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ARTICLE

Chemoenzymatic modular assembly of O-GalNAc
glycans for functional glycomics
Shuaishuai Wang 1,10, Congcong Chen1,2,3,10, Madhusudhan Reddy Gadi1,10, Varma Saikam1,10, Ding Liu1,

He Zhu1, Roni Bollag 4, Kebin Liu 5, Xi Chen 6, Fengshan Wang7, Peng George Wang 1,9✉,

Peixue Ling 2,3,7✉, Wanyi Guan 8✉ & Lei Li 1✉

O-GalNAc glycans (or mucin O-glycans) play pivotal roles in diverse biological and patho-

logical processes, including tumor growth and progression. Structurally defined O-GalNAc

glycans are essential for functional studies but synthetic challenges and their inherent

structural diversity and complexity have limited access to these compounds. Herein, we

report an efficient and robust chemoenzymatic modular assembly (CEMA) strategy to

construct structurally diverse O-GalNAc glycans. The key to this strategy is the convergent

assembly of O-GalNAc cores 1–4 and 6 from three chemical building blocks, followed by

enzymatic diversification of the cores by 13 well-tailored enzyme modules. A total of 83

O-GalNAc glycans presenting various natural glycan epitopes are obtained and used to

generate a unique synthetic mucin O-glycan microarray. Binding specificities of glycan-

binding proteins (GBPs) including plant lectins and selected anti-glycan antibodies towards

these O-GalNAc glycans are revealed by this microarray, promoting their applicability in

functional O-glycomics. Serum samples from colorectal cancer patients and healthy controls

are assayed using the array reveal higher bindings towards less common cores 3, 4, and 6

than abundant cores 1 and 2, providing insights into O-GalNAc glycan structure-activity

relationships.
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O-GalNAc glycans (also known as mucin O-glycans)
represent a major component of the mammalian glyco-
calyx and are involved in various biological processes via

glycan-protein interactions1. All O-GalNAc glycans share a
common structural feature containing the monosaccharide N-
acetylgalactosamine (GalNAc) α-linked to the hydroxyl group of
serine (Ser) or threonine (Thr) residues in proteins2. O-GalNAc
glycosylation decorates over 80% of secretory and cell surface
proteins3. It confers many critical biological functions ranging
from structural roles to immune responses and cell-cell interac-
tions. For example, mucin is a major part of the mucosal barrier
on gastrointestinal, respiratory, reproductive, and urinary tracts
that protects humans from pathogens and aids clearance of
microbes4. O-GalNAc glycans on mucins influence the config-
uration and exposure of peptide epitopes and the adhesive
properties of glycoproteins1. On the other hand, pathogens could
harness cell surface glycans as entry receptors to initiate
infection5, or produce surface glycans mimicking host O-GalNAc
glycans to escape from the host immune surveillance6. Aberrant
O-GalNAc glycosylation is correlated with tumor growth and
metastasis by modulating tumor cell–matrix interactions7–9. As a
result, some O-GalNAc glycans and glycopeptides have been used
and explored as cancer biomarkers for clinical diagnosis and
as antigenic targets for the development of therapeutic
antibodies10,11.

O-GalNAc glycans are structurally more diverse than N-
glycans. A single GalNAc residue α-linked to Ser/Thr forms the
Tn antigen (GalNAcα-Ser/Thr), which is often α2-6 sialylated,
providing the sialyl-Tn antigen (Siaα2-6GalNAcα-Ser/Thr). Tn
can also be extended to generate four major O-GalNAc cores
(cores 1–4) and four rare cores (cores 5–8). As shown in Fig. 1,
the attachment of a galactose (Gal) residue to the Tn antigen via a
β1-3 linkage generates core 1, also named T antigen. Core 2 is
formed by adding an N-acetylglucosamine (GlcNAc) residue to
the GalNAc of core 1 via a β1-6 linkage. Cores 1 and 2 glycans are
the most common O-GalNAc structures and nearly ubiquitously
expressed on mucins and other glycoproteins. Cores 3, 4, and 6
are β-GlcNAcylated on C3-hydroxyl (C3-OH) and/or C6-OH of
the initiating GalNAc, whereas cores 5, 7, and 8 contain α-linked
extensions (α1-3GalNAc, α1-6GalNAc, and α1-3Gal, respectively)
(Fig. 1a). Cores 3 and 4 are less common than cores 1 and 2, and
are more restricted to glycoproteins in bronchial and gastro-
intestinal tissues1. Cores 5–8 are linear structures with low
occurrence and abundance. The diversity and complexity of

O-GalNAc glycans stem from multiple cores and additional
glycosylation presenting different epitopes. Sialylations are
observed on all types of cores. Common epitopes identified on
cores 1–4 and 6 include ABO blood group antigens (A-, B-, and
H-antigen), Lewis antigens (e.g., Lewis X, Lewis Y, and sialyl-
Lewis X antigens), N-acetyllactosamine (LacNAc, LN), N,N′-
diacetyllactosamine (LDN), 3′-sialyl LacNAc (3SLN), 6′-sialyl
LacNAc (6SLN), alpha-Gal, and Cad/Sda (Fig. 1b)1,10,12,13.

