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Efficient high–speed cornering motions
based on continuously–variable feedrates.

I. Real–time interpolator algorithms

Rida T. Farouki and Kevin M. Nittler
Department of Mechanical and Aerospace Engineering,

University of California, Davis, CA 95616, USA.

Abstract

The problem of high–speed traversal of sharp toolpath corners, within
a prescribed geometrical tolerance ε, is addressed. Each sharp corner is
replaced by a quintic Pythagorean–hodograph (PH) curve that meets
the incoming/outgoing path segments withG2 continuity, and deviates
from the exact corner by no more than the prescribed tolerance ε. The
deviation and extremum curvature admit closed–form expressions in
terms of the corner angle θ and side–length L, allowing precise control
over these quantities. The PH curves also permit a smooth modulation
of feedrate around the corner by analytic reduction of the interpolation
integral. To demonstrate this, real–time interpolator algorithms are
developed for three model feedrate functions. Specifying the feedrate
as a quintic polynomial in the curve parameter accommodates precise
acceleration continuity, but has no obvious geometrical interpretation.
An inverse linear dependence on curvature offers a purely geometrical
specification, but incurs slight initial and final tangential acceleration
discontinuities. As an alternative, a hybrid form that incorporates the
main advantages of these two approaches is proposed. In each case,
the ratio f = Vmin/V0 of the minimum and nominal feedrates is a free
parameter, and the improved cornering time is analyzed. This paper
develops the basic cornering algorithms — their implementation and
performance analysis are described in detail in a companion paper.



Keywords: toolpath corner rounding; Pythagorean–hodograph curves;
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1 Introduction

The efficiency of common manufacturing processes, such as machining, laser
cutting, and 3D printing, is often limited by the presence of sharp corners in
part programs, which incur the need for large deceleration/acceleration rates
to accurately negotiate corners. Since manufacturing costs directly correlate
to part program execution times on high capital–investment equipment, it is
desirable to minimize the time penalty incurred by cornering motions, while
ensuring that the final part satisfies a prescribed tolerance ε.

For a given machine physical configuration, the only possibilities for the
reduction of cornering times are through modification of the control algorithm
and/or part program geometry. A common approach is to replace each sharp
corner by a smooth curve segment that deviates by no more than ε from the
apex of the corner. This facilitates a reduction in cornering time through two
effects: (a) the rounded corner has a shorter total path length than the sharp
corner; and (b) since the rounded corner has finite extremum curvature, it
becomes possible to maintain a non–zero feedrate over its entire extent rather
than coming to a complete stop in the case of a sharp corner.

To fully exploit these effects, a corner rounding strategy should specify
both the precise shape (i.e., curvature distribution) of the corner curve, and
smooth variation of feedrate along it. Moreover, these specifications must be
compatible with an accurate real–time interpolator algorithm, that is capable
of generating precise reference points along the curved corner in accordance
with the desired feedrate variation, at the controller sampling frequency. The
Pythagorean–hodograph (PH) curves are eminently suited to this requirement
[6, 7, 10, 18] and are the point of departure for the present study.

The focus of this paper is on rounding corners with significant angular
deviations between contiguous linear segments. It is not intended to address
real–time spline smoothing — or “compression” — of piecewise–linear G01
approximations to free–form toolpaths, that involve small angular deviations
between short linear segments (such capability is already available in several
commercial controllers). The goal is to mitigate the very high decelerations
and accelerations incurred by discrete sharp corners through a modification
of the corner geometry and an associated feedrate variation, allowing faster
corner traversal while maintaining a prescribed geometrical tolerance. Also,
for brevity, only planar toolpaths are addressed at present, but the extension
to spatial toolpaths does not incur any exceptional difficulties.

Several authors have addressed the problem of rounding toolpath corners.
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Š́ır and Jüttler [15] proposed the use of degree 9 C2 PH Hermite interpolants
[5] to round corners in planar tool paths, and extended these results to the
spatial case in [16]. However, these studies address only the geometric aspect
of the problem, and the formulation of real–time interpolators for variable
feedrates along higher–order PH curves becomes rather complicated. Walton
and Meek [19] noted that PH quintics can be constructed with specified end
points and tangents, and zero end curvatures, that are well–suited to the G2

blending of corners on piecewise–linear curves. The constructions described
in Section 3 below are equivalent to those in [19], although use of the complex
representation yields more compact formulations and easier analysis of key
properties — extremum curvature, corner deviation, etc.

Ernesto and Farouki [2] used G1 conic segments as corner rounding curves
and formulated the problem of computing the feedrate variation along them,
so as to minimize the traversal time under prescribed axis acceleration bounds,
as a calculus of variations problem with pointwise constraints. Exploiting the
convex hull and subdivision properties of the Bernstein form, a sequence of
approximations that converge to the exact solution are obtained by solving a
sequence of linear programming problems. Shi et al. [13] considered the use
of G2 PH quintic corner curves for high–speed machining, and extended this
to the context of 5–axis machining in [14]. Sencer et al. [12] used “ordinary”
quintic Bézier curves as G2 rounded corners, whose maximum curvature is
minimized with respect to residual free parameters. In executing the corners,
a reduction ∆V of the nominal feedrate V along linear segments is used, with
smooth “S-shaped” transitions between the nominal/reduced values.

