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Tracking Epithelial Cell Junctions in C. elegans
Embryogenesis with Active Contours Guided by

SIFT Flow
Sukryool Kang, Chen-Yu Lee, Monira Gonçalves, Andrew D. Chisholm,

and Pamela C. Cosman

Abstract—Quantitative analysis of cell shape in live samples
is an important goal in developmental biology. Automated or
semi-automated segmentation and tracking of cell nuclei has
been successfully implemented in several biological systems.
Segmentation and tracking of cell surfaces has been more
challenging. Here we present a new approach to tracking cell
junctions in the developing epidermis of C. elegans embryos.
Epithelial junctions as visualized with DLG-1::GFP form lines
at the subapical circumference of differentiated epidermal cells
and delineate changes in epidermal cell shape and position. We
develop and compare two approaches for junction segmentation.
For the first method (projection approach), 3D cell boundaries
are projected into 2D for segmentation using active contours
with a non-intersecting force, and subsequently tracked using
SIFT (Scale-Invariant Feature Transform) flow. The resulting
2D tracked boundaries are then back-projected into 3D space.
The second method (volumetric approach) uses a 3D extended
version of active contours guided by SIFT flow in 3D space. In
both methods, cell junctions are manually located at the first time
point and tracked in a fully automated way for the remainder
of the video. Using these methods we have generated the first
quantitative description of ventral epidermal cell movements and
shape changes during epidermal enclosure.

Index Terms—Active contours, cell junction tracking, C. ele-
gans, embryogenesis, SIFT flow.

I. INTRODUCTION

TRacking cells or subcellular structures in developing
embryos is important to understand developmental pro-

cesses. Computer aided tracking allows quantitative analysis
of large numbers of cells or objects and is of increasing
importance in quantitative and systems developmental biology.

Recently, several automated or semi-automated nuclei track-
ing algorithms [1]–[3] that allow quantitative analysis of
nuclear positions in the nematode Caenorhabditis elegans have
been developed. However, nuclear positions do not provide
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direct information on cell shape, size, or cellular contacts.
Thus a major remaining challenge is to segment and track
cell surfaces or contacts in 3D space over time.

Here we focus on epidermal epithelial cells in embryos of
C. elegans. Like all epithelial cells, C. elegans epidermal cells
display apical-basal cell polarity, such that the apical surface
faces outwards from the embryo and the basal surface contacts
an internal basal lamina. Epithelial cells are tightly connected
by adhesive cell-cell junctions, one component of which is
the protein DLG-1. When visualized from the apical or basal
orientation, each cell appears outlined by a ring of DLG-1 at
the apical or subapical level [Fig. 1]. In this paper we refer to
cell boundaries or perimeters as defined by the localization of
subapical junctional markers such as DLG-1.

Over the past decade, numerous automated or semi-
automated algorithms for cell boundary segmentation in two
or three dimensions (2D or 3D) have been developed. Active
contours [4], [5], watersheds [5], [6], gradient-curvature driven
flow [7], and subjective surface techniques [8] have been
used to segment membranes in 2D images. For 3D images,
active surfaces [9], watersheds [10], [11], gradient-curvature
driven flow [7], subjective surface techniques [12] and polygon
model fitting combined with image thresholding [13] have
been used to segment cell surfaces. Most of the algorithms
require labeling of the entire cell surface to construct cellular
shape. Watershed methods, gradient curvature driven flow, and
subjective surface techniques require detection of seed points
that are enclosed by continuous surfaces. A region from the
seed point is expanded until the growing region meets neighbor
regions from other seed points or the region reaches the limit
of the object. In contrast, labeling of subapical junctions in the
C. elegans embryo does not provide information on the entire
cell surface or even all points of cell-cell contact, precluding
use of many of the seed point based methods.

An additional challenge in the C. elegans data is that the
junctions of individual cells are not confined to a 2D focal
plane. In imaging data where the overall curvature of the
sample is small with respect to the region of interest, projection
of the 3D data to a 2D plane allows segmentation of cells in a
’quasi-2D’ setting, as used in several studies of Drosophila
epithelial junctions [14]–[18]. However the high degree of
curvature of the C. elegans embryo and cells makes a simple
2D projection challenging. We therefore needed to develop
new methods to track cell boundaries in highly curved 3D
movies.
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Fig. 1. Confocal z-stacks showing DLG-1::GFP embryos during epidermal enclosure. (The actual fluorescence data is imaged as bright pixels on dark
background; for display purposes, we invert the gray scale to show dark signals on a white background.) Each row represents a single time point and each
column shows a single z-slice. The final column shows the maximum intensity projection for each row.

In this paper, we present two related methods to segment
epithelial junctions in 3D movies. Both methods are based on
the fundamental concept of active contours or snakes [19].
A snake is a curve controlled by internal elasticity and image
forces that pull the curve towards object contours. We generate
initial contours for epithelial junctions manually at the first
time point and then track the junctions with snakes guided
by SIFT (Scale-Invariant Feature Transform) [20] flow in 2D
(projection approach) and 3D (volumetric approach) space. A
preliminary version of this work is in [21].

The contributions of this paper are in several areas. First,
this paper presents the first algorithm that provides fully
automated tracking (following initialization in the first frame)
of epithelial junctions in highly curved 3D data sets over time.
Secondly, we develop algorithmic innovations in the use of a
non-intersecting force for snakes which improves tracking of
narrow cells. We also demonstrate the use of SIFT flow in
2D and 3D cell tracking. A third contribution is in evaluation
methods, since we apply mean absolute deviation to compare
cell contours, and we provide a comparison of projection and
volumetric approaches to cell tracking and feature extraction.
In the biological domain, computational modeling of epithelial
cell shape changes in other organisms such as Drosophila
has led to numerous insights into mechanisms of tissue
morphogenesis, and has relied heavily on automatic analysis
of cell boundaries and shapes [17], [22], [23]. Our work
provides a first step towards similar computational analysis of
C. elegans embryonic epidermal enclosure, including precise
measurements of displacement and changes in cell perimeter,
surface area, and compactness.

