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Abstract

Novel methods for investigating human adipose tissue at the single-cell level

by

Anushka Gupta

Doctor of Philosophy in Bioengineering

University of California, Berkeley

Professor Aaron Streets, Chair

The most important function of adipose tissue is its ability to store fat during periods of
feeding, and release fats during periods of fasting and cold. This energy homeostatic activity
of the adipose tissue is made possible by the synergistic metabolic functionality of distinct
adipocyte-types residing in the tissue (tissue heterogeneity), as well as their developmental
dynamics (tissue development). Although, these aspects of adipose tissue biology are very
well understood in mice, there knowledge in humans remains poorly understood. Recently,
the combination of next generation sequencing (NGS) and microfluidic platforms has led to
a revolution in single-cell genomic studies, enabling measurement of molecular features in
thousands of single cells at a time. In this body of work, I present novel assays, platforms, and
dataset that enable new investigation into adipose tissue at the single cell level, and provide
insight into the heterogeneity and developmental lineages within this important tissue type.

Although, advancements in NGS and microfluidic barcoding platforms have significantly in-
creased the throughput of single-cell RNA-seq (scRNA-seq) measurements, many molecules
that are critical to understanding the functional roles of cells in a complex tissue or organs,
are not directly encoded in the genome, and therefore cannot be profiled with NGS. Lipids,
for example, play a critical role in many metabolic processes, and are critical to character-
izing an adipocyte’s identity, but cannot be detected by sequencing. Recent developments
in quantitative imaging, particularly coherent Raman scattering (CRS) techniques, have
produced a suite of tools for studying lipid content in single cells. In Chapter 2, I review
CRS imaging and computational image processing techniques for non-destructive profiling
of dynamic changes in lipid composition and spatial distribution at the single-cell level.

In Chapter 3, I present a microfluidic platform called microfluidic cell barcoding and sequenc-
ing (µCB-seq) for combining scRNA-seq measurements with optical imaging measurements,
thereby providing a comprehensive characterization of cellular identity at the single-cell level.
µCB-seq is enabled by a novel fabrication method that preloads primers with known bar-
code sequences inside addressable reaction chambers of a microfluidic device. In addition to
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enabling multi-modal single-cell analysis, µCB-seq improves gene detection sensitivity, pro-
viding a scalable and accurate method for information-rich characterization of single cells.

In Chapter 4, I characterize transcript enrichment and detection bias in single-nuclei RNA-
seq for mapping of distinct human adipocyte lineages. scRNA-seq enables molecular char-
acterization of complex biological tissues at high resolution. The requirement of single-cell
extraction, however, makes it challenging for profiling tissues such as adipose tissue where
collection of intact single adipocytes is complicated by their fragile nature. For such tis-
sues, single-nuclei extraction is often much more efficient and therefore single-nuclei RNA-
sequencing (snRNA-seq) presents an alternative to scRNA-seq. However, nuclear transcripts
represent only a fraction of the transcriptome in a single cell, with snRNA-seq marked with
inherent transcript enrichment and detection biases. Therefore, snRNA-seq may be inad-
equate for mapping important transcriptional signatures in adipose tissue. In this study,
I compare the transcriptomic landscape of single nuclei isolated from preadipocytes and
mature adipocytes across human white and brown adipocyte lineages, with whole-cell tran-
scriptome. I demonstrate that snRNA-seq is capable of identifying the broad cell types
present in scRNA-seq at all states of adipogenesis. However, I also explore how and why the
nuclear transcriptome is biased and limited, and how it can be advantageous. I robustly char-
acterize the enrichment of nuclear-localized transcripts and adipogenic regulatory lncRNAs
in snRNA-seq, while also providing a detailed understanding for the preferential detection
of long genes upon using this technique. To remove such technical detection biases, I pro-
pose a normalization strategy for a more accurate comparison of nuclear and cellular data.
Finally, I demonstrate successful integration of scRNA-seq and snRNA-seq datasets with
existing bioinformatic tools. Overall, my results illustrate the applicability of snRNA-seq for
characterization of cellular diversity in the adipose tissue.

Finally, in Chapter 5, I utilize snRNA-seq to generate the transcriptional landscape of hu-
man white and brown adipogenesis using an in vitro model system, derived from a single
individual and a single anatomical location. In total, I generate snRNA-seq libraries from
∼ 50,000 nuclei isolated from differentiating white and brown preadipocytes at 5 stages of
adipogenesis. Using a custom bioinformatic strategy for cellular ordering across a continuum
of maturation states, I reveal 5 distinct gene expression modules in both white and brown
adipogenesis, each module highlighting the dynamics of biologically relevant functional pro-
cesses. I identify potentially novel adipogenic as well thermogenic transcription factors, and
investigate their involvement in Obesity by analyzing publicly available GWAS, RNA-seq
and microarray datasets in lean vs obese humans. Overall, this study, for the first time,
provides a comprehensive molecular understanding of both white and brown adipogenesis in
humans, thereby serving as an an important resource and a reference to map the future in
vivo adipogenic studies onto.
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Chapter 1

Introduction

In 1665, Robert Hooke published a series of microscopic observations using plants, where he
first coined the term ‘cell’ to describe the micro unit of biological tissues [1]. Since then, the
pursuit of characterizing physiological heterogeneity by identifying cells that differ by mor-
phological, functional, or molecular features has occupied a central place in research in the life
sciences. Bolstered by the invention [2] and optimization of microscopic techniques [3], early
days saw discovery of multiple distinct cell-types based on their distinguished anatomical
structure and morphology [4]. With the development of novel optical methods, the features
used to define cell types gradually evolved to incorporate physiological properties such as
their pH [5], membrane potential [6], and molecular properties such as the presence of specific
proteins [7], RNA molecules [8], and epigenetic modifications [9]. Notably, this evolution also
inspired a shift in the scale at which cellular investigations were performed, focusing away
from bulk, ensemble measurements, towards scalable, single-cell level measurements, thereby
providing insights into the underlying heterogeneity within complex biological systems.

Amongst these scalable, single-cell level techniques, Fluorescence-activated cell sorting
(FACS) emerged as a gold-standard technique for proteomic characterization of individual
cells. FACS allows sorting of up to millions of single cells at a time based on differen-
tial expression of key surface proteins. Indeed, FACS has been used to study the cellular
heterogeneity of many complex tissues, especially in the field of cellular immunology [10].
FACS, however, requires apriori knowledge of targeted proteins, depends on the availability
of antibodies, and is limited in its multiplexing capacity. Notably, last two decades have
seen a rapid development of cost-effective, high-throughput DNA-sequencing technologies,
led by Illumina’s Next-Generation Sequencing (NGS) platforms [11]. NGS enables sequenc-
ing of millions of short DNA fragments at a time in a completely unbiased manner. Since
RNA molecules can be easily converted to a more stable complementary DNA (cDNA), NGS
has also enabled transcriptome-wide gene expression profiling via RNA-sequencing (RNA-
seq). This is important because unbiased profiling of protein-encoding mRNA molecules
(mRNA-seq) can be used as a proxy for studying the entire proteome, thereby providing
a comprehensive methodology to identify different cell-types. However, unlike FACS which
has single-cell level resolution, RNA-seq requires micrograms of totalRNA as input, thereby



providing an average gene expression measurement in hundreds to thousands of mammalian
cells. Hence, such population-level bulk measurements are unable to take into account the
inherent heterogeneity within complex systems. Consequently, last few years have seen fur-
ther technological innovations resulting in significantly improved gene detection sensitivity of
RNA-seq with only picograms of starting material, thereby enabling completely untargeted
gene expression profiling at the single-cell level (scRNA-seq) [12–14].

In 2009, Tang et al. developed the first scRNA-seq protocol, where sequencing library was
prepared using mRNA isolated from individual cells of a four-cell stage embryo [12]. In this
illustration, individual cells were isolated using mouth pipetting, clearly demonstrating the
challenges of manipulating single cells for downstream RNA-seq. Development of microfluidic
solutions helped mitigate such challenges by providing a low Reynolds’s number environment
for predictable, controlled, and programmable cellular manipulation at nanoscale reaction
volumes [15, 16]. Streets et al first demonstrated the microfluidic implementation of scRNA-
seq by utilizing the original Tang protocol on a valve-based, multi-layer, microfluidic device
[17]. Similar microfluidic devices were earlier utilized for acquiring genomic measurements
from single cells [18–21], and demonstrated exquisite, robust, and precise single-cell manip-
ulation via use of integrated on-chip valves [22]. Such valve-based microfluidic scRNA-seq
protocol was first commercialized by Fluidigm as part of the C1 platform [23, 24], providing
transcriptomic measurements from 96 cells at a time using a fully automated library prepa-
ration protocol. The next wave of microfluidics-enabled development was an exponential
increase in the throughput of scRNA-seq protocols, which went from analyzing hundreds
of cells to tens of thousands of cells in a single experiment [25, 26]. This advancement
was particularly made possible by implementation of automated, molecularly barcoded se-
quencing protocols on microfluidic technologies utilizing droplets or microwells for single-cell
encapsulation. Previous advancements in microfabrication methodologies enabled successful
engineering of devices having ∼100,000 microwells [27], or devices generating ∼1000 droplets
per second [28, 29], which facilitated a high-throughput isolation of single cells. Molecular
barcoding enabled a one-pot, multiplexed library preparation from such vast number of
cells, by assigning a unique oligo sequence to cDNA molecules of individual cells and pooling
them after reverse-transcription (RT) into a single tube. The first academic demonstration
of microwell based scRNA-seq provided gene expression measurements from thousands of
cells [30], which, in a few years, was further improved for analysing 100,000 cells in a single
experiment [31]. Around 2015, multiple droplet microfluidics based scRNA-seq protocols
were developed that enabled gene expression measurements from ∼10,000 cells in a single
experiment [32–34]. In such methods, droplets, encapsulating single cells, were formed by
precisely combining aqueous and oil flows in a microfluidic device and used as nanoscale reac-
tion chambers to perform molecularly barcoded library preparation. Within a few years, 10x
Genomics launched the first, commercial, droplet-microfluidics based scRNA-seq platform
called the Chromium, that enabled transcriptomic measurements from 80,000 cells in one
experiment, with minimal requirement of user interference during cell encapsulation. Since
it’s launch, the Chromium platform has been keenly accepted in the life sciences community
and has truly turned scRNA-seq into a widely accessible technique. Overall, the development
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of micro-scale, high-throughput, and low-cost scRNA-seq techniques has revolutionized the
way we study complex biological systems and has paved the way for undertakings such as
constructing the human cell atlas [35]. Recent work has already composed cellular catalogues
of both mouse and human organs, including the brain [36, 37], the thymus [38], the pancreas
[39], and two recent reports of a comprehensive mouse atlas [31, 40]. However, while scRNA-
seq has proven to be a robust tool for quantifying cellular identity, there are many molecules,
which play critical roles in cellular function, that are not directly encoded in the genome and
therefore cannot be detected with measurements that are based on sequencing. Metabolites
and lipids are examples of such molecules that cannot be profiled using NGS but are impor-
tant for regulation of cellular function. Lipids participate in providing structural integrity
to biological membranes [41, 42], signaling pathways [41, 43], and interact with proteins to
regulate their functions [44, 45]. The most important role of lipids, however, is serving as a
reservoir for energy storage as part of the adipose tissue. Resident adipocytes in the tissue
store lipids in organelles called lipid droplets (LDs), that undergo lipolysis or lipogenesis to
provide/store energy for a variety of physiological conditions, thereby maintaining a system-
wide energy balance. Hence, in order to comprehensively characterize the cell-types within
adipose tissue, scRNA-seq measurements need to be paired with measurements interrogat-
ing inter-cellular LDs. Adipose tissue also serves as a case-study for highlighting the second
drawback of scRNA-seq. One requirement of scRNA-seq is the extraction of intact single
cells, which is challenging from primary adipose tissue samples, where collection of intact
single adipocytes is complicated by their fragile nature. For such tissues, single-nuclei extrac-
tion is often much more efficient and therefore single-nuclei RNA-sequencing (snRNA-seq)
presents an alternative to scRNA-seq. However, snRNA-seq has low transcript complexity,
and is marked by transcript enrichment and detection biases, which distort the biological
signal of interest. Therefore, there is a need to understand the transcriptomic similarities
and differences between single-cell and single-nucleus profiles in the context of the human
adipose tissue, for which there is growing need to rely on snRNA-seq.

In this dissertation, I first worked on developing a novel platform that enables simul-
taneous interrogation of molecular and LD features in single cells, by pairing scRNA-seq
and quantitative imaging measurements for each cell. Furthermore, I also developed novel
approaches to systematically compare the transcriptomic profiles derived using scRNA-seq
and snRNA-seq in matched adipose tissue cell-types, and finally implement snRNA-seq to
uncover new biology regarding adipose tissue development and function. Overall, this body
of work provides novel tools and strategies to investigate the adipose tissue at the single-cell
level, thereby fulfilling key outstanding needs currently faced by the scientific community in
this field.
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1.1 Adipose tissue and its role in maintaining energy

homeostasis

Fat or adipose tissue, in the popular mind, is a way to store excess energy during conditions
of nutritional affluence. And while that is true, it is an incomplete picture of the func-
tionality of adipose tissue in maintaining system-wide energy balance. Almost all animals
have two functionally distinct types of fat: the white adipose tissue (WAT) and the brown
adipose tissue (BAT). WAT stores excess nutritional energy in the form of lipids during
fed state. However, during fasting state, lipids stored in WAT are processed to provide
energy to peripheral organs and tissues. BAT, on the other hand, regulates non-shivering
thermogenesis, an energy-spending process where stored lipids are metabolized to generate
heat, resulting in the maintenance of core body temperature. This is achieved through the
actions of uncoupling protein-1 (UCP1) [46], a BAT-specific protein located within the mito-
chondria. Therefore, WAT and BAT function together to maintain a balance between lipid
accumulation and energy expenditure.

There are two key aspects about adipose tissue biology that are critical to maintaining
this balance discussed above. First is the development of adipocytes, the metabolically-active
cell-types in the tissue. Adipocytes are generated via a cellular developmental process called
adipogenesis, where resident preadipocytes (adipocyte precursors) differentiate into lipid-
laden adipocytes. Notably, excess of fat manifests itself in the development of syndromes
such as Obesity, whereas deficiency of fat is associated with disorders such as lipodystrophy.
Therefore, a firm understanding of the molecular underpinnings of fat development, a.k.a.,
adipogenesis, is key to elucidating the pathophysiology and potential treatment modalities
of such pathological cases. Second key aspect about adipose tissue biology is its cellular
makeup, which is critical for determining its metabolic capacity. Rodent models have been
the most prevalent model-type in the field of adipose tissue biology, and hence most of our
current understanding about the tissue’s cellular makeup comes from this species. Tradition-
ally, adipocytes within WAT and BAT are classified as white or brown types, respectively,
in rodents. White adipocytes within WAT are marked by the presence of a single large lipid
droplet (unilocular), whereas brown adipocytes within BAT are histologically identified as
having multiple small lipid droplets (multilocular) [47]. Unlike white adipocytes, brown
adipocytes are UCP1+ (thereby enabling the thermogenic function of BAT) and descend
from a PAX7+/MYF5+ smooth-muscle cell lineage [48]. Because of the energy expendi-
ture thermogenic capacity of brown adipocytes, promotion of BAT function has emerged
as a promising anti-Obesity therapeutic target [49]. More recently, multiple investigations
have reported identification of a third kind of beige adipocyte, which are inter-dispersed
within WAT of rodents [50]. Notably, like brown adipocytes, beige adipocytes also exhibit
UCP1-dependent thermogenic capacity and multilocular morphology [51]. However, beige
adipocytes are not from PAX7+/MYF5+ lineage, thereby suggesting an overlapping but dis-
tinct gene expression pattern compared to brown adipocytes [51]. Naturally, the thermogenic
capacity of beige adipocytes have also raised important questions about its therapeutic impli-
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cations [50]. Currently, we are in a period in which new information regarding heterogeneity
within white, brown, and beige adipocytes is being accumulated rapidly, and therefore, an
atlas of all the residing adipocyte-types in the tissue is fundamental to designing better
therapies for metabolic diseases.

Focusing on adipocyte heterogeneity, in the following sections, I will first review how the
applicability of scRNA-seq has already fueled discovery of multiple adipocyte sub-types in the
adipose tissue. I will then discuss how we can further advance identification of adipocyte sub-
types by combining scRNA-seq with other cellular phenotypic measurements. Next, focusing
on adipogenesis and its molecular regulation, I will first discuss our current understanding
of adipogenic regulation in rodents, and a lack thereof in humans. Finally, I will discuss how
we can bridge this gap by utilizing snRNA-seq for building a comprehensive transcriptional
landscape for white and brown fat development in humans.

1.2 scRNA-seq enables investigation into adipose

tissue heterogeneity

Over the last few year, scRNA-seq has identified extensive heterogeneity within white and
brown adipocytes. For example, Ramirez et al. performed scRNA-seq on abdominal human
preadipocytes undergoing adipogenesis and identified at least two distinct classes of subcu-
taneous white adipocytes [52]. Song et al. performed scRNA-seq of BAT and identified two
populations of brown adipocytes, with one cell-type similar to the classical, well-studied,
highly thermogenic BAT, and the other cell-type with substantially lower thermogenic ac-
tivity [53]. These low-thermogenic BAs were functionally assessed and determined to be
enriched in genes for UCP1-independent thermogenesis. Spaethling et al. performed scRNA-
seq of primary brown adipocytes and observed significant heterogeneity in UCP1 expression,
as well as heterogeneity in numerous additional genes associated with the brown thermo-
genic phenotype [54]. Overall, scRNA-seq has provided a deeper understanding of adipocyte
sub-types within fat depots. However, other phenotypic LD-associated features play critical
role in adipocyte diversity, that are not directly encoded in the genome and therefore cannot
be detected with measurements that are based on sequencing DNA.

1.3 Paired single-cell imaging and sequencing for

improved adipocyte sub-type discovery

Although scRNA-seq has popularized the notion of single-cell level measurements, for the
longest time, optical microscopy was at the forefront of this endeavor, enabling phenotypical,
functional, and even compositional measurements of single cells at nanoscale resolution. In
the context of adipose tissue, early applications of optical imaging revealed heterogeneity
in lipid droplet morphology in broad classes of adipocytes, with white cells having a single
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large lipid droplet (unilocular), and brown & beige cells having small, but numerous lipid
droplets (multilocular) [47]. Further applications of optical imaging at the single-cell level
revealed heterogeneity in lipid droplet morphology and adipocyte size within both cultured
cell lines [55, 56] and in primary fat cells, such as in murine white adipocytes [57, 58]. De-
velopment of new methods to utilize imaging for functional characterization of single cells
further revealed distinct adipocyte function based on cell-size. For example, optical analy-
sis of large and small white adipocytes revealed decreased insulin-mediated glucose uptake
[59] and insulin-sensitivity [60] in larger adipocytes. Notably, advancements over the last
decade in quantitative optical imaging techniques enabled lipid droplet compositional char-
acterization, revealing extensive cell to cell heterogeneity in the lipidomic profile of mature
adipocytes [61]. Therefore, while scRNA-seq is effective for measuring mRNA in large num-
ber of single cells, adipocyte’s identity is also described by its size, lipid droplet morphology,
and its lipidomic profile, features that are not directly encoded in the genome and hence
cannot be detected with sequencing alone. Since isolation of single cells is a requirement
for scRNA-seq, single-cell transcriptomic measurements could be combined with upstream
single-cell optical imaging measurements to provide a truly comprehensive view of adipocyte
identity. Such paired measurements, however, would require imaging techniques to be non-
destructive, since cells need to be preserved for downstream sequencing measurements. In
chapter 2, I review existing label-free, non-destructive, and quantitative optical imaging tech-
niques that enable comprehensive characterization of cell-size, lipid droplet morphology and
its composition [62]. I also review multiple computational image processing techniques and
finally propose strategies for pairing such imaging techniques with scRNA-seq, using either
microfluidic platforms or in situ platforms. In chapter 3, I then develop microfluidic cell
barcoding and sequencing (µCB-seq), a microfluidic platform that combines high-resolution
imaging and sequencing of single cells [63].

1.4 Molecular regulation of adipogenesis in rodents

and its applicability to humans

Historically, adipogenic transcriptional cascades were extensively studied using a variety of
murine cell culture systems, most common of them being the 3T3-L1 model system. Early
investigations led to the identification of the core adipogenic transcriptional network, includ-
ing principal transcription factors (TFs) C/EBPβ and C/EBPδ overseeing early adipogenic
commitment, and PPARγ and C/EBPα overseeing the terminal differentiation process [64,
65]. Typically, hormonal induction of in vitro adipogenic differentiation is rapidly followed by
the expression of C/EBPβ and C/EBPδ, which reach peak expression levels within the next
few days and then begin to drift downward. Initial activity of C/EBPβ and C/EBPδ induces
low levels of PPARγ and C/EBPα, which are then able to induce each other’s expression
in a positive feedback loop that promotes gene expression changes characteristic of mature
adipocytes. PPARγ and C/EBPα then remain elevated for the life of the cell. Notably,
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this core transcriptional hierarchy remains preserved during brown adipogenesis as well,
although with an accompanying exclusive activity of thermogenic TFs such as PRDM16,
EBFs, and PPARγ co-activators (PGC1A and PGC1B)[66]. With the molecular core of
white and brown adipogenesis well understood, modern transcriptomic investigations have
instead focused on identifying auxiliary transcription factors, that serve as either positive or
negative regulators of adipogenic/thermogenic response in rodents. This has resulted in the
identification of novel adipogenic TFs such as KLFs [67], SREBP1C [68], CREB [69], ZFPs
[70], GATA2 & GATA3 [71], and FOXA1 & FOXA2 [72]. Similarly, many transcriptional
regulators have been identified that regulate brown fat-specific gene expression in rodents.
This includes activators such as ZFP516, KLF11, IRF4, TAF7L, ZBTB16, EWS, PLAC8,
and repressors such as FOXO1, TWIST1, p107, LXRα, pRB, RIP140, TLE3, REV-ERBα,
and ZFP423 [73].

The growing number of transcriptomic and epigenomic studies continues to strengthen
our understanding of how brown and white adipogenesis is transcriptionally regulated in
rodents. However, molecular regulation of human adipogenesis remains poorly understood.
Studies have confirmed the applicability of principal TFs PPARγ and C/EBPs in human
adipogenesis [74]. However, other studies have also reported dramatic differences in the
features, locations, and transcriptomic properties of fat depots across rodents and humans.
For example, BAT, which is abundantly present in the interscapular depot in mice, was
only found to be present in adult humans over the last decade [75]. Furthermore, rodent
BAT lies in a well-defined anatomical location and is homogeneously composed of brown
adipocytes, whereas human BAT is widely dispersed and occurs as a mixture of white, and
brown adipocytes [76]. Focusing on locations of fat, a large percentage of visceral fat in
humans is contained in the omentum, which is barely present in rodents [77]. Conversely,
the large epididymal fat pads of male mice, which are frequently sampled as representative
of visceral fat, do not exist in men [78]. Notably, recent studies have also highlighted BAT
metabolic functions that do not translate from the rodents to the human [79]. Therefore,
although studies in rodent models of adipogenesis offer significant insights, their applicability
to humans is actually limited by the existing differences in their metabolism and physiology.
Consequently, there is an immediate need to comprehensively understand the transcriptional
control of adipocyte formation in humans. Recent rapid development of human adipogenic
model systems further brings us one step closer to achieving this undertaking [80].

1.5 single-nuclei RNA-sequencing for mapping human

adipogenesis

Besides discovery of distinct cell-types, scRNA-seq has also enabled assessing the molecular
progression of individual cells along a continuously changing biological process of interest,
by providing a snapshot of the transcriptome of thousands of single cells in a cell population,
which are each at distinct points of the dynamic process under study. Recent bioinformatic

7



advancements have further made it possible to analyze this wealth of transcriptional infor-
mation for computationally inferring lineage developmental trajectories and gaining detailed
insights into the underlying molecular programmes executed, by ordering cells along a vari-
able called the ”pseudotime” [81, 82]. Pseudotime can be computationally inferred based on
the cells’ gene expression profiles measured by scRNA-seq, and can be thought of as a time-
like variable indicating the relative position a cell takes in a developmental lineage. Based on
this pseudotemporal ordering, expression dynamics for individual genes as well as regulatory
TFs can be investigated at an extremely high cellular as well as temporal resolution. Indeed,
pseudotemporal analysis has been implemented to study developmental dynamics in multiple
tissue types such as mouse pancreas [83], zebrafish embryos [84], and human lungs [85], thy-
mus [86], and embryos [87] etc . In the context of adipose tissue, recent studies are beginning
to utilize scRNA-seq and appropriate bioinformatic techniques, for investigating the molec-
ular regulation of adipogenesis in rodents [88, 89]. However, recovery of mature adipocytes
is severely limited in such studies, in part because of the technical barriers associated with
isolating intact, single adipocytes from primary tissue samples. Primary adipocytes can be
difficult to work with due to their fragile nature, high buoyancy, and large size [90]. Existing
protocols for tissue digestion and single-cell suspension preparation often result in complete
or partial adipocyte lysis and therefore are not compatible with scRNA-seq. To address
the challenge of working with tissues that are difficult to dissociate into single cells, recent
studies have turned to single-nucleus RNA-sequencing (snRNA-seq) as an alternative ap-
proach for transcriptomic profiling of cellular heterogeneity within primary tissue [91–97].
These studies rely on nuclear mRNA to serve as a proxy for the single-cell transcriptome,
and take advantage of protocols which enable efficient extraction of intact nuclei. However,
a single nucleus contains 10-100-fold less mRNA than whole-cells, with snRNA-seq marked
with inherent transcript enrichment and detection biases. Therefore, it is not clear whether
snRNA-seq has enough sensitivity for mapping adipogenic transcriptional signatures in the
human adipose tissue. Consequently, in Chapter 4, I systematically compare the transcrip-
tomic landscape of single nuclei isolated from preadipocytes and mature adipocytes across
human white and brown adipocyte lineages, with whole-cell transcriptome [98]. I demon-
strate that snRNA-seq is capable of identifying the broad cell types present in scRNA-seq at
all states of adipogenesis. However, I also explore how and why the nuclear transcriptome is
biased and limited, and how it can be advantageous. I robustly characterize the enrichment
of nuclear-localized transcripts and adipogenic regulatory lncRNAs in snRNA-seq, while also
providing a detailed understanding for the preferential detection of long genes upon using
this technique. To remove such technical detection biases, I propose a normalization strategy
for a more accurate comparison of nuclear and cellular data. Overall, my results illustrate the
applicability of snRNA-seq for characterization of transcriptomic diversity in the adipose tis-
sue. Hence, in Chapter 5, I generate a high-resolution temporal transcriptional landscape of
adipogenesis in humans by performing large-scale snRNA-seq experiments on differentiating
white and brown preadipocytes.
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1.6 Scope of the dissertation

In Chapter 2, I review quantitative imaging and computational image processing techniques
for non-destructive profiling of lipid droplet morphology, composition and spatial distribution
at the single-cell level. I also discuss experimental strategies for combining lipidomic and
transcriptomic analysis at the single-cell level, enabling a more comprehensive profiling of
adipocyte identity. In chapter 3, I follow up on one of the experimental strategies discussed
in Chapter 2 and develop (µCB-seq), a microfluidic platform that combines high-resolution
imaging and sequencing of single cells, thereby enabling a comprehensive adipocyte identity
characterization. A requirement of such paired measurements, however, is extraction of
intact single adipocytes with preserved morphology, which is currently possible for only
in vitro adipogenic model systems (primary samples undergo adipocyte lysis during tissue
digestion).

In chapter 4 and 5, I shift my focus away from adipose tissue heterogeneity onto adipose
tissue development, where snRNA-seq is emerging as the preferred technique for investigating
molecular underpinnings of adipogenesis. In chapter 4, I perform systematic characterization
of transcript enrichment and detection biases in snRNA-seq as compared to scRNA-seq for
mapping human adipocyte lineages and illustrate the applicability of snRNA-seq in recov-
ering similar biology as scRNA-seq within the adipose tissue. Finally, In chapter 5, I utilize
large-scale snRNA-seq to create a temporal transcriptional landscape of white and brown
fat development in humans.
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Chapter 2

Quantitative imaging of lipid droplets
in single cells

2.1 Introduction

In Chapter 1, we discussed how lipid droplet (LD) morphology, its composition, and spa-
tial distribution are key features that play critical role in defining adipocyte identity and
function. Besides its role in energy storage, LDs also regulate lipid metabolism for processes
such as construction of cell membranes [41, 42], key signaling pathways [41, 43], and protein
degradation [44] & function [45]. Typically, LDs store a wide distribution of lipid molecules
with structural variations in their hydrophobic and hydrophilic regions, and alterations in
lipid metabolism directly changes this composition [99, 100]. The field of lipidomics aims to
study such changes in lipid metabolism in response to physiological (adipogenesis), patho-
logical (obesity, lipodytrophy), and environmental (nutritional intake) conditions by char-
acterizing the compositional distribution of all cellular lipids residing in LDs. Established
techniques for lipidomic analysis include gas or liquid chromatography-mass spectrometry
(GC/LC-MS)[101–103] and shotgun mass spectrometry [104, 105]. GC/LC-MS and shotgun
techniques allow for targeted and untargeted detection of lipid molecules, respectively, when
implemented on biological extracts from a population of cells (Fig. 2.1A). Recent advance-
ments in sample preparation and ionization techniques have further enabled researchers to
profile the lipidome at the single-cell level based on microarray for MS (MAMS), single-
cell matrix assisted laser desorption/ionization-MS (MALDI-MS), and subcellular content
aspiration-based MS techniques [106–109]. Imaging mass spectrometry (IMS) is an imaging
method that allows for visualization and quantification of spatial distribution of lipids in
intact biological systems [110–114]. Implementation of IMS techniques requires extensive
sample preparation [115] with spatial resolution ranging from submicron to hundreds of mi-
crons depending on the ion source [116]. Typically, sensitivity of MS-based techniques lies
in the picomolar range with detection specificity of hundreds of lipid species simultaneously
[117]. Such high sensitivity and specificity of MS-based techniques comes at the cost of



destructive measurements.

Figure 2.1: Pipeline of mass spectrometry (MS) and microscopic quantitative imaging
for lipidomic analysis (A) In MS-based techniques, lipid is extracted from bulk cells. Extracted
lipid can be separated using a gas/liquid chromatographic column before mass spectrometric de-
tection, or directly infused in mass spectrometer for untargeted detection. (B) In quantitative
imaging-based techniques, multiple live cells in the field of view are first imaged non-destructively
to generate a lipid-specific contrast. The image is then computationally analyzed to segment cells
and quantify properties of subcellular lipid droplets at the single-cell level.

Quantitative microscopic imaging techniques are complementary to MS-based technology
and allow for non-destructive spatial characterization of LDs in live cells but with less lipid
specificity. The non-destructive nature of optical microscopy allows researchers to perform
time-resolved imaging to investigate dynamic cellular behavior. Furthermore, live-cell imag-
ing can be coupled with subsequent molecular measurements such as sequencing or mass-
spectrometry. Also, when combined with image processing algorithms, microscopy enables
researchers to gather subcellular information such as LD morphology, or LD composition.
This circumvents the need for physical isolation of single cells, thereby increasing the speed
of data acquisition (Fig. 2.1B).

Amongst quantitative microscopic imaging techniques, fluorescence imaging allows for
quantification down to a single molecule level. Fluorescence imaging with lipid-soluble dyes,
lipid-binding probes, or fluorophore-conjugated lipids, has been used to study the compo-
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sition and morphology of LDs [118, 119]. In some cases, the process of labeling can alter
the distribution of cellular lipids. For example, Yen et al. showed that staining based on
both Nile red and BODIPY does not correlate with fat stores for the model organism C.
elegans [120]. Complementary to fluorescence imaging are label-free optical techniques such
as phase contrast [121], differential interference contrast [122], quantitative phase-imaging
[123], and third harmonic generation microscopy [124] that have been used to visualize LDs.
In order to extend the capabilities of label-free imaging techniques for lipid profiling and
quantification, magnetic resonance imaging (MRI) and coherent Raman scattering (CRS)
techniques have been implemented to provide a lipid-specific contrast. MRI is an imaging
technique based on nuclear magnetic resonance that has been implemented for quantification
of total fat content and lipid accumulation [125–127]. The high penetration depth achieved
from near-IR imaging allows researchers to implement MRI techniques in vivo. For in vitro
and in vivo label-free mapping of LD composition, CRS imaging techniques are used. CRS
techniques include coherent anti-Stokes Raman scattering (CARS) imaging and stimulated
Raman scattering (SRS) imaging, both of which have been widely used to quantify LDs at the
single-cell level with high spatial and temporal resolution. In this review, we will highlight
applications of CRS techniques for quantifying LDs. We will also discuss object recognition
algorithms for identification of LDs and cellular boundaries in an image. Such segmentation
analysis is necessary for microscopy to be used for quantitative single-cell analysis. We will
conclude by discussing the implications of non-destructive CRS techniques towards promises
of multi-omic analysis at the single-cell level.

