SNORT IDS for executing PCRE matches in

hardware.

68

Figure 3.20: Overall system using SNORT IDS and PCRE Engines on FPGA

3.5 Experimental Results

We perform comprehensive performance analysis for both the software only case on various

computing platforms, as well as the case when a RASC blade is available on the SGI Altix

4700 system for accelerating regular expression engines on hardware. We run our experiment

on a set of network dump of size 10 GBytes. Our network dump file has been generated by

running wireshark v1.0 on the SGI Altix 4700 system, over a period of time, resulting in a

collection of TCP payload data. The payload data is split with tcp-split and then exported

as C-Arrays file using wireshark. Each TCP payload is parsed from the C-Arrays source file

and stored into a final payload dump file. We load the payload file on the main memory of the

Altix machine before running our experiments. The payload data consists of, in decreasing

order of frequency, web / html data (∼50%), ftp data (∼30%), ssh payload (∼15%), and

other miscellaneous network data.

69

3.5.1 Software only performance with multi-cpu load balancing

We have used three different 64-bit computers for testing the software execution of PCRE

engine with different regular expressions. The first system is a dual core X86-64 desktop

with an Intel Core2 Extreme X6800 processor (Conroe) clocked at 3.5GHz with a 1066MHz

FSB and 4.0GBytes RAM. The second system is a X86-64 SGI Workstation consisting of

two dual core Intel XEON 5160 processors (Woodcrest) clocked at 3.0GHz with 1333MHz

FSB and 16.0GBytes RAM. The third system is the DSM IA-64 SGI Altix 4700 system with

16 Itanium 2 (Montecito) processors clocked at 1.6GHz with 64GBytes RAM. We test the

software throughput by evaluating the payload data with a total of twelve regular expressions,

obtained from the SNORT database across three different performance scenarios. We have

selected regular expressions from backdoor, ftp, web-client and web-cgi rule-sets. Table 3.1

exemplifies two PCRE rules, that are among the rules we use in our benchmark. The perfor-

mance of the software bases PCRE execution engine is highly sensitive to the actual payload.

When the payload contains data that cannot match the regular expression, or is irrelevant to a

particular regular expression, the throughput delivered by the software is excellent, and vice

versa.

We have invoked PCRE engines on all the available CPU cores, except for the SGI Altix

4700, where we have invoked 30 threads, since 2 threads are used by the RASCLib APIs to

transfer data to/from the two FPGAs. We compiled the PCRE v6.7 library using GCC v4.0.2

on the X86-64 systems and using ICC v9.1.042 on the SGI Altix 4700.

70

11021 
5510  3661  2748 

13045 

6457  4307  3222 

70088 

36820 

24904 
18874 

0 

10000 

20000 

30000 

40000 

50000 

60000 

70000 

80000 

1 Regex  2 Regex  3 Regex  4 Regex 

Core2Extreme X6800 3.5GHz, 1066 MHz FSB 2 
Threads 
XEON 5160 3.0GHz, 1333 MHz FSB 4 Threads 

Itanium2 1.6GHz 30 Threads 

Number of Regex / Packet 

Figure 3.21: Comparison of system throughput with varying number of regular expression
rules executing per TCP payload. The results are shown for software based execution in
presence of minimal malicious activity in the network payload dump.

Software Benchmark with Minimal Malicious Activity

In this benchmark less than ∼5% packets trigger the IDS to execute regular expression

matches. The four regular expression rules used for this test are from backdoor ruleset. Since

there is no backdoor activities on the network, a single threaded regular expression engine

running backdoor rules can easily offer throughput of the order of a few Gbps. Thus, with a

multi processor load balanced system such as the SGI Altix, it is possible to keep up and even

exceed link speed of 10 Gbps. Figure 3.21 depicts the total throughput of the system when

running each payload through rules from backdoor rule-set. The throughput decreased lin-

early with increasing number of rules executed per network payload. The overall throughput

drops from 70,088 Mbps to 18,874 Mbps on the SGI Altix 4700, when the number of regex

per packet increased from one to four. From Figure 3.22 it can be seen that the throughput

is also sensitive to the CPU clock frequency as well as the overall memory subsystem of a

given computing system. The best per-thread performance is obtained by a dual core desktop

with a high CPU clock frequency.

71

5510 

2755 

1830 
1374 

3261 

1614 

1077 
805 

2336 

1227 
830  629 

0 

1000 

2000 

3000 

4000 

5000 

6000 

1 Regex  2 Regex  3 Regex  4 Regex 

Core2Extreme X6800 3.5GHz, 1066 MHz FSB  

XEON 5160 3.0GHz, 1333 MHz FSB 

Itanium2 1.6GHz  

M
eg
ab
its
 /
 s
ec
on

d 

Number of Regex / Packet 

Figure 3.22: Comparison of system throughput per processor thread with varying number
of regular expression rules executing per TCP payload. The results are shown for software
based execution in presence of minimal malicious activity in the tcp payload dump.

Software Benchmark with Moderate Malicious Activity

In our benchmark, moderate network activity scenario consists of the cases when ∼30%

packets trigger the IDS to execute regular expression matches. The four regular expression

rules used for this test are from ftp ruleset running and Figure 3.23 details the system through-

put running this test. The throughput of the software based IDS decreases because the PCRE

engine now needs to further inspect the payload for potential malicious signature. In this ex-

ample, with moderate ftp activity on the network,the software based engine matching regular

expressions from the ftp rule-set, exhibits slowdown when compared to the aforementioned

minimal activity scenario.

Once more, the throughput decreased linearly with increasing number of rules per net-

work payload. The overall throughput drops from 2058 Mbps to 515 Mbps on the SGI Altix

4700, when the number of regex per packet increased from one to four. This kind of scenario

makes it impossible to run regular expression engines at 10 Gbps, though it is marginally suf-

ficient for a 1 Gbps network interface. Interestingly, from Figure 3.24 the per core throughput

72

715 

324 
223  167 

1229 

605 
402 

301 

2058 

1029 

687 
515 

0 

500 

1000 

1500 

2000 

2500 

1 Regex  2 Regex  3 Regex  4 Regex 

Core2Extreme X6800 3.5GHz, 1066 MHz FSB 2 Threads 

XEON 5160 3.0GHz, 1333 MHz FSB 4 Threads 

Itanium2 1.6GHz 30 Threads 

Number of Regex / Packet 

Figure 3.23: Comparison of system throughput with varying number of regular expression
rules executing per TCP payload. The results are shown for software based execution in
presence of moderate amounts of malicious activity in the tcp payload dump.

358 

162 

111 
84 

307 

151 

100 
75 69 

34  23  17 

0 

50 

100 

150 

200 

250 

300 

350 

400 

1  2  3  4 

Core2Extreme X6800 3.5GHz, 1066 MHz FSB  

XEON 5160 3.0GHz, 1333 MHz FSB  

Itanium2 1.6GHz  

M
eg
ab
its
 /
 s
ec
on

d 

Number of Regex / Packet 

Figure 3.24: Comparison of system throughput per processor thread with varying number
of regular expression rules executing per TCP payload. The results are shown for software
based execution in presence of moderate amounts of malicious activity in the tcp payload
dump.

182 

116 

62  48 

310 

204 

121 
97 

501 

310 

192 

148 

0 

100 

200 

300 

400 

500 

600 

1 Regex  2 Regex  3 Regex  4 Regex 

Core2Extreme X6800 3.5GHz, 1066 MHz FSB 2 
Threads 
XEON 5160 3.0GHz, 1333 MHz FSB 4 Threads 

Itanium2 1.6GHz 30 Threads 

M
eg
ab
its
 /
 s
ec
on

d 

Number of Regex / Packet 

Figure 3.25: Comparison of system throughput with varying number of regular expression
rules executing per TCP payload. The results are shown for software based execution in
presence of high amounts of malicious activity in the tcp payload dump.

73

91 

58 

31 
24 

78 

51 

30 
24 

17 
10 

6  5 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

1  2  3  4 

Core2Extreme X6800 3.5GHz, 1066 MHz FSB  

XEON 5160 3.0GHz, 1333 MHz FSB  

Itanium2 1.6GHz  

M
eg
ab
its
 /
 s
ec
on

d 

Number of Regex / Packet 

Figure 3.26: Comparison of system throughput per processor thread with varying number
of regular expression rules executing per TCP payload. The results are shown for software
based execution in presence of high amounts of malicious activity in the tcp payload dump.

variation decreases with increasing number of regular expression per packet, when compared

across the same architecture viz. the C2E X6800 and the XEON 5160. The X6800 perfor-

mance is 16.6% higher for one regex per packet, but only 12% higher for four regex per

packet.

Software Benchmark with High Malicious Activity

High activity scenario entails the case when ∼50% of the network payload trigger the IDS

to execute regular expression match. The throughput of the software based PCRE engines

dramatically decreases in this scenarios, since a substantial number of packets are parsed

through regular expression rules. We have selected four regular expressions from the web-

client, web-cgi rule-sets. During this test, the rules trigger multiple times, indicating pay-

load containing potential malicious activity vis-a-vis the web based rules. By running thirty

threads in parallel on the SGI Altix 4700 system we were able to achieve 501 Mbps with one

regex per packet and 148 Mbps with four regex per packet as seen from Figure 3.25. From

Figure 3.26, we see that the per-thread performance of the C2E X6800 and the XEON 5160

74

have almost equalized for both three regex per packet and four regex per packet. The per

thread performance of Itanium 2 has also dramatically decreased, with only 5 Mbps achiev-

able per core for executing four regex per packet. This is the kind of scenario that can be

expected during a concerted attack, i.e. when streams of packets arrive at the IDS and most

of them trigger the SNORT IDS to execute multiple regular expression tests. As a result, this

kind of situation can slow down the IDS to a crawl.

3.5.2 Hardware Benchmark and Comparison with Single Threaded Soft-

ware Execution

Our compilation and hardware implementation of PCRE engines are compared against PCRE

engines executed on software on actual SNORT rules. We run the experiment on a set of

network dump of size 2.0 GB. Our network dump file has been generated by running tcpdump

on the SGI Altix 4700 supercomputer, over a period of time, and collecting the payload data

in a single file. We load the payload file on the main memory of the Altix machine before

sending it onto the RASC Blade. When evaluating the baseline software implementation of

PCRE, we store the file on a ramdisk on an SGI workstation. We have created six project

directories with 25, 50, 75, 100, 200 and 400 regular expression derived from the backdoor,

web-client, and spyware-put rulesets to allow us to obtain speedup data with varying number

of regular expressions. More than 214 regular expressions entailed extremely long place and

route (PAR) effort requirements. The primary reason for PAR failure with such large designs,

that encompass the whole FPGA is the lack of available system RAM, which in our case was

75

14 GBytes.

Experimental Setup

For our software baseline testing, we utilize the aforementioned rulesets and create five

project locations each with the same set of rules that were implemented on hardware. Each

of the project directory is accessed by a shell script that invokes pcre compile on the regular

expression and thereafter executes by invoking pcre execute. Each iteration of the experi-

ment was executed 100 times to determine the average execution time, and hence the average

throughput. We run the software baseline benchmarks on an Intel XEON 5160 (Woodcrest

3.0GHz 1333MHz Front Side Bus) based SGI Workstation, with 16 GBytes RAM.

We utilize the three aforementioned rulesets for compilation into VHDL and thereafter

implementation onto the FPGA hardware on the SGI RASC RC 100 Blade. The hardware

NFA blocks utilize a modular connection and are individually synthesized. The synthesized

regular expression engines from each of the ruleset are collated together in a project location,

along with the payload buffer and the memory interface module. We utilize the Xilinx ISE

9.2i synthesis tool namely ‘XST’ to synthesize this project. Thereafter the netlist containing

the regular expressions and the payload buffer is mapped onto the Virtex-4 LX 200 FPGA,

along with the SGI Core services using the ‘MAP’ tool. The next stage involves running the

PAR and bitgen tools to finally generate a bitstream file that would configure the hardware

resources on the FPGA. The bitstream file is copied to the bitstream repository, that would

be accessible by the SGI Altix RASC daemon. All the FPGA compilation tools are run

76

13112 13232
12560 12816 12776

289 162 97 73 36
45

81

130

176

353

0

50

100

150

200

250

300

350

400

0

2000

4000

6000

8000

10000

12000

14000

25 50 75 100 200

Sp
ee

du
p

Th
ro

ug
hp

ut
 (M

B
its

/S
ec

)

Number of Regular Expression Engines

Data Throughput with increasing number of Regular Expressions

PCRE Engines on
RC100

PCRE Engine on
XEON 5160 (3.0
GHz)

SPEEDUP with
RC100

Legend

Figure 3.27: Throughput of the PCRE engines on the SGI RASC RC100 Blade as function
of the number of regular expressions. The speedup is in comparison to software execution
on a 3.0 GHz Xeon. The throuput improvement is 353x using 200 regular expressions.

on the baseline SGI XEON 5160 workstation. The host code that reads the payload file,

calls the RASClib APIs and receives the match data in a ‘C’ program. Sixteen bytes each

corresponding to one of 16 TCP payloads, are sent to the RASC Blade each clock cycle. The

SGI Altix 4700 at our site, utilizes two partitions, each with 32 Intel Itanium2 (Montecito

1.6GHz) processor cores, and 642 GByte main memory. The host code has been compiled

using Intel C Compiler version 9.1.042, for optimum performance on the Itanium2. In order

to benchmark the performance of the hardware, we program the FPGA first with the bitstream

containing 25 regular expression engines. Next we call the RASClib API’s to send the 2.0 GB

worth of payload, to the RASC Blade, and obtain the match data for the TCP packets. We then

repeat the experiment with each set of regular expressions, each time sending 2.0 GB payload

to the RASC Blade, and receiving the match data. Each iteration of the experiment is run

77

100 times and the average time of execution is recorded to obtain the average throughput. We

include the bit-stream loading time overhead for each run of the benchmark. Since the RASC

RC 100 Blade is connected to a NUMA Link interconnect on the Altix 4700 system, that is

a shared memory system, the throughput data shows slight variability, which is dependent of

a number of factors including the location of the memory that stores the payload, the actual

system load at the time, etc.

Performance Results

The speedup and throughput charted out in Figure 3.27, corresponds to both the baseline

case (black) bars and on the RASC RC 100 blade viz. the (red) bars. The hardware design

after the synthesis, place and route flow, clocked at a little more than 150MHz for all the five

regular expression rulesets. Even though individual components can run at 300MHz, the pri-

mary reason for the 150 MHz clock rate is that back reference opcode using on-chip BRAM

on Virtex-4 LX 200 can operate at 155 MHz and thus is the critical path for timing. Hence

we programmed the RC 100 algorithm clock to operate at a fixed frequency of 150 MHz. 2

As the number of regular expressions on the hardware increased each packet was processed

through many more regular expressions in parallel. Since the baseline software entails serial

execution of the same payload over multiple regular expressions, the effective throughput de-

clines with increasing number of regular expression engines. Therefore the speedup provided

by the hardware increased linearly with increasing number of regular expressions when com-

2The design runs at 150 MHz by utilizing a fractional (n/m) multiplier (DCM Block) with value (3/4) that
multiplies the base frequency (200MHz) of the clock generator on the FPGA.

78

11012  11012  11012  11012  11012  11012 
3750  8262  11175 

22643 

44446 

90172 

0 

20000 

40000 

60000 

80000 

100000 

120000 

25  50  75  100  200  400 

FPGA AREA with increasing number of Regular Expression Engines 

AREA in 
SLICES for 
PCRE Engines 

AREA in 
SLICES for 
RASC Core 
Services 
Hardware 

Number of Regular Expression Engines 

V
ir
te
x‐
4 
SL
IC
ES
 

Figure 3.28: Area (in slices) occupied by PCRE engines on the Virtex-4 FPGA on SGI
RASC RC100 Blade. The lower dark section is the fixed area cost dedicated to the RASC
Core services on the FPGA (11,012 slices).

pared to the baseline software execution scenario. The throughput obtained with 25, 50, 75,

100 and 200 regular expressions implemented on the FPGA with the test network dump data

set are 13.1, 13.2, 12.6, 12.8 and 12.7 GBits/s respectively, with an average throughput of

(12.9 GBits/s). We can modify the host code driver, to broadcast the Payload buffer from the

host to the second FPGA on the RASC RC 100 Blade as well and would double the number

of implemented SNORT rules. The fact that the SGI Altix4700 supports seventy FPGAs in

total can allow a potential implementation of the complete SNORT ruleset in hardware with

room to spare for future expansion.

FPGA Area Analysis

In this subsection we evaluate the area occupied by our design on the FPGA as function of

the number of regular expressions. The area metrics used for a design on a Xilinx FPGA

is known as slice (as discussed in section 3.1.4). The regular expressions in the SNORT

79

DB range from small 12 character long rules, up to 602 character long rules. The hardware

complexity is related to the size of the regular expression (in text form), as well as the opcodes

involved. This is because two regular expressions with the same size (in text form) may lead

to slightly different sized hardware. The smallest regular expression that we implement is

a ten character long rule and it occupies 13 slices, while the largest regular expression, is a

545 character long rule which occupies 1102 slices. In Figure 3.28, the area occupied on the

FPGA for increasing number of regular expressions is charted out. Each occurrence bar is

divided into two parts, the lower dark colored section is the fixed area cost dedicated to the

RASC Core services on the FPGA. It occupies 11,012 slices. The light colored section of

the bar on top is the actual area for the given number of regular expressions. The total area

of 200 regular expressions is 55,012 slices for a 62% occupancy of the FPGA. The last bar

corresponding to 400 regular expressions is over-mapped onto the Virtex-4 LX 200 FPGA.

It may be possible to implement 400 regular expressions in a future device with more slices

than the Virtex-4 LX 200. From the area data we calculate the variable area cost per regular

expression on an average to be ∼190 slices without accounting for the core services. While

accounting for the fixed area of core services the area cost per regular expression turns out to

be ∼339 slices.

3.5.3 Single Processor Power Consumption Analysis

FPGAs are very low power devices with power consumption on the order of 30 to 40 Watts,

mainly due to their low clock speeds. On the other hand microprocessors consume a lot

80

Figure 3.29: Picture of the RASC RC100 Blade usable on the SGI Altix 4700

of power and generate high amounts of heat, with additional power required for cooling

purposes. As can be seen in Figure 3.29 the FPGAs on the RASC blade have short heat sinks

and passive cooling. On the other hand, high performance processors and support chips

consume a huge amount of power and require active cooling. The TDP (Thermal Design

Power) [86] of a 3.0 GHz dual-core Intel XEON 5160 (65nm) processor is 80W [85]. Thus

by utilizing an FPGA it is easily possible to scale down the computing power requirements

without affecting application performance.

The maximum power consumed in Watts by the Virtex-4 LX 200 (90nm) FPGA is ∼

42W [167] and an additional∼ 80 watts is used by the host processor for data transfer to and

from the FPGA. Therefore by utilizing an FPGA that offers ∼ 150 times the throughput of a

dual core processor, we have reduced the power foot print of the system by [80 * 150 / (42

81

+ 80)] i.e. ∼100 times; a two orders decrease in the power consumption of the computing

silicon devices.

3.6 Conclusion

Previous approaches towards compiling PCRE to FPGA work did not utilize the PCRE com-

pilation framework. The earlier compilation approaches were mainly either hand coding of

the regular expressions to hardware or used a custom conversion process. As an example,

[33] used their custom conversion flow for generating hardware from a subset of the SNORT

IDS PCRE rules.

We describe a novel compilation method in this chapter, one that allows direct compila-

tion of PCRE opcodes generated from SNORT rules to VHDL. Our work allows compilation

of PCRE to FPGA by utilizing the PCRE library compilation front end. We have developed

an opcode dump module that processes the opcode in the format required by our opcode to

VHDL compiler. Using the generated dumped opcodes we generate VHDL hardware mod-

ules. We simulate the hardware and test its compatibility with the software based PCRE

execution, using the same generated opcodes and thus maintain compatibility with the soft-

ware flow.