The access to structurally diverse O-GalNAc glycans in suffi-
cient quantity and purity is essential to their structure-function
relationship studies. In the last decade, shotgun glycomics14,15,
oxidative release16, O-glycome beam search17, and preparative
cellular O-glycome reporter/amplification18 have been developed
to obtain O-GalNAc glycans from natural sources. However,
these methods do not allow access to complex O-GalNAc glycans
in sufficient quantity, especially for those with rare cores and low
abundant glycoforms. Chemical and chemoenzymatic methods
have thus been used to obtain a variety of sialylated O-GalNAc
glycans19–23, including cores 1–4 and 6 that contain poly-LacNAc
motifs24,25. In addition, solid-phase approaches have been
developed for synthesizing O-GalNAc glycopeptides, but only
those with simple core structures or their sialylated forms were
normally obtained26–29. A strategy for the systematic preparation
of O-GalNAc glycans with varied natural epitopes is still missing,
and the lack of these structures had been a major barrier to
functional O-glycomic studies.

Herein, we describe the implementation of a chemoenzymatic
modular assembly (CEMA) strategy that deploys three synthetic
building blocks and 13 enzyme modules in a precisely controlled
manner for the rapid access of structurally diverse O-GalNAc
glycans. The method yields a collection of 83 O-GalNAc glycans
presenting important glycan epitopes on cores 1–4 and 6. The
attached Ser or Thr enables the easy attachment of O-glycans to
glass surfaces for the fabrication of a unique O-GalNAc glycan
microarray, which is a useful tool to investigate the glycan-
binding specificity of glycan binding proteins (GBPs) and probe
anti-mucin antibodies.

Results and discussion
The chemoenzymatic modular assembly (CEMA) strategy. The
CEMA strategy includes (1) diversity-oriented and scalable che-
mical assembly of O-GalNAc glycan cores, and (2) highly efficient
enzyme modules to glycosylate the cores with precise control on
regio- and stereoselectivity. All O-GalNAc cores are branched
from either the C3-OH or/and the C6-OH of the initiating Gal-
NAc (Fig. 1a). Thus, a suitable Tn antigen selectively protected at
C3/6-OH to allow late-stage selective deprotection is the key for
assembling the cores. To access cores 1–4 and 6 (1–5, Fig. 2a), we
designed three synthetic building blocks, including a versatile
protected glycosyl amino acid 7 with C3-OH protected by an
acetyl (Ac) group and C4/6-OH masked by a benzylidene acetal,
and two monosaccharide Schmidt donors 830 and 931. The Fmoc
group is introduced to the Ser residue of 7 to facilitate reaction
monitoring and product purification32. The Ac group on 7 would
be selectively removed under mild basic conditions. Subsequent
branching at the free C3-OH by glycosylation with 8 and 9 would
produce core 1 and 3, respectively. In addition, deprotection of
benzylidene acetal in the resulting disaccharides to expose C4-OH
and C6-OH followed by regioselective glycosylation at the more
active C6-OH with N-Troc-protected module 9 will yield cores 2
and 4, respectively. On the other hand, core 6 could be obtained
by selective deprotection of C6-OH of 7 followed by the regio-
selective glycosylation with 9.

Stereoselective synthesis of Tn antigen with an α-linked GalNAc
remains a major challenging step for mucin O-glycan synthesis33,34.
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Fig. 1 Structures of O-GalNAc glycan cores and their common glycan
epitope extensions. a O-GalNAc glycan cores 1–8. b Common glycan
epitopes found on O-GalNAc glycans. LN, N-acetyllactosamine (LacNAc);
LDN, N,N’-diacetyllactosamine (LacdiNAc); 3SLN, 3’-sialyl LacNAc; 6SLN,
6’-sialyl LacNAc; LeX, Lewis X; SLeX, sialyl-Lewis X; LeY, Lewis Y.
Abbreviations: Gal, galactose; Fuc, L-fucose; GlcNAc, N-acetylglucosamine;
GalNAc, N-acetylgalactosamine; Neu5Ac, N-acetylneuraminic acid; Ser,
serine; Thr, threonine.
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High α-selectivity is usually achieved by using a glycosyl donor with
a non-participating group at C2, such as an azide group35. Extensive
efforts have also been made on evaluating structural modification of
sugar donors with various protective groups36–39, leaving groups40,
and reaction conditions41,42. For the purpose of preparing
structurally diverse O-GalNAc glycans, a simple, efficient, and
diversity-oriented route encompassing a fluorescent core (e.g.,
Fmoc) would be more advantageous32. A stable thio glycosyl donor
1043 was thus selected and obtained by efficient synthetic
methods44. Ser with a Fmoc-protected amino group and a tert-
butyl ester protected carboxyl group (Fmoc-Ser-OtBu) was selected
as the glycosyl acceptor45. Glycosylation of the Fmoc-Ser-OtBu with
the glycosyl donor 10 at room temperature promoted by NIS and
TMSOTf produced 741,46 with a satisfying yield of 70% and a good
stereoselectivity of 9:1 (α:β) (Fig. 2a). Importantly, the presence of
benzylidene acetal allowed easy separation of the anomers on TLC
(Rf: α-0.7, β-0.4, 50% ethyl acetate/hexanes) and efficient purifica-
tion by silica gel flash column chromatography. The synthesis was
easily scaled up to obtain 20 grams of 7 in one batch.

