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Abstract Task allocation patterns should depend on the

spatial distribution of work within the nest, variation in task

demand, and the movement patterns of workers, however,

relatively little research has focused on these topics. This

study uses a spatially explicit agent based model to deter-

mine whether such factors alone can generate biases in task

performance at the individual level in the honey bees, Apis

mellifera. Specialization (bias in task performance) is shown

to result from strong sampling error due to localized task

demand, relatively slow moving workers relative to nest size,

and strong spatial variation in task demand. To date, spe-

cialization has been primarily interpreted with the response

threshold concept, which is focused on intrinsic (typically

genotypic) differences between workers. Response thresh-

old variation and sampling error due to spatial effects are not

mutually exclusive, however, and this study suggests that

both contribute to patterns of task bias at the individual level.

While spatial effects are strong enough to explain some

documented cases of specialization; they are relatively short

term and not explanatory for long term cases of specializa-

tion. In general, this study suggests that the spatial layout of

tasks and fluctuations in their demand must be explicitly

controlled for in studies focused on identifying genotypic

specialists.

Keywords Apis mellifera � Division of labor �
Response threshold concept � Task allocation �
Social insects

Introduction

Insect colonies exhibit some of the most sophisticated

social organizations in nature. The largest societies consist

of thousands to millions of workers and are often charac-

terized by elaborate systems of division of labor (reviewed

in Beshers and Fewell, 2001). This social complexity is

thought to underlie the great ecological success of these

insects (Wilson and Hölldobler, 2005). Within the topic of

division of labor, much attention has been paid to the role

played by specialists, workers with a bias for a particular

task (Visscher, 1983; Moore et al., 1987; Kolmes, 1989;

O’Donnell and Jeanne, 1992; Trumbo et al., 1997; Breed

et al., 2002; Johnson, 2002; Dornhaus, 2008; Jandt et al.,

2009). Removing corpses from a honey bee colony,

guarding the nest entrance, and grooming, for example, are

tasks performed by a small portion of the colony’s workers.

Within the subset of workers performing these tasks, some

perform them much more often than would be expected by

chance alone (Visscher, 1983; Moore et al., 1987; Kolmes,

1989; Trumbo et al., 1997; Breed et al., 2002). Although

the honey bee provides the most examples of such

behavior, these patterns have been observed in ants

and wasps as well and have been central to general models

of task allocation (O’Donnell and Jeanne, 1992; Bonabeau

et al., 1998; Page and Mitchell, 1998; Cox and Myerscough,

2003; Dornhaus, 2008; Langridge et al., 2008).

Most experimental work on specialization has focused

on differences in response threshold as the explanation

(Moore et al., 1987; Robinson and Page, 1988; Beshers and

Fewell, 2001; Breed et al., 2002). The earliest studies

showing bias in task performance gave rise to the

hypothesis that workers have different thresholds for the

stimulus level that will elicit task performance, such that

some workers will respond to a low stimulus for a task
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while others will only respond to a much higher stimulus

(Calderone and Page, 1988, 1992; Robinson and Page,

1988; Breed and Rogers, 1991). Workers with the lowest

response thresholds are thought to be specialists. A rich

body of work has shown that such variation in response

threshold does exist (Pankiw and Page, 2000; Beshers and

Fewell, 2001; Weidenmuller, 2004; Oldroyd and Thomp-

son, 2007). Further, numerous studies have shown that

differences in genotype underlie some of this variation

(Breed and Rogers, 1991; Stuart and Page, 1991; Page

et al., 1995; O’Donnell, 1998; Ranger and O’Donnell,

1999; Blatrix et al., 2000; Kryger et al., 2000; Jones et al.,

2004). Workers within different patrilines in the honey bee,

for example, have different probabilities of working on

most tasks studied to date (reviewed in Beshers and Fewell,

2001; Oldroyd and Thompson, 2007). Similar patterns have

been found in stingless bees, wasps, and ants (Stuart and

Page, 1991; O’Donnell, 1998; Blatrix et al., 2000). In

addition, a smaller number of studies have shown that

response thresholds can vary with experience (Weiden-

muller, 2004; Langridge et al., 2008). In other words,

workers become more likely to perform a task each time

they perform it. In short, there is clear evidence in support

of the response threshold model. Theoretical studies of

specialization have largely mirrored experimental work by

focusing on response threshold variation (reviewed in

Beshers and Fewell, 2001) with far fewer models focusing

on spatial effects (see Tofts and Franks, 1992; Franks and

Tofts, 1994 for exceptions). As several authors have

pointed out, however, spatial effects should contribute to

most aspects of task allocation, and division of labor, and

are therefore a key understudied factor in this field

(Sendova-Franks and Franks, 1994, 1995).