A key advantage of the PH curves, in the context of the corner–rounding
problem, is the ability to formulate real–time CNC interpolator algorithms
that correspond to continuously–variable feedrates. A feedrate dependent on
the path curvature can, for example, ensure that centripetal acceleration is
kept within acceptable limits. An investigation of the use of this capability,
in the context of high–speed motion control, is the main focus of this study.
The present paper develops the mathematical formulations and algorithms
required for the construction and analysis of the G2 PH quintic corner curves,
and real–time interpolator algorithms for representative feedrate variations.
A companion paper [11] presents detailed results from an implementation on
a 3–axis CNC milling machine with an open–architecture contoller.

The plan for the remainder of this paper is as follows. Section 2 reviews
some basic properties of planar PH curves, and their advantageous features
in the context of the corner rounding problem. The construction of a single
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PH quintic corner curve that exhibits second–order geometric continuity with
the incoming and outgoing linear segments, and accommodates a general side
length L and corner angle θ, is then treated in Section 3. The key properties
of the PH quintic corner curves are also derived in Section 3 — the parametric
speed and arc length polynomials, curvature variation and extremum, and
maximum deviation from the original sharp corner.

Real–time interpolator algorithms for three feedrate variations associated
with these G2 PH quintic corner curves are then formulated in Sections 4–6.
The first case employs a feedrate defined as a quintic polynomial in the curve
parameter, incorporating a single coefficient f that specifies the mid–point
feedrate Vmin as a fraction of the nominal value V0. The second case employs
a feedrate expressed as a simple function of curvature, that admits a closed–
form reduction of the interpolation integral, with f freely chosen. However,
it incurs slight tangential acceleration discontinuities, since the feedrate has
non–zero derivative at the end–points. Finally, the third case is a hybrid of
the first two, in which a quadratic factor in the curve parameter is invoked
to modulate the curvature so as to achieve acceleration continuity.

For each of the feedrate variations, the dependence of the corner traversal
time on the quantities f , L, θ is analyzed, relative to a nominal value for the
sharp corner. Finally, Section 7 analyzes the accelerations of the individual
machine axes incurred by the cornering strategies (with an emphasis on the
first feedrate function), while Section 8 recapitulates the main points of this
study and directs the reader to the companion paper [11].

2 Planar Pythagorean–hodograph curves

A planar polynomial Pythagorean–hodograph (PH) curve r(ξ) = (x(ξ), y(ξ))
is distinguished by the special property that its derivative r′(ξ) = (x′(ξ), y′(ξ))
has components satisfying [9] the Pythagorean condition

x′2(ξ) + y′2(ξ) = σ2(ξ) (1)

for some polynomial σ(ξ), which defines the parametric speed of r(ξ) — i.e.,
the derivative ds/dξ of arc length s with respect to the curve parameter ξ.
The fact that σ(ξ) is a polynomial (and not the square root of a polynomial)
endows PH curves with several attractive computational properties.

For a primitive curve with gcd(x′(ξ), y′(ξ)) = constant, a sufficient and
necessary condition for satisfaction of (1) is that the derivative components
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should be expressible in the form

x′(ξ) = u2(ξ)− v2(ξ) , y′(ξ) = 2u(ξ)v(ξ) ,

where u(ξ), v(ξ) are polynomials with gcd(u(ξ), v(ξ)) = constant. This form
is embodied in the complex representation [3], in which a PH curve of degree
n = 2m+ 1 is generated from a degree–m complex polynomial

w(ξ) = u(ξ) + i v(ξ) =
m∑
k=0

wk

(
m

k

)
(1− ξ)m−kξk (2)

with Bernstein coefficients wk = uk + i vk by integrating the expression

r′(ξ) = w2(ξ) . (3)

The parametric speed of r(ξ) is σ(ξ) = |w(ξ)|2, and its unit tangent, unit
normal, and curvature may be expressed [3] in terms of w(ξ) as

t(ξ) =
w2(ξ)

σ(ξ)
, n(ξ) = − i

w2(ξ)

σ(ξ)
, κ(ξ) = 2

Im(w(ξ)w′(ξ))

σ2(ξ)
. (4)

Since σ(ξ) = u2(ξ)+v2(ξ) is a polynomial, the cumulative arc length function

s(ξ) =

∫ ξ

0

σ(τ) dτ

is likewise a polynomial in ξ. These facts facilitate development of essentially
exact real–time interpolator algorithms for PH curves, for feedrates (speeds)
dependent of arc length, time, curvature, etc. [6, 7, 10, 18].

For a specified feedrate V along r(ξ), the acceleration a is the derivative
of the velocity v = V t with respect to time t. Using

dV

dt
=

ds

dt

dξ

ds

dV

dξ
=

V V ′

σ
and

dt

dt
=

ds

dt

dt

ds
= −V κn ,

we obtain

a(ξ) =
V (ξ)V ′(ξ)

σ(ξ)
t(ξ) − κ(ξ)V 2(ξ) n(ξ) . (5)

The first term in (5) is the tangential or feed acceleration, equal in magnitude
to the time derivative of the feedrate, while the second term is the normal
or centripetal acceleration, whose magnitude is equal to the product of the
curvature and the square of the feedrate.
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3 Canonical G2 PH quintic corner

Consider the rounding of two linear segments that meet at a corner point pc.
The sharp corner is to be replaced by a smooth curve r(ξ), ξ ∈ [ 0, 1 ] that
begins at a point pi on the incoming line segment, and ends at a point po on
the outgoing line segment, i.e.,

r(0) = pi and r(1) = po ,

where we require |pc−pi| = |po−pc| for symmetry. Furthermore, to ensure
a G2 connection with the line segments, the tangent t(ξ) and curvature κ(ξ)
of r(ξ) must satisfy

t(0) =
pc − pi
|pc − pi|

, t(1) =
po − pc
|po − pc|

, κ(0) = κ(1) = 0 .