While chemical approaches are powerful in synthesizing simple
cores for up to gram scales, enzyme-catalyzed reactions are
advantageous in preparing large complex glycans owing to their
unique regio- and stereoselectivity. To assemble common epitopes
(Fig. 1b) on O-GalNAc cores 1–4 and 6, a total of 13 enzyme
modules were employed (Fig. 2b), including three galactosylation
modules (G1–G3), four sialylation modules (S1–S4), four

N-acetylhexosaminylation modules (N1–N4), and two fucosyla-
tion modules (F1 and F2). Enzymes used in these modules are well
characterized and robust glycosyltransferases (GTs). They are
specific to generate only the desired epitopes. For example,
Neisseria meningitidis β1-4 galactosyltransferase (NmLgtB) is used
for β1-4 galactosylation (module G1)47. Human GTB (module
G2) and bovine α1-3 GalT (Bα3GalT)48 (module G3) are
employed for α1-3 galactosylation to generate B-antigen and
alpha-Gal respectively, according to their acceptor specificities.
For α2-6 sialylation, three enzyme modules are proposed:
Pasteurella multocida α2-3 sialyltransferase 1 mutant P34H/
M144L (PmST1-P34H/M144L) that is highly selective for
sialylating non-reducing terminal Gal residues (S2)49, Photobac-
terium damselae α2-6 sialyltransferase (Pd2,6ST) that is highly
active and recognizes all terminal and internal Gal and GalNAc
(S3)50, and human ST6GalNAc-IV that only recognizes the
initiating GalNAc residue (S4)51. All enzyme modules are well-
tailored for specific acceptors according to their substrate
specificities to avoid side reactions and achieve precise control
for the synthesis of desired glycans.

Chemical modular assembly of O-GalNAc cores 1–4 and 6.
Module 7 serves as an advanced intermediate that can be
extended properly at C3 or/and C6 positions to obtain all O-
GalNAc core structures (Fig. 3). To assemble core 1, the O-Ac
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group at C3-OH was deprotected under basic conditions to yield
compound 11. The Schmidt donor module 8 was then used to
glycosylate 11 in the presence of catalytic TMSOTf to provide the
β1-3-linked disaccharide 12. Subsequent deprotection of benzy-
lidene acetal, azide reduction, and acetylation without any
intermediate purification produced the protected core 1 (13).
Finally, tert-butyl and Ac groups were removed under strong
acidic and mild basic conditions successively to obtain Fmoc-
protected core 1 (1). It is worth noting to avoid the loss of Fmoc,
the pH of the solution should not exceed 8.5 during the final Ac
ester deprotection step. To synthesize core 2, the benzylidene
acetal on 12 was removed to obtain diol 14. Regioselective
installation of N-Troc protected module 931 to the C6-OH of 14
using TMSOTf as a promoter resulted in the β-linked tri-
saccharide 15 exclusively. Successive deprotection of the N-Troc
group, reduction of azide, and N-acetylation resulted in the
protected core 2 trisaccharide 16. Final deprotection of the tert-
butyl and Ac esters produced core 2 (2). However, despite
maintaining the pH of the reaction below 8.5 during Zemplén
deprotection, nearly 50% of Fmoc was lost. Fmoc was there-
fore quantitavely reintroduced under basic conditions using Fmoc
N-hydroxysuccinimide ester before product purification32. Core 2
(2) was obtained with a yield of 77% over the last three steps.

Cores 3, 4, and 6 are GlcNAc extended structures of Tn antigen
at C3 and/or C6 positions, respectively. As illustrated in Fig. 3, to

