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Abstract 

Strain-resolved metagenomic analysis of the premature infant microbiome and other natural 
microbial communities 

By 

Matthew Raymond Olm 

Doctor of Philosophy in Microbiology 

University of California, Berkeley 

Professor Jillian F. Banfield, Chair 

 

Microorganisms are critical to immune system development and physiology, yet the factors that 
drive initial colonization and human microbiome assembly are largely unknown. Early molecular 
approaches to study the microbiology of human body sites relied upon the direct amplification and 
sequencing of 16S rRNA genes, but this only produces a coarse catalog of the organisms present. 
In contrast, genome-resolved metagenomics involves recovery of genomes directly from whole 
community DNA, enabling prediction of biosynthetic capacities and providing the ability to 
differentiate the capabilities of closely related strains.  However, genome-resolved metagenomics 
is computationally challenging and validated methods for many types of analyses are lacking. In 
this thesis, custom genome-resolved metagenomic methods were developed to determine the 
structure of microbial communities, monitor the activities of bacteria in situ, and track their 
evolution.  The research focused primarily on the colonization and development of microbial 
communities that live in, and on, premature infants. Discovered patterns of fine-scale bacterial 
diversity, evolution, and functional potential shed light on early microbiome assembly, and 
highlight factors that contribute to necrotizing enterocolitis, one of the most common diseases of 
premature infants. Transmission pathways and reservoirs of bacteria and microbial eukaryotes that 
can cause nosocomial infections were identified.  

Due to the sensitivity of metagenomic methods, foreign DNA sequences can be detected in 
metagenomic datasets. A case-study involving the identification of the source of introduced 
sequences in metagenomes was conducted and the specific physical source of the contaminant 
identified. Though very detailed genome sequence comparisons it was possible to measure the in 
situ evolution rate of the reagent contaminant over a three year period, enabling the near correct 
estimation of the introduction time of the contaminant into the reagent production facility. The 
research established the methods for genome-resolved metagenomics-based microbial forensics 
and strain tracking and showed that application is possible, even in extremely complex 
environments like soil. 

High-resolution analyses are needed to determine if microbes in different environments are the 
result of strain transfer events. The necessary genome-wide comparisons cannot be performed with 
16S rRNA sequencing, the most common method for study of the human microbiome, leaving 
basic questions related to the strain-level diversity and body-site specificity unanswered. To 
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address these questions, strain-tracking analyses were applied to metagenomes derived from 
samples of the mouth, skin, and gut microbiomes of premature infants. The results highlight the 
extreme lack of body-site diversity during very early colonization of premature infants in the 
neonatal intensive care unit. Surprisingly, identical bacterial genomes for organisms such as 
Escherichia coli, Klebsiella pneumoniae and Citrobacter koseri were found in the mouth, skin, 
and gut microbiomes. Differential genome coverage was used to measure their bacterial population 
replication rates in situ.  In all cases, the replication rates for same bacterial populations in different 
body sites were faster in mouth and skin compared to the gut, despite the fact that these bacteria 
are traditionally considered gut colonists. Finally, strain-level analysis of polymorphic sites across 
the C. koseri genome were used to define 10 subpopulations, implying initial colonization of 
premature infants by multiple individual cells with distinct genotypes.  

Methods for rapid, accurate and reproducible “de-replication”, the process of grouping recovered 
genomes together based on similarity and choosing the best representative genome from each 
group, are needed for genome-resolved metagenomic analyses. This task requires a number of 
steps, including mass pairwise genome comparison, evaluation of completeness and 
contamination, and generation of explanatory figures to visualize and validate the dereplication 
process. An open-source program, “dRep”, was developed and validated. The method achieves 
very similar results as naive pairwise clustering algorithms, but with an order of magnitude speed 
increase due to use of a biphasic algorithm. Importantly, individual samples in sample sets can 
now be assembled independently and the genomes effectively de-replicated, reducing the 
incidence of chimeric sequences and improving genome recovery over results for co-assemblies. 

Delineation of bacteria as belonging to the same versus different species is a longstanding problem 
in microbiology. Fundamental questions related to the existence of species and how species should 
be differentiated remain, and the answers have both practical and evolutionary implications. A 
large public dataset comprised of >5,000 genomes acquired directly from metagenomes was 
analyzed. In conjunction, genome-based metrics that could be used to define bacterial species 
boundaries were evaluated. A distinct gap in the distribution of average nucleotide identity (ANI) 
values at 95% ANI exists, supporting the existence of discrete species. ANI was compared with 
metrics of selection for non-synonymous versus synonymous substitutions and for homologous 
recombination to identify processes that could lead to species clusters. The 95% ANI value 
corresponds approximately with the genetic distance beyond which homologous recombination 
drops to near zero. The findings implicate sequence divergence-based breakdown in homologous 
recombination as the evolutionary force responsible for bacterial speciation. 50 genes were 
evaluated to provide a practical means to define species content when genomes are not recovered 
from metagenomes for most community members. Although 16S rRNA gene sequences cannot be 
used for this purpose, the nucleotide sequences of several ribosomal proteins were found to be 
reasonable proxies for the relevant genome ANI value.  

Microbial eukaryotes are particularly understudied in the human microbiome, yet they are 
considered to be emerging health threats. Genomes from microbial eukaryotes can be 
reconstructed from human microbiome metagenomic datasets. The results are greatly improved 
through use of a recently developed machine learning algorithm, EukRep, which can identify 
eukaryotic DNA based on the sequences alone. EukRep was used to scan thousands of 
metagenomes from the premature infant gut and hospital room environments and fourteen novel 
eukaryotic genomes were reconstructed. Two of these, for a Diptera (fly) and a Rhabtida (worm), 
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were novel at the class level. Importantly from the perspective of tracking nosocomial agents, 
genomes from the same eukaryotic species were recovered from both infants and hospital room 
environments. Population heterogeneity and zygosity of genomes were lower in genomes 
recovered from the hospital room as compared to those recovered from premature infant samples, 
which could reflect years of inbreeding or strong selection imposed by room conditions. Together 
this work indicates that the hospital room, especially the sink, may be a reservoir of infant-
colonizing fungal strains. 

Necrotizing enterocolitis (NEC) involves extreme bowel inflammation and necrosis and has a 
mortality rate of around 30%. Various lines of evidence point to the human microbiome as a central 
factor in disease development, yet no consistent microbial signal for NEC onset has been 
identified. We performed large-scale genome-resolved metagenomic analyses of thousands of 
prospectively collected premature infant fecal samples and used a machine learning classifier to 
identify signals that predict imminent development of NEC. Significant associations were found 
related to the abundance of Klebsiella, bacteria encoding fimbriae, and specific types of secondary 
metabolite clusters, and the in situ growth rate of bacteria overall. NEC development could be 
promoted by metabolic imbalances related to the rampant growth of particular bacterial strains 
and/or the stimulation of human TLR4 receptors by Klebsiella and fimbriae. Together, the results 
identify potential biomarkers for early detection of NEC and possible targets for microbiome-
based therapeutics and probiotics
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1 The Source and Evolutionary History of a Microbial 
Contaminant Identified Through Soil Metagenomic 

Analysis  

Olm, Matthew R; Butterfield, Cristina N; Copeland, Alex; Boles, T Christian; Thomas, Brian C; 
Banfield, Jillian F 

Published in mBio, February 2017 

 

In this study, strain-resolved metagenomics was used to solve a mystery. A 6.4-Mbp complete 
closed genome was recovered from a soil metagenome and found to be astonishingly similar to 
that of Delftia acidovorans SPH-1, which was isolated in Germany a decade ago. It was suspected 
that this organism was not native to the soil sample because it lacked the diversity that is 
characteristic of other soil organisms; this suspicion was confirmed when PCR testing failed to 
detect the bacterium in the original soil samples. D. acidovorans was also identified in 16 
previously published metagenomes from multiple environments, but detailed-scale single 
nucleotide polymorphism analysis grouped these into five distinct clades. All of the strains 
indicated as contaminants fell into one clade. Fragment length anomalies were identified in paired 
reads mapping to the contaminant clade genotypes only. This finding was used to establish that 
the DNA was present in specific size selection reagents used during sequencing. Ultimately, the 
source of the contaminant was identified as bacterial biofilms growing in tubing. On the basis of 
direct measurement of the rate of fixation of mutations across the period of time in which 
contamination was occurring, we estimated the time of separation of the contaminant strain from 
the genomically sequenced ancestral population within a factor of 2. This research serves as a case 
study of high-resolution microbial forensics and strain tracking accomplished through 
metagenomics-based comparative genomics. The specific case reported here is unusual in that the 
study was conducted in the background of a soil metagenome and the conclusions were confirmed 
by independent methods. 

1.1 Introduction 
Microbial strains of the same species can have very different traits, including virulence and drug 
resistance (Greenblum et al., 2015; Luo et al., 2015; Schloissnig et al., 2012), thus tracking of 
specific strain populations is important in a number of different contexts. Microbial source tracking 
(MST) via quantitative PCR is routinely used to determine the source of fecal bacteria in 
environmental waters (Hagedorn et al., 2011), and in some cases can discriminate between fecal 
profiles of different types of animals (Harwood et al., 2014). Tracing pathogenic strains within 
hospitals via sequencing of isolated strains can uncover vectors of nosocomial infections (Snitkin 
et al., 2012) and larger scale studies have improved understanding of the intercontinental spread 
of pathogens (Harris et al., 2010). The forensic investigation launched following the 2001 B. 
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anthracis bioterrorism attack has been called “one of the largest and most complex in the history 
of law enforcement” (“Amerithrax or Anthrax Investigation,” n.d.). Significant effort since has 
been invested to develop new methods, including CRISPR-Cas analysis (McGhee and Sundin, 
2012), to deploy in the case of future bioterrorism events (Budowle et al., 2014).  

A key component of microbial forensics is strain typing. Strain resolution is essential to trace the 
spread of a population, and more sensitive strain-typing methods can provide higher resolution 
transmission maps. The most common methods identify unique (but small) markers of the 
microbial population’s genomic DNA sequence and take advantage of the fact that random 
mutations develop in all growing populations. Examples of methods to identify these mutations 
include restriction endonuclease analysis (REA), pulse-field gel electrophoresis (PFGE), 
ribotyping, and multi-locus sequencing typing (MLST) (Chan et al., 2001; Olive and Bean, 1999). 
Decreasing sequencing costs have also allowed an increasing number of studies to take advantage 
of genome sequencing, the “gold standard” of microbial-typing (Snitkin et al., 2012). This 
approach can discriminate between microbial populations that differ by even a single nucleotide, 
but typically this requires culturing of the organism before DNA extraction, and this is not feasible 
in all cases. Metagenomics, on the other hand, has the potential to trace and characterize virulent 
strains without cultivation, and could be used to detect strains of interest in environmental samples 
(Gilchrist et al., 2015). 

The National Academy of Sciences stated that metagenomics “will bring about a transformation 
in biology, medicine, ecology, and biotechnology that may be as profound as that initiated by the 
invention of the microscope” (Handelsman et al., 2007). In metagenomics, shotgun sequencing of 
DNA extracted directly from environmental samples allows characterization of microbes without 
the need for cultivation. Assembly and binning of short metagenomic reads can yield hundreds of 
genomes from metagenomic samples (Anantharaman et al., 2016; Brown et al., 2015; Dombrowski 
et al., 2016; Lee et al., 2016). However, sequencing projects can be contaminated with exogenous 
DNA (Salter et al., 2014). Significant efforts have been made to determine where these 
contaminants originate (Knights et al., 2011), but precise sources of contaminant sequences are 
seldom identified. The mystery of determining the source of contaminant DNA in the background 
of a complex metagenomic sample represents a useful test case for genomics-based microbial 
forensics.  

1.2 Materials and methods 

1.2.1 Sample collection  
Soil collection and DNA extraction was performed as reported previously (Butterfield et al., In 
Press) and briefly described here. Soil samples were collected from the Angelo Coast Range 
Reserve (with permission under APP # 27790) meadow (39°44'21.4"N 123°37'51.0"W) and from 
a nearby ridge within the Eel Critical Zone Observatory. Approximately 1 kg of soil was removed 
for each depth using sterilized stainless steel hand trowels. Samples were immediately flash frozen 
in a mixture of dry ice and ethanol and placed on dry ice for transport to the lab. For each depth, 
DNA was extracted using MoBio Laboratories PowerMax Soil DNA Isolation kits from 10 g of 
soil. We optimized the protocol for our samples, to maximize DNA yield while minimizing 
shearing: each sample was only vortexed for 1 minute, followed by a 30-minute heat step at 65 °C, 
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inverting every 10 minutes. We performed two elution steps of 5 mL each, and precipitated the 
DNA using sodium acetate and glycogen, resuspending in 100 uL of 10 mM Tris buffer.  

1.2.2 Metagenomic sequencing, assembly, and binning 
Metagenomic DNA was sequenced at the Joint Genome Institute (JGI). DNA was sheared to 800 
bp using the Covaris LE220 (Covaris) and size selected using the Pippin Prep (Sage Science). The 
fragments were treated with end-repair, A-tailing, and ligation of Illumina compatible adapters 
(IDT, Inc) using the KAPA-Illumina library creation kit (KAPA biosystems). 250 bp paired end 
reads were generated on an Illumina Hiseq2500, with sequencing depth enumerated in Table S1.1. 
Reads were trimmed with Sickle (Joshi and Fass, 2011), and assembled using IDBA-UD (Peng et 
al., 2012). Resulting scaffolds greater than 1 kb in length were annotated using Prodigal (Hyatt et 
al., 2010) to predict open reading frames using default metagenomic settings. Annotated protein 
sequences were searched against KEGG (Kanehisa et al., 2014), UniRef100 (Suzek et al., 2007), 
and Uniprot databases using USEARCH (Edgar, 2010). All matches with bit scores greater than 
60 were saved, and reciprocal best hits with a bit score greater than 300 were also cataloged. We 
identified rRNA sequences using Infernal (Nawrocki and Eddy, 2013) by searching against 
databases from the SSU-Align package (Nawrocki, 2009), and tRNAs using tRNAscan_SE (Lowe 
and Eddy, 1997). Genome binning was carried out using the online interface within ggKbase as 
described previously (Raveh-Sadka et al., 2015) (http://ggkbase.berkeley.edu/). This method takes 
into account phylogenetic profile, GC content, and coverage information. The completeness of 
bacterial bins was evaluated based on the presence or absence of single copy genes. Shannon 
diversity calculations were performed as described previously (Spellerberg and Fedor, 2003) using 
assembled ribosomal protein S3 (rps3) genes. 

1.2.3 Genome Curation 
Once Delftia acidovorans scaffolds were binned they were manually curated in order to close gaps 
between scaffolds. This was done within the Geneious software package version 8.1.5 (Kearse et 
al., 2012). Project reads were first mapped back to the contigs using Bowtie 2 (Langmead and 
Salzberg, 2012), and Geneious was used to extend the contigs. Contigs were next ordered and 
oriented by mapping them to the D. acidovorans SPH-1 reference genome using ABACAS (Assefa 
et al., 2009). Areas of overlap between adjacent contigs were used to curate two contigs into one. 
In order to circularize the genome, reads were mapped directly to the reference genome. The 
reference genome was edited to be in agreement with the reads, and regions between contigs were 
filled in with corresponding pieces of the edited reference genome. Reads were finally mapped 
back to the circularized genome, and every base was manually inspected to ensure sequence read-
support. In order to catalogue the differences between genomes, Mauve (Rissman et al., 2009) was 
used to align the genomes, and the alignment was manually inspected for mutations.  

1.2.4 Phylogenetic tree 
An alignment was generated using all rpS3 genes in the Angelo metagenomes, as well as 
previously published rpS3 sequences identified as similar to Angelo rpS3 sequences by BLAST. 
All rpS3 amino acid sequences longer than 180 amino acids were aligned using MUSCLE (Edgar, 
2004). The full alignments were stripped of columns containing 95% or more gaps. A maximum-
likelihood phylogeny was inferred using RAxML (Stamatakis, 2006) run using the 
PROTGAMMLG model of evolution. The RAxML interface included calculation of 100 bootstrap 
iterations (MRE-based Bootstrapping criterion). 
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1.2.5 PCR testing 
Primers amplifying randomly selected portions of the D. acidovorans were synthesized from IDT 
to generate a 500 bp insert [F: 5’GGGTTGCACCATTGGTATT), R:  
(5’GTCAGCGCCTTCTTTTCAA]. Primers which amplify a 150 bp product of the 16S gene were 
also synthesized (F: 5’GTGSTGCAYGGYTGTCGTCA, R: 5’ACGTCRTCCMCACCTTCCTC) 
(Horz et al., 2005). Pure D. acidovorans DNA was purchased from the DSMZ culture collection 
(DSMZ No. 14801). Reactions were performed using the 5 PRIME MasterMix 50 uL reactions, 
with 1uL of each primer at 10 mM, run in the thermocycler for 35 cycles with a Tm of 50 and an 
extension time of 1:30. Both sets of primers and a no primer control were run on 1) 0.05 ng of D. 
acidovorans DNA, 2) 4.95 ng of original extracted soil DNA (sample 13_1_20cm_4), and 3) both 
of the above combined into a single reaction. 

1.2.6 Paired read insert length profiling 
Reads were mapped from each analyzed project to the D. acidovorans SPH-1 genome using 
Bowtie 2 (Langmead and Salzberg, 2012). For comparative purposes, reads from project 
13_1_20cm_4 were also mapped to the second-most abundant bacterial genome, 
Gemmatimonadetes. The resulting .sam file was converted to a sorted .bam file using samtools (Li 
et al., 2009), and the insert size was profiled using Picard (“Picard Tools - By Broad Institute,” 
n.d.) (command: java –jar picard_tools/CollectInsertSizeMetrics.jar MINIMUM_PCT=0.4). 

1.2.7 Comparison of D. acidovorans strains 
To determine if soil and sediment metagenomes contained the D. acidovorans strain ANG1 
genome, PileupProfile.py (source code available at https://github.com/banfieldlab/mattolm-
public-scripts) was used to calculate the average nucleotide identity of reads mapping to the ANG1 
genome. ANI was at least 99.9% in all cases where the median coverage was ≥ 2 (Table S1.1). To 
compare strains present in 46 public metagenomic projects sequenced at JGI, which had been 
flagged as possibly containing D. acidovorans contamination, reads were mapped to the D. 
acidovorans SPH-1 genome using Bowtie 2 (Langmead and Salzberg, 2012). Projects with at least 
20% of bases having 5x coverage were said to have significant D. acidovorans present and were 
analyzed in more detail. To compare the strains in each metagenome, the custom script 
ReadComparer.py was used (source code available at https://github.com/banfieldlab/mattolm-
public-scripts). Briefly, the program first aligns reads from all project to the same genome, and 
compares the mutational patterns between projects to determine relatedness of strains. VarScan 
(Koboldt et al., 2009) was used to create the input files (command: java -jar VarScan.v2.3.8.jar 
pileup2cns --min-coverage 3), and the script was run using the command: ReadComparer.py --
min_breadth 0.2 --matrix --dend --smart_ignore. The similarity matrix was then plotted into a 
dendrogram using R, and clusters were determined and colored based on manual inspection of the 
resulting dendrogram. 

1.2.8 Mutation identification and profiling 
A number of methods were used to identify differences between D. acidovorans strains SPH-1 and 
ANG1. Mutations were identified using Breseq (Deatherage and Barrick, 2014) mapping reads 
from project 13_1_20cm_4 to the D. acidovorans SPH-1 genome. To identify larger indels, D. 
acidovorans genomes were aligned using Mauve (Rissman et al., 2009) and the alignment was 
manually inspected for differences. Finally, VarScan (Koboldt et al., 2009) was used on reads 
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mapping from 13_1_20cm_4 to the D. acidovorans ANG1 genome. All called mutations were 
manually verified by inspection of the region using the software package Geneious (Kearse et al., 
2012). 