We have presented an extensive analysis of the performance of regular expression ba-

sed SNORT IDS with actual network payload and concluded that the throughput of multi-

processor software based regular expression engines decline drastically during periods of

82

malicious activity

We also demonstrate the actual implementation of SNORT regular expression rules on

FPGA using a 16 bank architecture. We test our proof-of-concept design on a Virtex 4

LX 200 FPGA on a SGI RASC RC 100 blade. The resulting hardware system provides

an average throughput of 12.9 Gbps on network payload data on a number of SNORT rules

ranging from 25 to 200, by maximizing bus bandwidth available on the RASC blade. Our

design performs between 45X up until 353X when compared to a baseline implementation

on a Intel XEON 5160 CPU at 3.0 GHz.

We have also shown a two order decrease in power consumption by utilizing an FPGA

for implementing regular expression engines vis-a-vis implementing the engines in parallel

on a general purpose processor.

83

Chapter 4

Partial Reconfiguration on FPGA

FPGAs are ideal platforms for implementing reconfigurable co-processor and accelerator

systems. FPGAs provide versatility and adaptability in the hardware by means of reconfig-

urability. The FPGA can be programmed with a new bitstream to provide new functionality

in hardware. Xilinx Virtex series FPGA also provide modular and partial re-configurability,

which allows a portion of the FPGA to be reconfigured, while the rest of the hardware func-

tions as before. In this chapter we demonstrate the utility of partial reprogramming for pro-

viding multiple co-processor cores on a CSoC. We provide details on how we automate the

system interface between the CPU and the coprocessor on the CSoC. We also demonstrate

how partial reconfiguration can help provide quick adaptability for FPGA systems that im-

plement regular expression matching hardware for accelerating SNORT IDS.

84

4.1 Dynamic Co-Processor Interface Automation

By integrating one or more (hard or soft) CPU core on the chip, new generation platform

FPGAs have become configurable systems on a chip (CSoC) that support a combined soft-

ware and hardware execution model. More recently, FPGAs, using new design tools, have

also provided support for partial reconfiguration. The CSoC system designer is left with the

task of interfacing IP Cores to the CPU and also for realizing partial reconfiguration across

the cores. In this chapter, we describe a software tool to automate the interface between the

CPU and the reconfigurable fabric. Our tool generates hardware wrappers for the IP Cores

that makes them look like a C function invocation in the source code. We also use our tool to

support partial reconfiguration: the same wrapper is used for a multitude of IP Cores and the

user selects the core to be invoked in the program.

Modern FPGAs integrate a (hard or soft) processor core, with the reconfigurable fabric.

These CSoC use the CPU to support the software execution and rely on one or more hardware

cores for accelerating frequently used code segments (loop nests). These hardware cores can

be either custom designed or can be selected from a library of pre-existing IP Cores. The

hardware cores are tightly coupled with the CPU using very high speed, point to point links

for fast data transfer in the Virtex-4 FX CSoC. CPUs such as the PowerPC 405 also support

custom instructions for communicating with these co-processors. The co-processors act as

accelerators for compute intensive portions of the applications such as floating point inten-

sive calculations [178], discrete transformation algorithms (FFT, DWT, DCT, etc) [152][46]

85

[200], and also for custom applications such as Smith-Waterman string matching, encryp-

tion/decryption engines, etc. A multitude of co-processing functionality can be realized using

IP Cores that are highly configurable and performance optimized. Interfacing the available li-

brary of IP Cores to the on-chip processor is a time-consuming and tedious task which almost

always, needs to be taken care of manually. The system designer is left with the task of inter-

facing each and every core to the co-processor interface [98]. Partial reconfiguration offers

the system designer the possibility to leverage the same basic hardware structure for accel-

erating multiple tasks (programs) on the CSoC. Partial reconfiguration on the FPGA makes

it possible to create a system that can enable re-configuration of pre-assigned parts of the

FPGA without affecting the static parts, or inducing a system-wide reset. The high overhead

of reconfiguration, at this point in its development (msec), precludes using it dynamically

within the same task. It is however a very powerful tool to overcome the area limitation of

a single FPGA platform across multiple applications since re-configuration can be combined

together with a CPU context switch. The system designer is also left with the task of gen-

erating the interface between static and dynamic regions of the FPGA as required for partial

reconfiguration [65] [204] [60] [34] [205] [93]. In this chapter we describe a software tool for

automatically generating the communication interface between the software running on the

CPU and a tightly coupled IP Core based co-processing system on the Virtex-4 FX FPGA.

It generates hardware wrappers for the core that makes it look like a C function invocation

in the source code. We extend this tool to support partial reconfiguration: the same static

wrapper is used for multiple cores and the user selects the core to be invoked in the program.

86

Our compiler for FPGA-based reconfigurable systems, ROCCC [72] [71] [73]leverages the

huge wealth of IP Cores by allowing the user to import these cores into the source code. The

compiler automatically generates a wrapper structure that would hide the timing and stateful

nature of the IP Cores and makes each available to the C language compiler, as an un-timed

side-effect free function call. We also use the ROCCC compiler approach to support run-time

reconfiguration by automating the generation of the interface between static and dynamic re-

gions of the FPGA. The user can switch between multiple functional units by calling the

appropriate C function in the code, thus entailing the use of the same hardware wrapper for

multiple IP Cores. Utilizing our software tool along with the ROCCC infrastructure we have

been able to automatically configure multiple IP Cores on the fabric viz. FP (Floating point)

Adder, FP Multiplier, Integer divider CORDIC engine and an FFT engine. Moreover using

partial reconfiguration we have been able to overcome the area limitation of a single FPGA

platform (Virtex-4 FX12), using five different IP Cores. We have allocated a region of 1800

slices for the co-processor, thus resulting in a reduction in the floor area by 2656 slices due

to partial reconfiguration. Moreover the area dedicated for the hardware wrapper is no more

than 14 slices, quite miniscule, when compared to the actual IP Core area.

87

4.2 System Overview for IP Core Wrapper Generation and

Partial Reconfiguration

The target of our research emphasizes automatic wrapper generation and reconfiguration for

IP Cores configured on CSoC systems. These systems are self contained embedded process-

ing solutions often targeted for reconfigurable computing applications. The major ingredi-

ents in our system are the CSoC system, IP Core libraries and the Compiler infrastructure

(ROCCC).

4.2.1 The CSoC platform

Our CSoC system consists of a Platform FPGA, which in turn are field programmable gate

array logic along with one or more (soft/hard) processors all on a single chip. The CPU

on the CSoC runs an Operating System as well as application software. With the advent of

higher performance FPGA fabrics it is now possible to instantiate software code accelerators

on the FPGA and use it for speeding up execution on the processor. In the past, the limiting

factor for speedup of these FPGA based accelerators had been the on-chip bus used for data

communication between the host-code and the accelerator, since the same bus is used for var-

ious other peripherals too. Software developed around the PowerPC core on the Virtex-4 FX

FPGA can communicate with fabric co-processors using point to point buffered links (also

known as Fast Simplex Links) [197] hence alleviating performance based issues, present on

a bus based architecture [194] [13] [197]. The Virtex-4 FX also provides a high performance

88

 
Figure 4.1: System Architecture of the dynamic co-processor system on FPGA

bus architecture (PLB and OPB) for connection with various on-fabric peripheral controllers

such as memory (DDR/SRAM) controller, Ethernet, UART, keyboard and mouse controller,

Peripheral controllers are synthesized as soft cores on the FPGA fabric, thus user defined

peripherals may also use this bus for communication with the CPU or other on-chip periph-

erals.

4.2.2 APU (Auxiliary Processing Unit) on Virtex-4 FX

The PowerPC 405 core on the Virtex-4 FX FPGA is a 32-bit architecture with on-chip in-

struction and data cache memory. An Auxiliary Processor Unit (APU) [136] controller ac-

companies the core to interface it to hardware accelerators on the fabric. The APU supports

32-bit custom instructions and 64-bit data. The co-processors instantiated on the Virtex-4 FX

FPGA use the APU on the PowerPC for seamless communication with the FPGA fabric. Ad-

ditionally there is also an option to use a bus based architecture, FCB (Fabric Co-Processor

89

Bus) for sharing the APU with more than one co-processor. As depicted in Figure 4.1, the

system architecture used for our dynamic co-processor system involves a Xilinx Virtex-4 FX,

the APU interface and two FSL channels. Data is sent/received over the FSL link from the

Power PC to the compiler generated (APU to IP) wrapper. The wrapper parses input/output

data according to the current IP Core instantiated on the dynamic fabric and maps them onto

the slice macro interface. The slice macros interface the static wrapper to the dynamic wrap-

per and through it to the IP Core. Handshaking/control signals are mapped onto the Control

bus and status/acknowledgment signals from the IP Core to the wrapper are mapped onto the

Status bus.

4.2.3 IP Cores

Intellectual Property cores have been available for a while for FPGA based systems. These

IP Cores are highly optimized replacement for sequential software used for time-critical

systems such as real time audio-video encoders/decoders, FIR filters, DSP blocks and also

for highly specialized applications such as string matching based on Smith-Waterman algo-

rithms. These IP Cores have also been used in various FPGA based applications for rapid

prototyping of system accelerators and co-processors. Most IP Cores are relationally placed

macros for FPGA which are already mapped to the target architecture and many of them are

relationally placed and routed as well. IP Cores result in higher performance designs along

with lowering of the design effort for the system. Most IP Cores share a similar input/output

architecture which consist of two input bus and one to two output bus, along with certain

90

 
Figure 4.2: An example Floating Point IP Core, demonstrating the I/O interface

control/acknowledgement signals. Thus it is possible to encompass these interfaces into a

standard I/O wrapper architecture [203] [201] which would serve as a superset for I/O in-

terface to all possible IP Cores targeted at a particular system. Our system currently targets

such compatible IP cores with future extensions planned for IP cores with arbitrary number

of inputs or outputs.

Depicted in Figure 4.2 is an example of a compatible IP Core viz. a Logicore series

Floating Point unit from Xilinx and Qinetiq [199]. The input bus (A, B) and output bus

(RESULT) can be configured either as 32-bit single precision or 64-bit double precision,

conformant to the IEEE 754 specifications. This core can be configured for a floating point

operation such as adder, subtractor, multiplier, divider, square-root, and comparator. Adder

and subtractor can be combined in a single unit. Various status signals originating from the IP

Core are Underflow, Overflow, Invalid operation, Divide by Zero. The OPERATION signal

selects either Add / Subtract, or from a multitude of compare operations if a Comparator is

configured. The computational latency of the floating point unit is 5 clock cycles.

91

 
Figure 4.3: ROCCC system overview

4.2.4 ROCCC Overview

An overview of the ROCCC framework is depicted in Figure 4.3. We have separated the

front and back ends to achieve modularity and eventually allow the use of a variety of front

end and back end tools.

ROCCC is built on the SUIF2 [7] and Machine-SUIF [157] platforms. It compiles C code

into VHDL code for mapping onto the FPGA fabric of a CSoC device. Information about

loops and memory accesses is visible in our front-end IR (intermediate representation) viz.

Hi-CIRRF (Compiler Intermediate Representation for Reconfigurable Fabrics). Accordingly,

most loop level analysis and optimizations are done at this level. ROCCC performs a very

extensive set of loop analysis and transformations, aiming at maximizing parallelism and

minimizing area. The compiler also minimizes accesses to memory by effecting smart re-use

of data. The compiler also performs scalar replacement at front-end. All memory loads are

moved to the top of the loop body and all memory stores are moved to the bottom of the

loop body. Machine-SUIF is an infrastructure for constructing the back end of a compiler.

Machine-SUIF’s existing passes, like the Control Flow Graph (CFG) library [30], Data Flow

Analysis library [158] and Static Single Assignment library[159] provide useful optimization

92

and analysis tools for our compilation system. We build the back-end using Machine-SUIF.

The compilers back-end Lo-CIRRF, converts the input from control flow graph (CFG) into

data flow graph (DFG), and generates synthesizable VHDL codes. We rely on commercial

tools viz. Xilinx XST to synthesize the generated VHDL codes for Virtex-4 FX.

4.2.5 Interface Synthesis

As introduced in the system overview section, the ROCCC compiler generates synthesizable

VHDL code for applications written in un-timed C. In this section, we present our approach

using the ROCCC system to wrap IP Cores. The compiler takes in a C-function intended

for co-processing operation and automatically generates the corresponding IP Core, along

with high-level abstractions. Taking the high-level wrapper abstractions as input, ROCCC

generates synthesizable wrappers in VHDL separately as well as C language driver code for

communication across the FSL channels. The wrappers are instantiated as components in the

outer circuit and enable a seamless connectivity between the on chip CPU and the IP Cores

instantiated on the fabric.

C language function calls

ROCCC recognizes co-processing function calls by checking a certain pragma and records

this pragma into an Intermediate Representation field for further use. It inserts Assembly

code required to access the FSL channels. The putfsl assembly call is used to write 32-bit

data to the FSL, while getfsl call reads back 32-bit data from FSL. The software function

93

 
Figure 4.4: The C function call to the co-processor and the #pragma directive

 
Figure 4.5: Data flow using FSL from the Virtex-4 APU to the static wrapper

call to the co-processor sends/receives 32-bit data through the putfsl/getfsl assembly calls as

depicted in Figure 4.4. The APU copies the data into/from the FSL and therefore to/from the

static wrapper i.e. the (APU to IP) wrapper.

The Internal Configuration Access Port (ICAP) is used by the function call to load in a

partial bitstream file in order to re-program the co-processor region with a new IP Core by

making use of the OPB-HWICAP hardware.

94

 
Figure 4.6: Data flow using FSL from the Virtex-4 APU to the static wrapper

Generation of the static (APU to IP) wrapper

The static wrapper provides an interface between the PowerPC APU and the first stage into

the fabric, as depicted in Figure 4.5. The static wrapper uses the standard FSL interface,

to provide for data input/ output and clock signals for synchronization. The static wrapper

buffers the input data and presents them to the slice macros and also buffers output data to be

communicated back using the FSL channel and into the Power PC APU.

Dynamic wrapper

The dynamic wrapper is a second wrapper which is generated in the partial reconfigurable

region of the FPGA. It is a VHDL entity which connects the 32-bit input/output signals, the

control signal, and the status signal from the slice macros onto the corresponding ports of

the IP Core. We would like to emphasize that the connectivity from / to slice macros for

each IP Core is specified in its respective dynamic wrapper. Thus the dynamic wrappers

present a standard interface for connectivity between slice macros and the IP Core as shown

95

  entity rmodule is 
    Port ( A : in  STD_LOGIC_VECTOR (31 downto 0); 
           B : in  STD_LOGIC_VECTOR (31 downto 0); 
           C : out  STD_LOGIC_VECTOR (31 downto 0); 
           D : out  STD_LOGIC_VECTOR (31 downto 0); 
           clk : in  STD_LOGIC); 
end rmodule; 
 
architecture Behavioral of rmodule is 
component cordic_module –From Logicore  
  port ( 
  x_in: IN std_logic_VECTOR(15 downto 0); 
  y_in: IN std_logic_VECTOR(15 downto 0); 
  phase_in: IN std_logic_VECTOR(15 downto 0); 
  x_out: OUT std_logic_VECTOR(15 downto 0); 
  y_out: OUT std_logic_VECTOR(15 downto 0); 
  clk: IN std_logic); 
end component; 
 
u_cordic: cordic_module  
  port map ( 
  x_in => A(31 downto 16), 
  y_in => A(15 downto 0), 
  phase_in => B(15 downto 0), 
  x_out => C(31 downto 16), 
  y_out => C(15 downto 0), 
  clk => clk);     
end Behavioral; 

Figure 4.7: A compiler generated dynamic wrapper for CORDIC engine

in Figure 4.6. A compiler generated dynamic wrapper is depicted in Figure 4.7, which maps

the slice macro interface to the ports of the IP Core. The input signals A, B, and output

signals C, D are connected to the slice macros during synthesis and so are the control/status

signals.

Dynamic Co-Processor Instantiation

We also use our tool to support dynamic partial reconfiguration. Dynamic partial reconfigu-

ration at runtime allows re-use of FPGA resources to obtain a plurality of functionality, from

the same hardware block, but at different times, and also without affecting the static parts of

the device. The compiler generates the wrappers for each IP Cores that need to be dynami-

96

 
Figure 4.8: The Partial Reconfiguration Module Generation Flowchart for FPGA

cally reconfigured. The design flow in Figure 4.8 involves the generation of the static logic

along with the various partial reconfigurable logic (wrapped IP Cores). Thereafter the FPGA

is floor planned to allocate a pre-determined area for the dynamic logic and the rest of the

floor area is dedicated to static logic. The area dedicated to the dynamic logic, also known

as the PR-Block (Partial Reconfigurable Block), is such that it may allow for the largest IP

block to be placed and routed within it. I/O and communication of the static logic with the

PR-block takes place using certain pre-configured hard macro blocks known as slice macros

[204], as shown in Figure 4.9.

These slice macros need to be manually placed around the boundary of the PR-block. We

have employed the Xilinx PlanAhead 8.1 visual floorplanning tool for iterative design and

97

 
Figure 4.9: SLICE macros placed on the Dynamic / Static logic boundary

 
Figure 4.10: SLICE usage for various IP Cores, and PR Block occupancy

placement. The final stages of the partial reconfigurable flow generates N static bitstreams

and N partial bitstreams, where N is the number of different IP Cores which are to be con-

figured in the PR-Block. Each of the N static bitstream contains the static design with the

IP Core numbered N already programmed into the stream, while each of the N partial bit-

streams contains the logic to re-program the PR-Block with the functionality of the Nth IP

Core. Thus the system may choose to start with one of the static bitstreams during power-up

and thereafter reprogram the PR-Block with the desired functionality.

98

4.2.6 Experimental Results

We have incorporated four Xilinx Logicore IP Cores in our compiler infrastructure for the

purpose of conducting experiments. These cores are enumerated in, Table 4.1. The floating

point adder, on the Xilinx Logicore IP Core [199] takes in two 32-bit single precision val-

ues conformant to the IEEE 754 standard (A, B) and outputs their sum in single precision

(result). The floating point multiplier takes in two 32-bit single precision values (A, B) and

outputs their 32-bit product (result). The FP multiplier [199] has been configured to utilize

four DSP48 blocks for fast multiplication of the significand values from the floating point

inputs. The CORDIC (Coordinate Rotational Digital Computer) IP Core [196] performs a

rectangular-to-polar vector translation. The IP Cores takes in as input the angle and magni-

tude in a polar coordinate and generates the equivalent vector (X, Y) in Cartesian coordinate.

The CORDIC module has been configured to utilize eight DSP48 blocks for fast multiplica-

tion for calculating the new coordinates and to enable scaling. The IP Core for a pipelined

Integer divider [202] does arithmetic division on a 32bit dividend and a 32bit divisor thus

resulting in a 32bit quotient and a 32-bit fraction value. For calculation of FFT, we have con-

figured the Logicore FFT IP Core [198] for 256 points, operating on 16-bit data. The core is

configured for Burst I/O for non simultaneous processing and data loading/unloading. Nine

DSP48 blocks have been utilized for fast multiplication operations. The static wrapper con-

tains logic for timing and burst data loading/unloading from the FFT unit. We have targeted

the Xilinx Virtex-4 FX12 FPGA containing 5472 slices, on the ML403 Evaluation board.