obtain core 3, glycosyl acceptor 11 was glycosylated with 9 in the
presence of catalytic TMSOTf to obtain exclusively β-linked
disaccharide 17. Subsequent deprotection of benzylidene acetal
followed by one-pot Zn-mediated reduction of azide and
deprotection of N-Troc formed a disaccharide with a free amino
group at C-2, which was acetylated without purification to obtain
18. The tBu and Ac esters were then deprotected to obtain core 3
(3). On the other hand, diol 19 obtained by benzylidene
deprotection of 17 was glycosylated with 9 at the C6 position
under Lewis acid conditions to provide 20 in a yield of 70%. The
protected derivative 20 was converted to the peracetylated
compound 21 which was deprotected followed by the re-
introduction of Fmoc to form core 4 (4) similar to that described
above for the synthesis of core 2. To access core 6, benzylidene
acetal was firstly removed to obtain 22 followed by regioselective
glycosylation with 9 at C6, which provided β-linked disaccharide
23 exclusively. Subsequent N-Troc deprotection, azide reduction,
and peracetylation yielded compound 24, which was converted to
core 6 (5) by tert-butyl and Ac ester deprotection. The overall
yields of cores 1–4 and 6 starting from module 7 are decent,
ranging from 35% to 63%. Lastly, the Tn antigen (6) was
converted from the common intermediate 10 by azide reduction
and global deprotection using contemporary chemical routes
as described for the synthesis of core 1 (Supplementary
Information).
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Enzymatic modular assembly of O-GalNAc glycans. With che-
mically synthesized Tn antigen, cores 1–4, and core 6 in hand,
structurally diverse O-GalNAc glycans were prepared using 13
enzyme modules (Fig. 2b) in a well-designed sequential manner.
Specifically, the Ser-linked STn antigen (25) was prepared from 6 by
enzyme module S3. Briefly, Tn antigen (6) was incubated in
100mM Tris-HCl (pH 8.0) with the highly active Pd2,6ST,
N. meningitidis CMP-sialic acid synthetase (NmCSS), cytidine
5’-triphosphate (CTP), N-acetylneuraminic acid (Neu5Ac), and
MgCl2. NmCSS enabled in situ generation of the sialyltransferase
sugar nucleotide donor CMP-Neu5Ac. The reaction was carried out
at 37 °C for 3 h and stopped by boiling for 5min. After brief cen-
trifugation, the supernatant was concentrated and purified by
reverse-phase (RP)-HPLC (Supplementary Information) to afford
the STn antigen (25). The bulky hydrophobic UV-detectable
fluorescent Fmoc group facilitates real-time monitoring of reaction
processes and makes the product separation by RP-HPLC easier32.

Core 1 O-GalNAc glycans are commonly found on mucins and
other glycoproteins. Most core 1 structures are sialylated. As
depicted in Fig. 4, enzymatic modular assembly starting from 1
yielded 19 extended core 1 structures, including 9 sialylated ones.
Mono-sialylated glycans 26 and 27 were prepared by enzyme
modules S2 and S1, respectively. As mentioned above, PmST1-
P34H/M144L in module S2 is an engineered regioselective α2-6

sialyltransferase49, whereas PmST1-M144D in S1 is a regioselective
α2-3 sialyltransferase52. Both enzymes are highly selective for
sialylating non-reducing end Gal residues. Core 1 with two α2-6-
linked sialic acids (28) was prepared by using module S3, which
contains Pd2,6ST, a highly active α2-6 sialyltransferase with
substrate promiscuity that recognizes both terminal and internal
Gal/GalNAc residues. Given that Pd2,6ST could sialylate Gal
even in the presence of α2-3 sialyation53, the synthesis of di-
sialylated 29 Neu5Acα2-3Galβ1-3(Neu5Acα2-6)GalNAcα-FmocSer
was achieved via another α2-6 sialyation module S4, in which
human ST6GalNAc-IV catalyzed regioselective α2-6 sialylation of
the initiating GalNAc51. O-GalNAc glycans 30 and 31 that
presenting the Cad/Sda antigen were assembled by module N1
from 27 and 29, respectively. Enzyme module N1 contained C.
jejuni β1-4-N-acetylgalactosaminyltransferase (CjCgtA), which
catalyzed the transfer of GalNAc onto the Gal residue of the
Siaα2-3Gal motif54.

Additionally, core 1 with blood group H-antigen (32) was
prepared by incubating 1 with enzyme module F1 that contained
H. mustelae α1,2-fucosyltransferase (Hm2FT)55 and the sugar
nucleotide GDP-Fuc. We found that Hm2FT not only recognized
lactose55, but also tolerated LacNAc and Galβ1-3GalNAc. It was
used to synthesize O-GalNAc glycans bearing Type II and III
H-antigens (e.g., 43 and 32) in excellent yields. Glycans with
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blood group A- or B-antigens were subsequently prepared by
H. mustelae α1,3-N-acetylgalactosamanyltransferase (HmBgtA)
(module N2) and human GTB (module G2), respectively. Both
enzymes have broad acceptor specificities towards all five subtypes
of H-antigens56,57.

Similarly, extended core 1 structures presenting LacNAc (36),
LeX (37), SLeX (38), 3SLN (39), 6SLN (40), Cad/Sda (41), alpha-Gal
(42), H-antigen (43), and LeY (44) epitopes were prepared by the
stepwise enzymatic modular assembly (Fig. 4). The assembly route
was designed according to the acceptor specificity of each
glycosyltransferase to avoid undesired side reactions. To further
eliminate undesired side products, glycan products were purified by
RP-HPLC to homogeneity (>98%) before subjected to the next step.
All purified glycans were characterized by analytical HPLC to
confirm purity, and NMR and mass spectrometry to confirm
structures (Supplementary Information). Please note that instead of
multi-enzyme systems as that for in situ generation of CMP-
Neu5Ac, partially purified (P2-chromatography to >70%) sugar
donors UPD-Gal, UDP-GalNAc, UDP-GlcNAc, and GDP-Fuc
were used in modules G1–G3, N1–N4, and F1–F2, to reduce
incubation times, increase yields, and simplify the HPLC purifica-
tion process.