II. DATA ACQUISITION

Fluorescently-labeled C. elegans embryos were recorded
by time lapse 4D microscopy with confocal laser scanning
microscopes. The subapical junctions of epidermal cells on
the embryo surface were marked with the transgene xnIs17
[26], which expresses green fluorescent protein (GFP) fused
to the DLG-1 protein. DLG-1::GFP is visible as an irregular
3D lattice of lines approximately 1 µm in width. We used
Zeiss LSM700 or LSM710 confocal microscopes equipped
with 100 x NA 1.46 oil immersion objectives. We segmented

and analyzed 3 embryos (data sets) in the paper. Data sets 1,
2, and 3 have 3D stacks of 512 x 275 x 35, 512 x 275 x 35,
and 512 x 256 x 35 voxels with resolutions of 0.125 µm x
0.125 µm x 0.9 µm, 0.125 µm x 0.125 µm x 0.9 µm, and
0.15 µm x 0.15 µm x 0.85 µm, recorded at intervals of 180
s, 90 s, and 180 s, respectively.

III. METHODS

Our goal was to develop tools for quantitative analysis
of epithelial cell shape changes in 3D samples such as the
C. elegans embryo, and we begin with the development of
algorithms for tracking cell junctions over time. In this study
we image DLG-1::GFP-labeled junctions of epidermal cells on
the ventral embryo surface [Fig. 1]. The images of junctions in
our 4D movies are often low and variable intensity, resulting
in incomplete contours. These incomplete contours can be
completed using snakes [19]. A snake is a curve that moves
towards object outlines controlled by internal forces such as
elasticity and rigidity as well as by image forces such as
edges of objects in the image. The missing signals can be
completed by using internal forces that make the contour
smooth. In the original active contour model [19] developed
for 2D data sets, the snake was represented by a set of n
points vi = (xi, yi), i = 1, · · · , n. To detect epithelial junctions
in the 3D stack, we extended the snake to three dimensions
represented by a set of n points vi = (xi, yi, zi), i = 1, · · · , n.
The contour deforms to minimize the energy functional

E∗
snake =

n∑
i=1

Esnake(vi)

=

n∑
i=1

Einternal(vi) + Eimage(vi) + Econ(vi)

(1)

Einternal represents the internal energy of the contour due to
the bending, Eimage represents the image forces, and Econ

denotes the external constraint forces. The internal energy of
the contour is written as

Einternal(vi) =
1

2

(
α ‖vi − vi−1‖2 + β ‖vi−1 − 2vi + vi+1‖2

)
(2)

where we define v0 = vn and vn+1 = v1. The first term will
have a large value if there is a gap in the curve (i.e., two
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successive points are spaced far apart). The weighting factors
α and β control the relative penalty of stretching and bending.
A large value of α will increase the internal energy as the
contour stretches. A small value of α will make the contour
less sensitive to the amount of stretch. The second term makes
the contour smooth by reducing contour oscillations. The
second term will have a large value if the contour is bending
sharply. Eimage represents the image force and is defined as

Eimage = wlineI(x, y, z) + wedge |∇I(x, y, z)|2 (3)

where wline and wedge are weighting factors. The first term is
the image intensity itself, which pushes the snake to align with
the brightest nearby pixels. The second term (edge attraction)
uses image gradients and pushes the snake to be attracted to
image edges. In the volumetric approach (described in detail
below), to determine the weighting factors, we tested values of
α and β equal to 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, and
0.2 in conjunction with the values of wline equal to 0, 0.5,· · ·,
2.5, 3 and the values of wedge equal to 3, 3.5, · · ·, 5.5, 6, and
determined that α = 0.01, β = 0.01, wline = 1, and wedge = 5
yielded optimal results as evaluated using methods discussed
in Section IV. In the projection approach, we tested values of
α and β equal to 0.005, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, and
0.3 and values of wline equal to 0, 0.001, 0.05, 0.1, 0.2, 0.3,
0.4, and 0.5 and wedge equal to 1, 1.5, 2, 2.5, 3, 3.5, and 4, and
we chose α of 0.2, β of 0.2, wline of 0.05, and wedge of 2 as
yielding the best result. Econ denotes the external constraint
forces; Econ can be used to guide the contour towards or away
from specific features. In our work, a non-intersecting force
was used as an external constraint as described in Section
III.C.

We compared two related approaches based on snakes to
track epithelial junctions. The projection approach uses 2D
maximum intensity projection images [last column in Fig. 1]
to segment cell boundaries. The resulting 2D boundaries are
back projected into 3D space. The volumetric approach uses
the original 3D image z-stack instead of a 2D maximum
projection. The projection approach is computationally simple
and requires less user effort to generate initial contours.
Working on the 3D stack requires more computation and more
user effort to generate initial contours; however the volumetric
approach reduces errors introduced by the projection process.

The tracking process is presented in Fig. 2. All pro-
cesses are fully described in Sections III and IV. Our
contour tracking software, ContourTracker4D, is imple-
mented in MATLAB (MathWorks, Natick, MA, USA) and
is available as an open source project at Sourceforge
(https://sourceforge.net/projects/contourtracker4d/).

A. Initial Cell Boundary Collection

In either the projection or volumetric approaches, the initial
positions of the cell boundaries must be defined by the user.
Users manually define key points on the initial contour, as
described below. Snakes are then applied to refine the contour
defined by the key points. Both the projection and volumetric
approaches do not need any further user input after this
initial contour generation, and will track all cell boundaries

CPU time: 30 s 

Collect key points 
at t = 0

Connect contours 
by interpolation

Refine contours 
with snakes

Calculate SIFT flow 
on 2D projection images

Refine boundaries 
with snakes

Initial cell 
boundary collection
(Section III.A)

Boundary tracking
(Section III.B)

Boundary 
refinement
(Section III.C)

Ground truth generation 
for algorithm evaluation
(Section IV.A)

Generate external 
and internal forces 

plus non-intersecting force

Contour correction with
open-end snakes
(ground truth)

User time: 
1-2 min per contour 
(volumetric approach)

CPU time: 
10-15 s per contour
(volumetric approach)
1-2 s per contour 
(projection approach)

CPU time: 30 s 

CPU time:  
10-15 s per contour
(volumetric approach)
1-2 s per contour
(projection approach)

User time: 
1-2 min per contour
(volumetric approach)

Fig. 2. Flowchart and estimates of processing time for each step.