2.2 Coherent Raman scattering (CRS) microscopy

CRS microscopy provides a label-free approach for profiling the chemical composition of
biological specimens by probing the characteristic vibrational modes of molecular bonds.
Because of the strong vibrational modes associated with CH2, CRS is particularly powerful
for imaging intracellular lipids. For selective imaging of lipids, the asymmetric-stretching
vibrational mode of the carbon–hydrogen bond is probed at 2845 cm-1 (Fig. 2.2A). CRS
is induced by simultaneously illuminating the specimen with two photons at frequencies ωp

(pump) and ωs (Stokes). When the difference in frequency between the two photons equals
a vibrational frequency that is characteristic of the target molecule

Ω = ωp − ωs,

the Raman scattering cross-section is resonantly enhanced giving rise to a strong CRS signal.
Coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) are
two imaging modalities that operate on this principle. In CARS, a signal is detected at the
anti-Stokes frequency, ωAS, given by

ωAS = 2× ωp − ωs
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Figure 2.2: Vibrational imaging of lipids using coherent Raman scattering.(A) Sponta-
neous Raman spectra of oleic acid. The red solid line indicates asymmetric stretching vibrational
mode of the carbon–hydrogen bond at 2845 cm-1.(B) Schematic of excitation and detection for co-
herent Raman scattering. For both coherent anti-stokes Raman scattering (CARS) and stimulated
Raman scattering (SRS) imaging, a characteristic vibrational mode of the CH2 bond in lipids is
excited with two incoming photons at the pump (ωp) and stokes (ωs) frequency. Stimulated raman
loss (SRL) is detected as a loss in the pump intensity and stimulated Raman gain (SRG) is detected
as a gain in the stokes intensity. CARS is detected at the anti-stokes frequency, ωAS

CARS relies on homodyne detection, as ωAS can be separated from both the incoming
frequencies ωp and ωs using a dichroic mirror or optical filters [128]. In SRS, one of the two
incoming photons, ωp or ωs, is amplitude modulated and the signal is detected as a loss or
gain in the intensity of the pump or Stokes photon respectively (Fig. 2.2B). Therefore, SRS
techniques utilize heterodyne detection schemes and require a lock-in amplifier to amplify the
modulated stimulated Raman loss or gain [129]. As CARS and SRS are nonlinear optical
processes, signal is only generated at the focal plane of the objective, enabling intrinsic
three-dimensional sectioning by scanning in the x, y, and z axes. Long-term live cell imaging
is also possible as CRS contrast is not limited by photobleaching. CARS and SRS are
diffraction limited techniques and therefore offer quantification at a sub-cellular level with
resolution as low as hundreds of nanometers. The CARS signal is quadratic with respect to
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the concentration of resonant chemical bonds and the SRS signal is linear. SRS also has a
higher signal to noise ratio (SNR) as compared to CARS because there is no non-resonant
background. However, heterodyne detection in SRS requires additional instrumentation
(lock-in amplifier) which is bypassed in CARS by using appropriate filters for homodyne
detection.

Multiphoton excitation techniques like CRS imaging employ ultrashort pulsed lasers to
obtain high concentrations of laser power inside the sample, which is necessary for efficient
excitation of the targeted vibrational mode. A possible consequence of this elevated laser
irradiance is photodamage to cells and tissues. Schönle and Hell developed a model for
investigating the effects of optical absorption (in near-IR, by water in biological specimens)
on focal heating during multiphoton excitation microscopy [130]. Their results showed an
increase in focal temperature by not more than 3 K for an average laser power of 100
mW at the focal plane, suggesting that heating through linear absorption does not play
a destructive role. However, the required peak laser power, to maintain an average laser
power of 100 mW, may lead to nonlinear photodamage. Other studies have shown that
maintaining laser power below 10 mW at the focal plane is considered to be a safe range
for sample integrity [131, 132]. Some applications of CRS imaging may require higher laser
power for fast and efficient excitation of the resonant mode [133, 134]. For such purposes,
optimizing the average and peak laser power should be the first step towards maintaining a
strong signal while minimizing photodamage to the sample [135]. Work has been done by
several research groups to identify and define criterias for characterization of photodamage
induced by nonlinear imaging [136–139].

In this section, we discuss investigations using CRS techniques for quantifying LDs.
In section 2.3, we will then discuss object recognition algorithms applicable for cell and
LD boundary determination. Section 2.4 will focus on biological investigations using CRS
techniques coupled with segmentation algorithms for quantitative single-cell and single-lipid
droplet analysis.

CARS and SRS

As CARS signal is quadratic with molecular concentration of the resonant bond, quantifica-
tion using CARS requires processing of signal intensity. For example, Chen et al. derived
a formula to calibrate CARS intensity to accurately report the number of lipid molecules
in the scattering volume [140]. In this study, they developed an automated image analysis
algorithm for quantification of lipid content in single cells. Rinia et al. adopted another strat-
egy where they implemented spectral-analysis tools in conjunction with multiplex CARS for
retrieval of spontaneous Raman-like spectra which is linear with the number of vibrating
molecules [141]. In this study, they analyzed the retrieved spontaneous Raman-like spectra
to map the acyl chain unsaturation and acyl chain order within individual LDs in adipocytes,
which were incubated with exogenous free fatty acids (FFA) of varying compositions (Fig.
2.3). They found heterogeneity in lipid composition and packing in individual LDs and
demonstrated that this heterogeneity was dependent on the FFA composition of incubation
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Figure 2.3: Multiplex coherent anti-stokes Raman scattering (CARS) imaging of 3T3-
L1-derived adipocyte to map the composition and packing of individual lipid droplets.
Cells were incubated in a 1:3 mix of unsaturated:saturated fatty acid (A) Brightfield
image of an adipocyte. Spontaneous Raman-like spectra in the (B) CC-stretch and (C) CH-stretch
regions for locations indicated (in D). Retrieved spectra was then analyzed for mapping the (D)
lipid concentration, (E) acyl chain unsaturation and (F) acyl chain order on the same adipocyte.
Reprinted from ref. [141], Copyright (2021), with permission from Elsevier.

mixture. In contrast to CARS, SRS signal is linear with the number of vibrating molecules,
thereby making quantification more straightforward. Freudiger et al. demonstrated SRS as
a contrast mechanism for imaging biological specimens [129]. They monitored the uptake
and metabolism of unsaturated FFA by imaging at 3015 cm-1 wavenumber specific to the
=C–H bond in unsaturated fatty acids. Wang et al. used SRS microscopy combined with
RNA interference screening to determine lipid storage regulatory genes in C. elegans [142].
Lipid storage capacity was quantified based on mean SRS intensity. Using this technique,
they were able to screen for 272 genes and found 8 new regulatory genes for fat storage.
Besides quantifying LDs, CRS techniques have been critical towards visualizing LD growth
and formation thereby revealing new lipid functions in cellular environment [143, 144]. Nan
et al. demonstrated vibrational imaging of LDs using CARS and monitored LD formation
during differentiation of 3T3-L1 fibroblast cells into adipocytes [145]. They found that af-
ter adding adipogenic differentiation media, there was an initial clearance of LDs at the
early stage of differentiation followed by formation of large LDs (Fig. 2.4). Le and Cheng
combined CARS microscopy with fluorescence imaging and flow cytometry to investigate
heterogeneity in rates of LD formation in differentiating 3T3-L1 cells [146]. They found that
phenotypic variability among differentiating 3T3-L1 cells was dependent on the kinetics of
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an insulin signaling cascade.

Figure 2.4: Monitoring lipid droplet formation during differentiation of 3T3-L1 cells
using CARS at 2845 cm-1. Images were taken at different times after adding differentiation
induction media: (A) 0 h, (B) 24 h, (C) 48 h, (D) 60 h, (E) 96 h, and (F) 192 h. Republished with
permission of American Soc for Biochemistry & Molecular Biology, from vibrational imaging of lipid
droplets in live fibroblast cells with coherent anti-stokes Raman scattering microscopy. Reprinted
from [145] under the terms of the Creative Commons CC-BY license, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

Vibrational Raman tags

Imaging at a single frequency is insufficient for monitoring the uptake of saturated fatty
acids because all vibrational markers of saturated fatty acids are shared by unsaturated
fatty acids. However, no endogenous molecular species, including lipids, vibrate in the range
from 1800 cm-1 to 2800 cm-1, known as the “Raman-silent region” in cells. Raman tags are
biorthogonal vibrational labels that consist of chemical bonds having a unique Raman shift
in the cell’s silent region. Fatty acids have been conjugated with Raman tags for tracking
their uptake dynamics. Stable isotope substitution using 2H [147, 148] or conjugation with
alkyne tags [149, 150] are the two major strategies employed with CRS techniques. Wei et
al. demonstrated metabolic incorporation of saturated FFA into triglycerides and its storage
in LDs using alkyne tagging together with SRS [151]. Li and Cheng demonstrated direct
visualization and quantification of glucose metabolism in single cells using SRS microscopy
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coupled with isotope labeling (glucose-d7) [152]. They demonstrated up-regulation of de
novo lipogenesis in pancreatic and prostate cancer cell lines as compared to healthy cell
lines. They also showed that compared to pancreatic cancer cells, prostate cancer cells have
lower level of de novo lipogenesis but higher level of dietary lipid uptake. On the other hand,
Hu et al. monitored glucose uptake activity in live cells using a glucose analogue labeled
with an alkyne tag 9(3-O-propargyl-d-glucose, 3-OPG) [153]. In their study, they found that
glioblastoma cells have a higher level of de novo lipogenesis as compared to cervical cancer
cells. These studies demonstrated that cancer cells with differing metabolic activities can
be distinguished using Raman tagging strategies. It will be interesting to see if the reported
results can be validated for prostate and pancreatic cells using alkyne tagging and for cervical
and glioblastoma cells using isotope labeling.

Hyperspectral SRS

Single-channel imaging of deuterated or alkyne-tagged lipids has been demonstrated as a
useful tool for tracking uptake dynamics of a targeted lipid molecule. For unbiased profil-
ing of the distribution of cellular lipids in response to changes in cellular metabolic states,
hyperspectral SRS (hSRS) imaging is implemented. hSRS imaging enables researchers to
separately quantify lipid molecules with overlapping Raman spectra by utilizing subtle dif-
ferences in the spectral intensity across a range of wavenumbers [154, 155]. hSRS techniques
are often used in conjunction with spectral-analysis tools to retrieve the Raman spectra of
different molecules from the convoluted SRS spectra. The retrieved spectra can be used to
reconstruct the compositional distribution images for each lipid species (Fig. 2.5) [156, 157].
Li et al. employed hSRS imaging to quantitatively analyze the composition of intracellular
lipids inside single ovarian cancer and non-cancer stem cells and reported higher levels of
unsaturated lipids in cancer cells based on the ratio of intensities at 3002 cm-1 and 2900
cm-1 wavenumber [158]. Alfonso-Garćıa et al. used hSRS coupled with unsupervised vertex
component spectral analysis to study the metabolism and storage of deuterated cholesterol
(D38-cholesterol) [159]. They utilized the spectral differences in the CH fingerprint region
between D38-cholesterol and natural cholesterol to map the distribution of esterified and
unesterified cholesterol in LDs. They found that subpopulations of LDs exist each with a
predominant storage of esterified or free cholesterol. They also found that steroidogenic Y1
cells store triacylglycerol (TAG) and cholesteryl esters (CE) in different LDs. It is known
that steroidogenic cells and macrophages primarily accumulate CE in LDs and liver cells
primarily accumulate TAG in LDs [160, 161]. This study observed accumulation of TAG in
steroidogenic cells but didn’t perform any investigation in macrophages or liver cells [159].
In contrast, Fu et al. detected only CE containing LDs in macrophages and only TAG
containing LDs in hepatocytes [162]. In this study, spectral differences between TAG and
CE were utilized to quantitatively profile the two classes of neutral lipids. Based on these
observations, it will be interesting to see whether lipid sorting occurs in macrophages, liver
cells and other cell types using Alfonso-Garćıa’s methodology. Fu et al. also characterized
lipid compositional changes associated with metabolic disorders and further extended hSRS
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coupled with isotope labeling to simultaneously trace saturated and unsaturated fatty acids
[162].

Figure 2.5: Hyperspectral stimulated Raman scattering (hSRS) imaging for mapping
three types of polymer beads with overlapping but distinct Raman spectra (A) spon-
taneous Raman spectra of the three polymer beads. The black solid line indicates overlapping
Raman spectra at 3028 cm-1 (B) stimulated Raman scattering (SRS) imaging of the three polymer
beads at 3028 cm-1 with different color arrows pointing out corresponding beads (C) SRS spectra
for the three polymer beads pointed out by the arrows (in B). (D) Color-code distribution of the
three polymer beads generated using hSRS imaging coupled with spectral decomposition. PMMA:
poly (methyl methacrylate). Reprinted with permission from ref. [156] Copyright (2021) American
Chemical Society.
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2.3 Object recognition algorithms

While optical microscopy has the spatial resolution necessary to be an inherently single-
cell measurement, interpretation of micrographs in the single-cell paradigm is not always
straightforward. Historically, microscopy has been used in low volume, manual, and gener-
ally qualitative, descriptions of biological samples. Such an approach, in addition to being
susceptible to interpretation bias, is now increasingly impractical as image data has become
larger and more complex. Furthermore, with the push in the life sciences towards generat-
ing results with greater statistical power, there is more demand for quantitative analyses of
images, which all but necessitates computation. Image analysis algorithms have been under
development since the pre-digital age, and the past two decades have seen many improve-
ments in their application to biological datasets.

One of the most basic, and arguably most important, questions that can be asked about
an image is where are the boundaries between objects? When quantifying metabolic compo-
sition of cells, it is important to have an objective methodology for defining objects. In tissue
this amounts to cell boundaries, in individual cells, the subcellular structures and organelles
such as LDs. Traditional techniques for answering this question often start with contrast
enhancement and gradient-based edge detection methods. The simplest approach is thresh-
olding, with automatic threshold determination by algorithms such as Otsu’s method[163],
or balanced histogram thresholding [164]. Thresholding tends to separate objects and is also
often employed to aid in background correction. Convolution with operators such as the
Sobel [165], Canny [166], or other gradient operators can provide information on sharp line
boundaries. For more general shape extraction, the Hough transform has been a popular
choice in a wide variety of fields. First patented in 1962 for line identification [167], it was
then generalized to arbitrary shapes [168]. It is well-suited to identifying regularly shaped
features which can vary in dimension across an image.

These gradient or edge detection techniques are then frequently combined with a water-
shed based algorithm [169], which imagines filling basins from minima in the images and
draws boundaries where the watersheds meet. Implementations of these techniques can be
found in all major programming languages, and are also included in many widely available
image analysis software suites, like Fiji [170]. They have therefore been applied, in a number
of combinations and variations, for analysis of LD size and number distribution [171, 172].

More recently, the field of computer vision has shifted focus to machine learning ap-
proaches for everything from automatic feature extraction to image classification. This has
been driven in large part by the success of convolutional neural networks (CNN), and their
rapid development in the past decade. First introduced over 20 years ago [173, 174], initial
adoption was slow, but the list of current variations and applications is now constantly grow-
ing. CNNs work similarly to conventional, or ‘fully-connected’, neural networks but reduce
the number of parameters that need to be learned by using convolutions rather than transfor-
mation matrices that relate every point in the image to every point in the output. This is in
some ways analogous to some traditional methods listed above, but instead of pre-selecting,
e.g. a gradient filter, the filter is learned by the network, and there are many filtering steps.
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While generally more computationally intensive, fully-connected neural networks have also
found use in image analysis.

The major drawback for using CNNs or deep learning architectures generally is the
need for training data. This has slowed adoption in the field of lipidomics, although CNNs
have been successfully applied to numerous types of microscopy data. Medical imaging has
been a recent adopter, with hundreds of successful demonstrations in the last three years
[175]. Importantly, these demonstrations span a wide-variety of disciplines but utilize similar
network architectures. Many are straightforward modifications of well-known networks, and
often rely on already trained networks as starting points, suggesting a similar strategy may
be effective for lipidomics. Single-cell segmentation, cell cycle progression and disease state
identification, have been recently demonstrated using CNNs on fluorescent images [176].
Chen et al. also recently showed algal cell classification based on lipid content, using time-
stretch quantitative phase imaging and deep neural networks [177].

A final consideration, is that many of the imaging techniques used for lipid characteriza-
tion contain additional information beyond the purely morphological. Most of the analysis
algorithms discussed thus far have focused on segmentation and object identification. This
makes them generalizable to all types of images, but also makes them blind to the additional
information that can be encoded in some microscopy datasets. In some cases, it is there-
fore advantageous to utilize more specialized algorithms for analysis, hyperspectral coherent
Raman imaging being a prime example. Fu and Xie demonstrated the ability to segment
subcellular structures, including lipid droplets, from a hSRS dataset using a spectral phasor
method adapted from the fluorescence lifetime imaging field [178]. Di Napoli et al. were also
able to monitor uptake of different lipid components using hyperspectral CARS [179], using
an unsupervised retrieval algorithm [180].

2.4 Quantitative CRS for single-cell and single-LD

analysis

High signal to noise ratio (SNR) associated with concentrated CH2 bonds in lipids allows re-
searchers to monitor the dynamics of LDs in a straightforward fashion using CRS techniques
coupled with LD recognition and trajectory tracking packages. Jüngst et al. demonstrated
tracking of LDs using fast, long-term three-dimensional CARS imaging at 2850 cm-1 in order
to investigate the dynamics of LD fusion in living adipocytes undergoing differentiation [181].
They used the Imaris software package for detection and tracking of LDs. In Imaris, thresh-
olding is performed for automated segmentation of LDs. Morphological characterization of
identified LDs is then performed including radius and volume rendering. Detected LDs are
then tracked by selecting for appropriate three-dimensional tracking algorithm. Based on
the lipid transfer rates obtained, researchers suggested a model in which lipid transfer is
driven by the pressure difference between participating LDs through a putative fusion pore,
whose size depends on the size of the donor LD.
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Zhang et al. used SRS microscopy to study the dynamics of LDs using three-dimensional
SRS imaging at 2850 cm-1 [182]. They implemented a feature point tracking algorithm,
as developed for the Particle Tracker software [183], for monitoring LD movements. In
this software, feature points are localized by finding local intensity maxima in the filtered
image. The retrieved positions are then refined to reduce the standard deviation of the
position measurement, which takes into consideration a user-provided threshold. Once point
location matrices have been defined for each frame in the time-resolved image, a cost function
is minimized to find a set of associations for tracking each point. Using this software,
researchers demonstrated that the dynamics of LDs, quantified using maximum displacement
and speed as the parameters, can be used to differentiate changes in lipid metabolism in
living cells. They studied changes in lipid metabolism upon glucose starvation and refeeding
and showed that their methodology could predict increase in lipolysis upon starvation as
expected.

Figure 2.6: Stimulated Raman Scattering (SRS) image processing pipeline for deter-
mining cellular boundaries and characterizing lipid droplets (LDs) in single cells. (A)
Three-dimensional lipid-specific images were acquired at 2850 cm-1. The signal was processed to
generate a lipid droplet mask. The lipid droplet mask was analyzed for three-dimensional mor-
phological characterization. (B) Three-dimensional protein-specific images were acquired at 2950
cm-1 for cell boundary segmentation and cell mask generation. The position of each LD was then
recorded and assigned to an individual cell. Reprinted with permission from ref. [184] Copyright
(2021) American Chemical Society.
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Medyukhina et al. developed an image processing approach for detection of nuclear and
cellular boundaries from co-registered two-photon excited fluorescence (TPEF) and CARS
images respectively [185]. For nuclei boundary determination, they first used the local gray-
scale minimum from denoised TPEF images for localization of nuclei centers. The gradient
maxima from each nucleus location was used to detect the nuclear boundary. Once nuclei
locations and boundaries were validated, they subsequently used TPEF images to delineate
the cellular boundaries in the denoised CARS images. They assumed that the cellular
boundary corresponds to the first local gradient minimum behind the nuclear boundary.
Finally, they demonstrated the implementation of this approach for automated segmentation
of cells and nuclei in brain tumor samples.

In order to reveal single-cell heterogeneity, data has to be acquired from multiple single
cells for statistically significant conclusions. Cao et al. characterized the mechanisms of
LD growth and formation upon lipid accumulation, as induced by exogenous FFA, at the
single-cell level using SRS microscopy [184]. LD growth and formation was monitored by
tracking the number, average size, and average SRS intensity of LDs in a single cell un-
der various concentrations of FFA. To increase throughput and therefore statistical power,
all experiments were performed on a microfluidic platform capable of delivering controlled
concentration of FFA to uniquely addressable nanoliter cell culture colonies. Images were
obtained at 2850 cm-1 to identify LDs (Fig. 2.6A). A second set of images were taken at
the protein-rich CH3 stretching vibration at 2950 cm-1 to extract boundaries of single cells.
Thresholding was performed to generate a LD and cell mask. The position and morphology
of each LD was then recorded and assigned to an individual cell (Fig. 2.6B). In this inves-
tigation, researchers found that lipid accumulation in nonadipocyte cells is mainly reflected
in the increase of LD number, as opposed to an increase in their size or lipid concentration.

2.5 From lipidomic to multiomic analysis

Highly-multiplexed barcoding strategies and automated fluid handling has now made it pos-
sible to profile the transcriptome from thousands of single cells in one experiment. However,
in order to understand the correlation between gene expression and metabolic states at the
single-cell level, multiple measurements must be made on the same single cell. Because CRS
imaging is non-destructive, cells can be sequenced directly downstream of lipidomic analysis,
thereby making implementation of multi-omic approaches possible. In this section, we will
discuss the applicability of utilizing the developed microfluidic and microscopic platforms
for combined single-cell genomic and lipidomic analysis.

Microfluidic platforms

Microfluidic technology has proven critical for increasing the throughput of NGS techniques
permitting profiling of genome-wide features from a large number of single cells. Implemen-
tation of single-cell sequencing requires single-cell isolation. In microfluidic platforms, this is
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Figure 2.7: Combining lipidomic and genomic analysis at the single-cell level. (A)
Lipidomic and genomic analysis using microfluidic single-cell isolation. A single cell is physically
isolated in a small chamber using valve-based compartmentalization. While the cell is trapped,
images are acquired in a non-destructive fashion using coherent Raman scattering (CRS) imaging for
lipidomic analysis. The cell is then pushed downstream for library preparation and finally sequenced
using next generation sequencing (NGS) techniques. (B) Lipidomic and genomic analysis using
microscopy and computational cell-segmentation. Multiple live cells are imaged on a coverglass
using CRS. Individual cells are then computationally isolated using object recognition algorithms
and images are analyzed for lipidomic analysis at the single-cell level. The transcriptome of the
same cells is then profiled using in situ sequencing techniques.

typically achieved by valve-based compartmentalization [17, 18], droplet encapsulation [32,
33], and microwell separation [30, 186]. After single-cell isolation, downstream library prepa-
ration reactions are implemented. Another advantage of microfluidic devices is the optical
transparency of the polymer used for chip fabrication, polydimethylsiloxane (PDMS), which
enables researchers to visualize sequencing protocols in real-time using a microscope. Be-
cause of the optical transparent nature of microfluidic devices and the necessity to physically
isolate single cells, lipidomic and genomic analysis can be performed on the same single cell
by acquiring images upstream of library preparation reactions (Fig. 2.7A).

Streets et al. developed a microfluidic platform for whole-transcriptome profiling of single
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cells [17]. In this device, cells were isolated in nanoliter-scale trapping chambers using a valve-
based strategy. CRS imaging can be performed while cells are trapped thereby allowing
researchers to perform combined lipidomic and genomic analysis on the same cell. Lane
et al. integrated epifluorescence microscopy with scRNA-seq on a commercial microfluidic
platform, Fluidigm C1 [187]. They used this approach to measure both the dynamics of
activation for a specific transcription factor and the global transcriptional response in the
same individual cell. Instead of fluorescence microscopy, label-free CRS imaging can be
implemented on this platform for combined lipidomic and genomic analysis on the same
cell. Gierahn et al [188]. and Bose et al. [189] developed platforms for massively parallel
scRNA-seq based on gravitational settling of single cells in subnanoliter and picoliter-scale
microwells respectively. As cells are stationary while isolated in microwells, this solid-phase
capture can be utilized for high-resolution CRS imaging upstream of library preparation
reactions. Zhang et al. developed a flow cytometer based on Raman scattering for fast,
high-throughput single-cell analysis [190]. They developed a multiplex stimulated Raman
scattering flow cytometry (SRS-FC) technique for measuring chemical contents of single cells.
This technique can be extended for quantifying lipid content in single cells. These cells can
then be isolated using droplet encapsulation platforms [32, 33] for scRNA-seq. Thus coupling
SRS-FC with droplet encapsulation-based microfluidic platforms will allow researchers to
perform combined lipidomic and genomic analysis on the same cell. Such coupled datasets
will transform the way we understand single-cell biology by enabling researchers to study
the correlation between single-cell phenotype and gene expression profile.

High-speed CRS imaging

Microfluidic devices have enabled researchers to perform single-cell analysis in a high-throughput
fashion. In the previous paragraph, we discussed the applicability of microfluidic platforms
for retrieving lipidomic (CRS imaging) as well as transcriptomic (scRNA-seq) information
from the same single cell, thereby advancing towards multi-omic approaches. However,
implementation of such coupled experiments on hundreds to thousands of single cells will
require application of high-speed CRS imaging techniques for fast single-cell lipidome profil-
ing. As discussed previously, hyperspectral imaging techniques are essential for profiling the
distribution of multiple cellular lipids simultaneously. Thus, it becomes critical to employ
hyperspectral CRS techniques capable of rapid spectral acquisition at microsecond scale.
Recent developments in CARS and SRS instrumentation have been influential in accelerat-
ing the spectral acquisition rate. For example, Liao et al. demonstrated parallel acquisition
of SRS signal over 180 cm-1 bandwidth (∼ 20 spectral data points) with 42 µs pixel dwell
time using spectrally focused laser pulses and a homebuilt microsecond optical delay-line
tuner [191]. He et al. integrated a galvanometer mirror-based rapid-scanning optical delay
line with spectrally focused laser pulses to acquire a spectrum with 20 data points in 40
µs [192]. Liao et al. built an array of tuned amplifiers for lock-in free parallel acquisition
of SRS signal over 180 cm-1 bandwidth (∼ 20 spectral data points) with 32 µs pixel dwell
time using multiplexed SRS [193, 194]. Alshaykh et al. integrated a rapid acousto-optic
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delay line with spectrally focused laser pulses to achieve parallel acquisition of SRS signal
over 180 cm-1 bandwidth (∼ 20 spectral data points) with 12.8 µs pixel dwell time [195].
Hashimoto et al. coupled a rapid-scanning retro-reflective optical path length scanner with
a Fourier-transform CARS (FT-CARS) system to accomplish spectral acquisition rate of
20,000 spectra per second over 1300 cm-1 bandwidth (∼ 130 spectral data points) [196].
Tamamitsu et al. updated this system to incorporate a more rapidly scanning optical delay
line thereby achieving spectral acquisition rate of 50,000 spectra per s (∼ 500 spectral data
points) [197]. Recently, Coluccelli et al. demonstrated parallel detection of CARS signal
with Raman shifts of ∼ 3000 cm-1 using FT-CARS. The system was based on a single high-
power Yb-fiber laser source coupled to a FT interferometer with pixel dwell time of 160 µs
(∼ 675 spectral data points) [198]. He et al. achieved simultaneous two-color SRS imaging
by engineering the profile of Stokes beams and utilizing the output of a dual-phase lock-in
amplifier, thereby reaching the maximum speed as in a single-color SRS [199]. Thus, such
studies focused on development of rapid CRS imaging techniques demonstrate the promise
of coupling high-content spectral imaging with high-throughput single-cell analysis.

Microscopic platforms

An alternative to physical isolation for single-cell genomic analysis is to employ techniques
that turn the genomic information into optical information in situ. Fluorescence in situ
hybridization (FISH) is a technique that uses fluorescent probes that bind specifically to
complementary nucleic acid sequences. Thus, researchers can obtain spatial information
about the distribution and subcellular localization of specific DNA or RNA molecules. In
situ sequencing leverages FISH to extract sequence information from tens to hundreds of
targeted transcripts for large scale gene expression profiling in single cells [200–202]. Such
methods preserve the microenvironment of the biological sample allowing single molecule
RNA sequencing and localization without removing cells from their original context. These
emerging technologies are enabling a new-wave of spatial transcriptomic studies, which link
single-cell gene expression to cellular niche in a tissue or organ. Since FISH techniques are
fundamentally based on imaging, quantitative CRS techniques for lipidomic analysis can be
combined with in situ sequencing for multi-omic single-cell analysis. Fig. 2.7B illustrates
how single-cell transcriptomics might be combined with CRS-based single-cell lipidomics.

2.6 Conclusion

Coherent Raman scattering (CRS) techniques have become an essential tool for profiling
LDs in single-cells by enabling researchers to quantify intracellular lipids in a non-destructive
and time-resolved fashion. As the development of CRS instrumentation progresses towards
higher specificity, sensitivity, and faster hyperspectral imaging, and next generation sequenc-
ing techniques advance towards higher throughput single-cell genomic analysis with lesser
bias, coupling these techniques will lead to a more acute understanding of the regulation
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of metabolic pathways. Particularly in the context of adipose tissue, adipocytes display a
wide range of functions and phenotypes, from energy storage in large unilocular LDs (white
adipocytes) to thermogenic lipolysis of small LDs (brown adipocytes). Adult humans were
thought to only have white adipose tissue with brown adipose tissue being essentially absent
after infancy [203, 204]. In the early 2000s, observations in the field of nuclear medicine
started challenging this notion [205, 206]. Multiple studies performing positron emission
tomography (PET) with [18F]-fluorodeoxyglucose (FDG) for staging of cancer observed in-
creased uptake of glucose in tumor-unrelated areas [205, 206]. These areas were found in
the neck and shoulder region and presented itself with features of adipose tissue. It was
hypothesized that this FDG uptake could represent activated brown adipose tissue in adult
humans and this was finally demonstrated by three independent studies in 2009 [207–209].
Now, the existence of brown adipose tissue in adult humans is a well-accepted fact in the
research community. Rodents also have a third kind of adipocyte called beige adipocyte,
which has a different developmental origin from brown adipocytes [48]. This fact naturally
raises the question of whether humans also possess beige adipocytes. Interestingly, recent
investigations of human brown adipocytes have reported the mixed presence of presumed
beige adipocytes [51, 210]. These claims have been reported based on the upregulation of
beige adipocyte markers as identified in rodents. Consequently, it is clear that we are only
just beginning to understand and appreciate the vast cellular diversity of human adipose
tissue. These data raise some critical questions about the composition of human adipose
tissue that might only be addressed with single-cell measurements. Technology that couples
CRS for lipid profiling and RNA-sequencing for gene expression analysis in single cells could
greatly advance our understanding of adipocyte heterogeneity. We anticipate that imaging
and sequencing single cells will be the next wave of multi-omic single-cell analysis.
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Chapter 3

µCB-seq: microfluidic cell barcoding
and sequencing for high-resolution
imaging and sequencing of single cells

3.1 Introduction

In Chapter 2, we ended with how the scientific community is just beginning to understand and
appreciate the vast cellular diversity of human adipose tissue, and technologies that couple
imaging and sequencing measurements for lipid and gene expression profiling respectively,
in single cells, could greatly advance our understanding of adipocyte heterogeneity. Broadly
speaking, in almost all cell-types, identity is not entirely described by the transcriptome
alone. Rather, phenotypic features such as morphology, protein localization, and metabolic
composition provide critical information about the identity, function, or state of cells but
are not directly encoded in the genome, and therefore cannot be measured by sequencing.
Thus, optical microscopy remains an indispensable tool for characterizing phenotypic and
functional features of single cells in a wide variety of biological systems [211–213]. Combining
microscopy with scRNA-seq in such multicellular systems can provide valuable insights into
the relationship between gene expression and cellular phenotype.

Performing optical imaging and sequencing measurements on the same single cell is tech-
nically challenging because it requires precise cell manipulation and tracking. A cell’s volume
is ∼ 7 orders of magnitude smaller than that of a typical well in a microwell plate, which
makes it difficult to locate and image a single cell using a high magnification objective in
tube- or plate-based scRNA-seq protocols. A previous study demonstrated imaging and
downstream gene expression analysis using RT-qPCR for adherent cells which can be con-
fined to the bottom plane of a well, though the process of adherence and imaging takes
multiple hours [214]. A more recent study used a commercial dissection microscope to
capture images of single yeast cells at recorded coordinates, which were then selected by
an automated micro-manipulator and dispensed in a tube-based array for gene expression



analysis [215]. These examples demonstrate the challenge of imaging and sequencing sin-
gle cells with traditional “benchtop” techniques. Microfluidic technology is well-suited to
address such technical challenges, as it provides low Reynolds number, laminar flow, and
programmable fluidic control at the microscale. Specifically, multi-layer microfluidic devices
with integrated valves allow for the trapping of single cells in nanoliter volumes which al-
lows for rapid imaging and sorting for downstream genomic analysis. For example, Lane et
al. used the Fluidigm C1 for microfluidic scRNA-seq with optical microscopy to combine
fluorescent measurements of transcription factor dynamics with gene expression profiling in
single cells [187]. In this study, the link between a cell’s image and its transcriptome was
preserved by carrying out individual library preparation for each cell, making library prepa-
ration the rate limiting step. Furthermore, imaging was limited to low-magnification with a
long working distance objective. When imaging is not required, higher-throughput methods
such as microwell- and droplet-based techniques allow for multiplexed processing of many
cells at once, thus drastically reducing library preparation time [30, 32–34, 188, 216]. These
methods use microfabricated devices to isolate cells in nanoliter volumes, in which cellular
barcodes are incorporated into cDNA during RT to allow for pooling of many cells into a
single sequencing library. However, these techniques are currently not compatible with imag-
ing because cellular barcodes are assigned randomly, making it impossible to know which
transcriptome belongs to which cell image. Yuan et al. recently demonstrated a promising so-
lution to this challenge, in which the random barcode sequences were optically decoded using
fluorescence microscopy [217]. Spectrally-encoded beads [218] or printed droplet microflu-
idics [219] may provide yet other solutions for imaging and sequencing single cells. Zhang et
al. used a microfluidic droplet generator to acquire fluorescence intensity measurements of
encapsulated cells before dispensing them in nanowells preloaded with “coordinate-oligos”
for sequencing [220]. However, these studies have not demonstrated high-resolution imaging
to reveal subcellular structure. Thus, further developments are needed to realize the benefits
of combined high-resolution imaging and high-sensitivity RNA-seq on single cells.