To track the frequency of mutations among all projects of the contaminant clade, polymorpher2.py 
(available at https://github.com/banfieldlab/mattolm-public-scripts) was used to determine the 
frequency of each base at all positions identified. Variants that were closer than 315 bp apart (a 
1% chance of occurring assuming a random distribution of variants) were excluded from mutation 
rate calculations based on the assumption that they were likely acquired in a recombination event. 
Positions were required to have some coverage in all projects, which excluded 4.4% of variants 
from analysis. Polymorphisms with a frequency of at least 50% at the first time-point and became 
near-fixed at the last time-point (≤ 0.1%) were said to be evolving and used in rate calculations 
(including a correction to account for variants without sufficient coverage for analysis). Full 
calculation details are available in the Supplemental Jupyter Notebook. 

ORFs predicted by Prodigal were used to determine the total number of synonymous and non-
synonymous sites in the genome, as well as to classify each variant as synonymous, non-
synonymous, or intergenic. Genome wide pN/pS ratios were calculated using the formula: [(# non-
synonymous substitutions / # non-synonymous sites) / (# synonymous substitutions / # 
synonymous sites)]. 

1.3 Results 

1.3.1 Recovery of a complete Delftia acidovorans genome from soil 
Soil samples were collected from two locations in the Angelo Coast Range Reserve in northern 
California. A meadow within the reserve was sampled at two soil depths (20 cm and 40 cm) over 
a six-week period, and a ridge nearby was sampled at 6 depths (15 cm – 115 cm, including both 
soil and underlying weathered shale) during one sampling event. The sites are located within the 
Eel Critical Zone Observatory (CZO). Metagenomic DNA was extracted from all samples, and 
between 15.7 and 44.0 Gbp of Illumina shotgun paired-end sequencing was generated for each 
sample. In total, 0.4 Tbp of sequence data was generated (Table S1.1). Shannon diversity was 
calculated for all samples using ribosomal protein S3 (rpS3) genes. The mean alpha diversity of 
soil collected in this study was 4.65 (SD: 0.28), similar to that of many previously studied soils 
(Fierer et al., 2013; Howe et al., 2014; Williamson et al., 2005) (Table S1.1).   

An initial binning analysis revealed genome fragments that were profiled as deriving from D. 
acidovorans populations in six samples (other genomes are reported in Butterfield et al. 
(Butterfield et al., In Press)).  We reconstructed a 6.41 Mbp high-quality draft genome of D. 
acidovorans, consisting of 53 scaffolds ranging in length from 6 Kbp to 500 Kbp.  The genome 
was further curated by read mapping to fill scaffolding gaps and extend and join the contigs. These 
resulting 16 contigs could be ordered and oriented to the previously sequenced D. acidovorans 
SPH-1 genome (Genbank Accession: NC_010002.1). The contigs spanned 97.95% of the SPH-1 
genome, with an average nucleotide identity (ANI) of 99.99% (Goris et al., 2007). Due to the 
remarkably high nucleotide similarity between our recovered genome and strain SPH-1, we further 
curated the 16 contigs into one circular genome by using the SPH-1 genome to identify reads in 
our metagenomic dataset that filled the gaps. When visualized using the software package 
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Geneious (Kearse et al., 2012) single nucleotide polymorphisms (SNPs) and insertions and 
deletions relative to the isolate genome sequence were easily identified (Figure S1.1). The circular 
closed genome represents the bacterial strain D. acidovorans ANG1.  

1.3.2 Identification of D. acidovorans as a contaminant 
Based on metagenomic read mapping, D. acidovorans ANG1 was detected in all fourteen samples 
from two sites. No pattern between sampling location and abundance of D. acidovorans could be 
detected (Figure 1.1A). Based on mapping of reads to the ANG1 genome, it was determined that 
the D. acidovorans reads in all samples derived from a single genotype (Table S1.1). This result 
contrasts with our general findings from soil metagenomics, which typically indicate the presence 
of multiple closely related strains. For example, a phylogenetic tree constructed using rpS3 gene 
sequences shows dandelion-like strain diversity patterns in Betaproteobacteria from the same 
samples (Figure 1.1B). The lack of strain diversity in D. acidovorans, in combination with the 
high similarity of the D. acidovorans genome to that of the SPH-1 strain isolated years earlier, 
raised the possibility that D. acidovorans ANG1 was not a native member of the soil community. 
A PCR test using primers designed to target random regions of D. acidovorans genome failed to 
detect DNA from this bacterium in the original DNA extracted from the samples (Figure S1.2). 
This indicated that the DNA was probably introduced into our samples during sequencing.  
Moreover, the detection of the same genotype in samples sequenced at different times suggested 
that D. acidovorans was a persistent contaminant at this facility. 

1.3.3 Source tracking of contaminant D. acidovorans 
To further investigate the possibility that DNA from D. acidovorans ANG1 was introduced in the 
sequencing facility, we screened 43 publicly available metagenomes sequenced at this facility 
between June 2012 and January 2015. Seventeen of these projects had ≥20% of the D. acidovorans 
genome present, with coverage > 5x (Table S1.2). Multiple strains were present in these projects, 
based on analysis of the patterns of single nucleotide polymorphisms (SNPs) relative to the D. 
acidovorans ANG1 genome (Figure 1.2A) (Table S1.3). Six projects, including three plant 
genomes and our soil samples, contained sequences that clustered with the D. acidovorans ANG1 
genome. We refer to this as the contaminant clade, and hypothesized that some reagent in the 
sequencing pipeline may have been the source of the D. acidovorans DNA in these six projects. 
Records provided by the sequencing facility revealed that each project containing the D. 
acidovorans ANG1 contaminant clade used a Pippin Prep size selection cassette. All other 
analyzed projects did not use these cassettes (Figure 1.2A). 

To test the hypothesis that the Pippin Prep size selection cassettes were the source of D. 
acidovorans ANG1 contamination, we analyzed the insert sizes of reads from all projects mapped 
to the ANG1 genome. If the contaminant DNA was introduced from the library preparation 
cassette, it should have a more random fragment size profile, and thus insert size profile, than the 
tight size profile generated during library preparation. A histogram of reads mapping to the D. 
acidovorans ANG1 genome from a sample exhibiting substantial contamination is shown in 
Figure 1.2B, along with a histogram of reads mapping to the genome of a Gemmatimonadetes 
known to be native to the same sample.  The fragment size of paired reads mapped to the 
Gemmatimonadetes genome was ~800 bp. In contrast, read mapping to D. acidovorans indicates 
that many of the sequencing reads were generated from fragments of around 250 bp (in these cases, 
the 250 bp D. acidovorans reads overlap completely). However, the D. acidovorans peak is 
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strongly skewed, and some of the fragments were > 1000 bp in length. These observations indicate 
that the contaminant DNA was present in the gel and/or buffer used for size selection. All projects 
that contained D. acidovorans from the contaminant clade had similar insert size histograms, 
whereas projects with other D. acidovorans clades had normal insert sizes. 

Sage Science, the producer of the Pippin size selection cassettes, was contacted regarding our 
observations. They explained that bacterial biofilms were present in tubing that delivered buffer 
to the cassettes, and stated that the problem was corrected in 2013. All 6 projects that contain the 
contaminant clade used cassettes made prior to the correction, and libraries made with cassettes 
produced after Sage Science revised their manufacturing process to keep buffer tubing bacteria-
free did not reveal D. acidovorans ANG1 contamination (data not shown). The sequencing facility 
continued to detect D. acidovorans in samples sequenced after Sage Science corrected the 
problem, and so concluded that sequences were not from the Pippin cassettes. We show here that 
the newly detected sequences were from the other clades, either strains actually present in the 
samples or contaminants from a different source. For example, clade 1 is associated with 6 
metagenomes of the upper troposphere and clade 2 with three metagenomes of thiocyanate 
bioreactor communities (Table S1.2). In the case of clade 2, we conclude that the D. acidovorans 
was native to the sample because the population was growing rapidly, based on differential 
coverage at the origin compared to terminus of replication (peak-to-trough ratios, PTR) (full range 
1.5 – 1.9) (Brown et al., 2016; Korem et al., 2015) (Table S1.4). In contrast, bacteria of the 
contaminant clade (clade 5) had consistently low growth rates, based on PTRs between 1.4 and 
1.1 (Figure 1.3).  

1.3.4 In situ evolution of a bacterial contaminant 
Fifteen large (>100 bp) insertions/deletions distinguished the SPH-1 and ANG1 D. acidovorans 
genomes (Table S1.5). Four of these were insertions and 11 were deletions (Figure 1.4A).  
Specifically, two prophages were inserted into the ANG1 relative to the SPH-1 genome, but six 
prophages and five transposons were lost. Another difference involved three adjacent CRISPR 
repeat-spacer sequences. Finally, we identified a 195 bp insertion that added a pair of 
transmembrane helices that converted a predicted major facilitator superfamily protein into a 
predicted transporter that confers drug resistance. 

We documented SNP-based genomic variation over the 1.5-year period to determine whether an 
evolutionary rate could be measured.  A total of 203 single nucleotide polymorphisms (SNPs) 
distinguished the ANG1 genome and the D. acidovorans SPH-1 isolate genome (Table S1.5). 37 
SNPs were very closely spaced on the genome (Figure 1.4A) and are statistically unlikely to have 
formed by individual random mutation events (see methods). Specifically, 11 SNPs and 4 single 
bp indels occurred in a 64 bp intergenic region upstream of an integrase and 24 SNPs occurred in 
a 447 bp region within a YD repeat-containing protein possibly involved in carbohydrate binding. 
We infer that these regions may have been acquired via homologous recombination with a very 
distinct genotype (<95% nucleotide identity), thus we did not include them in analysis of in situ 
genomic change via SNP formation.   

We identified 15 SNPs that distinguished the genotypes present in the first compared to last 
metagenome (a separation time of ~1.5 years) and tracked their frequencies over time. Notably, 
the SNP frequencies cluster into three patterns, consistent with linkage and thus the existence of 
three sub-populations. Frequencies do not show a simple trend towards fixation, but all SNPs are 
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fixed by the last time point (Figure 1.4A) (Table S1.6).  Cohort three is defined by a single non-
synonymous mutation (Gly to Ser) that becomes fixed in a gene encoding a rod-shape determining 
protein. 

By correcting for missing information due to lack of coverage at SNP sites in the ANG1 genome, 
we estimate that ~16 SNPs were fixed over the 1.5-year period. Thus, the rate of fixation is 
estimated as 10.1 SNPs/year. The remaining 150 SNPs that distinguish the SPH-1 genome 
sequenced in 2006 (Kjelleberg, written communication) and ANG1 genomes likely arose between 
the time the SPH-1 genome was sequenced and the first metagenome time point (~6.5 years). 

 
Given information about the SNP accumulation rate, we estimated how long ago the strain was 
separated from the original source culture. Assuming that the measured value approximates the 
rate of SNP formation over longer time periods, we calculated that the ANG1 genotype present in 
the soil was separated from the SPH-1 population 16.5 years ago. 

We classified all 166 fixed SNPs that distinguish the SPH-1 and ANG1 genome as synonymous, 
non-synonymous, or intergenic (Figure 1.4B). Overall, the pN/pS ratio is 0.98.. 

1.4 Discussion 
We reconstructed a complete D. acidovorans genome from a soil metagenome. Recovery of a 
complete genome from soil is an extremely unusual achievement given that assembly becomes 
more difficult as sample complexity increases. We infer that this occurred in the current study 
because the genome was relatively abundant (~1% of total DNA) and the population was near-
clonal, avoiding assembly problems that arise due to strain-variation. The lack of micro-
heterogeneity is atypical of soil populations. This, and the uncanny similarity to an isolate genome 
raised the possibility that the genome derived from a contaminant, a hypothesis that was confirmed 
by PCR-based testing. The extremely high similarity between the contaminant D. acidovorans 
populations and D. acidovorans SPH-1 genome gives us high confidence that one derived from 
the other. In this specific case, we could determine the source of the contaminant DNA. 
Consequently, the research serves as a case study for microbial metagenomics-based forensics. 
Importantly, we showed that a contaminant clade could be identified through base pair-by-base 
pair analysis of variable sites in population genomic datasets collected over time. This made it 
possible to distinguish strains that were native to the samples in which they occurred from those 
that were the contaminant. This approach should be generally applicable in strain tracking 
investigations so long as high-quality genomes can be recovered. 

Metagenomics-derived genomes have only very rarely been used to identify and track strains. The 
closest example to our work was a study by Loman et al. (Loman et al., 2013) that targeted 
pathogenic E.coli in fecal samples and associated it with disease. However, their methods were 
specifically designed for the clinical setting and generated a draft genome that was too incomplete 
and fragmented for use in accurate strain tracking and in situ evolutionary analysis. Long stretches 
of contiguous sequence are needed to identify indels and regions associated with horizontal gene 
transfer, and higher genome completeness leads to more accurate estimates of evolutionary 
distance.  
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During analysis of the Anthrax attack, the crux of the analysis related to determining the similarity 
between the weaponized strain and the Ames laboratory strain (Hoffmaster et al., 2002; Rasko et 
al., 2011).  As we show here, high-resolution determination of strain relatedness is possible given 
comprehensive comparative genomic information for the bacterium of interest. Given a reasonable 
estimate of mutation rate and information about the genomic similarity between the weaponized 
strain and the Ames laboratory strain, it would be possible to estimate how long ago the cultures 
were separated.  

Most short-term evolution experiments used to determine mutation rates are carried out under 
laboratory conditions. These rates may differ significantly from rates that are applicable under 
conditions experienced by populations growing in natural systems. Because we had access to 
datasets archived over a 1.5-year period, we could estimate the rate of evolution of the contaminant 
population in the relevant environment (tubing) and use this calibration to approximate the length 
of time separating it from the previously sequenced isolate. Our calculated value (10.1 
substitutions / year) is very close to previously reported values of evolving pathogen populations 
(9.6 substitutions / year) (Harris et al., 2010), and orders of magnitude faster than estimates of 
natural E. coli populations (Ochman et al., 1999). Using our calculated value, we estimate 
separation of ANG1 from the source population 16 years ago. SPH-1 was sequenced in 2006 and 
ANG1 was sequenced in 2014, hence the longest time that the contaminant ANG1 population 
could have been separated from the SPH-1 isolate is nine years. This result is within a factor of 2 
of the expected value, despite the possibility of large errors in mutation accumulation rates due to 
variations in growth rates and stress (Bjedov et al., 2003). Thus, we conclude that the comparative 
genomics approach used here can constrain the time of separation of two populations. From a 
technical perspective, it is worthwhile to note that this detailed analysis was successful even in the 
background of soil. 

We defined three distinct SNP cohorts at time points intermediate between the first and last 
metagenomic sequencing events, suggesting the existence of three genotypic variants. The fact 
that all 15 SNPs are fixed in the final ANG1 population is unexpected, and inconsistent with 
separate coevolving populations.  Further, the frequencies of SNPs in cohorts 1 and 3 undergo 
dramatic fluctuations in frequency (in some cases dropping below our detection level) rather than 
exhibiting a simple trajectory towards fixation. We attribute both observations to extensive 
redistribution of SNPs through homologous recombination, a common process among closely 
related bacteria (Rosen et al., 2015; Smillie et al., 2011; Tenaillon et al., 2010). The 
homogenization of population variation is consistent with recombination acting as a cohesive 
force, countering the diversifying SNP formation processes that otherwise could lead to speciation.  

The original SPH-1 strain was isolated from municipal sewage sludge, an environment very 
different from the biofilm tubing environment in which the ANG1 strain was growing (Schleheck 
et al., 2004). The pN/pS (the population-based equivalent to dN/dS) value of ~1, determined based 
on comparison of the isolate and ANG1 population, is inconsistent with stabilizing selection. It 
could reflect minimal selective pressure or the combination of positive selection and negative 
selection. Most populations studied previously have values consistent with stabilizing selection 
(dN/dS of ~0.1) because they are shaped by overall negative selection with some genes under 
positive selection (Friedman, 2004; Schloissnig et al., 2012). Given this, we consider it more likely 
that the D. acidovorans population was experiencing a mixture of positive and negative selection 
rather than no selection. Positive selection is not surprising, given a population that is evolving 
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and adapting to an environment different from where it was isolated. An alternative explanation is 
that the non-synonymous mutations have not yet had enough time to be selected against (Rocha et 
al., 2006). The larger number of deletions (particularly of phage and transposon sequences) 
compared to insertions in the ANG1 relative to the SPH-1 genome is indicative of genome-
streamlining, consistent with its adaptation to a defined laboratory environment. Again, the 
observation of streamlining rather than genomic expansion is informative regarding the recent 
population history. 

In conclusion, we show that detailed strain-resolved metagenomic studies can detect a specific 
organism of interest in very complex samples, provide evidence that the strain is not native to the 
environment from which the sample was collected, and constrain its recent history. We 
demonstrate this using the example of a contaminant that was introduced during the laboratory 
handling of metagenomic samples, but the approach is far more broadly applicable.  We used 
statistical analysis to link the contaminant genotypic group to its source and comparative genomics 
to uncover aspects of its recent evolutionary history.  Because there was confirmation of many 
conclusions by independent methods, this work serves as a case study for strain-resolved forensic 
metagenomics. 

1.5 Figures 

 
Figure 1.1 Delftia acidovorans is present in all sequenced soil and sediment samples, but the 
population structure is distinct from that of other bacteria. (A) The percentage of all reads from 
each sample that map to the Delftia acidovorans ANG1 genome. (B) A rps3 phylogenetic tree 
for a typical bacterial group (Betaproteobacteria) shows a dandelion-like pattern of strain 
diversity that is dissimilar to that for Delftia acidovorans (only the full-length assembled 
sequences are shown). Branches ending with a taxonomic identification are reference sequences 
and the soil sequences are indicated by colored shapes representing their soil sample depth and 
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time of origin around the first rainfall in August – October 2013 (10 – 20 cm, blue and 30 – 40 
cm, red) before (squares) and after the rain events (4 days after: circles, 6 days after: triangles, 
and 2 days after the second rain: asterisks). 

 
Figure 1.2 Delftia acidovorans contamination originates from library size selection cassettes. 
(A) Hierarchical clustering of D. acidovorans strains present in shotgun sequencing projects 
sequenced at the same facility as soil metagenomics in this study, based on shared SNP 
frequencies. Samples prepared with Pippin Size Selection Cassettes (Sage Science) are marked 
with an asterisk (*). Sequences of D. acidovorans in those samples form a monophyletic group 
that includes the ANG1 genome. (B) Histogram of sequenced DNA fragment sizes of 
metagenomic reads mapping to the recovered D. acidovorans genome and the second most 
abundant recovered genome in the sample, from a Gemmatimonadetes bacterium. The 
placements of reads mapping to the Gemmatimonadetes genome indicate the expected 800 bp 
fragment length, yet reads mapping to D. acidovorans show a different and skewed profile, 
consistent with introduction of DNA after size selection. 
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Figure 1.3 D. acidovorans strains native to a bioreactor have distinct replication rates. Clades of 
similar D. acidovorans genomes were clustered based on shared SNP frequencies (Figure 2A). 
The peak to trough ratio values are significantly higher (p = 0.005) for the strains growing in a 
thiocyanate bioreactor (clade 2) than the other environments. As the other clades are likely made 
up of contaminants (see main text), this observation supports the conclusion that the bioreactor 
strains are active community members and not contaminants. 
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Figure 1.4 Detailed analysis of D. acidovorans sequence variation indicates the presence of 
subpopulations that are evolving in situ (A) The frequencies of specific SNPs in samples 
sequenced at different time points exhibit three distinct patterns suggestive of three sub-
populations (cohorts). Abundances fluctuate, but there is an overall progression towards fixation.  
(B) Shown are locations of all differences between the contaminant D. acidovorans ANG1 
genome recovered in this study and the D. acidovorans SPH-1 genome, as well as the alignment 
of the assembled contigs and coverage of the genome. 

For supplemental figures, tables, and information for Chapter 1, see 
https://doi.org/10.1128/mBio.01969-16 
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The initial microbiome impacts the health and future development of premature infants. 
Methodological limitations have led to gaps in our understanding of the habitat range and 
subpopulation complexity of founding strains, as well as how different body sites support 
microbial growth. Here, we used metagenomics to reconstruct genomes of strains that colonized 
the skin, mouth, and gut of two hospitalized premature infants during the first month of life. Seven 
bacterial populations, considered to be identical given whole-genome average nucleotide identity 
of >99.9%, colonized multiple body sites, yet none were shared between infants. Gut-
associated Citrobacter koseri genomes harbored 47 polymorphic sites that we used to define 10 
subpopulations, one of which appeared in the gut after 1 wk but did not spread to other body sites. 
Differential genome coverage was used to measure bacterial population replication rates in situ. In 
all cases where the same bacterial population was detected in multiple body sites, replication rates 
were faster in mouth and skin compared to the gut. The ability of identical strains to colonize 
multiple body sites underscores the habit flexibility of initial colonists, whereas differences in 
microbial replication rates between body sites suggest differences in host control and/or resource 
availability. Population genomic analyses revealed microdiversity within bacterial populations, 
implying initial inoculation by multiple individual cells with distinct genotypes. Overall, however, 
the overlap of strains across body sites implies that the premature infant microbiome can exhibit 
very low microbial diversity. 