(a) (b) (c)

Fig. 3. Initial contour collection in a maximum intensity projection image.
(a) Key points along the boundary are manually selected. (b) Selected points
are connected into a closed contour using low pass interpolation. (c) Snakes
are applied to refine the interpolated contour.

automatically until the end of the video sequence. These steps
will be described in more detail below.

1) Projection Approach: In the projection approach, we use
2D maximum intensity projection images to track contours.
After projecting the maximum pixel intensity of the top half of
the stack (slices 1 to 17), some key points along the boundary
of each cell are manually selected [Fig. 3(a)] and are connected
into a closed contour by low pass interpolation [Fig. 3(b)].
In Fig. 3(a), 8 points are manually selected. 7-10 points are
enough to generate the initial contour for most cells except
for the large cell hyp7(18+19) (to the right of the example
cell in Fig. 3(a)). We use the interp function in Matlab to
perform low pass interpolation for each dimension separately;
the interpolated contours have 10 times as many points as the
selected key points. Finally, we refine these interpolated cell
boundaries using snakes [Fig. 3(c)]. This approach quickly
generates initial cell boundaries at the first time point with
minimal curation.

2) Volumetric Approach: The original z-stack derived from
LSM confocal data has lower z resolution than xy resolution.
We therefore first render each z-stack isometric by applying
linear interpolation along the z axis. The initial contours are
identified manually with a visualization tool that displays each
z slice, allowing the user to select sequential points on the
contour. In the display, adjacent z slices are superimposed on
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the current z slice, which makes it possible to see both the
small junction segments in the current slice as well as their
continuations in the neighboring slices. For display purposes
only, the tool connects the selected key points with a straight
line and displays the connection in the 3D stack whenever
new points are added. Due to the higher number of degrees of
freedom, about twice as many points are used to generate the
initial contour as in the projection approach. After collecting
key points for each cell, we apply low pass interpolation
as in Section III.A.1 to obtain a contour based on points
uniformly distributed at 5 pixel intervals. We then apply snakes
to refine the interpolated points. Identical sampling processes
are applied at the subsequent time instants during tracking to
obtain uniformly distributed points.

B. Tracking

Given a cell boundary at a certain time, we aim to track
its location to the next time. Optical flow [27] is a feature
matching technique that computes motion patterns of two con-
secutive images under the assumption of small displacement.
In such methods, optical flow is computed for the video data
and then is used to estimate object movement. For example,
given an object point (x, y) at time t with optical flow (u, v),
one can estimate the same object point at time t+1 will be at
(x+u, y+v). Although optical flow works reasonably well for
most of the cell junctions tracked here, some cell boundaries
move too much between successive time points for optical
flow to work. To handle these large displacements, we need
to use a more distinctive image feature representation instead
of raw pixel values to provide more information. SIFT [20]
is a popular image feature representation in computer vision
and image processing. SIFT features [28] encode image gra-
dient orientations around each point of interest, and therefore
provide more general and robust structural information. SIFT
flow replaces raw pixel values with SIFT features, and then
performs a modified optical flow algorithm based on those
SIFT features.

In the projection approach, we use 2D SIFT to track x and
y components in the 2D projection image. In the volumetric
approach, due to the large number of voxels in our data sets,
computing 3D SIFT and matching between two consecutive
frames is too complex. So for the volumetric approach, we
still begin with 2D SIFT in the 2D projection image to track
x and y components. After tracking x and y components, the
corresponding z values are taken to be the actual z values
which are saved for every (x, y) point in the 2D projection
image when the 2D maximum intensity projection was applied.
Due to the errors introduced by projection, we compare z
values at the previous frame with the tracked z value at the
current frame. If the difference between the two values is larger
than a threshold (20 pixels), we use the z value at the previous
frame instead of the tracked z value.

C. Boundary Refinement

Although SIFT flow provides improved tracking results
over using optical flow, the tracked contour might still miss
subtle details of contours. We apply snakes to align the

Self-crossing Skeletonization Gaussian filter

Cell contour Cell’s apical surface 3D skeleton
(a)

(b)

Fig. 4. Non-intersecting force (NIF). (a) (Left) An example of self-crossing
after applying snakes. (Middle images) Visualization of procedure that gen-
erates the non-intersecting force. (Right) Contour after applying snake with
a non-intersecting force. (b) Visualization of procedure that generates the 3D
skeleton.

tracked contours with true cell boundaries. Snakes also can
produce incorrect segmentation results where contours are
close together. We define self-crossing as occurring when the
boundary of one side of a cell crosses or touches the boundary
of the other side [left image in Fig. 4(a)]. We therefore added
a non-intersecting force [Fig. 4(a)] as an external constraint
to avoid self-crossings in both the projection and volumetric
approaches.

1) Projection Approach: We add a non-intersecting force
(NIF) to snakes as an external constraint to prevent self-
crossing:

Econ = wNIF · ENIF (4)

where wNIF is a weighting factor. Fig. 4(a) shows the process
to generate ENIF . After filling the inside of the tracked con-
tours, we apply a thinning operation to generate the skeleton.
To avoid branches on the ends of the skeleton, we shrink the
skeleton from all its end points until only two end points are
left. Then, we grow out the two remaining end points along the
unpruned skeleton by repeating a dilation operation to obtain
the longest end-to-end path [29]. We then apply a Gaussian
filter (size: 10 x 10 pixels, standard deviation: 3 pixels) on the
skeleton image. ENIF is normalized by the maximum value of
the filtered skeleton image. Pixels close to the center line have
stronger NIF than pixels far from the center line. To determine
wNIF , after selecting weight factors in (2) and (3), we tested
values of wNIF equal to 0.1, 0.2, · · ·, 0.9, 1, and chose wNIF

= 0.3.
When we apply snakes with a non-intersecting force, we

solve the minimization of (1) using techniques of variational
calculus described in [19]. The coefficients of the Euler-
Lagrange equations are formed as a sparse matrix and the
matrix is inverted to obtain the minimum energy of E∗

snake

iteratively.
2) Volumetric Approach: To generate a non-intersecting

force in 3D space, we need to extend the skeleton image to
3D space. When we have a contour in 3D space [left image in
Fig. 4(b)], we generate the 2D skeleton on the 2D projection
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image through the method in Section III.C.1. The cell’s apical
surface is reconstructed as described in Section III.D [middle
image in Fig. 4(b)]. For every (x

′
, y

′
) point on the 2D skeleton,

the (x
′
, y

′
, z

′
) point on the cell’s apical surface is considered

to be part of the 3D skeleton (a process we refer to as back
projecting the 2D skeleton) [right image in Fig. 4(b)]. We then
apply a 3D Gaussian filter (size: 7 x 7 x 7 pixels, standard
deviation: 1.5 pixels) on the 3D skeleton. ENIF is normalized
by the maximum value of the smoothed image. To determine
wNIF , we tested values of wNIF equal to 0.1, 0.2, · · ·, 0.9,
1, and chose wNIF = 0.5.