The design tools that we used are the Xilinx EDK 8.1 (PR-5) for generation of the Imple-

99

Table 4.1: Area Covered by the Dynamically instantiated IP Cores
IP Core SLICES DSP 48 Clock Speed Bitstream Reconfig Time

Blocks MHz KBytes JTAG Sel.MAP
Floating Point

431 0 250 79 0.2 sec 5ms
Adder 32-bit

Floating Point
431 4 218 76 0.19 sec 4.8ms

Multiplier 32-bit
CORDIC

989 8 220 99 0.24 sec 6ms
Rotate 16-bit
Divider Fixed

1111 0 228 112 0.28 sec 7ms
Point 32-bit
FFT 16-bit

1736 9 250 142 0.29 sec 7.1ms
256 Point

mentation files for the static subsystem and various wrappers for peripherals. We used Xilinx

ISE 8.1i XST for synthesizing, and Xilinx PlanAhead 8.1 for floorplanning, implementing

and testing the partial reconfiguration designs.

These five examples illustrate how a multitude of IP Cores can be effectively configured

as co-processors on a FPGA using C based function calls. The execution time overhead at

both the input side and output side for these four examples is one clock cycle except for the

static wrapper for FFT engine. The configuration units (slices) dedicated to the reconfig-

urable block is 1800 slices as shown in Figure 4.10 and slice macros and wrappers account

for less than 1% of slices dedicated to the PR Block (Table 4.2).

100

Table 4.2: The Area Covered by IP Wrappers and Wrapped IP Cores.

Entity Property

Floating Floating CORDIC Divider FFT
Point Point Rotate Fixed 16-bit
Adder Multiplier 16-bit Point 256-Point
32-bit 32-bit 32-bit

Static
SLICES 12 12 12 12 12

Wrapper
Static SLICES %

2.7 6.4 1.2 1.06 0.74
Wrapper w.r.t. IP Core
Dynamic

SLICES 2 2 2 2 2
Wrapper
Dynamic SLICES %

0.45 0.98 0.2 0.17 0.11
Wrapper w.r.t. IP Core
Wrapped

SLICES 445 203 1003 1124 1751
IP Core

PR Block 1800 SLICES dedicated for the PR Block

4.3 Adaptive Hardware/Software Regular Expression Ba-

sed IDS

FPGAs can be reprogrammed to change it’s functionality. This allows reconfiguration of the

FPGA with the type of the intrusion detection engines required at the moment i.e. adapt-

ability to the current network conditions. Additionally Xilinx FPGAs also support partial

reconfiguration flow, so that a part of the FPGA could be reconfigured. This reduces the

hardware re-programming time, when only a part of the FPGA needs to be modified. IDS

that employ these FPGA can maintain execution through software threads while the FPGA is

reconfigured during the brief moment. Moreover an IDS with two or more FPGAs can main-

tain execution on the other FPGAs while one of them is either partially or fully reconfigured

with a different set of regular expression engines. Partial reconfiguration also reduces the

101

synthesis and place and route time of a PR (Partial Reconfigurable) block from a few hours

to a few minutes, since only the hardware module under question is processed. An FPGA

system supporting partial reconfiguration can respond to new types of network attack much

faster than FPGA systems that only support full reconfiguration.

With our proof of concept hardware system, we demonstrate an adaptable regular ex-

pression based IDS using Virtex-4 LX 200 FPGAs that have been floor-planned for partial

reconfiguration. Our novel design allows partial reprogramming across 16 banks of regular

expression rule-sets. We implement 448 different regular expressions on two FPGAs and per-

form multiple partial and full reconfigurations. We measure the throughout of the integrated

Field Programmable Gate Array (FPGA) and multiprocessor SGI Altix system with varying

number of reconfigurations per minute. The maximum sustainable throughput of our design

is 19.84 Gbps per FPGA. Our adaptive IDS can provide better than 10 Gbps throughput even

with 32 partial reconfigurations per minute. Our system can also sustain 10 Gbps throughput

with four full-reconfigurations per minute. Our IDS design can be extended to similar FPGA

accelerated multi-processor system.

We describe a novel architecture on an integrated hardware/software regular expression

IDS that can successfully maintain throughput at 10 Gbps scale even under a range of partial

and full reconfiguration scenarios running on a proof-of-concept platform. The synthesis,

place and route time for implementing a set of new regular expression signatures on the

FPGA has been brought down from a few hours to minutes, for the hardware to be configured

with new signatures by using the partial reconfiguration flow on the FPGA.

102

Figure 4.11: Architecture of the Sixteen Partial Reconfigurable Area blocks on the Virtex-4
LX 200 FPGA. Each PR block consists of fourteen NFA engines. A PR Block, expanded
on the right hand side of the figure, obtains one byte payload data through the SLICE Macro
each clock cycle and outputs 14-bit match data on completion of a match.

To the best of our knowledge, such an architecture is a first of a kind demonstration of an

adaptable hardware/software regular expression based IDS. We have also benchmarked our

proof of concept FPGA regular expression based IDS test-bed using a thirty-two core SGI

Altix 4700 supercomputer with a RASC Blade consisting of two FPGAs. We show that by

utilizing our architecture, it is possible to avert concerted attacks and also to adapt towards

changing network activities, up-to thirty two times a minute, while still maintaining 10 Gbps

throughput.

103

4.3.1 The FPGA Architecture

The Xilinx Virtex-4 LX FPGA on the RASC Blade is the largest FPGA in the Virtex-4 series.

As depicted in Figure 4.11, we implement 16 banks, each consisting of 14 NFA engines on

one FPGA. We have divided the 80,000 algorithm SLICES and 600KByte on-chip BRAM

into 16 partial reconfigurable banks, each consisting of 5000 SLICES and 40KByte BRAM.

We utilize the Virtex-4 synchronous SLICE macros[208] to transfer data, clock and enable

signal between the static and the PR region on the FPGA. Two sets of SLICE macros have

been utilized; the first to transfer data from the stream buffer interface module and the latter

to transfer the match data from a the banks of NFAs to the output streaming data interface.

All the regular expression engines on the FPGA share a similar hardware interface that is the

signals for clock, reset, enable, character in and match out as shown in Figure 4.11. Thus it

is possible to pre-allocate the physical area block for all the sixteen banks of regexp engines

on the FPGA. Each bank of NFAs receives a character every clock cycle from the payload

line and outputs the match data, on completion of streaming of the payload.

4.3.2 Xilinx Partial Reconfiguration Flow

We utilize the Xilinx ISE 9.2.04i PR7 toolkit partial reconfiguration flow to support partial

reconfiguration of the FPGA on the RASC blade at runtime[208]. Partial reconfiguration al-

lows a system designer to obtain a plurality of functionality, from the same hardware block,

but at different times, and also without affecting the static parts of the device. Reprogram-

ming partial-reconfigurable banks on the FPGA allows the IDS to quickly re-use the FPGA

104

when the parameters of network activity changes i.e. a different rule-set is required to be

loaded. The static logic on the FPGA includes the RASC core services hardware that enables

streaming data interface to the algorithm block. We have employed the Xilinx PlanAhead

10.1 visual floorplanning tool[87]. Four SLICE macros have been used per bank; two for

input data and two for output match data. These SLICE macros have been manually placed

around the boundary of each PR block. The final stages of the partial reconfigurable flow

generates the partial bitstreams for each regular expression bank as well as the full bitstream

that includes all the 16 banks as well as the core services. We have created scripts that se-

quentially compile a given PR block of 14 regular expressions across each of the 16 banks

available on the FPGA. This results in future flexibility in loading a required bit-stream of

a rule-set in any of the 16 banks. Using floor-planning, each NFA bank can be synthesized

and placed and routed independently of each other. The time required to generate one partial

bitstream is 20 minutes.

4.3.3 The Hardware/Software Integrated Test System

Including an FPGA based accelerator for implementing parallel regular expression engines

can result in a tremendous boost in the overall performance on an IDS. We have completely

utilized the FPGA as well as general purpose processing resources to obtain maximum flexi-

bility, as well as performance. Our integrated system utilizes both the FPGAs on the RASC

blades. We dedicate two Itanium 2 processors for data transfer to / from the two FPGAs.

The rest of the thirty Itanium 2 processors are utilized when: a) A given regular expression

105

Figure 4.12: Using regular expression engines with an integrated FPGA hardware and mul-
tiprocessor software flow

106

required by SNORT is unavailable in any of the FPGA banks but exists as a partial bit-stream

b) A given regular expression is updated in the SNORT rule-set and is in the process of

being compiled, synthesized and implemented. When all the thirty two banks have been pro-

grammed with bit-streams, we swap the least recently used rule-set with the partial-bitstream

of the new rule-set. The overall flow of operation of the integrated hw/sw system is depicted

in Figure 4.12. The regular expression rule-sets are selected by SNORT depending on current

network activity. If the rule-sets had been already compiled and are loaded on the FPGA, the

RASCLIB APIs are invoked to transfer the payload data onto the FPGA on RASC Blade and

achieve maximum throughput in hardware. If the bitstream is available, but is not loaded on

any of the FPGA, then two processes occur simultaneously. Firstly the software threads are

invoked to start executing the regular expressions on the thirty Itanium 2 processors. Simul-

taneously the least recently used FPGA bank is re-programmed with the new bitstream. And

thereafter hardware acceleration is resumed. Only when the rule-set has not been compiled

earlier (for e.g. when a rule is updated by the security community) then the complete bank

of rule-set needs to be synthesized, placed and routed, and the partial bitstream needs to be

generated before hardware acceleration is possible.

4.3.4 Hardware Performance

The hardware design after the synthesis, place and route flow, clocked at 155 MHz with 224

different regular expressions constituted from the four rule-sets viz. web-client, web-cgi,

ftp and backdoor including the same rules that were used for the software execution. Thus

107

12932  12769  12603  12406 
12005 

11605 
11224 

9406 

6000 

2186 

846 

42 

12941 

11927 

11113 

9715 

5884 

2612 

42  42  42  42  42  42 
0 

2000 

4000 

6000 

8000 

10000 

12000 

14000 

0  2  4  8  16  24  32  64  128  200  225  240 

Par-al Reconfigura-on  

Full Reconfigura-on 

M
eg
ab
its
 /
 s
ec
on

d 

FPGA Reconfigura-ons / Minute 

Figure 4.13: System Throughput with increasing number of FPGA reconfigurations / minute.
During the FPGA reconfiguration, the software based PCRE engines are utilized. Data is
plotted for both partial one bank reconfiguration and complete FPGA reconfiguration.

our design offers a theoretical peak throughput of 19.84 Gbps per FPGA, as each FPGA

processes 16 Bytes Input and 16 Bytes Output per clock cycle.

We programmed the RC 100 algorithm clock to operate at a fixed frequency of 150 MHz.

Each packet was processed through 14 regular expressions in parallel on each of the 16 banks

on the FPGA. The average throughput obtained with 224 regular expressions implemented on

any one of the FPGA with the test network dump data set on RASC RC 100 is (12.9 GBits/s).

The actual throughput (12.9 Gbps) is less than the theoretical sustained throughput (19.84

Gbps) due to limitations, i.e. a shared crossbar, on the Altix system. Thorough details on the

hardware design, performance and experimental results on RC 100 are discussed in Chapter

2 and [116]. When we include the second FPGA, we add another 224 regular expression to

the hardware while still maintaining the 12.9 GBits/s aggregate throughput. It is also possible

to achieve twice the throughput viz. 25.8 Gbps on RC 100, by programming both the FPGAs

with the same set of regular expressions and by streaming in 32 different payloads, 16 to

each FPGA on the RASC Blade. We do not use the second configuration at this time, since

108

our goal is to achieve 10 Gbps level performance for as many different regular expressions

as possible.

4.3.5 Hardware/Software Performance with Reconfiguration

Section 4.3.3 describes the flow of operation while using the SGI Altix system with the

FPGAs on RASC blade for implementing a regular expression based IDS. We have run ex-

periments and obtained throughput results for two scenarios viz. with partial reconfiguration

of one NFA bank at a time, and also with full reconfiguration of the FPGA. Since the algo-

rithm clock is suspended during any kind of reconfiguration, the RASC blade cannot function

during that time frame. Therefore the software based PCRE engines are utilized while recon-

figuration.

We run 30 parallel threads, each thread running 14 regular expressions per packet on the

SGI Altix when the RASC blade undergoes reconfiguration. The reason for running 14 reg-

ular expressions per packet in software is that, in hardware, each payload data is scanned by

14 regular expressions. The payload data is the aforementioned 10 GByte network dump. We

have analyzed the system throughput with regular expression rules from web-client and web-

cgi rule-sets. Since the hardware performance is agnostic to the extent of malicious activity

on the network payload dump, we run the software subsystem on high malicious activity sce-

nario, in order to demonstrate the worst case performance scenario of the hardware/software

IDS.

As seen in Figure 4.13 we have varied the number of reconfigurations per minute from

109

zero to 240. We repeated the experiments for both the partial and full reconfiguration sce-

narios. Since the time required for a full reconfiguration is around two seconds while that

for a partial reconfiguration is 0.25 seconds, the effective throughput decreases much more

rapidly while under going multiple full reconfigurations per minute. Even at 32 partial re-

configurations per minute, the FPGA hardware supports a throughput of more than 10 Gbps.

On the contrary, while executing the same number of full reconfigurations per minute, the

FPGA hardware is essentially spending all the time reconfiguring, thus rendering itself un-

usable. The system then runs entirely on software thus performing at only 42 Mbps. The 10

Gbps cutoff points on the SGI Altix system for partial and full reconfiguration are thirty two

reconfigurations / minute and four reconfigurations / minute respectively.

Projected Throughput with DPR

Virtex-4 FPGAs support Dynamic Partial Reconfiguration (DPR), where the rest of the FPGA

may keep on operating while the partial bitstream is being loaded on one of the NFA banks.

Such a scenario offers two kind of advantages, the first being that only the regular expressions

corresponding to the NFA bank being reprogrammed, need to be run on software while the

hardware is being reconfigured. Secondly the hardware acceleration throughput is reduced by

only a fraction, since fifteen out of sixteen banks can continue operating. We have calculated

the projected throughout with DPR on RASC Blade, and that is plotted in Figure 4.14. Such a

hardware can be easily designed for running an adaptable IDS. This system has a worst-case

performance of around 12.1 Gbps, i.e. the case when partial reprogramming the FPGA two

110

12932 
12870 

12803  12807  12809  12814  12842 

12609 

12405 

12268 
12192  12154 

11600 

11800 

12000 

12200 

12400 

12600 

12800 

13000 

0  2  4  8  16  24  32  64  128  200  225  240 

Dynamic Par5al Reconfigura5on (Projected) 

FPGA Reconfigura5ons / Minute 

M
eg
ab
its
 /
 s
ec
on

d 

Figure 4.14: Projected System throughput with increasing numbers of DPR per minute. With
DPR, only the regexes corresponding to the NFA bank being reprogrammed need to be run
in software.

hundred and forty times a minute (since the time taken for a single partial reconfiguration is

about 0.25 second).

4.4 Conclusion

We have extended the ROCCC compiler infrastructure and have been able to effectively syn-

thesize co-processors selected form Xilinx Logicore IP Core library. These IP Core libraries

have been instantiated on the Virtex-4 CSoc. Using the generated IP Core wrappers, we have

been able to connect the IP Cores to the Virtex-4 FX APU. The wrapped IP cores are syn-

thesizable accelerator modules which are instantiated using a C function call in software. By

incorporating the partial reconfiguration flow for FPGAs with the IP Core, we have effec-

tively shared the reconfigurable fabric among various IP Cores, to overcome area limitation

111

on CSoCs. The dynamic IP Cores are instantiated from a C function call by means of pro-

gramming a partial bitstream in the FPGA.

We have also demonstrated the use of partial reconfiguration on FPGAs for implementing

an adaptable regular expression based IDS. We have proposed a novel hardware/software in-

tegrated system using CPUs and FPGAs, that can quickly adapt the hardware IDS to changing

network payload types and still maintain an overall throughput greater that 10 Gbps. We have

implemented 448 regular expression engines across two Virtex-4 LX 200 FPGAs, offering a

sustained throughput of 19.84 Gbps, and 12.9 Gbps on a RASC blade. We have integrated

SGI Altix 4700 and RASC blade into an IDS that maintain the functionality during partial

and full reprogramming of the FPGA, by executing the regular expression on multiple load

balanced CPUs. This proof-of-concept system also demonstrates quickly adaptability by

virtue of partial re-configuration. Our proof-of-concept system provides greater or equal to

10 Gbps throughput reconfiguring itself upto 32 times a minute.

112

Chapter 5

Boosting XML filtering with a scalable

FPGA-based architecture

In this chapter we document XML filtering and how we implement multiple XPATH expres-

sions on FPGA, by converting them to PCRE and then into VHDL hardware blocks. We

discuss the implementation of the ancestor descendant and parent-child axis in XPath. We

also describe how we implement the parent-child axis by incorporating a hardware stack

into the regular expression engines. We document the character pre-decoding block, and its

impact on area/clock speed. Finally we include details on matching twig queries on FPGA.

5.1 XML Pub-sub

The growing amount of XML encoded data exchanged over the Internet increases the im-

portance of XML based publish/subscribe (pub-sub) and content based routing systems. The

113

input in such systems typically consists of a stream of XML documents and a set of user

subscriptions expressed as XML queries. The pub/sub system then filters the published doc-

uments and passes them to the subscribers. Pub/sub systems are characterized by very high

input ratios, therefore the processing time is critical. In this chapter we propose a “pure

hardware” based solution, which utilizes XPath query blocks on FPGA to solve the filtering

problem. By utilizing the high throughput that an FPGA provides for parallel processing, our

approach achieves drastically better throughput than the existing software or mixed (hard-

ware/software) architectures. The XPath queries (subscriptions) are translated to regular ex-

pressions which are then mapped to FPGA devices. By introducing stacks within the FPGA

we are able to express and process a wide range of path queries very efficiently, on a scal-

able environment. Our experimental evaluation reveals more than one order of magnitude

improvement compared to traditional pub/sub systems.

Publish/subscribe applications (or simply pub-sub) (Figure 5.1) are an important class

of content-based dissemination systems where the message transmission is guided by the

message content, rather than its destination IP address. System architectures may vary (cen-

tralized within a server or distributed over a network of brokers) but they all follow the same

asynchronous event-based communication paradigm. The input is a stream of messages,

generated outside of the system by a set of publishers. These messages are then selectively

delivered to interested subscribers that have declared their interest by submitting profiles to

the pub-sub system. This process is also known as message filtering. Examples of pub-sub

systems include notification websites (e.g. hotwire.com and ticketmaster.com), where a user

114

XML Publisher’s Document Stream 

Sub 1  Sub 2  Sub 3  Sub n 
Query 1  Query 2  Query 3  Query n 

XML 
Data 

To Individual Subscribers through 
Internet 

Figure 5.1: An XML Publish Subscribe System. A published XML document stream is
parsed and filtered through multiple subscriber profiles.

can subscribe for specific events (”Rock concerts in Chicago”) and get automatic notifica-

tions when the event occurs. Increasingly such environments are becoming XML-based, i.e.,

the messages are exchanged in XML while the users express their subscriptions using XML

query languages like XPath.

Given the high volumes of messages and profiles, the filtering process becomes a critical

performance requirement for pub-sub systems. The predominant solutions to this problem

perform clustering of the user profiles based on their similarity in order to narrow down

the search in the profile space. This is done by the use of Finite State Machines (FSM).

In particular, elements of the user profiles are mapped to states in the state machine. The

clustering is then performed by combining multiple profiles in a single FSM by analyzing

and discovering the common profile paths. Since user profiles are typically known in advance

115

(i.e., they play the role of data, while documents play the role of traditional queries) it is

possible to be analyzed and clustered as needed before the filtering process starts.

When a document arrives in a pub-sub system, it is parsed by an event-driven parser like

SAX [3] that reports low level parsing events such as: “start document”, “start element”, etc.