The role that spatial effects might play in generating

task choice bias is quite intuitive. The honey bee nest has a

strong spatial structure with a honey zone at the top, a

brood zone in the center, and a dance floor at the bottom

(Seeley and Morse, 1976). Rare tasks, such as guarding and

undertaking, also occur within localized areas (Visscher,

1983; Moore et al., 1987). Within this spatial context, bees

alternate between periods of working, inactivity, and

patrolling (Johnson, 2008a, b). Hence, as a worker cycles

between activity and inactivity, it has a finite chance of

experiencing the same task stimulus repeatedly, by chance

alone, due to either returning to same zone or staying

within one work-zone between work bouts. The factors that

should influence repeated stimulus encounters are the area

of the work zone, the availability of work within that zone,

and how quickly workers move away from work zones.

The purpose of this study is to explore, using individual

oriented simulations, whether these factors generate strong

(and statistically significant) task choice biases (special-

ization patterns) in middle age honey bees (the group that

has been the focus of the most work on this topic). In so

doing, a number of related questions will be addressed,

such as are spatial effects strong enough to explain

empirical specialization patterns and what sort of sampling

methodologies might be useful for controlling for spatial

effects and isolating response threshold effects.

Methods

In previous studies, I showed that workers alternate

between three behavior states: inactive, working, and

patrolling (Johnson, 2008a, b). These data were used to

derive and parameterize an agent based model in the pro-

gramming language, Netlogo (Wilensky, 1999). A related

paper uses this model to explore colony level patterns of

task allocation (Johnson, 2009), while the present study

focuses on individual-level patterns. The essentials of the

model are summarized below, but the reader should see

Johnson (2009) for additional details of the modeling

procedure and a complete copy of the computer code.

Nest characteristics

The simulated nest was composed of 528 total patches

broken into five work zones (Fig. 1). Each patch corre-

sponds to 2.5 cm2 of actual nest. Only one task is

conducted within each work zone. Each patch has a stim-

ulus level for one task that is the amount of work available

on that patch. When a bee begins to work on a patch, for

example, the stimulus level falls by one. Stimulus level

increases by one when a bee quits working on a patch.

Stimulus levels for each set of simulations are shown in

their respective figure legends. The high stimulus level

Task 1 

Task 2 

Task 3 Task 5 

Task 4 

Fig. 1 Image capture of the nest used in all simulations. Each zone is

composed of numerous patches, each of which has a stimulus set to

the level of work available on that patch. The work zones match the

natural distribution of three common and two rare task zones. Zones

1–3 represent from top to bottom, the honey zone, the brood zone and

the dance floor. Zone 4 represents the edge of the nest where tasks

such as working tree resin occur. Zone 5 represents the area near the

nest entrance where guarding and undertaking occur
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used for task 5 in Fig. 5 is based on studies of undertaking

specialization in which large numbers of corpses were

introduced to colonies (Visscher, 1983, Trumbo et al.,

1997).

Worker behavior

Workers are identical autonomous agents. They do not

differ from one another in terms of probability of per-

forming tasks or in movement rate. Workers transition

between working, patrolling (a random walk in which they

are insensitive to task demand), and inactivity. When

working, bees conduct a random search for work, working

on the first task they encounter with a stimulus greater than

or equal to 1. Each bees sensing radius is one patch, the

patch on which it currently resides. When patrolling,

workers conduct a correlated random walk throughout the

nest. Inactive workers do not either move or work. Each

worker’s task choices were recorded hourly starting at hour

3 in each simulation to allow the model to come to come to

an equilibrium task allocation pattern.