Core 2 O-glycans are branched structures where the β1-3Gal
branch is commonly sialylated or attached with the Cad/Sda

antigen and the β1-6GlcNAc branch presents varied epitopes12.
Starting from 2, a total of 21 core 2 structures were prepared via a
sequential modular assembly of the β1-3Gal branch and then the
β1-6GlcNAc branch (Fig. 5). For example, to prepare core 2

glycans with Cad/Sda antigen at the β1-3Gal branch (compounds
46–49), α2-3 sialylation of core 2 (2) was firstly performed using
module S1 to form 45. Subsequent treatment of 45 by module N1
(CjCgtA and UDP-GalNAc) formed the β1-3Gal branch in the
fully assembled compound 46. Sequential glycosylations of 46 at
the β1-6GlcNAc branch by enzyme modules G1, S1, and N1
yielded 47–49, which were previously identified in mammalian
cells by CORA and β-elimination methods12,58. In addition, the
β1-6GlcNAc branch of 45 was directly extended by modules G1,
S1, and F2, respectively, to produce glycans 50–52. In parallel,
core 2 structures with α2-6 sialylation at the β1-3Gal branch
(compounds 53–59) were assembled in a similar sequential
manner (Fig. 5). It is worth pointing out that the synthesis of
compound 59 from 54 can also be achieved by Hm2FT-catalyzed
α1,2 fucosylation (module F1) followed by Hp3FT-catalyzed α1,3-
fucosylation (module F2), as both fucosyltransferases have
relatively relaxed acceptor specificities and can tolerate both
non-fucosylated and mono-fucosylated acceptor substrates59.
Non-sialylated core 2 O-glycans have also been found in
mammalian cells. For example, compounds 60–62, 64, and 65
were previously identified from several cell lines including
primary cells12. These structures were synthesized from 2 via a
sequential modular assembly shown in Fig. 5. Specifically, the
alpha-Gal epitope-presenting glycan 61 was obtained via direct
α1-3 galactosylation of the β1-6GlcNAc branch in 60 by module
G3. G3 contains bovine α1,3-galactosyltransferase (Bα3GalT) that
can use both LacNAc and Lac disaccharides as acceptor
substrates48.
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After validating the application of the CEMA strategy in the
synthesis of cores 1 and 2 glycans, we turned our attention to
synthesize low abundant O-GalNAc glycans. As shown in
Supplementary Figures 1-3, fourteen core 3-type glycans (66–
79), ten core 4-type glycans (80–89), and twelve core 6-type
glycans (90–101) were synthesized. Collectively, 83 Ser-linked O-
GalNAc glycans (Table 1, Supplementary Figure 4) were prepared
through the robust CEMA strategy. All products were purified by
RP-HPLC and characterized by NMR and mass spectrometry.
Such glyco-amino acids can be applied, with or without
protection by peracetylation, for solid-phase peptide synthesis60.

Microarray assays to probe the specificity of glycan-binding
proteins (GBPs). Microarrays represent a major tool for func-
tional glycomics studies. While various glycan microarrays have
been developed during the last two decades, O-glycan structures
in these arrays are still limited17,61. To explore the utility of the
O-GalNAc-glycans synthesized, we prepared a synthetic glycan
microarray according to the MIRAGE guidelines (Supplementary
Table 1) by immobilizing Fmoc-deprotected glycans 1–6 and

25–101 on N-hydroxysuccinimide (NHS)-activated glass slides.
We assayed 17 commonly used GBPs and 2 recombinant influ-
enza hemagglutinin (HA) proteins (Supplementary Table 2). The
GBPs include fucose-binding lectins (AAL, UEA-I, LTL), sialic
acid-binding lectins (MAL-I, SNA), LacNAc or GlcNAc-binding
lectins (RCA-I, ECL, GSL-II, STL), Tn antigen-binding lectins
(SBA, VVL, DBA), T antigen-binding lectins (PNA, Jacalin), and
antibodies that are specifically against sLeX, STn, and MUC1
(Fig. 6, Supplementary Figs. 5–10).

The glycan microarray results confirmed successful spotting of the
glycans and revealed fine specificities of GBPs tested toward O-
GalNAc glycans. For example, the chitin-binding Solanum tuberosum
lectin (STL)62 showed moderate binding to core 2 and 6 glycans
presenting a terminal LacNAc motif (with/without further modifica-
tions) but not to core 1 and 3 structures (Fig. 6a), indicating its
surprisingly strict preference toward the LacNAc on the β1-6GlcNAc
branch. Such specificity may be applied to distinguish O-GalNAc
core structures in heterogeneous mixtures. The T antigen-targeting
Arachis hypogaea (peanut) lectin (PNA) and Jacalin were used as
efficient tools for cancer diagnosis/prognosis and O-glycopeptide

Table 1 Ser-linked O-GalNAc glycans prepared in this study.