As events are produced by the SAX parser, they are processed by the filtering system which

uses them to drive transitions between the FSM states. For example, a transition is taken

from the current FSM state if there is an outgoing edge labeled with the tag currently being

processed. If during this process an “accept” FSM state is reached the document satisfies the

corresponding profile(s) associated with that state.

5.1.1 Using FPGA for XML Filtering

The above described approach however is highly oriented towards the traditional von Neu-

mann architecture model which requires multiple clock cycles per instruction to analyze a

single XML tag. This issue is known as the von Neumann bottleneck and can limit the fil-

tering speed to few hundreds of clock cycles per single XML tag. While parallelism can be

achieved with multi-core machines (as a software-hardware solution), FPGAs offer a viable

alternative due to their power efficiency (less power consumption and cooling costs) [167, 85]

as well as higher throughput. The work in [74], quantitatively demonstrates the benefits of

using FPGAs over general purpose CPUs for streaming applications. While multi-core sys-

tems come with 2 and 4 CPUs it is not always feasible to achieve proportional speed-up due

to the bottleneck in shared cache memory and the front side bus.

116

The way to resolve this limitation is to use a non-traditional highly parallel architecture.

In this chapter we present a novel filtering approach which is based on the use of Field-

Programmable Gate Arrays (FPGA) to find the matching profiles for given document.

FPGAs are increasingly being made available as co-processors on high-performance

computation systems. They are packaged in modules, which are dropped in CPU sockets

on server motherboards with bridges to the FSB on Intel platforms and Hypertransport on

AMD. High density FPGAs such as Xilinx Virtex-4LX 200 and Altera Stratix EPS20 have

millions of logic gates, abundant high speed dual port memory and ALU blocks on the silicon

fabric. These high density FPGAs can be used to implement in hardware the computationally

intensive portions of the software code. Multithreaded software components with streaming

data input and output like the pub-sub applications are ideal candidates for acceleration on

FPGA co-processing systems since a huge amount of data can be processed in parallel on the

FPGA.

Since pub-sub XML filtering involves multiple queries processed over a single docu-

ment data-stream, it is possible to utilize FPGAs for parallelising the filtering performance.

Each query can be implemented on the FPGA unit as a hardware datapath circuit and with

appropriate optimizations it is possible to fit thousands of queries on a single FPGA chip.

Moreover, having the parallel processing modules implemented on the same chip eliminates

the need for expensive communications between them. This in turn allows for full pipelining

of the parsing and filtering processes: as an event is produced by the parser it is immediatelly

forwarded to the filtering module. This results in accelerated query processing and further-

117

more leads to substantial savings in a general purpose computation infrastructure by reducing

the amount of power required by the CPUs.

In this chapter we present a ‘proof of concept’ for the use of FPGAs in boosting XML

filtering performance. We first describe the case where a user profile query is expressed as

an XPath query. We utilize a four step approach that converts such query into hardware

description, suitable for implementation on FPGA. The first step involves conversion of an

XPath query to PERL compatible regular expressions (PCREs). The regular expressions

are clustered by their common prefixes in order to produce more compact representation

on the board and are then translated to VHDL using our “regex to VHDL” compiler [116].

Moreover, in order to support parent-child relationships, we introduce the use of stacks and

modify the regular expression hardware to use them. The highly optimized VHDL code

is then deployed on the FPGA board. The stream of documents is forwarded to the board

where it is processed with high degree of parallelism. Our experimental evaluation reveals

that this architecture achieves orders of magnitude improvement in the terms of running time

compared to the state of the art software based XML filtering systems.

Furthermore, our system can also consider profile queries expressed as twig patterns. A

straightforward solution to implementing twigs would be to decompose them into individual

path queries and process them individually; this however requires an extra post-processing

step that combines the results and eliminates false positives. Instead, we transform the doc-

ument and the queries into sequences and perform filtering as subsequence matching. The

document and twig query structures are captured using Prfer sequence encoding [141, 97].

118

<g> 

<a> 

 

<c>  <d> 

<f> <e> 

Figure 5.2: An example XML tree

Here we take advantage of the fact that subsequence matching (like parsing and filtering) is

also a “linear” kind of processing that can be performed very fast on FPGAs.

5.2 Compilation System Overview

We describe a general overview (Figure 5.3) of our compilation workflow, which loads the

filtering logic on the FPGA chip. Detailed description of the individual steps in the workflow

follows later in this section.

5.2.1 XPath Expressions

XPath profiles / expressions or simply XPaths are UNIX directory like expressions which

contains a given sequence of tags and relationship between them. This makes XPath profiles

simple to use and understand. Several XPath expressions can be combined efficiently into

optimized query trees. The XPath profiles are used to verify a certain subtree structure in

the document. Upon identification of the subtree, data is retrieved from that subtree, of the

XML document. The two important relationship operators used in XPath are the ancestor

119

descendant “//” and parent child “/”. As shown in Figure 5.2, tag <a> is the global ancestor

of all the other tags in the tree. Descendants are all the tags which are below a given tag, for

example both <c> and <e> are descendants of tag and also tag <a>. Children of a

parents are the tags immediately succeeding a parent tag, for e.g. is a child of parent

<a>, <f> is a child of parent <d> and so on. Our hardware implementation with a tag stack

allows us to support parent child axis from the XPath.

5.2.2 XPath on FPGA

FPGA devices allow implementation of multiple datapaths operating in parallel which makes

them suitable for streaming applications like XML filtering. Moreover, because the datapath

is implemented in the hardware, the load and store operations from the von Neumann model

are eliminated resulting in more efficient processing.

As it can be seen from Figure 5.3 in the first step of the compilation workflow the tag

elements in the XPath expressions, representing the user profiles, are replaced with fixed

length string encodings. This is done to simplify the processing and to ensure that each tag

element occupies the minimum amount of area possible on the FPGA device. Reducing the

footprint of the individual XML tags results in higher query density on the chip and thus

better usage of the hardware.

After this step the XPath expressions are translated to their equivalent PCRE form. Dur-

ing this translation process the navigation directions inside the XPath expression (parent-

child “/” and ancestor-descendant “//”) are replaced with their PCRE counterparts. We de-

120

Figure 5.3: Compilation Flow of XPath expressions to FPGAs. The XPATH profiles go
through a four step compilation process to generate the HDL. The lower gray section denotes
the hardware flow for converting HDL to a bitstream for the FPGA.

scribe this process in detail later in this section. In order to further reduce the query footprint

on the FPGA device we cluster the regular expressions by their common prefixes. Those

common prefixes are implemented as a single block on the FPGA unit. The result from the

clustering step is a forest of “common prefix” trees. Each tree is compiled to generate a set of

VHDL hardware blocks. The rest of the workflow involves FPGA specific compilation steps

which will be discussed later as well.

5.2.3 Dictionary Replacement

The area of the FPGA chip is a limited resource. In order to get better usage of it we minimize

the tag footprint on the chip through a dictionary replacement process which replaces the

XML tags in the input documents and the user profiles with a fixed length strings. In our

implementation the length of the strings is set to 2 symbols which means that the size of all

open tags is limited to 32 bits (2 symbols plus 2 tags markers of length 8 bits) and close tags

121

Table 5.1: PCRE operators used for implementing XPath profiles on FPGA
Operator Meaning
\w Matches A to Z, a to z, 0-9,
\s Matches a blank space
\c Matches A to Z, a to z
\d Matches a Decimal digit
+ Repeat 1 or more number of times
* Repeat 0 or more number of times

- to 40 bits. As an example, <test.document> tag is mapped to <a1>, while the closing tag

</test.document> would map to </a1>.

5.2.4 XPath to Stack-enhanced Regular Expressions

If the XPath expression contains only the ancestor-descendant axis the translation to regular

expression is straightforward. While the YFilter approach, maps an XPath profile to a se-

quence of NFA states connected with transitions, our approach maps an XPath profile to a

regular expression. As an example the XPath profile “a0//b0” will be translated to the regex

“ <a0> [\w\s]+ [<\c\d> — </\c\d>]∗ <b0> ”. The various regular expression operators

are explained in Table 5.1.

The regular expression in the above example accepts a sequence of XML tags which

starts with <a0> and includes <b0>. It first matches the tag <a0>. Once this is matched, it

will look for one (or more) characters (the [\w\s]+ part) corresponding to text between tags

and then will check for any number (0 or more) of open OR closed tags (the [<\c\d> —

</\c\d>]∗ part) before it matches <b0>.

Moreover, in order for <b0> to be a descendant of <a0> in the document, the regular

122

<a0> 

Streaming XML Character Input 

<b0> 
& 

!</a0> 

match en 

<b0> 
match en 

</a0> 
match en 

Figure 5.4: The block diagram for XPath <a0>//<b0>, showing the implementation of the
ancestor-descendant axis

expression should match before the closing of <a0>. To implement this, during the hardware

generation step for this regular expression, our compiler automatically adds a negation block

on </a0> so that <b0> is matched before </a0> appears in the stream. The block diagram

of the regular expression on the FPGA is shown in Figure 5.4. Each block represents a

tag parser that searches for the given tag in the document stream. The right most hardware

block (depicted as a circle), provides the final result from the matching process of the regular

expression. Each block receives input from the 8 bit streaming XML interface and works in

parallel with the other blocks.

The translation of the parent-child axis to a regular expression requires special treatment.

This is due to the fact that the regular expressions are memoryless structures and one needs

to ensure that the matched XML tags occur on consecutive levels in the document. For

example, the level on which the parent is matched should be remembered so as to ensure

that the child is matched on a consecutive level (e.g. it is immediately below the parent).

The regular expression hardware is thus modified to include the notion of memory. In our

implementation this is accomplished through the use of a tag stack which keeps the current

path in the XML document. When an open tag is encountered it is pushed into the stack.

123

Similarly when a close tag is reached it is popped from the top of the stack (TOS).

An example of a XPath expression that includes parent-child axis is shown in Figure 5.5.

The XPath expression “a0/b0” is translated to a modified regular expression with a stack con-

trol directive. The modified regular expression is: “ <a0> [\w\s]+ [<\c\d> — </\c\d>]∗

[Stack1] <b0> ”.

When testing a parent-child relationship, in addition to checking for the ancestor-descendant

property we have to ensure that the level difference between the respective tags is one. Hence

we use an extra hardware block - the TOS matching -, which continuously monitors the top

of the stack and ascertains that the matched element <b0> is indeed a child of the previously

matched element <a0>.

Figure 5.5 describes how we monitor the current level. The XML tag stack block, works

in parallel with the ancestor-descendant block on the FPGA. The additional Tag Filter block

extracts XML tags from the document stream. When an open XML tag is extracted, it triggers

the push function and this tag gets pushed into the stack. In a similar way closing tags trigger

the pop function and remove the head of the stack. A difference with the previous ancestor-

descendant match is that finding <b0> after <a0> is not enough; we need also that the top

of the stack is <a0> (when <b0> is found).

Since many regular expressions are using the same XML input data stream, we need only

one stack block per data stream.

124

XPATH Expression: a0/b0 

Streaming XML Character Input 

<b0> 
& 

!</a0> 
& 

TOS=<a0
> 

Tag filter 

TOS 

<TAG> 

pop 

push 

TAG STACK on (BRAM) 

Tag Input 

TOS 

<a0> 
match en 

<a0> 
match en 

<b0> 
match en 

</a0> 
match en 

Figure 5.5: The block diagram for XPath <a0>/<b0>, showing the implementation of the
parent-child axis. The additional hardware includes the tag filter, stack and TOS match blocks

5.2.5 Common Prefix Optimization

The regular expressions derived from the XPath profiles typically depict large commonality

in their prefixes. For example “a0//b0// c0//d0” and “a0//b0//c0//e0” share the common prefix

“a0//b0//c0”, with corresponding suffixes “d0” and “e0”. The hardware cost of implementing

the regular expressions is measured in terms of the FPGA area used to implement the logic.

It is thus advantageous to combine multiple regular expressions into a common prefix tree.

Such a tree can help reduce the area cost of the hardware by implementing the common

prefix as a single block on the chip. In the above example, instead of implementing two

regular expression hardware blocks and duplicating the “a0//b0//c0” logic, we can have a

single implementation for the common path. As a result, more profiles can fit in a given

125

FPGA area.

Given a set of XPath profiles, we first create their regular expressions and then sort them

in alphabetical order. We then run a common prefix discovery algorithm on the sorted list

of the regular expressions. The algorithm recursively grows the common prefix one tag at a

time. The result is a forest of common prefix trees, each representing a set of profiles. From

these trees we then create the FPGA hardware.

5.2.6 Area Efficient Character Decoder Hardware

Implementing XPath profiles on FPGAs mainly involves implementing character matching

blocks to identify XML tags in the input document stream. The character matching hard-

ware block compares sequences of characters from the input stream to a given sequence that

defines an XML tag. Figure 5.6 exemplifies the comparator hardware that matches an XML

tag. Each character requires an 8-bit comparator block. The implemented character match-

ing blocks for the XML tags consist of many redundant blocks, the prime examples being the

open ‘<’, close ‘>’, and end tag ‘/’ characters.

It is possible to simplify the character match hardware with a 8-bit ASCII character pre-

decoder. The character pre-decoding hardware decodes the incoming ASCII data stream at

the input. An 8-bit input is decoded into one of 256 possible 1-bit character signal every

clock cycle. As an example, if the input was HEX ‘0x60’, the output line for the character

‘a’ would be high on that clock cycle and the rest of the other 255 outputs would be all ze-

ros. The character decoder hardware block simplifies character matching by replacing 8-bit

126

Figure 5.6: Block diagram of the Character Match Hardware Block for a tag <a0>. The
hardware is a 8-bit x 4 comparator block.

character match hardware blocks with a 1-bit comparator and results in area efficient hard-

ware. Figure 5.7 depicts the character pre-decoder block, and the simplified 1-bit comparator

blocks for matching an XML tag. Moreover since 1-bit data lines are routed on the FPGA for

each character in the XML tag, the FPGA routing overhead is reduced, which in turn leads

to a design which offers faster clock speed.

5.2.7 Regular Expression to VHDL compilation

A regular expression syntax could be defined using various syntaxes such as PERL, UNIX,

etc. Our implementation uses the PERL semantics. The compiler uses a modified version of

the PCRE library v6.7 compilation flow. It simulates the behavior of a regular expression in

VHDL, suitable for implementation on FPGA. We modified the compiler to take into account

the stack directives and generate the hardware blocks to support parent-child axes.

127

Figure 5.7: Block diagram of the Character Pre-Decoder Hardware Block for a tag <a0>.
The hardware is a 1-bit x 4 comparator block.

5.2.8 FPGA Implementation

After obtaining the VHDL sources for the user profiles, we generate additional hardware

blocks including an input ASCII decoder, two output priority encoders (one each for queries

with or without parent-child axes) and the tag stack. We group the VHDL sources into

two sets, i.e. profiles without parent-child axes and profiles with parent-child axes. The

organization of XPath expressions on the FPGA is depicted with an example in Figure 5.8.

The four XPath profiles on the left correspond to expressions that contain parent-child axes

and thus use the on-chip FPGA stack. When the streaming document matches a given profile,

the output priority encoder is set to that profile.

We synthesize the generated VHDL code, using the XILINX synthesis tool to obtain the

128

8 

BRAM 
Stack 

XPATHs without STACK 

XPATH 

XPATH 

XPATH 

XPATH 

XPATH  XPATH  XPATH 

XPATH  XPATH  XPATH 

XPATH  XPATH  XPATH 

XPATH  XPATH  XPATH 

XML Document Stream 

XML Query Data / Output 

XPATHs with STACK 

Output Priority Encoder 1 Output Priority Encoder 0 

Character Pre ‐ Decoder 

2 4

Figure 5.8: An example FPGA organization denoting the input / output data path with sixteen
XPath expressions.

129

Figure 5.9: XML document, Tree and Prufer sequence representation.

hardware netlist. The next step involves running the Place and Route tool, which report the

clock frequency of the hardware design.

Our target FPGA is a Virtex-4 LX 200 device, and the target hardware is the Silicon

Graphics RASC RC 100 board. In order for our FPGAs to run on this board we had to add

a hardware module (RASC Core Services) which allows us to send and receive data and

control the FPGA from the host system. Finally we generate the bitstreams that are loaded

on the FPGA.

5.3 Twig Profiles on FPGAs

In this section we will describe an extension of the basic system architecture, described in

5.2, designed to handle XML twig pattern queries. Unlike XPath queries, which can only

look for the presence of a given path inside the structure of the XML document, the twig

pattern queries can be used to locate more complex structures like subtrees.

One possible solution for the twig pattern matching problem is to decompose the twig

130

query into individual paths and process them separately. The results from the individual

paths are then combined in a post processing step to produce the final outcome of the query.

This approach however requires extra processing time in the post filtering step. Moreover the

common sections of the individual paths will be processed multiple times which is redundant.

Because of all these disadvantages we choose to employ more holistic approach based on

Prfer sequence encoding of the XML document. This approach have been used in the past in

software based XML filtering systems like PRIX and FiST. In the next subsection we provide

a brief overview of the Prfer sequence encoding and the filtering systems based on it. Then

we proceed with the description of our hardware based approach.

5.3.1 Overview of Prüfer Sequences

The term Prüfer sequence (or Prüfer code) is originaly used in the graph theory to describe a

unique sequential encoding of a labeled tree. It can be generated by a simple iterative algo-

rithm. The algorithm takes as an input a tree with n nodes and produces as output a sequence

of length n - 2 which encodes the structure of the tree, To do the algorithm iteratively removes

nodes from the tree until all nodes but the last two have been removed. At each iteration the

algorithm finds and removes the leaf node with the smallest label and adds to the the Prüfer

sequence the label of this leaf’s parent.

In the rescent years Prüfer sequences have been successfully applied in the XML domain

in combination with a tree numbering schema. This is possiblke due to the fact that any

XML document can be viewed as a tree structure where every tag element coresponds to

131

a node in the tree (see figure 5.9). Before proccesing the document with the Prüfer code

generation algorithm a numbering schema is applied to it. The numbering schema (typically

a preorder one) associates unique labels with the XML tags (the tree nodes) which are later

used to determine the sequence in which the tags will be removed from the document. There

are however two minor differences between the Prüfer code generated for XML documents

in systems like PRIX and the original definition used in the graph theory: (i) In the XML

domain typically the deletion of the tags from the tree continues till only one node is left. (ii)

In the original definition of the Prfer encoding the leaf nodes are not encoded in the sequence.

Only nodes which have at least one child form the Prfer sequence for the tree. To overcome

this problem the document tree is expanded and grows in height with one level by adding

artificial a child node to each leaf in the tree.

The reason which makes the Prüfer encoding of XML documents so apealing for the

procces of twig pattern matching is given by the matching theorem, which states that if a tree

Q is a subgraph of another tree T then the Prüfer encoding of Q is a subsequence of the Prüfer

encoding of T. The reverse however is not true. It is possible to have subsequence matching

between two Prüfer encoding of trees T and Q without Q being a subgraph of T. Theorem 1

guarantees having no false dismissals but it is possible to have false positives.

In software, using the existing XML parser SAX, the generation of the Prüfer sequence

for XML documents is relatively simple by implementing the startElement and the endEle-

ment methods provided by the SAX default handler. The parser traverses the document in a

preorder. Every time when the method startElement is invoked we place the tag element in a

132

Algorithm 1 Prüfer code generation
Require: document D
Ensure: The Prüfer V sequence encoding of D

1: Set V = 0 . the resultant Prüfer sequence
2: Set S ← ∅ . auxiliary stack
3: saxParser.parse(D)
4: procedure STARTELEMENT . SAX parameters omitted for clarity
5: S.push(node) . node is the element read
6: procedure ENDELEMENT . SAX parameters omitted for clarity
7: node = S.pop()
8: V .append(node)
9: if the current element is leaf then

10: node = S.pop()
11: V .append(node)

stack. Every time when the method endElement is invoked we pop an element from the stack

and append it to the document encoding. Systems like PRIX and FiST use this encoding to

match it to the Prüfer sequence encoding of the queries to determine if there is a match.