In this chapter, we present microfluidic cell barcoding and sequencing (µCB-seq), a mi-
crofluidic platform that enables paired imaging and sequencing measurements of single cells.
Our platform uses integrated microfluidic valves to precisely manipulate single cells for iso-
lation, imaging, and multistep library preparation on-chip. In µCB-seq, independently ad-
dressable microfluidic reaction chambers are preloaded with known barcoded primers, which
are used to capture genomic material from single cells. This approach provides the ability to
couple genomic information with phenotypic information that requires high-resolution imag-
ing or even time-resolved imaging to investigate dynamic cellular behavior. Here, we demon-
strate the capabilities of µCB-seq by performing scRNA-seq using the molecular crowding
single-cell RNA barcoding and sequencing (mcSCRB-seq) protocol [13]. We find that µCB-
seq improves upon the high sensitivity of mcSCRB-seq by utilizing the benefits of microscale
volume library preparation reactions [17]. We then combine multiplexed scRNA-seq with
live-cell fluorescence imaging on-chip to demonstrate µCB-seq as a scalable platform for
extracting high-resolution phenotypic data and high-sensitivity genomic data from single
cells.
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3.2 Results

Microfluidic device design and µCB-seq workflow

µCB-seq is implemented on a PDMS microfluidic device with integrated elastomeric valves
fabricated by multilayer soft-lithography [221]. The device has two functional layers, an
upper control layer, and a lower flow layer (Fig. 3.1A). The control valves are pneumati-
cally actuated by a solenoid valve array that is operated with the KATARA controller and
a programmable computer interface [222]. The device design was inspired by a previous

Figure 3.1: µCB-seq device design and workflow (A) schematic of the microfluidic device
with control valves in blue and flow layer in red. Cells are loaded into the cell inlet and reagent
is introduced through the reagent inlet. The device processes 10 cells in 10 individual reaction
lanes, each ending in an output port. Reverse-transcribed cDNA is recovered from output ports for
all cells, pooled in a single tube for off-chip library preparation using the mcSCRB-seq protocol,
and sequenced using next-generation sequencing platforms. (B) Detailed diagram of the imaging
module showing the imaging chamber. The two isolation valves can be actuated to actively capture
a cell of interest in the imaging chamber. (C) Detailed diagram of one reaction lane showing the
lysis and RT modules separated by valves. The textured reaction chamber in the lysis module is
preloaded with barcoded RT primers.

scRNA-seq platform [17], and in this demonstration, can process 10 cells simultaneously in
parallel reaction lanes. Each reaction lane has a modular design to allow for imaging, cell
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lysis, and implementation of a wide range of multistep library preparation protocols. The
imaging module consists of an imaging chamber flanked by two isolation valves (Fig. 3.1B),
and the lysis and reverse transcription (RT) modules consist of isolated reaction chambers
separated by valves (Fig. 3.1C, Fig. A.1). During chip operation, a suspension of single cells
is loaded into the cell inlet and directed towards the imaging module using pressure-driven
flow. Once a cell reaches an imaging chamber, it is actively trapped, imaged, and then
sorted into its respective reaction lane or sent to waste, allowing for the enrichment of cell
subpopulations or the selection of rare cells. After imaging, the selected cell is ejected from
the imaging chamber into the lysis module of its reaction lane by a flow of lysis buffer from
the reagent inlet. After all 10 lysis modules are filled with lysis buffer, processing proceeds
in parallel for all 10 cells.

RT primers with known barcode sequences are preloaded in the lysis module of each
reaction lane (Fig. 3.1C, device fabrication). Each reaction lane is indexed by two pieces of
information: a known barcode sequence and its lane index on the device. As a result, all
sequencing reads with a unique cell barcode sequence can be linked to cell images with the
corresponding lane index. Barcode sequences used in this study are a subset of 8-nt long
Hamming-correctable barcodes [223] designed for 50% GC content and minimal sequence
redundancy (Table A.1). The unique molecular identifier (UMI) sequence in the RT primers
is 10-nt long.

Positioned above the reaction chambers in the lysis module are mixing paddles (Fig. A.1),
which are used to accelerate mixing as demonstrated previously [17]. After dead-end filling of
the lysis module, barcoded RT primers are resuspended in cell lysate by active mixing, after
which the entire chip is placed on a temperature-controlled platform to hybridize suspended
RT primers to cellular mRNA transcripts. The reagent input line is then flushed and filled
with RT buffer, which is injected into all reaction lanes to dead-end fill the RT module. The
RT buffer contains 7.5% PEG 8000, which has been demonstrated to increase RT efficiency
through molecular crowding [224, 225]. Reverse transcription is carried out for 1.5 hours at
42 °C, during which the mixing paddles are actuated in a peristaltic manner to circulate the
relatively viscous RT mix throughout the mixing channel of each reaction lane (Fig. A.1).

The total reaction volume of each lane is 227 nL, which is 1–2 orders of magnitude
smaller than typical plate-based protocols [13]. After RT, all lanes are independently flushed
with 1.7 µL of nuclease-free water to recover cDNA, and pooled into a single tube using
gel-loading pipette tips for a total volume of 17 µL. Additional off-chip steps including
exonuclease digestion and cDNA amplification followed by purification and Nextera library
preparation are performed in a single tube using the conventional mcSCRB-seq protocol
(Material and methods). cDNA libraries representing whole single-cell transcriptomes are
then sequenced on a next-generation sequencing platform. µCB-seq’s ability to multiplex off-
chip library preparation reactions significantly reduces the cost of Nextera reagents, which
dominates library preparation reagent cost for commercial integrated microfluidic platforms.
Consequently, a 96-cell implementation of µCB-seq stands to reduce reagent cost by almost
2 orders of magnitude as compared to non-multiplexed protocols. We performed a line-
by-line library preparation cost analysis for µCB-seq, including the cost of consumables and
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reagents, in Supplemental Table 1. Comparing this analysis to a cost estimate for commercial
platforms, we found a ∼ 50-fold reduction in total library preparation cost-per-cell [226].

Microfluidic device fabrication with addressable barcode spotting

Multilayer chip fabrication is necessary to create microfluidic devices with integrated valves
and pumps that can be actuated for precise fluidic manipulation of cells, buffer exchange,
and continuous-flow mixing of reagents [227]. These capabilities enable the implementation
of multistep reactions for library preparation on such devices [18, 228, 229]. However, as
the number of cells is increased, “world-to-chip” interfacing becomes more complex and off-
chip library preparation steps are increased proportionally [230]. For example, commercial
devices which can process 50–100 single cells require researchers to prepare an equivalent
number of individual sequencing libraries, which increases cost and processing time [231]. A
sophisticated fluidic circuit architecture and combinatorial barcoding have been implemented
to increase throughput of these devices and process up to 800 cells with only 20 individual
libraries off-chip [232]. µCB-seq offers an improved fabrication method that obviates the need
for complex routing of barcoded reagents, and could be incorporated in existing devices to
process hundreds of cells with only two inlet and two outlet ports and a single low-cost
off-chip library preparation.

In order to increase multiplexing throughput while minimizing the complexity of device
operation, µCB-seq utilizes a fabrication method that combines multilayer soft lithography
and DNA array printing to preload the lysis module of each lane with known barcoded
RT primers. This approach is similar to previous microfluidic devices for high-throughput
screening of protein-DNA interactions [233]. To verify that RT primers can be successfully
resuspended from PDMS after baking, 2 µL droplets of 2 ng µL-1 primer were manually
spotted on PDMS slabs, allowed to dry, baked at 80 °C for 2 h, and incubated at room
temperature for 24 h. Primers were manually resuspended in 2 µL of nuclease-free water and
analyzed for fragment length. The RT primers showed no noticeable degradation during the
final baking at 80 °C and can be resuspended with high efficiency (Fig. A.2).

The µCB-seq device was designed in the push-down configuration with three layers: a
thick upper control layer, a thin middle flow layer, and a thin lower dummy layer. We used
on-ratio PDMS–PDMS bonding to avoid PDMS waste and provide a stable seal by partial
crosslinking of a 10:1 base:crosslinker mixture with each new layer of the microfluidic device
[234]. The control and flow molds were first patterned using standard photolithography
techniques (Fig. 3.2A, Material and methods). The 10:1 PDMS mixture was then separately
cast onto the two molds and baked. The partially crosslinked control layer was peeled from
the mold and placed atop the thin flow layer for alignment, after which the two-layer assembly
was baked to achieve undercured PDMS–PDMS bonding (Fig. 3.2B). The two-layer assembly
was trimmed and inverted, exposing the open-faced flow layer of the device. 0.2 µL of 1.5
µM barcoded RT primers were then spotted into the lysis module of each reaction lane and
allowed to dry (Fig. 3.2C). By spotting the primers directly into the lysis modules, we avoid
subsequent alignment steps. The two-layer chip (still undercured) with dried primers was
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Figure 3.2: Fabrication of µCB-seq devices with barcoded RT primer spotting. (A)
Photolithographic patterning of control and flow molds on Si wafers. (B) Diagram of PDMS
casting and undercured PDMS bonding between the control and flow layers. (C) Detailed diagram
of barcoded RT primer spotting. Unique primers are delivered to each lysis module and dried
before the device is closed (D) by bonding to a PDMS dummy layer. (E) PDMS devices are then
plasma bonded to a coverglass for final assembly. The scale bar refers to the panels (A) to (E).

placed atop an undercured dummy layer and bonded with heat to complete crosslinking
between the layers (Fig. 3.2D). The PDMS–PDMS bond between the spotted flow layer
and the bottom dummy layer in the µCB-seq device is achieved without the use of oxygen
plasma, thereby preserving primer integrity. After complete curing, the three-layered µCB-
seq device was cut from the dummy wafer and oxygen plasma was used to bond this final
device assembly onto a #1.5 glass coverslip. The result of this fabrication protocol was a
valve-based multilayer microfluidic device, preloaded with intact barcoded RT primers at
addressable locations (Fig. 3.2E, Material and methods).

µCB-seq yields high-quality scRNA-seq libraries

µCB-seq was designed to be compatible with most barcoded single-cell library prepara-
tion protocols. In this demonstration of µCB-seq, single-cell cDNA libraries were prepared
by implementing the highly sensitive mcSCRB-seq protocol within the microfluidic device.
mcSCRB-seq is a multiplexed 3’ counting method using cell barcodes and UMIs to acquire an
absolute transcript count from each cell [13]. We first evaluated the effectiveness of µCB-seq
by generating cDNA libraries from 20 replicates of 10 pg total RNA isolated from HEK293T
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cells. Total RNA extracted from HEK293T cells was injected into the cell inlet and the 10
sets of isolation valves were simultaneously actuated to trap 10 pg RNA in each imaging
chamber (Note A.3). The contents of each imaging chamber were then pushed into their
respective reaction lanes for cDNA processing (Material and methods). The cDNA libraries
were then collected from the chip, pooled, and prepared for high-throughput sequencing. The
libraries were sequenced with read 1 (R1) encoding the 8-nt long known barcode sequence
and 10-nt long UMI and read 2 encoding the cDNA fragment. After sequencing, all raw fastq
files were analyzed using the zUMIs pipeline (Material and methods) [235]. In zUMIs, reads
with all R1 bases having quality score >20 were mapped to the human reference genome
(GRCh38) using STAR [236]. Gene annotations were obtained from Ensembl (GRCh38.93)
and filtered to remove biotypes such as pseudogenes [237]. Quantification of aligned reads
was done using the Subread package to generate expression profiles for each library [238].
Throughout this study, genes detected were defined as those for which at least one UMI was
detected. In total, all 20 libraries of purified RNA were sequenced to an average depth of
65,000 reads (Table A.2).

We first characterized the mapping statistics for each of the 20 total RNA libraries,
which allowed us to evaluate the percentage of useful reads for downstream analysis. Across
all the replicates, a median of 53% of reads mapped to exons, 11% to introns, 16% to
intergenic regions, and 17% to no region in the human genome (Fig. 3.3A). These statistics
are comparable to other 3’-barcoding-based sequencing protocols with a range of 29–57%
exonic reads, 2–15% intronic reads and 6–23% unmapped reads [239]. Detection of reads
from unspliced transcripts makes µCB-seq data compatible with single-cell analyses utilizing
splicing events such as RNA velocity [240]. Here, reads mapping to the exonic regions of
the genome were quantified to generate a UMI count expression matrix. These 10 pg total
RNA sequencing libraries generated with µCB-seq detected a median of 3008 unique genes
with only 30,000 reads per sample (Fig. 3.3B). Transcript abundance was strongly correlated
between µCB-seq libraries, with a median pairwise Pearson coefficient of 0.84 (n = 190 pairs)
across reaction lanes and devices (Fig. 3.3C).

Next, we compared transcript abundance in these pseudo-single-cell libraries with typical
gene expression in HEK293T cells as measured by bulk RNA-seq of HEK total RNA (1 µg,
Material and methods). For comparison, we pooled the reads from all 20 µCB-seq libraries
of 10 pg total RNA for a total of 1.3 million reads (Table A.2) and compared the genes
detected against those present in 1.3 million bulk sample reads (TPM > 0). With the same
total number of reads, ∼70% of genes that were present in bulk RNA-seq library of 1 µg
total RNA were also detected in pooled µCB-seq libraries consisting of 200 pg RNA in total
(Fig. 3.3D). There were over 700 genes that were detected in µCB-seq but not in bulk
RNA-seq. These are likely a combination of low-abundance transcripts and transcripts that
are not primed or reverse-transcribed in bulk due to molecular differences in the protocols.
Transcript abundance in an average 10 pg total RNA library (averaged counts per million
over all 20 replicates) correlated well with the bulk measurement (Pearson correlation =
0.65, p-value < 0.05, Fig. 3.3E). This demonstrates that µCB-seq can recapitulate expected
gene expression profiles with low quantities of mRNA.
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Figure 3.3: 20 libraries of 10 pg total RNA extracted from HEK293T cells were se-
quenced using µCB-seq. (A) Distribution of percent exonic, intronic, intergenic, ambiguous
and unmapped reads in each of the 20 libraries sequenced to an average depth of 65,000 reads per
sample. (B) Number of genes detected (UMI count >0) in each of the 20 libraries subsampled to a
depth of 30,000 reads per sample. (C) Distribution of correlation in gene expression profile for all
possible pairs of the 20 libraries (n = 190 pairs) subsampled to a depth of 30,000 reads per sample.
Pearson correlation coefficients were calculated for genes detected in at least one of the 20 libraries.
(D) Genes detected in a pool of the 20 libraries for a total sequencing depth of ∼ 1.3 million reads
(grey circle) compared with the genes detected in a bulk library (TPM > 0) prepared using 1 µg
total RNA and sequenced to the same depth (red circle). (E) Scatter plot shows correlation in gene
expression profile between an average 10 pg library of total RNA and the bulk library prepared
using 1 µg total RNA. Pearson correlation coefficient was calculated using genes detected in either
bulk sample or one of the 20 total RNA libraries.

µCB-seq offers improved gene detection sensitivity

The sensitivity of a scRNA-seq protocol can be understood as the efficiency of mRNA capture
and conversion into sequenceable cDNA molecules. More practically, the number of genes
detected from a single cell is commonly used as a proxy for sensitivity. Gene detection
sensitivity can be reduced by many sources of inefficiency, including adsorption of molecules
to reaction chamber walls, inefficient reverse transcription, and transcript loss during bead
cleanup steps. When molecules are lost after PCR, the information content of the library is
not reduced significantly, since each transcript has many duplicates in the pool that contain
the same information. Transcript loss before PCR, however, reduces the overall library
complexity and severely reduces the sensitivity of the protocol. Multiplexed plate-based
scRNA-seq protocols often rely on lossy bead-based cleanup to pool and concentrate single-
cell cDNA libraries after RT but before PCR, a process which necessarily loses unique cDNA
molecules during bead binding and elution [13, 241, 242]. This loss of molecules before PCR
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reduces the sensitivity and gene detection capability of multiplexed scRNA-seq protocols
compared to their theoretical maximum. Here, we show that microfluidic library preparation
allows us to improve performance of a highly sensitive protocol by eliminating post-RT
bead-based pooling altogether, because cDNA only occupies nanoliter-scale volumes on-
chip. We evaluated the sensitivity of scRNA-seq on the µCB-seq platform by sequencing
the transcriptomes of single HEK cells and comparing the genes detected to single HEK cell
libraries generated by mcSCRB-seq in a standard 0.3 mL 96-well plate (also described as
in-tube, Material and methods). We prepared scRNA-seq libraries from 18 single cells on
µCB-seq devices and 16 single cells using mcSCRB-seq in-tube. All libraries were sequenced
to an average depth of 500,000 total reads per cell (Table A.3) and downsampled to evaluate
gene detection as a function of sequencing depth. The zUMIs pipeline was used to generate
the count matrix for all sequencing depths, which included only exonic reads. µCB-seq
consistently detected more genes and UMIs (Fig. A.3), with significantly higher genes for
depths ≥ 40,000 reads per cell (p-value < 0.01, two-group Mann–Whitney U-test, Fig. 3.4A).
Moreover, µCB-seq libraries had a median of 21% intronic reads as compared to 15% in
mcSCRB-seq (Fig. A.7) which were not counted during transcript quantification, making
Fig. 3.4A a conservative estimate of the sensitivity improvements offered by the microfluidic
protocol (Fig. A.4).

We further evaluated the sensitivity of µCB-seq and mcSCRB-seq in-tube by comparing
gene detection efficiency as a function of transcript abundance across all expression levels.
Detection efficiency was calculated as the fraction of genes detected in bulk that were also
detected in a single cell for a given abundance bin. Bulk library was prepared using 1 µg total
RNA extracted from HEK293T cells and sequenced to a depth of 63 million reads (Material
and methods). We downsampled all µCB-seq and mcSCRB-seq libraries to 200,000 reads
per cell with 16 cells in each protocol. µCB-seq detected more genes than mcSCRB-seq
across all expression levels, with a substantial increase in our ability to detect low- and
medium-abundance transcripts (Fig. 3.4B and 3.4C).

Next, we assessed measurement precision in the µCB-seq protocol as compared to mcSCRB-
seq in-tube. Variation in gene count measurements between single-cell cDNA library prepara-
tions is caused by technical variation such as pipetting, human handling errors, and sampling
statistics, as well as true biological variation between cells. With microfluidics, it is possible
to minimize the technical noise by automating and parallelizing library preparation reactions
in lithographically defined volumes [17, 243]. As the noise associated with technical arti-
facts decreases, we gain statistical power to parse out real biological variation. To quantify
this, we calculated the coefficient of variation (CV) for common genes detected across bulk
RNA-seq, µCB-seq, and mcSCRB-seq libraries as a function of bulk expression levels. We ob-
served slightly lower variation in µCB-seq compared to mcSCRB-seq across the entire range
of bulk expression except for very highly abundant genes (TPM ≥ 560, Fig. A.8). These
results indicate that µCB-seq offers improved gene detection sensitivity with comparable
measurement precision by eliminating lossy post-RT bead-based cleanup and carrying out
library preparation in lithographically defined nanoliter-scale volumes. Furthermore, µCB-
seq demonstrates similar or improved performance as compared to commercial microfluidic
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Figure 3.4: µCB-seq is more sensitive than in-tube mcSCRB-seq protocol. (A) Median
genes detected for downsampled read depth across single HEK cells sequenced using µCB-seq and
mcSCRB-seq. µCB-seq detected significantly higher genes for read depth ≥ 40,000 as tested by
two-group Mann–Whitney U-test (p-value < 0.01). Error bars indicate the interquartile range. (B)
The ratio of genes detected (UMI count >0) in the single-cell libraries subsampled to an average
depth of 200,000 reads to the genes detected in the bulk library (TPM > 0) binned by expression
level (bin width = 0.1). Bulk library was prepared using 1 µg total RNA and sequenced to a depth
of 63 million reads. Error bars indicate interquartile range (n = 16 cells for each protocol). For a
single bin (marked by +), only one out of three genes were detected in all single cells across both
protocols and was considered an outlier. A Loess regression was used as a guide to the eye for
this plot. (C) A magnified plot of panel (B) comparing the fraction of genes detected in the two
protocols with low- and medium-abundance in bulk measurement (9 < bulk TPM < 79).

platforms when modified to implement UMI based scRNA-seq protocol (Note A.3) [244].

µCB-seq links high-resolution optical images with the
transcriptome of the same single cell

µCB-seq enables the collection of both imaging and sequencing data from single cells by asso-
ciating known barcodes with microfluidic lane indices. As a proof-of-concept demonstration
of µCB-seq, we captured high-resolution confocal images and sequenced the transcriptomes
of single cells from a population of two differentially labeled cell types. We stained HEK293T
cells and human adipocyte precursor cells (preadipocytes) [76] with CellBrite Green and Red
cytoplasmic membrane dyes respectively (Material and methods). The cells were then sus-
pended and processed in three µCB-seq devices. One device processed a mix of both HEK
cells (n = 4 cells) and preadipocytes (n = 3 cells). The other two devices processed just HEK
cells (n = 7 cells), or just preadipocytes (n = 6 cells) separately. Fluorescence confocal imag-
ing was performed while cells were isolated in the imaging chambers using 488 nm and 633
nm lasers. The µCB-seq device is mounted on a #1.5 coverslip (170 µm thickness) and has
a 50 µm thick dummy layer, for a total of 220 µm distance between the focal plane and the
objective. We used a high-magnification (63x, 0.7 NA) air objective to enable high-resolution
imaging (Material and methods). After imaging, the cells were ejected into their respective
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reaction lanes for library preparation on-chip followed by pooled PCR. These 20 libraries
were sequenced to saturation in order to characterize the sensitivity of µCB-seq (Material
and methods). After sequencing, we demultiplexed reads based on their cell barcodes, which
allowed us to assign each cDNA read to the lane index and thus to the image of the cell from
which the molecule originated. In this analysis, both intronic and exonic reads were used
for generating a count matrix to utilize the introns detected by µCB-seq. Fig. 3.5A displays

Figure 3.5: Linked imaging and sequencing using µCB-seq (A) montage of representative
images of HEK cells and preadipocytes acquired using scanning transmission and scanning confocal
microscopy in the green and red channels. HEK cells and preadipocytes were stained with CellBrite
Green and Red cytoplasmic membrane dye respectively. (B) Normalized fluorescence signal in the
green and red channel confocal images of both HEK cells and preadipocytes. Analysis of images
for cell-mask generation and quantification of fluorescent intensities is explained in the Material
and methods section. (C) Accurate identification of HEK cells and preadipocytes as two cell
populations using unsupervised hierarchical clustering in the principal component space. Top 2000
most variable features were used as an input for determining the first two principal components.
(D) Unsupervised hierarchical clustering using scaled expression values of top-16 upregulated genes
in HEK cells and preadipocytes. Heat map shows z-scored expression values for the 32 genes.
On the bottom are heat map visualizations of normalized fluorescence intensities plotted in panel
(B). The heat maps for the green and red channels are ordered to accurately reflect a one-on-one
correspondence between imaging and sequencing data points.

representative transmission and scanning-confocal images of HEK cells and preadipocytes in
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both green and red channels confirming differential labeling of the two cell types (Fig. A.6).
We estimated the spatial resolution of acquired confocal fluorescent images to be 959 nm on
average, by performing decorrelation analysis (Material and methods, Fig. A.10). With this
resolution subcellular features can be reliably resolved (Fig. 3.5A, A.6). With this magni-
fication, transmission images revealed a distinct texture for preadipocytes as compared to
HEK cells (Fig. A.6). We quantified the textural features in individual transmission images
by calculating the correlation and variance of grayscale intensities54 and observed that these
two features partially separated preadipocytes and HEK cells (Material and methods, Fig.
A.11). These results demonstrate that µCB-seq allows for high-resolution imaging, which
provides the potential to draw connections between subcellular features and gene expression.

Using distinct fluorescent stains on HEK cells and preadipocytes allowed us to determine
the cell type of each captured cell prior to sequencing-based analysis. As expected, quantifi-
cation of the fluorescence signal in the green and red channels completely separated the two
cell-types along those two axes (Fig. 3.5B, Material and methods). Groups of HEK cells and
preadipocytes identified using image analysis also presented as two distinct cell populations
upon unsupervised clustering in the principal component space (Fig. 3.5C, Material and
methods). No technical artifacts associated with the three different devices were observed
in the reduced space (Fig. A.12). In this case, µCB-seq optical imaging serves as a ground
truth for näıve clustering of transcriptomic data from the same cells.

We further analyzed the sequencing dataset to understand the transcriptomic variations
in this heterogeneous group of 20 cells. Differential gene expression analysis revealed 103
genes with logFC > 0.5 and adjusted p-value < 0.05 (Material and methods). Interestingly,
preadipocytes had an enriched expression of CD44, a mesenchymal stem cell surface marker
which has been suggested to be expressed in adipogenic cells [245, 246]. We also performed
unsupervised hierarchical clustering on the expression levels of the top 16 upregulated genes
in each of the two cell types. All twenty cells were sorted into two distinct groups that accu-
rately reflected their known cell type (Fig. 3.5D). These data demonstrate that µCB-seq can
successfully pair high-sensitivity gene expression profiles with high-resolution fluorescence
images from single cells.

3.3 Conclusion

Microfluidic technologies have been at the core of the recent exponential increase in the
throughput of scRNA-seq techniques, paving the way for undertakings such as the Human
Cell Atlas project [35]. However, because scRNA-seq can only record information encoded as
a sequence of nucleotides, orthogonal measurements enabled by quantitative live-cell imag-
ing, such as fluorescence staining, subcellular lipid quantification [184], or organelle-level pH
measurements [247], will play an important role in the generation of a comprehensive human
cell atlas. In this report, we present µCB-seq, a scalable microfluidic platform which allows
us to acquire high-resolution images and generate RNA-sequencing libraries from the same
single cells. µCB-seq links optical and genomic measurements with known barcodes, which
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are pre-delivered to addressable locations on-chip and recovered with high efficiency during
device operation, even after fabrication at 80 °C. By preloading barcoded primers to reaction
chambers, the µCB-seq fabrication process obviates the need for complex fluidic routing of
multiple barcoded reagents. By combining the final reagent outlets to pool all single-cell
libraries on-chip, the µCB-seq device can easily be scaled up to process hundreds of cells
with only two inlet and two outlet ports. The device architecture needed to scale µCB-seq
to this throughput has been readily demonstrated in both academic3 [18, 228, 229] and
commercial [231, 232] microfluidic platforms. This increased throughput can be achieved
by using a microfluidic multiplexing strategy which requires only a minimal increase in the
peripheral operating equipment [248, 249]. Additionally, high-precision, low-volume array
spotters can be used to automate barcode preloading, enabling throughput at the level of
existing commercial devices with a far simpler microfluidic circuit. Due to its ability to
pool all cells and perform a single off-chip library preparation step, implementation of the
µCB-seq barcoding strategy in commercial platforms could significantly reduce the cost per
cell of sequencing library preparation (Supplemental Table 1). Ultimately, the throughput of
linked imaging and sequencing measurements by µCB-seq will be limited by imaging time.
Automated stage-scanning can be implemented in µCB-seq to reduce imaging time, as cells
are immobilized in a linear array of nanoliter-scale imaging chambers. µCB-seq devices have
a modular microfluidic circuit design allowing for the implementation of other multistep
scRNA-seq library preparation protocols on-chip. µCB-seq’s ability to correlate optical mea-
surements with gene expression on the single-cell level has the potential to provide insight
into the relationship between genome regulation and cellular phenotypes. While this scRNA-
seq demonstration uses a single barcoding step, we believe our µCB-seq barcoding approach
may prove useful for many-step reactions in which aqueous samples can be automatically
directed to multiple preloaded chambers for combinatorial spatial barcoding [250], targeted
gene expression [30], or CRISPR-based gene editing [251].

By using a microfluidic approach in µCB-seq for library preparation, we have eliminated
post-RT bead-based cleanup, minimized operational errors, and achieved nanoliter-scale, re-
producible reaction volumes. Our microfluidic approach offers improvements in sensitivity,
as demonstrated by an increased gene detection efficiency. Using µCB-seq, we were also
able to effectively reconstruct a large portion of the bulk transcriptome by sequencing 200
pg total RNA to a total depth of ∼1.3 million reads. The integration of on-chip valves
in the device allowed us to actively select cells of interest, making the µCB-seq platform
applicable for studies that focus on rare cell populations [252]. On-chip isolation valves pre-
vent cellular motion due to fluid flow, thereby allowing the acquisition of even prolonged
spectroscopic measurements [253] on our device. Compatibility of µCB-seq with a stan-
dard inverted microscope configuration enables the implementation of any single-objective
imaging technique with working distance of 220 µm, such as coherent Raman scattering mi-
croscopy [184] or super-resolution microscopy [254]. For example, µCB-seq could be paired
with super-resolution microscopy to investigate phase separation of super-enhancers and its
effect on gene expression across the whole transcriptome of individual cells [255]. Another
implementation could pair µCB-seq with microfluidic DamID [256] to investigate the bidi-
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rectional interplay between gene expression and chromatin organization in the same single
cell. We believe the µCB-seq platform will be a powerful tool for investigations aiming to
understand the association between a phenotype and the transcriptome, thereby gaining
a high-resolution fingerprint for a particular cell population identified using other higher-
throughput scRNA-seq protocols.

3.4 Materials and Methods

HEK293T cell culture and single-cell suspension preparation

HEK293T cells were obtained from the UCSF cell repository, and cultured in DMEM medium
(Gibco, 10566-016) supplemented with 10% vol/vol FBS and containing 1% vol/vol peni-
cillin–streptomycin (Gibco). The cell culture was maintained at 37 °C in a humidified in-
cubator containing 5% vol/vol CO2. Confluent cells were passaged using TrypLE (Gibco,
12563011) with a 1:25 split in a new T25 flask (Falcon, 353109). For generating HEK293T
single-cell suspensions for µCB-seq vs. mcSCRB-seq comparisons (Fig. 3.4), cells were first
grown to 100% confluence. The cells were then resuspended in 1 mL TrypLE and 5 mL of
growth media and centrifuged at 1200 rpm for 4 min. After centrifugation, the supernatant
was removed and the cell pellet was washed with 1 mL of PBS (Corning, 21-040-CV). The
cells were centrifuged again and this process was repeated for a total of three PBS washes to
remove cell debris. Finally, the concentration of the cell suspension was adjusted in ice-cold
PBS to 700 cells per µL using a hemocytometer (Hausser Scientific). After this, the cell
suspension was always stored on ice throughout the course of device operation. In most ex-
periments, around 50 µL of the single-cell suspension was aspirated into a gel-loading pipette
tip and placed into the device, although the full volume was rarely completely used, and it
is possible to decrease this volume in situations where the sample is limited.

Preadipocyte cell culture

Human preadipocytes were provided by our collaborators in the Tseng lab at Joslin Diabetes
Center at Harvard. The cells were isolated from the deep neck region of a deidentified individ-
ual using the protocol in Xue et al. and immortalized to allow for cell culture and expansion
[76]. For culturing, preadipocytes were grown in DMEM medium (Corning, 10-017-CV) sup-
plemented with 10% vol/vol FBS and containing 1% vol/vol penicillin–streptomycin (Gibco).
The cell culture was maintained at 37 °C in a humidified incubator containing 5% vol/vol
CO2. 80% confluent cells were passaged using 0.25% trypsin with 0.1% EDTA (Gibco;
25200-056) for a 1:3 split in a new 100 mm cell culture dish (Corning).
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HEK293T and preadipocyte membrane staining protocol

HEK293T cells and preadipocytes were stained with CellBrite Green (30021) and Red
(30023) cytoplasmic membrane labeling kits respectively using manufacturer’s protocol.
Briefly, cells were suspended at a density of 1,000,000 cells per mL in their respective nor-
mal growth medium. 5 µL or 10 µL of the cell labeling solution was then added per 1 mL
of cell suspension for HEKs and preadipocytes respectively. Cells were then incubated for
20 minutes (HEKs) or 40–60 minutes (preadipocytes) in a humidified incubator containing
5% vol/vol CO2. Cells were then pelleted by centrifugation at 1200 rpm for 4 min. Af-
ter centrifugation, the supernatant was removed, and cells were washed in warm (37 °C)
medium. Cells were centrifuged again, and the process was repeated for a total of 3 growth
medium washes for HEKs and 1–3 growth medium washes for preadipocytes. Cells were
then centrifuged a final time at 1200 rpm for 4 minutes and resuspended in ice-cold PBS
(Corning, 21-040-CV) for a final concentration of 700 cells per µL adjusted using a hemo-
cytometer (Hausser Scientific). The cells were then stored on ice throughout the µCB-seq
device operation.

Bulk RNA-sequencing and data analysis: Credit Annie Maslan

Total RNA was extracted from HEK293T cells using the RNeasy Mini Kit from Qiagen
(74104) with the QIAshredder (79654) for homogenization. RNA library preparation was
performed with 1µg of total RNA input quantified by Qubit fluorometer using the NEBNext
poly(A) mRNA magnetic isolation module (E7335S) followed by NEBNext Ultra II RNA
Library Prep Kit for Illumina (E7770S). Paired-end 2 × 150 bp sequencing for the bulk
library was performed on the Illumina Novaseq platform for a coverage of approximately 63
million read pairs. For analyzing the dataset, adapters were first trimmed using trimmomatic
[257](v0.36; ILLUMINACLIP:adapters-PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDING-
WINDOW:4:15 MINLEN:36, where adapters-PE.fa is:
>PrefixPE/1 TACACTCTTTCCCTACACGACGCTCTTCCGATCT
>PrefixPE/2 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT).

After trimming, reads were then aligned to the GRCh38 index generated using STAR.
We provided the GTF file that is recommended for the 10X CellRanger pipeline as an input
in STAR while generating the index. Paired-reads aligning to the exonic regions were then
quantified using the featurecounts command in the Subread package. Chimeric reads and
primary hits of multi-mapping reads were also counted towards gene expression levels. The
same GTF file as in STAR was used as the input for transcript quantification. The fragment-
counts matrix so obtained was converted to transcripts per kilobase million mapped reads
(TPM) using the lengths for each gene as calculated by the featurecounts command in the
Subread package. For analysis in Fig. 3.3, reads were subsampled to a depth of 1.3 million
reads using the Seqtk package (v1.3) [258]. These subsampled reads were then analysed in
the exact same fashion as described above.
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Confocal imaging of HEK293Ts and Preadipocytes

Fluorescence confocal imaging of cells was performed in the imaging chamber of the µCB-
seq device using an inverted scanning confocal microscope (Leica, Germany), and with a 63x
0.7 NA long-working-distance air objective. As outlined before, HEKs were stained using
CellBrite Green dye and preadipocytes were stained using CellBrite Red dye. Each cell was
excited by two continuous-wave lasers, a 488 nm Ar/Kr laser and a 633 nm He/Ne laser,
for concurrent imaging in the green and red channels respectively. Bandpass filters captured
backscattered light from 490–590 nm at the photomultiplier tube in the green channel (Green-
PMT), and from 660–732 nm at the photomultiplier tube in the red channel (Red-PMT),
with the pinhole set to 1 Airy unit. A third PMT simultaneously captured a scanning
transmission image using the unfiltered forward-scattered light. The imaging resolution was
Rayleigh-limited, with a scanning zoom of 2.2x to achieve a Nyquist sampling rate of 207
nm per pixel (as calculated for the Ar/Kr laser with a shorter wavelength). Each image was
8-bit, grayscale and 512 × 512 pixels in size. Since individual HEK cells and preadipocytes
internalized varying amounts of membrane stain, the PMT gain which utilized the entire
range of bit-depth (0–255) differed from one cell to another. Therefore, stained HEK and
preadipocyte cell suspensions were first imaged on a #1.5 coverslip for adjusting the range
of Green-PMT gain (range: 524.6) and Red-PMT gain (range: 512–582). We measured a
maximum gain of 524.6 in the green channel and 582 in the red channel to observe cellular
features, and therefore set the background PMT gain to an even higher value of 600, to
validate that lack of features in background images was not because of low PMT gain. In all
our images, the focal plane was positioned at the cross-section with maximum fluorescence
intensity. The final images were Kalman-integrated over 6 frames to remove noise. Images
in Fig. 3.5A have been adjusted to highlight cellular features. However, no adjustment was
done for quantitative image processing.

