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(1,2, or 3). Using the Hockney algorithm, the calculation is performed us-
ing Fast Fourier Transform (FFT) techniques, with the computational effort
scaling as (2N)d(log22N)d.

When the beam bunch fills a substantial portion of the beam pipe trans-
versely, or when the bunch length is long compared with the pipe transverse
size, the conducting boundaries cannot be ignored. Poisson solvers have been
developed previously to treat a bunch of charge in an open-ended pipe with
various geometries [4, 5]. Another approach is to use a Poisson solver with
periodic, Dirichlet, or Neumann boundary conditions on the pipe ends, and
to extend the pipe in the simulation to be long enough so that the field is
essentially zero there. Here a new algorithm is presented for the open-ended
rectangular pipe. The new algorithm is useful for a number of reasons. First,
since its structure is essentially identical to the FFT-based free space method,
it is straightforward to add this capability to any beam dynamics code that
already contains the free space solver. Second, since it is Green-function
based, the method does not require modeling the entire transverse pipe cross
section, i.e., if the beam was of small transverse extent one could instead
model only a small transverse region around the axis. Third, since it is based
on convolutions and correlations involving Green functions, the method can
use integrated Green function (IGF) techniques which have the potential for
higher efficiency and/or accuracy than non-IGF methods [6].

The solution of the Poisson equation, ∇2φ = −ρ/ε0, for the scalar poten-
tial, φ, due to a charge density, ρ, can be expressed as,

φ(x, y, z) =

∫ ∫ ∫
dx′dy′dz′ρ(x′, y′, z′)G(x, x′, y, y′, z, z′), (1)

where G(x, x′, y, y′, z, z′) is the Green function, subject to the appropriate
boundary conditions, describing the contribution of a source charge at loca-
tion (x′, y′, z′) to the potential at an observation location (x, y, z). For an
isolated distribution of charge this reduces to

φ(x, y, z) =

∫ ∫ ∫
dx′dy′dz′ρ(x′, y′, z′)G(x− x′, y − y′, z − z′), (2)

where

G(u, v, w) =
1√

u2 + v2 + w2
. (3)
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A simple discretization of Eq. (2) on a Cartesian grid with cell size (hx, hy, hz)
leads to,

φi,j,k = hxhyhz

i′max∑
i′=1

j′max∑
j′=1

k′max∑
k′=1

ρi′,j′,k′Gi−i′,j−j′,k−k′ , (4)

where ρi,j,k and Gi−i′,j−j′,k−k′ denote the values of the charge density and the
Green function, respectively, defined on the grid.

As is well known [7], FFT’s can be used to compute convolutions by
appropriate zero padding of the sequences. The proof of this is shown in
the Appendix, along with an explanation of the requirements for the zero
padding. As a result, the solution of Eq. (4) is then given by

φi,j,k = hxhyhzF bbb{(Ffffρi,j,k)(FfffGi,j,k)} (5)

where the notation has been introduced that Ffff denotes a forward FFT
in all 3 dimensions, and F bbb denotes a backward FFT in all 3 dimensions.
The treatment of the open rectangular pipe relies on the fact that the FFT-
based approach works for correlations as well as for convolutions, the only
difference being the direction of the FFTs. As an example, consider a case
for which the y variable involves a correlation instead of a convolution. Then,

∞∑
i′=1

∞∑
j′=1

∞∑
k′=1

ρi′,j′,k′Gi−i′,j+j′,k−k′ = F bfb{(Ffffρi,j,k)(FfbfGi,j,k)}. (6)

Because of this, and the fact the the Green function for a point charge in an
open rectangular pipe is a function of (x ± x′, y ± y′, z ± z′), an FFT-based
algorithm follows immediately.