For simplicity, this problem is considered for “canonical” data, of the form

pi = (0, 0) , pc = (L, 0) , po = ((1 + cos θ)L, sin θ L) ,

for −π < θ < +π with θ 6= 0 (see Figure 1). Note that the “turning angle” θ
is measured positive anti–clockwise. The solution for arbitrary data pi,pc,po
with |pc−pi| = |po−pc| 6= 0 is obtained from the canonical solution through
a rotation and translation. The translation amounts to simply choosing the
initial Bézier control point p0 in expressions (7) below, while the rotation is
achieved by multiplying the complex coefficients w0,w1,w2 of the polynomial
(6) below by exp(i1

2
φ), where φ is the angle such that

cosφ =
xc − xi
|pc − pi|

, sinφ =
yc − yi
|pc − pi|

,

and we write pi = (xi, yi) and pc = (xc, yc). The translation and rotation do
not affect the expressions derived below for the parametric speed (16), corner
deviation (17), arc length (18), curvature (19), and also the variable–feedrate
real–time interpolator algorithms developed in Sections 4–6.

The G2 corner–rounding problem can be solved using a single PH quintic
segment. Consider the PH quintic r(ξ) defined on ξ ∈ [ 0, 1 ] by substituting
a quadratic complex polynomial

w(ξ) = w0(1− ξ)2 + w12(1− ξ)ξ + w2ξ
2 (6)

5



pi pc

po

L

L

θ

Figure 1: Canonical data for the G2 PH quintic corner curve.

into (3) and integrating. The Bézier control points of r(ξ) are determined [4]
from the coefficients w0,w1,w2 as

p1 = p0 +
1

5
w2

0 ,

p2 = p1 +
1

5
w0w1 ,

p3 = p2 +
1

5

2w2
1 + w0w2

3
,

p4 = p3 +
1

5
w1w2 ,

p5 = p4 +
1

5
w2

2 , (7)

p0 being a free integration constant. The end tangents and end curvatures
of r(ξ) must satisfy

t(0) =
w2

0

|w0|2
= 1 , t(1) =

w2
2

|w2|2
= exp(i θ) , (8)

κ(0) = 4
Im(w0w1)

|w0|4
= 0 , κ(1) = 4

Im(w1w2)

|w2|4
= 0 . (9)

The conditions (8) together with |pc−pi| = |po−pc| = L imply that w0,w2

must be of the form

w0 = λ
√
L , w2 = µ

√
L exp(i1

2
θ) (10)

for non–zero real values λ, µ (we may assume that λ > 0, since the curve r(ξ)
remains unchanged upon replacing w0,w1,w2 by −w0,−w1,−w2). Setting
w1 = u1 + i v1 and substituting for w0,w2 into the constraints (9) then gives

λv1 = µ (u1 sin 1
2
θ − v1 cos 1

2
θ) = 0 .
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Since λ, µ must be non–zero, and by assumption θ 6= 2kπ for integer k, these
equations imply that u1 = v1 = 0 — i.e.,

w1 = 0 . (11)

From (7) we then have p2 = p1 and p4 = p3, so the G2 corner has just four
distinct control points instead of six [3]. The fact that w1 = 0 for any PH
quintic satisfying κ(0) = κ(1) = 0 has been noted in Theorem 5.1 of [19].

With p0 = pi and p5 = po, interpolation of the corner end points yields
the condition∫ 1

0

r′(ξ) dξ =
1

5

[
w2

0 + w0w1 +
2w2

1 + w0w2

3
+ w1w2 + w2

2

]
= L(1 + cos θ + i sin θ) .

On substituting from (10) and (11) for w0,w1,w2 the real and imaginary
parts of this equation become

3λ2 + cos 1
2
θ λµ+ 3 cos θ µ2 = 15 (1 + cos θ) ,

sin 1
2
θ λµ+ 3 sin θ µ2 = 15 sin θ .

Writing cos θ = 2 cos2 1
2
θ−1, sin θ = 2 sin 1

2
θ cos 1

2
θ and noting that sin 1

2
θ 6= 0,

we obtain

3λ2 + cos 1
2
θ λµ+ 3(2 cos2 1

2
θ − 1)µ2 = 30 cos2 1

2
θ ,

λµ+ 6 cos 1
2
θ µ2 = 30 cos 1

2
θ . (12)

The second equation gives

λ =
6 cos 1

2
θ (5− µ2)

µ
, (13)

and substituting this into the first equation yields the biquadratic

(36 cos2 1
2
θ − 1)µ4 − 360 cos2 1

2
θ µ2 + 900 cos2 1

2
θ = 0 ,

in µ, from which we obtain

µ2 =
30 cos 1

2
θ

6 cos 1
2
θ ± 1

. (14)
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Noting that cos 1
2
θ > 0 for −π < θ < +π (with θ 6= 0), a real solution µ is

possible only when cos 1
2
θ > 1

6
if the − sign is chosen in (14). Although the

resulting curves match the prescribed end points, tangents, and curvatures
when this condition is satisfied, they exhibit undesired loops. We therefore
discard these solutions and use only the + sign in (14), which yields a real
solution µ for any θ. Substituting it into (13), we obtain

λ = µ =

√
30 cos 1

2
θ

6 cos 1
2
θ + 1

. (15)

Hence, the solutions to (12) define a symmetric curve, with |r′(1)| = |r′(0)|.
From (7) and (10)–(11), the Bézier control points of the canonical PH quintic
rounded corner can be expressed as

p0 = (0, 0) , p1 = p2 =

(
6L cos 1

2
θ

6 cos 1
2
θ + 1

, 0

)
,

p3 = p4 =

(
L+

L cos θ

6 cos 1
2
θ + 1

,
L sin θ

6 cos 1
2
θ + 1

)
, p5 = (L+L cos θ, L sin θ) .