2.1 Introduction 
Infants are born near sterile and continually acquire microbial colonists until reaching an adult-
like state at around 2–3 yr of age (Cilieborg et al. 2012; Faith et al. 2015). The microbiota during 
the first 100 d of life is especially important, as dysbiosis during this “critical window” has been 
linked to a number of problems later in life, especially relating to the developing immune system 
(Costello et al. 2012; Cahenzli et al. 2013; Sim et al. 2013; Arrieta et al. 2015). The nature of 
dysbiosis during the critical window has yet to be clearly defined, but a number of studies have 
implicated low-diversity as a marker (Cahenzli et al. 2013; Arrieta et al. 2015). Initial colonists 
are acquired maternally and from the immediate environment, but early life clinical factors (such 
as birth by cesarean section and neonatal antibiotic administration) can disrupt the normal 
acquisition process (Ding and Schloss 2014; Bäckhed et al. 2015; Mueller et al. 2015). Among 
premature infants, who generally harbor microbial communities of limited diversity and instability 
(Costello et al. 2013; Sim et al. 2013; Ward et al. 2016), this disruption can lead to colonization 
by resident microbes of the neonatal intensive care unit (NICU) (Brooks et al. 2014; Shin et al. 
2015). 
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Operational taxonomic units (OTUs) identified from 16S rRNA hypervariable region surveys have 
approximately genus-level resolution (Tu et al. 2014; Jovel et al. 2016). Using this methodology, 
it has been suggested that, within 24 h after birth, the microbiomes of the mouth, skin, and gut are 
undifferentiated (Dominguez-Bello et al. 2010) and that site-specific communities develop over 
the first weeks of life (Costello et al. 2013; Dominguez-Bello et al. 2016). This could imply a 
common inoculum to all body sites followed by body site-specific selection and immigration. 
However, even organisms with identical 16S rRNA sequences have been shown to have different 
genomic and functional profiles (Prosser et al. 2007; Achtman and Wagner 2008; Luo et al. 2015). 
Such differences could imply different inoculum sources and processes as well as differences in 
antibiotic susceptibility and strain complexity. Further, if bacterial populations occupy multiple 
sites, a strain eliminated from one body site could be replaced by dispersal of the same strain from 
another site (Costello et al. 2012). This could contribute to both pathogen persistence and retention 
of founding “keystone species” (Dominguez-Bello et al. 2016). Clearly, more sensitive methods 
like whole-genome sequencing (considered the gold standard of strain typing) (Snitkin et al. 2012) 
are needed to determine if strains are the “same” or “different.” 

Genome-resolved methods have yet to be widely applied to the human microbiome, and thus the 
level of microdiversity present within human-associated microbial populations is largely 
unknown. Strain-level diversity is common across other ecosystems and is hypothesized to 
contribute to the stability of populations of related organisms in the face of phage predation and 
changing environmental conditions (Jaspers and Overmann 2004; Erkus et al. 2013; Sharon et al. 
2013). Methods based on assembly-free metagenomics have attempted to document strain 
diversity, but reliance on reference genome sequences limits identification of strains to those that 
have already been analyzed. Other methods have been proposed to document deviations from 
reference strain sequences, including ConStrains (Luo et al. 2015) and PanPhlan (Ward et al. 
2016), but these methods only consider portions of the genome (specific marker genes and coding 
regions, respectively) and thus fall short of the resolving power needed to account for small-scale 
differences (Snitkin et al. 2012). While requiring more computational time and manual curation, 
genome-resolved metagenomics has been used to successfully investigate strain-level differences 
in the infant gut microbiota several times (Morowitz et al. 2011; Sharon et al. 2013; Raveh-Sadka 
et al. 2015) and, in combination with previously developed methods (Lang et al. 2013; Luo et al. 
2015), has the potential to identify subpopulations of microbes that differ by even a single 
nucleotide. 

A recent study by Browne et al. (2016) found that over half of microbes in the human gut can enter 
nonvegetative states. This is an important fact to consider when interpreting the studies referenced 
above, as while the same microbes may be present in different environments, their activity levels 
in distinct body sites have yet to be investigated. A number of laboratory methods have been 
developed to discriminate between live and dead cells, including the use of propidium monoazide 
(Nocker et al. 2006), redox sensing probes (Rodriguez et al. 1992), and the incorporation of 
radioactive substrates (Karl 1979). However, these methods have limited ability to discriminate 
between levels of activity, require extensive testing for use with different organisms, and would 
be difficult to perform in the context of human hosts. An attractive solution is the utilization of 
differential genome coverage, a method recently described by Korem et al. (2015), that measures 
the fraction of the bacterial population currently undergoing active DNA replication. However, 
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assembly errors in reference genome databases (Salzberg and Yorke 2005) and divergence among 
microbial genomes (Tenaillon et al. 2010; Luo et al. 2011; Rosen et al. 2015; King et al. 2016) 
cast doubt on methods that map directly to genomes in reference collections. Using draft genomes 
recovered from the samples themselves would solve this problem, but as circular genomes are only 
rarely recovered, a method to determine the order of the contigs before calculation of growth rates 
is needed. 

2.2 Materials and methods 

2.2.1 Patient recruitment and sample collection 
Fecal samples from two preterm infants hospitalized in the NICU in Magee-Womens Hospital of 
UPMC (Pittsburgh, PA) were collected as available over the first month of life. Both infants were 
of low gestational age (<30 wk), and Infant 2 was of extremely low birth weight (<1000 g). See 
Supplemental Table S2..1 for additional clinical information. 

Fecal samples were spontaneously expelled and collected from diapers or acquired directly using 
an established perineal stimulation procedure (Morowitz et al. 2011). Skin and oral samples were 
obtained by a member of the study team using a BD BBL Culture Swab EZ. Oral swabs were 
collected by rolling the swab head 5–10 times over the dorsal surface of the tongue. If intubated, 
the sample was collected by swabbing any exposed surface of the tongue. Skin swabs were 
collected by first dipping the swab into a 0.5 mL aliquot of a sterile solution of 0.15 M NaCl and 
0.1% Tween 20. The swab head was then rolled 5–10 times over the left anterior upper chest wall. 
Stool samples were placed promptly into −20°C storage and transferred to a −80°C freezer for 
long-term storage as soon as possible. Swab samples were placed promptly in a −80°C freezer for 
storage. 

DNA was extracted using either the MO BIO PowerSoil DNA Isolation kit (single tube 
extractions) or PowerSoil-htp 96-Well DNA Isolation kit. DNA extracted from stool using the 
single tube format followed the protocol as previously described (Raveh-Sadka et al. 2016). For 
DNA extracted from feces with the 96-well kit, fecal samples were added to individual wells of 
the bead plate and stored overnight at −80°C. The next day, the Bead Solution and Solution C1 
were added, and the plates were incubated at 65°C for 10 min. The plates were shaken on a Retsch 
Oscillating Mill MM400 with 96-well plate adaptors for 10 min at speed 20. The plates were 
rotated 180° and shaken again for 10 min at speed 20. All remaining steps followed the 
manufacturer's centrifugation protocol. For swab samples, the swab head was cut off directly into 
the wells of the bead plate and stored overnight at −80°C. The next day, the Bead Solution and 
Solution C1 were added, and the plates were incubated at 65°C for 10 min. The plates were shaken 
on a Retsch Oscillating Mill MM400 with 96-well plate adaptors for 5 min at speed 20. The plates 
were rotated 180° and shaken again for 5 min at speed 20. The Solution C2 and C3 steps were 
combined (200 µL of each added) to improve DNA yield. All remaining steps followed the 
manufacturer's centrifugation protocol. 

2.2.2 Metagenomic sequencing and assembly 
Sample preparation and sequencing of skin and oral samples were performed at the University of 
Illinois at Urbana-Champaign sequencing facility, and sample preparation and sequencing of fecal 
samples were performed at the University of California at Berkeley Vincent J. Coates Genomics 
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Sequencing Laboratory. Paired end reads of 160 bp with a combination of 1000- and 600-bp library 
insert sizes were sequenced using an Illumina HiSeq 2500 (Supplemental Table S2.2). Reads were 
trimmed with Sickle (https://github.com/najoshi/sickle). Reads that mapped to the human genome 
with Bowtie 2 (Langmead and Salzberg 2012) under default settings were discarded. An additional 
step of mapping with BBMap (Bushnell 2014) was performed on all projects with at least 10% of 
reads removed with Bowtie 2 mapping. See Supplemental Table S2.2 for depth of sequencing and 
levels of human contamination in each sample. 

Reads were assembled using idba_ud (Peng et al. 2012) under default settings. Resulting scaffolds 
>1 kb in length were annotated using Prodigal (Hyatt et al. 2010) to predict open reading frames 
using default metagenomic settings. Annotated protein sequences were searched against KEGG 
(Kanehisa et al. 2014), UniReff100 (Suzek et al. 2007), and UniProt databases using USEARCH 
(Edgar 2010). All matches with bit scores greater than 60 were saved, and reciprocal best hits with 
a bit score greater than 300 were also cataloged. We identified rRNA sequences using Infernal 
(Nawrocki and Eddy 2013) by searching against databases from the SSU-Align package 
(Nawrocki 2009) and tRNAs using tRNAscan_SE (Lowe and Eddy 1997). 

Genome binning was carried out using the online interface within ggKbase as described previously 
(Raveh-Sadka et al. 2015; http://ggkbase.berkeley.edu/). This method takes into account 
phylogenetic profile, GC content, and coverage information. Bins were refined based on 
differential coverage implemented using time-series emergent self-organizing maps as described 
previously (Sharon et al. 2013). The completeness of bacterial bins was evaluated based on the 
presence or absence of single-copy genes (Raes et al. 2007; Raveh-Sadka et al. 2015). Phage 
sequences were identified based on the presence of typical phage genes such as capsid, terminase, 
and tail-fiber and as distinct clusters in ESOMs; phage-host relationships were inferred based on 
phylogeny of annotated proteins and abundance patterns. 

2.2.3 Genome recovery 
All genome bins from all samples were pooled based on (1) the infant the genome was recovered 
from, and (2) the genome's identity as either of phage/plasmid origin or of bacterial origin. 
Genomes within each pool were then compared in a pairwise fashion based on ANIm (Richter and 
Rosselló-Móra 2009). For all clusters of genomes with high ANI values among members, a 
representative genome was chosen based on the highest total bin length, lowest scaffold 
fragmentation, and most complete complement of single-copy genes. Ambiguous genome clusters 
were visualized using Mauve alignments in Geneious (Kearse et al. 2012) to decide whether 
genomes could be included in the cluster. 

Next, for each infant, ANIm was determined for all representative bacterial bins and all 
representative phage/plasmid bins together. The resulting ANI matrix was manually curated to 
resolve cases of overlap between the two genome sets. Most cases of overlap were of bacterial 
genomes containing prophage that were also represented in the phage list. These were resolved by 
removal of the prophage scaffold from the bacterial bin. The final genome list for each infant was 
verified by mapping reads from each project to the genomes to confirm strong coherence between 
the reads and the genomes, as well as to verify the completeness of the list based on total 
percentage of mapped project reads. Read-mapping data are available in Supplemental Table S2..3, 
and the final genome list is available in Supplemental Table S2..6. 
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2.2.4 Sample profiling 
Reads from all samples were mapped to the corresponding infant's genome list generated above. 
SAMtools (Li et al. 2009) was used to convert mapping files (.sam) to mpilup format, and 
calculate_breadth.py and pileup_profile.py were used to determine the depth of coverage, breadth 
of coverage, and average nucleotide identify of each genome in each project. As SAMtools has an 
implicit coverage limit of 8,000×, coverage values from calculate_breadth.py were used. The 
results of both scripts were manually combined and are available in Supplemental Table S2.7. 

A strain was considered a “colonist” of a body site if at least 1% of the reads from at least one 
sample from at least one body site mapped to the recovered genome. We chose to define 
colonization in this way to be consistent with previous studies of infant colonization (Ward et al. 
2016) and because using a coverage-based threshold would have biased against samples with less 
sequencing reads (Supplemental Fig. S2.4). The same analysis was performed on all phage and 
plasmid sequences, using 99% breadth to define carriage (Supplemental Fig. S2.2). To identify 
when strains below the 1% threshold first appeared in body sites, we normalized to account for 
different sampling depths by using a read percentage cutoff which corresponds to 0.1× coverage 
of the most shallowly sampled data set (see Jupyter notebook, CallingColonisits, for details). 

2.2.5 ANI calculation from metagenomic reads 
Metagenomic reads from each sample were mapped to the genome list described previously, and 
nucleotide variants between reads and genomes were determined using pileup_profile.py. See the 
data availability section for full source code. Briefly, the script calculates ANI by masking regions 
of DNA near the ends of scaffolds, in conserved regions (tRNAs and rRNAs), or of insufficient 
coverage, locating all base pairs along the unmasked genome in which at least 80% of reads 
conflict with the reference genome, and calculating consensus ANI as (1−[# variant 
positions/unmasked genome length]). As shown in Supplemental Table S2.3, the number of SNPs 
found using this method was extremely low (average 34.2), with an average consensus ANI of 
99.998%. We attempted to reduce the number of erroneously called SNPs and found that some 
appear to represent errors made during the process of metagenomic assembly (generation of the 
reference sequence) or unmasked regions of high sequence conservation (which recruit reads from 
other genomes) rather than real biological differences. Given this, and the extremely high reference 
ANI between strains on different body sites, we defined the strains as identical if they met the 
criterion of >99.9% consensus ANI. 

2.2.6 Growth rate determination 
To attain growth rates for the incomplete genomes recovered in this study, genome fragments were 
ordered and oriented to previously isolated reference genomes and the peak-to-trough coverage 
ratio was determined using bPTR.py based on the method previously described (Korem et al. 2015; 
Brown et al. 2016) (Supplemental Table S2.8). Circular reference genomes of the same species as 
draft genomes from this study were downloaded from NCBI GenBank. The expected form of the 
cumulative GC skew of genomes (Grigoriev 1998) was manually verified using the program 
gc_skew.py, and genomes with aberrant patterns were discarded. The ANI of each draft genome 
to all reference genomes was determined using the previously described ANIm method, and the 
reference genome with the highest ANI was chosen. Draft genome fragments were aligned to the 
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reference genome using BLAST (Altschul et al. 1990), and any fragment with <20% alignment 
coverage was discarded. The remaining draft sequence fragments were then aligned to the 
reference genome using progressive Mauve (Rissman et al. 2009) (java -Xmx500m -cp Mauve.jar 
org.gel.mauve.contigs.ContigOrderer), resulting in an ordered and oriented draft “core genome.” 
All core genomes were verified by manual inspection of the cumulative GC skew and genome 
coverage plots generated by the script (Supplemental Figs. S2.5, S2.6). Projects with aberrant plots 
or coverage below 5× were excluded from analysis. 

2.2.7 Microdiversity of C. koseri 
To identify differences between the reads of specific data sets relative to reconstructed genomes 
(described above), VarScan (Koboldt et al. 2009) was run on all .pileup files using the pileup2cns 
command with the flag -min-coverage = 3. The frequency of each single nucleotide variant was 
tabulated for all samples using the script polymorpher2.py (Supplemental Table S2.9). Variants 
were then filtered based on a number of criteria and clustered based on changing relative 
frequency. Briefly, variants were required to have a minimum of 10× coverage in all samples, over 
0.2 frequency in at least two samples, not be defined by polymorphisms present in conserved 
regions (rRNAs, tRNAs) (Supplemental Table S2.9), and pass an auto-correlation threshold. 
Clustering of variants was done using the Scipy hierarchical clustering package, with the cutoff 
threshold of 0.275 decided based on manual inspection of the resulting clusters. Full source code 
of analysis performed is available in the Jupyter notebook, CitroK_microdiversity (Supplemental 
Material). 

2.2.8 CRISPR analysis 
CRISPR arrays were identified in bacterial draft genomes using the program CRISPRFinder 
(Grissa et al. 2007). CRISPR spacer targets (protospacers) were identified by searching spacers 
for full-length BLAST hits in a sequence database, followed by filtering our results that also 
included full-length matches to CRISPR repeats (to remove instances of the CRISPR array itself). 
In addition to the assemblies of this study, we also searched for protospacers in previously 
published studies from the same NICU (Raveh-Sadka et al. 2015, 2016) and the NCBI nt database 
(accessed January 2016). DNA fragments with identifiable CRISPR arrays were excluded from 
the protospacer search. The alignments of E. faecalis CRISPR arrays were manually curated within 
Geneious (Kearse et al. 2012). The ratio of variant arrays was determined by comparing the 
number of reads that mapped (using Bowtie 2 default settings) to unique regions of both arrays. 
Mutations elsewhere in the genome that varied in frequency with CRISPR variants were identified 
based on a significant Pearson correlation. Source code is available in the Jupyter notebook, E. 
faecalis microdiversity (Supplemental Material). 

2.3 Results 
2.3.1 Community profile 
Two premature infants were recruited for this study with parental consent at Magee-Womens 
Hospital of the University of Pittsburgh Medical Center. Clinical information for these infants is 
summarized in Supplemental Table S2.1. Both infants were born via vaginal delivery to women 
with pregnancies complicated by chorioamnionitis. Each infant was treated immediately after birth 
with 7 d of initial antibiotic treatment (ampicillin and gentamycin). We collected 17 and 20 fecal 
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samples during the first month of life for the two infants (referred to as #1 and #2). Additionally, 
two skin swabs and two tongue swabs were collected for each infant (see Fig. 2.1 for detailed 
information about timing of skin and oral swabs). For the skin and mouth, sample choice was 
based on the availability of sufficient DNA and, where more than two samples were available, to 
span the longest time period. In total, 183 gigabase-pairs of Illumina shotgun DNA sequencing 
were generated for 45 samples (Supplemental Table S2.2). 

Historically, assembly-based metagenomics of the skin and mouth has been hampered by human 
DNA contamination (Liu et al. 2012; Tsai et al. 2016). While all but one skin or mouth sample 
consisted of >50% human DNA (range 34.2%–93.8%), the deep sequencing effort ensured that all 
samples had enough reads from microbial genomes for successful de novo genome reconstruction. 
Overall, an average of 98.7% (Infant 1) and 95.0% (Infant 2) of nonhuman reads could be assigned 
to assembled genomes (in some cases, by mapping to genomes reconstructed from another sample) 
(Supplemental Table S2.3). 

Using ggKbase (Raveh-Sadka et al. 2015), we manually binned assembled DNA sequences to 
genome bins based on G+C content, coverage, and phylogenetic profile and subsequently used 
sequencing coverage patterns for binned scaffolds to verify the bins (Raveh-Sadka et al. 2015). 
For the bin refinement step, the clustering of fragments was analyzed using emergent self-
organizing maps (ESOMs). Since identical genomes were assembled from different samples, the 
genomes were de-replicated based on similar average nucleotide identity (ANI), and the best 
genome for each strain was selected for downstream analyses. Across all three body sites for Infant 
1, we recovered nine near-complete bacterial genomes and three partial genomes (all partial 
genomes were from the skin data sets). From Infant 2, we recovered 11 near-complete bacterial 
genomes and three partial genomes (all partial genomes were from the mouth). The community 
composition of all samples from all body sites and both infants are presented in Figure 2.1. It is 
interesting that the first two gut samples for Infant 2 that were collected during the antibiotic 
treatment course were dominated by Streptococcus agalactiae. The placenta showed heavy growth 
of S. agalactiae (group B streptococcus), yet, as noted above, the infant's blood cultures were 
negative. 