Spatial resolution quantification of confocal fluorescent images

To quantify the spatial resolution of confocal fluorescent images, we implemented decorre-
lation analysis [259] using the image-decorrelation-analysis plugin [260] on ImageJ (v2.0.0).
For analysis on ImageJ, unsaturated confocal images (with maximum pixel intensity ¡255)
were first cropped to frame the cell in the region of interest. The resolution was then com-
puted with the cropped images as input to the image-decorrelation-analysis plugin, using
these settings: radius-min = 0, radius-max = 1, Nr = 50, and Ng = 10. The median
resolution across 18 images was 959 nm (Fig. A.10).

Texture analysis of brightfield images

To quantify the correlation and variance of grayscale intensities in the brightfield images, we
used the Measure-Texture module of CellProfiler (v3.1.9) [261]. In this module, correlation
and variance are image parameters that were calculated as defined by Haralick et al [262].
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For analysis, the brightfield images were first cropped to frame the cell in the region of
interest using ImageJ (v2.0.0). Correlation and variance were then computed with cropped
images as the input to the Measure-Texture module, and scale was set to 2 pixels.

Image processing for fluorescence signal quantification

To quantify the fluorescence signal intensity in individual HEKs and preadipocytes labeled
using the CellBrite Green and Red dye respectively, we wrote a custom image analysis script
in Python (v3.7.1) using the skimage package (v0.20.2) and multi-dimensional image pro-
cessing (ndimage) package from the SciPy (v1.2.1) ecosystem. As explained in the confocal
imaging section above, each cell had two fluorescence images, one green-channel confocal
image, and one red-channel confocal image. Depending on the cell-type, one of the channels
exhibited cellular signal (green for HEK and red for preadipocytes) and the second channel
conversely was a control image. For images of individual HEK cells and preadipocytes, all
green-channel and red-channel images respectively were analyzed to generate a cell mask
(as detailed below). The pixels constituting the cell mask were designated as foreground
pixels and the remaining pixels were designated as background pixels. The fluorescence
signal to noise ratio (SNR) was then quantified as the ratio of mean foreground pixel in-
tensity over mean background pixel intensity. The same pixel annotation (for foreground
and background pixels) was also used in the control images to quantify SNR in the second
channel. In essence, we quantified the SNR in both green and red channels for each cell and
these values were normalized to linearly scale between 0 and 1 for Fig. 3.5B and 3.5D. For
cell mask generation, grayscale images were first Gaussian filtered to remove noise using the
ndimage.gaussianfilter command with sigma set as 1. The filtered images were converted
into binary images using Otsu thresholding from the skimage package. Pixels with value 1 in
the binarized images were annotated as foreground and pixels with value 0 were annotated
as background (Fig. A.6).

Principal component analysis, clustering and differential gene
expression analysis

Single HEK cells and preadipocytes were sequenced on the MiniSeq platform to an average
depth of 346,000 reads per cell (Table A.4). For consistency, reads per cell were down-
sampled to 125,000 reads across both cell types. For membrane-stained HEK cells and
preadipocytes, principal component analysis (PCA), clustering, and differential gene expres-
sion analysis were performed using the Seurat package (v3.1.1) [263] in the R programming
language (v3.5.2). First, the umi-count matrix generated using zUMIs at a read depth of
125,000 reads per cell was read using the readRDS command. The count matrix was then
used to create a Seurat object with no filtering for either cells or genes. The umi-count matrix
was log-normalized with a scaling factor of 10,000 using the NormalizeData command. The
top 2000 most variable genes in the full dataset were identified using the variance-stabilizing
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transformation (vst) method implemented by the FindVariableFeatures command. The nor-
malized count matrix was then scaled and centered to generate the Z-scored matrix using the
ScaleData command. The first and second principal components were then calculated based
on the Z-scored expression values of the 2000 variable genes using the RunPCA command
and the reduced space visualization was plotted using the ggplot2 package (v3.1.0) in R.

For clustering using Seurat, first, a K-nearest neighbor graph (KNN) was constructed
using the cell embeddings in the PCA space (K = 5). The generated KNN graph was then
used to construct a shared nearest neighbor (SNN) graph by calculating the Jaccard index
between every cell and its nearest neighbors using the FindNeighbors command. Using
the SNN graph, the clusters were then identified using the FindClusters command with
the resolution parameter set to 0.1. At this resolution, HEKs and preadipocytes separated
into two clusters as visualized in the PCA space (Fig. 3.5C). After clustering, differentially
expressed genes (logFC > 0.5 and adjusted p-value < 0.05) between the two clusters were
identified by fitting a negative binomial generalized linear model (negbinom test) on the raw
umi-count matrix as implemented in the FindAllMarkers command. Z-scored expression
values of the top 16 upregulated genes for each cell-type were then color mapped in a Heatmap
plot using the ComplexHeatmap package [264]. ComplexHeatmap was also used to perform
unsupervised hierarchical clustering of single cells and genes using the Euclidean distance
metric and complete linkage classification method. Imaging heatmaps, with normalized
green- and red-channel fluorescence signal as the data points, were also plotted using the
ComplexHeatmap package.

Control and flow mold fabrication

Two molds, a control mold and a flow mold, were patterned on silicon wafers (University
Wafers, S4P01SP) with photolithography. Patterns for the control and flow molds were
designed in AutoCAD (Autodesk) and printed onto 25,400 dpi photomasks (CAD/Art Ser-
vices, Inc., Bandon, Oregon). The silicon wafers were first thoroughly cleaned using acetone,
isopropyl alcohol, and water. The wafers were then baked at 150 °C for 10 min to dehydrate
the surface. For the control mold, a 5 µm dummy layer of SU8-2005 (MicroChem) was first
spin-coated at 3000 rpm for 30 s. The resist-coated mold was then baked at 65 °C for 1 min
and 95 °C for 2 min and exposed to UV radiation with no mask for 10 s. After exposure,
the mold was again baked at 65 °C for 1 min and at 95 °C for 3 min and allowed to cool to
room temperature. After dummy layer deposition, a dollop of SU8-2025 negative photoresist
(MicroChem) was poured onto the control mold directly and then spun at 3000 rpm for 30
s, yielding a 25 µm layer. Then, the wafer was baked on a hotplate at 65 °C for 1 min and
then at 95 °C for 5 min. The resist-coated wafer was exposed to a 150 mJ cm2 dose of UV
radiation through a negative mask (clear features and opaque background) imprinted with
the control circuit using a photolithography aligner. After exposure, the wafer was again
baked at 65 °C for 1 min and 95 °C for 5 min. The wafer was then submerged in SU-8 devel-
oper and gently agitated until the unexposed photoresist was removed, leaving the positive
control features. Then, the wafer was carefully washed with isopropyl alcohol and blow-
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dried. The mold was baked at 150 °C for at least 20 min before further use. The flow mold
was fabricated using two photoresists to achieve multiple feature heights. The flow channels
were fabricated using the positive photoresist AZ 40XT-11D (Integrated Micro Materials,
Argyle, TX) and the taller reaction chambers were fabricated using the negative SU8-2025
photoresist. The flow mold was first spin-coated with a 5 µm dummy layer of SU8-2005 and
processed the same as described for the control mold above. After dummy layer deposition,
a dollop of AZ 40XT-11D positive photoresist was poured onto the flow wafer directly and
then spun at 3000 rpm for 30 s, yielding a 20 µm layer. After baking at 65 °C for 1 min
and 125 °C for 6 min, the photoresist was then exposed to a 420 mJ cm2 dose of UV light
through a high-resolution positive mask containing the flow circuit design and developed in
AZ400K developer. We then baked the mold again at 65 °C for 1 min and at 105 °C for
100 s to reflow the positive photoresist and create rounded channels. Negative photoresist
(SU8-2025) was then used for building the reaction chambers using the same protocol as
described for the control mold above.

PDMS device fabrication

Each layer of the multilayer µCB-seq device was bonded together by on-ratio (10:1) bond-
ing of RTV-615 (GE Advanced Materials). The control and flow molds were exposed to
chlorotrimethylsilane (Sigma-Aldrich) vapor for 30 minutes before soft lithography to facili-
tate PDMS releasing from the mold. After mixing and degassing of PDMS, 50 g of PDMS
was cast onto each control mold and baked at 80 °C for 15 min to partially cure the PDMS
slabs. Control ports were punched and flow molds were spin-coated with a PDMS layer at a
speed of 2000 rpm for 60 s. Flow layers were partially cured at 80 °C for 5 min, after which
control slabs were aligned and placed atop flow PDMS. PDMS assemblies were cured at 80
°C for a further 10 min, after which devices were peeled off of the Si wafer. Flow ports were
punched, and assemblies were placed upside-down in preparation for primer spotting. In a
clean hood, 0.2 µL of 1.5 µM barcoded RT primer was manually spotted in lysis chambers
using a P2 pipette, with each lane receiving a unique, known barcode sequence (Table A.1).
Primers were allowed to dry while a PDMS dummy layer was spin-coated and partially cured
on a blank, silanized Si wafer. Control + flow-layer PDMS assemblies were then placed onto
the PDMS dummy layer for a 1.5 h hard bake at 80 °C. Final devices were bonded to 1.5
glass coverslips by O2 plasma (PETS Inc.) and placed at 4 °C for storage.

Microfluidic device operation

Microfluidic devices were attached to an Arduino-based pneumatic controller (KATARA)
in preparation for running on-chip library preparation. Prior to single-cell experiments,
the cell trapping line was flushed with nuclease-free water (nfH2O) and incubated with
0.2% (wt/wt) Pluronic F-127 (Invitrogen, P6867) for 1 h, leaving downstream chambers
containing barcoded primers empty. A single cell suspension was prepared and drawn into
the cell trapping line by peristaltic pumping action of the integrated microfluidic valves.
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Triton buffer was first prepared by combining 0.2 µL RNase inhibitor (40 U µL-1, Takara
2313A) and 3.8 µL 0.2% (v/v) Triton X-100 (Sigma, X-100). Lysis buffer was then prepared
by mixing 1 µL 1:100 5x Phusion HF buffer (NEB, B0518S) 2.5 µL Triton buffer, 0.7 µL
nfH2O, and 0.8 µL 1% (v/v) Tween 20 (Sigma, P7949) in a 0.2 mL PCR tube. Lysis
buffer was aspirated into a gel-loading pipette tip, which was inserted into the reagent inlet
and pressurized. The reagent tree was dead-end filled with lysis buffer, and the device was
transferred to a confocal microscope (Leica) for cell trapping and imaging.

Cells were drawn along the cell input line by the peristaltic pump and manually trapped in
the imaging chamber for imaging, which was carried out by the protocol described in confocal
imaging. After imaging, the lane’s reagent valves were opened, allowing lysis buffer to push
the trapped cell into the lysis module containing dried, uniquely barcoded RT primers. After
the dead-end filling of the lysis module, primers were resuspended by pumping action of the
microfluidic paddle above the lysis chamber. The microfluidic device was transferred to a
thermal block for cell lysis at 72 °C for 1 min, after which the block was cooled to 4 °C.
During cooling, the reagent inlet was flushed with 20 µL nuclease-free water and dried with
air. Reverse transcription mix was then prepared in a 0.2 mL tube by mixing 0.8 µL 25
mM each dNTP mix (Thermo Fisher, R0181), 4 µL 5x Maxima H- buffer (Thermo Fisher
EP0751), 0.4 µL 100 µM E5V6 TSO (Table A.5), 5 µL 30% PEG 8000 (Sigma Aldrich,
89510-250G-F), 6.4 µL nfH2O, 0.2 µL 1% Tween 20, and 0.2 µL 200 U µL-1 Maxima H-
Reverse Transcriptase (Thermo Fisher EP0751). Reverse transcription mix was injected
into the reagent inlet to dead-end fill the reagent tree. The isolation valves were then closed
and reagent valves were opened to allow the RT mix to dead-end fill all lanes. Reverse-
transcription was carried out for 90 min at 42 °C, with the peristaltic pump operating at
1 Hz to accelerate diffusive mixing of cell lysate, reverse transcription mix, and barcoded
primers. Following reverse transcription, the chip was cooled to 4 °C and the reagent inlet
was washed and dead-end filled with nuclease-free water. Barcoded cDNA was eluted in a
volume of 1.7 µL per lane into gel loading pipette tips and pooled in a single PCR tube for
downstream single-pot reactions.

Exonuclease digestion was carried out on the 17 µL of pooled library by adding 2 µL
exonuclease buffer (10x) and 1 µL 20 U µL-1 ExoI (Thermo Fisher, EN0581), with no con-
centration steps required, followed by incubation at 37 °C for 20 min, 80 °C for 10 min, and
cooling to 4 °C. Following exonuclease digestion, the following reagents were added to the
library tube for PCR: 1.5 µL 1.25 U µL-1 Terra direct polymerase (Clontech, 639270), 37.5 µL
2x Terra direct buffer, 1.5 µL 10 µM SINGV6 primer (Table A.5), and 14.5 µL nfH2O. PCR
was carried out with the following protocol: 3 min at 98 °C followed by 17 cycles of (15 s at
98 °C, 30 s at 65 °C, 4 min at 68 °C), followed by 10 min at 72 °C and a 4 °C hold. Post-PCR
libraries were size-selected with AmPure XP beads (Beckman Coulter, A63880) using a 0.6:1
beads:library volume ratio. Final libraries were run through the Nextera XT tagmentation
protocol (Illumina), with the PNEXTPT5 custom primer (Table A.5) substituted for the
P5 index primer as in mcSCRB-seq. Indexed libraries were pooled and sequenced on an
Illumina MiniSeq platform.
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mcSCRB-seq in-tube library preparation

For mcSCRB-seq in-tube experiments, 96-well plates were first prepared with 10 barcoded
primers and lysis buffer according to the mcSCRB-seq protocol, with the only difference
being the use of µCB-seq RT primers instead of standard mcSCRB-seq ones. For single
HEK cell experiments, the CellenONE X1 instrument was used to individually deliver a
single HEK cell into each well. Following cell delivery, the mcSCRB-seq protocol was followed
directly, but with a 1:1 ratio of AmPure XP beads to pool all cDNA after RT as opposed to
the manual bead formulation from standard mcSCRB-seq. After library preparation, HEK
single-cell mcSCRB-seq libraries were sequenced on the NovaSeq platform to an average
depth of 500,000 reads per cell.

HEK single-cell and HEK total RNA sequencing data processing

HEK single-cell and total RNA libraries were sequenced on the MiniSeq platform to an
average depth of 500[thin space (1/6-em)]000 and 65[thin space (1/6-em)]000 reads per sam-
ple respectively (Table A.2 and A.3). Filtering, demultiplexing, alignment, and UMI/gene
counting were carried out on the zUMIs pipeline for all samples, using the GRCh38 index for
STAR alignment. We provided the GTF file that is recommended for the 10X CellRanger
pipeline for standardization of gene counts. Reads with any barcode or UMI bases under the
quality threshold of 20 were filtered out, and known barcode sequences were supplied in an
external text file. UMIs within 1 hamming distance were collapsed to ensure that molecules
were not double-counted due to PCR or sequencing errors. For this analysis, cell barcodes
were not collapsed based on their hamming codes. For the Total RNA µCB-seq dataset
(TC012), the quality of the 3rd base of read 1 was poor due to the fact that all barcodes in
the sequencing run had an Adenine at that position. Therefore, fastq files for this dataset
were edited to remove the third base, and truncated barcode sequences were provided to
zUMIs to match. This modification did not affect the information content or quality of the
processed library.

For comparison, all HEK total RNA libraries were subsampled to 30,000 reads (Fig. 3.3B
and 3.3C). For benchmarking against bulk RNA-seq library, all the reads across all samples
were pooled together resulting in a total of approximately 1.3 million reads for the analyses
(Fig. 3.3D and 3.3E; A.2).

3.5 Data Access

Yaml files for zUMIs analysis of HEK Total RNA, single HEK cells and single HEK and
preadipocyte datasets are provided in the streetslab GitHub repository. Downstream data
tidying and analysis was carried out in a Jupyter notebook with an R kernel, which can also
be found in the repository. The CAD file with µCB-seq device design can be downloaded
from the same GitHub repository.
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Chapter 4

Characterization of transcript
enrichment and detection bias in
single-nuclei RNA-seq for mapping of
distinct human adipocyte lineages

4.1 Introduction

In the last two chapters, I focused on technological developments that would enable investi-
gations into adipocyte sub-type discovery. Another key aspect of adipose tissue biology in
maintaining system-wide energy balance is its expansion via adipogenesis. As outlined in
Chapter 1, the regulation of whole-body energy homeostasis is primarily maintained by two
functionally different types of fat: white adipose tissue (WAT), the primary site of lipid stor-
age, and brown adipose tissue (BAT), which specializes in thermogenic energy expenditure.
An imbalance in the expansion of WAT and BAT is implicated in the emergence of var-
ied metabolic syndromes such as lipodystrophy or obesity and associated comorbidities like
cardiovascular diseases and type 2 diabetes. Therefore, understanding the molecular path-
ways of adipose tissue expansion (adipogenesis) in humans is necessary for understanding
the tissue’s contribution in the pathology of such metabolic diseases.

As discussed previously, scRNA-seq has proven to be a powerful tool for transcriptomic
profiling of complex tissues in an unbiased manner [25, 265, 266]. This technological revolu-
tion has been facilitated by the development of droplet-microfluidics- and micro-well-based
workflows for scRNA-seq that make it possible to analyze hundreds to thousands of sin-
gle cells in one experiment [25]. Indeed, multiple recent studies using droplet-microfluidic
scRNA-seq approaches are investigating the heterogeneity of primary preadipocytes in mice
[90, 267]. However, applicability of such high-throughput microfluidic approaches is limited
in mature adipocytes, since adipocytes can easily rupture in microchips and during droplet
formation due to their fragile nature. Such fragility further makes it challenging to generate a



single-cell suspension of intact adipocytes at the first place, when starting from primary adi-
pose tissue samples. Existing protocols for adipose tissue digestion and single-cell suspension
preparation often result in complete or partial adipocyte lysis and therefore are not compat-
ible with scRNA-seq library preparation. Consequently, transcriptomic analysis of primary
adipocytes has relied on bulk RNA-sequencing of clonal cell populations [76, 268–271] or
scRNA-sequencing of adipocytes harvested by precise pipetting [54], making generation of
individual clones or isolates the rate limiting step. More recently, microfluidic scRNA-seq was
used to identify transcriptomic heterogeneity within murine brown adipocytes [53], with li-
brary preparation limited to adipocytes relatively smaller in size as bigger adipocytes can eas-
ily rupture during cellular encapsulation. Such size-fractionated application of scRNA-seq,
however, results in loss of transcriptional patterns uniquely associated with bigger adipocytes
[272]. To address the challenge of working with fragile tissues, recent studies have turned to
single-nucleus RNA-sequencing (snRNA-seq) as an alternative approach for transcriptomic
profiling of cellular heterogeneity. Indeed, investigations have already started reporting the
existence of multiple adipocyte subtypes in humans using snRNA-seq [94, 273]. However, a
single nucleus contains 10-100-fold less mRNA than whole-cells, raising the question whether
the composition of mRNA transcripts in the nucleus is sufficient to enable identification of the
same cell populations as whole-cells. Previous comparisons of single-cell and single-nucleus
approaches suggest that in certain tissues, sampling the nuclear transcriptome is sufficient
to characterize cellular composition [93, 274–277]. However, collectively these studies also
demonstrate that the relationship between nuclear and cytoplasmic mRNA is tissue-specific
[277, 278]. Therefore, there is a need to understand the transcriptomic similarities and dif-
ferences between single-cell and single-nucleus profiles in the context of the human adipose
tissue, for which there is growing need to rely on snRNA-seq.

In this study, we explored the ability of snRNA-seq to recapitulate the transcriptional
profiles observed by scRNA-seq in the human adipose tissue white and brown lineages. We
focused our study on a well-controlled in vitro system of human white and brown adipogen-
esis [76, 279] (4.1A). In this in vitro model, paired white and brown primary preadipocytes
were isolated from a defined anatomical location (the neck depot) of a single individual.
This system allowed us to measure cell-to-cell transcriptomic variations within and between
lineages, while controlling for inter-individual variabilities that are typically associated with
transcriptomic profiling of primary human adipose tissue, such as body mass index, geno-
type, and gender. Preadipocytes from both lineages were isolated while preserving their
intrinsic cellular heterogeneity and were then immortalized to allow for long-term in vitro
cell-culture. Previously reported data demonstrated that the preadipocyte populations could
be differentiated into mature adipocytes with gene expression profiles that correspond to the
adipogenic and thermogenic function of primary tissue from human neck BAT and WAT
[76]. Moreover, the in vitro cell-culture system allows for isolation of intact nuclei as well
as intact single cells across well-defined stages of adipogenesis including mature, lipid-laden
white and brown adipocytes. Using this system, we first mapped the cellular heterogeneity
at the preadipocyte stage. Both white and brown preadipocytes were processed using a
commercial high-throughput single-cell sequencing platform (10x Genomics). We then ex-
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Figure 4.1: scRNA-seq reveals transcriptional and compositional landscape of white
and brown preadipocytes (A) A schematic representation of scRNA-seq vs snRNA-seq char-
acterizations performed in our study. (B) UMAP visualization of white and brown preadipocytes
annotated either manually to reflect the sample of origin (top panel) or based on unsupervised clus-
tering (bottom panel). (C) Heat map of top 20 differentially expressed genes between white and
brown preadipocytes, and cluster-1 and cluster-2 preadipocytes based on log fold-change values.
Topmost row reflects cluster assignment as in panel (B). (D) Top 10 gene ontology terms enriched
in brown preadipocyte cluster 1 (left panel) and cluster 2 (right panel). decr. = decreased; anat.
str. = anatomical structure; pos. reg. = positive regulation; neg. reg = negative regulation; str.
= structural.
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tracted nuclei from these populations and performed snRNA-seq using the same isolation
and sequencing protocol. We sequenced snRNA-seq libraries to saturation and compared
their transcriptomic profiles with those obtained from scRNA-seq across different cellular
subtypes. We next developed a single-adipocyte whole-cell isolation protocol and mapped
cellular heterogeneity in mature white adipocytes using the molecular single-cell RNA bar-
coding and sequencing (mcSCRB-seq) protocol [13]. The transcriptomic profiles obtained
were compared with molecular profiles of single nuclei isolated from the same population of
adipocytes. Our analyses characterized the accuracy with which snRNA-seq can identify cell
types present at the precursor and mature stages of adipogenesis. We identified both tech-
nical and biological artifacts that can introduce gene detection biases in snRNA-seq, and we
systematically evaluate the limitations of these biases in the context of human adipogenesis.
Finally, we propose a normalization strategy for the removal of systematic technical biases
between scRNA-seq and snRNA-seq and demonstrate recovery of shared biology by integrat-
ing the two datasets using scVI, a variational autoencoder based framework for analysis of
scRNA-seq data [280].

4.2 Results

scRNA-seq reveals transcriptional landscape of white and brown
preadipocytes

Unsupervised clustering of white and brown preadipocyte scRNA-seq library grouped the
cells into three clusters, referred to as populations 0, 1 and 2 (Fig. 4.1B). White preadipocytes
organized into a single homogeneous cell population, cluster 0, whereas brown preadipocytes
revealed two cell populations, cluster 1 and cluster 2 (Fig. 4.1B). As expected, clusters of
white and brown preadipocytes were highly concordant with molecular features of respec-
tive primary preadipocytes [281] (Fig. B.2C and B.2S1D). All populations were devoid of
endothelial (CD31) and hematopoietic marker genes (CD45, Fig. B.2E and B.2F) and re-
flected a preadipocyte state on the basis of their high expression for common mesenchymal
stem cell markers ITGB1 (CD29), THY1 (CD90), CD44, and ENG [282, 283] (Fig. B.2G
to B.2J). All populations also had positive expression for adipogenesis regulators CEBPB
& PPARG [284], and ZEB1 [285], further verifying an adipogenic fate for these cells (Fig.
B.3A to B.3C).

Differential gene expression (DGE) analysis confirmed that white preadipocytes showed
enrichment of genes that are reported to be involved in establishing white preadipocytes’
identity (Supplemental Table 2B) such as TCF21 [286], PAX3 [287], and PDGFRA [288].
The most upregulated gene in white preadipocytes was ID1 (Fig. 4.1C), which is known to
maintain progenitor state in preadipocytes by positively regulating the progression of cell
cycle for sustained growth and proliferation [289, 290]. Consequently, enriched expression of
ID1 in white preadipocytes suggested ongoing signaling for maintenance of cellular prolifera-
tion. In brown preadipocytes, the top upregulated genes included ANKRD1 and CCN2 (Fig.
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4.1C), which are well-characterized YAP target genes [291]. YAP/TAZ are mechanosensitive
transcriptional co-activators that regulate proliferation and differentiation at precursor state
[292–294], while also maintaining thermogenic activity at mature adipocyte state in brown
lineage [295]. Therefore, our results suggest that brown preadipocytes may have ongoing
YAP/TAZ activity for maintenance of brown-lineage progenitor state. DGE analysis also
revealed upregulation of smooth-muscle lineage marker genes in brown preadipocytes, such
as TAGLN (Fig. 4.1C), ACTA2, MYL9, and CNN1 (Supplemental Table 2B). These findings
are consistent with a recent study that demonstrated abundant expression of smooth muscle
lineage–selective genes in clonal human brown preadipocytes [268], suggesting that brown
preadipocytes derived from human neck depot may share this lineage.

Interestingly, we identified two distinct cell populations within brown preadipocytes (clus-
ter 1 and cluster 2, Fig. 4.1B). Gene ontology (GO) analysis identified cellular adhesion, and
regulation of cellular motility as the most enriched terms in cluster 1 (Fig. 4.1D), suggesting
the prevalence of stem-cell-like migratory behavior in these cells. Transforming growth factor
superfamily genes (BMP4 and TGFB2) were also enriched in cluster 1 (Supplemental Table
2C), which play an important role in regulating adipocyte commitment in mesenchymal stem
cells [296, 297]. Investigating differential activity of transcription factors (TFs) in cluster
1, transcription factor enrichment analysis (TFEA) identified FOX (FOXC2 and FOXL1)
and FOSL1 transcription factors (TFs) with high activity (Supplemental Table 2D). FOXC2
participates in the early regulation of preadipocyte differentiation [72, 298] while FOSL1
proteins have been implicated as regulators of cell differentiation, and transformation [299,
300]. Therefore, our results indicate that cluster 1 cells may exhibit migratory behavior with
ongoing signaling similar to adipogenic fate commitment in mesenchymal stem cells, a be-
havior we refer to here as stem-cell-like. Enrichment of multiple regulators of adipose tissue
development was also detected in cluster 1, such as SEMA5A [301], NPPB [302], MEST
[303], and FST [304], further suggesting the existence of adipogenic commitment activity in
this cell population.

Cluster 2 cells were marked by the expression of S100A4 gene, also known as the fibrob-
last specific protein 1 (FSP1, Fig. 4.1C, Fig. B.4D and B.4F), which is considered a reliable
marker of fibroblasts [305]. GO analysis showed enrichment of immune response, extracel-
lular structure and matrix organization, and negative regulation of cell migration terms in
this cell population (Fig. 4.1D). Multiple genes encoding for extracellular matrix (ECM)
components such as MFAP5, ECM1, COL6A2, and ACAN were also enriched in cluster 2
(Supplemental Table 2C). Recent investigations have reported the presence of Fsp1+ fibrob-
lasts in the adipogenic niche, with potential role in maintaining adipose homeostasis [294,
306, 307]. The markers identified for fibroblasts in these investigations FBN1, IGFBP6,
MFAP5, S100A4, and PI16 were some of the most enriched markers of cluster 2 cells (Fig.
B.4A to B.4F). Therefore, these results indicate that cluster 2 cells are fibroblast-like, with
negative regulation of cellular migration and an ongoing activity for ECM organization.
Existence of two phenotypically distinct brown preadipocytes was further corroborated by
performing single-molecule fluorescent in situ hybridization (smFISH) imaging of cluster-2
enriched gene MMP1 (Note B.2, Fig. B.1).
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Recently, snRNA-seq of primary human WAT harvested from the same anatomical loca-
tion as our model system (neck) identified a single white preadipocyte population [273] while
multiple scRNA-seq studies identified 2-3 adipocyte progenitor populations in adult murine
abdominal WAT [308]. These differences in WAT preadipocyte composition could arise from
species-specific and/or depot-specific variation. Interestingly, in contrast to our findings,
snRNA-seq of primary human neck BAT also revealed a homogenous brown preadipocyte
population [273], possibly because of differences during tissue biopsy collection, or poor
cell-capture efficiencies during single-nuclei isolation.

snRNA-seq identifies the same preadipocyte populations as
scRNA-seq and detects biologically relevant differential expression

To evaluate the efficacy of snRNA-seq for recovering transcriptional heterogeneity, we se-
quenced the nuclear transcriptome of single preadipocytes from the white and brown lin-
eages. Unsupervised clustering of the two lineages grouped nuclei into four clusters, referred
to as populations 0, 1, 2 and 3 (Fig. B.5A and B.5B). Cluster 3 nuclei, however, had enriched
expression for stress response genes and mitochondrial genes, along with high background
RNA contamination (Fig. B.5D), and hence were removed from downstream analyses. In
the remaining clusters, brown nuclei were primarily grouped into clusters 1 and 2 whereas
white nuclei grouped into a single cluster 0 (Fig. 4.2A). Similarity between clusters identified
in snRNA-seq and scRNA-seq was assessed using the concept of transcriptional signatures
[309, 310], defined as genes differentially expressed in either white vs brown preadipocytes,
or cluster 1 vs cluster 2, in the scRNA-seq dataset (Supplemental Table 2B and 2C). As ex-
pected, the transcriptional signature scores, calculated using Vision [311], were enriched in
the corresponding preadipocyte-type/clusters in the snRNA-seq dataset (Fig. 4.2B), thereby
demonstrating a high concordance between transcriptional features uncovered by the two
techniques.

As was observed with scRNA-seq, white nuclei were enriched for genes TCF21, PAX3 and
PDGFRA (Supplemental Table 3A), and brown nuclei were enriched for YAP/TAZ target
genes ANKRD1 and CCN2 (Supplemental Table 3A), and smooth muscle lineage marker
genes TAGLN, MYL9, CNN1, and MYH11 (Supplemental Table 3A). Gene ID1, however,
was not differentially enriched in white nuclei, because of a lack of differential enrichment in
the nuclear compartment between white and brown preadipocyte (Note B.2 and Fig. B.6).
In scRNA-seq dataset, we had classified certain DE genes as markers for white and brown
preadipocytes based on their highly enriched and specific expression (Note B.2). All such
white- and brown-preadipocyte specific marker genes were also enriched in white and brown
nuclei respectively (Supplemental Table 3A). Of the 50 genes with maximum enrichment
(ordered by logFC) in white and brown preadipocytes in scRNA-seq dataset, over 94% were
also differentially expressed in white and brown nuclei respectively (Fig. 4.2C). This analysis
demonstrates that snRNA-seq has sufficient sensitivity to recover same molecular differences
as scRNA-seq between white and brown preadipocytes.
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Figure 4.2: snRNA-sequencing identifies the same preadipocyte populations as scRNA-
seq and detects biologically relevant differential expression (A) UMAP visualization of
white and brown preadipocytes annotated either manually to reflect the sample of origin (top panel)
or based on unsupervised clustering (bottom panel). 6556 white and 3891 brown nuclei were de-
tected. Of these nuclei, 6578 were in cluster 0, 2716 in cluster 1, and 1153 in cluster 2. (B) Heatmap
of transcriptional signature scores for white preadipocyte (top left panel), brown preadipocyte (top
right panel), brown preadipocyte cluster 1 (bottom left panel), and brown preadipocyte cluster 2
(bottom right panel) as plotted on the UMAP visualization of snRNA-seq data (C) Bar plot of per-
cent top-50 genes differentially enriched (DE) in scRNA-seq dataset that are also DE in snRNA-seq
dataset. Top-50 genes were evaluated based on log fold-change values using scRNA-seq dataset.

GO analysis identified enrichment of cellular adhesion, and regulation of cellular localiza-
tion terms in brown cluster 1 nuclei, corresponding with the findings in scRNA-seq dataset
(Fig. B.5E). Transforming growth factor superfamily genes BMP4 and TGFB2 were also
enriched in cluster 1, along with regulators of adipose tissue development SEMA5A, MEST,
and FST (Supplemental Table 3B). All 6 cluster-1-specific marker genes (Note B.2) identi-
fied were also enriched in cluster 1 nuclei (Supplemental Table 3B). Of the 50 genes with
maximum enrichment (ordered by logFC) in cluster 1 cells in scRNA-seq dataset, 94% were
also differentially expressed in the nuclear dataset (Fig. 4.2C). In cluster 2 brown nuclei,

55



enrichment of S100A4 was observed (Supplemental Table 3B), as well as regulation of ex-
tracellular matrix organization terms based on GO analysis (Fig. B.5F). Genes encoding for
extracellular matrix components COL6A2, MFAP5, ACAN, and ECM1 were all upregulated
in cluster 2 (Supplemental Table 3B). Of the 50 genes with maximum enrichment (logFC) in
cluster 2 brown preadipocytes (scRNA-seq dataset), 80% were also differentially expressed in
the nuclear dataset (Fig. 4.2C). All cluster-2-specific marker genes (Note B.2) identified were
also enriched in cluster 2 nuclei (Supplemental Table 3B). Overall, our snRNA-seq analyses
indicated the emergence of stem-cell-like behavior in cluster 1 and fibroblast-like behavior in
cluster 2, in agreement with the whole-cell dataset. Finally, preadipocyte-/cluster-specific
transcriptional signatures now defined using snRNA-seq dataset revealed enrichment in cor-
responding preadipocyte-type/clusters in the scRNA-seq dataset, thereby validating that
markers derived from snRNA-seq can be used to identify the same populations in whole-cell
analysis (Fig. B.5H).

snRNA-seq achieves informational saturation at similar
sequencing depth as scRNA-seq

Typical 3’ scRNA-seq protocols target a sequencing depth of 20,000 to 50,000 reads per cell
for identifying diverse cell-types in a moderately heterogeneous sample [312, 313]. However,
it is unclear whether similar sequencing depth in enough to recover relevant, discerning
information from snRNA-seq datasets. Here, using scRNA-seq and snRNA-seq datasets
from matched cell-types, we investigated the trends for multiple sequencing metrics as well
as cluster separation as a function of sequencing depth across the two techniques. It is
critical to mention that snRNA-seq libraries in our datasets were sequenced using the more
sensitive 10x-v3 chemistry as compared to the less sensitive 10x-v2 chemistry for scRNA-seq
datasets, which may influence this comparison, as the v3 technology can detect more genes
with fewer reads.