2. Poisson’s equation in an open rectangular pipe

The Green function for a point charge in an open rectangular pipe with
transverse size (0, a)× (0, b) is given by,

G(x, x′, y, y′, z, z′) =
1

2πab

∞∑
m=1

∞∑
n=1

1

κmn
sin

mπx

a
sin

mπx′

a
sin

nπy

b
sin

nπy′

b
e−κmn|z−z′|,

(7)

3



where κ2
mn = (mπ

a
)2 + (nπ

b
)2. Equivalently, it can be expressed as a function

of a single rectangular pipe Green function,

G = R(x− x′, y − y′, z − z′)−R(x− x′, y + y′, z − z′)
−R(x+ x′, y − y′, z − z′) +R(x+ x′, y + y′, z − z′), (8)

where

R(u, v, w) =
1

2πab

∞∑
m=1

∞∑
n=1

1

κmn
cos

mπu

a
cos

nπv

b
e−κmn|w|. (9)

It follows that an algorithm for solving the Poisson equation in an open
rectangular pipe is given by

φi,j,k/(hxhyhz) =

F bbb{(Ffffρi,j,k)(FfffRi,j,k)} − F bfb{(Ffffρi,j,k)(FfbfRi,j,k)} −
Ffbb{(Ffffρi,j,k)(F bffRi,j,k)}+ Fffb{(Ffffρi,j,k)(F bbfRi,j,k)} (10)

The implementation of this procedure is nearly identical to that of the case
of open boundary conditions. At each step of a simulation, the charge density
is deposited on a doubled grid, and its forward forward FFT, (Ffffρi,j,k), is
computed. The function R is tabulated within the doubled domain, and four
mixed Fourier transforms are computed, namely (FfffRi,j,k), (FfbfRi,j,k),
(F bffRi,j,k), and (F bbfRi,j,k). As described by the previous equation, the
transformed charged density is multiplied by each of the 4 transformed Green
functions, 4 final FFTs are performed, and the results are added to obtain
the potential.

Note that, although Eq. (8) contains 4 terms, only a single Green function
needs to be tabulated on a grid, and it is this tabulated Green function that
is transformed in 4 different ways and stored.

3. Integrated Green Function

The discretization, Eq. (4), is a special case of a more general treatment
of the problem. To see this, suppose that Eq. (2) is replaced by a sum of
elemental integrals,

φ(x, y, z) =
∑
l

φl(x, y, z), (11)
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where the contribution from the lth cell is given, in Cartesian coordinates, by

φl(x, y, z) =

∫ xl+1

xl

∫ yl+1

yl

∫ zl+1

zl

dx′dy′dz′ρ(x′, y′, z′)G(x− x′, y − y′, z − z′),

(12)
where the volume of lth cell corresponds to {xl, xl + hx} × {yl, yl + hy} ×
{zl, zl + hz}. How can we accurately approximate the elemental integrals,
Eq. (12), that occur in Eq. (11)? Note that Eq. (4) follows from Eq. (11)
and Eq. (12) by assuming that

ρ(x, y, z) = δ(x− xl)δ(y − yl)δ(z − zl), (13)

within a cell. This is the same result that would have been obtained (ex-
cept for issues at the grid boundary that are usually irrelevant since the
charge is usually zero there), by using the trapezoidal rule to approximate
Eq. (2). Qiang described a method for computing Eqs. (11) and (12) to
arbitrary accuracy using the Newton-Cotes formula [8]. Integrated Green
functions (IGF’s) provide another means to compute this accurately when
certain integrals involving the Green function can be computed analytically
[6, 9, 10, 11].

The computation of Eq. (12) can be challenging when the scale over
which ρ and G change is disparate. This is because the accuracy of Eq. (4)
depends on the product ρG being nearly linear within a cell. Consider a long
bunch whose longitudinal density profile, ρz(z), changes little over a distance
of a few pipe radii. Suppose hz is chosen to be a few pipe radii, which is
sufficient to resolve ρz(z) reasonably well. But G falls of exponentially with
distance over a few pipe radii. As a result, approximating Eq. (12) using
values of ρ and G only at the grid points is likely to be highly inaccurate.
But we normally know G everywhere within a cell, not just at the grid
points, and, if we assume a simple form for ρ within a cell, then it may be
possible to compute Eq. (12) analytically. In this way, IGF’s make it so that
the requirements on the grid spacing depend only on choosing the grid fine
enough to resolve the charge density, i.e., fine enough that the density change
is approximately linear inside a cell; there is no requirement on resolving the
Green function, since that is handled analytically.