When we minimize (1), variational calculus in Section
III.C.1 is extended to 3D space. Additionally, a greedy al-
gorithm [30] option is available due to the complexity of
variational calculus in 3D space. Each point of each snake
is moved within a small neighborhood (3 x 3 x 3) to the point
which minimizes the energy function. In the neighborhood, all
energy terms are normalized by the largest value separately.
The energy function is computed for the current point and
its new location will be the point that has the smallest value
in its neighborhood. We repeat this operation until no more
points are moved. This approach is computationally simple.
If the initial contours are close to the epithelial junctions,
this greedy algorithm produces results comparable to those
from variational calculus. If the initial contours are far from
the epithelial junctions, the greedy algorithm can cause more
errors. We will compare the results from variational calculus
and the greedy algorithm in Section IV.

D. 3D Global Shape Reconstruction
To compute biological features in 3D space, we reconstruct

cells’ apical surfaces on the embryo surface. The projection
approach does the cell tracking in the 2D projection image,
but we then need to reconstruct the 3D embryo surface at
each time instant in the video. Since the original data only
has scattered points on the embryo surface, we need to model
the 3D embryo surface at each time instant. We first extract
contours of the embryo surface for each slice as shown in
Fig. 5(a). The union of the set of contours can be considered
as a point cloud of the 3D embryo surface. We use the gridfit
function [31] written in Matlab to fit a smooth surface to
the extracted point cloud. The estimated surface is shown in
Fig. 5(b). The estimated embryo shape allows us to estimate
surface areas and cell perimeters.

After the surface reconstruction, the contour points in 2D
are back projected on the reconstructed surface. We use the
top half of the stack to reconstruct the top half of the embryo.
The reconstructed surface has a one-to-one mapping for every
pixel in the 2D images [31]. After back projection, we can
then have estimated 3D locations of each contour as shown in
Fig. 5(c). Cell surface areas and cell contour lengths can then
be computed using these 3D locations.

In the volumetric approach, unlike contour lengths, which
can be computed directly from the 3D contour points, cell
apical surface areas require interpolation of the cell surface
enclosed by the cell contour. We use the gridfit function
on points of all cell contours without extracting the global
contours of the embryo surface for each z slice.

Surface reconstruction Contour back projection

slice 5

slice 9

slice 13

slice 1

(a) (b) (c)

Fig. 5. 3D embryo shape estimation and back projected contours: (a) Contours
of the embryo surface for z slices. (b) Estimated surface. (c) Back projected
contours on the surface.

IV. TRACKING EVALUATION

To evaluate and compare the tracking results of our algo-
rithms, we need to generate ground truth. After generating
ground truth, we analyze the tracking algorithm performance
by calculating the mean absolute distance (MAD) [32] be-
tween the segmentation result and ground truth.

A. Generation of Ground Truth

We use a manual correction tool to generate ground truth
at each time instant from the tracked cell contours [Fig. 6].
After selecting the contour that we want to correct [left image
in Fig. 6], we select multiple sequential points on the desired
contour [middle image in Fig. 6]. The first point and the last
point should be correct points of the segmented contour before
the correction. When the first point and the last point are
manually selected by clicking, the points might not be on the
segmented contour, in which case the algorithm moves them
to the closest point on the segmented contour. Then, an open
ended snake is applied on the multiple sequential points to
correct the contour [right image in Fig. 6].

At the first time instant, we generate 3D ground truth
through the initial cell boundary collection described in Sec-
tion III.A.2. Generating an initial cell boundary for a single
cell takes approximately 2 min including the processing time
for contour refinement via snakes. The generation of 24 initial
contours takes approximately 40 min of user time; the snake
processing time for 24 contours takes 4-5 min with a Six-Core
Intel Xeon 2.8GHz CPU. Compute time could be significantly
reduced by using C instead of MATLAB. At the next time
instant, the contours at the previous time instant are tracked via
SIFT and refined via snakes with the volumetric approach. The
average processing time of SIFT and snakes for 24 contours
per frame is 5 min 15 s. After tracking and refining contours,
we check 24 contours visually and correct wrong contours.

Incorrect contour Corrected contourSelected key points
 

 

   

 

Fig. 6. Contour correction via a manual correction tool.
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On average, we corrected 9.5 out of 24 contours (39%) in
each frame; however it should be noted that only a small part
of each contour required correction. The average time for the
visual check and manual correction per frame is 13 min. 3D
ground truth without the z component is considered to be 2D
ground truth and is used to check the tracking performance
of the projection approach. When it comes to computation
of biologically relevant features in Section V, we consider
3D ground truth to be the most accurate ground truth, and
compare the features from both the projection and volumetric
approaches against those from 3D ground truth.

B. Comparison of Tracking Methods

We analyze the tracking algorithm performance by calcu-
lating the mean absolute distance (MAD) [32] between the
segmentation result and ground truth. In [32], a metric to
measure the distance e(A,B) between two contours A =
{a1, a2, · · · , an} and B = {b1, b2, · · · , bm} is defined, where
ai and bi are points sampled from curve A and curve B. The
distance to the closest point on curve B for point ai is defined
as:

d(ai, B) = min
j
‖bj − ai‖ (5)

In [32] these distances are computed for all the points on
the two curves and averaged to yield the MAD between two
contours:

e(A,B) =
1

2

{
1

n

n∑
i=1

d(ai, B) +
1

m

m∑
i=1

d(bi, A)

}
(6)

We compute the MAD in units of pixels between the ground
truth and the segmentation result for each frame.