Examples of the PH quintic corner curves, together with their Bézier control
polygons and curvature profiles, are illustrated in Figure 2.

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

fractional arc length

cu
rv

at
ur

e

Figure 2: Left: examples of the canonical G2 PH quintic corner curve, with
their Bézier control polygons, for the three turning angles θ = 1

4
π, 1

2
π, 3

4
π.

Right: the curvature distributions for these three PH quintic corner curves.

The parametric speed is defined by the quartic polynomial

σ(ξ) =
4∑

k=0

σk

(
4

k

)
(1− ξ)4−kξk
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with Bernstein coefficients

σ0 = |w0|2, σ1 = Re(w0w1) ,

σ2 = [ 2|w1|2 + Re(w0w2) ]/3 ,

σ3 = Re(w1w2) , σ4 = |w2|2 .

Substituting for w0,w1,w2 gives σ1 = σ3 = 0 and

σ0 = σ4 = λ2L =
30L cos 1

2
θ

6 cos 1
2
θ + 1

, σ2 =
λ2L cos 1

2
θ

3
=

10L cos2 1
2
θ

6 cos 1
2
θ + 1

.

Hence, the parametric speed can be expressed as

σ(ξ) = λ2L [ (1− ξ)4 + 2 cos 1
2
θ (1− ξ)2ξ2 + ξ4 ] . (16)

It decreases from σ(0) = σ(1) = λ2L at the end points to the minimum value
σ(1

2
) = 1

8
λ2L(1+cos 1

2
θ) at the mid–point of the corner curve. The mid–point

has coordinates

r(1
2
) = L

(
1−

3 cos 1
2
θ + 8

16(6 cos 1
2
θ + 1)

(1− cos θ),
3 cos 1

2
θ + 8

16(6 cos 1
2
θ + 1)

sin θ

)
,

and hence its deviation δ from the corner point pc = (1, 0) is

δ(θ) = | r(1
2
)− (1, 0) | =

(3 cos 1
2
θ + 8) | sin 1

2
θ |L

8(6 cos 1
2
θ + 1)

, (17)

as illustrated in Figure 3. It has limiting values δ → 0 and δ → L as θ → 0
and θ → π, respectively, the intermediate value for a right–angle turn being

δ(1
2
π) =

45 +
√

2

272
L ≈ 0.170640L .

The cumulative arc length function for the G2 PH quintic corner is

s(ξ) =

∫ ξ

0

σ(τ) dτ =
5∑

k=0

sk

(
5

k

)
(1− ξ)5−kξk ,

where
s0 = 0 and sk = sk−1 +

σk−1

5
, k = 1, . . . , 5 .
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0.0

0.2

0.4

0.6

0.8

1.0

0 π
θ

δ/L

Figure 3: The deviation (17) of the canonical G2 PH quintic rounded corner
curve from the exact corner as a function of the turning angle θ.

In particular, the total arc length is

S =
σ0 + σ1 + σ2 + σ3 + σ4

5
=

2L(6 + cos 1
2
θ) cos 1

2
θ

6 cos 1
2
θ + 1

. (18)

Finally, the curvature of the PH quintic corner curve can be expressed as

κ(ξ) = 4 Im(w0w2)
(1− ξ)ξ
σ2(ξ)

= 4λ2L sin 1
2
θ

(1− ξ)ξ
σ2(ξ)

. (19)

Note that κ(ξ) is either positive or negative for ξ ∈ (0, 1) according to whether
θ is positive or negative, i.e., whether the specified points pi, pc, po define a
“left–turn” or “right–turn” corner. It vanishes at the curve end points, and
has the mid–point extremum value

κmax = κ(1
2
) =

32(6 cos 1
2
θ + 1) tan 1

2
θ

15L(cos 1
2
θ + 1)2 . (20)

Figure 4 illustrates the variation of the total arc length S and the extremum
curvature κmax with the corner angle θ.

4 Parameter-dependent feedrate

Consider a cornering feedrate specified as a quintic polynomial

V (ξ) =
5∑

k=0

vk

(
5

k

)
(1− ξ)5−kξk (21)
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0.0
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–20

–10
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20

–π 0 +π
θ

κmaxL

Figure 4: Variation of total arc length S (left) and extremum curvature κmax

(right) with the turning angle θ of the G2 PH quintic rounded corner curve.

in the curve parameter. To ensure continuity of velocity and acceleration, the
conditions V (0) = V (1) = V0 and V ′(0) = V ′(1) = 0 are imposed. If we also
stipulate that the minimum feedrate V (1

2
) = Vmin at the curve mid–point is

a specified fraction f of V0, the coefficients of (21) are determined as

v0 = v1 = v4 = v5 = V0 , v2 = v3 =
8f − 3

5
V0 . (22)

Using these values and the partition–of–unity property of the Bernstein form,
the feedrate (21) can also be expressed as

V (ξ) = V0 [ 1− 16(1− f)(1− ξ)2ξ2 ] , (23)

so V (ξ) is actually quartic. Figure 5 shows the feedrate variation in the case
θ = 1

2
π for various values of f (the cases θ = 1

4
π and 3

4
π are very similar).