For simulations lasting longer than 1 day, night time

behavior had to be estimated. Middle age bees have been

shown to sleep at night (Klein et al., 2008). They are

activated in the morning by the foragers who communicate

the need for activity with the vibration dance (reviewed in

Schneider and Lewis, 2004). Thus, workers should move

far slower at night than during the day. For simulations

shown in the text, the night time movement rate was 25%

of the day time rate. Setting night time movement rate to

the daytime rate (the maximum) does not qualitatively

change any of the results.

Identification of specialists

Some studies assume all the workers observed on a rare

task are specialists (Visscher, 1983; Moore et al., 1987).

Other studies compare the distribution of individual task

performance rates to a Poisson distribution of the same

mean and conclude that specialists exist if there are

statistical differences between the distributions (Kolmes,

1989; Johnson, 2002). In this study, specialists were

identified by comparing the distribution of observed task

performance rates to a random distribution of the same

mean following the procedure of Kolmes (1989). The

first category in which the expected number was less

than 0.1 bees was used as the threshold for specializa-

tion. The observed value was typically over a hundred

times the value of this specialization threshold. The

binomial distribution was used, as opposed to the Pois-

son, because it is more accurate when the number of

events is known.

Parameterization

For all simulations, unless otherwise stated in the text or

figure legends, the worker population was 2,500. Stimulus

levels and the number of patches per task, the other

important parameters, are given in the figure or table leg-

ends. Figure 2 shows that the movement rates (probability

of a worker leaving their work zone) of simulated bees

matches that of real bees (recorded in Johnson, 2008a).

Much further validation and parameterization of the model

are reported in Johnson (2009).

Results

Patterns of task choice at the individual level

Figure 3 shows the individual-level task performance

rates (hourly scans for 12 h) for middle age bees within the

nest depicted in Fig. 1. The distributions for all five tasks

differ from random, the prediction if bees have the same

probability of performing each task (chi-square test:

N = 2,500 for all comparisons, task 1: v7
2 = 2297.49,

P \ 0.01, task 2: v6
2 = 1118.37, P \ 0.01, task 3:

v5
2 = 1478.41, P \ 0.01, task 4: v4

2 = 836.83, P \ 0.01,

task 5: v3
2 = 875.12, P \ 0.01). Hence, although the

workers in the model are identical (no response threshold

variability), there are apparent specialists for each task. Our

focus now is to explore the factors that contribute to these

biases. Task 5, which has a spatial distribution (small and
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Fig. 2 Validation that the model produces worker movement behav-

ior consistent with real bees. Figure 6a from Johnson (2008a) was

modeled to ensure that simulated bees leave their work-zone at the

appropriate rate. Bee location was sample every half hour in a

simulated nest with the same characteristics as those used in the

experimental study
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near the entrance) that matches that of the two tasks for

which specialization has been the most studied, undertak-

ing and guarding, will be the focus.

Effect of variation in task area

Task choice bias should depend on spatial variation in task

demand because if a task is only conducted within a limited

region, then workers near that region will have some finite

probability of experiencing stimuli for it, while workers

distant from that region will have no chance of experi-

encing the relevant task stimuli. We should expect this

effect to decrease as the area the task covers increases to

the extent that all the workers have an equal chance of

experiencing the stimulus. Figure 4 demonstrates this by

showing a decrease in the number of apparent specialists as

the area a task covers increases.

Effect of variation in task demand

Individual task performance rates should depend in part on

variation in task demand. This is because if work is no

longer available in a particular region of the nest, then a

worker will move from that zone in the course of searching

for work. However, if work is still available in their current

location, bees should be more likely to remain there and

continue with the same task over multiple bouts of work.

Figure 5 supports this hypothesis by showing that as

demand for a task increases (holding area constant), the

number of workers with a bias towards performing the task

increases until a threshold number of specialists is reached.

Essentially, above the threshold there is always work

available so further increases have little to no effect.