We compare the tracking performances of the volumetric
approach, the projection approach, and the 3D back projection
approach. A total of 24 contours on the ventral side are used
to evaluate the algorithms. In Fig. 7, all tracking algorithms
are initialized with ground truth at time 0 and are then allowed
to proceed in fully automatic forward tracking mode with no
manual correction. Fig. 7(a) and Fig. 7(b) show MAD with
the volumetric approach. Comparing snakes with variational
calculus, NIF, and SIFT flow, we find that MADs of most
contours are less than 3 pixels distance except for 6 contours
that have MAD from 3-6.5 [Fig. 7(a)]. To compare algorithms
we use the averaged MADs for all contours at each time
[Fig. 7(b)]. It is evident that both optical flow and SIFT
flow dramatically improve tracking accuracy. SIFT flow also
shows better tracking accuracy than optical flow, although
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since SIFT’s advantage is primarily for the few cells that
move rapidly, the advantage appears small when averaged
over all cells. To demonstrate SIFT’s advantage, we measured
MADs with SIFT and optical flow on hyp6(V), hyp6(VI),
and hyp7(18-19) with the volumetric approach (variational
calculus) [Fig. 8]. These three cells move rapidly to enclose
the head [Fig. 9]. In an embryo recorded at 90 s interval, the
MADs with SIFT flow remain less than 4 and most MADs
with optical flow are in the range 4-6 [Fig. 8(a)]. In embryos
recorded at 180 s interval, rapidly moving cells have higher
displacement and the MADs with optical flow reach 20 in the
worst case while MADs with SIFT flow remain low (less than

5) [Fig. 8(b), (c)]. Use of variational calculus slightly improves
segmentation over the greedy approach. The main advantage
of the greedy algorithm is computational efficiency, as it is
about 10 times faster than variational calculus. The greedy
algorithm takes about 30 s to track 24 contours per frame
with a Six-Core Intel Xeon 2.8GHz CPU. As the imaging
interval for our movies is 90 to 180 s, the greedy algorithm
can operate in real time, whereas variational calculus cannot.
Use of the NIF helps avoid self-crossing; as such events are
rare this improvement is not obvious at the level of the overall
average MAD [Fig. 7(b)].

Fig. 7(c) shows the MADs from the projection approach
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Fig. 9. Segmentation results for the 24 ventral epidermal cells, spanning the ventral half (15-16 µm) of the embryo in the z-axis. Contours are depth coded
as indicated. (Left column) Maximum intensity projection image. (Right column) Results of ground truth of the 24 epidermal cells on the ventral side.
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with variational calculus, SIFT flow, and NIF. To compute
MADs, we use X and Y components of ground truth. Due to
the fewer degrees of freedom, the MAD values (less than 1.4)
remain lower than the results with the volumetric approach.
Although the contours with the projection approach appear to
show high accuracy, their 3D back projected contours have
high MAD values (larger than 18) [Fig. 7(d)]. We plotted 3D
ground truth and 3D back projected contours to visualize the
errors. Fig. 7(e) (view from the top) shows 3D back projected
contours (blue) and 3D ground truth (red) and the contours are
almost identical. When the contours are rotated, the differences
between 3D ground truth and 3D estimated contours are
observed [Fig. 7(f)]. In summary, both the projection and
volumetric approaches are capable of accurate tracking (where
accuracy is determined relative to 2D and 3D ground truth,
respectively) when used with SIFT flow and a non-intersecting
force. 3D back projected contours showed higher deviations
from ground truth, largely because of errors in estimation of
the surface. We therefore did not pursue 3D back projection
(of the projection approach) further, and in our analysis of
biological features compare only our projection and volumetric
algorithms.

V. BIOLOGICAL FEATURE COMPUTATION AND RESULTS

To analyze the dynamics of epidermal ventral enclosure, we
focused on epidermal cells that eventually make up the ventral
side [Fig. 9]. The ventral epidermis comprises a network of 24
cells each demarcated by lines of DLG-1::GFP that merge at
cell-cell interfaces within the epithelium. We define the zero
time in 4D videos as the stage when the leading epidermal cells
(hyp7 cells 18-19) have just fused into a single cell hyp7(18-
19). About 30 minutes later the entire embryo begins to rotate
and elongate. When epidermal cells move left or right after
the embryonic rotation, epithelial junctions may not be imaged
clearly due to the lower resolution in the z direction. Because
our projection approach is based on a 2D projection of the
top half of the image stack, it is not possible to segment cells
on the left or right sides (i.e. the lateral seam epidermis). The
volumetric approach could allow tracking of lateral cells with
sufficiently high pixel intensities, however due to the lower z
resolution the junctional signals were not clear enough for effi-
cient segmentation. We therefore restricted our analysis to the
ventral epidermis. We compare features from 3D ground truth
and features from the projection and volumetric approaches,
which are fully automated after generating initial contours.
An important goal was to determine how well the automated
projection and volumetric tracking methods performed, with
reference to our 3D ground truth data. Below we compare the
performance of the two methods in terms of their depiction of
quantitative trends in cell perimeter, apical surface area, and
cell movement.

A. Cell Perimeter

The cell boundary length or perimeter as defined by DLG-
1::GFP provides one indication of the change in cell size
over time. We measured cell perimeters in 3 data sets (3
embryos) using the ground truth, the volumetric approach,

and the projection approach. Comparing the ground truth and
the projection approach in the same embryo [left image in
Fig. 10(a), showing left side cells only], it is apparent that
the projection approach underestimates cell perimeter when
contours are spread over many z slices (e.g. the P cells). The
volumetric approach and the ground truth show similar cell
perimeter except for hyp(18-19), G2, and hyp11 [Fig. 10(a)].
These outlier cells have incorrect segmentation results due to
their low pixel intensities or narrow cell width. Fig. 11 shows
the segmentation errors of the narrow part of the G2 contour.
The G2 contour increases by expanding the narrow part [first
row in Fig. 11]. The projection and volumetric approaches
do not produce correct segmentation results for the expanded
contour because the snakes do not allow cell configurations
in which the cells have long, narrow shapes unless they are
initialized close to that configuration [second row in Fig. 11].
Nevertheless using either approach it is apparent that all
ventral epidermal cells increase in perimeter during enclosure:
ground truth shows overall a 9.4% increase (84 µm from 887.2
µm at t = 0) in total perimeter of 24 cells on the embryo
in Fig. 9 and the volumetric and projection approaches show
overall 2.8% (25.2 µm from 877.2 µm at t = 0) and 6.7%
(48.9 µm from 731.1 µm at t = 0) increases respectively in
Table I. For the average of all 3 embryos, ground truth, the
volumetric approach, and the projection approach show overall
8.8% (78.4 µm from 891.3 µm at t = 0), 3.8% (33.7 µm from
891.3 µm at t = 0), and 8.2% (62.7 µm from 729.4 µm at t
= 0) increases in cell perimeter respectively.