5.3.2 FPGA implementation of Prüfer subsequence matching

In this subsection we continue with describtion of our hardware implementation of streaming

Prüfer sequence conversion of an XML document. We also describe how we can execute twig

pattern matching using the generated Prfer sequence.

Figure5.10 shows the actual hardware block required for simultaneous Prfer sequence

generation from the XML document stream and twig pattern matching. As the sequence

is being generated, the hardware simultaneously matches the resulting sequence with twig

patterns.

The hardware works by extracting XML tags from a document stream and pushing open

tags on a hardware stack. This hardware stack can output both the TOS and TOS - 1 (the

133

element below the TOS) every clock cycle. Since each tag name consists of two symbols, the

TOS and TOS - 1 blocks are sub-divided into TOS0 TOS1 and TOS-10 and TOS-11 blocks.

and each of these sub-blocks are connected to character pre-decoder hardware. They are

decoded into the corresponding character for subsequent use in sequence matching. A leaf

detection hardware block, implemented as a state machine, detects XML leaf tags when a

stack pop operation immediately follows a push operation. When a leaf tag is detected, the

TOS and TOS - 1 are copied to the respective output register blocks. If a non-leaf XML tag

closes, only the TOS - 1 i.e. the parent of the current closing tag is connected to the output

block. Thus we are able to dynamically generate the PS of a streaming XML document. The

dynamically generated PS of the document is matched with multiple twig patterns on the

FPGA hardware by matching it with with pre-generated PS of twig patterns.

To implement the twig match in hardware, we convert the twig patterns to their PS before

implementing them on the FPGA. While converting a twig pattern to its PS, we add a speci-

fication to identify the leaf nodes in the sequence. Once a twig pattern is converted to its PS

sequence i.e. PS (Q) the hardware is generated as follows:

1. A leaf node and its parent obtained from the PS(Q) is converted to character match-

ing blocks, connected to the TOS and TOS-1 registers using the appropriate character

match line at the decoders. As mentioned above, The TOS and TOS - 1 blocks are con-

nected to two character decoder blocks which decode the name of the twig node. As

an example lets consider the sequence b0, a0. Since b0 is the leaf node, it is connected

to the ‘b’ output of TOS 0 and ‘0’ output of TOS 1. The parent node a0 is connected to

134

Figure 5.10: The block diagram for twig matching hardware. This block generates Prüfer
sequence of the XML tags from a streaming document and matches it with Prüfer sequences
of the queries in twig form. This figure is an example of the query a0[b0]/c0.

135

the ‘a’ output of TOS-1 0 and ‘0’ output of TOS-1 1.

2. Any non leaf node obtained from the PS(Q) is connected to the TOS - 1 block. As an

example lets consider a sequence e0, f0. Since both are non-leaf nodes, they are both

connected to the TOS-1 block using the ‘e’ ‘0’ and ‘f’ ‘0’ outputs of the corresponding

character decoders.

3. In order to enable progressive sequence matching we establish a control mechanism.

The first node executes a match when a tag is popped from the hardware stack. If the

current node matched, it would enable the next hardware matching block. The block

would then wait for the stack to pop again and execute a match. A succesful match

would enable the next node to match , if any or else control is returned to the first

node. When the final node executes a successful match it would imply a successful

twig pattern match.

Our hardware can accurately match parent-child relationship in the twig patterns by uti-

lizing the hardware stack. We can implement multiple twig patterns and they can all run in

parallel on the FPGA.

5.4 Experimental Evaluation

We performed a preliminary comparison to assess the behavior of the proposed FPGA based

solution and compare it with the traditional software-based filtering approach. For this pur-

pose we use the YFilter version 1.0, considered to be the state of the art for software-based

136

XML filtering, running on a Core 2 Quad 2.66 GHz with 8GB of RAM available.

During the evaluation we measure the throughput of the system, e.g. the size of the set

of documents (in megabytes) provided as input divided by the time (in seconds) between the

moment when the set enters the system to the moment those documents are filtered by the

matching process.

We used the ToXGene XML document generator [24] to generate the input profiles dataset.

Using the same DTD structure we have generated different sets of profiles with varying path

length, i.e. 2 Tags, 4 Tags and 6 Tags using the PathGenerator class in YFilter. The number

of queries in each set varies from 16 to 1024. The streaming documents vary in size from

one to eight MBs.

For the hardware implementation we use the Silicon Graphics Altix 4700 [151] compu-

tation system along with the RASC RC 100 [176] blade. We stream XML data stored in

the memory (RAM) of the Altix system to the FPGA on the RASC blade. We also stream

the output of the priority encoders from the FPGA back to the Altix system. The output of

the priority encoders is also continuously decoded by the host system, to ascertain the XPath

expressions that matched. When a match occurs, we output the profile that matched as well

as the current location of the match in the document stream. The experiments are run by pro-

gramming the FPGA with a bitstream containing the same queries generated for the software

version.

137

315  742  1353 
2764 

6388 

13170 

26954 

560  1120 
2193 

4338 

8626 

17220 

34961 

110  173  280  552  1078 
2267 

4925 

235  510  1006 
1987 

3774 

7831 

16750 

0 

5000 

10000 

15000 

20000 

25000 

30000 

35000 

40000 

16  32  64  128  256  512  1024 

SLICES (common prefix) 

SLICES Unop=mized 

SLICES (Common Prefix Char Decoder) 

SLICES Unop=mized Char Decoder 

v 
i 
r 
t 
e 
x 
 ‐ 
 4 

S 
L 
I 
C 
E 
S 

Number of XPATH queries with 2 TAGS 

 0

 50

 100

 150

 200

 250

16 32 64 128
256

512
1024

T
hr

ou
gh

pu
t (

M
B

/s
)

of XPATH Queries - 2 Tags

FPGA-Common-Prefix
FPGA-Unoptimized

Software

Figure 5.11: The graph on the top demonstrates variation of FPGA area (in SLICES) with
increasing number of two tags long XPaths. The graph at the bottom demonstrates the vari-
ation of throughput of the FPGA hardware in MHz with increasing number of two tags long
XPaths. The four cases considered are common prefix optimized and unoptimized XPaths
with character match blocks and character decoding hardware.

138

679  1230  2406 
5700 

11642 

22180 

44967 

920  1934 
4023 

8083 

19092 

33713 

68105 

273  487  784  1185  2345 
5120 

10012 

485  929  1794 
3571 

7247 

14325 

29523 

0 

10000 

20000 

30000 

40000 

50000 

60000 

70000 

80000 

16  32  64  128  256  512  1024 

SLICES (common prefix) 

SLICES Unop=mized 

SLICES (Common Prefix Char Decoder) 

SLICES Unop=mized Char Decoder 

V 
i 
r 
t 
e 
x 
‐ 
 4  

S 
L 
I 
C 
E 
S  Number of XPATH queries with 4 TAGS 

 0

 50

 100

 150

 200

 250

16 32 64 128
256

512
1024

T
hr

ou
gh

pu
t (

M
B

/s
)

of XPATH Queries - 4 Tags

FPGA-Common-Prefix
FPGA-Unoptimized

Software

Figure 5.12: The graph on the top demonstrates variation of FPGA area (in SLICES) with
increasing number of four tags long XPaths. The graph at the bottom demonstrates the vari-
ation of throughput of the FPGA hardware in MHz with increasing number of four tags long
XPaths. The four cases considered are common prefix optimized and unoptimized XPaths
with character match blocks and character decoding hardware.

139

1029  1941 
4354 

8700 

18688 

31563 

64509 

1653 
3286 

6388 

10415 

26160 

51605 

0 386  612  1021  1975 
4104 

7923 

17214 

775  1521 
2962 

5869 

11757 

23816 

46103 

0 

10000 

20000 

30000 

40000 

50000 

60000 

70000 

16  32  64  128  256  512  1024 

SLICES (common prefix) 

SLICES Unop=mized 

SLICES (Common Prefix Char Decoder) 

SLICES Unop=mized Char Decoder 

V 
i 
r 
t 
e 
x 
 ‐ 
4 

S 
L 
I 
C 
E 
S 

Number of XPATH queries with 6 TAGS 

 0

 50

 100

 150

 200

 250

16 32 64 128
256

512
1024

T
hr

ou
gh

pu
t (

M
B

/s
)

of XPATH Queries - 6 Tags

FPGA-Common-Prefix
FPGA-Unoptimized

Software

Figure 5.13: The graph on the top demonstrates variation of FPGA area (in SLICES) with
increasing number of four tags long XPaths. The graph at the bottom demonstrates the vari-
ation of throughput of the FPGA hardware in MHz with increasing number of four tags long
XPaths. The four cases considered are common prefix optimized and unoptimized XPaths
with character match blocks and character decoding hardware.

140

270  362  466 
722 

1203 

2233 

4158 

289  362  514 
860 

1500 

2605 

6132 

0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

16  32  64  128  256  512  1024 

SLICES Four Tags Sequence 

SLICES Eight Tags Sequence 

V 
i 
r 
t 
e 
x 
 ‐ 
 4 

 S 
L 
I 
C 
E 
S 

Number of Twig Queries 

213 

217  213 

189  147 

116 

154 

222 
242 

227 

196 

145 
130  145 

0 

50 

100 

150 

200 

250 

300 

16  32  64  128  256  512  1024 

MHz Four Tags Sequence 

MHz Eight Tags Sequence 

Cl
oc
k 
M
H
z 

Number of Twig Queries 

Figure 5.14: The graph on the top demonstrates variation of FPGA area (in SLICES) with
increasing number of four tags and eight tags long sequence matching paths for twig queries.
The graph at the bottom demonstrates the variation of clock speed of the FPGA hardware in
MHz with increasing number four tags and eight tags long sequence matching paths for twig
queries.

141

5.4.1 Performance and Speedup

We first examine the effect of the common prefix optimization. For each experiment the

number of profiles implemented in the FPGA varies from 16 to 1024. We measured the

areas on the FPGA that was occupied with and without the prefix optimization. The results

appear in the subfigures on the left side (depicted as bars) in Figures 5.11 5.12 5.13.

For all the approaches the area increases almost linearly with the number of XPath profiles

implemented on the FPGA. However, the optimized approach uses less space, which implies

that the number of profiles served by the FPGA can increase further.

The second set of experiments examines the throughput of both the hardware and software

approaches. The results are charted out in in the bottom subfigures of Figures 5.11 5.12 5.13

and we compare the throughput with increasing number of XPath profiles. Clearly the FPGA

approach provides orders of magnitude throughput improvement (around 30 times for some

datasets). It can be seen that increasing XPath lengths lead to decreased speedup offered by

FPGA. The same is nearly true about the increasing number of XPath profiles implemented

on FPGA. The reason is that, adding hardware complexity leads to lower clock rates on the

FPGA.

The third set of experiments have been used to obtain throughput and area on FPGA for

implementing twig queries. Figure 5.14 demonstrates the variation in area for implementing

increasing numbers of four and eight tags Prüfer sequence matching hardware on FPGA.

Also included is the speed trends in MHz clock speed of the resulting hardware. An increase

in speed is observed for the 1024 four and eight tags sequence matching hardware and it is

142

due to the change in optimization strategy of the hardware synthesis tool.

5.5 Conclusion

In this chapter we have provided a systematic flow that enables implementation of XPath

profiles on FPGA for acceleration of XML filtering. We demonstrate how we can convert

XPath to PCRE and thenceforth use our PCRE to FPGA compiler to generate the hardware.

Since regular expressions have limited memory as proved by the ‘Pumping Lemma’, we

enhance the XPath profiles on the FPGA with a hardware tag stack. Our stack enhanced

architecture allows implementation of parent-child XPath axis on hardware.

We have implemented common prefix optimization before generating the hardware to

minimize the FPGA area and make good use of the commonality among XPath profiles. We

have implemented upto one thousand XPath profiles, on the FPGA.

The effective throughput of FPGA design with character match and common prefix opti-

mization while implementing 1024 six tag wide XPaths is 68 MBytes/s and it is 101 MBytes/s

when we implement 1024 four tag wide XPaths, and it is 139 MBytes/s when implementing

1024 two tag wide XPaths. The percentage area usage on FPGA is 30.2% for 1024 two tags

long XPaths, 50% for 1024 four tags long XPaths and it is 72% for six tags long XPaths.

Using the character decoding hardware we obtain throughput of 128 MBytes/s on a design

that implements 1024 six tag wide XPaths, and 133 MBytes/s on a design that implements

1024 four tag wide XPaths, and 139 MBytes/s on a design that implements 1024 two tag

143

wide XPaths. The percentage area usage on FPGA with common prefix optimized design

along with character decoding is 5.5% for 1024 two tags long XPaths, 11.2% for 1024 four

tags long XPaths and it is 19.3% for six tags long XPaths.

The software based filtering provides an average throughput of 3 MBytes/s on the same

XPath profiles. Thus we have been able to accelerate XPath filtering atleast by 20X using

FPGAs for implementation of the filtering hardware.

With respect to the twig queries, the utilization is 5% of the FPGA area for implementing

1024 four tags long sequences, and 7% area for implementing eight tags long sequences.

The throughput is 154 MBytes/s for 1024 four tags long sequence and 145 MBytes/s for

1024 eight tags long sequences on FPGA.

144

Chapter 6

Conclusions

This chapter summarizes the conclusions of this dissertation, and the research outcomes. We

mention the contributions which include our PCRE to FPGA compiler, accelerated regular

expression system on SNORT IDS, tool support for partial reconfiguration and dynamic co-

processors on FPGA, adaptive hardware-software regular expression based IDS, and finally

the scalable XML filtering architecture.

6.1 PCRE to FPGA compiler

This dissertation presents the details of our compilation tool which converts a PCRE to

VHDL via PCRE opcodes. Previous approaches towards implementation of regular expres-

sions on FPGA relied on manual conversion or a limited conversion process without con-

version and optimizations provided by the PCRE compiler. Our tool solves a very important

limitation towards implementation of PCRE on FPGA, and allows direct conversion of PCRE

145

(constrained by hardware limitations) to VHDL for implementation on FPGA.

Our tools uses the front end parser of the original PCRE compiler and extends it towards

generation of VHDL. Our compiler makes it possible to simulate the hardware and test its

compatibility with the software based PCRE execution, sine the opcodes can be used by

software based PCRE execution engine. We have provided implementation details of various

PCRE opcodes in hardware using two paradigms, which are IP core based and synthesis

based on VHDL code. We have also provided the speed and area variation of the opcodes in

hardware with different parameters.

6.2 Accelerating regular expression of SNORT IDS

In this dissertation we have using several detailed benchmarks demonstrated that the perfor-

mance of software based regular expression matching cannot keep up with network through-

puts, especially multi Gbps links.

We have developed a framework for acceleration of SNORT IDS rules by compiling them

to VHDL. We have also studied SNORT IDS rules and have developed our PCRE compila-

tion system to specifically support the most frequently occurring PCRE opcodes obtained

from the SNORT rules. Our hardware architecture for accelerating regular expression rules

from SNORT IDS uses 16 parallel rule-set banks. Each bank implements fourteen regu-

lar expression rules on the FPGA. We have also provided benchmark data of the dwindling

throughput of regular expression system of SNORT IDS under certain network scenarios

146

when the amount of malicious activity increases.

Using our hardware architecture on the SGI RASC Blade, we obtain more than 350X

speedup when compared to a baseline state of the art CPU viz. the Intel Xeon 5160 and

our design can sustain a throughput of 12.9 Gbps. FPGAs consume a lot less power than

conventional CPUs. Using our architecture and benchmark results we have demonstrated

two orders of savings in power consumption when an FPGA is used to accelerate regular

expression sub-system of SNORT IDS.

6.3 Dynamic Co-Processors on FPGA

FPGAs are used for implementing both fixed and configurable hardware circuits. FGPA

based co-processing hardware are available in the form of IP cores and share similar I/O and

control interface. The hardware IP cores need to obtain data and send results back to the

software. In this dissertation, we have demonstrated our framework for automated wrapper

generation for IP cores that allow them to interface to a CPU. Our framework for wrapped

IP core allows a C function call to instantiate an IP core on the configurable fabric. CSoCs,

which include a processor and configurable fabric on the same chip, also use the configurable

logic to implement fixed hardware peripherals. We have enhanced our wrapper generation

framework to include another layer of interface in order to allow partial reconfiguration on

the FPGA. We have extended the C function call to program a partial bitstream on the FPGA

containing the IP Core and thus instantiate a dynamic co-processor. By calling the different C

147

functions for different co-processors, it is possible to re-program the configurable hardware

without upsetting the state of operation of the CSoC.

6.4 Adaptive Hardware-Software Regular Expressions ba-

sed IDS

An adaptive hardware based IDS can respond to a network attack by reconfiguring itself.

Since often times, only certain sets of regular expressions need to be modified, a full re-

configuration would be inefficient. Thus we have extended our regular expression hardware

to support partial reconfiguration, by virtue of modularization, to allow re-programming of

individual regular expression banks, rather than the whole FPGA. Our novel design allows

partial reprogramming across 16 banks of regular expression rule-sets on an FPGA/

Our benchmarks is executed on a proof of concept test-bed using a thirty-two core SGI

Altix 4700 supercomputer which also has a RASC Blade consisting of two FPGAs. The IDS

can maintain execution through software threads during that brief moment when the FPGA

is being reconfigured.

We have implement 448 different regular expressions in 32 modular rule-sets, on the two

FPGAs. Our adaptive IDS can provide better than 10 Gbps throughput even with 32 partial

recongurations per minute. Our system can also sustain 10 Gbps throughput with four full-

recongurations per minute. Our IDS design can be extended to similar FPGA accelerated

multi-processor system.

148

6.5 Scalable Architecture for XML Filtering on FPGA

XPath profiles are used for describing subscriber preference for data and messages over XML

for pub-sub applications. Since XPath involves a state machine based XML tree traversal, and

pub-sub involves multiple XPath profiles executing on a streaming XML document, making

them ideal for hardware acceleration. Moreover it is straightforward to transform XPath

expression to a PCRE.

We have been able to convert multiple XPath profiles to PCRE and run common prefix

optimization on the set of profiles. The optimized XPath trees have been converted to hard-

ware via a modified version of PCRE to VHDL compiler, which adds hardware stack for

enabling ‘parent-child’ matching in the XPaths.

Using a centralized character decoding hardware, we have been able to further optimize

the area and performance of the implemented XPaths, as compared to and implementation

using character match hardware.

Our benchmarks show a throughput gain of more than 20X on FPGA when compared to

software based XPath filtering.

We implement a streaming Prüfer sequence generation hardware for XML document and

match it against hardware based sequence match blocks. The sequence match blocks are the

Prüfer sequences of twig queries and thus allow us to match multiple twig queries on the

FPGA.

149

Bibliography

[1] Cray XD1. http://www.cray.com/downloads/Cray_XD1_Datasheet.
pdf.

[2] CRAY XD1 FPGA Datasheet. http://www.cray.com/downloads/
FPGADatasheet.pdf.

[3] SAX: Simple API for XML. http://www.saxproject.org/.

[4] SGI RASC technology, http://www.sgi.com/products/rasc.

[5] Xtremedata inc. http://www.xtremedatainc.com/.

[6] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: an aid to biblio-
graphic search. Commun. ACM, 18(6):333–340, 1975.