O-GalNAc 
core

1-3branch 
(A)

1-6branch 
(B)

Glycan 
No.

O-GalNAc 
core

1-3branch 
(A)

1-6branch 
(B)

Glycan 
No.

core 1

-OH -OH 1

core 3

-OH -OH 3
6-sialyl -OH 26 -OH 6-sialyl 66
3-sialyl -OH 27 LN 6-sialyl 67
6-sialyl 6-sialyl 28 LN -OH 68
3-sialyl 6-sialyl 29 3SLN -OH 69
Cad/Sda -OH 30 Cad/Sda -OH 70
Cad/Sda 6-sialyl 31 6SLN -OH 71
H-antigen -OH 32 H-antigen -OH 72
A-antigen -OH 33 A-antigen -OH 73
B-antigen -OH 34 B-antigen -OH 74
GlcNAc -OH 35 LeY -OH 75
LN -OH 36 alpha-Gal -OH 76
LeX -OH 37 LeX -OH 77
SLeX -OH 38 SLeX -OH 78
3SLN -OH 39 LDN -OH 79
6SLN -OH 40

core 4

-OH -OH 4
Cad/Sda -OH 41 LN LN 80
alpha-Gal -OH 42 Cad/Sda Cad/Sda 81
H-antigen -OH 43 6SLN 6SLN 82
LeY -OH 44 H-antigen H-antigen 83

core 2

-OH -OH 2 A-antigen A-antigen 84
3-sialyl -OH 45 B-antigen B-antigen 85
Cad/Sda -OH 46 LeY LeY 86
Cad/Sda LN 47 alpha-Gal alpha-Gal 87
Cad/Sda 3SLN 48 LeX LeX 88
Cad/Sda Cad/Sda 49 SLeX SLeX 89
3-sialyl LN 50

core 6

N.A.

-OH 5
3-sialyl 3SLN 51 LN 90
3-sialyl LeX 52 3SLN 91
6-sialyl -OH 53 Cad/Sda 92
6-sialyl LN 54 6SLN 93
6-sialyl 6SLN 55 H-antigen 94
6-sialyl 3SLN 56 A-antigen 95
6-sialyl Cad/Sda 57 B-Antigen 96
6-sialyl LeX 58 LeY 97
6-sialyl LeY 59 alpha-Gal 98
-OH LN 60 LeX 99
-OH alpha-Gal 61 SLeX 100
-OH LeX 62 LDN 101
H-antigen -OH 63 Tn antigen 6
H-antigen LN 64 STn antigen 25
H-antigen LeX 65
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capturing63. We found that PNA selectively bound to T antigen (1)
and core 2 glycans with an unmodified β1-3Gal branch (2, 60–62)
(Fig. 6b), suggesting the requirement of a free Gal attached to the
initiating GalNAc for proper recognition64. The results also showed
that Jacalin bound strongly to all core 3 and nearly all core 1 glycans
(devoid of α2-6 sialylation) at the same level of the Tn antigen, but
did not bind to any core 2, 4, or 6 structures (Fig. 6c), suggesting a
strict requirement for the free C6-OH on the initial GalNAc65.
Binding specificities and fine details of all tested lectins are
summarized in Supplementary Table 3. We then compared our
lectin binding results with those obtained from the Consortium for
Functional Glycomics (CFG) glycan microarray (Supplementary
Table 4 summarizes O-GalNAc glycan structures in the array)
(https://ncfg.hms.harvard.edu/ncfg-data/microarray-data/lectin-qua
lity-assurancequality-control). The binding profiles of STL, PNA,
VVL, SBA, and AAL to O-GalNAc glycans on the CFG array
(Supplementary Figure 11) were similar to our results, further
confirmed the successful fabrication of our synthetic O-GalNAc-
glycan array.

Altered expression levels of some serum anti-glycan antibodies
have been linked to many diseases including cancer66–68, which
are presumably the consequences of aberrant expression of
the corresponding glycans including O-GalNAc glycans7–9. The
synthetic O-GalNAc glycan microarray can be used to analyze the
changes of anti-O-GalNAc glycan antibodies (IgG and IgM) in
the sera of cancer patients and can serve as a promising platform