To analyze the relative change in perimeter for individual
cells we normalized cell perimeters to the cell perimeter at
t = 0. Most cells showed an increase in relative perimeter
under either the volumetric or projection approaches, agreeing
with ground truth [Fig. 10(b)]. However certain cells such
as G2 show an increase in perimeter in ground truth but
a decrease in the projection or volumetric approaches. This
discrepancy arises due to errors in segmentation of the narrow
part of the G2 contour [Fig. 11]. Although the projection and
volumetric approaches have segmentation errors on a small
number of cells, when examined across all cells, both ap-
proaches have high correlation coefficients for cell perimeters
(0.93-0.99) with ground truth. To better visualize trends in
the data, we plotted perimeters of 4 selected cells which are
the leftmost cell (hyp6(V)), two middle cells (G2, P5/6L), and
the rightmost cell (hyp11) [Fig. 12]. Volumetric and projection
approaches do not show an increase in cell perimeter for G2.
The other three perimeters show similar trends between ground
truth and volumetric and projection approaches.

We applied a Wilcoxon matched pairs test on the normal-
ized cell perimeters to determine whether the three methods

TABLE I
TOTAL PERIMETER OF 24 CELLS ON THE EMBRYO IN FIG. 9

Method Cell perimeter (µm) Increase (µm)at t = 0 at t = 27 min
Ground truth 887.2 971.2 84.0 (9.4%)
Volumetric approach 887.2 912.4 25.2 (2.8%)
Projection approach 731.1 780.0 48.9 (6.7%)
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Fig. 10. Analysis of epidermal cell perimeter over time. Color bar represents the time from 0 minute to 30 minutes. Each x point with a cell name represents
one individual cell. Y values show the change in cell perimeter over time. (a) Cell perimeters on the left side (Circles: ground truth, Diamonds: projection
approach, Triangles: volumetric approach). (b) Normalized cell perimeters on the left side. Each cell perimeter was normalized by the perimeter at the start
time. (c) Averaged cell perimeter over 3 embryos and left-right cells.

(ground truth, volumetric approach, and projection approach)
are significantly different or not. We normalized 24 cell
perimeters at the last time point to the perimeters at t = 0.
We used 3 embryos and applied a Wilcoxon matched pairs
test on 72 (=24 x 3) data points. P values between ground
truth and volumetric approach and between ground truth and
projection approach were less than 0.0001, and the P value
between volumetric and projection approaches was 0.0483.
The three different methods showed significant differences on
the normalized cell perimeter. Both volumetric and projection
approaches underestimated the normalized cell perimeters.

To compare the two approaches and derive an overall
description of changes in cell perimeter, we averaged cell
perimeter measurements over 3 embryos, keeping left and right
cells separate. Correlation coefficients for the cell perimeter

among 3 embryos were high (0.9-1). Correlation for 24 cell
pairs (3D ground truth) between embryos was calculated at
each time. The correlation coefficients for left-right symmetric
cell pairs range between 0.55 and 0.95. We averaged normal-
ized cell perimeters instead of the cell perimeters [Fig. 10(c)].
Overall, junctional contours increase by 10-20% during ven-
tral epidermal enclosure, consistent with the epidermal cells
spreading and increasing in apical surface area as they spread
over substrate cells [left image in Fig. 10(c)]. The increase in
cell perimeter for G2/W and hyp11 is higher than average [left
image in Fig. 10(c)], likely reflecting the small size of these
cells at the beginning of the video sequence. Comparing the
two approaches and the ground truth, the projection approach
[right image in Fig. 10(c)] yields better similarity to the ground
truth [left image in Fig. 10(c)] than the volumetric approach
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[middle image in Fig. 10(c)]. The projection approach also
yields slightly higher estimates for cell perimeter increases
for P cells than the ground truth. Such discrepancies likely
reflect the contribution of the z-axis to the cell perimeter (at t
= 0).

B. Apical Surface Area

In the volumetric approach, we estimate apical surface
area using cumulative patch areas based on the 3D estimated
surface and projected cell contour in 2D space. We first extract
the cell contour mask in the 2D projection image. On the
integer grid, there are square patches that have 1 pixel height
and width. If all 4 points of each patch are inside the mask, we
back project the patch on the reconstructed surface in Section
III.D. We calculate each projected patch area by adding the
areas of two triangles on the patch, and estimate apical surface
area by summing all areas of the back projected patches. We
calculated ground truth surface area with the identical method.

We computed apical surface areas from the 3 data sets and
compared our two approaches and ground truth. The volumet-
ric and projection approaches gave more consistent estimates
of surface area [Fig. 13(a)] compared to estimation of cell
perimeter [Fig. 10]. The greater consistency between the two

methods is because our surface area measurement is less
sensitive to errors in segmentation (e.g. G2) [Fig. 11]. Errors
in segmentation of the narrow part lead to large differences in
the estimate of cell perimeter, but not large differences in the
estimate of surface area. When we plotted the trends in surface
area for 4 individual cells, we found that surface area shows
more similar trends between ground truth and both methods
[Fig. 14] than cell perimeter [Fig. 12]. Essentially all ventral
epidermal cells increase in surface area during enclosure:
ground truth shows an overall 19.1% increase (204 µm2 from
1065.4 µm2 at t = 0) in epidermal surface area [embryo in
Fig. 9] and the volumetric and projection approaches estimate
21.6% (230.2 µm2 from 1065.4 µm2 at t = 0) and 18.6%
(119.5 µm2 from 642.6 µm2 at t = 0) increases respectively
in Table II. For the average of all 3 embryos, the ground
truth, the volumetric approach, and the projection approach
show overall 19.1% (208.2 µm2 from 1087.8 µm2 at t = 0),
20.9% (227.5 µm2 from 1087.8 µm2 at t = 0), and 22.9%
(151.3 µm2 from 659.4 µm2 at t = 0) increases in surface
area. In contrast the projection approach estimates a 10-30%
higher increase in surface area for P cells. This discrepancy
results from the underestimation of initial surface area by the
projection approach when cells are spread over multiple z
slices.