The overlap in community composition between body sites is shown in Figure 2.2. Strains were 
considered identical if they had over 99.9% whole-genome ANI and were considered colonizers 
of a body site if they accounted for >1% of reads in any sample from the site (Supplemental Table 
S2.4). Despite obvious differences in habitat characteristics, we identified some identical strain 
populations in all three sampled body sites for both infants. Infant 1 body sites were heavily 
colonized by Citrobacter koseri, which comprised over 60% of all three communities. Six strains 
were colonists of more than one body site of Infant 2: Escherichia coli, Pseudomonas 
aeruginosa, Klebsiella pneumoniae, and Serratia marcescens colonized all three body 
sites, Enterococcus faecalis colonized the mouth and skin, and Staphylococcus 
epidermidis colonized the mouth and gut. Interestingly E. coli, which is traditionally thought of as 
a gut colonist (Tenaillon et al. 2010), accounted for the highest portion of Infant 2 reads at all three 
body sites. The infants were housed in different NICU rooms ∼3 mo apart, and no bacterial strains 
were shared between infants. 

We also tested for the presence of organisms in multiple body sites at low abundance (<1% of the 
community) and, to the extent possible, evaluated the time periods in which specific strains 
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appeared at these sites (for details, see Methods). For Infant 1, Enterococcus faecalis had appeared 
in the skin and gut by the time of collection of the first samples, persisted in the gut, and was 
present in both habitats at the later time point when samples from both body sites were collected 
(day of life [DOL] 23). A Haemophilus parainfluenzae population was not detected in the first 
collected samples from all body sites but was present in the gut on DOL 21 and had appeared in 
the mouth and skin 2 d later. For Infant 2, Staphylococcus epidermidis and E. coli were present in 
all body sites at most time points. Pseudomonas aeruginosa and Klebsiella pneumoniae were 
undetectable in gut samples collected during antibiotic administration (Fig. 2.1; Supplemental 
Table S2.3) but appeared in all three body sites the day after cessation of antibiotics (DOL 
7). Staphylococcus sp. M0480 was present by the time the first skin (DOL 12) and mouth (DOL 
14) samples were collected but was undetectable in the mouth at the second time point. E. 
faecalis was present in the first-sampled gut and mouth communities (and persisted there), was 
absent in the skin on DOL 12, but had appeared there by DOL 22. Serratia marcescens was a 
relatively late colonist, appearing first in the gut on DOL 19 and was present in all three body sites 
at later time points (Supplemental Table S2.3). In general, strains became detectable at all three 
body sites at around the same day of life, with the exception of E. faecalis in Infant 2, which 
persisted in the gut and mouth for over a week before being detected in the skin. 

2.3.2 Growth rates are different across body sites 
Recently, it was shown that accurate growth rates of microbial strains in their natural environment 
can be determined by measuring the ratio of the coverage of DNA at the origin and terminus of 
replication (Korem et al. 2015). However, this method requires complete closed circular genomes 
(which are rarely acquired from metagenomic studies) in order to locate the origin and terminus. 
We were able to circumvent that requirement by orienting each strain assembly (median number 
of contigs 67.5, range 12–1460) to a representative isolate genome in order to determine the order 
and orientation of the contigs. When available, we used multiple isolate genomes to confirm the 
best assembly, as some genomes in the RefSeq database were found to be incorrectly assembled 
around rRNA operons (Fig. 2.3A,B). The peak-to-trough ratio (origin to terminus coverage ratio) 
was then determined by mapping reads to the oriented assembly (see Methods). 

Surprisingly, in all cases for which we could determine growth rates for the same strain from 
multiple body sites, growth was faster in the skin and mouth than in the gut (Fig. 2.3). When all 
growth rates were analyzed, microbes in the skin and mouth had significantly higher growth rates 
than microbes in the gut (P < 0.00001), whereas strains in the skin and mouth did not differ 
significantly in their growth rates (P = 0.12; Mann-Whitney U test). The strains exhibiting the 
fastest growth in the skin, mouth, and gut were P. aeruginosa, Streptococcus mitis, 
and Clostridium perfringens, respectively. 

In general, growth rates measured for strains in the gut increased with increasing infant age, 
consistent with population recovery after early antibiotic treatment (Spearman rank 
correlation, R = 0.30, P = 0.0005, n = 135) (Fig. 2.4). In Infant 2, S. agalactiae, also known as 
group B Streptococcus, accounted for over 80% of the microbial community during antibiotic 
treatment in Infant 2 for a presumed group B Streptococcus infection. Despite being abundant, the 
organism exhibited a low and decreasing growth rate during the treatment period. Several 
microbial strains exhibited sharp changes in growth rates over the first month of life (Clostridium 
difficile, C. perfringens, P. aeruginosa). However, these events did not coincide with medical 
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events indicated by the clinical metadata and were probably short lived, as they did not always 
lead to changes in relative abundance of these strains in the next-collected sample. 

2.3.3 Microdiversity 
We classified strains colonizing multiple body sites as the same based on >99.9% genome-wide 
ANI, but this analysis is insensitive to very small-scale differences that could be used to document 
subpopulation dynamics and constrain inoculum diversity. Thus, we performed high-resolution 
analyses of Citrobacter koseri, the strain with the highest coverage in all body sites of Infant 1. The 
4.66-Mbp genome was initially assembled de novo into 27 scaffolds. By reference to an isolate 
genome, we confirmed potential joins supported by sequence overlaps and identified gap-filling 
reads so that these scaffolds could be reconstructed into a complete circular genome. 

Single nucleotide polymorphisms were identified by mapping reads from each body site to the 
circularized C. koseri genome. No fixed mutations distinguished populations colonizing the skin, 
mouth, and gut. However, 47 polymorphic sites with a minimum frequency of 0.2 were identified 
along the genome. Of these, 21 occurred in intergenic regions and five within the coding region 
of yadA, a gene encoding adhesins with known pathogenic alleles (El Tahir and Skurnik 2001). 
Using hierarchical clustering, 10 cohorts of polymorphisms with similar variations in frequency 
over the sample series were identified, five of which had only one member (referred to as 
“singletons”) (Fig. 2.5). Each cohort is inferred to represent a strain subpopulation. Particularly 
interesting is cohort 1, which underwent a dramatic purge event around DOL 23, and singleton 3, 
which rapidly rose above detection level on DOL 17. 

To evaluate differences in the populations across body sites, we focused on DOL 23, where gut, 
skin, and mouth samples are all available for Infant 1. Three variant positions had significantly 
different fractions of polymorphisms between the gut and both the skin and mouth (Fisher's exact 
test with Bonferroni correction, α = 0.01). These three positions make up the entirety of cohort 4 
and singleton 3. Singleton 3 rises in abundance to comprise ∼40% of the gut population on DOL 
17 but is only ever detected at ∼2% of the mouth and skin populations (Fig. 2.5B). There were no 
genomic positions with significantly different polymorphism levels between the mouth and skin 
on either DOL 6 or DOL 23. The detection of differences in subpopulation frequencies between 
body sites shows that there is limited gene flow between body sites and may indicate the start of 
in situ diversification. 

2.3.4 CRISPR and phage 
In addition to the bacterial genomes referenced above, our assembly-based metagenomic pipeline 
resulted in the recovery of 21 bacteriophage genomes and 18 plasmid genomes. An average of 
2.1% of reads from all samples mapped to bacteriophage genomes, and the most significant 
bacteriophage bloom occurred in the gut of Infant 2 on DOL 7 (immediately following cessation 
of antibiotic administration) (Fig. 2.1). Three bacteriophage genomes alone accounted for ∼50% 
of the DNA sequenced during this bloom: K. pneumoniae phage A (7.9% of community; 12,700× 
coverage), K. pneumoniae phage B (39.1% of community; 19,400× coverage), and E. coli phage 
A (2.7% of community; 4100× coverage). A second bloom of K. pneumoniae phage B and E. 
coli phage A also occurred in the same environment on DOL 24. Interestingly, although the 
bacteriophages’ abundance in the second bloom was only a fraction of their abundance in the first 
bloom, both blooms dramatically shifted the microbial community composition (Supplemental 
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Fig. S2.1). Overall, however, most phage, plasmid, and host population abundance patterns were 
highly correlated (partly due to integration). Consequently, bacterial distribution patterns across 
the three body sites generally predicted patterns for the associated phage and plasmids 
(Supplemental Fig. S2.2). For circularly recovered phage and plasmids (inferred to be 
nonintegrated), we also found GC skew and coverage patterns that could be indicative of DNA 
replication style (Supplemental Fig. S2.3). Unfortunately, no phage or plasmids with these 
coverage patterns were detected at multiple time-points, so the consistency of this pattern could 
not be evaluated. However, such analyses could possibly be used to elucidate plasmid and phage 
replication regulation and growth rate in future studies. 

CRISPR-Cas loci confer bacterial phage resistance (Horvath and Barrangou 2010). Because 
CRISPR spacers are added uni-directionally, the loci provide a record of population history (Sun 
et al. 2016). We identified CRISPR arrays in 50% of bacterial genomes in Infant 1 and 43% of 
bacterial genomes in Infant 2, with a total of 111 and 182 unique spacer sequences, respectively 
(Supplemental Table S2.5). However, we found only four spacer targets in the samples from the 
infant from which the spacers were recovered, even using relaxed (1 mismatch allowed) search 
parameters. Thus, we broadened our search to include previously published gut metagenomes from 
the same NICU as this study (Raveh-Sadka et al. 2015, 2016) and the current NCBI database. This 
revealed 26 and 16 spacers/protospacer matches, respectively. 

No changes in CRISPR spacer inventories over the study period of 28 d were found, but two 
coexisting E. faecalis populations were identified in Infant 2 based on distinct CRISPR spacer 
inventories. The variant A locus contained 13 spacers and the variant B locus contained 11 unique 
spacers, with one spacer appearing in the array twice (Fig. 2.6). The ratio of the two variants 
fluctuated over the study period, with variant B rising from 0% of the population on DOL 5 to over 
60% during the DOL 12–24 period and declining to ∼5% by DOL 28. As the spacers that 
differentiate variants A and B had no protospacer matches, we sought other genomic features for 
which selection might explain the abundance changes. One polymorphism was significantly 
correlated with the variant A locus and another significantly correlated with the variant B locus 
(Pearson correlation with Bonferroni correction, α = 0.01) (Fig. 2.7). Both polymorphisms were 
single-nucleotide substitutions within the coding regions of separate hypothetical proteins. 
Bacteria with both CRISPR locus variants and the associated gene variants were detected in the 
skin on DOL 22 (the only sample from another body site with sufficient coverage for detection). 
CRISPR arrays reconstructed in this study were also compared to a number of previously 
isolated E. faecalis strains (Fig. 2.6; Palmer and Gilmore 2010). Surprisingly, we found 
remarkable similarity in spacer content (with no polymorphisms in the spacer sequences) for E. 
faecalis strains isolated as many as 82 yr apart. Additionally, we found that isolates from the 1970s 
still retain CRISPR that match the sequences of phage still found in the NICU today. 

2.4 Discussion 
Twenty-six bacterial genomes, as well as 39 phage/plasmid genomes, were recovered from two 
premature infants. Given that 98.7% of all reads mapped to 12 reconstructed bacterial and 18 
phage/plasmid genomes from Infant 1, and 95.0% to 14 bacterial and 21 phage/plasmid genomes 
from Infant 2, we conclude that the majority of the community was accounted for. This result 
confirms the overall low diversity of the early community when compared to full-term infants 
(Costello et al. 2013; Gibson et al. 2016; Ward et al. 2016). Overlap of strains across body sites 
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contributes to the low total diversity of these premature infant microbiomes compared to those of 
other infants. 

For C. koseri, we confirmed the complete absence of any fixed mutations that would distinguish 
populations in the mouth, skin, and gut, allowing us to conclude that identical populations 
colonized all three body sites. However, colonizing populations are typically not clonal (Luo et al. 
2015). Analysis of subpopulation microdiversity, needed, for example, to constrain inoculum 
diversity, is complicated because recruitment of reads from different taxa to homologous regions 
can cause miscalculations in commonly used variant-detecting programs (Wilm et al. 
2012; Deatherage and Barrick 2014). In this study, C. koseri had sufficient coverage in all Infant 
1 samples to reliably detect variant positions (average coverage 493, full range 73–769), and no 
other similar taxa colonized the infant concurrently (preventing erroneous read recruitment). This 
allowed us to identify seven early colonizing C. koseri subpopulations (present in at least 20% of 
the reads) defined by between one and 29 polymorphisms, likely reflecting inoculation by at least 
seven distinct cell genotypes. Microdiversity has been linked with taxon stability in other 
environments (Jaspers and Overmann 2004; Rodriguez-Brito et al. 2010; Erkus et al. 2013), so 
seemingly low microdiversity in infant-associated populations may contribute to the observed low 
community stability as body habitats change along with infant development (Costello et al. 2013). 

Our approach can constrain the timing and directionality of colonization events. For both infants, 
the presence of the same strains in multiple body sites at the first sampling event may indicate an 
early widespread inoculation event from the same source. The presence of the same population in 
multiple body sites suggests the ability of body sites to act as strain reservoirs for one another in 
early life. For example, colonization of the gut and mouth of Infant 2 by E. faecalis was followed 
by dispersal to the skin. However, we identified a strain of C. koseri that appeared later in the gut 
colonization process, but this strain did not spread to other body sites. This result may indicate 
increasing body site specificity as infant age increases and would imply functional significance of 
single mutations. This deduction may be supported by the dramatic shifts in abundances of 
genotypically near-identical E. faecalis, which were likely due to single nucleotide 
polymorphisms, given that CRISPR spacers that otherwise distinguish the variants did not have 
targets in the same samples. 

The lack of coexisting CRISPR spacer targets (yet presence of targets in other samples) is likely 
due to the phage immunity conferred by the CRISPR spacers. Conservation of E. faecalis CRISPR 
spacers over many decades without mutation (Fig. 2.6) suggests that they target mutation-resistant 
phage genome regions. Slow CRISPR evolution contrasts with the dynamic seen in other systems 
(Tyson and Banfield 2007; Pride et al. 2011) but is consistent with observations of conserved 
CRISPR arrays in other common enteric organisms (Touchon and Rocha 2010; Touchon et al. 
2011). 

To our knowledge, this study represents the first comparison of in situ bacterial growth rates of 
multiple body sites, and the comparison is especially powerful as the measurements were for 
identical strains in different environments. In all cases when growth was measured for the same 
strain in multiple body sites, growth was slowest in the gut (Fig. 2.3C). Several mechanisms could 
explain the difference in growth between body sites, including differences in (1) higher resource 
availability (including oxygen) on the skin and in the mouth compared to the gut, (2) higher levels 
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of competition among microbes in the gut, or (3) host control through the innate and/or adaptive 
immune system (Donaldson et al. 2015). 

Previous studies have described the gut microbiome of premature infants as relatively simple and 
prone to rapid changes in composition (Costello et al. 2013; Gibson et al. 2016; Ward et al. 2016). 
To our knowledge, this is the first study to investigate the body habitat range of individual 
genotypes and to compare microbial activity of the same populations across body sites. 
Colonization of the three studied body sites by the same populations may be due to overall low 
inoculum diversity in the highly cleaned NICU and limited human contact. Given the rapid 
measured growth rates, the premature infant skin and mouth appear to be desirable microbial 
habitats (Fig. 2.3). It remains to be seen whether similar observations hold true for full-term 
infants, how long features of the founding communities persist, and whether differences in 
community composition arising from prematurity have long-term health consequences. 

2.5 Figures 

 
Figure 2.1 Compositional profile of microbial communities colonizing the mouth, skin, and gut 
of two premature infants. Each colored box represents the percentage of nonhuman reads 
mapping to an assembled genome, and the stacked boxes for each sample show the fraction of 
the reads in that data set accounted for by the genomes from that sample. 



 

  26	

 
Figure 2.2 Identical bacterial strains colonize multiple body sites of premature infants. Microbes 
were considered colonists of a body site if they make up >1% of a community. All colonists of 
each site are shown, along with the total percentage of the community they make up across all 
sampling events. Colonists of multiple sites are shown in bold. 



 

  27	

 
Figure 2.3 In situ bacterial growth rates are faster in the mouth and skin than the gut. (A,B) 
Cumulative GC-skew (green line) and coverage (black line) for our reconstructed Citrobacter 
koseri genome aligned to the RefSeq genome C. koseri strain ATCC BAA-895 (A) and another 
reference genome (C. koseristrain FDAARGOS_86) (B). Based on the irregularity of trends in 
the C. koseristrain ATCC BAA-895 plot, we conclude that this genome was improperly 
assembled at the rRNA operons. Thus, we used C. koseri strain FDAARGOS_86 for ordering 
and orienting our genome fragments. The ability to uncover assembly errors by inspection of 
PTR plots underlines the value of these displays. (C–E) Cumulative GC-skew and coverage of 
our ordered and oriented Escherichia coli genome from Infant 2 using reads mapped from a gut 
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sample (C), mouth sample (D), and skin sample (E). Inspection of the PTR plots ensures that the 
origin and terminus are determined properly. (F) Aggregate of all peak-to-trough ratio (PTR) 
measurements for each bacterial species for which at least three measurements were available. In 
all cases where measurements are available for the same strain growing in multiple body sites, 
growth is slowest in the gut. (G) Direct comparison of all growth rate measurements for each 
body site. P-values for Mann-Whitney U test between body sites are shown below. 

 
Figure 2.4 Growth rates (determined by PTR) often do not predict changes in relative abundance 
of a population in subsequent samples. Growth rate measurements for all gut colonists are shown 
in A and B. Corresponding relative abundance information is shown in C and D. The lack of 
correspondence between increased PTR in one sample and increased relative abundance in the 
next sample could be due either to the transient nature of growth spurts or to the fact that cell 
death is not accounted for in this analysis. 
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Figure 2.5 Subpopulations exist within colonizing C. koseri populations. (A) Single nucleotide 
variants were identified by mapping reads from all Infant 1 samples to the draft genome of C. 
koseri recovered from Infant 1. The total number of variants in each cohort is listed in 
parentheses. (B) The frequency of each variant in each sample. Cohorts are plotted as the average 
of all variant frequencies, with error bars representing standard deviation of the mean. Asterisks 
represent cases where the frequency of variants is statistically different between body sites 
(Fisher's exact t-test with Bonferroni correction, P< 0.01).  
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Figure 2.6 CRISPR spacers are maintained over decades in Enterococcus faecalis. (A) Genomic 
organization of CRISPR-Cas array #1. (B) Alignments of array #1 and (C) array #2 from E. 
faecalis from Infant 2 of this study compared to arrays reconstructed from publicly available 
genomes for isolates. The year of isolation of all E. faecalis isolates is provided to the extent 
possible. Infants marked “Elife” are those from a previous publication from the same NICU 
(Raveh-Sadka et al. 2015). Arrows represent repeats and colors represent spacers; identical 
colors symbolize identical spacers, whereas white spacers are unique. Phage symbols represent 
spacers with a protospacer match (max 1 mismatch) in a sequence assembled from infants in the 
same NICU as this study (red), and spacers with matches in both the same NICU and a separate 
genome in NCBI (yellow).  
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Figure 2.7 E. faecalis CRISPR variants change frequency within the E. faecalis population over 
the colonization period for Infant 2. The relative abundances of each CRISPR variant 
(diagrammed in Fig. 6) are shown. Additionally, two single nucleotide variants within E. 
faecalis correlated significantly with CRISPR variant frequencies (Pearson correlation with 
Bonferroni correction, P < 0.01). Both variants are located in the coding regions of hypothetical 
proteins. 

For supplemental figures, tables, and information for Chapter 2, see 
https://doi.org/10.1101/gr.213256.116 
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The number of microbial genomes sequenced each year is expanding rapidly, in part due to 
genome-resolved metagenomic studies that routinely recover hundreds of draft-quality genomes. 
Rapid algorithms have been developed to comprehensively compare large genome sets, but they 
are not accurate with draft-quality genomes. Here we present dRep, a program that reduces the 
computational time for pairwise genome comparisons by sequentially applying a fast, inaccurate 
estimation of genome distance, and a slow, accurate measure of average nucleotide identity. dRep 
achieves a 28 × increase in speed with perfect recall and precision when benchmarked against 
previously developed algorithms. We demonstrate the use of dRep for genome recovery from time-
series datasets. Each metagenome was assembled separately, and dRep was used to identify groups 
of essentially identical genomes and select the best genome from each replicate set. This resulted 
in recovery of significantly more and higher-quality genomes compared to the set recovered using 
co-assembly. 