Comparisons to experimental results

Three studies were chosen for comparisons between sim-

ulations and results. Visscher (1983) found that few bees

overall participate in undertaking and, among those that do,

a small number engage in the task repeatedly. Johnson
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Fig. 3 Number of times bees were observed performing a task over

12 observation periods in the simulated nest shown in Fig. 1 [stimulus

1(S1) = 6, S2 = 2, S3 = 4, S4 = 2, S5 = 6). Each distribution is

strongly right skewed and statistically different from a random

distribution of the same mean (see text for statistics). Hence, although

the bees in the model are identical, there are apparent specialists (bees

with strong task choice biases) for all five tasks
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Fig. 4 Results of simulations in which task 5 area is varied. Stimulus

level was held constant at 6 per patch for the focal task (number 5);

other stimulus levels were as in Fig. 3. As task area increases, the

number of apparent specialists decreases to zero. Thus, as area

increases, the probability of all workers experiencing the task

stimulus at the same rate increases until no workers show a bias in

the performance of the task
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(2002) reported a bias in task performance for the common

task of wax working, which occurs over a large area of the

nest. Table 1 shows that the degree of bias found in these

studies is within the range explainable by the effects

explored in this study [chi-square test, Visscher (1983):

v2
2 = 0.93, N = 92, P = 0.63; Johnson (2002): v6

2 = 5.88,

N = 385, P = 0.436]. These results are useful for showing

how strong spatial effects can be given biologically real-

istic parameter settings (found by parameter tuning),

however, it is not claimed that the biases found by these

authors are due solely to spatial effects. Moore et al. (1987)

and Trumbo et al. (1997) reported long term biases (over

many days) in a small minority of bees for the tasks of

guarding and undertaking. Table 1 shows that these levels

of specialization could not be generated by the factors

explored in the present study (chi-square test: v3
2 = 19.96,

N = 1,035, P \ 0.01). The factors explored in the present

study, easily lead to biases over several days; however, the

percentage of bees with such biases is lower than reported

in these studies.

Controlling for spatial effects

This work has shown that biases for tasks can be generated

by spatial effects alone. A key question is how can such

effects be controlled for by researchers interested in other

mechanisms of generating task bias? As Fig. 4 shows,

spatial effects are most important for those tasks that cover

a small area. However, even when tasks cover small areas;

over a long enough time period, all of the bees might

ultimately experience the task at the same rate as they

move about the nest. Figure 6 explores this possibility by

showing the results of long term simulations on task per-

formance rates. Middle age bees stay within their caste for

approximately 1 week (Johnson, 2008b), making this the

maximum biologically relevant length of time (only a tiny

percentage of bees show biases over more than 3 or 4 days,

however, making this the most realistic length of study).

Two tasks, numbers 2 and 5, were the focus. Task 2 covers

a large area in the center of the nest and should therefore be

encountered often by most bees over a long time period.

Figure 6a shows that after 7 days, the distribution for task

2 is nearing the shape of a random distribution; though still

significantly different (chi-square test: task 2: v18
2 =

1198.16, N = 2,500, P \ 0.01). Task 5 covers a small area
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Fig. 5 Results of simulations in which task 5 demand was varied

from 25 to 250 (25 patches with stimulus ranging from 1 to 10).

Stimuli levels as in Fig. 2. The number of specialists is an increasing

function of task demand

Table 1 Comparison of model results with experimental data

Undertaking observations Empirical

count

Model SD

Visscher (1983)

1 60 59.18 6.36

2 21 24.04 3.50

3 6 9.18 2.78

4 2 3.02 1.62

5 2 1.42 1.21

6? 1 0.78 0.84

Wax working observations Empirical

count

Model SD

Johnson (2002)

0 80 89.72 7.65

1 90 93.72 7.81

2 72 77.94 7.17

3 61 56.46 6.96

4 40 34.68 5.08

5 20 18.46 3.44

6? 22 14.02 4.03

Days guarding Empirical

count

Model SD

Moore et al. (1987)

0 929.57 917.64 8.62

1 82.57 93.76 9.44

2 13.14 23.28 4.56

3 6.86 2.86 1.57

4 1.71 0.44 0.69

5 1.00 0.02 0.14

6 0.57 0 0

Visscher (1983): simulation length: 12 h, population size: 1,000;

S1 = 6, S2 = 2, S3 = 4, S4 = 1, S5 = 1, task 5 patches: 18; Johnson

(2002): population size: 2,500; S1 = 6, S2 = 2, S3 = 4, S4 = 2,

S5 = 6, task 2 patches: 224; length of study: 2 days (6 hourly scans

per day). Moore et al. (1987): population size: 1,035; S1 = 6, S2 = 4,

S3 = 2, S4 = 2, S5 = 1, task 5 patches: 2; length of study 6 days.