for cancer biomarker discovery. To explore this opportunity,
29 serum samples from patients with colorectal cancer (Supple-
mentary Table 5) and 29 from healthy controls were analyzed.
The sera were diluted 50-fold and the antibodies bound to glycans
on the array were probed with DyLight 650-conjugated anti-
human IgG Fc antibody and DyLight 550-conjugated anti-human
IgM antibody. For IgG, other than those bound strongly to O-
glycans presenting A- or B-antigen (33, 34, 73, 74, 84, 85, 95, 96)
which are most likely the natural anti-A and anti-B antibodies, no
apparent specific binding was observed (Supplementary Fig. 12).
On the other hand, the overall IgM binding signals were high and
varied significantly among individual serum samples (Fig. 7).
Serum samples from both colorectal cancer patients and healthy
controls showed higher overall IgM binding toward low abundant
cores 3, 4, and 6 (compounds 3, 4, 5) than to highly abundant
cores 1 and 2 (compounds 1, 2). The sera from patients with stage
3 colorectal cancer showed higher IgM binding than those from
other patients, which was also observed previously by others in
lung cancer18. However, no significant difference was observed
between colorectal cancer samples and healthy controls. Inter-
estingly, even though similar binding profiles to Ser-linked and
Thr-linked O-glycans were observed for lectins (Fig. 6), the Ser or
Thr amino acid residue in the O-GalNAc glycans made a
significant difference in antibody binding. Stronger bindings to
Ser-linked Tn (6), core 2 (2), core 3 (3), and core 4 (4) than their
Thr-linked counterparts (6-T, 2-T, 3-T, and 4-T) (Fig. 7, p < 0.01)
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Fig. 6 Binding profiles of lectins towards O-GalNAc glycans. a The binding profile of STL towards O-GalNAc glycans. b The binding profile of PNA
towards O-GalNAc glycans. c The binding profile of Jacalin towards O-GalNAc glycans. The x-axis shows glycans, and the y-axis shows relative
fluorescence readout using Cy5-streptavidin (1 μg/mL). PPA=APGS(GalNAcα-)TAPP (100 µM); RPAP= TSAPD(GalNAcα-)TRPAP (100 µM); x-T,
Thr-linked counterparts of Ser-linked O-glycans; Biotin = biotinylated PEG amine (0.01 mg/mL); hIgG = human IgG (0.1 mg/mL), mIgG = mouse IgG
(0.1 mg/mL); M=Marker (0.01 mg/mL Cy3-conjugated anti-Human IgG + 0.01 mg/mL Alexs647-conjugated anti-Human IgG); NC= printing buffer
negative control. n= 3 independent replicates. The individual data points are shown as dots. Data are presented as mean values. Error bars represent
standard deviation. Source data are provided as a Source Data file.
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were observed for serum samples from both colorectal cancer
patients and healthy controls. Moreover, glycan isomers present-
ing the same terminal epitopes, such as di-sialylated core
2 structures (51, 55, and 56), showed a significant binding
difference (p < 0.01) by IgM. A similar IgM binding difference
was seen for glycan isomers 26/27 and 69/71 (p < 0.01). The
results suggested differential recognition of glycan isomers by
serum anti-glycan antibodies. Another observation was that the
extended O-glycans had lower overall IgM bindings than core
structures (Fig. 7). Collectively, our results showed different
serum antibody bindings to individual O-GalNAc cores as well as
isomeric structures, providing insights to O-GalNAc glycan
structure-activity relationship. Particularly, serum antibodies to
rare O-GalNAc core 6 and less common cores 3 and 4 may serve
as targets for cancer biomarker discovery.

In summary, we disclose an efficient chemoenzymatic modular
assembly (CEMA) synthetic strategy that is used for the
construction of a comprehensive cores 1–4 and 6-derived O-
GalNAc glycan library presenting numerous natural epitopes
including LN, LDN, 3-sialyl, 6-sialyl, 3SLN, 6SLN, LeX, SLeX, LeY,
and blood group H, A, B, and Cad/Sda antigens. The CEMA
strategy enables rapid access to 83 structurally diverse O-GalNAc
glycans by deploying 3 chemical synthetic building blocks (a
universal monosaccharide-amino acid acceptor 7 and two
glycosyl donors 8 and 9) and 13 well-tailored glycosyltransferase
modules in a precisely controlled sequential manner. The strategy
can be readily adopted for the synthesis of cores 5, 7, and 8-
derived O-GalNAc glycans and other complex carbohydrates.
The synthetic O-GalNAc glycan microarray represents a powerful
platform to investigate the structure-function relationship of
mucin O-glycans. In addition to being used directly in
glycan–protein interaction studies, the structurally diverse,
ready-to-conjugate glycan-amino acid probes can also be used
as building blocks for solid-phase synthesis of glycopeptides.

Methods
General procedure of high-performance liquid chromatography. An analytical
GL Science Inertsil ODS-4 column (100Å, 5 μm, 4.6mm× 250mm) was used to
monitor reactions and for final purity analysis. The signals were monitored by a UV
detector (260 nm) or fluorescent detector (Ex 260 nm, Em 310 nm). Analysis was
performed under a gradient running condition (solvent A: H2O with 0.1% TFA; solvent
B: acetonitrile with 0.1% TFA; flow rate: 1 mL/min; B%: 20–40 within 25min). With
similar running conditions, the analytical Inertsil ODS-4 column was used for separ-
ating up to 3mg of products, and a semipreparative Inertsil ODS-4 column (100Å,
5 μm, 10mm× 250mm) was used for larger scales with a flow rate of 4mL/min.