Since the feedrate and parametric speed are the derivatives of arc length
s with respect to time t and the curve parameter ξ, the time variation of ξ
is determined from the chain–rule relation

dξ

dt
=

dξ

ds

ds

dt
=

V (ξ)

σ(ξ)
. (24)

Subsituting from (23), the parameter value ξk of the reference point at time
t = k∆t is determined from the condition∫ ξk

0

σ(ξ)

1− 16(1− f)(1− ξ)2ξ2
dξ = V0k∆t . (25)
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Figure 5: Fractional feedrate V/V0 versus arc length s/S for the acceleration–
continuous feedrate defined by (21) and (22) with f = Vmin/V0 = 0.1, . . . , 0.9.

Now using (16) and the factorization

1− 16(1− f)(1− ξ)2ξ2 = [ 1 + 4c(1− ξ)ξ) ] [ 1− 4c(1− ξ)ξ ] ,

the integrand in (25) has the partial fraction decomposition

λ2L

16c2

[
a

1 + 4c(1− ξ)ξ
+

b

1− 4c(1− ξ)ξ
− 2(1 + cos 1

2
θ)

]
, (26)

where we define

a = 8c2 + 8c+ 1 + cos 1
2
θ , b = 8c2 − 8c+ 1 + cos 1

2
θ , c =

√
1− f .

Writing

p =

√
c+ c2

c
=

[
1√

1− f
+ 1

]1/2

, q =

√
c− c2

c
=

[
1√

1− f
− 1

]1/2

,

the expression (26) has the indefinite integral

λ2L

16c2

[
a

4cp
ln

1− 2ξ − p
1− 2ξ + p

+
b

2cq
tan−1 2ξ − 1

q
− 2(1 + cos 1

2
θ) ξ

]
.

Hence, evaluating the integral between limits 0 and ξk, the reference–point
parameter value ξk at time t = k∆t is the real root of the equation

F (ξ) =
λ2L

16c2

[
a

4cp
ln

1 + 2c(p+ 1)ξ

1− 2c(p− 1)ξ
+

b

2cq

(
tan−1 2ξ − 1

q
+ tan−1 1

q

)
− 2(1 + cos 1

2
θ) ξ

]
− V0k∆t = 0 .
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Since this function is monotone–increasing on ξ ∈ [ 0, 1 ] it has a unique root
on that interval, which can be computed to machine precision through a few
Newton–Raphson iterations

ξ
(r)
k = ξ

(r−1)
k − F (ξ

(r−1))
k

F ′(ξ
(r−1)
k )

, r = 1, 2, . . . (27)

from the starting approximation

ξ
(0)
k = ξk−1 +

V (ξk−1)∆t

σ(ξk−1)
, (28)

where ξk−1 is the converged value from the previous timestep. Convergence
to machine precision is typically observed in just 2 or 3 iterations. Note that
the derivative of F (ξ) required in (27) is

F ′(ξ) =
σ(ξ)

1− 16(1− f)(1− ξ)2ξ2
.

Figure 6 illustrates the distribution of reference points along some PH quintic
corners, using the parameter–dependent feedrate defined by (21)–(22).

Figure 6: The distribution of reference points along G2 PH quintic corners
with turning angles θ = 1

4
π, 1

2
π, 3

4
π using the acceleration–continuous feedrate

(21) with the values L = 1 mm, V0 = 50 mm/sec, ∆t = 0.001 sec, and f = 1
3
.

For the feedrate (23), the PH quintic corner traversal time T is obtained
by replacing ξk with 1 and k∆t with T in (25) as

T

T0

=
λ2

64c2

[
a

4cp
ln

1 + 2c(p+ 1)

1− 2c(p− 1)
+

b

cq
tan−1 1

q
− 2(1 + cos 1

2
θ)

]
(29)

13



where c, p, q are defined in terms of f as before, and T0 = 4L/V0 is the sharp
corner traversal time with uniform deceleration/acceleration. The ratio (29)
is plotted as a function of f in Figure 7 — for typical angles, it is seen that
values f ≥ 1

2
give reductions of ∼ 50% in the cornering time.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

f

T/T0

Figure 7: The corner traversal time ratio (29) as a function of the feedrate
suppression factor f for three representative corner angles: θ = 1

4
π, 1

2
π, 3

4
π

(the uppermost graph is for the smallest θ, the lowermost for the largest θ).