3.1 Introduction 
Genome-resolved metagenomics involves the recovery of genomes directly from environmental 
shotgun DNA sequence datasets (Tyson et al., 2004). This is generally performed by assembling 
short-read sequences into longer scaffolds, followed by binning together scaffolds belonging to 
the same genomes. Metagenomic analysis of related samples from the same ecosystem is often 
employed to investigate compositional stability and spatial or temporal variation. The approach 
can also reveal microbial co-occurrence patterns and identify factors or processes that control 
organism abundances. Analysis of sample series data is also important technically, as different 
abundance patterns across the sample series for different organisms provide valuable constraints 
for binning (Sharon et al., 2013). In this process, reads from individual samples are mapped back 
to a collection of genomes that is often obtained by combining the reads from all samples and 
assembling them together (co-assembly; Bendall et al., 2016; Lee et al., 2017; Vineis et al., 2016). 
However, co-assembly dramatically increases the data set size and complexity, especially when 
multiple different strains of the same species are present across the sample series, and can result 
in fragmented assemblies (Sczyrba et al., 2017). 

Independent assembly should generate more and higher-quality genomes than the co-assembly 
based approach because the complexity of individual samples is lower than that of the combination 
of samples (Supplementary Figure S3.1). The challenge that arises from independent assembly is 
that de-replication of the resulting genome set is required (Raveh-Sadka et al., 2015; Probst et al., 
2016; Olm et al., 2017). De-replication involves identifying genomes that are the ‘same’ from a 
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larger set, as well as determining the highest quality genome in each replicate set. This is important 
to maximize the accuracy of metabolic predictions and other downstream analyses. 

De-replication requires pairwise genome comparisons, and the number of comparisons required 
scales quadratically with an increasing number of genomes. Hundreds of thousands of CPU hours 
may be needed to de-replicate larger genome sets with robust algorithms (gANI; Varghese et al., 
2015). Mash, a recently developed algorithm that utilizes MinHash distance to estimate similarity 
between genomes, is an attractive alternative due to its incredibly fast speed (Ondov et al., 2016). 
However, we found that the accuracy of MASH decreases as the completeness of the compared 
genome bins decreases (Figure 3.1a). Thus, it cannot be used to de-replicate collections of partial 
genomes. 

Here we present dRep, a program that utilizes both gANI and Mash in a bi-phasic approach to 
dramatically reduce the computational time required for genome de-replication, while ensuring 
high accuracy. The genome set is first divided into primary clusters using Mash, and then each 
primary cluster is compared in a pairwise manner using gANI, forming secondary clusters of near-
identical genomes that can be de-replicated. Using published information about time required for 
genome comparisons, we performed an in silico simulation of de-replication time for Mash, gANI, 
and dRep (Figure 3.1b). The results indicate that dRep affords a multiple orders of magnitude 
increase in computation efficiency compared to naïve gANI. 

3.2 Results 
To verify this prediction and to test dRep’s accuracy, we ran dRep on 1,125 genomes assembled 
from 195 fecal metagenomes collected from 21 premature infants during the first months of life 
(Raveh-Sadka et al., 2016). Genomes were 50–100% complete and contained between 0% and 
24% contamination according to checkM (Parks et al., 2015). dRep clustered genomes in an 
identical manner to naïve gANI using default parameters, and showed near-perfect precision and 
recall using a variety of other parameters (Supplementary Table S1). Mash, on the other hand, 
resulted in a recall of 51.3% and a precision of 99.9% when compared to gANI, consistent with 
underestimation of similarity between incomplete genomes (Figure 3.1a). The actual run times 
were also very close to those predicted by our simulation: 92 versus 93 CPU hours for dRep, 2673 
vs 2784 CPU hours for naïve gANI (actual vs predicted run times), and <1 CPU hour in both cases 
for Mash. As the run-time of dRep depends on the diversity of the genome set, and pre-term infant 
gut communities are especially non-diverse (Gibson et al., 2016; Ward et al., 2016), even greater 
increases in computational efficiency are expected from most other environments than predicted 
by our simulation. 

We analyzed the same 195 metagenomes to test the prediction that, for each infant, individual 
assembly and de-replication would generate more and higher-quality genomes than co-assembly 
of the read datasets. We de-replicated genomes obtained from assemblies generated from each 
sample individually as well as from a co-assembly (to recover low-abundance genomes), and 
recovered a de-replicated genome set with 39% more bins (>75% complete, <5% contaminated) 
than were obtained from co-assembly alone (270 vs 194 genomes; Figure 3.1c). 76 bins were 
recovered only from individual assemblies, 35 only from co-assemblies, and 159 from both 
methods. 
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We next compared genomes recovered using both methods. A Wilcoxon signed-ranks test 
indicated that scaffold length, as measured by N50, was significantly higher in genomes from dRep 
(median=34 046 bp) than genomes assembled from co-assemblies 
(median=26 103 bp), P=4.0e−11. Completeness was also significantly higher in genomes from 
dRep than co-assembly overall (P=6.0e−8), and although the median value was the same for 
genomes from both sets (median=98.3%), the 5% quantiles were different (91.6% vs 84.9%, 
respectively; Supplementary Table S2). Visualizations of the similarity between groups of 
genomes were also generated using dRep (Figures 3.1d and e; Supplementary Figure S3.2). These 
may be particularly valuable for comparing the population structures of groups of genomes. Taken 
together, dRep enabled recovery of more and better genomes than co-assembly alone, and is an 
effective tool for exploring the similarity among large set of genomes. 

We used a published fecal metagenome data set with known strain heterogeneity to explore the 
effect of within-population variation on assembly and genome recovery (Sharon et al., 2013). 
Samples from the single infant were either co-assembled or samples were assembled individually 
and then de-replicated using dRep. In the case of Staphylococus hominis, co-assembly generated 
a contaminated bin (that is, many duplicate and triplicate single copy genes; Figure 3.2a). In 
contrast, a near-complete, uncontaminated genome was recovered from several individual time-
points. Previous work on the same data set (Eren et al., 2015) has shown manual bin curation of 
the co-assembled bin with anvi’o can increase the S. hominis bin quality (73% complete; 6.6% 
redundant), but still not to the level of the un-curated bin from the individual assembly (98% 
complete; 0% redundant). 

3.3 Conclusions 
It is both logical, based on the well-known effects of sample complexity, and clear from the 
analysis of human microbiome samples presented here, that assembly of data from individual 
samples followed by de-replication has major advantages over co-assembly (especially as co-
assembled genomes can be included in the de-replication process). Because it relies on Mash, dRep 
can only be used if the genomes in the comparison set are >50% complete. dRep combines checkM 
for completeness-based genome filtering (Parks et al., 2015), Mash (Ondov et al., 2016) for fast 
grouping of similar genomes, gANI (Varghese et al., 2015) or ANIm (Richter and Rosselló-Móra, 
2009) for accurate genomic comparisons, and Scipy (Jones et al., 2001) for hierarchical clustering. 
In the case of viruses and plasmids, dRep requires use of an independent method to estimate 
genome completeness because there are currently no established metrics for this in checkM. 

dRep is easy to use, highly customizable, and parallelizable. If desired, dRep can perform rapid 
pairwise genomic comparisons (without de-replication) to enable visualization of the degree of 
similarity among groups of similar genomes (Figure 3.1; Supplementary Figure 3.2). Version 0.5.5 
of dRep is available in the Supplementary Information section (Supplemental Data 1 and 2), and 
for up-to-date source-code, installation instructions, and the manual, see 
https://github.com/MrOlm/drep. 



 

  35	

3.4 Figures 

 
Figure 3.1 Assembly and de-replication with dRep results in more and higher-quality genome 
bins as compared to co-assembly. (a) A complete Escherichia coli genome was subset 10 times 
in increments of 10% (10%, 20%, 30% etc.). Subsets were compared to each other in a pairwise 
manner (100 total comparisons) using three algorithms- ANIm, MASH and gANI. For each pair 
of subsets, the alignment coverage between the two genomes as determined by MUMmer is 
shown on the x axis (aligned length / average genome length), and the ANI reported from each 
algorithm is shown on the y axis. ANIm and gANI are accurate when genomes are incomplete, 
but MASH is only accurate when genomes are essentially complete. (b) Using previously 
reported algorithm runtimes, we estimated the time required to de-replicate genome sets of 
various sizes. gANI exhibits a sharp exponential climb, limiting its use on larger genome sets; 
MASH and dRep do not. (c) De-replication of bins from individual assemblies and co-assembly 
(dRep assembly method) resulted in more bins (>75% complete, <5% contaminated) than co-
assembly alone. (d and e) Examples of genome relatedness figures generated by dRep. The red 
dotted line is the value of the lowest ANI resulting from a self-vs-self alignment of each genome 
in the cluster. 
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Figure 3.2 Strain heterogeneity reduces genome assembly quality and causes fragmentation in 
areas of extensive population-level variation. (a) Compared to individual assembly, co-assembly 
resulted in many duplicate and triplicate single copy genes. (b–d) The Staphylococcus aureus bin 
obtained from co-assembly is more fragmented than that from an individual assembly. (b) 
Scaffolds from both bins are aligned to a complete reference genome (2.7 Mbp). (c) Scaffolds 
from the co-assembly are aligned to a single scaffold (shown in gray in b) from the individual 
assembly. (d) Reads from all samples aligned to a gap in the alignment in c. Reads mapped to the 
area where co-assembly failed to recover a genome sequence (highlighted in blue) show signs of 
population-level strain variation. Gray boxes represent reads, and colored lines represent 
discrepancies between reads and reference sequence. 

For supplemental figures, tables, and information for Chapter 3, see 
https://doi.org/10.1038/ismej.2017.126 
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Fungal infections are a significant cause of mortality and morbidity in hospitalized preterm infants, 
yet little is known about eukaryotic colonization of infants and of the neonatal intensive care unit 
as a possible source of colonizing strains. This is partly because microbiome studies often utilize 
bacterial 16S rRNA marker gene sequencing, a technique that is blind to eukaryotic organisms. 
Knowledge gaps exist regarding the phylogeny and microdiversity of eukaryotes that colonize 
hospitalized infants, as well potential reservoirs of eukaryotes in the hospital room built 
environment. Genome-resolved analysis of 1,174 time-series fecal metagenomes from 161 
premature infants revealed fungal colonization of 10 infants. Relative abundance levels reached as 
high as 97%, and were significantly higher in the first weeks of life (p = 0.004). When fungal 
colonization occurred, multiple species were present more often than expected by random chance 
(p = 0.008). 24 metagenomic samples were analyzed from hospital rooms of six different infants. 
Compared to floor and surface samples, hospital sinks hosted diverse and highly variable 
communities containing novel species, including from Diptera (fly) and Rhabtida (worm) for 
which genomes were assembled. With the exception of Diptera and two other organisms, zygosity 
of the newly-assembled diploid eukaryote genomes was low. Interestingly, similar Malassezia and 
Candida species were present in both room and infant gut samples. Increased levels of fungal co-
colonization may reflect synergistic interactions or differences in infant susceptibility to fungal 
colonization. Discovery of eukaryotic organisms that have not been sequenced previously 
highlights the benefit of genome-resolved analyses, and low zygosity of assembled genomes could 
reflect inbreeding or strong selection imposed by room conditions. Together with the detection of 
the same eukaryotic species in the infant gut and hospital room, these observations indicate the 
possible role of rooms as reservoirs of infant-colonizing fungal strains.  

4.1 Introduction 
Eukaryotes are common members of the human microbiome (Baley et al., 1986; Schulze and 
Sonnenborn, 2009; Tamburini et al., 2016). The colonization density and diversity of eukaryotes 
are lower than their bacterial counterparts (Ott et al., 2008; Parfrey et al., 2011; Schulze and 
Sonnenborn, 2009), but they can have substantial health consequences. The yeast Saccharomyces 
boulardii can significantly reduce rates of antibiotic-associated diarrhea (Surawicz et al., 1989), 
protozoa limit Salmonella populations through predation (Wildschutte et al., 2004), and high 
abundances of Candida and Rhodotorula are associated with asthma development in neonates 
(Fujimura et al., 2016). Fungal disease is most prevalent in immunocompromised patients, 
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including premature infants (Fridkin and Jarvis, 1996; Manzoni et al., 2015),  although their 
incidence has declined in recent decades (Aliaga et al., 2014).  

While infant fungal disease is an active area of study, little is known about routine infant 
colonization by fungi or other eukaryotes. Studies have reported 0%, 26%, 50%, and 63% of 
premature infants being colonized by fungi (Baley et al., 1986; LaTuga et al., 2011; Stewart et al., 
2013, 2012), with variation in methodological sensitivity probably at the heart of these differences. 
Methods used to analyze the mycobiome, including culturing, DGGE,  and ITS sequencing, also 
separate the fungal fraction from the community at large. This has left basic knowledge gaps about 
the relative abundance of fungi in early life, an important point as fungi-infant interactions in early 
life are known to affect allergy development (Bush and Portnoy, 2001; Fujimura et al., 2016, 
2010). In fact, recent review articles have referred to eukaryotes as a “Missing Link in Gut 
Microbiome Studies” (Laforest-Lapointe and Arrieta, 2018), and stated that “Studies addressing 
how the infant mycobiome develops and shapes the host immune system will be required for a 
more comprehensive understanding of the early-life microbiome.” (Tamburini et al., 2016). 
Particular highlighted knowledge gaps relate to the ecological roles, growth dynamics, and source 
of eukaryotes in the human and hospital microbiomes (Huffnagle and Noverr, 2013; Laforest-
Lapointe and Arrieta, 2018). 

The hospital is a known source for bacterial infant colonists (Brooks et al., 2017). Fungal outbreak 
strains have been traced to the built environment (Mesquita-Rocha et al., 2013), yet the eukaryotic 
built environment microbiome remains understudied. This is because the vast majority of high-
throughput studies of the hospital microbiome and the human gut microbiome use bacteria-specific 
16S rRNA marker gene sequencing, and thus are blind to eukaryotes. Of five recent studies of the 
hospital microbiome, only one included primers to target the internal transcribed spacer (ITS) 
sequences to detect eukaryotes as well as bacteria (Bokulich et al., 2013; Hewitt et al., 2013; Lax 
et al., 2017; Oberauner et al., 2013; Shin et al., 2015). It remains to be seen if eukaryotes in the 
room have the genetic potential to colonize infants, and if so, where in the room these eukaryotes 
are located. 

An alternative approach to microbiome characterization involves shotgun metagenomics. In this 
method, all DNA from a sample is sequenced regardless of its organismal source or genetic 
context.  In some studies, mapping of the sequencing reads to references genomes has enabled 
identification of pathogens (Wilson et al., 2018). However, the reads can be assembled, and new 
methods aid in reconstructing eukaryotic genomes from these datasets (West et al., 2018), enabling 
understanding of these organisms in the context of their entire communities, which also include 
bacteria, archaea, bacteriophage, viruses and plasmids. Relative to amplicon sequencing, genome 
assembly has several distinct advantages for understanding communities that contain eukaryotes. 
First, genomes provide information about in situ ploidy (number of distinct chromosomes sets per 
cell), heterozygosity (for diploid organisms, here used to refer to the fraction of alleles in a genome 
that have two versus one abundant sequence types), and extent of population microdiversity (here 
used to refer to additional sequence types that constitute low abundance alleles). Second, strain-
tracking can be performed using high-resolution genomic comparisons. Last, newly assembled 
eukaryotic sequences expand the diversity of genomically defined eukaryotes in public databases, 
enabling comparative and evolutionary studies. 
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Here, we used genome-resolved metagenomics to study eukaryote-containing microbiomes of 
premature infants and their NICU environment. We evaluated the incidence of eukaryotes in room 
and infant samples and investigated the time period during which infant microbiomes contained 
eukaryotes. Genomes were assembled for fourteen eukaryotic populations and their ploidy, 
zygosity, and population microdiversity defined. The same species of eukaryotes were found in 
infant microbiome and the NICU environment, and a subset of other microbial eukaryotes in NICU 
rooms were classified as types that can cause nosocomial infections.  

4.2 Materials and Methods 

4.2.1 Subject recruitment, sample collection, and metagenomic sequencing 
This study made use of many different previously analyzed infant datasets. These datasets have 
previously published descriptions of the study design, patient selection, and sample collection, and 
are referred to as NIH1 (Brown et al., 2018; Raveh-Sadka et al., 2016), NIH2 (Brooks et al., 2017), 
NIH3 (Raveh-Sadka et al., 2015), NIH4 (Rahman et al., 2018), Sloan2 (Brooks et al., 2017), and 
SP_CRL (Sharon et al., 2013). Infants were chosen for inclusion in this study irrespective of fungal 
disease state. Negative extraction controls were performed and sequenced during the sequencing 
of the Sloan2 cohort. The last well of the extraction block (H12) was left empty, and this well was 
treated the same as all other samples throughout the extraction protocol. It is therefore a control 
for the kit reagents, the sterility of the kit tubes/plates and the aseptic technique of the technician 
who performed the extraction. S2_CON_001E1,  S2_CON_002E1, and  S2_CON_003E1 were all 
on different extraction blocks, and  S2_CON_002E2 was a second well on the same block as  
S2_CON_002E1. 

This study also involved the collection and processing of an additional 269 samples from 53 
infants. Newly collected infant fecal samples followed the same sample collection and DNA 
extraction protocol as described previously (Olm et al., 2017b; Raveh-Sadka et al., 2015). 
Metagenomic sequencing of newly collected infant fecal samples was performed in collaboration 
with the Functional Genomics and  Vincent J. Coates Genomics Sequencing Laboratories at the 
University of California, Berkeley. Library preparation on all samples was performed using the 
following basic protocol: 1) gDNA shearing to target a 500bp average fragment size was 
performed with the Diagenode Bioruptor Pico, 2) end repair, A-tailing, and adapter ligation with 
an Illumina universal stub with Kapa Biosystems Hyper Plus Illumina library preparation reagents, 
3) a double AMpure XP bead cleanup, followed by indexing PCR with dual-matched 8bp Illumina 
compatible primers. Final sequence ready libraries were visualized and quantified on the Advanced 
Analytical Fragment Analyzer, pooled into 11 subpools based on mass and checked for pooling 
accuracy by sequencing on Illumina MiSeq Nano sequencing runs. Libraries were then further 
purified using 1.5% Pippin Prep gel size selection assays collecting library pools from 500-700bp. 
Pippins pools were visualized on fragment analyzer and quanted with Kapa illumina library quant 
qPCR reagents and loaded at 3nM. The eleven pools were then sequenced on individual Illumina 
HiSeq4000 150 paired-end sequencing lanes with 2% PhiX v3 spike-in controls. Post-sequencing 
bclfiles were converted to demultiplexed fastq files per the original sample count with Illumina's 
bcl2fastq v2.19 software. New metagenomic data was processed in the same manner as in the prior 
studies, and as described previously (Rahman et al., 2018). 
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Environmental metagenomes were described and published previously as part of the Sloan2 cohort 
study (Brooks et al., 2017). All samples were collected over a roughly one-year period from the 
same NICU at the University of Pittsburgh Magee Women’s hospital. In order to generate enough 
DNA for metagenomic sequencing, DNA was collected from multiple sites in the NICU and 
combined into three separate pools for sequencing. Highly-touched surfaces included samples 
originating from the isolette handrail, isolette knobs, nurses hands, in-room phone, chair armrest, 
computer mouse, computer monitor, and computer keyboard. Sink samples included samples from 
the bottom of the sink basin and drain. Counters and floors consisted of the room floor and surface 
of the isolette. See previous publications for details (Brooks et al., 2017, 2014). 