Now suppose that, within a cell bounded by {xl, xl + hx}×{yl, yl + hy}×
{zl, zl + hz}, ρ is approximated by a linear function of z, so that, inside a
cell,

ρ(x, y, z) =
1

h2
z

δ(x− xl)δ(y − yl) [ρi,j,k(hz − z) + ρi,j,k+1 z] , (14)
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where ρi,j,k = ρ(xl, yl, zl) and ρi,j,k+1 = ρ(xl, yl, zl + hz). Now substitute this
into Eq. (12), along with the Green function Eq. (9), and combine terms as
in Eq. (11). The IGF is found by collecting terms that are the coefficient of
ρi,j,k. In this case two adjacent terms in the summation contribute (except
at the end points), the result being that the longitudinal dependence of the
IGF is given by,

gz(z) =

∫ zk+1

zk

dz′e−κmn|z−z′|(zk+1 − z′) +

∫ zk

zk−1

dz′e−κmn|z−z′|(z′ − zk−1)

=

∫ hz

0

dz′e−κmn|z−zk−z′|(hz − z′) +

∫ hz

0

dz′e−κmn|z−zk−1−z′|z′. (15)

Performing the integrals leads to,

gz(z) =
1

κ2
mn

[
2hzκmnδz,0 +

(
e−κmn|z+hz | − 2e−κmn|z| + e−κmn|z−hz |

) ]
. (16)

It follows that, in analogy to Eq. (9), the integrated Green function, Rint,
integrated in just the longitudinal coordinate, for a distribution of charge in
an open-ended rectangular pipe is given by,

Rint(u, v, w) =
1

2πabh2
z

∞∑
m=1

∞∑
n=1

1

κmn
cos

mπu

a
cos

nπv

b
gz(w). (17)

4. Numerical Example

As an example consider a rectangular waveguide of full width and full
height a = 4 cm and b = 4 cm. Consider a 3D Gaussian charge distribution
with transverse rms sizes σx = 0.15a = 6mm, σy = 0.15b = 6mm, and
longitudinal rms size σz. Three cases with different rms bunch length will be
considered, σz = 1.2 cm, σz = 12 cm, and σz = 1.2 m. The distribution is set
to zero at x2/σ2

x + y2/σ2
y + z2/σ2

z > 32. Fig. 1, left, shows the charge density
and Green function as a function of z, down the center of the pipe, for the case
σz = 1.2 cm. As shown in the Appendix, the convolution can be performed
using FFTs by zero padding the charge density over the domain of the Green
function, and by treating the Green function as a periodic function. Fig. 1,
right, shows how the charge density and Green function are actually stored
in memory, using 256 longitudinal grid: ρ is left in place and zero-padded,
and G is circular-shifted so that G(x = 0, y = 0, z = 0) is at the lower bound
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of the Green function array. For the case σz = 12 cm, the figure would
look similar except that the Green function would be confined to narrow
regions at the left and right edges of the plot. For the case σz = 1.2 m, it
would be confined to extremely narrow regions at the left and right edges.
Figures 2, 3, and 4 show convolution results for the three different bunch

Figure 1: Left: On-axis charge density and Green function vs. z, as they appear in physical
space, for the case σz = 1.2 cm. Right: On-axis charge density and Green function as
stored in memory.