[7] G. Aigner, A. Diwan, D. L. Heine, M. S. Lam, D. L. Moore, B. R. Murphy, and C. Sa-
puntzakis. An Overview of the SUIF2 Compiler Infrastructure. Computer Systems
Laboratory, Stanford University.

[8] Altera. NIOS CPU Data Sheet. Altera, November 2004. http://www.altera.
com/literature/ds/ds_nios_cpu.pdf.

[9] Altera. Stratix II Device Family Data Sheet. Altera, 2007. http://www.altera.
com/literature/hb/stx2/stx2_sii5v1_01.pdf.

[10] Altera. Stratix ii gx transceiver FPGAs overview, 2008. http://www.
altera.com/products/devices/stratix-fpgas/stratix-ii/
stratix-ii-gx/features/transceiver/s2gx-mgt-transceiver.
html.

[11] M. Altinel and M. J. Franklin. Efficient filtering of XML documents for selective
dissemination of information. pages 53–64, 2000.

[12] AMD. Amd hypertransportTM technology. http://www.amd.com/us-en/
Processors/DevelopWithAMD/0,,30_2252_2353,00.html.

150

http://www.cray.com/downloads/Cray_XD1_Datasheet.pdf
http://www.cray.com/downloads/Cray_XD1_Datasheet.pdf
http://www.cray.com/downloads/FPGADatasheet.pdf
http://www.cray.com/downloads/FPGADatasheet.pdf
http://www.xtremedatainc.com/
http://www.altera.com/literature/ds/ds_nios_cpu.pdf
http://www.altera.com/literature/ds/ds_nios_cpu.pdf
http://www.altera.com/literature/hb/stx2/stx2_sii5v1_01.pdf
http://www.altera.com/literature/hb/stx2/stx2_sii5v1_01.pdf
http://www.altera.com/products/devices/stratix-fpgas/stratix-ii/stratix-ii-gx/features/transceiver/s2gx-mgt-transceiver.html
http://www.altera.com/products/devices/stratix-fpgas/stratix-ii/stratix-ii-gx/features/transceiver/s2gx-mgt-transceiver.html
http://www.altera.com/products/devices/stratix-fpgas/stratix-ii/stratix-ii-gx/features/transceiver/s2gx-mgt-transceiver.html
http://www.altera.com/products/devices/stratix-fpgas/stratix-ii/stratix-ii-gx/features/transceiver/s2gx-mgt-transceiver.html
http://www.amd.com/us-en/Processors/DevelopWithAMD/0,,30_2252_2353,00.html
http://www.amd.com/us-en/Processors/DevelopWithAMD/0,,30_2252_2353,00.html

[13] Ahmad Ansari, Peter Ryser, and Dan Isaacs. Accelerated system perfor-
mance with apu-enhanced processing. Xilinx Xcell Journal, January 2005.
http://china.xilinx.com/publications/xcellonline/xcell_
52/xc_pdf/xc_v4acu52.pdf.

[14] Armando Astarloa, Aitzol Zuloaga, Unai Bidarte, José Luis Martı́n, Jesús Lázaro,
and Jaime Jiménez. Tornado: A self-reconfiguration control system for core-based
multiprocessor csopcs. J. Syst. Archit., 53(9):629–643, 2007.

[15] Zachary K. Baker and Viktor K. Prasanna. A methodology for synthesis of efficient
intrusion detection systems on FPGAs. In FCCM ’04: Proceedings of the 12th Annual
IEEE Symposium on Field-Programmable Custom Computing Machines, pages 135–
144, Napa, California, USA, 2004. IEEE Computer Society.

[16] Zachary K. Baker and Viktor K. Prasanna. Time and area efficient pattern matching
on FPGAs. In FPGA ’04: Proceedings of the 2004 ACM/SIGDA 12th international
symposium on Field programmable gate arrays, pages 223–232, Monterey, California,
USA, 2004. ACM.

[17] Z.K. Baker, Hong-Jip Jung, and V.K. Prasanna. Regular expression software deceler-
ation for intrusion detection systems. In Field Programmable Logic and Applications,
2006. FPL ’06. International Conference on, pages 1–8, Madrid, Spain, August 2006.

[18] Z.K. Baker and V.K. Prasanna. A computationally efficient engine for flexible intru-
sion detection. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
13(10):1179–1189, Oct. 2005.

[19] Sudarshan Banerjee. Application mapping for platform FPGAs with partial dynamic
reconfiguration. PhD thesis, Long Beach, CA, USA, 2007. Adviser-Nikil Dutt.

[20] Sudarshan Banerjee, Elaheh Bozorgzadeh, and Nikil Dutt. Considering run-time re-
configuration overhead in task graph transformations for dynamically reconfigurable
architectures. In FCCM ’05: Proceedings of the 13th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, pages 273–274, Washington, DC,
USA, 2005. IEEE Computer Society.

[21] Sudarshan Banerjee, Elaheh Bozorgzadeh, and Nikil Dutt. Physically-aware hw-sw
partitioning for reconfigurable architectures with partial dynamic reconfiguration. In
DAC ’05: Proceedings of the 42nd annual conference on Design automation, pages
335–340, New York, NY, USA, 2005. ACM.

[22] Sudarshan Banerjee, Elaheh Bozorgzadeh, and Nikil Dutt. Parlgran: parallelism gran-
ularity selection for scheduling task chains on dynamically reconfigurable architec-
tures. In ASP-DAC ’06: Proceedings of the 2006 conference on Asia South Pacific
design automation, pages 491–496, Piscataway, NJ, USA, 2006. IEEE Press.

151

http://china.xilinx.com/publications/xcellonline/xcell_52/xc_pdf/xc_v4acu52.pdf
http://china.xilinx.com/publications/xcellonline/xcell_52/xc_pdf/xc_v4acu52.pdf

[23] Sudarshan Banerjee, Elaheh Bozorgzadeh, Nikil Dutt, and Juanjo Noguera. Selective
bandwidth and resource management in scheduling for dynamically reconfigurable
architectures. In DAC ’07: Proceedings of the 44th annual conference on Design
automation, pages 771–776, New York, NY, USA, 2007. ACM.

[24] D. Barbosa, A. Mendelzon, J. Keenleyside, and K. Lyons. Toxgene: a template-based
data generator for XML. pages 616—616, 2002.

[25] Michael Barr. A reconfigurable computing primer. Multimedia Systems Design, pages
44–47, September 1998.

[26] J. Becker and M. Hübner. Run-time reconfigurabilility and other future trends. In
SBCCI ’06: Proceedings of the 19th annual symposium on Integrated circuits and
systems design, pages 9–11, New York, NY, USA, 2006. ACM.

[27] Jürgen Becker. Adaptive reliable chips - reconfigurable computing in the nano era. In
ISVLSI ’08: Proceedings of the 2008 IEEE Computer Society Annual Symposium on
VLSI, pages 1–2, Washington, DC, USA, 2008. IEEE Computer Society.

[28] R. Beckert, T. Fuchs, St. Ruelke, and W. Hardt. A run-time scheduling framework for
a reconfigurable hardware emulator. In DSD ’07: Proceedings of the 10th Euromicro
Conference on Digital System Design Architectures, Methods and Tools, pages 147–
150, Washington, DC, USA, 2007. IEEE Computer Society.

[29] R. Beckert, T. Fuchs, St. Ruelke, and W. Hardt. A tailored design partitioning method
for hardware emulation. In RSP ’07: Proceedings of the 18th IEEE/IFIP International
Workshop on Rapid System Prototyping, pages 99–105, Washington, DC, USA, 2007.
IEEE Computer Society.

[30] F. Berthelot, F. Nouvel, and D. Houzet. Design methodology for dynamically recon-
figurable systems. JFAAA, pages 47–52, January 2005.

[31] Florent Berthelot and Fabienne Nouvel. Partial and dynamic reconfiguration of
FPGAs: a top down design methodology for an automatic implementation. In ISVLSI
’06: Proceedings of the IEEE Computer Society Annual Symposium on Emerging
VLSI Technologies and Architectures, page 436, Washington, DC, USA, 2006. IEEE
Computer Society.

[32] J. C. Bispo, I. Sourdis, J. M.P. Cardoso, and S. Vassiliadis. Synthesis of regular expres-
sions targeting FPGAs: Current status and open issues. In Int. Workshop on Applied
Reconfigurable Computing (ARC 2007), pages 179–190, Mangaratiba, Rio de Janerio,
Brazil, March 2007.

[33] Joao Bispo, Ioannis Sourdis, Joao M.P.Cardoso, and Stamatis Vassiliadis. Regular
expression matching for reconfigurable packet inspection. Field Programmable Tech-
nology, 2006. FPT 2006. IEEE International Conference on, pages 119–126, Dec.
2006.

152

[34] Brandon Blodget, Philip James-roxby, Eric Keller, Scott Mcmillan, and Prasanna Sun-
dararajan. A self-reconfiguring platform. In FPL ’03: Proceedings of the 2003 Con-
ference on Field Programmable Logic and Applications, 2003.

[35] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
mun. ACM, 13(7):422–426, 1970.

[36] Maik Boden, Thomas Fiebig, Markus Reiband, Peter Reichel, and Steffen Rülke.
Gepard - a high-level generation flow for partially reconfigurable designs. In ISVLSI
’08: Proceedings of the 2008 IEEE Computer Society Annual Symposium on VLSI,
pages 298–303, Washington, DC, USA, 2008. IEEE Computer Society.

[37] Cristiana Bolchini and Antonio Miele. Design space exploration for the design of
reliable sram-based FPGA systems. In DFT ’08: Proceedings of the 2008 IEEE Inter-
national Symposium on Defect and Fault Tolerance of VLSI Systems, pages 332–340,
Washington, DC, USA, 2008. IEEE Computer Society.

[38] Cristiana Bolchini, Antonio Miele, and Marco D. Santambrogio. Tmr and partial
dynamic reconfiguration to mitigate seu faults in FPGAs. In DFT ’07: Proceedings
of the 22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI
Systems, pages 87–95, Washington, DC, USA, 2007. IEEE Computer Society.

[39] Cristiana Bolchini, Davide Quarta, and Marco D. Santambrogio. Seu mitigation for
sram-based FPGAs through dynamic partial reconfiguration. In GLSVLSI ’07: Pro-
ceedings of the 17th ACM Great Lakes symposium on VLSI, pages 55–60, New York,
NY, USA, 2007. ACM.

[40] Pierre Bomel, Guy Gogniat, and Jean-Philippe Diguet. A networked, lightweight and
partially reconfigurable platform. In ARC ’08: Proceedings of the 4th international
workshop on Reconfigurable Computing, pages 318–323, Berlin, Heidelberg, 2008.
Springer-Verlag.

[41] Michael Bonetta and Cam Petriw. Bro intrusion detection system. http://www.
bro-ids.org/.

[42] Alisson V. Brito, Matthias Kuhnle, Michael Hubner, Jurgen Becker, and Elmar U. K.
Melcher. Modelling and simulation of dynamic and partially reconfigurable systems
using systemc. In ISVLSI ’07: Proceedings of the IEEE Computer Society Annual
Symposium on VLSI, pages 35–40, Washington, DC, USA, 2007. IEEE Computer So-
ciety.

[43] Benjamin C. Brodie, David E. Taylor, and Ron K. Cytron. A scalable architecture
for high-throughput regular-expression pattern matching. SIGARCH Comput. Archit.
News, 34(2):191–202, 2006.

[44] B. Buyukkurt and W.A. Najj. Compiler generated systolic arrays for wavefront al-
gorithm acceleration on FPGAs. Field Programmable Logic and Applications, 2008.
FPL 2008. International Conference on, pages 655–658, Sept. 2008.

153

http://www.bro-ids.org/
http://www.bro-ids.org/

[45] Weinan Chen, Ying Wang, Xiaowei Wang, and Chenglian Peng. A new placement
approach to minimizing FPGA reconfiguration data. In ICESS ’08: Proceedings of
the 2008 International Conference on Embedded Software and Systems, pages 169–
174, Washington, DC, USA, 2008. IEEE Computer Society.

[46] Jeff Child. Signal processing ip cores, cots journal, 09/2003. http://www.
cotsjournalonline.com/pdfs/2003/09/cots09_techfocus1.pdf.

[47] Young H. Cho and William H. Mangione-Smith. A pattern matching coprocessor for
network security. In DAC ’05: Proceedings of the 42nd annual conference on Design
automation, pages 234–239, Anaheim, California, USA, 2005.

[48] Young H. Cho, Shiva Navab, and William H. Mangione-Smith. Specialized hard-
ware for deep network packet filtering. In FPL ’02: Proceedings of the Recon-
figurable Computing Is Going Mainstream, 12th International Conference on Field-
Programmable Logic and Applications, pages 452–461, Montpellier, France, Septem-
ber 2002.

[49] Christopher R. Clark, Craig D. Ulmer, and David E. Schimmel. An FPGA-based
network intrusion detection system with on-chip network interfaces. Intl. Journal of
Electronics, 93(6):403–420, 2006.

[50] Christopher Claus, Johannes Zeppenfeld, Florian Müller, and Walter Stechele. Using
partial-run-time reconfigurable hardware to accelerate video processing in driver as-
sistance system. In DATE ’07: Proceedings of the conference on Design, automation
and test in Europe, pages 498–503, San Jose, CA, USA, 2007. EDA Consortium.

[51] Beate Commentz-Walter. A string matching algorithm fast on the average. In Pro-
ceedings of the 6th Colloquium, on Automata, Languages and Programming, pages
118–132, Graz, Austria, 1979.

[52] S. Commuri, V. Tadigotla, and L. Sliger. Efficient controller implementations for
robot control. In CSECS’06: Proceedings of the 5th WSEAS International Conference
on Circuits, Systems, Electronics, Control & Signal Processing, pages 48–53, Stevens
Point, Wisconsin, USA, 2006. World Scientific and Engineering Academy and Society
(WSEAS).

[53] Sesh Commuri, V. Tadigotla, and L. Sliger. Task-based hardware reconfiguration in
mobile robots using FPGAs. J. Intell. Robotics Syst., 49(2):111–134, 2007.

[54] Kerry J. Cox and Christopher Gerg. Managing Security with Snort and IDS Tools
Managing Security with Snort and IDS Tools. O’Reilly, August 2004.

[55] O. Cret, S. Mathe, B. Szente, Z. Mathe, C. Vancea, F. Rusu, and A. Darabant. FPGA-
based scalable implementation of the general smith-waterman algorithm. pages 410–
415, 2004.

154

http://www.cotsjournalonline.com/pdfs/2003/09/cots09_techfocus1.pdf
http://www.cotsjournalonline.com/pdfs/2003/09/cots09_techfocus1.pdf

[56] Srinivasan Dasasathyan, Rajesh Radhakrishnan, and Ranga Vemuri. Framework for
synthesis of virtual pipelines. In ASP-DAC ’02: Proceedings of the 2002 conference
on Asia South Pacific design automation/VLSI Design, page 326, Washington, DC,
USA, 2002. IEEE Computer Society.

[57] Yan-Xiang Deng, Chao-Jang Hwang, and Jiang-Lung Liu. An object-oriented cryp-
tosystem based on two-level reconfigurable computing architecture. J. Syst. Softw.,
79(4):466–479, 2006.

[58] Sarang Dharmapurikar, Praveen Krishnamurthy, T.S. Sproull, and J.W. Lockwood.
Deep packet inspection using parallel bloom filters. Micro, IEEE, 24(1):52–61, Jan.-
Feb. 2004.

[59] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer. Path sharing and predi-
cate evaluation for high-performance XML filtering. ACM Transactions on Database
Systems, 28(4):467–516, 2003.

[60] Nij Dorairaj, Eric Shiflet, and Mark Goosman. Planahead software as a platform for
partial reconfiguration. Xilinx Xcell Journal, Fourth Quarter 2005.

[61] Esam El-Araby, Ivan Gonzalez, and Tarek El-Ghazawi. Performance bounds of partial
run-time reconfiguration in high-performance reconfigurable computing. In HPRCTA
’07: Proceedings of the 1st international workshop on High-performance reconfig-
urable computing technology and applications, pages 11–20, New York, NY, USA,
2007. ACM.

[62] John Emmert, Charles Stroud, Brandon Skaggs, and Miron Abramovici. Dynamic
fault tolerance in FPGAs via partial reconfiguration. In FCCM ’00: Proceedings of the
2000 IEEE Symposium on Field-Programmable Custom Computing Machines, page
165, Washington, DC, USA, 2000. IEEE Computer Society.

[63] Endace. Multi gigabit intrusion detection. www.endace.com.

[64] Fabrizio Ferrandi, Marco D. Santambrogio, and Donatella Sciuto. A design method-
ology for dynamic reconfiguration: The caronte architecture. In IPDPS ’05: Proceed-
ings of the 19th IEEE International Parallel and Distributed Processing Symposium
(IPDPS’05) - Workshop 3, page 163.2, Washington, DC, USA, 2005. IEEE Computer
Society.

[65] E. Filippi, L. Lavagno, L. Licciardi, A. Montanaro, M. Paolini, R. Passerone, M. Sgroi,
and A. Sangiovanni-Vincentelli. Intellectual property re-use in embedded system co-
design: an industrial case study. In ISSS ’98: Proceedings of the 11th international
symposium on System synthesis, pages 37–42, Washington, DC, USA, 1998. IEEE
Computer Society.

[66] Robert W. Floyd and Jeffrey D. Ullman. The compilation of regular expressions into
integrated circuits. J. ACM, 29(3):603–622, 1982.

155

www.endace.com

[67] Benjamin Glas, Alexander Klimm, Oliver Sander, Klaus Müller-Glaser, and Jürgen
Becker. A system architecture for reconfigurable trusted platforms. In DATE ’08:
Proceedings of the conference on Design, automation and test in Europe, pages 541–
544, New York, NY, USA, 2008. ACM.

[68] Maya Gokhale, Dave Dubois, Andy Dubois, Mike Boorman, Steve Poole, and Vic
Hogsett. Granidt: Towards gigabit rate network intrusion detection technology. In
FPL ’02: Proceedings of the Reconfigurable Computing Is Going Mainstream, 12th
International Conference on Field-Programmable Logic and Applications, pages 404–
413, Montpellier, France, September 2002.

[69] I. Gonzalez, S. Lopez-Buedo, and F. J. Gomez-Arribas. Implementation of secure
applications in self-reconfigurable systems. Microprocess. Microsyst., 32(1):23–32,
2008.

[70] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu. Processing XML streams
with deterministic automata and stream indexes. ACM Transactions on Database Sys-
tems, 29(4):752–788, 2004.

[71] Zhi Guo. Automatic generation of vhdl from c for code acceleration on reconfigurable
devices. PhD thesis, USA, 2006. Adviser-Walid Najjar.

[72] Zhi Guo, Betul Buyukkurt, Walid Najjar, and Kees Vissers. Optimized generation of
data-path from C codes for FPGAs. In ACM/IEEE Conference on Design, Automation
and Test in Europe, pages 112–117, Washington, DC, USA, February 2005. IEEE
Computer Society.

[73] Zhi Guo, Walid Najjar, and Betul Buyukkurt. Efficient hardware code generation for
FPGAs. ACM Trans. Archit. Code Optim., 5(1):1–26, 2008.

[74] Zhi Guo, Walid Najjar, Frank Vahid, and Kees Vissers. A quantitative analysis of
the speedup factors of fpgas over processors. In FPGA ’04: Proceedings of the 2004
ACM/SIGDA 12th international symposium on Field programmable gate arrays, pages
162–170, New York, NY, USA, February 2004. ACM Press.

[75] A. K. Gupta and D. Suciu. Stream processing of xpath queries with predicates. pages
419–430, 2003.

[76] Darrin M. Hanna and Michael DuChene. Executing large algorithms on low-capacity
FPGAs using flowpath partitioning and runtime reconfiguration. Microprocess. Mi-
crosyst., 31(5):302–312, 2007.