When comparing the two techniques in white preadipocytes, mean number of UMIs de-
tected at a given sequencing depth were higher in scRNA-seq as compared to snRNA-seq
(Fig. 4.3A). This makes sense since nuclear mRNA is only a subset of whole-cell mRNA
and hence is inherently less complex than scRNA-seq. However, our analysis also revealed a
higher number of mean genes detected in snRNA-seq as compared to scRNA-seq (Fig. 4.3B),
which could be an artifact of increased 10x-v3 sensitivity. Next, we compared recovery of
relevant biological information as a function of sequencing depth for the two techniques. Re-
covery of relevant biological information was quantified by the separation resolution between
the two brown preadipocyte clusters as quantified by the Silhouette coefficient. Our analysis
revealed saturation of Silhouette coefficient in both scRNA-seq and snRNA-seq, although
with better clustering resolution in scRNA-seq at all sequencing depths (Fig. 4.3C). This is
interesting since snRNA-seq detected more genes as compared to scRNA-seq at any given
sequencing depth, thereby suggesting that increased gene detection sensitivity in snRNA-seq
was not relevant to separating the 2 brown preadipocyte clusters. Our analysis also demon-
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Figure 4.3: snRNA-seq achieves informational saturation at similar sequencing depth
as scRNA-seq (A) Mean UMIs detected in cells and nuclei isolated from white preadipocytes as
a function of sequencing depth (B) Mean genes detected in cells and nuclei isolated from white
preadipocytes as a function of sequencing depth (C) Cluster separation resolution quantification
between brown cluster 2 vs cluster 1 in scRNA-seq and snRNA-seq dataset. Both datasets were
subsampled to have the same number of cells/nuclei and mean transcriptome mapped reads.

strates that Silhouette coefficient at saturation in snRNA-seq is smaller than Silhouette
coefficient in scRNA-seq dataset at typical sequencing depth of 20,000 to 50,000 reads, sug-
gesting that increasing sequencing depth for snRNA-seq libraries with the aim of achieving
similar clustering resolution as scRNA-seq may not be worthwhile. Although, snRNA-seq
had lower cluster separation than scRNA-seq, both techniques achieved saturation of the
Silhouette coefficient at ∼10,000 reads, suggesting that any increase in information after
10,000 reads is marginal for both scRNA-seq and snRNA-seq datasets. Overall, our analysis
demonstrates that in our dataset, ∼10,000 reads are enough to achieve informational sat-
uration (as quantified by cluster separation) in both scRNA-seq and snRNA-seq datasets,
although with a smaller cluster separation in the latter technique.

Gene length-associated detection bias in single-nuclei
RNA-sequencing

Typical scRNA-seq data analysis pipelines often filter intronic reads for downstream count
matrix generation. More recently, however, evidence has suggested that intronic reads orig-
inate from nascent transcripts [314–316], and hence are informative about expression levels
in single-cell data. Furthermore, the additional read counts improve gene detection sensitiv-
ity and can improve cell-cluster resolution [93, 275]. Multiple recent studies have suggested
internal hybridization of polyT RT-primer to intronic polyA stretches in nascent transcripts
as the primary mechanism for the capture and detection of intronic reads [240, 317, 318].
Consequently, intronic reads are more readily detected in genes with more intronic polyA
stretches, which are more likely to be longer in length (Fig. B.7A). This bias is increased in
nuclear libraries where up to 40% of all the reads map to intronic regions as compared to
only 9% in scRNA-seq (Fig. 4.4A). Consequently, recent studies have reported enrichment
of longer genes [275, 277] and poor detection of shorter genes [278] in nuclei.
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To examine the enrichment of long genes in nuclei, we first performed DGE analysis
between cells and nuclei in white preadipocytes. Using both intronic and exonic reads, our
analysis identified 493 genes enriched in cells and 568 genes enriched in nuclei (logFC >1and
FDR <0.05). Notably, nuclear-enriched genes were significantly longer than genes enriched
in whole-cells (two- group Mann–Whitney U-test, p-value < 0.01, Fig. 4.4B). Next, we
performed DGE analysis between white and brown nuclei, with and without intronic reads,
for genes that are enriched in white preadipocytes in the scRNA-seq dataset. Notably, we
identified certain long genes such as KCNMA1 (99th percentile), AK5 (96th percentile), and
BAALC (85th percentile) that become differentially expressed (in white nuclei over brown
nuclei; DE) only upon inclusion of intronic reads (non-DE with only exonic reads), likely
because of their preferential detection (Fig. 4.4C and Fig. 4.4D, highlighted in red). Con-
versely, we also identified certain short genes such as CRABP2 (32nd percentile), TM4SF1
(40th percentile), and EVA1B (17th percentile), that remain non-differentially expressed,
even with inclusion of intronic reads in the snRNA-seq dataset (also non-DE with only ex-
onic reads; Fig. 4.4C and Fig. 4.4D, highlighted in blue). We also performed DGE analysis
between white cells and white nuclei using only exonic reads (logFC >0.25 and FDR <0.05).
Notably, the logFC differential enrichment for nuclear-enriched genes was poorly correlated
with counting exons or exons and introns (Fig. 4.4E, Pearson R = 0.50, p-value < 0.01).
logFC values for some of the longest genes were artificially inflated, possibly because of their
preferential detection upon inclusion of intronic reads (Fig. 4.4E Right panel). Conversely,
logFC values for some of the shortest genes were artificially deflated because of their poor
detection (Fig. 4.4E Right panel). Consequently, the ratio of the logFC values with counting
exons or exons and introns, was strongly correlated with gene length (Fig. 4.4E, Pearson
R = 0.69, p-value < 0.01). Overall, our results demonstrate technical artifacts induced by
gene-length associated detection bias in snRNA-seq, upon inclusion of intronic reads. We
therefore developed a normalization strategy to address this technical, length-associated de-
tection bias (Note B.2 and Fig. B.7). After normalization, the logFC differential enrichment
of nuclear-enriched genes was highly correlated with counting exons or exons and introns
(Fig. 4.4F, Pearson R = 0.94, p-value < 0.01). Moreover, the ratio of the logFC values with
counting exons or exons and introns, after normalization, was poorly correlated with gene-
length (Fig. 4.4F, Pearson R = 0.15, p-value < 0.01). Nuclear and cellular transcriptomes
were also better correlated after removal of technical biases using our normalization strategy
(Fig. 4.4G and 4.4H).

DGE analysis, between white cells and white nuclei, with normalized read counts iden-
tified 382 enriched genes in cells and 249 enriched genes in nuclei (logFC > 1and FDR
<0.05), with nuclear-enriched genes still significantly longer than whole-cells (two-group
Mann–Whitney U-test, p-value < 0.01, Fig. B.8A). However, the genes enriched in nuclei
were on average 14-fold longer than genes enriched in cells (as compared to 32-fold difference
before normalization), which is comparable to the difference observed when using only ex-
onic reads (11-fold difference, Fig. B.8B), suggesting that after accounting for technical bias,
there also exists biological enrichment of longer genes in nuclei. Overall, our observations
demonstrate that length-normalization removes artificial detection biases thereby improving
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Figure 4.4: Gene length associated detection bias in the nuclear transcriptome (A) Dis-
tribution of reads in scRNA-seq and snRNA-seq (B) Distribution of gene length for genes enriched
in cells (in blue) and nuclei (in yellow) including both intronic and exonic reads (C) Log-fold-change
vs log-UMI counts in white nuclei, where each dot represents a white-preadipocyte-enriched gene in
scRNA-seq dataset. Horizontal dotted line indicates logFC cutoff value of 0.5 (D) Log-fold-change
vs log-UMI counts in white nuclei when using both intronic and exonic reads. Each dot is the same
as in panel (C) (E) Left panel: Log-fold-change for nuclear-enriched genes when using only exonic
reads, or both intronic and exonic reads before normalization. Red dotted line indicates y = x
axis. Right panel: Ratio of y−axis−value over x−axis−value for genes in left panel, plotted as a
function of their length. (F) Same plot as in (E) but after normalization. (G) and (H) Average
expression of genes in white cells and white nuclei when using both intronic and exonic reads,
without normalization (G), and with normalization (H). Red dotted line has slope = 1
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UMI count estimation accuracy, while also preserving improved gene detection sensitivity
afforded by inclusion of intronic reads.

To further understand differential transcript enrichment between whole-cell and nuclear
transcriptomes, we next focused on genes enriched in whole-cells after normalization. GO
analysis identified protein translation associated terms as most enriched in whole cells (Fig.
B.8D). Genes contributing to the enrichment of translational terms primarily included mR-
NAs encoding for ribosomal proteins. This enrichment of ribosomal-protein mRNAs in
whole-cells is consistent with their very low cytoplasmic decay rates and selective nuclear
export machinery [319, 320]. Yet, poor detection of ribosomal proteins in the nuclear tran-
scriptome did not affect the ability to resolve cellular populations in snRNA-seq, as evident
by the score of the transcriptional signature consisting of top 100 genes enriched in cells
based on logFC values (∼ 53/100 ribosomal protein genes; Fig. B.8C).

Nuclear transcriptome is enriched for long non-coding RNAs that
regulate adipogenesis and drive cell-type differences

Long non-coding RNAs (lncRNAs) function in regulating diverse biological processes, in-
cluding regulation of transcription, proliferation, pluripotency, and cellular differentiation
[321–323]. Because of their regulatory function, lncRNAs predominantly remain localized in
the nucleus [324, 325]. snRNA-seq intrinsically enriches for nuclear localized transcripts, and
previous studies have reported enrichment of lncRNAs in snRNA-seq libraries over scRNA-
seq [326, 327]. We hypothesized that nuclear enrichment of lncRNAs could be advantageous
for characterizing adipose tissue because multiple lncRNAs have also been implicated in reg-
ulating adipogenesis [328–332]. We tested this hypothesis in our in vitro system by profiling
adipogenic regulatory lncRNAs in our whole-cell and nuclear libraries derived from white
preadipocytes, after normalization. We identified significant enrichment of lncRNAs NEAT1
[330], MEG3 [333], MIR31HG [334], and PVT1 [220] in white nuclei, which are previously
reported regulators of adipogenesis (Fig. 4.5A). All four lncRNAs were also enriched in
brown nuclei as compared to brown whole-cells (Fig. B.9A to B.9D). Generally, snRNA-seq
consistently detected a greater number of lncRNAs at all read depths than scRNA-seq (Fig.
4.5B, p-value < 0.01, two-group Mann–Whitney U-test). Of the 111 differentially expressed
lncRNAs between white nuclei and white cells, ∼86% (96/111 genes) were upregulated in nu-
clei, thereby validating a higher prevalence of this class of genes in the nuclear compartment.
7 out of 15 lncRNAs that were enriched in white cells were snoRNA host genes (SNHGs),
that have been shown to have various functions in cytoplasm such as repressing mRNA
translation, miRNA sponging, and protein ubiquitination [335]. Overall, our results suggest
a higher likelihood to deconstruct the functional roles of adipogenic regulatory lncRNAs
(and other lncRNAs in general) using snRNA-seq.

Next, we evaluated the sensitivity of snRNA-seq for detection of lncRNAs driving molec-
ular heterogeneity between brown preadipocyte cluster 1 and 2, two cell-types most closely
related to each other. At ∼ 50,000 reads per cell/nuclei, DGE analysis identified over 40
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Figure 4.5: Nuclear transcriptome is enriched for lncRNAs that regulate adipogenesis
and drive cell-type differences (A) Boxplots of lncRNAs reported as regulators of adipogenesis.
Black text indicates logFC value for white nuclei vs. white cell DE test in preadipocytes with FDR
< 0.05 after normalization (B) Median lncRNAs detected as a function of read depth across single
cells and nuclei (both white and brown lineages). Error bars indicate the interquartile range (C)
Hierarchical clustering using scaled expression values of top-20 upregulated lncRNAs in brown
cluster 1 and cluster 2 in snRNA-seq dataset. 100 random barcodes were chosen for this analysis.
Topmost row reflects original cluster assignment for the selected barcodes (D) Cluster separation
resolution quantification between brown cluster 2 vs cluster 1 in scRNA-seq and snRNA-seq dataset.
Only lncRNAs were considered for PCA manifold generation. Both datasets were subsampled to
have the same number of cells/nuclei and same number of mean transcriptome mapped reads.

lncRNAs distinctively regulated between cluster 1 and 2 in the snRNA-seq dataset as com-
pared to only 15 lncRNAs in scRNA-seq dataset. Unsupervised hierarchical clustering in the
snRNA-seq dataset based on the expression of top 20 upregulated lncRNAs in cluster 1 and
2 each revealed sorting of nuclei into two distinct groups that predominantly reflected their
original cluster assignment (Fig. 4.5C). Moreover, Silhouette coefficient analysis (a method
for evaluating clustering performance) revealed better cluster separation performance for
snRNA-seq as compared to scRNA-seq between cluster 1 and 2 for all downsampled read
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depths (Fig. 4.5D). Silhouette coefficients were calculated based on Euclidean distance
between cells/nuclei in the principal component space generated using only lncRNAs (see
Methods). To validate that the observed performance features were not metric dependent,
we quantified two more indices, the Calinski-Harabasz Index, and the Davies-Bouldin In-
dex to compute inter-cluster separation and found similar trends (Fig. B.9F and B.9G). A
similar analysis performed by normalizing for the same number of mean unique molecules
(UMI) per sample revealed a similar trend for the three separation indices (Fig. B.9H to
B.9J). Together, our results suggest that snRNA-seq is superior for learning heterogeneity
governed by lncRNAs as compared to scRNA-seq.

snRNA-seq detects relevant transcriptional regulation during
adipogenesis in white preadipocytes

After identifying transcriptomic similarities and differences between scRNA-seq and snRNA-
seq in preadipocyte state, we next focused on evaluating molecular correspondence between
the two techniques in mature adipocytes. We leveraged our in vitro model of white adipo-
genesis that enabled us to prepare a single-cell suspension of mature adipocytes without the
need of implementing harsh tissue dissociation protocols (see Methods). Following single-
cell suspension preparation, one of the most common ways to sort single cells is using flow
cytometry. Recently, FACS gating strategies have been tailored to isolate mature adipocytes
[336, 337], although only a small percentage of adipocytes are able to survive the shear stress
associated with flow sorting [337]. Therefore, to enable gentle sorting of single adipocytes
for downstream scRNA-seq, we developed a new protocol using the cellenONE X1 single-cell
isolation platform. This automated liquid-handling robot uses gentle piezo-acoustic technol-
ogy for dispensing cells encapsulated in a picoliter-volume droplet, ensuring minimal cellular
perturbation and background RNA contamination. To harvest adipocytes in vitro, human
white preadipocytes were cultured and differentiated using a chemical adipogenic induction
cocktail for 20 days [338]. Coherent anti-stokes Raman imaging established successful dif-
ferentiation of white preadipocytes, with distinctly visible signal from round lipid droplets
[62] (Fig. B.10A). After creating a single-cell suspension of white adipocytes, 200 cells were
spotted using the cellenONEX1 machine, onto 96-well plates preloaded with lysis buffer and
barcoded polyT primer. Library preparation was then performed using the mcSCRB-seq
chemistry [13]. Transcriptomic profiles of these cells were then compared with a snRNA-seq
library of ∼ 12,000 nuclei isolated from 20-days differentiated white adipocytes.

Independent unsupervised clustering revealed organization of both cells and nuclei into
primarily two clusters, referred to as cluster 0 and 1 (Fig. 4.6A). snRNA-seq identified an ad-
ditional cluster 2, which exhibited characteristics of mitotic preadipocytes with ongoing cell
cycle progression, suggesting that these cells could be preadipocytes that never underwent
growth arrest (Note B.2; Fig. B.11A to B.11H). Cluster 0 in both datasets was marked by
the expression of mesenchymal marker THY1 (Fig. 4.6A), suggesting that these cells/nuclei
were differentiating preadipocytes. Cluster 1, on the other hand, had high expression of adi-
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pogenic gene ADIPOQ, indicating that cells/nuclei in this cluster were mature adipocytes
(Fig. 4.6A). DGE analysis further identified enrichment of other adipogenic marker genes
(along with ADIPOQ) in cluster 1 (Fig. 4.6B and 4.6C, highlighted in red), confirming a
transition from differentiating preadipocytes to mature adipocytes from cluster 0 to cluster
1 in both datasets. GO analysis identified enrichment of extracellular matrix organization
terms in cluster 0 and lipid metabolism in cluster 1, independently in both scRNA-seq and
snRNA-seq datasets (Fig. B.10B to B.10E). Moreover, ∼80% genes (106/133) upregulated
in cluster 1 in the scRNA-seq dataset, were also differentially expressed in the snRNA-seq
dataset. Notably, the remaining 20% genes (27/133) that were not differentially expressed in
the snRNA-seq dataset primarily included genes associated with the mitochondrial respira-
tory chain process (Fig. B.10F), suggesting that adipocytes’ enhanced mitochondrial activity
may not be captured in the snRNA-seq dataset. Correspondingly, snRNA-seq dataset lacked
manifestation of mitochondrial biological processes such as oxidative phosphorylation, and
electron transport chain in cluster 1 upon GO (Fig. B.10B vs B.10D). This observation was
also supported by the fact that these 27 genes had a median length of ∼11 Kbp, the same
order of magnitude as length of genes with poor detection in nuclei over whole cells (Fig.
4.4B). As expected, scores of clusters 0 and 1 transcriptional signatures in the scRNA-seq
dataset were observed to be highly conserved and enriched in corresponding cluster types
(Fig. 4.6D and 4.6E), further validating the conservation of information in the nuclear tran-
scriptome. Overall, our results reveal a comparable molecular landscape in white adipocytes
between scRNA-seq and snRNA-seq datasets.

We next looked to investigate any differential adipogenic capacity between the two brown
preadipocyte clusters identified in our study (cluster 1 and 2, Fig. 4.1B) by performing
scRNA-seq on mature brown adipocytes using the cellenONEX1 for gentle isolation of intact
mature adipocytes. These adipocytes were derived by differentiating brown preadipocytes
for a period of 20 days. After sorting ∼200 cells, library preparation was performed us-
ing the mcSCRB-seq protocol [13]. Transcriptomic profiling revealed detection of mature
brown adipocytes, along with recovery of multiple cells that were not terminally differen-
tiated, but rather distributed along a continuum of differentiation states ( Fig. B.4G and
B.4H). Consequently, our analysis revealed a range of adipogenic gene expression (ADIPOQ)
in our dataset (Fig. 4.6F), which was mutually exclusive from the expression of cluster-1-
enriched gene SEMA5A (Fig. 4.6F). On the other hand, we identified multiple cells with
shared expression of cluster-2-enriched gene S100A4 and ADIPOQ (Fig. 4.6G). These re-
sults supported the observation of two brown preadipocyte populations and indicate that
cluster-2 cells are more likely to differentiate into mature brown adipocytes. Additionally,
we also compared transcriptomic similarities between mature brown adipocytes (Fig. B.4H,
highlighted in red) and cluster-1/cluster-2 cells using transcriptional signatures defined for
respective clusters using the day-0 scRNA-seq dataset (Supplemental Table 2C). Mature
adipocytes had a significantly higher score for cluster 2 cells as compared to cluster 1 (Fig.
B.4I), thereby providing additional evidence that the former cell-type is more likely to be
adipogenic.
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Figure 4.6: snRNA-seq detects important transcriptional regulation during adipogene-
sis in white preadipocytes (A) UMAP of scRNA-seq and snRNA-seq white adipocyte datasets
after unsupervised clustering (leftmost panels). Expression profile for mesenchymal marker THY1
and mature-adipocyte marker ADIPOQ in both scRNA-seq and snRNA-seq datasets (middle and
rightmost panels) (B) and (C) Heat map of z-scored expression of top 20 differentially expressed
genes between cluster 0 and cluster 1 in scRNA-seq (B) and snRNA-seq (C) white adipocyte dataset.
Highlighted in red are markers of adipogenesis. (D) and (E) Heatmap of transcriptional signature
scores for cluster 1 (D) and cluster 0 (E) as plotted on the UMAP visualization of snRNA-seq white
adipocyte data (F) Normalized expression of genes ADIPOQ and SEMA5A and (G) ADIPOQ and
S100A4 in differentiating brown preadipocytes (day-20) scRNA-seq dataset. Also see Fig. B.4G to
B.4I.
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Integration of snRNA-seq and scRNA-seq datasets

A comprehensive cell atlas of the adipose tissue will require joint analyses of datasets gen-
erated using both scRNA-seq and snRNA-seq. However, technical biases and differential
transcript enrichment in snRNA-seq leads to significant batch effects between snRNA-seq
and scRNA-seq experiments, thereby reducing clusterability of cells from these two proto-
cols [339]. Multiple bioinformatic tools are now available to remove covariates that lead
to technical batch effects and facilitate integration of scRNA-seq datasets generated across
different days, laboratories, individuals, or technologies [340]. We used single-cell variational
inference (scVI), a deep generative modeling-based tool [280, 341], to explore the possibility
of integrating snRNA-seq and scRNA-seq datasets for joint analysis. Four datasets of white
preadipocytes were integrated in total: day-0 scRNA-seq snRNA seq (cluster 0 in Fig. 4.1B
and Fig. 4.2A), and day-20 scRNA-seq & snRNA-seq (top and bottom left panels in Fig.
4.6A).

Without batch correction, all four datasets arranged into distinct individual clusters,
with no shared population identified at the same time point across different techniques,
or same technique but across different time-points (Fig. 4.7A). A dendrogram, based on
the Euclidean distance in dimensionally reduce space, grouped clusters first by sequencing
chemistry (mcSCRB-seq vs 10x), followed by technique type (snRNA-seq vs scRNA-seq), and
finally by time point (day-0 vs day-20, Fig. 4.7A). After integration, matching adipocyte
populations from day-20 and preadipocyte populations from both day-0 and day-20 in nuclear
and whole-cell datasets were primarily nearest neighbors in a dendrogram based on the
Euclidean distance in dimensionally reduced space (Fig. 4.7B). UMAP visualization further
revealed proximal placements of similar cell populations (Fig. 4.7B and 4.7C). Of note,
we observed that preadipocytes from both day-0-snRNA-seq and day-0-scRNA-seq datasets
localized into two distinct groups, which was driven by differences in proliferation state
with one cluster composed of mitotic cells and another composed of growth arrested cells
(Note B.2; Fig. B.11A to B.11H). Unsupervised clustering of the integrated dataset revealed
adipocytes, day-20 preadipocytes, and the two groups of day-0 preadipocytes as distinct cell-
types, illustrating scVI’s abilities to remove batch effects while retaining biological variation
(Fig. 4.7C, right-most panel). Indeed, top marker genes for each cluster recovered previously
reported expression trends such as enrichment of ECM components in day-0 preadipocytes
[342], enrichment of insulin-binding proteins in day-20 preadipocytes [343], and enrichment
of adipogenic genes in mature adipocytes (Fig. B.11J). Although, multiple markers for
each cluster had conserved expression across scRNA-seq and snRNA-seq, some markers were
exclusively enriched in either one of the datasets (Fig. B.11J), thereby highlighting the
importance of performing joint analysis. Finally, integration of the same 4 datasets using
Seurat [344] revealed minimal overlap of single-cell and single-nuclei datasets for both day-
0 and day-20 (Fig. B.11I). Recently, benchmarking of distinct integration methodologies
indeed revealed effective performance by scVI on complex integration tasks, with Seurat v3
performing well on simpler tasks with distinct biological signals [345]. Overall, our results
demonstrate scVI’s integration abilities by identifying functionally similar preadipocyte and
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Figure 4.7: Integration of snRNA-seq and scRNA-seq datasets (A) UMAP visualization of
non-integrated scRNA-seq and snRNA-seq datasets for both white preadipocyte (day-0) and mature
adipocyte (day-20), for a total of 4 batches (top panel, total 18717 barcodes). Cluster dendrogram
for non-integrated datasets based on the eigenvalue-weighted Euclidean distance matrix constructed
in latent-dimension space inferred using scVI (bottom panel) (B) UMAP visualization and cluster
dendrogram of scRNA-seq and snRNA-seq datasets as in panel A after integration using scVI-tools
(total 18717 barcodes). See also Note S4 and Fig. S10. (C) UMAP visualization of scVI integrated
dataset with barcodes annotated by sequencing technique (left panel), harvestation day (middle
panel), and joint unsupervised clustering (right panel).

adipocyte populations shared across single-cell and single-nuclei RNA-sequencing techniques.

4.3 Conclusion

In this investigation, we evaluated the ability of snRNA-seq to recapitulate the molecular
and compositional landscape of distinct lineages in human adipose tissue. We avoided con-
founding variability associated with inter-depot and inter-subject transcriptional variation
by performing a direct comparison of snRNA-seq and scRNA-seq on a pair of immortalized
white and brown human preadipocytes isolated from the neck region of the same individual.
We found that snRNA-seq was able to recover the same cell-types as scRNA-seq at both
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preadipocyte and mature adipocyte states. Furthermore, we provided evidence for recovering
similar expression profiles of biologically relevant genes, and attributing similar functional
annotations to cell-types by nuclear transcriptome profiling as compared to whole-cells. At
the preadipocyte stage, brown preadipocytes were a heterogeneous mix of two distinct cell
populations, cluster 1 and cluster 2. However, cell-type enrichment followed by differentiation
and metabolic assays will need to be further performed to identify their individual functions
in maintaining adipose tissue homeostasis. To date, different scRNA-seq studies of mouse
stromal vascular fraction have identified multiple subpopulations of adipose progenitor cells
(APCs) expressing distinct markers [346–349]. Integrated analysis of these datasets primar-
ily identified two common populations of APCs in mice referred to as Asc1 and Asc2 [267,
308]. Similar to cluster 2 cells, Asc2 exhibited pro-inflammatory and pro-fibrotic phenotype
and positive expression of genes PI16 and MFAP5. Functional investigations into the two
cell types revealed Asc2 cells inhibiting the differentiation of Asc1 cells in vitro [267]. This
agrees with the pro-adipogenic nature of cluster 2 cells identified in our study. Therefore, it
is plausible that cluster 1 and cluster 2 cells identified in our study may be functioning in a
manner similar to Asc1 and Asc2 to maintain adipocyte turnover.

snRNA-seq is the preferred technique to study samples whose compositional landscape
may be biased by the differential efficiency of cell-type recovery when using scRNA-seq. Adi-
pose tissue is one such sample where isolation of intact, single adipocytes is complicated by
their fragile nature. Indeed, most adipose scRNA-seq studies to date derive the transcrip-
tomes of the cell types within stromal vascular fraction (SVF) only, with minimal detection
efficiencies for mature adipocytes either in animal models [89, 350, 351] or humans [307, 348,
352, 353]. Here, we developed a new single-adipocyte isolation protocol using piezo-acoustic-
based gentle dispensing technology for improved recovery with downstream scRNA-seq. Us-
ing this strategy, ∼26% barcodes recovered were annotated as adipocytes. However, this
adipocyte capture efficiency was still limited as compared to snRNA-seq where ∼ 48% bar-
codes were identified as adipocytes. Conversely, at the preadipocyte stage, where cell-type
recovery is efficient, scRNA-seq recovered equal proportions of the two brown preadipocyte
clusters. However, analysis of snRNA-seq data revealed ∼1.5-fold enrichment of cluster 1
over cluster 2, suggesting a bias in compositional sampling in snRNA-seq. Therefore, such
cell-level sampling biases must be considered when evaluating the composition of complex
tissues with snRNA-seq.

Understanding the advantages and drawbacks of using snRNA-seq, a nuclear transcrip-
tome is inherently enriched for nascent transcripts, thereby predominantly reflecting changes
in gene expression as a result of differences in transcription rates alone [354]. In contrast, a
cellular transcriptome is fundamentally enriched for mature transcripts, thereby capturing
gene expression changes driven by both transcriptional and post-transcriptional regulatory
processes such as mRNA processing and degradation. Higher relative proportion of nascent
to mature transcripts in the nucleus also results in a large fraction of intronic reads in
snRNA-seq, which when considered for count matrix generation, gives rise to detection bias
against short genes with few intronic polyA stretches. Consequently, for a biological system
compatible with both techniques, scRNA-seq may be better for identifying cellular subpop-
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ulations. scRNA-seq will also be better for assessing gene expression changes as a result
of post-transcriptional regulation. However, nuclear transcriptome is preferentially enriched
for lncRNAs, indicating that functional investigations of these genes will be enhanced by
sequencing nuclei. Moreover, some studies of specific nuclear functions may be enhanced by
directly accessing nuclei for example, changes in gene expression profile as a result of targeted
transcriptional activation mediated by epigenetic modifications. Therefore, it is important
to evaluate each approach depending on the task at hand. However, for tissues such as the
adipose tissue, snRNA-seq may be the only option. In our investigation, lncRNAs regulat-
ing adipogenesis were enriched in the nuclear transcriptome. lncRNAs driving differences
between cluster 1 and 2 in brown preadipocytes were also better detected in the snRNA-seq
dataset. However, we also identified poor detection of shorter genes in nuclei, some of which
were key to driving heterogeneity between distinct cell-types.

Including intronic reads for UMI quantification presents researchers with both advan-
tages and drawbacks. polyA stretches are found randomly dispersed along the length of
the genome, and introns become the predominant site for the localization of such stretches
because of their extensive length (21-fold longer than exons) [355]. These polyA stretches
present additional priming sites (besides the 3’ polyA tail) for the polyT RT primer, thereby
enabling more efficient transcript capture. Conversely, most intronic reads are therefore de-
rived from genes with multiple polyA stretches (long genes), thereby introducing technical
detection bias. This bias gets further magnified in snRNA-seq libraries that are inherently en-
riched for nascent transcripts (and hence intronic reads), and filtering such reads would mean
reduced gene detection sensitivity, shallower sequencing depth and under-utilized sequencing
cost. Here, we provided a normalization strategy for UMI counts derived from intronic reads
that can remove gene-length associated technical biases. Implementation of this normal-
ization strategy removes technical artifacts while retaining true biological features, thereby
improving integration and enabling joint analysis of scRNA-seq and snRNA-seq datasets. In
such joint analysis, our normalization strategy would also improve the accuracy of differential
expression testing between any technique-specific clusters identified.

Finally, we demonstrated applicability of scVI for integration of scRNA-seq and snRNA-
seq datasets. This is critical for the generation of a comprehensive adipose tissue atlas since
investigations into the stromal vascular fraction heterogeneity have been performed using
scRNA-seq whereas snRNA-seq is favorable for investigations into the existence of adipocyte
subtypes. Therefore, any efforts to identify shared subpopulations across such datasets, and
the lineages therein would demand data integration. However, our findings here are based
on an in-vitro adipogenic model system, with a less heterogeneous cellular composition than
primary tissue. Therefore, integration of scRNA-seq and snRNA-seq datasets with this in
vitro adipogenic model system is likely more robust than in a primary sample. Indeed,
multiple previous reports have demonstrated strong batch effects between scRNA-seq and
snRNA-seq datasets derived from the same primary tissue, resulting in suboptimal integra-
tion performance [345, 356, 357]. As a demonstration of this phenomenon, we integrated
the human heart cell atlas dataset using scVI-tools, the algorithm demonstrated to be most
effective in integrating scRNA-seq and snRNA-seq datasets, and observed sub-grouping of
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samples derived from the two techniques within clusters of major cell-types identified (Fig.
B.13). Such batch effects are likely rooted in technical differences across the two techniques,
such as gene-length associated detection biases, and high background mRNA levels in nuclear
libraries (Fig. B.12) [358, 359]. For Integrative algorithms like scvi-tools, which utilize deep
generative models for batch effect correction, users could run posterior predictive checks to
quantitatively compare integration performance for two scRNA-seq datasets vs scRNA-seq
snRNA-seq datasets. Lower predictive power for integration of scRNA-seq and snRNA-seq
datasets (as compared to two scRNA-seq datasets) would indicate a need for engineering
more accurate machine learning models specifically developed for the task of integrating
single-cell and single-nuclei RNA-seq datasets.

Overall, snRNA-seq provides an effective method for characterizing cellular heterogeneity
and functionally relevant gene expression profiles within human preadipocytes and adipocytes.
We expect that snRNA-seq will be actively adopted by the adipose community for high-
throughput transcriptomic profiling of the tissue and aid in increasing its representation in
initiatives such as the Human Cell Atlas. Ultimately, joint analysis of datasets acquired using
multiple sequencing techniques will aid in the creation of a comprehensive human adipose
tissue atlas, thereby enabling us to dissect its critical role in health and disease.

4.4 Materials and Methods

Preadipocyte culture and adipogenic differentiation

Detailed protocol for maintenance, cryopreservation, and differentiation of white and brown
preadipocytes are outlined in a different study (Shamsi and Tseng 2017). Briefly, for cultur-
ing preadipocytes, cells were grown in DMEM medium (Corning, 10-017-CV) supplemented
with 10% vol/vol FBS and containing 1% vol/vol Penicillin-Streptomycin (Gibco). Cell cul-
ture was maintained at 37°C in a humidified incubator containing 5% vol/vol CO2. 80%
confluent cells were passaged using 0.25% trypsin with 0.1% EDTA (Gibco, 25200-056) for
a 1:3 split in a new 100 mm cell culture dish (Corning).