5 Curvature–dependent feedrate

For a specified linear feedrate V0, consider the curvature–dependent cornering
feedrate function

V (ξ) =
V0

ρ κ(ξ) + 1
, (30)

where ρ is a signed length scale, used to determine the severity of the corner
feedrate suppression. To obtain a mid–point minimum feedrate Vmin = V (1

2
)

as a desired fraction f of the nominal feedrate V0, we use the value

ρ =
1− f
f

rmin , (31)

where rmin = 1/κmax is the extremum corner radius of curvature. Note that
rmin and ρ are of the same sign as κ(ξ) defined by (20), so the product ρ κ(ξ)
is positive for 0 < ξ < 1. Since κ(0) = κ(1) = 0, the feedrate (30) decreases
from V0 at ξ = 0, to Vmin = f V0 at ξ = 1

2
, and increases again to V0 at ξ = 1.
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Figure 8 illustrates the variation of the curvature–dependent feedrate (30)
with fractional arc length along the G2 PH quintic corner, for several values
of the feedrate suppression factor f = Vmin/V0 (the corner angle is θ = 1

2
π is

shown here: the cases θ = 1
4
π and 3

4
π are quite similar).
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Figure 8: Fractional feedrate V/V0 versus arc length s/S for the curvature–
dependent feedrate function (30) with the values f = Vmin/V0 = 0.1, . . . , 0.9.

Substituting from (19) and (30) into (24) and simplifying gives

dξ

dt
=

V0σ(ξ)

4ρλ2L sin 1
2
θ (1− ξ)ξ + σ2(ξ)

.

Separating variables, and setting t = 0 when ξ = 0, the parameter value ξk
of the reference point at time tk = k∆t is determined by the relation∫ ξk

0

4ρλ2L sin 1
2
θ

(1− ξ)ξ
σ(ξ)

+ σ(ξ) dξ = V0

∫ k∆t

0

dt = V0k∆t . (32)

Now since σ(ξ) is the derivative of the arc length s(ξ), the indefinite integral
of the second term in the integrand on the left is simply s(ξ). To obtain
the indefinite integral of the first term, we observe that the parametric speed
(16) has the factorization

σ(ξ) = λ2Lσ+(ξ)σ−(ξ) (33)

with
σ±(ξ) = (1− ξ)2 ± α 2(1− ξ)ξ + ξ2 , (34)
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where we define

α =
√

1
2
(1− cos 1

2
θ) = sin 1

4
θ , β =

√
1
2
(1 + cos 1

2
θ) = cos 1

4
θ . (35)

Consequently, we have the partial fraction decomposition

(1− ξ)ξ
σ(ξ)

=
1

4λ2αL

[
1

σ−(ξ)
− 1

σ+(ξ)

]
.

Then, since σ−(ξ) and σ+(ξ) both have negative discriminants, we obtain∫
(1− ξ)ξ
σ(ξ)

dξ =
1

4λ2αβ L

[
tan−1 (1 + α)(2ξ − 1)

β
− tan−1 (1− α)(2ξ − 1)

β

]
.

A further simplification becomes possible on invoking [1] the rule

tan−1 x− tan−1 y = tan−1 x− y
1 + xy

when xy > −1 , (36)

and using α2 + β2 = 1, to obtain∫
(1− ξ)ξ
σ(ξ)

dξ =
1

4λ2αβ L
tan−1

(
α

β

2ξ − 1

2ξ2 − 2ξ + 1

)
.

Hence, evaluating the definite integral (32) and noting that 2αβ = sin 1
2
θ,

the reference–point parameter value ξk at time t = k∆t is the (unique) real
root of the function

F (ξ) = 2ρ

[
tan−1

(
α

β

2ξ − 1

2ξ2 − 2ξ + 1

)
− tan−1

(
−α
β

)]
+ s(ξ) − V0k∆t .

Using (36) and α2 + β2 = 1 again, this can be reduced to

F (ξ) = 2ρ tan−1

(
2αβ ξ2

2β2ξ2 − 2ξ + 1

)
+ s(ξ) − V0k∆t .

This function is monotone–increasing with ξ, from F (0) = −Vok∆t to F (1) =
ρ θ+ S − V0k∆t. Its unique real root can be computed to machine precision
with a few of the Newton–Raphson iterations (27). The derivative of F (ξ),
required in (27), is simply

F ′(ξ) = 4ρλ2 sin 1
2
θL

(1− ξ)ξ
σ(ξ)

+ σ(ξ) .
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Figure 9: The distribution of reference points along G2 PH quintic corner
curves with angles θ = 1

4
π, 1

2
π, 3

4
π, using the curvature–dependent feedrate

(30) with the values L = 1 mm, V0 = 50 mm/sec, ∆t = 0.001 sec, and f = 1
3
.

Figure 9 shows typical examples of the distribution of reference points along
some G2 PH quintic corner curves, generated in accordance with the feedrate
function (30) by the above real–time interpolator procedure.

The traversal time T for the rounded corner, relative to T0, is determined
by replacing ξk with 1 and k∆t with T in (32). This gives

T

T0

=
ρ θ + S

4L
. (37)

Note that, if ρ is specified by (31), it has the same sign as the curvature (19)
— namely, the sign of the turning angle θ — and hence ρ θ > 0 in (37). The
ratio (37) is plotted in Figure 10 for the corner angles θ = 1

4
π, 1

2
π, 3

4
π.

Note that T/T0 → S/4L (< 1
2
, since S ≤ 2L from (18)) as ρ→ 0 — i.e.,

f → 1. This identifies the case where the nominal feedrate V0 is maintained
along the rounded corner. It is evident in Figure 10 that T/T0 increases as
f decreases, and at some point exceeds unity — i.e., there is no reduction in
cornering time because the curvature–dependent feedrate suppression is too
aggressive. From (18), the condition T < T0 can be expressed as

ρ θ < 2L

[
1 +

sin2 1
2
θ

6 cos 1
2
θ + 1

]
.
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Figure 10: Left: the ratio (37) of corner traversal times plotted as a function
of the feedrate reduction ratio f = Vmin/V0 for the three corner angles θ = 1

4
π

(upper), 1
2
π (middle), 3

4
π (lower). Right: the minimum f value that ensures

reduction in the cornering time ratio (37), as a function of corner angle θ.