12 h of data collection per day for the first 30 min of each hour (as per

Moore et al. 1987)
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in a corner of the nest and showed the most right skewed

distribution after 1 day. Figure 6b shows that after 7 days,

the curve is still right skewed and strongly different from a

random distribution (chi-square test: task 5: v9
2 = 1085.13,

N = 2500, P \ 0.01). In short, spatial effects are strong

enough that lengthy observation period alone (with hourly

observations) will not control for them.

It may also be possible to use infrequent observations to

control for spatial effects on task bias, because the longer

the bout interval between observations, the farther workers

should have moved from their previous location. Figures 7

and 8 explore how well infrequent observations control for

spatial effects. Simulations were run with a sampling

interval of either 1 or 2 h. One hour interval sampling
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Fig. 6 Results of long term simulations. Stimulus levels as per

Fig. 3. Bee behavior was sampled hourly for 12 h per day for 7 days.

Part A shows the task performance distributions of 2,500 bees for task

2 (a common task with a relatively weak bias due to spatial effects).

On day 1, the curve is strongly right skewed, while on day 7, it

resembles a slightly flattened random distribution (though it is still

significantly different from random; see main text for statistics). Part

B shows the results for task 5 (a rare task with a strong bias due to

spatial effects). The pattern in this case remains strongly right skewed

(and different from random) after 7 days (see main text for statistics)
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simulations were run for 2 days, while 2 h interval simu-

lations were run for 4 days. Thus, the amount of data

collected was identical, but the sampling interval differed

by 50% between sets of simulations. Although the task

performance distributions for task 5 are right skewed in

both cases and different from random (chi-square test:

N = 2,500 for both comparisons, 1 h intervals: v4
2 =

1083.93, P \ 0.01; 2 h intervals: v4
2 = 174.94, P \ 0.01;

Fig. 7), the number of apparent specialists is greatly

reduced with 2 h intervals between observations (number

of specialists: 1 h interval = 0.61% ± 0.15, 2 h inter-

val = 0.07 – 0.06%; Mann–Whitney test: W = 1276.0,

N1 = 50, N2 = 50, P \ 0.01; Fig. 8). Thus, infrequent

observations are a possible method for mitigating (though

not eliminating) spatial effects on the generation of task

bias.

Discussion

This work shows that spatial effects alone can cause

sampling errors strong enough to generate task choice bias

at the individual level for both common and rare tasks.

Essentially, workers near a localized task zone have a high

likelihood of experiencing the relevant task stimulus

repeatedly, while workers distant from the zone have little

probability of experiencing it. The resulting task perfor-

mance distribution is many workers with zero observations

and many with more than expected by chance alone. This is

the pattern that has been documented for specialist tasks in

the honey bee and other species (Visscher, 1983; Moore

et al., 1987; Johnson, 2002; Breed et al., 2002). However,

there is also strong evidence in favor of genotypic vari-

ability contributing to these patterns by creating a diversity

of response thresholds among workers. Further, as the

comparison to experimental data showed, some cases of

specialization are too strong to be explained by spatial

effects alone. In general, spatial effects and the various

forms of response threshold variability are not mutually

exclusive and both should contribute to the formation of

non-random task performance distributions.

Although specialist workers have received a great deal

of attention, it is important to keep in mind the scope of

these effects. First, few bees exhibit task choice bias.

Experimental work has found that specialists make up 1–

2% of the bees within a nest (Visscher, 1983; Moore et al.,

1987; Trumbo et al., 1997; Johnson, 2002). Hence, the

degree of specialization generated by the factors explored

in the present study (approximately 1% of the bees were

shown to have task choice bias) represents a large fraction

of the empirical number. Second, experimental work has

shown that not every colony has bees that can be labeled
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Fig. 8 Results of simulations with infrequent observation intervals.