[77] Edson L. Horta and John W. Lockwood. Parbit: a tool to transform bitfiles to im-
plement partial reconfiguration of field programmable gate arrays (FPGAs. Technical
report, Washington University in St. Louis, 2001.

156

[78] Edson L. Horta, John W. Lockwood, David E. Taylor, and David Parlour. Dynamic
hardware plugins in an FPGA with partial run-time reconfiguration. In DAC ’02:
Proceedings of the 39th conference on Design automation, pages 343–348, New York,
NY, USA, 2002. ACM.

[79] Randy Ren-Fu Huang. Hardware-assisted fast routing for runtime reconfigurable
computing. PhD thesis, Berkeley, CA, USA, 2004. Chair-John Wawrzynek.

[80] M. Hübner and J. Becker. Exploiting dynamic and partial reconfiguration for FPGAs:
toolflow, architecture and system integration. In SBCCI ’06: Proceedings of the 19th
annual symposium on Integrated circuits and systems design, pages 1–4, New York,
NY, USA, 2006. ACM.

[81] Michael Hubner, Lars Braun, Jurgen Becker, Christopher Claus, and Walter Stechele.
Physical configuration on-line visualization of xilinx virtex-ii FPGAs. In ISVLSI ’07:
Proceedings of the IEEE Computer Society Annual Symposium on VLSI, pages 41–46,
Washington, DC, USA, 2007. IEEE Computer Society.

[82] Michael Hubner, Christian Schuck, Matthias Kuhnle, and Jurgen Becker. New 2-
dimensional partial dynamic reconfiguration techniques for real-time adaptive micro-
electronic circuits. In ISVLSI ’06: Proceedings of the IEEE Computer Society Annual
Symposium on Emerging VLSI Technologies and Architectures, page 97, Washington,
DC, USA, 2006. IEEE Computer Society.

[83] Michael Huebner, Tobias Becker, and Juergen Becker. Real-time lut-based network
topologies for dynamic and partial FPGA self-reconfiguration. In SBCCI ’04: Pro-
ceedings of the 17th symposium on Integrated circuits and system design, pages 28–32,
New York, NY, USA, 2004. ACM.

[84] B.L. Hutchings, R. Franklin, and D. Carver. Assisting network intrusion detection with
reconfigurable hardware. In Field-Programmable Custom Computing Machines, 2002.
Proceedings. 10th Annual IEEE Symposium on, pages 111–120, Napa, California,
USA, April 2002.

[85] Intel. Intel xeon 5160 tdp. ftp://download.intel.com/design/
network/papers/30117401.pdf.

[86] Intel. Enhanced Intel R© SpeedStep R© Technology for the Intel R© Pentium R©M Proces-
sor. Intel, March 2004. ftp://download.intel.com/design/network/
papers/30117401.pdf.

[87] B. Jackson. Partial Reconfiguration Design with PlanAhead. Xilinx, xilinx 2.1 edition
edition, March 2008.

[88] H-J Jung, Z. K. Baker, and V. K. Prasanna. Performance of FPGA Implementation
of Bit-split Architecture for Intrusion Detection Systems. In Proceedings of the Re-
configurable Architectures Workshop at IPDPS (RAW ’06), Rhodes Island, Greece,
2006.

157

ftp://download.intel.com/design/network/papers/30117401.pdf
ftp://download.intel.com/design/network/papers/30117401.pdf
ftp://download.intel.com/design/network/papers/30117401.pdf
ftp://download.intel.com/design/network/papers/30117401.pdf

[89] H. Kalte, G. Lee, M. Porrmann, and U. Ruckert. Replica: A bitstream manipulation
filter for module relocation in partial reconfigurable systems. In IPDPS ’05: Proceed-
ings of the 19th IEEE International Parallel and Distributed Processing Symposium
(IPDPS’05) - Workshop 3, page 151.2, Washington, DC, USA, 2005. IEEE Computer
Society.

[90] Heiko Kalte and Mario Porrmann. Replica2pro: task relocation by bitstream manip-
ulation in virtex-ii/pro FPGAs. In CF ’06: Proceedings of the 3rd conference on
Computing frontiers, pages 403–412, New York, NY, USA, 2006. ACM.

[91] Toshihiro Katashita, Atusi Maeda, Kenji Toda, and Yoshinori Yamaguchi. Highly
efficient string matching circuit for ids with FPGA. In FCCM ’06: Proceedings of the
14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines,
pages 285–286, Napa, California, USA, April 2006.

[92] Markus Koester, Mario Porrmann, and Ulrich Ruckert. Placement-oriented modeling
of partially reconfigurable architectures. In IPDPS ’05: Proceedings of the 19th IEEE
International Parallel and Distributed Processing Symposium (IPDPS’05) - Workshop
3, page 164.2, Washington, DC, USA, 2005. IEEE Computer Society.

[93] Ralf Krueger. Dynamic reconfiguration of functional blocks. Xcell Journal,
January 2005. http://www.xilinx.com/publications/xcellonline/
xcell_52/xc_v4config52.htm.

[94] Sailesh Kumar, Balakrishnan Chandrasekaran, Jonathan Turner, and George Vargh-
ese. Curing regular expressions matching algorithms from insomnia, amnesia, and
acalculia. In ANCS ’07: Proceedings of the 3rd ACM/IEEE Symposium on Architec-
ture for networking and communications systems, pages 155–164, Orlando, Florida,
USA, 2007. ACM.

[95] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick Crowley, and Jonathan
Turner. Algorithms to accelerate multiple regular expressions matching for deep
packet inspection. In SIGCOMM Comput. Commun. Rev., volume 36, pages 339–350,
Pisa, Italy, 2006.

[96] Kevin Kwiat, Warren Debany, and Salim Hariri. Software fault tolerance using dy-
namically reconfigurable FPGAs. Great Lakes Symposium on VLSI, 0:0039, 1996.

[97] J. Kwon, P. Rao, B. Moon, and S. Lee. Fist: Scalable XML document filtering by
sequencing twig patterns. 2005.

[98] Tien-Lung Lee and Neil W. Bergmann. Interfacing methodologies for ip re-use in
reconfigurable system on-chip. In SPIE International Symposium on Microelectronics,
MEMS and Nanotechnology, Perth, Australia, December 12 / 2003.

[99] S. Letz, M. Zedler, T. Thierer, M. Schutz, J. Roth, and R. Seiffert. XML offload and
acceleration with cell broadband engine. In XTech: Building Web 2.0, 2006.

158

http://www.xilinx.com/publications/xcellonline/xcell_52/xc_v4config52.htm
http://www.xilinx.com/publications/xcellonline/xcell_52/xc_v4config52.htm

[100] Zhiyuan Li and Scott Hauck. Configuration prefetching techniques for partial recon-
figurable coprocessor with relocation and defragmentation. In FPGA ’02: Proceedings
of the 2002 ACM/SIGDA tenth international symposium on Field-programmable gate
arrays, pages 187–195, New York, NY, USA, 2002. ACM.

[101] Cheng-Hung Lin, Chih-Tsun Huang, Chang-Ping Jiang, and Shih-Chieh Chang. Opti-
mization of regular expression pattern matching circuits on FPGA. In DATE ’06: Pro-
ceedings of the conference on Design, Automation and Test in Europe, pages 12–17,
3001 Leuven, Belgium, Belgium, 2006. European Design and Automation Associa-
tion.

[102] R. W. Linderman, C. S. Lin, and M. H. Linderman. FPGA acceleration of information
management services. In High Performance Embedded Computing (HPEC), 2004.

[103] J. Lockwood. An open platform for development of network processing modules
in reprogrammable hardware. In IEC DesignCon’01, pages WB–19, Santa Clara,
California, USA, January 2001.

[104] John W. Lockwood, Naji Naufel, Jon S. Turner, and David E. Taylor. Reprogrammable
network packet processing on the field programmable port extender (fpx). In ACM
International Symposium on Field Programmable Gate Arrays (FPGA’2001), pages
87–93, Monterey, CA, USA, February 2001.

[105] Michael G. Lorenz, Luis Mengibar, Enrique SanMillan, and Luis Entrena. Low
power data processing system with self-reconfigurable architecture. J. Syst. Archit.,
53(9):568–576, 2007.

[106] W. Lu, K. Chiu, and Y. Pan. A parallel approach to XML parsing. In IEEE/ACM Int’l
Workshop on Grid Computing, pages 223–230, 2006.

[107] B. Ludascher, P. Mukhopadhyay, and Y. Papakonstantinou. A transducer-based XML
query processor. pages 227–238, 2002.

[108] J. V. Lunteren, T. Engbersen, J. Bostian, B. Carey, and C. Larsson. XML accelerator
engine. In 1st Int. Workshop on High Performance XML Processing, 2004.

[109] R. Lysecky and F. Vahid. Prefetching for improved bus wrapper performance in cores.
ACM Transactions on Design Automation of Electronic Systems, January 2002.

[110] Mateusz Majer, Jürgen Teich, Ali Ahmadinia, and Christophe Bobda. The erlangen
slot machine: A dynamically reconfigurable FPGA-based computer. J. VLSI Signal
Process. Syst., 47(1):15–31, 2007.

[111] James Martin. Benefits of partial reconfigurability in circuit-switched wdm networks.
J. High Speed Netw., 14(3):201–213, 2005.

159

[112] Torsten Mehlan, Jochen Strunk, Torsten Hoefler, Frank Mietke, and Wolfgang Rehm.
Irs - a portable interface for reconfigurable systems. In PARELEC ’06: Proceedings of
the international symposium on Parallel Computing in Electrical Engineering, pages
187–191, Washington, DC, USA, 2006. IEEE Computer Society.

[113] Andre Meisel, Alexander Draeger, Sven Schneider, and Wolfram Hardt. Design flow
for reconfiguration based on the overlaying concept. In RSP ’08: Proceedings of
the 2008 The 19th IEEE/IFIP International Symposium on Rapid System Prototyping,
pages 89–95, Washington, DC, USA, 2008. IEEE Computer Society.

[114] Nele Mentens, Benedikt Gierlichs, and Ingrid Verbauwhede. Power and fault analysis
resistance in hardware through dynamic reconfiguration. In CHES ’08: Proceeding sof
the 10th international workshop on Cryptographic Hardware and Embedded Systems,
pages 346–362, Berlin, Heidelberg, 2008. Springer-Verlag.

[115] A. Mitra, Z. Guo, A. Banerjee, and W. Najjar. Dynamic co-processor architecture for
software acceleration on csocs. In IEEE Int. Conf. on Computer Design (ICCD), 2006.

[116] Abhishek Mitra, Walid Najjar, and Laxmi Bhuyan. Compiling PCRE to FPGA for
accelerating snort ids. In ANCS ’07: Proceedings of the 3rd ACM/IEEE Symposium
on Architecture for networking and communications systems, pages 127–136, Orlando,
Florida, USA, 2007. ACM.

[117] Abhishek Mitra, Ge Yao, and Walid Najjar. Performance analysis of sgi rasc rc100
blade on 1-d dwt. In Reconfigurable Systems Summer Institute, Urbana, Illinois, USA,
July 2007.

[118] M. Moro, P. Bakalov, and V. Tsotras. Early profile pruning on XML-aware publish-
subscribe systems. pages 866–877, 2007.

[119] J. Moscola, Y. H. Cho, and J. W. Lockwood. Reconfigurable content-based router
using hardware-accelerated language parser. ACM Transactions on Design Automation
of Electronic Systems (TODAES), 13(2), 2008.

[120] James Moscola, Young H. Cho, and John W. Lockwood. A Scalable Hybrid Reg-
ular Expression Pattern Matcher. In Proceedings of IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), Napa, California, USA, April
2006.

[121] James Moscola, Young H. Cho, and John W. Lockwood. Reconfigurable Content-
based Router Using Hardware-Accelerated Language Parser. ACM Transactions on
Design Automation of Electronic Systems (TODAES), 13(2), 2008.

[122] James Moscola, John Lockwood, Ronald P. Loui, and Michael Pachos. Implementa-
tion of a content-scanning module for an internet firewall. In FCCM ’03: Proceedings
of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Ma-
chines, page 31, Napa, California, USA, 2003. IEEE Computer Society.

160

[123] Nallatech and EDA Geek. Nallatech showcases fsb, pci express fpga accelerator
products at sc08. EDA Geek, 2008. http://edageek.com/2008/11/18/
supercomputing-front-side-bus/.

[124] T. Ngai, S. Singh, B.K. Britton, W.-B. Leung, H. Nguyen, G.P. Powell, R. Albu, W.B.
Andrews, J. He, and C.W. Spivak. A new generation of orca FPGA with enhanced
features and performance. Custom Integrated Circuits Conference, 1996., Proceedings
of the IEEE 1996, pages 247–250, May 1996.

[125] Jia Ni, Chuang Lin, Zhen Chen, and Peter Ungsunan. A fast multi-pattern matching
algorithm for deep packet inspection on a network processor. In ICPP ’07: Proceed-
ings of the 2007 International Conference on Parallel Processing, pages 16–16, XiAn,
China, September 2007.

[126] Jose Luis Nunez-Yanez, Xiaolin Chen, Nishan Canagarajah, and Raffaele Vitulli. Sta-
tistical lossless compression of space imagery and general data in a reconfigurable ar-
chitecture. In AHS ’08: Proceedings of the 2008 NASA/ESA Conference on Adaptive
Hardware and Systems, pages 172–177, Washington, DC, USA, 2008. IEEE Com-
puter Society.

[127] NVIDIA. Nvidia cudaTM technology. http://www.nvidia.com/object/
cuda_learn.html.

[128] Makoto Onizuka. Light-weight xpath processing of XML stream with deterministic
automata. In CIKM ’03: Proceedings of the twelfth international conference on In-
formation and knowledge management, pages 342–349, New York, NY, USA, 2003.
ACM.

[129] Björn Osterloh, Harald Michalik, Björn Fiethe, and Karel Kotarowski. Socwire: A
network-on-chip approach for reconfigurable system-on-chip designs in space appli-
cations. In AHS ’08: Proceedings of the 2008 NASA/ESA Conference on Adaptive
Hardware and Systems, pages 51–56, Washington, DC, USA, 2008. IEEE Computer
Society.

[130] Kyprianos Papademetriou and Apostolos Dollas. A task graph approach for efficient
exploitation of reconfiguration in dynamically reconfigurable systems. In FCCM ’06:
Proceedings of the 14th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, pages 307–308, Washington, DC, USA, 2006. IEEE Computer
Society.

[131] K. Paulsson, M. Hübner, and J. Becker. On-line optimization of FPGA power-
dissipation by exploiting run-time adaption of communication primitives. In SBCCI
’06: Proceedings of the 19th annual symposium on Integrated circuits and systems
design, pages 173–178, New York, NY, USA, 2006. ACM.

[132] Katarina Paulsson, Michael Hubner, and Jurgen Becker. Strategies to on- line failure
recovery in self- adaptive systems based on dynamic and partial reconfiguration. In

161

http://edageek.com/2008/11/18/supercomputing-front-side-bus/
http://edageek.com/2008/11/18/supercomputing-front-side-bus/
http://www.nvidia.com/object/cuda_learn.html
http://www.nvidia.com/object/cuda_learn.html

AHS ’06: Proceedings of the first NASA/ESA conference on Adaptive Hardware and
Systems, pages 288–291, Washington, DC, USA, 2006. IEEE Computer Society.

[133] Katarina Paulsson, Michael Hübner, and Jürgen Becker. Cost-and power optimized
FPGA based system integration: methodologies and integration of a low-power
capacity-based measurement application on xilinx FPGAs. In DATE ’08: Proceed-
ings of the conference on Design, automation and test in Europe, pages 50–55, New
York, NY, USA, 2008. ACM.

[134] Katarina Paulsson, Michael Hubner, Markus Jung, and Jurgen Becker. Methods for
run-time failure recognition and recovery in dynamic and partial reconfigurable sys-
tems based on xilinx virtex-ii pro FPGAs. In ISVLSI ’06: Proceedings of the IEEE
Computer Society Annual Symposium on Emerging VLSI Technologies and Architec-
tures, page 159, Washington, DC, USA, 2006. IEEE Computer Society.

[135] Katarina Paulsson, Ulrich Viereck, Michael Hübner, and Jürgen Becker. Exploita-
tion of the external jtag interface for internally controlled configuration readback and
self-reconfiguration of spartan 3 FPGAs. In ISVLSI ’08: Proceedings of the 2008
IEEE Computer Society Annual Symposium on VLSI, pages 304–309, Washington,
DC, USA, 2008. IEEE Computer Society.

[136] David Pellerin, Greg Edvenson, Kunal Shenoy, and Dan Isaacs. Accelerating powerpc
software applications. Xilinx Xcell Journal, 9/1/2005.

[137] Rodolfo Pellizzoni and Marco Caccamo. Hybrid hardware-software architecture for
reconfigurable real-time systems. In RTAS ’08: Proceedings of the 2008 IEEE Real-
Time and Embedded Technology and Applications Symposium, pages 273–284, Wash-
ington, DC, USA, 2008. IEEE Computer Society.

[138] F. Peng and S. S. Chawathe. Xpath queries on streaming data. pages 431–442, 2003.

[139] Feng Peng and Sudarshan S. Chawathe. Xsq: A streaming xpath engine. ACM Trans.
Database Syst., 30(2):577–623, 2005.

[140] Conrado Pilotto, José Rodrigo Azambuja, and Fernanda Lima Kastensmidt. Synchro-
nizing triple modular redundant designs in dynamic partial reconfiguration applica-
tions. In SBCCI ’08: Proceedings of the 21st annual symposium on Integrated circuits
and system design, pages 199–204, New York, NY, USA, 2008. ACM.

[141] H. Prüfer. Neuer beweis eines satzes über permutationen. Archiv Für Mathematik und
Physik, (27):142–144, 1918.

[142] P. Rao and B. Moon. Sequencing XML data and query twigs for fast pattern matching.
ACM Trans. Database Syst., 31(1):299–345, 2006.

[143] Ian Robertson and James Irvine. A design flow for partially reconfigurable hardware.
Trans. on Embedded Computing Sys., 3(2):257–283, 2004.

162

[144] Martin Roesch. Snort - lightweight intrusion detection for networks. In LISA ’99:
Proceedings of the 13th USENIX conference on System administration, pages 229–
238, Berkeley, CA, USA, 1999. USENIX Association.

[145] Martin Roesch. Snort & regular expressions, 2006. http://seclists.org/
focus-ids/2006/Jan/0095.html.

[146] Martin Roesch. Snort v2.4 - the de facto standard for intrusion detection/prevention,
2006. http://www.snort.org/.

[147] B. Rousseau, Ph. Manet, D. Galerin, D. Merkenbreack, J.-D. Legat, F. Dedeken, and
Y. Gabriel. Enabling certification for dynamic partial reconfiguration using a minimal
flow. In DATE ’07: Proceedings of the conference on Design, automation and test in
Europe, pages 983–988, San Jose, CA, USA, 2007. EDA Consortium.

[148] Patrick Schaumont and Ingrid Verbauwhede. A quick safari through the reconfigura-
tion jungle. In In Design Automation Conference, pages 172–177. ACM Press, 2001.

[149] Jordana Seixas, Edson Barbosa, Stelita Silva, Paulo Sergio B. Nascimento, Vinı́cius
Kursancew, Remy Eskinazi, Edna Barros, and Manoel Eusebio. Aquarius: a dynam-
ically reconfigurable computing platform. In SBCCI ’07: Proceedings of the 20th
annual conference on Integrated circuits and systems design, pages 171–176, New
York, NY, USA, 2007. ACM.