Alternatively, using (20) and (31), the fraction f = Vmin/V0 must satisfy

f >
15(cos 1

2
θ + 1)2θ

15(cos 1
2
θ + 1)2θ + 64(sin2 1

2
θ + 6 cos 1

2
θ + 1) tan 1

2
θ
. (38)

The variation of this lower bound on f with θ is illustrated in Figure 10.
For the feedrate (30), the acceleration along the G2 PH quintic corner

curve can be determined from (5) — where, from (19) and (30), we have

V ′(ξ) = − V0ρ κ
′(ξ)

(ρ κ(ξ) + 1)2
, κ′(ξ) = 4λ2L sin 1

2
θ

[
1− 2ξ

σ2(ξ)
− 2(1− ξ)ξ σ′(ξ)

σ3(ξ)

]
.

Since κ(0) = κ(1) = 0, the normal acceleration is continuous at the junctures
of the corner curve with the linear segments. However, since κ′(0) and κ′(1)
are non–zero, the tangential acceleration A = dV/dt is discontinuous. From
the previous results, the magnitude ∆A of the feed acceleration discontinuity
at the end points, can be expressed as

∆A

A0

=
1− f
f

(6 cos 1
2
θ + 1)(cos 1

2
θ + 1)2

240 cos 1
2
θ

, (39)

where A0 = V 2
0 /2L is the rate of uniform acceleration/deceleration between

speeds V0 and 0 over a linear distance L. The expression (39) is plotted as a
function of f in Figure 11, for corner angles θ = 1

4
π, 1

2
π, 3

4
π. The acceleration
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discontinuity is singular as f → 0, but this limit should be avoided to ensure
a reduction in cornering time (see Figure 10). In practice, equation (39) can
be used to find the minimum f that keeps ∆A/A0 below a desired threshold.
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0.0
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0.8

1.0

f

∆A/A0

Figure 11: The measure (39) of tangential acceleration discontinuity for the
feedrate (30) with corner angles θ = 1

4
π (upper), 1

2
π (middle), and 3

4
π (lower).

Continuity of tangential acceleration can be achieved by (i) using a higher–
orderG3 corner curve, with κ′(0) = κ′(1) = 0, together with the feedrate (30);
or (ii) using the quintic G2 corner curve, and modifying the feedrate function
so that V ′(0) = V ′(1) = 0, as described in the following section.

6 Hybrid feedrate function

The feedrate (21) is acceleration continuous, but has no intuitive geometrical
interpretation. Although the feedrate (30) is specified in a purely geometrical
manner, it does not achieve precise tangential acceleration continuity at the
corner end points. We now consider a “hybrid” of the parameter–dependent
and curvature–dependent feedrates, specified by multiplying the curvature
κ(ξ) in (30) with the parameter–dependent modulating factor 4(1−ξ)ξ, which
serves to suppress the tangential acceleration discontinuities — namely

V (ξ) =
V0

4ρ (1− ξ)ξ κ(ξ) + 1
, (40)

where we again have Vmin = V (1
2
) = f V0 when ρ is defined by (31).
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Since κ(0) = κ(1) = 0, the normal acceleration term κ(ξ)V 2(ξ) in (5)
vanishes at the corner curve end points. Moreover, from the derivative

V ′(ξ) = − 4 ρ V0 [ (1− 2ξ)κ(ξ) + (1− ξ)ξ κ′(ξ) ]

[ 4 ρ (1− ξ)ξ κ(ξ) + 1 ]2

of (40), it is evident that V ′(0) = V ′(1) = 0, so the tangential acceleration
term V (ξ)V ′(ξ)/σ(ξ) also vanishes at the corner curve end points. Figure 12
shows the variation of the feedrate (40) with fractional arc length along the
G2 PH quintic corner, for several f values (the corner angle θ = 1

2
π is shown

here: the cases θ = 1
4
π and 3

4
π are qualitatively similar).
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Figure 12: Fractional feedrate V/V0 versus arc length s/S for the hybrid
feedrate function (40) with the values f = Vmin/V0 = 0.1, . . . , 0.9.

For the hybrid feedrate (40), the differential equation (24) becomes

dξ

dt
=

V0 σ(ξ)

16ρλ2L sin 1
2
θ (1− ξ)2ξ2 + σ2(ξ)

,

and on separating variables and integrating, this yields∫ ξk

0

16ρλ2L sin 1
2
θ

(1− ξ)2ξ2

σ(ξ)
+ σ(ξ) dξ = V0k∆t . (41)

The indefinite integral of σ(ξ) is again just s(ξ), and the factorization of σ(ξ)
specified by (33)–(35) yields the partial fraction decomposition

(1− ξ)2ξ2

σ(ξ)
=

1

8λ2αβ2L

[
1− α
σ−(ξ)

− 1 + α

σ+(ξ)
+ 2α

]
.
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For brevity, we now set

ζ =
1 + α

β
and η =

1− α
β

, (42)

and note that ζη = 1, since α2 + β2 = 1. The preceding expression then has
the indefinite integral∫

(1− ξ)2ξ2

σ(ξ)
dξ =

η tan−1 ζ(2ξ − 1)− ζ tan−1 η(2ξ − 1) + 2α ξ

8λ2αβ2L
.