lengths, σz = 1.2 cm, σz = 12 cm, and σz = 1.2 m, respectively, for grid
sizes 64× 64× 128 up to 512× 512× 1024. The left hand side of each figure
shows plots of the potential as a function of z on-axis for various grid sizes,
comparing results based on the ordinary Green function and the integrated
Green function. The right hand side shows the relative error of the calculated
potential. In Fig. 2, σz is less than the pipe transverse size (1.2 cm vs. 4 cm);
both the ordinary Green function and the IGF are accurate to better than
1% for all the grid sizes shown. In Fig. 3, σz is somewhat larger than the
pipe transverse size (12 cm vs. 4 cm); when the grid is coarse, the ordinary
Green function has signficant errors. In Fig. 4, σz is much larger than the
pipe transverse size (1.2 m vs. 4 cm); in this case when the grid is coarse the
ordinary Green function results exhibit huge errors. As mentioned above, the
accuracy of the IGF results is controlled by how well the grid resolves just the
charge density. For the non-IGF results, the accuracy depends on resolving
both the charge density and Green function, and, due to the exponential fall-
off of the Green function, a coarse grid gives unusable results. The relative
error in the potential is plotted on the right hand side of the figures. These
were obtained be plotting (φ−φhighres)/φhighres), where φhighres is the highest
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resolution result, obtained using the IGF with a 512× 512× 1024.

Figure 2: Left: On-axis potential vs. z showing the ordinary Green function result and
the Integrated Green function (IGF) result for various grid sizes. The bunch is a Gaussian
distribution with σx = σy = 6mm, σz = 1.2 cm. Right: Relative error of the on-axis
potential vs. z for grid sizes 64× 64× 128, 128× 128× 256, and 256× 256× 512.

Fig. 5 shows the ordinary Green function and the IGF (x = 0, y = 0, z)
near z = 0 for the three cases σz = 1.2 cm, σz = 12 cm, and σz = 1.2 m,
all computed using 256 longitudinal grid points. The left hand side shows
the ordinary Green function. The exponential fall-off of the Green function
is obvious. Note that the ordinary Green function is the same for all 3 cases,
it is just sampled differently. Note also that for case σz = 1.2m, the grid is
so coarse that only the central point is significant, all the others are so far
into the region of exponential fall-off that they are effectively zero. If ρ were
constant inside of a cell (which is approximately true in the σz = 1.2m case),
use of Eq. (4) would correspond to approximating the area under the true
Green function with the area under the triangular shaped region of Fig. 5,
left, so it is no surprise that it gives wrong results. The right hand side shows
the IGF. As before, the exponential fall-off of the Green function is obvious.
However, in this case it does not matter that the coarse data poorly resolves
the IGF, because the accuracy does not depend on that, it only depends
on having a fine enough grid that the charge density is well approximated
by a linear function function within a cell. For the σz = 1.2m case, this a
approximately true even with as few as 128 grid points, hence the IGF result
in Fig. 4 has good accuracy.

Lastly note that, for σz = 1.2m with 256 grid points, the IGF is approx-
imately equal to zero for all but the central point. Hence, Eq. (4) could be
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Figure 3: Left: On-axis potential vs. z showing the ordinary Green function result and
the IGF result for various grid sizes. The bunch is a Gaussian distribution with σx = σy =
6mm, σz = 12 cm. Right: Relative error of the on-axis potential vs. z.

approximated by,

φi,j,k = hxhyhz

i′max∑
i′=1

j′max∑
j′=1

ρi′,j′,kGi−i′,j−j′,0. (18)

In other words, the problem has been converted to one involving multiple
2D convolutions instead of a 3D convolution. The would reduce execution
time by a factor equal to log2 of the number of longitudinal grid points. More
generally, depending on the grid size and the exponential fall-off, it would be
sufficient compute,

φi,j,k = hxhyhz

i′max∑
i′=1

j′max∑
j′=1

k±Nneighbors∑
k′=k

ρi′,j′,k′Gi−i′,j−j′,k−k′ , (19)

where Nneighbors = 0 if the IGF, Gi,j,k , is appreciable only when k = 0, or
Nneighbors = 1 if the IGF is appreciable at k = 0 and k = ±1, or Nneighbors = 2
if the IGF is appreciable at k = 0, k = ±1 and k = ±2, etc.