[150] Lukas Sekanina. Evolvable hardware. In GECCO ’07: Proceedings of the 2007
GECCO conference companion on Genetic and evolutionary computation, pages
3627–3644, New York, NY, USA, 2007. ACM.

[151] SGI. SGI Altix family. http://www.sgi.com/products/servers/
altix/.

[152] Lesley Shannon. Impact of intellectual property cores on field programmable gate
array designs. Master’s thesis, University of Toronto, 2001.

[153] Hooman Shayani, Peter Bentley, and Andy M. Tyrrell. A cellular structure for online
routing of digital spiking neuron axons and dendrites on FPGAs. In ICES ’08: Pro-
ceedings of the 8th international conference on Evolvable Systems: From Biology to
Hardware, pages 273–284, Berlin, Heidelberg, 2008. Springer-Verlag.

[154] Reetinder Sidhu and Viktor K. Prasanna. Fast regular expression matching using
FPGAs. In FCCM ’01: Proceedings of the the 9th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 227–238, Rohnert Park, Califor-
nia, USA, 2001. IEEE Computer Society.

[155] Miguel L. Silva and Joao Canas Ferreira. Using a tightly-coupled pipeline in dynami-
cally reconfigurable platform FPGAs. In DSD ’05: Proceedings of the 8th Euromicro
Conference on Digital System Design, pages 383–387, Washington, DC, USA, 2005.
IEEE Computer Society.

163

http://seclists.org/focus-ids/2006/Jan/0095.html
http://seclists.org/focus-ids/2006/Jan/0095.html
http://www.snort.org/
http://www.sgi.com/products/servers/altix/
http://www.sgi.com/products/servers/altix/

[156] K. Siozios, G. Koutroumpezis, K. Tatas, D. Soudris, and A. Thanailakis. Dagger: A
novel generic methodology for FPGA bitstream generation and its software tool im-
plementation. In IPDPS ’05: Proceedings of the 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS’05) - Workshop 3, page 165.2, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[157] M. D. Smith and G. Holloway. An introduction to Machine SUIF and its portable
libraries for analysis and optimization. Division of Engineering and Applied Sciences,
Harvard University.

[158] M. D. Smith and G. Holloway. Machine SUIF Bit-Vector Data-Flow-Analysis Library.
Division of Engineering and Applied Sciences, Harvard University.

[159] M. D. Smith and G. Holloway. Machine SUIF Static Single Assignment Library. Di-
vision of Engineering and Applied Sciences, Harvard University.

[160] H. Song, T. Sproull, M. Attig, and J. Lockwood. Snort offloader: A reconfigurable
hardware NIDS filter. In Proceedings of 15th International Conference on Field Pro-
grammable Logic and Applications (FPL), Tampere, Finland, August 2005.

[161] D. Soudris, S. Nikolaidis, S. Siskos, K. Tatas, K. Siozios, G. Koutroumpezis, N. Vasil-
iadis, V. Kalenteridis, H. Pournara, I. Pappas, and A. Thanailakis. Amdrel: a novel
low-energy FPGA architecture and supporting cad tool design flow. In ASP-DAC ’05:
Proceedings of the 2005 conference on Asia South Pacific design automation, pages
3–4, New York, NY, USA, 2005. ACM.

[162] I. Sourdis, J. C. Bispo, J. M.P. Cardoso, and S. Vassiliadis. Regular expression match-
ing in reconfigurable hardware. Int. Journal of Signal Processing Systems for Signal,
Image, and Video Technology, October 2007.

[163] I. Sourdis, D. N. Pnevmatikatos, and S. Vassiliadis. Scalable multigigabit pattern
matching for packet inspection. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 16(2):156–166, Feb. 2008.

[164] Ioannis Sourdis and Dionisios Pnevmatikatos. Fast, large-scale string match for a
10Gbps FPGA-based network intrusion detection system. In Proceedings of Int.
Conference on Field Programmable Logic and Applications (FPL), Lisbon, Portugal,
2003.

[165] S. Spetka, S. Tucker, G. Ramseyer, and R. Linderman. Imagery pattern recognition and
pub/sub information management. In 36th IEEE Applied Imagery Pattern Recognition
Workshop (AIPR), pages 37–41, 2007.

[166] SPIRIT. The spirit consortium. www.spiritconsortium.org.

[167] Dave Strenski. FPGA floating point performance – a pencil and paper evaluation.
HPC Wire, January January 2007.

164

www.spiritconsortium.org

[168] Dinesh C. Suresh, Zhi Guo, Betul Buyukkurt, and Walid A. Najjar. Automatic com-
pilation framework for bloom filter based intrusion detection. In ARC, volume 3985,
pages 413–418, Delft, The Netherlands, March 2006.

[169] P. Sutton. Partial character decoding for improved regular expression matching in
FPGAs. In IEEE International Conference on Field-Programmable Technology, pages
25–32, The University of Queensland, St Lucia Campus, Brisbane, Australia, Decem-
ber 2004.

[170] Dimitris Syrivelis and Spyros Lalis. System- and application-level support for runtime
hardware reconfiguration on soc platforms. In ATEC ’06: Proceedings of the annual
conference on USENIX ’06 Annual Technical Conference, pages 29–29, Berkeley, CA,
USA, 2006. USENIX Association.

[171] Jesús Tabero, Julio Septién, Hortensia Mecha, and Daniel Mozos. Allocation heuris-
tics and defragmentation measures for reconfigurable systems management. Integr.
VLSI J., 41(2):281–296, 2008.

[172] V. Tadigotla and S. Commuri. Dynamic image filter selection using partially reconfig-
urable FPGAs for imaging operations. In CSECS’06: Proceedings of the 5th WSEAS
International Conference on Circuits, Systems, Electronics, Control & Signal Pro-
cessing, pages 60–65, Stevens Point, Wisconsin, USA, 2006. World Scientific and
Engineering Academy and Society (WSEAS).

[173] Heng Tan, Ronald F. DeMara, Anuja J. Thakkar, Abdel Ejnioui, and Jason D. Sattler.
Complexity and performance tradeoffs with FPGA partial reconfiguration interfaces.
In Proceedings of the Reconfigurable Architectures Workshop at IPDPS (RAW ’06),
Rhodes Island, Greece, 2006.

[174] Lin Tan, Brett Brotherton, and Timothy Sherwood. Bit-split string-matching engines
for intrusion detection and prevention. ACM Trans. Archit. Code Optim., 3(1):3–34,
2006.

[175] Lin Tan and Timothy Sherwood. A high throughput string matching architecture for
intrusion detection and prevention. SIGARCH Comput. Archit. News, 33(2):112–122,
2005.

[176] RASC Development Team. Reconfigurable Application-Specific Computing User’s
Guide. SGI, 007-4718-007 edition, February 2008.

[177] Anurag Tiwari and Karen A. Tomko. Saving power by mapping finite-state machines
into embedded memory blocks in FPGAs. In DATE ’04: Proceedings of the conference
on Design, automation and test in Europe, page 20916, Paris, France, February 2004.

[178] J. Tripp, K. Peterson, C. Ahrens, J. Poznanovic, and M. Gokhale. Trident: An FPGA
compiler framework for floating-point algorithms. In FPL ’05: Proceedings of the
2005 Conference on Field Programmable Logic and Applications, 2005.

165

[179] N. Tuck, T. Sherwood, B. Calder, and G. Varghese. Deterministic memory-efficient
string matching algorithms for intrusion detection. INFOCOM 2004. Twenty-third An-
nualJoint Conference of the IEEE Computer and Communications Societies, 4:2628–
2639 vol.4, 7-11 March 2004.

[180] Antonino Tumeo, Matteo Monchiero, Gianluca Palermo, Fabrizio Ferrandi, and Do-
natella Sciuto. An internal partial dynamic reconfiguration implementation of the jpeg
encoder for low-cost FPGAs. In ISVLSI ’07: Proceedings of the IEEE Computer Soci-
ety Annual Symposium on VLSI, pages 449–450, Washington, DC, USA, 2007. IEEE
Computer Society.

[181] M. Ullmann, M. Huebner, B. Grimm, and J. Becker. An FPGA run-time system for dy-
namical on-demand reconfiguration. Parallel and Distributed Processing Symposium,
2004. Proceedings. 18th International, pages 135–, April 2004.

[182] Theo Valich. GPGPU drastically accelerates anti-virus soft-
ware, September September 12 2007. http://www.
theinquirer.net/en/inquirer/news/2007/09/12/
gpgpu-drastically-accelerates-anti-virus-software.

[183] M. Vallentin, R. Sommer, J. Lee, C. Leres, V. Paxson, and B. Tierney. The NIDS
cluster: Scalable, stateful network intrusion detection on commodity hardware. In
RAID, pages 107–126, 2007.

[184] Craig Leres Van Jacobson and Steven McCanne. The libpcap project. http://
sourceforge.net/projects/libpcap/.

[185] J. Villarreal and W.A. Najjar. Compiled hardware acceleration of molecular dynamics
code. Field Programmable Logic and Applications, 2008. FPL 2008. International
Conference on, pages 667–670, Sept. 2008.

[186] Jason Villarreal, John Cortes, and Walid A. Najjar. Compiled code acceleration of
namd on FPGAs. In Reconfigurable Systems Summer Institute, Urbana, Illinois, USA,
July 2007.

[187] VSIA. Virtual socket interface association. http://vsi.org.

[188] M. Wala and D. Bouldin. Integrating and verifying intellectual property blocks using
platform express and modelsim. Circuits and Systems, 2005. 48th Midwest Symposium
on, pages 758–761 Vol. 1, Aug. 2005.

[189] K. Watanabe, N. Tsuruoka, and R. Himeno. Performance of network intrusion detec-
tion cluser system. ISHPC, pages 278–287, 2003.

[190] K. B. Wheeler. Load balancing for high speed parallel network intrusion detection.
Master’s thesis, University of Notre Dame, April 2005.

166

http://www.theinquirer.net/en/inquirer/news/2007/09/12/gpgpu-drastically-accelerates-anti-virus-software
http://www.theinquirer.net/en/inquirer/news/2007/09/12/gpgpu-drastically-accelerates-anti-virus-software
http://www.theinquirer.net/en/inquirer/news/2007/09/12/gpgpu-drastically-accelerates-anti-virus-software
http://sourceforge.net/projects/libpcap/
http://sourceforge.net/projects/libpcap/
http://vsi.org

[191] Business Wire and Nallatech. Nallatech to support and deliver product for intel(r)
quickpath interconnect. Business Wire, 2008. http://www.allbusiness.com/
electronics/computer-equipment-computer/5298096-1.html.

[192] M. J. Wirthlin. A dynamic instruction set computer. In FCCM ’95: Proceedings of the
IEEE Symposium on FPGA’s for Custom Computing Machines, page 99, Washington,
DC, USA, 1995. IEEE Computer Society.

[193] S. Wu and U. Manber. A fast algorithm for multi-pattern searching. Technical Report
TR-94-17, Department of Computer Science, University of Arizona, 1994.

[194] Xilinx. EDK, PowerPC 405 Processor Block Reference Guide, UG018. Xilinx.
http://www.xilinx.com/bvdocs/userguides/ug018.pdf.

[195] Xilinx. Virtex-4 multi platform FPGA. http://www.xilinx.com/products/
silicon_solutions/fpgas/virtex/virtex4/.

[196] Xilinx. Xilinx CORDIC 3.0, DS 239. Xilinx. http://www.xilinx.com/
bvdocs/ipcenter/data_sheet/cordic.pdf.

[197] Xilinx. Xilinx Fast Simplex Link v2.00a. Xilinx. http://www.xilinx.com/
bvdocs/ipcenter/data_sheet/FSL_V20.pdf.

[198] Xilinx. Xilinx FFT v3.2, DS 260. Xilinx. http://www.xilinx.com/bvdocs/
ipcenter/data_sheet/xfft.pdf.

[199] Xilinx. Xilinx Floating point Operator v2.0, Logicore. Xilinx. http:
//www.xilinx.com/bvdocs/ipcenter/data_sheet/floating_
point_ds3315.pdf.

[200] Xilinx. Xilinx intellectual property library, logicore. http://www.xilinx.com/
ipcenter/.

[201] Xilinx. Xilinx OPB IPIF specifications DS414. Xilinx. http://www.xilinx.
com/bvdocs/ipcenter/data_sheet/opb_ipif.pdf.

[202] Xilinx. Xilinx Pipelined Divider v 3.0, DS305. Xilinx. http://www.xilinx.
com/ipcenter/catalog/logicore/docs/sdivider.pdf.

[203] Xilinx. Xilinx PLB IPIF specifications DS414. Xilinx. http://www.xilinx.
com/bvdocs/ipcenter/data_sheet/plb_ipif.pdf.

[204] Xilinx. Two Flows for Partial Reconfiguration: Module Based or Difference
Based. Xilinx, 2003. china.xilinx.com/support/documentation/
application_notes/xapp290.pdf.

[205] Xilinx. Xilinx ISE 8.1i Development System Reference Guide. Xilinx, 2006. http://
toolbox.xilinx.com/docsan/xilinx8/books/docs/dev/dev.pdf.

167

http://www.allbusiness.com/electronics/computer-equipment-computer/5298096-1.html
http://www.allbusiness.com/electronics/computer-equipment-computer/5298096-1.html
http://www.xilinx.com/bvdocs/userguides/ug018.pdf
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/cordic.pdf
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/cordic.pdf
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/FSL_V20.pdf
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/FSL_V20.pdf
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/xfft.pdf
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/xfft.pdf
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/floating_point_ds3315.pdf
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/floating_point_ds3315.pdf
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/floating_point_ds3315.pdf
http://www.xilinx.com/ipcenter/
http://www.xilinx.com/ipcenter/
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/opb_ipif.pdf
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/opb_ipif.pdf
http://www.xilinx.com/ipcenter/catalog/logicore/docs/sdivider.pdf
http://www.xilinx.com/ipcenter/catalog/logicore/docs/sdivider.pdf
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/plb_ipif.pdf
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/plb_ipif.pdf
china.xilinx.com/support/documentation/application_notes/xapp290.pdf
china.xilinx.com/support/documentation/application_notes/xapp290.pdf
http://toolbox.xilinx.com/docsan/xilinx8/books/docs/dev/dev.pdf
http://toolbox.xilinx.com/docsan/xilinx8/books/docs/dev/dev.pdf

[206] Xilinx. Virtex-4 RocketIO Multi-Gigabit Transceiver, UG076 (v4.1). Xilinx, Novem-
ber 2008. http://www.xilinx.com/support/documentation/user_
guides/ug076.pdf.

[207] Xilinx. Xilinx UG190 Virtex-5 FPGA User Guide. Xilinx, 2008. http://www.
xilinx.com/support/documentation/user_guides/ug190.pdf.

[208] Xilinx. Early Access Partial Reconfiguration User Guide, ug208 edition. Xilinx,
March 2006.

[209] Xtremedata. VAA: VLDB analytics appliance, December 2007.

[210] Xtremedata. XD1000TM FPGA Coprocessor Module for Socket 940. Xtremedata,
October 2007.

[211] Xtremedata. FPGA acceleration in HPC: A case study in financial analytics. Techni-
cal report, Xtremedata, November 2006. http://www.xtremedatainc.com/
pdf/FPGA_Acceleration_in_HPC.pdf.

[212] Fang Yu, Zhifeng Chen, Yanlei Diao, T. V. Lakshman, and Randy H. Katz. Fast and
memory-efficient regular expression matching for deep packet inspection. In ANCS
’06: Proceedings of the 2006 ACM/IEEE symposium on Architecture for networking
and communications systems, pages 93–102, San Jose, California, USA, 2006. ACM.

[213] Sherif Yusuf, Wayne Luk, M. K. N. Szeto, and W. Osborne. Unite: Uniform hardware-
based network intrusion detection engine. In Int. Workshop on Applied Reconfigurable
Computing, pages 389–400, Delft, The Netherlands, March 2006.

[214] Xun ZHANG, Hassan RABAH, and Serge WEBER. Auto-adaptive reconfigurable
architecture for scalable multimedia applications. In AHS ’07: Proceedings of the
Second NASA/ESA Conference on Adaptive Hardware and Systems, pages 139–145,
Washington, DC, USA, 2007. IEEE Computer Society.

[215] Xun Zhang, Hassan Rabah, and Serge Weber. An auto-adaptation method for dy-
namically reconfigurable system-on-chip. In ISVLSI ’08: Proceedings of the 2008
IEEE Computer Society Annual Symposium on VLSI, pages 499–502, Washington,
DC, USA, 2008. IEEE Computer Society.

168

http://www.xilinx.com/support/documentation/user_guides/ug076.pdf
http://www.xilinx.com/support/documentation/user_guides/ug076.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf
http://www.xtremedatainc.com/pdf/FPGA_Acceleration_in_HPC.pdf
http://www.xtremedatainc.com/pdf/FPGA_Acceleration_in_HPC.pdf

	List of Tables
	List of Figures
	Introduction
	FPGAs for Code Acceleration
	Regular Expression to HDL
	FPGA Reprogrammability
	XML Filtering on FPGA
	Contributions
	Compiling PCRE to FPGA and accelerating SNORT IDS
	Dynamic Co-Processor Interface Automation
	Adaptive Hardware/Software Regular Expression Based IDS
	Boosting XML filtering with a scalable FPGA-based architecture

	Related Work
	Network Intrusion Detection Systems
	IDS engines with String Matching
	IDS engines with Regular Expression Matching

	Interfacing IP cores on FPGA
	Partial Reconfiguration on FPGA
	XML Filtering
	Software Based Filtering
	Hardware Based Filtering

	Compiling PCRE to FPGA via opcodes and accelerating SNORT
	Regular Expressions, IDS and FPGA Acceleration
	PCRE
	SNORT IDS and PCRE
	Accelerating PCRE on FPGA
	Finite Automaton on FPGA

	SNORT IDS
	PCRE rules in SNORT

	Compiling PERL Compatible Regular Expressions to FPGA
	PCRE Opcodes
	PCRE Opcode Frequencies in SNORT Rules

	Compilation Flow
	Compilation Overview
	Common Prefix Optimization
	Hardware Implementation of PCRE Opcodes
	NFA Implementation on FPGA

	Experimental Results
	Software only performance with multi-cpu load balancing
	Hardware Benchmark and Comparison with Single Threaded Software Execution
	Single Processor Power Consumption Analysis

	Conclusion

	Partial Reconfiguration on FPGA
	Dynamic Co-Processor Interface Automation
	System Overview for IP Core Wrapper Generation and Partial Reconfiguration
	The CSoC platform
	APU (Auxiliary Processing Unit) on Virtex-4 FX
	IP Cores
	ROCCC Overview
	Interface Synthesis
	Experimental Results

	Adaptive Hardware/Software Regular Expression Based IDS
	The FPGA Architecture
	Xilinx Partial Reconfiguration Flow
	The Hardware/Software Integrated Test System
	Hardware Performance
	Hardware/Software Performance with Reconfiguration

	Conclusion

	Boosting XML filtering with a scalable FPGA-based architecture
	XML Pub-sub
	Using FPGA for XML Filtering

	Compilation System Overview
	XPath Expressions
	XPath on FPGA
	Dictionary Replacement
	XPath to Stack-enhanced Regular Expressions
	Common Prefix Optimization
	Area Efficient Character Decoder Hardware
	Regular Expression to VHDL compilation
	FPGA Implementation

	Twig Profiles on FPGAs
	Overview of Prüfer Sequences
	FPGA implementation of Prüfer subsequence matching

	Experimental Evaluation
	Performance and Speedup

	Conclusion

	Conclusions
	PCRE to FPGA compiler
	Accelerating regular expression of SNORT IDS
	Dynamic Co-Processors on FPGA
	Adaptive Hardware-Software Regular Expressions based IDS
	Scalable Architecture for XML Filtering on FPGA

	Bibliography