General procedure for enzymatic extensions. Reaction mixtures contain Tris-
HCl (100 mM, pH 7.5 or 8.0), an acceptor glycan (10 mM), a donor (15 mM),
MgCl2 (10 mM), and an appropriate amount of enzyme. Reactions were incubated
at 37 °C and monitored by HPLC and/or MALDI-TOF MS. After over 90%
acceptor was converted, the reaction was quenched, concentrated and subject to
HPLC separation. Product-containing fractions were pooled and lyophilized for
characterization and next step modular assembly.

Method for microarray fabrication. The O-GalNAc microarray was printed
according to the guidelines of MIRAGE as summarized in Supplementary Table 1.
Thr-linked O-glycans, O-glycopeptides PPA [APGS(GalNAcα-)TAPP] and PPAP
[TSAPD(GalNAcα-)TRPAP] (Z Biotech), and Ser-linked O-glycans prepared in this
study were prepared at a concentration of 100 μM in the printing buffer (150mM
phosphate, pH 8.5), and printed on Nexterion slide H-3D hydrogel coated glass
microarray slides (Applied Microarrays Inc), each for 400 pL in triplicates. Printing
buffer was printed as a negative control, biotinylated PEG amine (0.01mg/mL),
mouse IgG (0.1mg/mL) and human IgG (0.1mg/mL) were printed in three replicates
to serve as positive controls. A marker containing anti-human IgG-Cy3 conjugate
(0.01mg/mL) and anti-human IgG-Alexa647 conjugate (0.01mg/mL) was printed in
triplicates. A sciFLEXARRAYER S3 non-contacting ultralow volume dispensing
system equipped with two PDC 80 Piezo dispense capillaries (Scienion) was used to
spot glycans onto NHS-activated glass slides (16 subarrays on each slide). The
spotting was carried out at room temperature with a humidity of 60%, followed by
overnight dehumidification. Printed slides were then soaked in blocking buffer
(50mM ethanolamine, 100mM Tris-HCl, pH 9.0) for 2 h, washed twice using MilliQ
water, desiccated, and stored at −20 °C until use.

Method for microarray assay. All steps were performed at room temperature.
Before assay, each subarray was separated by fitting the slides with ProPlate 16-well
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Fig. 7 Heatmap of lgM bindings on the O-GalNAc glycan microarray in sera from colorectal cancer patients and healthy control people. PPA=APGS
(GalNAcα-)TAPP (100 µM); RPAP= TSAPD(GalNAcα-)TRPAP (100 µM); x-T, Thr-linked counterparts of Ser-linked O-glycans; Biotin = biotinylated PEG
amine (0.01 mg/mL); NC= printing buffer negative control. n= 3 independent replicates. Data are presented as mean values. Source data are provided as
a Source Data file.
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microarray modules and incubated using 100 μL of TSMTB buffer (20mM Tris-HCl,
150mM NaCl, 2mM CaCl2, 2 mMMgCl2, 0.05% (v/v) Tween-20, 1% (w/v) BSA, pH
7.4) for 10min. For assay, TSMTB was aspirated and 100 μL of GBPs or serum
samples at appropriate concentrations in TSMTB were added. The slides were then
sealed and incubated for 1 h with gentle shaking, followed by washing for four times
with TSMT buffer (TSMTB buffer without BSA). Next, 100 μL of fluorescence-labeled
secondary antibody or Cy5-streptavidin was added to each subarray, sealed, and
incubated for 1 h with gentle shaking. After incubation, the slides were washed four
times with TSMT, TSM (TSMT without Tween-20), and MilliQ water, respectively,
and dried by brief centrifugation for scanning. A Genepix 4100A microarray scanner
(Molecular Devices) was used to image the slides at 80% power and 500 or 600 PMT
gains. The resultant images were analyzed using the Genepix Pro 6.1 software and
processed using Excel to obtain microarray results. Biotin-labeled lectins were
detected by Cy5-streptavidin (1 µg/mL). Anti-STn antibody, anti-MUC-1 antibody,
anti-CD15 antibody (10 µg/mL) and anti-CD15s antibody (10 µg/mL) were detected
by corresponding fluorescent-labeled secondary antibody (5 µg/mL). Recombinant
influenza A virus hemagglutinin proteins were detected with Alexa 647-conjugated
anti-His-tag antibody (5 µg/mL). Human serum specimens from colorectal cancer
patients and healthy people were provided by Georgia Cancer Center at Augusta
University and stored at −80 °C until use. The protocol for serum specimen pre-
paration was approved by the Institutional Review Board of Augusta University and
was performed in accordance with the Helsinki Declaration. All participants gave
written informed consent. Human serum specimens were analyzed in a 1:50 dilution
and detected using Dylight 650 anti-human IgG Fc (Invitrogen) and Dylight 550 anti-
human IgM antibodies (Invitrogen) (5 µg/mL).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available within the article and its
Supplementary Information. Other relevant data are available from the corresponding
author upon reasonable request. The Source data underlying Figs. 6, 7, Supplementary
Figs. 5–11 are provided as a Source Data file. Source data are provided with this paper.
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