5. Discussion and Conclusion

This note does not address the effort require to compute the Green func-
tion, Eq. (9). In theory, the calculation of the Green function could make the
simulation much more time consuming than the case for isolated boundary
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Figure 4: Left: On-axis potential vs. z showing the ordinary Green function result and
the IGF result for various grid sizes. The bunch is a Gaussian distribution with σx = σy =
6mm, σz = 1.2 m. Right: Relative error of the on-axis potential vs. z.

conditions, but in practice, it might not be since simulations with isolated
boundary conditions often re-grid at every time step to take account of the
changing transverse beam size. This would not be the case for the rectangu-
lar pipe if the beam fills most of the pipe transversely, i.e., the Green function
would be computed over the full cross section, transformed, and stored once
at the beginning of the simulation. A possible exception would be if the
longitudinal extent were changing significantly, but that is not usually the
case. In fact, in many applications involving circular accelerators the longi-
tudinal bunch oscillations are very slow. It should also be pointed out that
it is not necessary to compute the Green function over the full transverse
cross section. The domain on which the Green function is computed need
only encompass the full transverse size of the beam. If the beam happened
to be very small transversely (but long compared with the transverse pipe
dimensions so that the open treatment would be inappropriate), then the
transverse physical mesh size could be a small central rectangle centered on
the z-axis (symmetrized over the doubled mesh as usual), thus still allowing
for high transverse accuracy with a modest number of grid points.

To implement this approach one needs to be able to control the direction
of the FFTs in all dimensions. Unfortunately most packages don’t offer this
capability for built-in multidimensional FFTs. (It was available, for example,
in the Connection Machine Scientific Software Library). Such a capability
has other uses. For example, when dealing with the Vlasov equation in the
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Figure 5: Left: Ordinary Green function vs. z, for three different bunch lengths, using
256 grid points. Right: Integrated Green function vs. z.

form,
∂f

∂t
+ (~p · ∂~q)f − (∇Φ · ∂~p)f = 0, (20)

a split-operater, FFT-based method to for advancing the distribution in
phase space one time step can be expressed as [12],

f(~q, ~p, t) = e−
t
2

(~p·∂~q)et(∇Φ·∂~p)e−
t
2

(~p·∂~q)f(~q, ~p, 0). (21)

This can be evaluated easily using an FFT package that allows the user to
control the FFT direction in each dimension, namely, by alternately perform-
ing forward and backward FFT’s separately in ~q and ~p. Applications such
as these argue that FFT packages with built-in multi-dimensional capabili-
ties should allow the user to control the FFT direction in every dimension
separately.

In summary, a new method has been presented for solving Poisson’s equa-
tion in an open-ended rectangular pipe. The only difference in implementa-
tion between this case and the isolated case is that a different Green function
is used (namely Eq. (17) instead of Eq. (3)), and a procedure is used involving
4 mixed convolutions and correlations instead of a single convolution (namely
Eq. (10) instead of Eq. (5)).

Appendix A. FFT-based Convolutions and Correlations

Discrete convolutions arise in solving the Poisson equation in free space,
as well as in signal processing. In regard to the Poisson equation, one is
typically interested in the following,
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pj =
K−1∑
k=0

rkxj−k ,
j = 0, . . . , J − 1
k = 0, . . . , K − 1
j − k = −(K − 1), . . . , J − 1

(A.1)

where x corresponds to the free space Green function, r corresponds to the
charge density, and p corresponds to the scalar potential. The sequence {pj}
has J elements, {rk} has K elements, and {xm} has M = J+K−1 elements.

One can zero-pad the sequences to a length N ≥ M and use FFTs to
efficiently obtain the {pj} in the unpadded region. To see this, define a
zero-padded charge density, ρ,

ρk =

{
rk if k = 0, . . . , K − 1
0 if k = K, . . . , N − 1.