We applied a Wilcoxon matched pairs test on the normalized
surface areas of 72 data points (=24 contours x 3 embryos) to
check the statistical significance of differences for three meth-
ods. P values between ground truth and volumetric approach,
between ground truth and projection approach, and between
volumetric and projection approaches were 0.1568, 0.1677,
and 0.5625 respectively. P values showed that the differences
were not statistically significant.

We next compared the consistency of the projection and
volumetric approaches between different datasets. Cell surface
areas display a correlation coefficient of 0.96-0.99 between
embryos, whether the projection or volumetric approach is
used. Left and right cells of a pair also show correlations
of 0.9-0.98. Overall, surface area estimates are more highly
correlated than cell perimeter because of the higher sensitivity
of cell perimeter to errors in segmentation of narrow cells.

Fig. 13(c) shows the average of normalized surface areas
over 3 embryos and left-right cells. Both approaches show
high increase in surface area for hyp6 cells, hyp7 cells 18-21,
P cells 1-4, and hyp11. P cells show about 20-30% differences
in surface area and those cells are spread over more z slices.
The projection approach produces accurate area measurements
except when cells have a high z value. Cell surface areas in
the same embryo display a correlation coefficient of 0.95-0.99
between both approaches and the ground truth.

TABLE II
TOTAL SURFACE AREA OF 24 CELLS ON THE EMBRYO IN FIG. 9

Method Surface area (µm2) Increase (µm2)at t = 0 at t = 27 min
Ground truth 1065.4 1269.4 204 (19.1%)
Volumetric approach 1065.4 1295.6 230.2 (21.6%)
Projection approach 642.6 762.1 119.5 (18.6%)
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Fig. 13. Changes in epidermal cell surface area during enclosure. (a) Surface area on the left side with both approaches (Circles: ground truth, Diamonds:
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Comparing our analyses of junctional length and area
[Fig. 10(c) and 13(c)], we can see that leading cells (anterior
hyp6 and hyp7 cells) do not change in junctional length over

the time of enclosure while their surface areas increase by
∼20%. The increase in surface area of hyp6 and hyp7 leading
cells therefore reflects a change in shape from elongated to
round. Similarly, ventral pocket cells hyp7(20-21) and P1-
P4 increase in apical surface area by 30-40% yet display
only a 10% increase in junctional length; this disproportionate
increase in area reflects a change in shape as well as an
increase in cell perimeter. To quantitatively analyze trends
in cell shape we calculated a measure of compactness, the
circularity factor [Fig. 15]. The circularity factor is defined
as:

Circularity =
4π × Surface area

Cell perimeter2
(7)

The circularity factor ranges within 0-1, where 1 is a circle.
At t = 0, some ventral epidermal cells such as hyp6, hyp7(20-
21), T, and hyp11 have relatively large circularity factor values
(> 0.5) whereas the rest are highly elongated [Fig. 15 (a),
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Fig. 15. Compactness of contours. Circularity factor or compactness (range: 0-1, where 1 = a circle) averaged over 3 embryos and left-right cells. Circularity
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(b)]. The projection approach shows slightly lower circularities
on hyp7(20-21) and hyp11 [Fig. 15 (c)]. When we plotted
the trends in circularity for 4 cells, we found that the three
approaches show similar trends except for G2 [Fig. 16]. The
volumetric and projection approaches do not show a decrease
in circularity for G2 due to segmentation error [Fig. 11].
During enclosure, hyp6, hyp7(20-21) increase in circularity,
as do P1-4, while the ratio for other cells decreases. This
reflects the large changes in shape of the anterior epidermis as
it spreads anteriorly to enclose the head; in contrast, the major
movement of the ventral pocket is a migration of the medial
edges towards the midline, making the cells more elongated.

C. Estimation of Cell Movements from Contour Centers

As an alternative means to visualize epidermal cell move-
ments, we tracked the centers of the cell contours [Fig. 17].
We averaged displacements over embryos to obtain overall
movement in each axis and in three dimensions. All cells show
anterior movement (x axis); the anterior movement of hyp6 and
hyp7 during enclosure of the head is clearly seen [Fig. 17(b)].
Cell centers in the mid-body (P3-P8) undergo minimal x
displacements (less than 1 µm) whereas cells between the
mid-body and posterior show significant anterior movement.
Cell displacement in the y axis [Fig. 17(c)] clearly reveals the
midline convergence of the ventral pocket during enclosure.
Displacement in the z axis is largely a result of the embryonic
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Fig. 16. Circularity factor of 4 individual cells averaged over 3 embryos.

rotation from left to right [Fig. 17(d)]. When displacement in
three dimensions is summed, the leading cells stand out as
undergoing the most change in position, even though at this
point they have completed their ventralward migrations. This
underscores previous observations that leading cells undergo
a second major phase of anterior migration during enclosure
of the head [3], [33].

VI. CONCLUSIONS

Our goal is to rapidly and accurately track cell junctions
in 4D movies to allow quantitative analyses of cell shape
change and movements. We have presented novel algorithms
for tracking of epidermal cell junctions in C. elegans embryos.
We use manual initialization followed by fully automatic
membrane tracking to achieve accurate and efficient segmen-
tation of epidermal membranes over time. The segmentation
performance evaluated by the MAD between ground truth and
segmented contours assesses the accuracy of our algorithms.
The errors introduced by automatic analysis generally only
compromise our goal for a small number of cells that are either
extremely thin in terms of apical surface, or extend across
many z planes. As this is a small number of cells known to
be problematic, they can be prioritized for manual curation;
the vast majority of cells are well tracked.

Our quantitative analysis has been restricted to epidermal
cells on one side of the embryo. Our current data sets have
insufficient image SNR in the z slices farthest from the
objective (dorsal surface in these video sequences), and lower
resolution along the z direction. The low image SNR prevents
us from analyzing cells on the bottom of the image stack.
Epidermal junctions of lateral cells are also less clear due to
the reduced z resolution. Although membrane segmentation is
feasible on some lateral cells with high pixel intensities, our
volumetric algorithms are not able to segment most lateral
cells. Emerging microscopy methods such as Bessel sheet
imaging, iSPIM or SIM [34]–[36] may allow collection of 4D
videos with the improved SNR and z-resolution necessary for
segmentation of epidermal junctions throughout the epidermis.