4.2.2 Eukaryotic genome binning and gene prediction 
Reads from each sample were assembled independently using IDBA-UD (Peng et al., 2012) under 
default settings. A co-assembly was also performed for each infant, consisting of reads from all 
samples taken from that infant concatenated together. Binning assembled sequence scaffolds into 
eukaryotic genomes was performed using a EukRep based pipeline, described in detail in West et 
al. 2018. In cases where time-series data were available, samples were pre-binned using time-
series information and eukaryotic bins were then subsequently identified with EukRep. In cases 
where multiple genomes of the same organism were recovered from multiple samples from the 
same infant, the most complete genome was selected for further analysis. In addition to the gene 
prediction methodology outlined previously (West et al., 2018), a second homology-based gene 
prediction step was performed. Ribosomal S3 (rpS3) proteins were identified in genomes using a 
custom ribosomal protein S3 (rpS3) profile HMM, and identified sequences were searched against 
the NCBI database (NCBI Resource Coordinators, 2017) and UniProt (UniProt Consortium, 2015) 
using blast (Altschul et al., 1990). For each de novo assembled genome, gene sets for the top 1-3 
most similar organisms were used as homology evidence for a second pass gene prediction step 
with AUGUSTUS (Stanke et al., 2006), as implemented in MAKER (Cantarel et al., 2008). For 
Rhabditida S2_005_001R2 first pass gene predictions were used, as homology evidence decreased 
overall estimated genome completeness. Genome completeness was estimated using BUSCO 
(Simão et al., 2015)  and is based on the number of detected single-copy orthologs. N50 was 
calculated using the program checkM (Parks et al., 2015). 

To verify bins, the taxonomy of each scaffold was determined by searching gene sequences against 
the UniProt database (Raveh-Sadka et al., 2015). All bins were found to have a consistent 
phylogenetic signal, except the bin created from sample S2_009_000R2. Scaffolds had similar GC 
content and sequencing coverage, but were either dominated by genes with homology to the Class 
Sordariomycetes or Eurotiomycetes. Scaffolds from the original “megabin” were split into two 
seperate bins based on this phylogenetic signal, resulting in the genomes Nectria haematococca 
S2_009_000R2 and Exophiala sp. S2_009_000R2. Gene prediction was run again for both of these 
genomes, as described above. 

4.2.3 Phylogenetic Analyses 
In order to construct a phylogenetic tree, rpS3 proteins from each de novo genome were detected 
as described above and searched against the NCBI database using blast. Protein sets of the 3-5 
most similar organisms on NCBI were downloaded for inclusion. Other phylogenetically 
important genomes, such as A. thaliana, were included as well. For each protein set, 16 ribosomal 
proteins (bacterial ribosomal protein names L2, L3, L4, L5, L6, L14, L15, L16, L18, L22, L24, 
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S3, S8, S10, S17, and S19) were identified using custom built hidden markov models (HMMs) 
with HMMER (Finn et al., 2011), using the noise cutoff (NC). The 16 ribosomal protein datasets 
were then aligned with MUSCLE (Edgar, 2004) and trimmed by removing columns containing 
90% or greater gaps. The alignments were then concatenated. A maximum likelihood tree was 
constructed using RAxML v.8.2.10 (Stamatakis, 2006) on the CIPRES web server (Miller et al., 
2010) with the LG plus gamma model of evolution (PROTGAMMALG) and with the number of 
bootstraps automatically determined with the MRE-based bootstrapping criterion. The constructed 
tree was visualized with Interactive Tree of Life (ITOL) (Letunic and Bork, 2007). 

Average nucleotide identity (ANI) between binned genomes and reference genomes was 
determined with dRep (Olm et al., 2017a). Resulting whole genome ANI values were used in 
combination with a 16 ribosomal protein phylogenetic tree to determine the taxonomy of de novo 
genomes. For genomes without a species-level taxonomy, genomes were searched against the 
entire NCBI nucleotide database using blast. This resulted in a species-level call for Malassezia 
restricta S2_018_000R1. For genomes without a genus-level taxonomy (Rhabditida 
S2_005_001R2 and Diptera S2_005_002R2) an additional step was taken. Mitochondrial COI 
genes were identified by searching D. melanogaster and C. elegans COI genes against our 
PRODIGAL (Hyatt et al., 2010) predicted genes sets with UBLAST (Edgar, 2010). Significant 
hits from our protein sets were then searched against the Barcode Of Life Database (BOLD) 
(Ratnasingham and Hebert, 2007) and NCBI in order to identify sequences with high identity to 
our novel genomes. No significant hits were identified. 

4.2.4 Mapping-based genome detection 
To detect eukaryotes in an assembly-free manner, reads were mapped to a curated genome 
collection. This genome collection consists of all fungal genomes in RefSeq (accessed  9/14/17) 
(Pruitt and Maglott, 2001), as well as genomes assembled in this study with no close 
representatives in RefSeq (average nucleotide identity of 90% or higher according to Mash (Ondov 
et al., 2016)). The six genomes with no close representatives in RefSeq were Malassezia restricta 
S2_018_000R1, Diptera S2_005_002R2, Exophiala sp. S2_009_000R2, Verruconis sp. 
S2_005_001R2, and Rhabditida S2_005_001R2. Candida parapsilosis CDC317 was also included, 
as there were no genomes of C. parapsilosis in RefSeq. 

Reads from all samples were mapped to this reference genome list using Bowtie 2 (Langmead and 
Salzberg, 2012). To determine which organisms were present in each sample, we primarily relied 
on breadth of coverage as reported by strainProfiler (https://github.com/MrOlm/strainProfiler). In 
NICU samples, all genomes with 50% breadth of coverage or above were considered present. For 
infant samples, reads resulting from concatenating all samples belonging to the same infant were 
first used to determine which fungi be reliably detected. Genomes with 50% breadth of coverage 
or above were considered present with two exceptions, Malassezia pachydermatis and Malassezia 
sympodialis, at ~0.2 and 0.4 breadth, respectively. Considering the extensive and distributed 
breadth of coverage for these genomes (Supplemental Figure S4.1C), they were considered present 
in the infant despite having low breadth of coverage overall. Reads from each individual sample 
from each infant were then mapped to all fungi considered to be present in that infant to determine 
changes over time. Relative abundance of genomes was determined using the formula: (number of 
reads mapping to genome / total number of reads in sample). 
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The lowest coverage genome with this breadth threshold was 1.1x coverage. To determine the 
limit of detection, we first determined the relative abundance needed to achieve 1.1x coverage 
using the median infant co-assembly depth (27.5 giga-base pairs) and the median eukaryotic 
genome length in our database of organisms that were detected at least once (13.7 mega-base 
pairs). We then calculated the limit of detection using the formula ((min coverage * median length) 
/ median co-assembly depth). This lead to an estimated limit of detection of 0.05% relative 
abundance for infant fungi detection, through this number has significant variability depending on 
how deep each individual infant was sequenced. 

4.2.5 Negative extraction control analysis 
Sequences resulting from negative extraction controls were computationally processed in an 
identical manner to other samples. Reads from all control samples were mapped to the curated 
genome collection described above, and the relative abundance of all genomes with at least 10% 
breadth was plotted in Supplemental Figure S4.1. The program strainProfiler 
(https://github.com/MrOlm/strainProfiler)  was used to compare reads in sample S2_CON_000E3 
to P. lilacium genomes assembled in this study and all publically available P. lilacinum 
genomes.  Version 0.2 of the program was run with default settings, resulting in an average 
nucleotide identity measure between sample S2_CON_000E3 and all P. lilacinum genomes. Next, 
dRep v1.4.3 (Olm et al., 2017a) was used to compare the P. lilacinum genomes with each other 
using the command “dRep cluster --SkipMash”. The resulting distance matrix was merged with 
the values generated from strainProfiler to generate the dendrogram in Supplemental Figure S4.1B. 
Full code for implementation available at https://github.com/MrOlm/InfantEukaryotes. 

All publically available Malassezia genomes were acquired by searching for the term “Malassezia” 
in the assembly section of NCBI and downloading them manually. Genomes were compared to 
each other and representative genomes were chosen using dRep v1.4.3 and the commands “dRep 
compare --SkipMash” and “dRep choose --noQualityFiltering -sizeW 0.5”. A concatenation of all 
negative extraction control sequences was then mapped to the resulting genomes using Bowtie2. 
Custom scripts were used to determine the breadth of coverage of each 10,000bp window of each 
fungal genome in each sample, and each window with at least 50% breadth was marked with a tick 
using Circos (Krzywinski et al., 2009) to visualize. Open source code detailing this analysis 
available at https://github.com/MrOlm/InfantEukaryotes.  

4.2.6 Statistical analyses and generation of MDS plot 
To compare the euakryotic communities present in NICU room samples, multidimensional scaling 
(MDS) based on Bray-Curtis distance was performed. Bray-Curtis distance was calculated based 
on the relative abundance of each eukaryote present a sample using the python library SciPy 
(command scipy.spatial.distance.braycurtis) (Jones et al., 2001). Eukaryotes with at least 50% 
breadth of coverage were considered present in a sample. MDS was performed on the resulting 
all-vs-all distance matrix using the python library sklearn (command sklearn.manifold.MDS) 
(Pedregosa et al., 2011). MDS was plotted using a custom function in Matplotlib (Hunter, 2007). 
Stress was calculated using sklearn. Open source code detailing this analysis available at 
https://github.com/MrOlm/InfantEukaryotes.  

We tested for significant associations between samples containing eukaryotes and various forms 
of metadata using the python SciPy package (Jones et al., 2001). Included were six pieces of 
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continuous metadata (DOL, infant birth weight, ect.), twenty-three pieces of categorical metadata 
(specific antibiotics given and specific NICU room locations), and the phyla-level abundance of 
all bacterial genomes (seven total phyla) (Supplemental Table S4.4). Bacterial phyla-level 
abundance was determined by summing the relative abundance of all bacterial genomes present in 
a sample. Bacterial genomes for previously sequenced samples are available in a previous 
publication (Rahman et al., 2018), and bacterial genomes for newly sequenced genomes were 
binned using the same methods. Metadata was filtered such that between 20-80% of values were 
non-zero in both samples containing eukaryotes and samples not containing eukaryotes. This 
resulted in a total of 13 pieces of meta-data for statistical testing (Supplemental Table S4.4).  

In order to eliminate statistical bias introduced through sampling the same infant multiple times, 
one sample from each infant was chosen for statistical tests. If the infant was not colonized by a 
eukaryote, the sample was chosen at random. If the infant was colonized by a eukaryote, the sample 
with the highest eukaryotic abundance was chosen. Samples were considered to have a eukaryote 
present if the sum of the relative abundance of eukaryotes with at least 50% breadth was at least 
0.1% relative abundance. Fisher's exact test was used for categorical metadata, and Wilcoxon rank-
sum test was used for continuous data. Benjamini-Hochberg p-value correction (Benjamini and 
Yekutieli, 2001) was performed to account of multiple hypothesis testing. The results of all 
statistical tests are provided in Supplemental Table S4.5. Open source code detailing this statistical 
analysis available at https://github.com/MrOlm/InfantEukaryotes.  

A permutation test was performed to determine the probability of observing 1.3 fungi per infant.. 
First, 100,000 trials were run where each trial consisted of randomly selecting 13 individuals with 
replacement from a total population of 161 individuals. The average number of times each infant 
was chosen was calculated for each trial, and an empirical p-value was determined based on how 
many trials had that number of average infants or higher..  Open source code detailing this 
statistical analysis available at https://github.com/MrOlm/InfantEukaryotes.  

4.2.7 Ploidy, heterozygosity, and population microdiversity 
In order to identify variants, reads from the sample a particular genome was binned from were 
mapped back to the de novo assembled genome using Bowtie2 (Langmead and Salzberg, 2012) 
with default parameters. The PicardTools (http://broadinstitute.github.io/picard/) functions 
“SortSam” and “MarkDuplicates” were used to sort the resulting sam file and remove duplicate 
reads. Freebayes (Garrison and Marth, 2012) was used to perform variant calling with the options 
‘--pooled-continuous -F 0.01 -C 1’. Variants were filtered downstream to include only those with 
support of at least 10% of total mapped reads in order to avoid false positives. Furthermore, to 
avoid including variants as a result of mismapping reads, variants were filtered to include only 
those with coverage depth within a range of the average genome coverage plus or minus half of 
the genomes mean coverage. SNP read counts were calculated using the ‘AO’ and ‘RO’ fields in 
the freebayes vcf output file. Multiallelic sites were defined as sites with two or more non-reference 
alleles. Variants were called using the same methodology for both simulated read datasets and 
isolate genomes. Variants were used to determine ploidy, heterozygosity, and population 
microdiversity as described in the results section. Source code with full implementation details 
available at https://github.com/MrOlm/InfantEukaryotes.  

To confirm that multiallelic sites are not the result of non-specifically mapped reads from the 
bacterial community, we fragmented with pIRS (https://github.com/galaxy001/pirs) a diploid  C. 
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parapsilosis genome into simulated reads and added these reads to an infant gut metagenome 
sample without C. parapsilosis. The resulting read data set along with a separate data set comprised 
of only the simulated reads were then mapped to the original C. parapsilosis genome. No additional 
variants were detected between the sample with metagenomic reads and the sample without, 
indicating non-specifically mapped reads from bacterial community members have a minimal 
effect. 

In order to determine the effect of stochastic read coverage on variant frequencies, simulated 
haploid, diploid, and triploid genomes were generated using the pIRS 
(https://github.com/galaxy001/pirs) diploid command with the C. albicans P57072 reference 
genome. The command was used once to generate a diploid genome, and twice to generate a 
triploid genome. Simulated reads were then generated for each genome using the pIRS simulate 
command at 10x, 50x, and 100x coverage. Assemblies and raw reads were downloaded for both 
C. albicans A48 and C. parapsilosis CDC317 from NCBI to be used as example isolate genomes 
for comparison. Based on this analysis, only the two genomes with at least 50x coverage were 
included in peak allele frequency analysis.  

Genome aneuploidy was analyzed in two ways. First, reads from each sample were mapped back 
to genomes assembled from that sample. The coverage of each scaffold was determined in 10 kbp 
windows, and the coverage of all windows for each scaffold over 10 kbp was plotted. Plots were 
then analyzed for scaffolds with differing coverage, indicative of the presence of multiple copies 
of a subset of the chromosomes (Supplemental Figure S4.6). Second, reads from samples with 
genomes assembled from them were mapped to the closest available reference genome. The same 
procedure was then performed with these reference genomes in all cases where at least 80% of the 
genome was covered by reads. This allowed determination of aneuploidy on the whole-
chromosome level (Supplemental Figure S4.7). Both methods agreed that in all cases, and no 
aneuploidy was detected. 

4.3 Results 

4.3.1 Recovery of novel eukaryotic genomes from metagenomes 
In this study we analyzed 1,174 fecal metagenomes and 24 metagenomes from the NICU 
environment, totaling 5.31 terra-base pairs of DNA sequence (Supplemental Table S4.1). Fecal 
samples were collected from 161 premature infants primarily during the first 30 days of life (DOL) 
(full range of DOL 5 - 121; median 18), with an average of 7 samples per infant. NICU samples 
were taken from six patient rooms within the hospital housing the infants (Magee-Womens 
Hospital of UPMC, Pittsburgh, PA, USA). Three NICU locations were sampled in each room: 
swabs from frequently touched surfaces, wipes from other surfaces, and swabs from sinks (Brooks 
et al., 2017). Eukaryotic genomes were assembled from all samples using a EukRep based pipeline 
((West et al., 2017); see methods section for details). The bacterial component of some of the 
datasets was analyzed previously (see methods).  

Fourteen novel eukaryotic genomes were recovered in total, with a median estimated completeness 
of 91% (Table 4.1). Detailed genome assembly information is available in Supplemental Table 
S4.2. Genomes were assembled from organisms of a wide phylogenetic breadth, and four are the 
first genome sequences for their species (Figure 4.1). Twelve of the genomes are classified as 
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fungal, and are described in more detail below. The two other genomes (both recovered from 
hospital sink samples) represent the first genomes of their phylogenetic Families. Diptera 
S2_005_002R2 is within the phylogenetic clade of Diptera (true flies), and is equally related to 
Drosophila melanogaster (fruit fly) and Lucila cuprina (Australian sheep blowfly). Rhabditida 
S2_005_001R2 is within the Family Rhabditida (nematode), and is related to both pathogenic and 
non-pathogenic roundworms. In both cases BLAST searches of the rpS3 protein sequence against 
NCBI revealed no significant hits, and furthermore, comparing the mitochondrial cytochrome c 
oxidase subunit I gene and protein against the Barcode Of Life Database (BOLD) (Ratnasingham 
and Hebert, 2007) and NCBI revealed no hits with high identity. Thus, we are unable to tie our 
genomes to any morphologically described species.  

4.3.2 Fungal contaminants in extraction controls 
Four negative extraction controls were subjected to metagenomic sequencing to detect sequences 
resulting from reagent contamination. Reads from one of the four extraction controls mapped to 
Purpureocillium lilacinum (>50% of sample reads with a genome breadth of coverage of 87%) 
(Supplemental Figure S4.1A). The average nucleotide identity (ANI) was calculated between P. 
lilacinum reads in the extraction control, P. lilacinum genomes assembled in the study, and all 
previously sequenced P. lilacinum genomes in NCBI (Supplemental Figure S4.1B). P. lilacinum 
reads from the extraction control were extremely similar to genomes assembled from the NICU 
and infant gut, and divergent from previously sequenced genomes (Supplemental Figure S4.1B). 
Thus, P. lilacinum genomes assembled from room and gut samples are probably due to reagent 
contamination and not actually present in the environment.  

Reads from three of the four extraction controls mapped to Malassezia restricta S2_018_000R1, 
all at low abundance (<3% of reads with a genome breadth of coverage of 1.3 - 14.2% using reads 
from the four samples) (Supplemental Figure S4.1C). It was not possible to calculate the ANI 
between the genomes in samples and controls due to the low sequencing coverage of Malassezia 
restricta S2_018_000R1 in the extraction controls. Malassezia is a near-ubiquitous skin-associated 
fungus (Gaitanis et al., 2012).  The low breadth of coverage indicates that the genome sampled 
from the hospital surface is different to that of the Malassezia that contaminated the reagents. For 
this reason the Malassezia in infant and room samples were not excluded from further analysis.  

4.3.3 Fungal microbiome of the premature infant gut 
Excluding P. lilacinum, fungi were detected in 10 of the 161 premature infants profiled in this 
study (6%) (Figure 4.2A; Supplemental Table S4.3). The limit of detection for eukaryotic 
organisms was calculated as 0.05% of the total community (Supplemental Figure S4.2) (see 
methods for details). Eukaryotes were detected significantly more often early in life, and 
significantly more often when antibiotics were recently administered (Figure 4.2B). Antibiotics 
were given significantly more often early in life (p = 5.3E-8; Wilcoxon rank sum test), making it 
difficult to determine which of these two variables is driving the association. 

Fungal colonization was not significantly associated with gestational age, twin status, birth weight, 
mode of delivery, or other clinical metadata. (Supplemental Tables S4.4, S4.5). Further, fungal 
colonization was not associated with bacterial community composition. P. lilacinum, presumed to 
be a metagenomic contaminant (Supplemental Figure S4.1), decreases in abundance as infants age 
(Figure 4.2), probably because increased bacterial biomass in later collected samples overwhelms 
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the contaminant DNA, as shown previously (Salter et al., 2014). Given this, we infer that the 
decrease in relative abundance of fungi present in the microbiomes of later-collected samples is 
due to bacterial growth. 

All seven species detected colonizing the premature infants have been previously implicated as 
agents of nosocomial infection (Table 4.2), yet no infants colonized by eukaryotes in this study 
received antifungals or showed any symptoms consistent with acute fungal infection. However, 
asymptomatic colonization has been shown to be a risk factor for future fungemia (Huang et al., 
1998). Eight different eukaryotic species were detected in at least one infant, with only Candida 
albicans and Candida parapsilosis colonizing more than one infant (Figure 4.2A). Infant N2_070 
was colonized by two fungi, and infant N5_275 was colonized by three. A permutation test was 
performed to determine the probability of observing 13 fungi in ≤ 10 unique individuals (the 
probability of observing 1.3 fungi per infant) (Figure 4.2C), with a resulting p-value of 0.008. 
Thus, in this study multiple fungi colonized the same infant more often than expected random 
chance. 

4.3.4 Fungal microbiome of the neonatal intensive care unit  
Eukaryotic organisms were detected in 18 of the 24 metagenomes of the NICU room environment 
(Figure 4.3). Eukaryotic DNA made up an average of 1.23%, 1.22%, and 0.03% of the 
communities in highly-touched surfaces, sinks, and counters and floors, respectively. In order to 
compare the influence of room occupants and sampling location on the room mycobiome, we 
performed a multidimensional scaling (MDS) analysis (Figure 4.3A). Communities were 
differentiated based on sampling location rather than infant room.  