Figure 13: The distribution of reference points along G2 PH quintic corner
curves with angles θ = 1

4
π, 1

2
π, 3

4
π, using the hybrid feedrate (40) with the

values L = 1 mm, V0 = 50 mm/sec, ∆t = 0.001 sec, and f = 1
3
.

Hence, evaluating the definite integral (41) and noting that 2αβ = sin 1
2
θ,

the parameter value ξk at time t = k∆t is the real root of the function

F (ξ) =
4ρ

β

[
η tan−1 ζ(2ξ − 1)− ζ tan−1 η(2ξ − 1) + 2αξ + γ

]
+ s(ξ)−V0k∆t

where
γ = η tan−1 ζ − ζ tan−1 η .

The function F (ξ) is monotone–increasing with ξ, from F (0) = −V0k∆t to
F (1) = 8ρ(α + γ)/β + S − V0k∆t. Its unique real root can be computed to
machine precision by just a few of the Newton–Raphson iterations (27), with
the starting value (28). The derivative of F (ξ), required in (27), is simply

F ′(ξ) = 16ρλ2 sin 1
2
θL

(1− ξ)2ξ2

σ(ξ)
+ σ(ξ) .
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Figure 13 shows typical examples of the distribution of reference points along
some G2 PH quintic corner curves, generated in accordance with the feedrate
function (40) by the above real–time interpolator algorithm.

For the hybrid feedrate function (40), the corner traversal time ratio is

T

T0

=
8ρ(α + γ) + βS

4βL
. (43)

It can be verified that α+γ has the same sign as ρ, so the product ρ(α+γ) is
always positive. The ratio (43) is plotted in Figure 14 for corner angles θ =
1
4
π, 1

2
π, 3

4
π — the behavior is qualitatively similar to that in Figure 10 for the

feedrate function (30), although (40) admits somewhat smaller f values for a
given reduction in cornering time. As with (30), we have T/T0 → S/4L < 1

2

as f → 1 for (40). Because of the complicated dependence of the left–hand
side of (43) on θ, it is more difficult in this case to formulate a bound on f ,
analogous to (38), that ensures a reduction in cornering time.
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Figure 14: The ratio (43) of corner traversal times as a function of the ratio
f = Vmin/V0 for the corner angles θ = 1

4
π (upper), 1

2
π (middle), 3

4
π (lower).

7 Acceleration analysis

From (4) and (5), the acceleration can be expressed in complex form as

a(ξ) =
f(ξ)

σ3(ξ)
, f(ξ) = V (ξ) [σ(ξ)V ′(ξ) + 2 ih(ξ)V (ξ) ] w2(ξ) exp(iφ) ,

22



where h(ξ) is the quadratic polynomial

h(ξ) = Im(w(ξ)w′(ξ)) = u(ξ)v′(ξ)− u′(ξ)v(ξ) ,

and, as indicated in Section 3, the factor exp(iφ) accounts for a general corner
curve orientation. The real and imaginary parts of a(ξ) specify the x and y
axis accelerations ax(ξ) and ay(ξ). For brevity, we shall consider here only
the parameter–dependent feedrate function (21) — similar principles apply
to the feedrate functions (30) and (40), but the analysis is more involved.

In the case of the feedrate (21), w(ξ) is quadratic, σ(ξ) is quartic, h(ξ) is
quadratic, and V (ξ) is quintic, so the complex polynomial f(ξ) is degree 17.
Differentiating a(ξ) gives

a′(ξ) =
g(ξ)

σ4(ξ)
, g(ξ) := σ(ξ)f ′(ξ)− 3σ′(ξ)f(ξ) ,

where g(ξ) is a complex polynomial of degree 20, that can be constructed in
a numerically–stable manner using the addition and multiplication rules for
polynomials in Bernstein form [8, 17]. The x and y axis acceleration extrema
occur at the real roots on ξ ∈ [ 0, 1 ] of the real polynomials

gx(ξ) = Re(g(ξ)) and gy(ξ) = Im(g(ξ)) .

These roots can be computed to machine precision using the subdivision and
variation–diminishing properties of the Bernstein form.

8 Closure

A family of planar PH quintic curves, suitable for rounding the sharp corners
of piecewise–linear toolpaths to a specified tolerance and with G2 continuity,
has been introduced. The PH corner curves are accompanied by a repertoire
of continuously–variable feedrates that can be exploited to suppress cornering
accelerations within safe bounds. Each feedrate function is characterized by
two intuitive parameters: the entry/exit feedrate V0, and feedrate suppression
factor f = Vmin/V0 expressing the minimum (i.e., mid–point) feedrate Vmin

as a fraction of V0. Moreover, each feedrate function admits a closed–form
reduction of the interpolation integral, facilitating the development of highly
accurate and efficient real–time interpolator algorithms.
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The companion paper [11] presents a detailed experimental performance
analysis for this corner–rounding strategy, including the acceleration–limited
selection of feedrate parameters for the rounded corner curves and the linear
segments between them, through implementation on a 3–axis CNC machine
with an open–architecture controller. This implementation demonstrates the
significant practical benefits of the proposed cornering scheme over the simple
“full stop” method for exact execution of sharp corners.
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[15] Z. Š́ır and B. Jüttler (2005), Constructing acceleration continuous tool
paths using Pythagorean hodograph curves, Mech. Mach. Theory 40,
1258–1272.
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