Prior to adipogenic differentiation, white and brown preadipocytes were allowed to grow
up to 100% confluence in a 100 mm cell culture dish (Corning). After 48 hours at 100%
confluence, growth media was replaced with adipogenic induction media every 48 hours for
the next 20 days. Induction media was prepared by adding 1 mL FBS, 500 µl Penicillin-
Streptomycin, 15 µl human Insulin (0.5 µM, Sigma-Aldrich, I2643-50MG ), 10 µl T3 (2 nM,
Sigma-Aldrich,T6397-100MG), 50 µl Biotin (33 µM, Sigma-Aldrich, B4639-100MG), 100 µl
Pantothenate (17 µM, Sigma-Aldrich, P5155-100G), 1 µl Dexamethasone (0.1 µM, Sigma-
Aldrich, D2915-100MG), 500 µl IBMX (500 µM, Sigma-Aldrich, I7018-100mg), and 12.5 µl
Indomethacin (30 µM, Sigma-Aldrich, I7378-5G) to 48.5 mL DMEM medium and sterile
filter.
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Harvesting preadipocyte and mature adipocyte for scRNA-seq

At preadipocyte stage, cells were harvested from 100 mm plates, labeled with hashtag anti-
bodies (Supplemental Table 1A, Note B.2), and finally suspended in PBS with 0.04%BSA
at ∼1000 cells/µL concentration for downstream sequencing. At mature adipocyte stage,
cells were first washed with PBS (Corning, 21-040-CV) and incubated with a monolayer of
.25%trypsin with 0.1%EDTA (Gibco; 25200-056; monolayer obtained by adding and remov-
ing 1 mL of trypsin) for 2-3 minutes in a tissue culture incubator. When adipocytes started
to become round and detached from the plate, trypsin was neutralized by adding 1 mL of
FBS. Clumps of adipocytes were dislodged using a wide bore 1 mL pipette tip and filtered
using a 70 µm cell strainer. Concentration of adipocyte suspension was adjusted to ∼ 200
cells/µL using FBS for downstream spotting using the CellenOne X1 machine.

Nuclei isolation from preadipocytes and mature adipocytes for
snRNA-seq

Nuclei were isolated from white and brown preadipocytes using an NP-40 based lysis buffer:
To 14.7 mL nuclease-free water (Qiagen), 150 µL of Tris-Hydrochloride (Sigma, T2194), 30
µL of Sodium Chloride (5M; Sigma, 59222C), 45 µL of Magnesium Chloride (1M; Sigma,
M1028), and 75 uL of NP-40 (Sigma, 74385) was added. Two 100 mm dishes were used
for nuclei isolation from each preadipocyte type. 500 µL of NP-40 based lysis buffer was
added to each 100 mm dish and a cell scraper was employed to release adherent cells from
the plates. Cells were then incubated with the lysis buffer for 5 minutes on ice in a pre-
chilled 15 mL falcon tube. Cells were washed with ice-cold PBS supplemented with .2
U/µL RNase Inhibitor (Protector RNase Inhibitor; henceforth called wash buffer) 4 times
by centrifuging at 500 rcf for 5 minutes at 4°C. Wash buffer was aspirated after the final
round of centrifugation and nuclei were resuspended in the ice-cold wash buffer and filtered
using a 40 um cell strainer. Final concentration was adjusted to ∼ 1000 nuclei/µL using a
hemocytometer for downstream sequencing. Nuclei were also stained using 0.08% trypan blue
dye to assess nuclear membrane integrity under brightfield imaging. For nuclear isolation at
the mature adipocyte stage, the same protocol was implemented as mentioned above with
the modification of using 1 mL lysis buffer for each 100 mm dish.

Single-cell and single-nuclei sequencing

For mcSCRB-seq experiment with white adipocytes (day 20), 96-well plates were first preloaded
with rows of 10 uniquely barcoded primers and lysis buffer according to the mcSCRB-seq
protocol, with the only difference being the use of µCB-seq RT primers [63] instead of stan-
dard mcSCRB-seq ones. The sequence of barcodes used were: TCACAGCA, GTAGCACT,
ATAGCGTC, CTAGCTGA, CTACGACA, GTACGCAT, ACATGCGT, GCATGTAC, AT-
ACGTGC, and GCAGTATC. CellenONE X1 instrument was used to individually deliver a
single adipocyte into each well for a total of 200 cells. Following cell delivery, the mcSCRB-
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Table 4.1: Sequencing metrics for individual libraries used in our study. All sequencing was per-
formed on the Illumina NovaSeq platform.

Technique Sample Chemistry Depth No. cells
scRNA-seq White, Brown Pread. v2 + CITE-seq 78,000 8,000
scRNA-seq White Adipocytes mcSCRB-seq 100,000 200
snRNA-seq White Pread. v3 174,738 8,000
snRNA-seq Brown Pread. v3 216,700 7,000
snRNA-seq White Adipocytes v3 123,700 12,000

seq protocol was followed directly, but with the following two modifications:

• A 1:1 ratio of AmPure XP beads was used to pool all cDNA after RT as opposed to
the manual bead formulation from standard mcSCRB-seq

• NEBNext i5 indexed primers (NEB, E7600 and E7645) were used as opposed to the
non-indexed P5NEXTPT5 primer during library PCR and indexing step to generate
dual indexed libraries for multiplexing

scRNA-seq and snRNA-seq data analysis

scRNA-seq white brown preadipocytes dataset was processed using cellranger-3.0.2 with
default parameters, and the human GRCh38-3.0.0 genome (November 19, 2018) as input.
A custom pre-mRNA GTF file was created using the GRCh38-3.0.0 FASTA file as input
to include intronic reads in UMI counts. Sample demultiplexing, doublet removal, and
empty droplet removal was performed using the Seurat [263] function HTODemux (Note
S1). Cell barcodes were further filtered to have more than 200 genes. Post demultiplexing
and filtering, scVI [280, 341] was used to infer a 20-dimensional latent space based on the
expression of the top 2000 most variable genes. This latent space was then used in Seurat
to generate the UMAP visualization using the RunUMAP command. Downstream clus-
tering (resolution = 0.4) and differential expression analysis (logFC > 0.5) was performed
using Seurat’s SCTransform pipeline [360]. Clusters with > 5% mean mitochondrial content
were removed from downstream analyses. In the identified high-quality clusters, cells had
minimal cell-cycle effects as calculated using Seurat (Fig. B.3G). Gene ontology analysis
was performed at geneontology.org [361–363] and results were further confirmed using the
goana package in R with genome wide human annotation derived from org.Hs.eg.db Biocon-
ductor package. Transcription factor enrichment analysis was performed using the ChEA3
tool [364]. GRCh38-ref20202A (2020) reference was used for analysis involving lncRNAs,
keeping everything else the same. Independent sub-clustering of cluster 0 and cluster 1
identified differences in cellular states based on cell-cycle only, suggesting the absence of
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any cellular subtypes (Fig. B.3D and B.3E). However, sub-clustering of cluster 2 revealed a
PI16+ adipocyte progenitor population (Fig. B.3F) [348, 365], which was also identified in
snRNA-seq dataset (Fig. B.5G). In this manuscript, we focused on only the major cell-types
identified within human white and brown preadipocytes (Fig. 4.1B). For sub-clustering,
resolution was set to 0.3, the smallest value at which distinct clusters were first identified
within clusters 0, 1, and 2.

snRNA-seq white and brown preadipocyte dataset was also processed using cellranger-
3.0.2. For white preadipocyte, barcodes with < 200 genes were removed from downstream
analyses. CellBender [359] was used to remove empty droplets. For downstream analyses,
only barcodes called as cells by both cellranger and CellBender were used and barcodes with
UMI count > 49000 were filtered out as possible doublets. For brown preadipocyte, barcodes
with < 200 genes were removed and scVI was used to infer a 20-dimensional latent space.
First round of clustering was performed in Seurat with the resolution set to 0.06. We iden-
tified 3 clusters, with cluster 1 having most of the barcodes called as empty by CellBender.
Therefore, cluster 1 was removed from downstream analysis as well other barcodes that were
called as “cell-containing” by cellranger but not by CellBender. Cluster 2 was marked with
high mitochondrial content (> 20%) and hence was also removed from downstream analyses.
After filtering out low-quality barcodes and clusters, Scrublet [366] was used to remove any
potential doublets. After individual QC of white and brown preadipocyte libraries, the two
datasets were integrated together using scVI with no batch effect correction. The output
from scVI analysis was a 20-dimensional latent space representation with cell embeddings
for both white and brown nuclei. This latent space was then used in Seurat to generate the
UMAP visualization using the RunUMAP command. Downstream clustering (resolution =
0.24) and differential expression analysis (logFC > 0.5) was performed using Seurat’s SC-
Transform pipeline (see Fig. B.5). Cells in each cluster had no significant cell-cycle effects
(Fig. B.5C). For gene ontology, and differential expression analyses, the same tools as men-
tioned in the above paragraph were used. GRCh38-ref20202A (2020) reference was used for
analysis involving lncRNAs, keeping everything else the same.

mcSCRB-seq white and brown adipocyte dataset was processed using zUMIs [235] using
the GRCh38 index for STAR alignment. We provided the 10X CellRanger recommended
GRCh38-3.0.0 GTF file as input for standardization of gene counts. Reads with any barcode
or UMI bases under the quality threshold of 20 were filtered out and known barcode sequences
were supplied in an external text file. UMIs within 1 hamming distance were collapsed to
ensure that molecules were not double-counted due to PCR or sequencing errors. Only
exonic reads were counted towards UMI quantification. The umi-count matrix generated
using zUMIs was read using the readRDS command in Seurat. The CellenOne X1 machine
acquires an image of every cell spotted and the presence of a single cell was further validated
by analyzing these images to remove possibly empty or doublet barcodes. The Seurat object
was analyzed using a standard Seurat pipeline with resolution set to 0.6 for clustering of white
adipocytes and 1.1 for brown adipocytes. snRNA-seq white adipocyte dataset was processed
using cellranger-3.1.0. Barcodes with < 200 genes were removed from downstream analyses
and scVI was used to infer a 20-dimensional latent space. For clustering using Seurat,
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the resolution parameter was set to 0.45. We identified 7 clusters, with cluster 3 having
most of the barcodes called as empty by CellBender. Therefore, cluster 3 was removed from
downstream analysis as well other barcodes that were called as “cell-containing” by cellranger
but not by CellBender. Cluster 5 was marked with high mitochondrial content and hence
was also removed from downstream analyses. Cluster 2 had the greatest number of doublets
identified by the doubletDetection [367] tools and was filtered out, as well as cluster 4 which
was enriched for ribosomal proteins suggesting cellular debris contamination.

Transcriptional signature analysis using primary white and brown
preadipocytes

Primary white and brown preadipocytes were isolated from the neck region of 6 individu-
als and subjected to microarray gene expression profiling [281]. Data was accessed using
GEO Accession GSE54280 and analyzed using GEO2R. Differentially expressed genes were
identified using a white vs brown test. List of genes enriched in white or brown primary
preadipocytes were defined as signatures for respective cell-types and used as input in Vision
to assign score to in vitro preadipocytes analyzed in our study (Fig. 4.1).

RNA smFISH and Spot Counting Analysis

To perform RNA FISH, we followed the protocol in Raj et al. 2008 [368] with minor modifica-
tions. We pre-washed cells with wash buffer containing 10% formamide and 2X saline-sodium
citrate (SSC). We then performed hybridization by adding 1 µL of probe (6.25 µM) to 50
µL of hybridization buffer consisting of 10% formamide, 2X SSC, and 10% dextran sulfate
(w/v). The final probe concentration for overnight hybridization was 125 nM. We hybridized
the samples overnight in a humidified chamber at 37°C. Following hybridization, we washed
the samples twice with wash buffer for 30 minutes at 37°C. We then washed the samples 2X
SSC, anti-fade buffer. Imaging was done in anti-fade buffer supplemented with catalase and
glucose oxidase.

For quantification of number of RNA spots per cell, Find Foci tool [369] was used in
Fiji. For analysis, imaged were first cropped to only have one cell per field of view. Then,
the Find Foci plugin was used using the GUI, with Max Size = 100, Peak parameter = 0.2,
Max peaks = 1000, and Minimum size = 5 (Advanced settings). For image binarization, a
manually selected value was used for thresholding, with visibly best performance in selecting
RNA spots as foreground over background. With total RNA spots calculated for each cell,
gaussian mixture model fitting was performed using the mclust package in R [370], and
negative binomial mixture model fitting was performed using the fitNB command in SIBERG
package [371] in R.
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Identifying number of lncRNAs detected as a function of
sequencing depth

For identifying the number of lncRNAs detected as a function of sequencing depth, the fastq
files for scRNA-seq preadipocyte dataset only were subsampled using seqtk v1.3 with the
random seed = 100. For each subsample depth, fastq files were processed using cellranger-
3.1.0 with GRCh38-ref2020A pre-mRNA as the reference. snRNA-seq data for white and
brown nuclei (as processed with cellranger at full depth) were then aggregated with the
output of scRNA-seq preadipocyte data at varying sequencing depth using the cellranger
aggr command to achieve same number of average transcriptome mapped reads. Number
of lncRNAs detected were then calculated as a function of sequencing depth, with lncRNA
assumed as detected in a given cell/nuclei if UMI count > 0.

Silhouette coefficient analysis

Both scRNA-seq and snRNA-seq datasets for brown preadipocytes were subsampled as de-
scribed above. snRNA-seq dataset was further randomly subset to have the same number
of total barcodes as scRNA-seq. At each sequencing depth, top 20 principal components
were calculated using Seurat’s standard pipeline. Three resolution coefficients based on the
Silhouette index, Calinski Harabasz index, and Davies Bouldin index were then calculated
based on Euclidean distance between cells in the PCA space using the clusterCrit pack-
age in R. For analyzing cluster separation resolution between brown cluster 1 and 2 as a
function of UMI count, exactly the same analysis was performed except that downsampling
was performed to have the same number of UMI rather than reads between scRNA-seq and
snRNA-seq dataset using the downsampleMatrix command in the DropletUtils package in
R [372].

Integration of snRNA-seq and scRNA-seq data using scVI

For integrating scRNA-seq white preadipocyte (day-0) white-adipocyte (day-20) and snRNA-
seq white preadipocyte (day-0) white-adipocyte (day-20) datasets (a total of 4 datasets),
we first created a single anndata object with UMI count-matrices from each dataset as in-
put. Each of the four UMI matrices were generated by processing the originals fastq files
(no downsampling of reads), and subset to only have high-quality barcodes as outlined in
Methods above. During concatenation, each of the four datasets was assigned a “batch”
key. The concatenated anndata object was then used as input to scvi-tools for integration
using the commands outlined in the tutorial here. The output of following these steps was
a 10-dimensional latent space with batch-corrected embedding for cells from each of the
four datasets. UMAP visualization was then generated using the RunUMAP command in
Seurat with the 10-dimensional latent space as input. The dendrogram was generated using
the BuildClusterTree command in Seurat, which constructs a phylogenetic tree relating the
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’average’ cell from each identity class. Tree is estimated based on the eigenvalue-weighted
euclidean distance matrix constructed in latent-dimension space.

Unsupervised clustering of integrated dataset was performed using Seurat at a resolution
of 0.3. Marker genes were then identified using the FindAllMarkers command. To investi-
gate if the identified markers were conserved in their differential expression in scRNA-seq
or snRNA-seq datasets, the integrated object (post-clustering) was first split based on se-
quencing techniques using the SplitObject command. Then, the identified marker genes were
tested for differential expression using the FindAllMarkers command, with a logFC threshold
of 0.25.

Integration of snRNA-seq and scRNA-seq data using Seurat

For integration with Seurat, scRNA-seq white preadipocyte (day-0) white-adipocyte (day-
20) and snRNA-seq white preadipocyte (day-0) & white-adipocyte (day-20) datasets were
defined as individual batches (a total of 4 batches). Integration was performed following the
commands outline in this tutorial.
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Chapter 5

Mapping the temporal transcriptional
landscape of human white and brown
adipogenesis using single-nuclei
RNA-seq

5.1 Introduction

Adipogenesis is a highly orchestrated process, where networks of transcription factors (TFs)
induce differentiation of adipose precursor cells (called preadipocytes) into mature adipocytes.
This differentiation process is central to maintaining systemic energy balance in response to
varying nutritional needs, with mature white adipocytes participating in energy storage and
mature brown adipocytes participating in thermogenic energy expenditure. Notably, excess
fat manifests itself in the development of syndromes such as Obesity, whereas deficiency of
fat is associated with disorders such as lipodystrophy, thereby implicating a pathogenic role
of imbalanced white and brown adipose tissue (WAT and BAT) expansion in such metabolic
disorders. Consequently, a firm understanding of the molecular underpinnings of healthy
adipogenic expansion is key in elucidating the pathophysiology and potential treatment
modalities of such pathological cases.

Although studies in rodent models of adipogenesis have offered significant insights (see
Chapter 1), recent studies have started focusing on adipogenic regulation using human model
systems due to existing metabolic, functional, and physiological differences between the two
species (see Chapter 1). For example, studies have compared transcriptomic profiles of
human-derived adipose stem cells (ASCs) at multiple stages of adipogenic differentiation
using techniques such as microarray analysis [373–375], bulk RNA-seq [74], siRNA screens
[376], and RT-qPCR [376]. This has resulted in the identification of novel adipogenic TFs
such as FGF11, and SOX4 [374]. However, such techniques provide a bulk gene expression
measurement which are population-level ensemble measurements that do not take into ac-



count the inherent heterogeneity of asynchronously differentiating biological systems. With
this approach, cellular heterogeneity cannot be resolved since variably expressed genes will
be averaged or – if exclusively expressed in rare cells – completely missed. Moreover, ex-
perimental feasibility permits transcriptomic sampling at only coarse time-intervals during
the differentiation period, thereby providing an incomplete and inaccurate view of gene ex-
pression dynamics. Recently, single-cell RNA-sequencing (scRNA-seq) has proven to be a
powerful tool for unbiased transcriptomic profiling of complex tissues at an unprecedented
resolution [25, 265, 266]. Furthermore, scRNA-seq has enabled high-resolution investigations
into the transcriptional dynamics of differentiation in multiple biological systems, by cap-
turing molecular differences in individual cells distributed along a continuum of maturation
state (pseudo-time as a proxy; see Chapter 1). Indeed, within primary adipose tissue, recent
investigations utilizing this technique have reported the molecular dynamics of adipocyte
development in mice [88, 89]. However, inability to sample cells at all stages of differentia-
tion, in vivo, has hindered the possibility of creating a high-resolution transcriptional map
of adipogenesis using primary samples. Therefore, in this study, we mapped the transcrip-
tional landscape of human white and brown adipogenesis using a unique, well-controlled,
in vitro model system [76, 279], which enables isolation of differentiating preadipocytes at
well-defined, multiple stages of development. In this in vitro system, paired white and brown
primary preadipocytes were isolated from a defined anatomical location (the neck depot) of
a single individual. This system, therefore, allowed us to measure transcriptional dynamics
within and between white and brown lineages, while controlling for inter-individual variabil-
ity that are typically associated with transcriptomic profiling of primary human adipose tis-
sue, such as body mass index, genotype, and gender [98]. Preadipocytes from both lineages
were isolated while preserving their intrinsic cellular heterogeneity and were then immor-
talized to allow for long-term in vitro cell-culture. Previously reported data demonstrated
highly concordant molecular features between primary and immortalized preadipocytes, with
in vitro differentiated adipocytes recovering gene expression profiles and functions of primary
human neck BAT and WAT [76].

Using this in vitro human model system, we chose single-nuclei RNA-seq (snRNA-seq)
as the preferred modality for performing a large-scale, time-course experiment on differen-
tiating white and brown preadipocytes. Using snRNA-seq is important for equitable cell-
recovery, since adipocytes suffer capture losses during single-cell extraction and isolation
[98]. Furthermore, our previous work demonstrated the applicability of snRNA-seq in recov-
ering similar cellular diversity and molecular differences as scRNA-seq in the adipose tissue
[98]. Therefore, in this study, we isolated intact nuclei from differentiating white and brown
preadipocytes at 5 stages of adipogenesis and performed droplet-microfluidics-based high
throughput snRNA-seq. We then defined custom, white-/brown-lineage-specific adipogenic
gene signatures that enabled high-resolution ordering of individual nuclei in increasing or-
der of maturity. Using this nuclear ordering, our analyses revealed temporal regulation of
distinct gene modules in both white and brown adipogenesis, each module highlighting the
dynamics of biologically relevant functional processes. We investigated potential roles of tem-
porally regulated genes in Obesity and further identified novel adipogenic as well thermogenic
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transcription factors in humans. We also demonstrated the applicability of our adipogenic
signature in assessing differentiation maturity of preadipocytes identified in publicly avail-
able scRNA-seq datasets. Overall, our study, for the first time, provides a comprehensive
molecular understanding of both white and brown adipogenesis in humans. We believe this
dataset to be an important resource and a reference to map the future in vivo adipogenic
studies onto, both in healthy as well as metabolically diseased state.

5.2 Results

Large-scale snRNA-seq reveals a continuum of gene-expression
during human white and brown adipogenesis

Intact nuclei were harvested from differentiating white and brown preadipocytes (see Meth-
ods) at 5 equally-spaced time-points during the 20-day adipogenic induction period (Fig.
5.1A). Nuclei harvested on day-0 were isolated from preadipocytes prior to adipogenic dif-

Figure 5.1: snRNA-seq of differentiating white and brown preadipocytes (A) Schematic
of experimental outline for white and brown preadipocytes (B) UMAP visualization of white adipo-
genesis dataset integrated using scVI. Nuclei are colored by the day of harvestation (C) Normalized
Expression of gene ADIPOQ (D) UMAP visualization of brown adipogenesis dataset integrated
using scVI. Nuclei are colored by the day of harvestation. (E) Same plot as (D) but nuclei are col-
ored by clusters identified using unsupervised clustering. Also see Fig. C.2. (H) to (K) Normalized
expression of marker genes in white or brown adipogenesis dataset.

ferentiation. Isolated nuclei were subjected to droplet-based snRNA-seq, followed by QC
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analyses (see Methods). In total, we recovered 25,339 high-quality white nuclei and 27,568
high-quality brown-nuclei, with 2000-6000 genes detected per nuclei.

Independent unsupervised clustering of differentiating white preadipocytes revealed a
homogenous cluster of nuclei on day-0 and day-5, with capture and detection of differenti-
ating adipocytes after day-10 (Fig. C.2A). All 5 white adipogenic libraries were integrated
using scVI-tools, revealing ordering of cells with increasing maturity, starting from early
precursor state (day-0) to mature adipocyte state (day-20; Fig. 5.1B and 5.1C). Adipogenic
transcriptional signature analysis, where each cell is assigned a score based on expression of
previously identified adipogenic genes, revealed a monotonically increasing trend with day
of harvestation, thereby confirming a higher fraction of mature adipocytes on later days
(Fig. C.2C). Notably, the spread of adipogenic signature score also increased with the day
of harvestation, highlighting the asynchronous behavior of adipogenic differentiation in our
in-vitro model system.

For differentiating brown preadipocytes, we had previously demonstrated underlying het-
erogeneity within day-0 (preadipocyte-0 and preadipocyte-1, Fig. C.2B). Independent anal-
ysis of brown nuclei harvested at later time-points (day-5 to day-20) further revealed similar
preadipocyte heterogeneity, along with capture and detection of mature adipocytes (Fig.
C.2B). Notably, integrative analysis of all 5 time-points revealed two contrary transcriptional
responses to the induction media, with preadipocyte-1 differentiating into mature adipocytes,
and preadipocyte-0 exhibiting a non-adipogenic response (Fig. 5.1D and 5.1E). Furthermore,
differential expression analysis revealed strong up-regulation of adipogenic master regulator
PPARG, and thermogenic transcription factors PGC1A and PGC1B in the adipogenic tra-
jectory only (Fig. 5.1F to 5.1H). Notably, pathway analysis using genes up regulated as
part of the non-adipogenic response revealed enrichment of FOXO1’s transcriptional activ-
ity (Fig. C.2D and C.2E, see Methods), a known repressor of PPARG [377, 378], suggesting
a possible role of FOXO1 in inhibiting an adipogenic response in preadipocyte-0 cell-type.

Focusing on the adipogenic response in differentiating brown preadipocytes, mean score
for the adipogenic transcriptional signature was mostly increasing with the day of harves-
tation, except for day-15 which had the highest score because of the highest differentiation
efficiency. Joint unsupervised clustering of all adipogenic cells revealed four clusters, re-
ferred to as populations 0, 1, 2, and 3 (Fig. C.2F), and indeed, when considering only
mature adipocytes (cluster 3), day-20 nuclei had the highest adipogenic score, validating
recovery of more mature adipocytes (albeit at a lower rate) as compared to day-15 (Fig.
C.2G and C.2H). As expected, contrary to white adipocytes, brown adipocytes had an up-
regulated expression of the thermogenic marker gene PGC1B (Fig. 1F, 1H and 1I) and
brown-adipocyte-specific marker gene ZIC1 (Fig. 5.1J and 5.1K). Moreover, differential
expression followed by transcription factor enrichment analysis between mature white and
brown adipocytes (day-20) identified highest activity for thermogenic TFs FOXS1 (Heglind
et al. 2005) and FOXC2 (Cederberg et al. 2001) in brown adipocytes. Therefore, molecular
profiling of brown adipocytes validates the emergence of a functionally active thermogenic
response in this cell-type. Overall, our experimental and sampling strategy allows us to
capture a spectrum of cell-states undergoing differentiation into human white or brown fat.
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Pseudotemporal ordering of differentiating preadipocytes
identifies dynamics of key biological processes during adipogenesis

Acquisition of many single-nuclei transcriptomes with high temporal resolution created the
possibility of reconstructing adipogenic developmental trajectory by ordering individual nu-
clei along a pseudo-time. To achieve this, we defined custom white-/brown-adipogenesis-
specific gene signatures (Note S1), whose score was used as a proxy for pseudo-time (Note
C.2). Notably, our custom-defined gene signatures only consisted of genes monotonically
increasing in expression from immature preadipocytes to mature adipocytes (Note C.2),
thereby providing a high dynamic range as well as pseudo-temporal resolution to identify
minor transcriptomic differences along cellular differentiation states.

Figure 5.2: pseudo-temporal ordering of differentiating white and brown preadipocytes
(A) and (C) ordering of differentiating white and brown preadipocytes. (B) and (D) Expression
dynamics of adipogenic TFs with pseudotime in white dataset (B) and brown dataset (D). (E)
and (F) Expression dynamics of temporally regulated genes in white (D) and brown (F) dataset.
Genes are rows and nuclei are column, ordered by increasing pseud-time. (G) and (H) Smoothed
expression dynamics of genes in each module in white (G) and brown (H) dataset.

Using our white-/brown-adipogenesis-specific gene signature, differentiating preadipocytes
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were ordered in increasing maturation state (Fig. 5.2A and 5.2C). As expected, when pre-
sented in pseudotime, expression dynamics of key adipogenic TFs CEBPB, CEBPD, PPARG
and CEBPA accurately reflected known biology (Fig. 5.2B and 5.2D), with early induction
of CEBPB, followed by sustained expression in response to insulin (see Methods) [379], early
induction and transient expression of CEBPD, stable increase in expression of PPARG, and
late induction of CEBPA, thereby validating our cell-ordering strategy for both white and
brown fat development. Next, dynamically regulated genes were identified by grouping nuclei
into distinct pseudo-temporal bins (Fig. C.3A and C.3B, see Methods) and performing differ-
ential expression testing for each bin against the first and last pseudo-temporal bins (logFC
> 1 and FDR < 0.05). In total, we identified 596 and 454 temporally expressed genes during
white and brown adipogenesis respectively, which grouped primarily into five clusters using
unsupervised clustering (Fig. 5.2E to 5.2H): immediately down-regulated (Group 1), gradu-
ally down-regulated (Group 2), transiently up-regulated (Group 3), gradually up-regulated
(Group 4), and lately up-regulated (Group 5).

Focusing on gene clusters identified in white adipogenesis, genes undergoing immedi-
ate down-regulation (Group 1) primarily included cell adhesion molecules (CAMs) such as
ITGB8, ITGA11, and ITGBL1, as well as growth factors such as VEGFA, VEGFC, FGF2,
and FGF5 (Fig. C.3C). Findings from previous studies agree with our observations, with re-
ported downregulation of such integrin-associated genes during adipogenesis [380–382], and
known anti-adipogenic traits of above-mentioned growth factors [383–385]. Notably, exten-
sive remodeling of the extracellular matrix (ECM) is critical for adipogenesis [386, 387], and
CAMs serve as contact points between cells and ECM. Therefore, the disruption of cellular-
ECM contacts, achieved via down-regulation of CAMS, becomes critical for ECM remodeling
[388]. Interestingly, Group-1 genes also included ECM components itself such as COL1A1
and FN1, which agrees with previous reports of progressive degradation for collagen type 1
and fibronectin [342, 388] during adipogenesis.

Group 2 genes primarily included ECM structural components (Fig. C.3D) such as
collagen types -1, -3, and -5, undergoing gradual down-regulation. Notably, multiple previous
reports have demonstrated adipogenic remodeling of the ECM, with such fibrillar ECM
components degrading to pave way for basement-membrane-type ECM components such as
collagen-4 [389, 390]. Indeed, collagen-4 was observed to be gradually increasing during
white fat development in our dataset (Fig. C.3E). Our findings also suggest that cell-ECM
contact disruption is followed by ECM remodeling during early adipogenesis. Moreover,
Group 2 also included down-regulated cytoskeletal components such as ACTB, TUBB, and
VIM (Fig. C.3D), which agrees with our understanding that transition from preadipocytes
to mature adipocytes involves significant reorganization of the cytoskeleton, involving down
regulation of proteins such as actin and tubulin [391, 392].

Group 3 genes (transient up-regulation) mostly consisted of protease inhibitors such as
TIMP3 and SERPINF1 (Fig. C.3F). Protease inhibitors serve as ECM constructive enzymes,
antagonizing the ECM degradation activity of metalloproteases such as MMPs, ADAMs,
and ADAMTSs [393]. Notably, during white adipogenesis, all such metalloproteases were
down-regulated in our dataset (Fig. C.3G). Therefore, our results indicate an initial ECM
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degeneration activity by metalloproteases, followed by a shift toward ECM regeneration via
activity of protease inhibitors. Overall, our analysis of dynamically down-regulated genes
(Groups -1, -2, and -3) highlights the importance of an interplay between cell adhesion
contact disruption, ECM turnover and cytoskeletal remodeling in the progression of human
white adipogenesis.

As expected, Group-4 primarily consisted of canonical adipogenic genes such as PLIN1,
FABP4, CD36 and adipogenic transcriptional regulators such as PPARG, MLXIPL [394],
and ZBED3 [395] undergoing gradual up-regulation. Group-5, on the other hand, included
lipogenic genes such as FASN, ACSL1, GPAM and lipogenic transcription factor NR1H3
[396], suggesting a delayed onset of lipid biosynthesis response as compared to an adipogenic
response. This agrees with pathway analysis which revealed enrichment of adipogenic regula-
tion terms in Group-4 (Fig. C.3H) and fatty acid biosynthesis terms in Group-5 (Fig. C.3I).
Therefore, our results indicate upregulation of adipogenic and lipogenic response during
white fat development, with a possible delay between the two.

Next, focusing on gene modules identified in brown adipogenesis, Group 1 included prolif-
eration marker genes such as TOP2A, CCND1, and MKI67, that undergo immediate down-
regulation as differentiating preadipocytes exit from a proliferative state to growth arrested
state, a transition required for the progression of adipogenesis [397]. A lack of such regulation
for cell-cycle markers during white adipogenesis is likely due to an already growth-arrested
state of day-0 nuclei isolated from white preadipocytes, as compared to a more proliferative
state of day-0 nuclei isolated from brown preadipocytes (Fig. C.3J). Notably, like white
adipogenesis, an immediate down-regulation for ITGA11, as well as multiple CAMs was also
observed during brown adipogenesis.

Focusing on Group 2, like white adipogenesis, gradually down-regulated genes primarily
included cytoskeletal components such as ACTB, TUBB, and VIM (Fig. C.3K). However,
unlike white adipogenesis, fibrillar collagen components such as collagen types -1, -3, and
-5 were clustered in Group-3 undergoing initial up-regulation (Fig. C.3L). This initial in-
crease in expression was likely to provide a fibrillary-type ECM to early proliferating brown
preadipocytes, until such cells reached a growth arrested state [389]. Indeed, such fibrillar
collagen components were enriched in day-0 white preadipocytes as compared to day-0 brown
preadipocytes, with the former cells having a more growth arrested state (Fig. C.3M and
C.3J). Finally, like white adipogenesis, collagen types -1, -3, and -5 eventually undergo down-
regulation, with a consistent increase in expression of basement-membrane-type collagen-4
(Fig. C.3N). Moreover, like white adipogenesis, protease inhibitors were also enriched in
Group-3 (Fig. C.3L), suggesting a similar interplay of ECM degradation and construction
during early stages of brown adipogenesis.

Group 4 genes were enriched for transcriptional regulators of adipogenic and lipogenic
response such as PPARG, FABP4, SREBF1 [398, 399], and NR1H3 [396], whose expression
stably increases during the course of brown fat development. Pathway analysis also identi-
fied enrichment of fatty acid biosynthesis, and lipid metabolism associated terms in Group 4
genes (Fig. C.3O). However, this observation was different from white adipogenesis, where
an adipogenic response was followed by a more delayed lipogenic response. Instead, brown
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adipogenesis was marked by a delayed onset of a thermogenic response (Group 5), as ob-
served by a late induction of genes such as PGC1A, PGC1B, and PRKAG2. Furthermore,
pathway analysis identified an enrichment of AMPK-associated lipolytic pathways [400, 401],
as well as mitochondrial biogenesis pathways, further confirming the emergence of a thermo-
genic response (Fig. C.3P). Overall, our results suggest a consistent adipogenic & lipogenic
response during brown fat development, followed by a delayed thermogenic response.

Next, we focused on genes exclusively regulated during brown adipogenesis, to better
understand the molecular underpinnings that regulate the development of energy-spending
fat. Notably, examination of temporally expressed genes in white and brown adipogenesis
revealed exclusive regulation of autophagic pathways in the latter (Fig. C.3Q), with au-
tophagic genes such as heat-shock proteins (HSPs) undergoing down-regulation as brown
fat development progresses. Notably, autophagic pathways are reported to regulate early
brown fat development [402], with subsequent down-regulation to suppress mitochondrial
clearance via activity of HSPs [403, 404], thereby improving energy metabolism [405, 406].
Therefore, our results highlight an exclusive role of autophagy in regulating the development
and thermogenic response of brown fat in humans.