The mycobiome of the NICU surfaces is dominated by species of Malassezia (Figure 4.3B). The 
eukaryotic organisms found in NICU sinks are distinct from, and more diverse than, those found 
on surfaces. Sink communities contained Necteria haematococca, Candida parapsilosis, 
Exophiala, and Verruconis, all of which were detected in multiple rooms and samples. 
Additionally, sinks in three separate NICU rooms contain DNA from Rhabditidia S2_005_000R1 
(a novel nematode; see previous section for details). Diptera S2_005_002R2 (fly) also makes up 
about 2% of the entire community for single time-point in the sink in infant S2_005’s room (Figure 
4.3B). No macroscopic organisms were noted during the sample collection process. It remains to 
be seen whether these organisms contribute to dispersal of organisms throughout the NICU or 
affect the communities themselves. 

4.3.5 Similar fungi are found in the NICU and premature infant gut  
Candida parapsilosis was detected in both the NICU and in a premature infant, as were organisms 
of the genus Malassezia. To contextualize the similarity between C. parapsilosis strains in both 
communities, genomes assembled from both the infant and room environments were compared to 
all available reference genomes and each other using dRep (Olm et al., 2017a). C. parapsilosis 
genomes from the NICU sink of infant S2_005 and gut of infant N3_182 were more similar to 
reference genomes than each other (Supplemental Figure S4.3), and thus do not represent direct 
strain transfer events. However, the finding of similar fungi in the infant and built environment 
highlights the potential for colonization of premature infants by hospital-associated fungi, 
especially as many fungi detected in the hospital are known opportunistic pathogens (Table 4.2). 
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4.3.6 Sequence analysis of new genomes 
De novo assembly of eukaryotic genomes from metagenomes not only allows for detailed genomic 
comparison and detection of novel organisms, but also the determination of ploidy, aneuploidy 
(abnormal number of chromosomes in a cell), heterozygosity, and population microdiversity of 
organisms in vivo. Changes in ploidy and aneuploidy have been observed in many eukaryotes, 
especially yeasts (Hirakawa et al., 2015; Peter et al., 2018), and are thought to be a strategy for 
relatively quick adaptation to shifts in environmental conditions.  To determine the ploidy of 
genomes reconstructed in this study (Table 4.1), we examined the read count for each allele at a 
given variant site. For a diploid genome, alleles are expected to have a read count of 50%; for a 
triploid genome, alleles are expected to have a read count of either 33% or 67%. At low coverage, 
determining allele frequency with read mapping has more stochasticity relative to high coverage. 
Simulated reads for haploid, diploid, and triploid genomes at 10x and 100x coverage suggest it is 
possible to determine ploidy in even our low coverage genomes (Supplemental Figure S4.4). Based 
upon this analysis, all but one of our reconstructed genomes are diploid (Figure 4.4A, 
Supplemental Figure S4.5). C. lusitaniae is likely haploid.  Similarly, aneuploidy can be detected 
by searching for regions where allele frequencies and/or read coverage differ from the rest of the 
genome. Given the possibility of a parasexual cycle in C. albicans (Bennett and Johnson, 2003), 
detecting aneuploidy was of particular interest. We searched for evidence of aneuploidy using both 
our reconstructed genomes and reference genomes, but did not see evidence for aneuploidy in any 
of our genomes using either method. (Supplemental Figures S4.6, S4.7). 

For diploid genomes reconstructed from metagenomes, the sequences for each chromosome are a 
composite of sequences from the two alleles. Population microdiversity can be detected based on 
read counts that exceed the expected ratio of 50%. Measuring population microdiversity in this 
way can be confounded by sequencing error and stochastic read coverage variation (Supplemental 
Figure S4.4). Genomic datasets for isolates are not expected to have population microdiversity but 
will display sequencing error and stochastic read coverage variation. Consequently, we could 
separate sequencing noise from true population microdiversity by comparing the patterns we 
observed in our population genomic data to microdiversity found in isolate genomic datasets 
(Jones et al., 2004). For C. parapsilosis N3_182_000G1, the peak of allele frequencies is wider 
than that of the sequenced Candida parapsilosis isolate (Figure 4.4A), suggesting considerable 
population microdiversity. The P. lilacinum contaminant also displayed substantial microdiversity 
(Supplemental Figure S4.10). To avoid the stochasticity introduced by low sequencing coverage 
(Supplemental Figure S4.4), only genomes with over 50x sequencing coverage were analyzed for 
population microdiversity in this way. 

Another method of measuring population microdiversity involves determining the number of 
multi-allelic sites (sites with more than 2 sequence variants). Tests with simulated reads were 
performed to confirm that non-specific mapping of reads from unrelated species do not bias results 
(see methods). All of our genomes have more multiallelic sites than isolate sequenced genomes 
(Figure 4.4B), suggesting that all of our genomes have appreciable population microdiversity. 
Further, genomes from the room had higher microdiversity than those from the gut, although this 
comparison is not statistically significant (p = 0.09). 
 
Finally, overall heterozygosity for each genome was measured by calculating the number of 
heterozygous SNPs per kilo-base pair (Figure 4.4C). A wide range of heterozygosity was observed 
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within genomes. For most organisms there was low heterozygosity,, and for C. albicans and C. 
parapsilosis, comparable to that of reference isolates. Malassezia restricta S2_018_000R1 has both 
a particularly high rate of SNPs per kilo-base pair and high population microdiversity.  

4.4 Discussion 

4.4.1 Eukaryotic genome recovery from metagenomes augments information from isolate studies 
In contrast with prior studies that have investigated microbial eukaryote genomes via sequencing 
of isolates, we employed a whole community sequencing approach and could detect population 
microdiversity in both NICU and infant-derived samples. Malassezia on NICU surfaces has 
particularly high population microdiversity. Given that Malassezia are skin associated fungi 
(Gaitanis et al., 2012), their high population microdiversity may be the consequence of the 
accumulation of numerous strains throughout the hospital via shedding of skin from different 
individuals. This could also reflect naturally large population variation present within the skin of 
a single individual, as has been reported for skin-associated bacteria (Oh et al., 2014; Tsai et al., 
2016). 

In the current analysis, most of the samples contained one dominant eukaryotic genotype, 
presumably one well adapted to the habitat, but other allele variants indicate the presence of lower 
abundance genotypes (Figure 4.4B).  Given this dominance, it was possible to directly estimate 
genome heterozygosity.  Prior studies have reported that C. albicans grows clonally in vivo [51], 
yet Candida, when expressing a certain phenotype, undergoes mating (Hull et al., 2000), most 
likely via a parasexual cycle (Bennett and Johnson, 2003).  For C. albicans, the measured 
heterozygosity was comparable to that of previously sequenced isolate genomes [35,48]. Despite 
high heterozygosity of C. albicans, we see low strain heterogeneity. It has been hypothesized C. 
albicans mating may occur primarily on the skin (Lachke et al., 2003). We speculate there may be 
more strain heterogeneity on the skin or other areas of the human microbiome besides in the gut, 
as it is probable that heterozygosity in Candida populations in the human and room microbiomes 
arises due to mating with distinct coexisting strains. 

The heterozygosity measurements of all other fungi except Malassezia were low, possibly 
indicating diversity reduction due to inbreeding and/or strong selection for specific alleles. We 
speculate that this reflects a long history of colonization of a habitat type that strongly selects for 
a specific genotype, so genome structure reflects the relatively low probability of recombination 
with strains with divergent alleles (in other words, the presence of gut-adapted and sink-adapted 
strains). However, without the availability of similar genomes to compare to from other habitats, 
we cannot rule out genetic bottlenecks that took place prior to introduction to the hospital. 

An important aspect of the current study is the sequencing of reagent controls, which allowed us 
to identify P. lilacinum as a likely contaminant.  It is interesting to note that peak allele frequency 
analysis indicated high population microdiversity for the contaminant.  Genomic microdiversity 
of the reagent-associated population may indicate its long term persistence in the reagents, 
analogous to that shown for Delftia metagenome contamination that was present in Pippin size 
selection cassettes for many years (Olm et al., 2017c). Given the increasing use of metagenomic 
sequencing for pathogen detection and prior reports of P. lilacinum as both a contaminant and 
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disease agent (Luangsa-ard et al., 2011; Shivaprasad et al., 2013), it will be important to rule out 
a reagent source of P. lilacinum in future diagnostic studies. 

4.4.2 Premature infants are colonized by eukaryotes early in life 
Six percent of infants in this study were colonized by fungi, lower than most previous studies of 
infants (Baley et al., 1986; LaTuga et al., 2011; Stewart et al., 2013, 2012). Compared to shotgun 
sequencing, DGGE and ITS methods should be more sensitive due to the use of PCR, and thus 
may be more suitable for broad ecological surveys However, the ability to amplify very rare 
sequences from organisms present at exceedingly low abundance levels complicates interpretation 
of the measured colonization frequencies. Our shotgun sequencing-based methods provide a more 
balanced view of community composition than methods that rely on PCR, and detection of 
populations that comprise more than ~0.05 % of the community DNA is possible with read-
mapping (Supplemental Table S4.1; Supplemental Figure S4.2).Further, whole-community 
sequencing measures the relative abundance of eukaryotes in the context of the whole community, 
something that cannot be done using ITS, DGGE, or culturing based methods. Fungi are generally 
considered low abundance members of the gut microbiome (Schulze and Sonnenborn, 2009), yet 
in this study they reached levels are high as 55%, 78%, and 96% of the entire community (Figure 
4.2). Differences in fungal communities during early life are known to have effects on infants 
health later in life (Fujimura et al., 2016), and it remains to be seen if extreme abundance levels 
like this have long-lasting effects.  

All infants profiled in this study received 2-7 days of prophylactic antibiotics upon birth, meaning 
antibiotic use is highly correlated with earlier days of life (Supplemental Table S4.4). While both 
antibiotic administration and DOL were significantly correlated with eukaryote abundance, 
consistent with previous studies of fungal colonization of low birth weight infants (Baley et al., 
1986; Huang et al., 2000), infants who received antibiotics later in life were not colonized by 
eukaryotes. This suggests that day of life is the more important factor. However, eukaryotes may 
have not been detected in later collected microbiome samples from those infants due to increased 
relative abundance of bacteria.  In other words, the sensitivity of the shotgun sequencing method 
may be insufficient to detect fungi that persist at low abundance. 

Interestingly, permutation testing revealed that fungi colonized the same infants more often than 
expected by random chance. There may be several explanations for this phenomenon. For 
example, some infants may be more genetically predisposed to fungal colonization. Alternatively, 
fungi may interact synergistically, with the first colonizing species establishing a niche in the gut 
that makes it more suitable for other fungi. Should this effect prove to be important, it may help to 
explain how fungal colonization contributes to development of asthma or allergies (Fujimura et 
al., 2016).  

4.4.3 Differences in colonization patterns of NICU sinks and surfaces  
Because yeasts of the genus Malassezia are the most common eukaryotic member of the healthy 
skin microbiome (Gaitanis et al., 2012; Parfrey et al., 2011). This result is analogous to findings 
of previous studies, which showed that typically skin-associated bacteria dominate consortia 
associated with hospital surfaces and parts of other built environments (Brooks et al., 2018, 2017; 
Chase et al., 2016; Hewitt et al., 2013; Shin et al., 2015).  
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The same eukaryotes were never detected in sinks and surfaces, and the sinks hosted a 
comparatively diverse and variable eukaryotic community (Figure 4.3). Sinks are inherently 
heterogeneous environments with different moisture levels and chemical conditions. Punctuated 
cleaning events may also give rise to temporal variation.  Diptera S2_005_002R2 (fly), which was 
present in present in only one sink sample, may be explained by sequencing of sink-associated 
eggs, as no macroscopic organisms were detected during the collection process. Recent studies 
have suggested that insects play significant roles in the dispersal of fungi, and this may 
occasionally occur in the NICU (Madden et al., 2018).  

The other metazoan detected, the worm Rhabditida S2_005_001R2, was found in sinks from 
multiple rooms and samples collected months apart. These organisms may also be a source of 
fungi, and like the fly, could impact the overall NICU microbiome. Intriguingly, the partial genome 
appears to derive from an organism that is equally related to a bovine lungworm and 
Caenorhabditis elegans, and is potentially novel at the class level (Figure 4.1). Although we cannot 
evaluate its medical importance, the organism may have been macroscopically described but lack 
of a reference genome prevents identification. 

4.4.4 Eukaryotes in the NICU have the genomic potential to colonize hospitalized infants 
Almost all fungal species detected in the infant and NICU environments have been previously 
implicated as pathogens of immunocompromised individuals (Table 4.2). Some species, like 
Candida albicans, are almost exclusively found in warm-blooded animals and are thus adapted to 
growth in humans. Other species, like Nectria haematococca, are usually associated with soil and 
the rhizosphere. However, previous studies have shown that strains that colonize humans are 
similar to environmental strains (Luangsa-ard et al., 2011). Thus, while no direct cases of 
nosocomial infection were uncovered in this study, the presence of these strains in the NICU 
environment could pose risks to other immunocompromised premature infants. 

C. parapsilosis was identified in two premature infants and four NICU samples, whereas C. 
albicans was identified in six premature infants but not identified in NICU samples. Interestingly, 
previous studies have linked neonatal C. albicans acquisition to vertical maternal transmission, but 
were unable to identify the source of C. parapsilosis (Waggoner-Fountain et al., 1996). In this 
study different strains of C. parapsilosis were found in the NICU and in infants, meaning that either 
the infant colonizing strain did not come from the NICU or was undetected by our sampling 
strategy. However the species-resolved detection of C. parapsilosis in four of eight sink samples 
(Figure 4.3), combined with previously reported evidence of non-vertical colonization [57],  points 
to the NICUsink as a possible reservoir for C. parapsilosis strains that colonize infants. 

We applied genome-resolved metagenomics to study eukaryotes in the gut microbiomes of infants 
and their NICU rooms and detected eukaryotes associated with pathogenesis of 
immunocompromised humans, commensals of human skin, and fungi typical of environments 
such as soil and drain pipes. Genomic analysis of diploid organisms found low rates of 
heterozygosity that may be explained by persistence of hospital-associated lineages in 
environments that impose strong selective pressure. The application of this approach in other 
contexts should greatly expand what is known about eukaryotic genomic diversity, population 
variation, and strain-level dissemination pathways. 



 

  51	

4.5 Figures 

 
Figure 4.1 Phylogenetic tree of recovered eukaryote genomes. Genomes from infant-derived 
fecal samples (red) and NICU samples (blue) were classified using a phylogenetic tree based on 
the concatenation of the sequences of 16 ribosomal proteins (see the “Methods” section). 
Branches with greater than 50% bootstrap support are labeled with their bootstrap support range. 
Reference ribosomal protein sequences were obtained from NCBI and the Candida Genome 
Database 
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Figure 4.2 Abundance of eukaryotes colonizing infants. a The scaled relative abundance of each 
eukaryote colonizing an infant. Numbers on the right indicate the maximum relative abundance 
of the organism in that infant, and gray dividing lines indicate 0% relative abundance. Dots on 
the line-plots indicate days of life on which fecal samples were collected and sequenced. Infants 
colonized by multiple eukaryotes are marked with a colored asterisk. Pink bars indicate periods 
of antibiotic administration. b Metadata significantly associated with eukaryote abundance. The 
distribution of values for all samples in which eukaryotes are not present (left; white box plot) 
compared to values of samples in which eukaryotes are present (right; gray box plot). 
The p values were calculated using the Wilcoxon rank-sum test with Benjamini-Hochberg 
multiple testing p value correction. P. lilacinum was excluded from statistical tests due to its 
likely contaminant status. c Fungi are distributed among fewer individuals than expected by 
random chance. A permutation test was performed to determine the probability of observing 10 
or less unique individuals colonized by 13 fungi from a population of 161 individuals. The 
number of unique individuals colonized is shown on the x-axis, and the empirical p value based 
on 100,000 trials is shown on the y-axis. An asterisk marks the true number of unique infants 
colonized in this study (10) and the associated p value 
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Figure 4.3 Eukaryotic microbiome of the neonatal intensive care unit 
(NICU). a Multidimensional scaling (MDS) of the Bray-Curtis dissimilarity between all NICU 
samples. Samples cluster by environment type rather than the room or occupant. The stress of the 
MDS was calculated to be 0.23. b Compositional profile of eukaryotic organisms detected in the 
NICU. Each colored box represents the percentage of reads mapping to an organism’s genome, 
and the stacked boxes for each sample show the fraction of reads in that dataset accounted for by 
different eukaryotic genomes in each sample 
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Figure 4.4 Ploidy, zygosity, and microdiversity of recovered eukaryotic genomes. a Histogram 
of the frequencies of the four most abundant variants at each variant site in an isolate genome 
of C. parapsilosis and in a genome of C. parapsilosis recovered in this study. Black, red, dark 
blue, and light blue bars indicate the abundances of the most abundant, second, third, and fourth 
most abundant variant, respectively. b For each genome, black bars indicate the percentage of 
variant sites that are multiallelic (contain more variants at a site than would be expected based 
upon ploidy alone). Haplotypes with more than two alleles are also considered to be multiallelic. 
A box plot compares the values from genomes originating from infant guts vs. the NICU 
room. c For each genome, black bars indicate the number of heterozygous variants per kb across 
the entire assembled genome 

Table 4.1 Description of de novo assembled eukaryotic genomes 

Source Genome Completeness 
(%) 

Length (bp) N50 (bp) Coverage 

Infant 
gut 

Purpureocillium 
lilacinumS2_018_006G1 

98.4 35,688,710 422,361 20× 



 

  55	

Source Genome Completeness 
(%) 

Length (bp) N50 (bp) Coverage 

Infant 
gut 

Clavispora lusitaniae 
N2_070_000G1 

95.8 11,907,650 89,311 18× 

Infant 
gut 

Candida 
parapsilosisN3_182_000
G1 

96.7 12,563,647 65,710 182× 

Infant 
gut 

Trichosporon 
asahiiN5_275_008G1 

90.1 23,419,590 32,912 13× 

Infant 
gut 

Candida 
albicansSP_CRL_000G1 

91.1 12,561,678 22,840 30× 

NICU 
room 

Purpureocillium 
lilacinumS2_003_000R1 

98.4 35,724,498 520,486 67× 

NICU 
room 

Malassezia 
restrictaS2_018_000R1 

72.6 6,457,898 4912 18× 

NICU 
sink 

Nectria 
haematococcaS2_018_00
0R2 

96.7 44,952,822 24,418 10× 

NICU 
sink 

Candida 
parapsilosisS2_005_002
R2 

92.8 11,573,959 14,507 9× 

NICU 
sink 

Rhabditida S2_005_001R
2 

74.9 50,505,025 8214 8× 

NICU 
sink 

Nectria 
haematococcaS2_009_00
0R2 

73.6 31,143,909 8000 7× 

NICU 
sink 

Exophiala sp. 
S2_009_000R2 

75.9 24,670,482 7386 7× 
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Source Genome Completeness 
(%) 

Length (bp) N50 (bp) Coverage 

NICU 
sink 

Diptera S2_005_002R2 52.5 43,769,201 6834 10× 

NICU 
sink 

Verruconis sp. 
S2_005_001R2 

52.8 15,639,153 5112 6× 

 

Table 4.2 Description of detected fungal taxa 

Taxa Common 
habitats 

Pathogenicity Number of 
infants 

Locations In 
NICU 

Refs 

Candida 
albicans 

Warm 
blooded 
animals 

Common nosocomial 
pathogen 

6 Undetected [1] 

Candida 
parapsilosis 

Warm 
blooded 
animals 

Common nosocomial 
pathogen (especially 
neonates) 

2 Sink [82] 

Candida 
tropicalis 

Warm 
blooded 
animals 

Common nosocomial 
pathogen 

1 Undetected [83] 

Nectria 
haematococca 

Soil, 
rhizosphere 

Pathogen of 
immunocompromised 
patients 

0 Sink [84] 

Malassezia 
sympodialis 

Human 
skin 

Opportunistic 
pathogen 

1 Undetected [85] 

Malassezia 
globosa 

Human 
skin 

Common commensal; 
implicated in 
dandruff 

0 Surfaces [86] 

Malassezia 
pachydermatis 

Skin of 
mammals 

Opportunistic 
pathogen 

1 Undetected [87] 
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Taxa Common 
habitats 

Pathogenicity Number of 
infants 

Locations In 
NICU 

Refs 

Trichosporon 
asahii 

Soil, 
human skin 
and GI tract 

Rare opportunistic 
pathogen 

1 Undetected [88] 

Verruconis Soil, 
decaying 
vegetation 

Verruconis includes 
black yeasts; human 
pathogens 

0 Sink [89] 

Exophiala Sinks, 
drain pipes, 
swimming 
pools 

Exophiala contains 
pathogens of 
vertebrates 

0 Sink [90] 

 

For supplemental figures, tables, and information for Chapter 4, see 
https://doi.org/10.1186/s40168-019-0638-1 
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Necrotizing enterocolitis (NEC) is a devastating intestinal disease that occurs primarily in 
premature infants. We performed genome-resolved metagenomic analysis of 1,163 fecal samples 
from premature infants to identify microbial features predictive of NEC. Features considered 
include genes, bacterial strain types, eukaryotes, bacteriophages, plasmids and growth rates. A 
machine learning classifier found that samples collected prior to NEC diagnosis harbored 
significantly more Klebsiella, bacteria encoding fimbriae, and bacteria encoding secondary 
metabolite gene clusters related to quorum sensing and bacteriocin production. Notably, 
replication rates of all bacteria, especially Enterobacteriaceae, were significantly higher two days 
before NEC diagnosis. The findings uncover biomarkers that could lead to early detection of NEC 
and targets for microbiome-based therapeutics. 