Results are from the same simulations as reported in Fig. 7. The

number of specialists is greatly decreased when a more conservative

specialist identification statistical procedure is used (statistics in text)
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specialists. Moore et al. (1987), for example, in their study

of guard bees found that out of seven colonies, one colony

had no bees that guarded for more than 2 days. Likewise,

Breed et al. (2002) in a study of eight colonies had one with

an estimated mean of 2980.6 undertakers (a result consis-

tent over five replicates with that colony). In other words,

undertaking was not performed by specialists in that col-

ony. It is difficult to explain these patterns with response

threshold variation alone (as these effects should occur in

every colony), however, the factors explored in the present

study shed light on these patterns. Low task demand,

higher than normal area of task performance, particularly

high density of bees (which leads to difficulty in finding

tasks), and so forth are all shown to affect the probability of

bees exhibiting task choice bias. As colonies vary strongly

in these factors (even within the same environment), it is

not surprising that large variation exists in the prevalence

of specialization (task choice bias) between colonies.

The results of the present study, along with previous

work, suggest a hypothesis that could explain most of the

biases seen to date for honey bees. Perhaps the most spe-

cialized bees are groomers (Kolmes, 1989). These specia-

lists have the highest rate of task performance and, most

important, their specialized task occurs with equal

frequency all over the nest. Thus, spatial effects cannot

give rise to this pattern. Genotypic variability in response

threshold is a more likely explanation. However, as there

should be response threshold variability for every task, it

begs the question why there is such strong variability in

degree of specialization between tasks such as grooming

and undertaking. The present study may shed light on this.

The key factor may be how often workers encounter par-

ticular task stimuli. For some tasks, such as grooming,

which has a global distribution, the probability is 1, while

for other tasks the odds are much less and depend on task

area, demand, and so forth. Thus, an integrating hypothesis

might be that response threshold variation contributes to

task choice over a small spatial scale (within a bee’s local

environment); however, movement rates and the spatial

distribution of tasks define the probability of workers being

exposed to task stimuli environments. Hence, tasks that

occur in a small area would have strong spatial effects on

task bias and relatively lower biases due to variation in

response threshold, because workers would only rarely

experience the task stimulus. In contrast, tasks that occur

over large areas would have weak spatial effects, but strong

response threshold variability effects on task bias, because

workers are always exposed to the stimulus for the task

when searching for work.

Finally, some discussion is necessary to put this study

into perspective relative to other theoretical work on

related topics. In particular, much theoretical work has

been published on the generation of division of labor by

intrinsic differences between workers related to differ-

ences in response thresholds (Bonabeau et al., 1996;

Theraulaz et al., 1998; Gautrais et al., 2002; Merkle and

Middendorf, 2004; Jeanson et al., 2007, 2008; Gove et al.,

2009). Further, a few models, and now some experimental

work, are beginning to look at spatial effects on division

of labor (Tofts and Franks, 1992; Franks and Tofts, 1994;

Jandt and Dornhaus, 2009; Schmickl and Crailsheim,

2007, 2008). How the present model relates to work on

spatial effects and division of labor is covered in

(Johnson, 2009). Here, I will focus on how it relates to

work on response thresholds. First, it is necessary to point

out the fundamental difference between caste based

division of labor, in which workers have a limited, but

still extensive, task repertoire, and specialization, in

which a small number of individuals have a strong bias

for one task. The present study focuses on specialization

only. Second, the present study shows how apparent

specialization can emerge from identical workers in a

spatially complex environment. This is important for how

one designs and interprets studies on specialization. As I

argue above with respect to the integrating hypothesis for

spatial effects and genotypic effects on generation of task

bias, it also has relevance for studies on response

threshold variation. In general, with respect to previous

modeling work on response thresholds, the conclusion of

the present study is that all such effects should be

explored again in a context in which there is strong

spatial heterogeneity of tasks. While it is unlikely that the

basic conclusions of these studies would require changing,

it is likely that interesting interactions will emerge from

the effects of fixed and variable response threshold effects

in a spatially complex environment.
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