High-resolution map of transcription factor dynamics identifies
novel regulators of adipogenic and thermogenic response in
humans

Given the key role of transcription factors in the formation and maintenance of different
cell-types during development, we next focused on characterizing the dynamics of temporally
regulated TFs during white fat development. In total, we identified 49 TFs with dynamic
gene expression profiles during differentiation of white preadipocytes (Fig. 5.3A). As ex-
pected, 32/49 TFs identified in humans were observed to have similar expression dynamics
as previously reported in murine models, thereby suggesting a high concordance of molec-
ular features between the two species (Fig. 5.3A). This included Group 1 anti-adipogenic
TFs such as GLI2 (hedgehog signaling mediator) [407, 408], RBPJ (Notch signaling me-
diator) [409, 410], and AHRR [411], Group 2 anti-adipogenic TFs such as TCF4 TCF12
(mediator of Wnt/B-catenin) [412], and SMAD3 (mediator of TGFB pathway) [413], Group
4 pro-adipogenic TFs such as PPARG, MLXIPL [394], and ZBED3 [395], and Group 5
pro-lipogenic TF NR1H3 [396].

Notably, we also identified 17 TFs with no previous reports of their adipogenic regulatory
behavior, either in mice or in humans (Fig. 5.3A). This included TFs such as KLF12,
ZEB2, CREB3L2, and MEF2A, whose homologous partners KLF8 [414], ZEB1 [285], CREB5
[69], and MEF2D [415] are known regulators of adipogenesis in rodents. Of the 17 TFs, 6
were also regulated during brown adipogenesis (Fig. 5.3C), thereby suggesting a common
regulatory approach for these TFs in both white and brown fat development. Notably, based
on the transcription factor binding site analysis, of these 6 TFs commonly regulated in both
white and brown adipogenesis, only RFX8 was also commonly enriched in both lineages
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Figure 5.3: Temporally regulated TFs during white and brown adipogenesis (A) and
(B) TFs dynamically regulated during white (A) and brown (B) adipogenesis, grouped based on
their module annotation. (C) Characterization of novel TFs identified in white adipogenesis for
involvement in brown adipogenesis, as well as TF enrichment analysis. (D) Distribution of TFs
enriched in brown adipogenesis (identified using TFEA) by their module annotation. Highlighted
in red are TFs with no prior literature for their involvement in regulating a thermogenic response.

(Fig. 5.3C), thereby providing a potentially novel lineage-agnostic target to investigate fat
development in humans.

Besides identifying adipogenic TFs, another major goal in the adipose community is to
identify novel thermogenic TFs that can augment an energy-spending response in mature
adipocytes. Typically, thermogenic TFs are identified based on differential enrichment of
genes in BAT over WAT. While such a strategy is applicable in rodents, where BAT form
a homogenous interscapular depot, it is inapplicable in humans where BAT is found inter-
spersed within WAT. Moreover, such a strategy lends weight to TFs that are highly expressed
in BAT, with no information on temporal regulation of these TFs during brown adipogenesis.
Here, using our time-resolved dataset, we identified TFs SREBF1, EBF1, and FOSL1 that
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were exclusively regulated during brown adipogenesis (Fig. 5.3B). Notably, multiple previ-
ous studies have demonstrated a pro-thermogenic role for TFs SREBF1 [398, 399] and EBF1
[416], but no previous study has reported a thermogenic role for FOSL1, thereby suggesting a
potentially novel approach to investigate thermogenesis using this gene. Next, we identified
8 TFs with exclusive activity in brown adipogenesis using binding-site enrichment analysis
(Fig. 5.3D). This included thermogenic regulatory TFs such as SREBF1 [398, 399], KLF15
[417], and TWIST1 [418, 419], along with TFs FOXL1, ZNF117, IRX6, OSR1, and PRRX2,
whose involvement in the context of thermogenic response has never been previously reported
(Fig. 5.3D). Notably, ZNF117 and IRX6 were enriched in up-regulated genes (Group-4 and
Group-5), thereby suggesting a potentially pro-thermogenic role for these genes. This is in
agreement with a pro-thermogenic role for TFs SREBF1 and KLF15, which are also enriched
in up-regulated genes (Group-4 and Group-5; Fig. 5.3D).

Temporally regulated white and brown adipogenic genes are
implicated in Obesity based on GWAS and Bulk RNA-seq studies

A fundamental motivation behind generating the transcriptional landscape of human adipo-
genesis is to better our understanding of metabolic disease pathology, with the broader goal
of potentially defining novel molecular targets for therapeutic intervention. Besides gene ex-
pression profiling, genome-wide association studies have also been critical in linking genetic
variants to metabolic disease risk, thereby vastly improving our understanding of obesity
genetics. Here, we took an integrative approach to further analyze our adipogenic-molecular
findings in light of recent GWAS studies and asked the question: are genes dynamically
regulated in human adipogenesis also linked to metabolic traits associated with increased
obesity risk?

Using publicly available GWAS datasets, we identified SNPs located within a gene that
are associated with metabolic traits such as the BMI, waist circumference, and hip circum-
ference. In total, we worked with datasets from over 15 studies identifying over 1000 SNPs
localized within the genic regions of 984 distinct genes. 77/984 genes were observed to be
temporally regulated during differentiation of white preadipocytes in our dataset. A major-
ity of these genes belonged to Group-2 (Fig. 5.4A), which was associated with ECM and
cytoskeletal remodeling during adipogenesis. This is in line with dysfunctional ECM remod-
eling being a hallmark of Obesity, where excessive lipid accumulation in adipocytes provokes
an excess of deposition of ECM components such as collagens, elastin, and fibronectin in the
adipose tissue [420, 421]. Of the 77 genes, 15 genes were transcription factors that were both
temporally regulated during white adipogenesis and associated with metabolic disease risk
traits (Fig. 5.4B). Focusing on brown adipogenesis, exclusively regulated TF EBF1 was also
associated with metabolic disease risk traits, thereby highlighting the importance of both
white and brown fat in maintaining a healthy metabolic function.

Besides GWAS, RNA-seq and microarray-based investigations have also been critical in
identifying potentially therapeutic molecular targets based on differential gene regulation
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Figure 5.4: Implication of white adipogenesis temporally regulated genes in Obesity
using GWAS and RNA-seq (A) Distribution of genes temporally regulated during white adipo-
genesis, that are also associated with high metabolic disease risk using GWAS (B) Distribution of
TFs temporally regulated during white adipogenesis, that are also associated with high metabolic
disease risk using GWAS (C) Volcano plot of genes DE in lean vs obese human phenotype across
3 different studies. The percentage indicates percent of Group-1 and Group-2 DE genes that are
enriched in obese samples (in red) or percent of Group-4 and Group-5 DE genes that are enriched
in lean samples (in green).

in lean vs obese humans. Typically, such studies utilize tissue specimens isolated from the
subcutaneous abdominal fat depot in humans as a representative WAT sample. Therefore,
utilizing our transcriptome profiling dataset in white adipogenesis, we investigated differen-
tial expression of temporally regulated genes in the context of human lean vs obese metabolic
phenotype. We worked with 3 publicly available datasets in total, 2 of which profiled gene
expression using bulk RNA-sequencing[422, 423] and the third using microarray [424]. No-
tably, of all the temporally downregulated genes that were differentially expressed, a large
majority were enriched in obese samples (Fig. 5.4C). This is expected since downregulated
genes primarily include CAMs and fibrillar ECM components, which exhibit increased ac-
cumulation and production during adipose tissue fibrosis in Obesity. Surprisingly, of all the
temporally upregulated genes that were differentially expressed, which primarily included
adipogenic and lipogenic markers, a large majority were enriched in lean samples in all 3
studies (Fig. 5.4C). Notably, previous studies report similar trends [425, 426], with possi-
ble downregulation of genes characteristic of adipocyte differentiation in obese samples due
to hypertrophic adipose tissue expansion [427, 428], as well as adipocyte de-differentiation
[429].
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Adipogenic transcriptional signature enables assessment of cell
maturation state amongst distinct metabolic phenotypes and
cell-types

In this study, we defined custom white and brown adipogenic gene signatures, whose score
(pseudo-time) was used for ordering differentiating preadipocytes along a continuum of mat-
uration states. Since genes were selected for their monotonically increasing expression, our
custom-defined signatures provided a high pseudo-temporal resolution for ordering cells.
Hence, we utilized our high-resolution adipogenic signatures to quantitatively investigate
differences in cell maturation state in primary adipose tissue isolated from mice and hu-
mans.

Figure 5.5: Application of lineage-specific gene signatures to publicly available scRNA-
seq datasets (A) and (B) Distribution of signature score between preadipocytes and adipocytes
in WAT (A) and BAT (B). (C) Distribution of signature score between ASC1 and ASC2 cell-types
identified in Hepler et al. [347] (D) and (E) Distribution of signature score in Preadipocytes (D)
and APCs (E) derived from lean and obese patients in Hildreth et al. [430]

Applicability of adipogenic gene signatures in capturing differences in cellular maturation
state was first validated using a snRNA-seq dataset of primary white and brown adipose
tissue [273] isolated from the same anatomical location as our in vitro model system (neck
region, see Methods, Fig. C.4A and C.4B). As expected, our analysis revealed a significantly
higher signature score for mature white and brown adipocytes, as compared to respective
preadipocytes (Fig. 5.5A and 5.5B). Recently, multiple scRNA-seq studies identified ASC1
and ASC2 cells as two types of white adipocyte precursors (APCs) in mice [347–349] (Fig.
C.4C to C.4E), with in vivo studies revealing a transition of ASC2 into ASC1 prior to
becoming adipocytes, thereby suggesting a less committed progenitor state for ASC2 cells
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[308, 348]. Indeed, our analysis also confirmed a similar trend, with a significantly higher
signature score for ASC1 over ASC2 from three different studies (Fig. 5.5C, C.4F and
C.4G). Therefore, our results demonstrate the applicability of our signatures in revealing
major (preadipocytes vs adipocytes) as well as minor (ASc1 vs ASC2) maturation differences
within adipose tissue.

After validating our signatures, next, we looked to investigate differences in cell matu-
ration state between lean vs obese metabolic phenotypes in humans [430]. As mentioned
previously, obese adipose samples were marked with a downregulation of adipogenic genes
over lean samples, suggesting that Obesity may put brakes on healthy adipogenic differ-
entiation. Indeed, a recent scRNA-seq study of lean and obese patients reported a higher
fraction of preadipocytes, and a lower fraction of APCs in the SVF (WAT) of lean patients,
suggesting an accelerated development from APCs to preadipocytes (Fig. C.1A to C.1D)
in the healthy metabolic phenotype [430]. Therefore, we hypothesized that Preadipocytes
and APCs themselves are less mature in obese patients because of a decelerated adipogenic
development in this phenotype. We tested this hypothesis by calculating white adipogenic
signature score in lean and obese patients for each cell-type. Indeed, our analysis revealed a
significantly higher score for both Preadipocytes and APCs in lean samples (Fig. 5.5D and
5.5E), thereby validating our hypothesis.

5.3 Conclusion

In our work, we show the power of single nuclei transcriptome analysis to decipher the
transcriptional dynamics of human white and brown fat development using an in vitro model
system. We ordered white and brown cells by their progression through differentiation based
on score for custom-defined adipogenic gene signatures. Our analysis illustrates the continual
nature of adipogenesis, where cells progressively transit through five transcriptional modules
that result in the generation of mature white and brown adipocytes. Through trajectory
comparison, we also identify novel TFs potentially involved in regulation of an adipogenic
or a thermogenic response.

Interestingly, integrative analysis of differentiating brown preadipocytes identified a pre-
cursor population with non-adipogenic response (Preadipocyte-0). Previously, non-adipogenic
cell-types called Aregs were identified, which inhibit adipogenesis of other APCs in a paracrine
fashion. However, Aregs are CD142+ which, in our dataset, was not expressed in the
Preadipocyte-0 population. Recently, multiple scRNA-seq studies reported the existence of
primarily two APC populations in mice referred to as Asc1 and Asc2. Similar to adipogenic
brown preadipocytes (Preadipocyte-1), Asc2 exhibited pro-inflammatory and pro-fibrotic
phenotype and positive expression of genes PI16 and MFAP5. Interestingly, functional in-
vestigations into Asc2 and Asc1 cells revealed Asc2 inhibiting the differentiation of Asc1 cells
in vitro. Therefore, it is plausible that Preadipocyte-1 cells identified in our study may be
functioning in a manner similar to Asc2, possibly to maintain adipocyte turnover. However,
further functional investigations are necessary to validate the existence and functionality of
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the two cell types in primary brown adipose tissue.
Within both white and brown adipogenesis, the underlying transcriptional program was

revealed to be highly coordinated. Notably, ECM remodelling was one of the earliest ex-
hibited response upon induction of differentiation. Although down-regulation of fibrillar
ECM and up-regulation of basement membrane ECM has been demonstrated during 3T3-
L1 adipogenesis, the dynamics of ECM reorganization and its regulation during human
adipogenesis are not well understood. Our findings provide a high-resolution view into the
expression dynamics of specific ECM components during healthy adipose tissue expansion,
as well as potential ECM remodeling regulated by an interplay of metalloproteases and its
inhibitors. Therefore, our dataset here could be used as a reference to better understand
Obesity-induced ECM remodeling, with the goal of identifying therapeutic targets to prevent
the inflammation, and in the end fibrosis, in diseased adipose tissue.

One unique aspect of our model system is the isolation of white and brown preadipocytes
from a single individual, and a single anatomical location. Such a paired isolation strategy
accounts for confounding inter-subject and inter-depot variability, and enables investigation
not just within, but also across white and brown lineages. Using our model system system,
we identified RFX8 and SOX5 as new TFs with potential adipogenic regulatory activity in
both white and brown fat development. Moreover, based on exclusive regulation/enrichment
in brown adipogenesis, we also identified novel TFs ZNF117 and IRX6 with potential in-
volvement in thermogenic regulation. Of course, rigorous functional investigations would be
required to confirm the regulatory roles of these TFs in healthy as well as diseased condi-
tions. Ultimately, identification of novel TFs helps discern specific pharmacological targets
for stimulating metabolically healthy, as well as thermogenic fat development.

In order to assign a pseudo-time to differentiating human preadipocytes, we defined
custom transcriptional signatures specifically associated with white or brown fat develop-
ment. Scores for these transcriptional signatures could be utilized as a quantitative metric
to investigate differences in cellular maturity across varying metabolic conditions, and for
different anatomical locations. Such an analysis could help us better understand the dif-
ferential roles of fat depots towards Obesity development and progression. Moreover, our
gene signature provides a targeted list of temporally, and biologically relevant genes, which
could be specifically profiled using techniques such as spatial transcriptomics, or in situ
hybridization/sequencing, to better understand the spatial context of adipose tissue devel-
opment in primary samples. Finally, our gene signature could also be used to understand
adipocyte dedifferentiation, and investigate molecular differences between dedifferentiated
preadipocytes, and differentiating preadipocytes, at similar stages of maturity.

Our findings here are based on key experimental aspects that must be considered criti-
cally. In this work, adipogenic transcriptional dynamics were investigated using an immor-
talized, in vitro system of human white and brown preadipocytes. Although this model
system accurately recovers primary human WAT and BAT functional behavior, an impor-
tant question that still remains is to what extent the same transcriptional mechanisms are
also operational in vivo. Consequently, there is a need to comprehensively investigate the
molecular circuitry of fat development in primary adipose tissue samples, and for such under-
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takings, our adipogenic transcriptional landscape could serve as a reference. Interestingly,
cellular profiling of adult primary adipose tissue rarely identifies cell-types across all stages of
adipogenic differentiation, and hence, pediatric adipose tissue biopsies become more apt for
such investigations. A second detail that is relevant for our study is that the current model
system was isolated from a single individual, and from a single anatomical location. And as
such, the transcriptional landscape generated here could be made even more comprehensive
by isolating similar model systems across multiple individuals and depot locations. The
third aspect is technical, and pertains to varying background mRNA levels associated with
individual single-nuclei libraries. Single-nuclei extraction involves breaking apart the cellular
matrix to isolate nuclei, which releases high amounts of debris and cytoplasmic mRNA. Dur-
ing droplet-based single nuclei isolation, this debris gets encapsulated in the droplet along
with the nuclei, leading to background mRNA contamination. This varying mRNA contam-
ination makes it challenging to identify nuclei that are at similar stages of differentiation
but distributed across different harvestation days (different single-nuclei libraries). scRNA-
seq dataset integration algorithms do mitigate this challenge partially, but there is a need
for better snRNA-seq integration strategies, with algorithms to model background mRNA
distribution.

Despite these considerations, our study takes the first steps towards understanding the
nature of adipogenic differentiation at a high temporal and cellular resolution in humans.
These findings will therefore serve as a resource for multiple efforts into investigating adi-
pose tissue biology in health, as well as disease, ultimately enabling newer therapeutics for
improved clinical tackling of Obesity.

5.4 Materials and Methods

Preadipocyte culture and adipogenic differentiation

Detailed protocol for maintenance, cryopreservation, and differentiation of white and brown
preadipocytes are outlined in a different study (Shamsi and Tseng 2017). Briefly, for cultur-
ing preadipocytes, cells were grown in DMEM medium (Corning, 10-017-CV) supplemented
with 10% vol/vol FBS and containing 1% vol/vol Penicillin-Streptomycin (Gibco). Cell cul-
ture was maintained at 37°C in a humidified incubator containing 5% vol/vol CO2. 80%
confluent cells were passaged using 0.25% trypsin with 0.1% EDTA (Gibco, 25200-056) for
a 1:3 split in a new 100 mm cell culture dish (Corning).

Prior to adipogenic differentiation, white and brown preadipocytes were allowed to grow
up to 100% confluence in a 100 mm cell culture dish (Corning). After 48 hours at 100%
confluence, growth media was replaced with adipogenic induction media every 48 hours for
the next 20 days. Induction media was prepared by adding 1 mL FBS, 500 µl Penicillin-
Streptomycin, 15 µl human Insulin (0.5 µM, Sigma-Aldrich, I2643-50MG ), 10 µl T3 (2 nM,
Sigma-Aldrich,T6397-100MG), 50 µl Biotin (33 µM, Sigma-Aldrich, B4639-100MG), 100 µl
Pantothenate (17 µM, Sigma-Aldrich, P5155-100G), 1 µl Dexamethasone (0.1 µM, Sigma-
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Aldrich, D2915-100MG), 500 µl IBMX (500 µM, Sigma-Aldrich, I7018-100mg), and 12.5 µl
Indomethacin (30 µM, Sigma-Aldrich, I7378-5G) to 48.5 mL DMEM medium and sterile
filter.

Nuclei isolation from differentiating preadipocytes

Nuclei were isolated from differentiating white and brown preadipocytes using an NP-40
based lysis buffer: To 14.7 mL nuclease-free water (Qiagen), 150 µL of Tris-Hydrochloride
(Sigma, T2194), 30 µL of Sodium Chloride (5M; Sigma, 59222C), 45 µL of Magnesium
Chloride (1M; Sigma, M1028), and 75 uL of NP-40 (Sigma, 74385) was added. Two 100
mm dishes were used for nuclei isolation from each preadipocyte type. 500 µL of NP-
40 based lysis buffer was added to each 100 mm dish and a cell scraper was employed
to release adherent cells from the plates. On day 10, 15, and 20, where cells had visible
lipid droplet accumulation, dounce homogenizer was used on scraped out cells to separate
out the lipids. Cells were then incubated with the lysis buffer for 5 minutes on ice in a
pre-chilled 15 mL falcon tube. Cells were washed with ice-cold PBS supplemented with .2
U/µL RNase Inhibitor (Protector RNase Inhibitor; henceforth called wash buffer) 4 times
by centrifuging at 500 rcf for 5 minutes at 4°C. Wash buffer was aspirated after the final
round of centrifugation and nuclei were resuspended in the ice-cold wash buffer and filtered
using a 40 um cell strainer. Final concentration was adjusted to ∼ 1000 nuclei/µL using a
hemocytometer for downstream sequencing. Nuclei were also stained using 0.08% trypan blue
dye to assess nuclear membrane integrity under brightfield imaging. For nuclear isolation
on day 10, 15, and 20, the same protocol was implemented as mentioned above with the
modification of using 1 mL lysis buffer for each 100 mm dish.

After preparing nuclei suspension, isolation was performed on the 10x Chromium platform
and libraries prepared as per the manufacturer’s protocol using v3 sequencing chemistry. All
final libraries were sequenced on the Illumina NovaSeq platform to ˜ 100,000 reads per nuclei.

Sequencing Data Analysis

In total, we had 5 libraries each for the white and brown adipogenesis dataset. For each li-
brary, empty droplets were removed using CellBender [359], and doublets were removed using
Scrublet [366] or DoubletDetection [367]. Using Seurat, low-quality clusters such as clusters
with high MT content, clusters with cellular debris (as marked by the enrichment of trans-
lation terms in GO analysis), clusters enriched for empty/doublet barcodes were removed
from downstream analysis. Integration of all 5 time points for white and brown dataset
was performed using scVI-tools [341]. Post-integration, Seurat was used for unsupervised
clustering, and differential gene expression analysis.
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Pseudo-temporal Ordering

Slingshot Analysis

For white and brown adipogenesis dataset, integrated Seurat object was clustered at reso-
lution = 0.4. Slingshot was then used to infer the trajectory using the cluster with highest
contribution from day 0 as the starting cluster. For identifying temporally regulated genes,
cells were clustered into 6 equally spaced pseudo-temporal bins. DGE was then performed
for each bin against the 1st and last bin, and all genes with logFC > 1 and FDR < 0.05 were
considered as temporally regulated. For identifying monotonically increasing genes when
cells are ordered using Slingshot, genes were clustered using the ComplexHeatmap package,
with k-means clustering algorithm, and the number of clusters set to 5.

Vision analysis

For both white and brown adipogenesis dataset, Vision was used to assign a score to each
cell in the integrated Seurat object using the ”HallmarkAdipogenesis” MSigDB signature.
This score was used as a proxy for pseudotime. For identifying temporally regulated genes
in white adipogenesis dataset, cells were distributed into bins defined using the command
cutpoints=c(-Inf,seq(0.15,0.6,0.15),Inf). For brown adipogenesis dataset, cells were dis-
tributed into bins defined using the command cutpoints=c(-Inf,0.2,0.3,seq(0.4,0.6,0.2),Inf).
Temporally regulated genes were identified using the same strategy as defined above. For
identifying monotonically increasing genes when cells are ordered using Vision, genes were
clustered using the ComplexHeatmap package, with k-means clustering algorithm, and the
number of clusters set to 5.

Identifying lineage-specific gene signatures

Once monotonically increasing genes were identified using both Vision and Slingshot, the
intersection of the two was taken to define lineage-specific gene signatures. These signa-
tures were used as input to Vision to assign a score to differentiating white and brown
preadipocytes, and used as a proxy for pseudotime.

Gene Module Clustering

For identifying temporally regulated genes in white dataset, when cells are ordered using
lineage-specific gene signatures, cells were distributed into bins defined using the command
cutpoints=c(-Inf,0.1,seq(0.3,0.8,0.1),Inf). DGE was then performed for each bin against
the 1st and last bin, and all genes with logFC > 1 and FDR < 0.05 were considered as
temporally regulated. Clustering for genes was performed using Seurat with resolution set
to 0.5. For brown adipogenesis dataset, same steps were used with cutpoints defined using
the command cutpoints=c(-Inf,0.15,0.225,seq(0.3,0.7,0.2),Inf).
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GWAS Analysis

The GWAS dataset was downloaded from the GWAS catalog (gwascatalogv1.0-associationse100r2021-
04-20.tsv) and subset to metabolic traits defined in Locke et al. [431] and Shungin et al.
[432]. The catalog was further subset to SNPs that were mapped to a single gene.

Bulk RNA-seq and Microarray Analysis

RNA-seq datasets were downloaded from the GEO Accession Viewer using Accession GSE25401
GSE162653. Microarray data was downloaded from the journal’s website (oby22950-sup-
0007-TableS1.xlsx). Differential expression analysis for RNA-seq datasets was performed
using the DESeq package in R.

Signature Scoring Analysis

For assessing the maturation of cells in publicly available scRNA-seq datasets, Vision was
used to assign score to cells using our lineage-specific signatures. Datasets were downloaded
from locations as mentioned in the original manuscript.

5.5 Data Access

Data related to this study is available upon request to the corresponding author. Analysis
scripts are available upon request to the first author and corresponding author.
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Chapter 6

Concluding Remarks

In my dissertation, I have focused on building novel platforms and approaches to investigate
the heterogeneity and developmental lineages within the human white and brown adipose
tissue. These investigations have been made possible by recent advancements in the field
NGS, microfluidics, and single-cell RNA-sequencing, all together enabling high-throughput,
unbiased, transcriptomic measurements in individual cells. Thus far, I have worked on com-
prehensively characterizing adipocyte identity using multiomic measurements, characterizing
advantages and biases in single-nuclei RNA-seq as compared to single-cell RNA-seq in the
context of adipose tissue, and generating a high-resolution transcriptional landscape of hu-
man white and brown adipogenesis. In the next paragraphs, I briefly discuss promising
directions for my previously discussed work.

In Chapter 3, I present µCB-seq, a microfluidic platform that combines high-resolution
imaging and sequencing of single cells. Such measurements are critical for comprehensively
characterizing the cellular identity, by pairing phenotypic and genotypic measurements.
However, with the current throughput of the platform limited to 10 cells, statistically relevant
measurements remain challenging. I anticipate future directions to focus on increasing µCB-
seq’s throughput which can be achieved by microfluidic multiplexing strategies [248, 249],
accompanied with automated barcode dispensing using platforms such as the cellenOneX1.
Ultimately, throughput of µCB-seq is limited by imaging time. Automated stage-scanning
can be implemented in µCB-seq to reduce imaging time, as cells are immobilized in a linear
array of nanoliter-scale imaging chambers. Another strategy to reduce imaging time would
be to obviating stage scanning completely, by trapping cells in a single chamber, followed by
automated sorting into indivudal reaction lanes. More sophisticated AI-assisted strategies
could also be used for fully automated cell-trapping and sorting. With an increased through-
put in the next-generation of µCB-seq devices, I anticipate the application of this platform
for investigating adipocyte heterogeneity using a variety of in vitro model systems. In order
to extend paired imaging and sequencing measurements to primary samples, I anticipate fu-
ture studies to focus on in situ hybridization/sequencing techniques, which bypass the need
for tissue digestion, thereby preserving the integrity of resident adipocytes in the tissue, as
discussed in Chapter 2.



In Chapter 4, I presented my work on characterizing transcript enrichment and detec-
tion biases in snRNA-seq as compared to scRNA-seq. One critical finding of this study was
the presence of gene-length associated detection biases when including intronic reads for
UMI quantification, an effect which gets exacerbated in snRNA-seq measurements because
of high fraction of intronic mapped reads. Our analyses also revealed the role of back-
ground mRNA contamination in abating biological heterogeneity, when preparing snRNA-
seq libraries. Both these technical artifacts contribute towards systemic differences between
scRNA-seq and snRNA-seq datasets, resulting in relatively poor performance by existing
integrative algorithms, particularly in highly heterogeneous primary tissue samples. I antic-
ipate future work to focus on developing exclusive integrative algorithms for scRNA-seq and
snRNA-seq datasets derived from same tissues, taking into account the above-mentioned
technical artifacts for batch correction. Although my work in this chapter focused on the
adipose tissue as the model system, my findings from this study are generalizable to other
tissues. In future, I anticipate the utilization of the framework provided in this study for
anticipating the appropriate sequencing technique depending on the biological question at
hand.

In Chapter 5, I, for the first time, present a high-resolution temporal transcriptional
landscape of human white and brown adipogenesis using snRNA-seq. In this study, I relied
on using an in vitro system of human adipogenesis derived from a single individual, and
from a single anatomical location (neck region). Naturally, future steps in this investigation
could include extending this study to other individuals, as well as other anatomical locations,
thereby enabling the generation of a robust, comprehensive adipogenic landscape across hu-
mans & depots. I also anticipate the utilization of our dataset to serve as a reference for in
vivo investigation into the primary adipose tissue samples. Such samples could be derived
across metabolic phenotype such as varying BMI, blood glucose level, diseased condition, etc.
Future work would also benefit from connecting transcriptomic profiles derived in our study
with the spatial locations of cells in situ. Such spatial measurements could also be targeted
towards lineage-specific gene signatures defined in this study, thereby reducing the exper-
imental as well as financial logistics associated with spatial transcriptomic measurements.
Beyond transcriptomic measurements, measurement of chromatin accessibility, transcription
factors, and surface proteins could additionally inform the regulatory networks governing
commitment to human white and brown adipogenic lineages.

Overall, I hope that the technologies and data resources generated in my dissertation in-
spire future investigations into the role of adipose tissue in maintaining a healthy metabolic
phenotype, so that we, as a civilization can get closer to providing novel therapeutic inter-
ventions for metabolic disorders such as Obesity.
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Appendix A

Supplementary Information related to
Chapter 3

A.1 Supplementary Figures

Figure A.1: Detailed schematic of a single reaction lane on the µCB-seq device. The lysis
module has 3 reaction chambers and the RT module has 1 reaction chamber connected to the mixing
channel. Both lysis and RT modules are separated from each other by the two reagent valves. RT
primers with known barcode sequences are spotted in the Lysis Chamber 3 of each reaction lane.
Positioned atop each of the reaction chambers in the lysis module are mixing paddles, which are
actuated to resuspend barcoded RT primers in lysis buffer and circulate the relatively viscous RT
mix throughout the mixing channel.



Figure A.2: Validation of intact RT primer recovery from a PDMS slab after baking.
Fragment analysis size distribution traces for barcoded primers that were suspended in nuclease-
free water at RT and (A) left in the original tube or (B) spotted on PDMS, dried, baked at 80 °C
and recovered by resuspending in nuclease-free water.
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Figure A.3: Median UMIs detected for downsampled read depth across single HEK cells sequenced
using µCB-seq (n = 16) and mcSCRB-seq in-tube (n = 16). Error bars indicate the interquartile
range.

Figure A.4: Median genes detected using only exonic or both exonic and intronic reads for down-
sampled read depths across single HEK cells (n=16) sequenced using µCB-seq. Error bars indicate
the interquartile range.

Figure A.5: Mean genes detected using only exonic or both exonic and intronic reads for down-
sampled read depths across single HEK cells (n=16) sequenced using µCB-seq. Error bars indicate
the interquartile range.
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Figure A.6: Scanning transmission and two-channel fluorescent confocal images of all (A) HEK293T
cells and (B) Preadipocytes stained using CellBrite Green and Red dye respectively.

125



Figure A.7: Mapping Statistics for single HEK Cells sequenced using (A) µCB-seq and (B)
mcSCRB-seq in-tube.

126



Figure A.8: µCB-seq and in-tube mcSCRB-seq protocol have comparable precision.
The coefficient of variation for each gene (SD normalized by the mean) is plotted against its bulk
expression for HEK cells sequenced using µCB-seq (n=16) and mcSCRB-seq in-tube (n=16). HEK
Cells were sequenced to a depth of 200,000 reads and bulk RNA-seq library was prepared using 1 µg
HEK total RNA sequenced to a depth of 63 million reads. CV was calculated for all common genes
detected in bulk RNA-seq, µCB-seq and mcSCRB-seq libraries. The highlighted region displays
the 95% confidence interval around the smooth fit as determined by loess regression.

Figure A.9: Pairwise correlation of the mean UMI transcript counts for two µCB-seq
HEK293T single cell transcriptome sequencing experiments. Each dot represents the log-
transformed mean UMI counts for a given transcript for all cells at a depth of 250,000 reads per
cell. Data from 8 and 7 cells are shown for Run1 and Run2 respectively.
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Figure A.10: Spatial resolution in confocal fluorescent images of HEK cells and
Preadipocytes. The blue dashed line indicates the median resolution across 18 images. Detailed
image analysis steps are explained in the Materials and Methods section.

Figure A.11: Annotation of HEK293T cells and Preadipocytes in a 2-Dimensional Correlation vs
Variance space as quantified for grayscale intensities in the scanning transmission images. Detailed
image analysis steps are explained in the Materials and Methods section.
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Figure A.12: Annotation of HEK293T cells and Preadipocytes in Principal Component Space
based on (A) Cell-clusters identified using unsupervised hierarchical clustering in the PCA space
and (B) µCB-seq devices on which cells were processed. Device 1 processed just HEKs (n=7),
Device 2 processed a mix of both HEKs (n=4) and preadipocytes (n=3), and Device 3 processed
just Preadipocytes (n=6)
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A.2 Supplementary Tables

Table A.1: RT Primers with known barcode sequences used in µCB-seq. Barcodes bc1-bc10 were
used for experiments on HEK293T Total RNA and HEK293T single cells (Fig. 3.3 and Fig. 3.4),
whereas underlined barcodes were used for the imaging and sequencing of HEK293T cells and
Preadipocytes (Fig. 3.5). The underlined subset of ten barcodes was selected to ensure sequence
diversity at every barcode base for optimal next-generation sequencing performance without PhiX
spike-ins.

Barcode Number Barcode Sequence
bc1 TCACAGCA
bc2 GTAGCACT
bc3 ATAGCGTC
bc4 CTAGCTGA
bc5 CTACGACA
bc6 GTACGCAT
bc7 ACATGCGT
bc8 GCATGTAC
bc9 ATACGTGC
bc10 GCAGTATC
bc13 TGCTACAG
bc15 CGCTATGA
bc26 ATGCACGT
bc40 TATGCACG
bc47 CATCGTGA
bc82 CCAGTTAG
bc92 GGCATTGT
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Table A.2: Sequencing summary statistics for all 10 pg HEK total RNA samples processed on
two µCB-seq devices and analyzed as presented in Figure 3.3 of this Chapter 3. All libraries were
sequenced in a single batch using the Illumina MiniSeq sequencing platform. Total reads for all 20
libraries are 1,358,764 with an average sequencing depth of 67,938 per library.