Our algorithms have not dealt with fusion or division
of cells. The number of epidermal cells during the period
of ventral enclosure imaged here does not change. In later
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Fig. 17. Cell movement from contour centers. (a) Trajectories of contour centers (blue contour at the beginning, red contour at the end). (b) x displacement.
Displacements of contour centers from 0 to 27 minutes are averaged over two data sets (blue bar: cells on the left side, red bar: cells on the right side). (c) y
displacement. (d) z displacement. (e) 3D displacement.

epidermal development, a large number of additional fusions
occur that would require manual curation or new algorithms.
A further challenge would be to track division of epidermal
cells.

Our algorithms enable quantitative analysis of epidermal
morphology and movement in C. elegans. The projection
approach requires less initialization and computation than the
volumetric approach. The projection approach shows simi-
lar length and surface area measurements to the volumet-
ric approach except for cells that are widely spread over
z slices. The volumetric approach with depth information
produces better descriptions of cell junctions, although the vol-
umetric approach needs more time-consuming initialization.
Both methods generate robust segmentation results with less
user effort than manual tracking. In conclusion, our tracking
algorithms have produced the first quantitative descriptions
of cellular shape during C. elegans epidermal enclosure. In
combination with tracking of cell nuclei, these tools should
assist in developing quantitative descriptions of embryonic
morphogenetic processes as an essential step towards modeling
of forces and cellular mechanisms.
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Jülicher, and S. Eaton, “Cell Flow Reorients the Axis of Planar Polarity
in the Wing Epithelium of Drosophila,” Cell, vol. 142, no. 5 , pp. 773-
786, 2010.

[17] R. Fernandez-Gonzalez, and J. A. Zallen, “Oscillatory behaviors and hi-
erarchical assembly of contractile structures in intercalating cells,” Phys-
ical Biology, vol. 8, no. 4: 045005, 2011.

[18] F. Bosveld, I. Bonnet, B. Guirao, S. Tlili, Z. Wang, A. Petitalot,
R. Marchand, P. L. Bardet, P. Marcq, F. Graner, and Y. Bellaı̈che,
“Mechanical control of morphogenesis by Fat/Dachsous/Four-jointed
planar cell polarity pathway,” Science, vol. 336, no. 6082, pp. 724-727,
2012.

[19] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour
models,” International Journal of Computer Vision, vol. 1, no. 4, pp.
321-331, 1988.

[20] C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman, “SIFT flow:
dense correspondence across different scenes,” in Computer VisionECCV
2008, Springer Berlin Heidelberg, pp. 28-42, 2008.

[21] C. Lee, S. Kang, A. D. Chisholm, and P. C. Cosman, “Automated
Cell Junction Tracking with Modified Active Contours Guided by SIFT
Flow,” in IEEE International Symposium on Biomedical Imaging, to be
published.

[22] N. Gorfinkiel, G. B. Blanchard, R. J. Adams, and A. M. Arias,
“Mechanical control of global cell behaviour during dorsal closure in
Drosophila,” Development, vol. 136, no. 11, pp.1889-1898, 2009.

[23] J. Solon, A. Kaya-Copur, J. Colombelli, and D. Brunner, “Pulsed forces
timed by a ratchet-like mechanism drive directed tissue movement during
dorsal closure,” Cell, vol. 137, no. 7, pp. 1331-1342, 2009.

[24] C. Pohl, M. Tiongson, J. L. Moore, A. Santella, and Z. Bao,
“Actomyosin-based self-organization of cell internalization during C.
elegans gastrulation,” BMC biology, vol. 10, no. 1: 94, 2012.

[25] M. Roh-Johnson, G. Shemer, C. D. Higgins, J. H. McClellan, A. D.
Werts, U. S. Tulu, L. Gao, E. Betzig, D. P. Kiehart, and B. Goldstein,
“Triggering a cell shape change by exploiting preexisting actomyosin
contractions,” Science, vol. 335, no. 6073, pp. 1232-1235, 2012.

[26] R. Totong, A. Achilleos, and J. Nance, “PAR-6 is required for junction
formation but not apicobasal polarization in C. elegans embryonic
epithelial cells,” Development, vol. 134, no. 7, pp. 1259-1268, 2007.

[27] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in IJCAI, vol. 81, pp. 674-679,
1981.

[28] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International Journal of Computer Vision, vol. 60, no. 2, pp.
91-110, 2004.

[29] W. Geng, P. Cosman, C. C. Berry, Z. Feng, and W. R. Schafer,
“Automatic tracking, feature extraction and classification of C. elegans
phenotypes,” IEEE Transactions on Biomedical Engineering, vol 51, no.
10, pp. 1811-1820, 2004.

[30] D. J. Williams and M. Shah, “A fast algorithm for active contours and
curvature estimation,” CVGIP: Image understanding, vol. 55, no. 1, pp.
14-26, 1992.

[31] J. D’Errico. (2006). Understanding Gridfit. [Online]. Available:
http://www.mathworks.com/matlabcentral/fileexchange/8998.

[32] V. Chalana, D. T. Linker, D. R. Haynor, and Y. Kim, “A multiple active
contour model for cardiac boundary detection on echocardiographic
sequences,” IEEE Transactions on Medical Imaging, vol. 15, no. 3, pp.
290-298, 1996.

[33] E. M. Williams-Masson, A. N. Malik, and J. Hardin, “An actin-mediated
two-step mechanism is required for ventral enclosure of the C. elegans
hypodermis,” Development, vol. 124, no. 15, pp. 2889-2901, 1997.

[34] T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith,
C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic

imaging of living cells using Bessel beam plane illumination,” Nature
Methods, vol. 8, no. 5, pp. 417-423, 2011.

[35] Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z.
Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumi-
nation microscopy (iSPIM) enables coupled cell identity lineaging and
neurodevelopmental imaging in Caenorhabditis elegans,” Proceedings of
the National Academy of Sciences, vol. 108, no. 43, pp. 17708-17713,
2011.

[36] L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W.
Davidson, X. Wu, B. Goldstein, and E. Betzig, “Noninvasive imaging
beyond the diffraction limit of 3D dynamics in thickly fluorescent
specimens,” Cell, vol. 151, no. 6, pp. 1370-1385, 2012.