(A.2)

Define a periodic Green function, ξm, as follows,

ξm =


xm if m = −(K − 1), . . . , J − 1
0 if m = J, . . . , N −K,
ξm+iN = ξm for any integer i

(A.3)

Now consider the sum

φj =
1

N

N−1∑
k=0

W−jk(
N−1∑
n=0

ρnW
nk)(

N−1∑
m=0

ξmW
mk) 0 ≤ j ≤ N − 1, (A.4)

where W = e−2πi/N . This is just the FFT-based convolution of {ρk} with
{ξm}. Then,

φj =
K−1∑
n=0

N−1∑
m=0

rnξm
1

N

N−1∑
k=0

W (m+n−j)k 0 ≤ j ≤ N − 1. (A.5)

Now use the relation

N−1∑
k=0

W (m+n−j)k = Nδm+n−j,iN (i an integer). (A.6)

It follows that

φj =
K−1∑
n=0

rnξj−n+iN 0 ≤ j ≤ N − 1. (A.7)
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But ξ is periodic with period N. Hence,

φj =
K−1∑
n=0

rnξj−n 0 ≤ j ≤ N − 1. (A.8)

In the physical (unpadded) region, j ∈ [0, J − 1], so the quantity j − n in
Eq. (A.8) satisfies −(K − 1) ≤ j − n ≤ J − 1. In other words the values
of ξj−n are identical to xj−n, hence, the FFT-based convolution, Eq. (A.4),
matches the convolution in Eq. (A.1).

As stated above, the zero-padded sequences need to have a lengthN ≥M ,
where M is the number of elements in the Green function sequence {xm}.
In particular, one can choose N = M , in which case the Green function
sequence is not padded at all, and only the charge density sequence, {rk}, is
zero-padded, with k = 0, . . . , K− 1 corresponding to the physical region and
k = K, . . . ,M − 1 corresponding to the zero-padded region.

As just shown, FFTs can be used to compute the convolution shown in
Eq. (A.1), with no zero padding of the Green function, as long as there are J
values of the potential, K values of the charge density, and J+K−1 values of
the Green function. These conditions are usually satisfied in particle-in-cell
beam dynamics code, which have a a grid containing the charge density, and
which have a grid containing the Green function (e.g., Eq. (3), Eq. (9), or
Eq. (17)) for both positive and negative arguments.

The above FFT-based approach – zero-padding the charge density array,
and circular-shifting the Green function – will work in general. In addition,
if the Green function is a symmetric function of its arguments, the value at
the end of the Green function array (at grid point J − 1) can be dropped,
since it will be recovered implicitly through the symmetry of Eq. (A.3). In
that case the approach is identical to the Hockney method [1, 2, 3].

In the area of signal processing, the values of charge density, {rk}, corre-
spond to the response function, and the values of the Green function, {xj−k}
or {xm}, correspond to the signal. Based on the above discussion it follows
that, if two arbitrary sequences {r0, . . . , rK−1} and {x0, . . . , xM−1} are to be
convolved to produce a sequence {p0, . . . , pJ−1}, and if the number of points
in {xm} is less than J+K−1, then, in order to use FFTs, the sequence {pj}
needs to be zero-padded to extend it to have J +K − 1 points.

Lastly, note that the above proof that the convolution, Eq. (A.4), is
identical to Eq. (A.1) in the un-padded region, works even when W−jk and
Wmk are replaced by W jk and W−mk, respectively, in Eq. (A.4). In other
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words, the FFT-based approach can be used to compute

pj =
K−1∑
k=0

rkxj+k ,
j = 0, . . . , J − 1
k = 0, . . . , K − 1
j − k = −(K − 1), . . . , J − 1

(A.9)

simply by changing the direction of the Fourier transform of the Green func-
tion and changing the direction of the final Fourier transform.
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