Barcode Chip # Sequencing Depth
ACTGCGT 1 76,710
ATCGTGC 1 111,727
ATGCGTC 1 41,827
CTCGACA 1 60,085
CTGCTGA 1 38,561
GCGTATC 1 84,913
GCTGTAC 1 93,049
GTCGCAT 1 81,865
GTGCACT 1 44,354
TCCAGCA 1 68,052
ACTGCGT 2 64,073
ATCGTGC 2 64,705
ATGCGTC 2 50,154
CTCGACA 2 45,715
CTGCTGA 2 60,891
GCGTATC 2 51,237
GCTGTAC 2 66,989
GTCGCAT 2 92,830
GTGCACT 2 69,444
TCCAGCA 2 91,583
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Table A.3: Sequencing summary statistics for all single HEK cells processed on two µCB-seq devices
and analyzed as presented in Figure 3.4 of this manuscript. All libraries were sequenced in a single
batch using the Illumina MiniSeq sequencing platform. Total reads for all libraries combined are
8,908,444 with an average sequencing depth of 494,914 per cell.

Barcode Chip # Sequencing Depth
ACATGCGT 1 498,991
ATACGTGC 1 747,079
ATAGCGTC 1 269,734
CTAGCTGA 1 307,760
GCAGTATC 1 388,638
GCATGTAC 1 1,075,768
GTACGCAT 1 223,584
GTAGCACT 1 446,942
TCACAGCA 1 339,732
ACATGCGT 2 445,705
ATACGTGC 2 843,948
ATAGCGTC 2 227,311
CTACGACA 2 378,319
CTAGCTGA 2 244,798
GCATGTAC 2 668,187
GTACGCAT 2 570,252
GTAGCACT 2 620,452
TCACAGCA 2 611,244
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Table A.4: Sequencing summary statistics for all single HEK cells and Preadipocytes processed on
three µCB-seq devices and analyzed as presented in Figure 3.5 of this manuscript. All libraries
were sequenced in a single batch using the Illumina MiniSeq sequencing platform. Total reads for
all libraries combined are 6,925,205 with an average sequencing depth of 346,260 per cell.

Barcode Chip # Sequencing Depth
ATGCACGT 1 254,436
CATCGTGA 1 172,172
GGCATTGT 1 166,915
GTAGCACT 1 305,948
TATGCACG 1 254,321
TCACAGCA 1 371,975
TGCTACAG 1 687,106
CATCGTGA 2 129,908
CGCTATGA 2 553,155
GGCATTGT 2 330,301
GTAGCACT 2 318,773
TATGCACG 2 631,094
TCACAGCA 2 398,464
ATAGCGTC 3 319,417
CATCGTGA 3 595,996
CGCTATGA 3 173,339
GGCATTGT 3 426989
GTAGCACT 3 245332
TCACAGCA 3 346914
TGCTACAG 3 242650

Table A.5: Sequences of DNA primers used in both mcSCRB-seq in-tube experiments and on µCB-
seq devices for off-chip library preparation. Same primer sequences as in mcSCRB-seq [13] are
used in this work. /5Biosg/ indicates a 5’ Biotin, * indicates a phosphorothioated nucleotide, and
r indicates an RNA base.

Primer Sequence
SINGV6 /5Biosg/ACACTCTTTCCCTACACGACGC

P5NEXTPT5 AATGATACGGCGACCACCGAGATCTAC
ACTCTTTCCCTACAC

GACGCTCTTCCG*A*T*C*T
E5V6 TSO CGCACACTCTTTCCCTACACGACGCrGrGrG
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A.3 Supplementary Notes

Imaging Chamber Volume Measurement for Trapping 10 pg of
Total RNA

When measuring chamber volume for Total RNA experiments in the µCB-seq device (Fig.
3.3), we observed a discrepancy in height between the µCB-seq flow molds and the reaction
chambers of the PDMS µCB-seq devices with actuated control valves. Flow molds were mea-
sured by Dektak profilometer, giving an imaging chamber height of 29 µm. When imaging
the corresponding chamber on the µCB-seq device via Coherent anti-Stokes Raman spec-
troscopy (CARS), we recorded a chamber height of 53.5 µm. Profilometry was not feasible
for the closed µCB-seq device, so we elected to conservatively use the CARS measurement at
the risk of overestimating volume and loading less than 10 pg Total RNA into the µCB-seq
device. To measure chamber volume, we pressurized the isolation valves on a µCB-seq device
and acquired a z-stack of the resultant air-filled imaging chamber. Images were thresholded
in ImageJ and manually outlined to record the cross-sectional area of each imaging chamber
slice. The volume of the chamber was estimated by a Riemann sum to ensure that chamber
volume erred on the larger side. The chamber volume measured by this method was 1.88 nL,
which resulted in our conservative input concentration of 5.31 ng/µL Total RNA to ensure
no more than 10 pg of RNA was processed in each lane of the µCB-seq device.

Comparison of µCB-seq and Fluidigm C1 performance

The Fluidigm C1 is a commercial microfluidic platform with integrated valves that uses
SMART-seq for full-length transcript quantification in single cells [24]. Arguel et al. demon-
strated the use of Fluidigm C1 to sequence single HEK293T cells with a 5’ UMI tagging
protocol [244]. We used this study to benchmark the current performance of µCB-seq against
the Fluidigm C1, as both studies process HEK293T cells and implement UMI-based tran-
script counting. There are some limitations to this comparison, however. First, there may
be differences in capture efficiency and bias between a 5’ sequencing chemistry and the 3’
sequencing chemistry used here. Additionally, Arguel et al. used the hg19 genome for align-
ment with STAR, whereas we used the GRCh38 genome with STAR. Finally, Arguel et al.
used Dropseq Core [32] for UMI counting whereas we used zUMIs [235] and filtered for exons.
Using 500k reads as an individual point of comparison, the protocol on the C1 detected a
mean of 6,000 genes. Another published result using the standard SMARTer protocol on
the C1 suggests similar gene detection level of 6,000 genes, although this was carried out on
a different cell type (HCT116) [23]. Our µCB-seq protocol detected a mean of 6,663 genes
when counting only exons, and 9,203 genes when counting exons and introns (Fig. A.5).
This suggests that µCB-seq has similar or improved sensitivity compared to other protocols
on the Fluidigm C1.

With regards to sample-to-sample variability, Arguel et al. compute pairwise correla-
tions across different microfluidic runs (with 37, 47 or 74 cells). For each device run, log-
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transformed mean UMI counts across all the cells were used as input for correlation analysis,
giving R = 0.92, 0.98, and 0.93. Our µCB-seq device has a slightly lower but comparable
correlation value of R = 0.91 (p-value <.05) between device runs with 8 and 7 cells (Fig.
A.9). This slightly lower correlation value is expected due to the 4- to 9-fold higher number
of cells averaged in the C1 experiments as compared to our µCB-seq experiments.
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Appendix B

Supplementary Information related to
Chapter 4

B.1 Supplementary Figures

Figure B.1: Validation of scRNA-seq markers for recovering cell-type heterogeneity in brown
preadipocytes using smFISH. (A) Distribution of number of MMP1 mRNA spots per cell in brown
preadipocytes. Overlaid gaussian distributions represent the 2-component fit identified using Gaus-
sian finite mixture model fitting. (B) 4 representative images of cells from cluster 1 (mean = 43)
and cluster 2 (mean = 222). Representative images are cells within +/− 7 transcript counts from
the mean.



Figure B.2: Analysis of white and brown preadipocyte scRNA-seq dataset (A) Log-
normalized expression of four hashtag antibodies used for multiplexing of white and brown
preadipocytes (whole-cells). (B) Distribution of normalized hashtag antibody expression in white
and brown preadipocytes identified as singlets. Statistical testing was performed using a two-sided
t-test. (C) to (D) Heatmap of transcriptional signature scores for white preadipocyte (C) and brown
preadipocyte (D). Original signatures were defined using primary white and brown preadipocytes
isolated from the same anatomical region as the in vitro model system used in our study. (E) to
(J) Expression profiles of marker genes in scRNA-seq dataset.
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Figure B.3: Analysis of white and brown preadipocyte scRNA-seq dataset (A) to (C)
Expression profiles of marker genes in scRNA-seq dataset. (D) Sub-clusters identified for each of the
original cluster 0, 1, and 2 in Fig. 4.1A. (E) Expression profile of mitotic cell marker TOP2A, one of
the top marker genes during sub-clustering of original clusters 0, and 1 in scRNA-seq dataset. (F)
Expression profile of adipocyte progenitor marker PI16, the top marker gene during sub-clustering
of original cluster 2 in scRNA-seq dataset. (G) Cells annotated by cell-cycle phase as calculated
using Seurat
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Figure B.4: Differential expression in brown preadipocyte scRNA-seq dataset between cluster
2 and cluster 1. (A) to (E) Expression profile of marker genes for Fsp1+ fibroblasts identified
in [307] (F) Log fold change values of the marker genes as calculated using cluster 2 vs cluster
1 differential expression test. All genes were significantly enriched in cluster 2 with FDR < 0.05.
Also see Supplemental Table 2C. (G) Heatmap of Hallmark Adipogenesis signature defined in MSig
database. The signature consists of genes up regulated during adipocyte differentiation. (H) Cells
identified as mature adipocytes after unsupervised clustering in Seurat (I) Boxplot of transcriptional
signature scores in mature adipocytes (highlighted in red in panel H). Signatures were defined for
cluster 1 and cluster 2 cells using scRNA-seq dataset (see Supplemental Table 2C). Statistical
testing was performed using two-sided Mann-Whitney U-test.
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Figure B.5: Unsupervised clustering of white and brown preadipocytes snRNA-seq
dataset (A) and (B) UMAP visualization of white and brown preadipocytes annotated either
manually to reflect the sample of origin (A) or based on unsupervised clustering (B). (C) Cells
annotated by cell-cycle phase as calculated using Seurat (D) Top gene ontology biological processes
(BP) terms enriched in cluster 3 based on a cluster 3 vs. all DE test. Marked in red is the
enrichment of BP terms because of stress response genes (response to stress), mitochondrial genes
(ATP metabolic process), and ribosomal mRNA genes (translational initiation). Enrichment of
mitochondrial and ribosomal mRNA genes indicates the presence of cellular background RNA
contamination (see Fig. B.8C). (E) and (F) Top 10 gene ontology terms in brown cluster 1 (E)
and cluster 2 (F) in scRNA-seq dataset (Fig. 4.1C) that are also enriched in respective clusters
in snRNA-seq dataset. (G) Expression profile of adipocyte progenitor marker PI16 in snRNA-seq
dataset. Also see Fig. B.3F. (H) Heatmap of transcriptional signature scores for white preadipocyte
(white), brown preadipocyte (brown), brown preadipocyte cluster 1 (one), and brown preadipocyte
cluster 2 (two) as plotted on the UMAP visualization of scRNA-seq data. Signatures were defined
using snRNA-seq data using white vs brown, or cluster-1 vs cluster-2 differential expression testing
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Figure B.6: Investigating lack of ID1 DE in white nuclei over brown nuclei. (A) Boxplot
of number of ID1 UMIs detected in each cell or nuclei isolated from white preadipocyte. (B)
Log-fold-change vs log-UMI counts in white nuclei when using only exonic reads, where each dot
represents a white-preadipocyte-enriched gene (white vs brown DE test) detected using scRNA-seq
dataset (Fig. 4.1A). Horizontal dotted line indicates logFC cutoff value of 0.5 used as a threshold
for DE testing. All genes had a logFC > 0.5 in scRNA-seq dataset. Vertical blue dotted line
indicates smallest mean UMI count at which a gene was detected to be differentially expressed.
Vertical red dotted line indicates the mean UMI count for ID1 gene. ID1 gene is marked with a
square, along with genes TMEM119, PLAU, HMOX1, NBL1, and CTHRC1.

Figure B.7: Estimating polyA-tract density per Kbp in the genic region. (A) Scatter
plot of total number of polyA-tracts (greater than 15−bp) plotted against gene length. Each dot
is a gene in the GRCh38−2020A reference from cellranger analysis pipeline. (B) Distribution of
mean number of polyA-tracts per Kbp for each gene in panel A. Blue dotted line indicates mean
number of poly−A tracts per Kbp across all genes and is used to estimate pd=0.07. See Note SB.2
for details on normalization strategy.
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Figure B.8: Gene length-associated detection bias in snRNA-seq. (A) Distribution of gene
length for genes enriched in cells (in blue) and nuclei (in yellow) with log fold-change > 1 and
FDR < 0.05 including both intronic and exonic reads. Intronic UMI-count matrix was normalized
to correct for gene length bias in both cells and nuclei (see Note B.2). (B) Distribution of gene
length for genes enriched in cells (in blue) and nuclei (in yellow) with log fold-change > 1 and FDR
< 0.05 using only exonic reads. (C) Heatmap of transcriptional signature score defined using top
100 genes enriched in cells vs. nuclei in white preadipocytes based on log fold-change values after
normalization. The scores are plotted on the 2D UMAP visualization of scRNA-seq preadipocyte
data. (D) Top 10 gene ontology terms enriched in white cells as compared to white nuclei based
on differential expression after normalization.
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Figure B.9: Enrichment of lncRNAs in the nuclear transcriptome. (A) to (D) Expression of
adipogenic regulatory lncRNAs in brown nuclei over brown whole cells. Black text indicates logFC
value for brown nuclei vs. brown cells DE test with FDR < 0.05 after normalization. (E) to (G)
Cluster separation resolution quantification between brown cluster 2 vs cluster 1 in scRNA-seq and
snRNA-seq dataset. Only lncRNAs were considered for PCA manifold generation. Both datasets
were subsampled to have the same number of cells/nuclei and same number of mean transcriptome
mapped reads. (H) to (J) Similar analysis as panel (E) to (G) but normalization was performed to
have the same number of UMI counts per cell/nuclei. A higher Silhouette coefficient and Calinski
Harabasz and a lower Davies Bouldin index indicate superior cluster separation performance.
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Figure B.10: Comparative analysis of nuclear and whole-cell transcriptome at mature
adipocyte stage (A) Coherent anti-stokes Raman imaging of human white preadipocytes differ-
entiated for 20 days using a chemical adipogenic induction cocktail. The images were acquired at
2845 cm-1 wavenumber, which corresponds to the CH3 peak present in lipids. Z-stacked images
were acquired and the maximum intensity projection for each pixel was plotted. (B) and (C) Top 10
gene ontology terms enriched in cluster 1 (panel B) and cluster 0 (panel C) in snRNA-seq dataset.
(D) and (E) Top 10 gene ontology terms enriched in cluster 1 (panel D) and cluster 0 (panel E) in
scRNA-seq dataset. (F) List of 27 genes differentially enriched in cluster 1 (mature adipocytes) in
scRNA-seq dataset but not differentially enriched in cluster 1 of snRNA-seq dataset
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Figure B.11: Proliferating vs growth arrested cells in snRNA-seq and scRNA-seq white
preadipocyte dataset. (A) Supervised clustering of integrated scRNA-seq and snRNA-seq white
preadipocyte (day-0) and white adipocyte (day-20) dataset. See Note B.2 for details regarding
clustering scheme. (B) to (G) Violin plots of common proliferation and mitosis marker genes
in clusters identified in panel (A). (H) Bar plot of distribution of cell cycle phase assignment in
the clusters identified in panel (A). Y-axis plots the percent of cells belonging to different cell
cycle phase for every cluster. See Note B.2 for details regarding cell cycle phase assignment. (I)
UMAP visualization of integrated white preadipocyte day-0 and day-20, scRNA-seq and snRNA-
seq datasets. Cells are annotated by original clusters (left panel), sequencing technique (middle
panel), and harvestation day (right panel). Integration was performed using Seurat v3. (J) Heat
map of top 5 marker genes for each cluster identified using Seurat (Fig. 4.7C right-most panel),
with genes as rows, and cells as columns. The color bar on top represents cluster assignment. All
genes were differentially expressed in both scRNA-seq and snRNA-seq datasets, except for the ones
marked in red or black (see Methods).

145



Figure B.12: Background mRNA levels in scRNA-seq and snRNA-seq libraries(A) Elbow
plot for scRNA-seq dataset of human preadipocytes. On x-axis are barcodes ranked by their UMI
counts (y-axis). Both X and Y axes are log10-transformed (B) Same plot as (A) but for snRNA-seq
dataset from same cell-types(C) Same plot as (A) but for a publicly available snRNA-seq dataset
[273]. The red line marks the transition region from droplets containing cells to empty droplets.

Figure B.13: Integration of in vivo derived scRNA-seq and snRNA-seq datasets with
scvi-tools UMAP visualization of human heart cell atlas dataset [433] colored by (A) cell-type clas-
sification (B) donor classification and (C) technique classification. Sanger-nuclei and Harvard-nuclei
are snRNA-seq datasets and Sanger-CD45 and Sanger-cells are scRNA-seq dataset. Integration was
performed by Adam Gayoso.
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B.2 Supplementary Notes

Validation of scRNA-seq marker genes in recovering brown
preadipocyte heterogeneity using smFISH

scRNA-seq of brown preadipocytes revealed existence of two distinct cell-types (Fig. 4.1B)
marked by differential expression of several genes. We used single-molecule fluorescent in
situ hybridization (smFISH) imaging to validate the differential expression of these genes
in situ. Specifically, we targeted cluster-2 enriched gene MMP1 for smFISH by designing
short oligonucleotide probes complementary to the coding region of this gene (see Methods).
Quantitative spot counting analysis, followed by gaussian mixture model fitting identified
a 2-component bimodal distribution as the best fit (Fig. B.1, mean cluster 1 = 43 tran-
scripts/cell, mean cluster 2 = 222 transcripts/cell), thereby corroborating the observation
of two types of brown preadipocytes in our system. We used a likelihood ratio test of a
1-component fit against 2-component fit to determine which model best fits the data. This
test yielded a p-value of 0.002 for the goodness of fit assessment between the two models, sug-
gesting that the 2-component model is a more accurate approximation than the 1-component
model for describing the parametric space of the observed distribution. We then used a 2-
component negative binomial model to fit the count distributions, which is commonly used
in single-cell RNA-seq measurements [360]. The negative binomial model yielded similar
cluster distribution, with mean transcripts per cell of 45 for cluster 1 and 174 for cluster 2,
suggesting that our findings are independent of the distribution used.

Validation of scRNA-seq marker genes in recovering brown
preadipocyte heterogeneity using smFISH

In our scRNA-seq dataset, ID1 was the top differentially expressed (DE) gene in white
preadipocyte over brown. However, in snRNA-seq dataset, ID1 was not DE in white nuclei
over brown nuclei. Comparison of transcript abundance for ID1 across scRNA-seq and
snRNA-seq in white preadipocytes revealed a significantly higher number of UMIs in scRNA-
seq, even at a shallower sequencing depth (50,000 reads vs 75,000 reads; Fig. B.6A). To better
understand the lack of DE of ID1 in single nuclei, we compared the transcript abundance
(UMI count) in nuclei to the logFC in nuclei for all genes that were detected as DE in white
preadipocytes using scRNA-seq (logFC>0.5). Among genes that were detected as DE in
whole cells, any gene that had a transcript abundance below ≈ 1 UMI in nuclei, were not
detected as significantly DE in snRNA-seq (logFC < 0.5, Fig. B.6B). Meanwhile, multiple
genes (PLAU, TMEM119, HMOX1, CTHRC1, and NBL1) with lower nuclear transcript
abundance than ID1, were significantly differentially expressed in white nuclei (logFC > 0.5,
Fig. B.6B). Moreover, these genes had a smaller effect size (logFC enrichment) than ID1 in
single cells. Together, these results suggest that ID1 is not differentially enriched in nuclei
but is differentially enriched in the cytoplasm between white and brown preadipocytes. In
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this analysis, we only considered exonic reads for this analysis to avoid transcript abundance
inflation of long genes.

Validation of scRNA-seq marker genes in recovering brown
preadipocyte heterogeneity using smFISH

Fluorescent-activated cell sorting (FACS) has been instrumental in identifying lineage-specific
preadipocyte marker genes in mice [434]. However, markers identified in mice are not compre-
hensively selective for humans [286, 308]. We therefore sought to define a set of white-specific
and brown-specific marker genes as well as a set of genes specifically expressed in cluster 1
and cluster 2. Using the identified list of differentially expressed genes (Supplemental Table
1B and 1C), we implemented stringent cutoff criteria with logFC > .8 in each cell-type,
minimum detection of 60% and maximum detection of 40% in the other cell-type, for clas-
sifying genes with highly enriched and specific expression as marker genes. On this basis,
we recognized NTNG1, RPL39L, PGF, LAMA4, BAALC, HIP1, and HAS2 as markers of
white preadipocytes; LIMCH1, LYPD1, RGS4, ITGBL1, CDH13, and COL4A2 as mark-
ers of brown preadipocytes in the human neck depot (Fig. 4.1B and Supplemental Table
1B). We also identified KRT18, LUZP2, DLGAP1, SBSPON, MAP3K7CL, and NRXN3 as
markers of brown cluster 1; CTSK, BST2, and MOXD1 as markers of brown cluster 2 (Fig.
4.1B and Supplemental Table 1C).

Outline of normalization strategy to correct for gene-length-based
detection bias arising from including intronic reads

Rationale for Normalization

Multiple recent studies have demonstrated internal hybridization of polyT RT-primer to
intronic polyA stretches as the primary mechanism for the capture and detection of intronic
reads. Assuming that all intronic reads are derived from such hybridization incidences,
number of observed intronic UMIs for any gene g in a given nuclei can be estimated by the
following equation:

pi × pAg ×Ng = xg (B.1)

where pi is the probability to capture an intronic read, pAg are the number of polyA stretches
in gene g and Ng is the true transcript abundance. Assuming that pi is independent of gene
g

Ng ∝ xg/pAg (B.2)
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Estimating pAg

pAg can be modeled by the following equation, where pd is the number of polyA stretches
per kilobase of the genic region in the human genome, and glg is the total length of the gene
in kilobase, including introns and exons:

pAg = pd× glg (B.3)

Since the polyT tail in 10x Chromium RT primer is 30-bp long, we assumed hybridization
to occur between the polyT tail and a polyA stretch, if the polyA sequence is at least 15-bp
long (50% of the polyT tail). We queried the GRCh38 human genome to get positions of all
polyA tracts at least 15-bp long, without mismatch, and screened for overlaps between such
polyA tracts and gene coordinates for all genes in the cellranger GRCh38-2020A reference
(which includes lncRNAs). As expected, total number of polyA tracts were highly correlated
with gene length (Spearman R = 0.82, p-value < 0.05, Fig. B.7A) for each gene. We also
calculated mean number of polyA tracts per Kbp for each gene, and estimated pd as the mean
number of polyA tracts per Kbp across all genes, including zeroes (Fig. B.7B). Following
this analysis, we estimated pd to be equal to 0.07.

We retrieved gene coordinates, strand, and gene length information using the GRCh38
gene annotation file downloaded from Gencode (Release 32). The same GTF was used for
cellranger analysis. Briefly, each gene was first summarized by setting 3rd column in the
GTF to gene, followed by calculation of gene length by subtracting the 5th and 4th columns.

Normalization Strategy

Based on the equation above, we present a normalization framework to reduce the technical
bias arising from comparisons of nuclear and cellular data upon inclusion of intronic reads.
This normalization strategy is implemented on the count matrix generated using only intronic
reads, for both scRNA-seq and snRNA-seq datasets, and provides a modified UMI count-
abundance, taking gene-length into account, for each cell and nuclei, based on the following
equations:

x̄g =
xg

glg × pd
(B.4)

where xg is the original UMI-count for gene g in a given cell/nuclei, and x̄g is the modified
UMI count after normalization for gene g in the same cell/nuclei. This modified intronic
UMI-count is then added to the observed exonic UMI-count for each gene g in a given
cell/nuclei and finally library-normalized as following:

z̄g = log

(
x̄g + yg
Ni +Ne

× e4 + 1

)
(B.5)
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Ni =
∑
g∈G

x̄g (B.6)

Ne =
∑
g∈G

yg (B.7)

where yg is the original UMI-count for gene gusing exonic reads, and z̄g is the final
log-normalized count used for downstream differential expression testing between cells and
nuclei.

Proliferating vs growth arrested cells in snRNA-seq and
scRNA-seq white preadipocyte dataset

As highlighted in Fig. 4.7B UMAP visualization, both scRNA-seq and snRNA-seq white
preadipocyte dataset (day-0) were cleaved into two halves. We investigated the differences
between these two halves by manually annotating clusters as following (Fig. B.11A):
Cluster 0: day-20-differentiating-preadipocyte nuclei and cells
Cluster 1: day-20-adipocyte nuclei and cells
Cluster 2: top half of cleaved day-0-preadipocyte nuclei and cells
Cluster 3: bottom half of cleaved day-0-preadipocyte nuclei and cells
Cluster 4: day-20-cluster-2-nuclei
We normalized the data using NormalizeData command in Seurat and plotted expression
profiles of proliferation and mitotic marker genes PLK1, MYBL2, BUB1, MKI67, CDK1,
and CCNB1 (Fig. B.11B to B.11G). As expected, cluster 0 and 1 which primarily com-
prised of day-20 cells had no expression of proliferation markers, which is in line with their
growth arrested behavior post adipogenic induction. However, prior to differentiation (day-
0-preadipocytes), cells undergo cell cycle progression, thereby explaining the positive expres-
sion of proliferation marker genes in cluster 3. Cluster 2 cells were perhaps preadipocytes
that underwent growth arrest due to contact inhibition during cell culture. Notably, even
after 20 days of differentiation, a very small number of cells (cluster 4) were still highly pro-
liferating, suggesting that these cells could be preadipocytes that never underwent growth
arrest. We also calculated cell cycle phase scores based on canonical markers using the Cell-
Cycle Scoring pipeline in Seurat and assigned either G1, G2M, or S Phase to each of these
cells. As expected, most of the cells in clusters 0, 1, and 2 were in G1 phase as opposed to
G2M and S phase in clusters 3 and 4 (Fig. B.11H).

Hashing of white and brown preadipocytes using oligo-conjugated
hashtag antibodies

Cell hashing enables pooling of all samples prior to loading them onto a single 10X chromium
controller lane, thereby enabling combined library preparation and sequencing of all sam-
ples to eliminate potential “batch” artifacts. During single-cell suspension preparation of
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white and brown preadipocytes for downstream scRNA-seq, we split each preadipocyte
type into two individual microcentrifuge tubes for a total of four working samples. Brown
preadipocytes were labelled with Hashtag-A0251 and A0252 antibodies, and white preadipocytes
with A0253 and A0254 antibodies (Supplemental Table 1A). By sequencing these hashtag
antibodies alongside the cellular transcriptome, we assigned each cell to its sample of origin,
and identified doublets originating from multiple samples. Hashtag-antibody library was
counted using the CITE-seq-Count workflow (10.5281/zenodo.2585469) and demultiplexed
using the Seurat function ‘MULTIseqDemux’. Demultiplexing pipeline identified 143 nega-
tive barcodes, 532 doublet barcodes, and 6918 cell-containing barcodes. As expected, every
cell-containing barcode had highly positive and specific expression of only a single hashtag
antibody, every doublet had marked expression for a combination of two antibodies, and
negatives had very low expression for all antibodies (Fig. B.2A). While hashtag UMI counts
revealed enrichment of protein targets in brown preadipocytes (Fig. B.2B, two-sided t-test),
there was sufficient detection in both cell-types to enable robust cellular demultiplexing (Fig.
B.2A).

Labeling protocol: For staining cells with hashtag antibodies, we followed supplier’s
protocol. Briefly, cells were harvested from a single 100 mm cell-culture dish and suspended
in 100 µl of cell staining buffer in 2 ml low bind tubes. 5 µl of Human TruStain FcX Fc
Blocking reagent was then added, and cells were incubated for 10 minutes at 4°C. 0.5 µg of a
unique Cell Hashing antibody was added to each tube and cells were incubate for 30 minutes
at 4°C. Cells were washed with 1 mL of cell staining buffer for 3 times by centrifuging at
1200 rpm for 4 minutes at 4°C. Finally, cells were suspended in PBS and 0.04% BSA at
1000 cells/µL for downstream 10x sequencing.
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Appendix C

Supplementary Information related to
Chapter 5

C.1 Supplementary Figures

Figure C.1: Application of adipogenic gene signatures in public scRNA-seq datasets (A)
UMAP of scRNA-seq dataset used in Hildreth et al. [430] study. (B) PI16 marks APCs and GPC3
marks preadipocytes. (C) Distribution of cell-maturity score between APCs and Preadipocytes in
Hildreth et al. dataset



Figure C.2: (A) UMAP visualisation of differentiating white preadipocyte dataset from each day
of harvestation colored using unsupervised clustering (top) or ADIPOQ expression (bottom). (B)
Same plot as (A) but for differentiating brown preadipocyte dataset. (C) Adipogenic score for nuclei
harvested from 5 time-points from differentiating white preadipocyte. (D) and (E) Top enriched
pathways in non-adipogenic brown trajectory (D) and adipogenic brown trajectory (E). (F) Joint
unsupervised clustering of all cells in the adipogenic brown trajectory (G) Adipogenic score for
nuclei harvested from 5 time-points from differentiating brown preadipocyte. (H) Adipogenic score
for nuclei harvested from 5 time-points from differentiating white preadipocyte. Only adipocytes
were considered for this plot (cluster 3 in panel F).
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Figure C.3: Pseudo-temporal ordering of white and brown preadipocytes (A) and (B)
Pseudo-temporal bins for white and brown dataset respectively. (C) GO terms for genes enriched
in Group 1 in white dataset. (D) GO terms for genes enriched in Group 2 in white dataset. (E)
Expression dynamics of ECM components in white dataset. (F) GO terms for genes enriched in
Group 3 in white dataset (G) Expression dynamics of metalloproteases in white dataset. (H) GO
terms for genes enriched in Group 4 in white dataset (I) GO terms for genes enriched in Group
5 in white dataset. (J) UMAP of white and brown nuclei from day 0, colored by lineage (left)
and cell-cycle phase (right). (K) GO terms for genes enriched in Group 2 in brown dataset. (L)
GO terms for genes enriched in Group 3 in brown dataset. (M) Expression of COL1A1 in white
and brown nuclei harvested from day 0. (N) Expression dynamics of ECM components in brown
dataset. (O) GO terms for genes enriched in Group 4 in brown dataset. (P) GO terms for genes
enriched in Group 5 in brown dataset. (Q) GO terms enriched in genes exclusively regulated in
brown dataset. 154



Figure C.4: Application of adipogenic gene signatures in public scRNA-seq datasets (A)
and (B) UMAP of WAT (A) and BAT (B) datasets used in Sun et al. [273] study. DCLK1 marks
preadipocyte population and ADIPOQ marks mature adipocyte population. (C) to (E) UMAP of
WAT SVF used in Hepler et al. [347] (C), Merrick et al. [348] (D), and Schwalie et al. [349] (E)
along with marker gene expression for ASC2 and ASC1 cell-types (F) Distribution of cell-maturity
score between ASC2 and ASC1 cell-types in Merrick et al. and Schwalie et al. datasets.
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C.2 Supplementary Notes

Pseudotemporal ordering of differentiating white and brown
preadipocytes into mature adipocytes

After integration of snRNA-seq datasets from distinct time-points, a coarse cellular order-
ing was obtained for both white and brown fat development, with day-0 nuclei on one end,
and day-20 nuclei on the other. In order to further refine this cellular-ordering for a higher
resolution, we utilized the idea of pseudo-temporal analysis. Typically, pseudo-temporal
analysis is performed using advanced bioinformatic algorithms that require prior informa-
tion on the starting cell/cluster for ordering. Examples include Slingshot, which was iden-
tified as one of the most robust tools for pseudotemporal ordering by recent benchmarking
investigations. However, Slingshot does not take into account prior biological information
for ordering cells. Hence, multiple researchers have rather relied on expression values of
biologically relevant genes (or highly variable genes) as proxy for cell-ordering. For adipoge-
nesis, a list of such biologically relevant genes can be found as a molecular signature in the
MSigDB (HallmarkAdipogenesis), and combined expression of these genes (or a signature
“score”) could be used as a proxy to order cells. Although, most genes which are part of
the HallmarkAdipogenesis signature are identified via transcriptomic enrichment analyses
in mature adipocytes (terminal state), as compared to preadipocytes (initial state). Conse-
quently, expression of such genes loses resolution for ordering cells that are in middle stages
of adipogenesis. Therefore, for ordering nuclei in our dataset, we developed a strategy which
utilizes expression of genes that are monotonically increasing in expression with cellular
differentiation, thereby providing a high dynamic range as well as pseudo-temporal resolu-
tion. Such monotonically increasing genes were identified via a consensus of Slingshot and
HallmarkAdipogenesis ordering.

Specifically, differentiating white and brown nuclei were first ordered using both Slingshot,
and HallmarkAdipogenesis signature score (calculated using Vision). Then, dynamically
regulated genes were identified for each ordering (see Methods) and clustered based on their
expression profiles. Genes that were monotonically increasing in both ordering strategies
were then defined as a custom signature. Different signatures were defined specific to white
and brown adipogenesis. Finally, each nuclei was assigned a score based on the expression of
genes constituting these custom-defined signatures (using Vision), and this score was used
as a proxy for pseudotime. Gene signatures can be found below.

White Signature: ADM APOE FABP5 MDH1 DCXR AOC3 PLIN2 MME BTG1
CD36 PDK4 FKBP5 SOX5 BCL6 ZBED3 SIK2 COL4A1 COL4A2 RPLP2 LMO4 AL845331.2
BMS1P14 SORT1 ACER3 HK2 ITGA7 SLC7A6 FZD4 TMEM135 PLA2G16 KCNIP2-
AS1 KCNIP2 TNS1 DECR1 PPARGC1A PSMA1 G0S2 PNPLA2 FABP4 MLXIPL AQP7
ACADVL PALMD CYB5A PDE3B SAT1 ACACB CSAD MALAT1 DOCK11 PPARG
FOXO1 CALCRL CHCHD10 ACO2 TOB2

Brown Signature: CYB5A COL4A1 CIDEC CD36 AC002066.1 CAV2 TMEM164
ACSL5 GIPR LBP NAMPT PDK4 ACSL4 FADS1 ACACA ME1 GHR DDIT4 LPCAT3
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SREBF1 NR1H3 ABCA1 SOX5 NRCAM PDE3B PSMA1 BCL6 DECR1 SIK2 PLIN4
PALMD ACSL1 SAT1 TMEM135 SCD FABP4 PNPLA2 ACACB CSAD PPARG ELOVL5
TLE1 ACER3 UVRAG LINC01239 PTK2B MAPK10 SOS1 RHOBTB3 FKBP5 ZBTB16
EBF1 GBE1 AKR1C2
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