5.1 Introduction 
Necrotizing enterocolitis (NEC) is widely studied yet poorly understood. First described in the 
early 1800s (Obladen, 2009), NEC is a disorder of intestinal inflammation that can progress to 
bowel necrosis, sepsis, and death (Neu and Walker, 2011). NEC affects 7% of very low birthweight 
infants born in the United States each year, and mortality rates have remained around 20 - 30% for 
several decades (Neu and Walker, 2011). The direct cause or causes of NEC remain unknown.  

The primary risk factor for NEC is preterm birth (Neu and Walker, 2011). Immature enterocytes 
exhibit hyperactive immune responses through the TLR4 pathway in response to bacterial 
lipopolysaccharide (LPS) (Claud et al., 2004), which can lead to bowel damage (Denning and 
Prince, 2018). Experimental NEC occurs in conventionally raised animals but not those reared in 
a germ-free environment (Afrazi et al., 2011; Lawrence et al., 1982). These observations suggest 
that the intestinal microbiome plays a role in the disease and led to the prevailing hypothesis that 
an excessive immune response to abnormal gut microbes is the most likely basis for the 
pathogenesis of NEC. Although no single microbe has been consistently identified as a biomarker 
for NEC (Hosny et al., 2017), increased abundance of bacteria in the phylum Proteobacteria is a 
frequently reported microbial pattern in NEC infants (Pammi et al., 2017). Most fecal microbiome-
based profiling studies of NEC utilize 16S rRNA amplicon sequencing, which provides a general 
overview of the bacteria present, but does not reveal metabolic features that could contribute to 
NEC pathogenesis. 

Genome-resolved methods may provide new insights into NEC development. The approach has 
several advantages over 16S rRNA amplicon sequencing. All DNA in a sample is sequenced, 
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allowing detection of bacteriophages, plasmids, eukaryotes, and viruses. Bioinformatic techniques 
can also infer in situ bacterial replication rates directly from metagenomic data (Brown et al., 2016; 
Korem et al., 2015), an important metric, as some microbiome-related diseases have a signal 
related to bacterial replication but not relative abundance (Korem et al., 2015). Importantly, 
genome assembly and annotation can provide functional information about organisms present and 
possibly reveal genes associated with NEC. Further, whole-genome comparisons provide strain 
discrimination, and thus detailed testing of Koch’s postulates. Finally, mapping to reference 
genomes is not required for genome detection, allowing for the discovery of novel bacterial clades 
(Brown et al., 2015). While identification of a single causative strain, virus, or toxin would be the 
most actionable result for clinicians, any associations could potentially be used as biomarkers to 
identify early warning signs of NEC, and microbial communities associated with NEC could be 
targeted with microbiome-altering techniques such as probiotics, prebiotics, or other approaches 
(Ronda et al., 2019). 

5.2 Materials and Methods 

5.2.1 Subject recruitment, sample collection, and metagenomic sequencing 
This study was reviewed and approved by the University of Pittsburgh Institutional Review Board 
(IRB PRO12100487 and PRO10090089). This study made use of many different previously 
analyzed infant datasets. These datasets have previously published descriptions of the study 
design, patient selection, and sample collection, and are referred to as NIH1 (Brown et al., 2018; 
Raveh-Sadka et al., 2016), NIH2 (Brooks et al., 2017), NIH3 (Raveh-Sadka et al., 2015), NIH4 
(Rahman et al., 2018), NIH5 (Olm et al., 2018), and Sloan2 (Brooks et al., 2017). Collated 
sequencing and health information for all infants and samples is provided in the supplemental 
materials of this manuscript (Supplemental Tables S5.1, S5.2).  

5.2.2 Metagenomic profiling 
Read processing and assembly 

Reads from all samples were trimmed using Sickle (Joshi and Fass, 2011), and reads that mapped 
to the human genome with Bowtie 2 (Langmead and Salzberg, 2012) under default settings were 
discarded. Reads from all samples were assembled independently using IDBA-UD (Peng et al., 
2012) under default settings. Co-assemblies were performed for each infant as well, where reads 
from all samples from that infant were combined and assembled together. Scaffolds <1 kb in length 
were discarded, and remaining scaffolds were annotated using Prodigal (Hyatt et al., 2010) to 
predict open reading frames using default metagenomic settings. 

Recovery of de novo bacterial genomes 

DasTool (Sieber et al., 2018) was used to select the best bacterial bins from the combination of 3 
programs for automatic binning- abawaca (https://github.com/CK7/abawaca), concoct (Alneberg 
et al., 2014), and maxbin2 (Wu et al., 2016). Cross-mapping was performed between samples for 
each infant to generate differential abundance signals, and each sample was binned independently. 
For each infant, dRep v1.4.2 (Olm et al., 2017) was then used on all bins created from all samples 
from that infant to generate an infant-specific genome set, using the command "dRep -comp 50 -
con 15 --S_algorithm ANImf -sa .99 -nc .25 --checkM_method taxonomy_wf".  
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To determine the taxonomy of bins, the amino-acid sequences of all predicted genes were searched 
against the uniprot database using the command "usearch64 -ublast $aa_file -db 
uniprot_cp.fasta.udb -maxhits 1 -evalue 0.0001 -threads 6 -blast6out $b6”, and tRep 
(https://github.com/MrOlm/tRep/tree/master/bin) was used in combination with ETE 3 (Huerta-
Cepas et al., 2016) to convert the list of identified taxIDs into taxonomic levels. Briefly, this 
assigns a call to each taxonomy level when at least 50% of protein hits reach that taxonomic level. 

Bacterial growth rates 

iRep values (Brown et al., 2016) were calculated by first mapping reads from all samples in each 
infant to the de-replicated genome set from that infant using Bowtie 2. iRep was then run using 
the command "samtools view $bam | iRep -s - ; iRep_filter.py --long", and values resulting from 
genomes with less than 0.9 breadth of coverage were discarded. 

To visualize growth rates over time (Figure 5.3a), all iRep values from all bacteria were averaged 
together for each DOL relative to NEC and plotted using the seaborn command 
“sns.pointplot(showfliers=False, ci=68)” (https://seaborn.pydata.org/). Days of life in which less 
than 5 infants were profiled were manually removed. Boxplots in Figure 5.3b were also created 
using seaborn. 

Bacteriophages, plasmids, and Eukaryotes 

For all assemblies, circular contigs were identified using VICA (Crits-Christoph et al., 2016), and 
bacteriophages were identified using VirSorter (Roux et al., 2015) and VirFinder (Ren et al., 2017). 
Bacteriophages were defined as scaffolds that were considered "level 2” or “level 1" by VirSorter, 
or less than 0.01 p-value by VirFinder. Plasmids were defined as scaffolds which were circular, 
but not identified as bacteriophage according to the above definition. Bacteriophages and plasmids 
over 10kb in length were then each de-replicated separately on a per-infant basis using dRep 
version 2.0.5, with the command "dRep dereplicate -pa .9 --S_algorithm ANImf -nc .5 -l 3000 -
N50W 0 -sizeW 1 --noQualityFiltering --clusterAlg singleOverlap". All plasmid and 
bacteriophage genomes were then compared to each other using the dRep command “dRep 
dereplicate -pa .9 --S_algorithm ANImf -nc .5 -l 10000 -N50W 0 -sizeW 1 --noQualityFiltering -
-clusterAlg single -d”. Eukaryotes were assembled and binned from the gut samples of premature 
infants as previously reported (Olm et al., 2018). 

Eukaryotic viruses 

Eukaryotic viruses were analyzed using the vFam collection (Skewes-Cox et al., 2014), a set of 
HMMs designed for the identification of eukaryotic viruses within metagenomic sequence data. 
Hmmsearch (Finn et al., 2011) was used to search the HMM set "vFam-A_2014.hmm" against 
each assembly. All hits with e-values less than 1e-5 were considered significant and retained. 
Reads were also mapped to a previously curated list of human viruses (Rampelli et al., 2016). This 
lead to the identification of no viruses when individual samples were used, and a very small 
number of viruses when combined sets of reads from each infant were used (Torque teno midi 
virus 2, Torque teno virus 14, and Macaca mulatta polyomavirus 1). This line of work was not 
followed up on due to lack of signal. 
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Diversity 

Shannon diversity and overall bacteria richness were calculated for each sample. Shannon diversity 
was calculated using the command skbio.diversity.alpha.shannon (http://scikit-bio.org/). Richness 
was calculated as the number of bacteria with relative abundances over 0.1%. 

KEGG Modules 

KEGG modules were annotated by using HMMER against an in house HMM database built from 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology groups (KOs) (Kanehisa et al., 
2014). Briefly, all KEGG database proteins with KOs were compared with all-v-all global 
similarity search using USEARCH (Edgar, 2010). MCL was then used to sub-cluster KOs 
(inflation_value = 1.1). Each sub-cluster was aligned using MAFFT (Katoh and Standley, 2013), 
and HMMs were constructed from sub-cluster alignments. HMMs were then scored against all 
KEGG sequences with KOs and a score threshold was set for each HMM at the score of the highest 
scoring hit outside of that HMMs sub-cluster. KEGG modules were considered present in a 
genome if all necessary KOs were present in that genome. 

Secondary metabolite gene clusters 

In order to identify secondary metabolites, antismash-4.0.2 was run on each infant co-assembly 
(Weber et al., 2015). The results were parsed using the custom script parse_antismash.py 
(https://github.com/MrOlm/Public-Scripts) and resulting key proteins were clustered using 
diamond (Buchfink et al., 2015) (commands: diamond makedb --in $coassemblies.faa -p 6 -d 
$coassemblies.faa.db; diamond blastp -q $coassemblies.faa -d $coassemblies.faa.db.dmnd -o 
$coassemblies.faa.out --id 50). Alignments were filtered to only retain those with >75% amino 
acid identity and 50% alignment. Hierarchical clustering was then performed using average amino 
acid identity (AAI) and resolved using a distance threshold of .5 to assign each secondary 
metabolite gene cluster to a gene cluster family. Next, for each infant the nucleotide sequences of 
all genes in a representative for each gene cluster family were concatenated together. The reads 
from each sample from that infant were mapped to this concatenation of genes in order to 
determine the dynamics of these genes in all samples from that infant. The breadth of each cluster 
was calculated as the weighted breadth (considering length) for all genes in that cluster. 

Virulence Factors 

Virulence Factors Database (VFDB) was used to search for virulence factors (Chen et al., 2005). 
The database used was from Mar 17, 2017, containing 2597 sequences. Abricate was used to search 
all predicted protein sequences against the VFDB (https://github.com/tseemann/abricate). A 
metadata file from VFDB website (http://www.mgc.ac.cn/VFs/) named “FVs.xls” was used to get 
additional information about the virulence factors. About 15% of virulence factors were not 
included in this metadata file and were excluded from additional analysis. 

Botulinum toxin 

A blast database of all subtypes of BoNTs toxin was downloaded from https://bontbase.org/ (as 
accessed on February 15 2018). Blastp was used to search predicted amino acid sequences of all 
genes against the database. Hits with an e-value less than 1e-5 were considered valid. 
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Pathogenic E. coli 

It was previously reported that pathogenic E. coli may be associated with NEC development; 
specifically the clades 73, 95, 127, 131, 144, 998, abd 69 (Ward et al., 2016). To identify E. coli 
genomes of these sequencing types in our dataset, all genomes were MLST profiled using 
PubMLST (Jolley and Maiden, 2010) and the program “mlst” (https://github.com/tseemann/mlst). 
The MLST definition requires having 7 genes; in cases where only 6 genes could be identified, if 
only one sequence type (ST) existed with those 6 gene types, the ST was inferred. Each sample 
with an E. coli genome of the above STs at over 1% relative abundance were considered to have a 
“pathogenic” E. coli. 

Proteins 

Three protein clustering methods were evaluated for use in this study- MMseqs2 (Steinegger and 
Söding, 2017) (run using default settings), cd-hit (command: “cd-hit -c 0.7 -M 200000 -T 10) 
(Huang et al., 2010), and a previously described hybrid Markov Cluster approach (Meheust et al., 
2018). Algorithms were evaluated based on their ability to reconstruct known protein clusters 
(specifically a previously described set of 16 universal ribosomal proteins (Hug et al., 2016)), and 
the hybrid Markov Cluster approach performed best (Supplemental Table S5.11). This method 
was used to cluster the amino acid sequences of all predicted genes from all assembled scaffolds. 

5.2.3 The average microbiome of NEC and control infants 
To calculate the relative abundance of all microbes in each infant, a full “genome inventory” was 
generated for each infant by resolving the overlap between the recovered bacteria, eukaryote, 
bacteriophage, and plasmid genomes. Bacteriophage and plasmid genomes were first aligned using 
nucmer (Delcher et al., 2003), and in all cases where scaffolds aligned with over 95% ANI on over 
50% of the scaffold, the scaffold was removed from the plasmid list. The resulting scaffolds were 
next aligned to bacterial genomes, and all phage/plasmid scaffolds that aligned to bacterial 
genomes with the same thresholds were removed. Finally eukaryotic genomes were aligned to the 
remaining scaffolds, and in cases where similar scaffolds were detected, the scaffold was removed 
from the eukaryotic genome. Reads from all samples were then mapped to that infant’s genome 
inventory using Bowtie 2, and the relative abundance of each organism was calculated as the 
percentage of total samples reads that map to that genome (Supplemental Table S5.12). 

In order to compare the microbiome between NEC and control infants, the microbiome of each 
cohort was averaged across all infants in that cohort (Figure 5.2a) using the relative abundance 
values described in the previous paragraph. For each day of life, the average relative abundance of 
each taxa was first calculated. A 5-day sliding window was next applied, and values from samples 
in each window were averaged. For example, DOL 10 represents the average abundances from 
DOL 8 to 12. 

5.2.4 Strain-level differences between NEC and control infants 
In order to calculate the relative abundance of each bacterium in each sample, each sample was 
mapped to the infant-specific bacterial genome set for that infant using Bowtie 2. Relative 
abundances of all bacteria were calculated as the percentage of total sample reads mapping to each 
genome. Bacteria assembled from all infants were then compared to each other using dRep, and 
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bacterial genomes with at least 99% ANI were considered to be the same “strain”. A bacterium 
was considered present in a sample if it had over 0.1% relative abundance, and the fraction of pre-
NEC and control samples in which each strain was present was calculated and plotted in Figure 
5.2c.  

A similar procedure was performed for the bacteriophage and plasmid genome sets of each infant. 
Mapping was done to each infant set separately, and genomes were considered to be the same 
“strain” if they had 99% ANI over at least 50% of their genomes. Organisms were considered 
present in a sample if they were preset at over 50% genome breadth. 

5.2.5 Principal component analysis 
Principal component analysis (PCA) was performed based on the relative abundance of bacteria 
in each sample as assessed using weighted UniFrac distance (Lozupone and Knight, 2005). A 
phylogenetic tree was created by comparing all assembled bacterial genomes to each other using 
dRep (command: “dRep --SkipSecondary -ms 100000”), the weighted UniFrac distance between 
all samples was calculated using scikit-bio (http://scikit-bio.org/), and PCA was performed using 
scikit-learn (Pedregosa et al., 2011). 

5.2.6 Machine learning Algorithm development 
2,119 features were calculated for each sample and used as the input to a machine learning 
classifier to predict pre-NEC and control samples (Supplemental Table S5.3). See above methods 
for how individual features were calculated.  

Three machine learning methods were evaluated for their ability to classify pre-NEC vs. control 
samples- a random forest classifier (sklearn.ensemble.RandomForestClassifier(n_estimators=460, 
max_features=10)) balanced using SMOTE (imblearn.combine.SMOTEENN()), a gradient 
boosting classifier (sklearn.ensemble.GradientBoostingClassifier (learning_rate = 0.1, max_depth 
= 10, max_features = 'sqrt', min_samples_split = 0.7, n_estimators = 200)) balanced using 
SMOTE, and the same gradient boosting classifier without balancing (Chawla et al., 2002; 
Pedregosa et al., 2011). Hyperparameters were empirically determined using 
sklearn.model_selection.RandomizedSearchCV, and in general many different combinations of 
hyperparameters gave similar results. Models were trained and evaluated using cross-validation 
for 5 iterations each (sklearn.model_selection.StratifiedKFold (n_splits = 10); 
sklearn.model_selection.cross_val_predict; sklearn.metrics.accuracy_score), and all achieved 
similar prediction ability (Supplemental Table S5.10). 

To determine the accuracy of the gradient boosting classifier, 100 iterations were performed where 
each iteration consisted of 1) randomly balancing the input to include 21 pre-NEC samples and 21 
control samples, 2) classifying each sample in the input using 10 fold cross validation (same 
methods as above), and 3) calculating the percentage of samples that were correctly classified. The 
median accuracy value was reported. 

Feature importance analysis 

Feature importances were determined by 100 iterations of training the gradient boosted classifier 
on the full dataset of pre-NEC and control samples. Importance values were scaled for each 
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iteration such that the overall sum equals 1. The median importance value for each feature is 
reported (Supplemental Table S5.4). 

KEGG and secondary metabolite enriched genomes 

Each bacterial genome was assigned a metabolic importance value by summing the median feature 
importances of each KEGG pathway encoded by that genome (see above methods for how KEGG 
pathways were determined). A distribution of KEGG genomes importances was generated 
(Supplemental Figure S5.4a), and based on this distribution, genomes with importance values 
over 15 were considered “organisms of interest”. Each bacterial genome was also assigned an 
importance value equivalent to the highest importance value of all secondary metabolite clusters 
encoded by that genome. A distribution was generated (Supplemental Figure S5.4b), and 
genomes with importances over 0.5 were considered enriched in important secondary metabolite 
clusters. 

5.2.7 Phylogenetic tree 
A phylogenetic tree was made to visualize the distributions of organisms of interest and organisms 
enriched in important secondary metabolite clusters (Figure 5.4f). Ribosomal protein S3 was 
identified in bacterial genomes using pFam PF00189.19 and HMMER with a score cutoff of 50 
(El-Gebali et al., 2018; Finn et al., 2011). An anchael outgroup was added, and all sequences were 
aligned using MAFFT (Katoh and Standley, 2013) under default parameters. All positions with 
gaps in over 50% of sequences were trimmed from the alignment, and FastTree was used with 
default parameters to generate a phylogenetic tree (Price et al., 2009). The tree was visualized and 
annotated using iTol (Letunic and Bork, 2007).  

5.2.8 Protein clustering 

Protein association with NEC 

Each protein cluster was considered present in a sample if a protein from that cluster had been 
assembled from the sample. Fisher's exact test was run on each protein cluster to determine if it 
was enriched in pre-NEC or control samples, and after Benjamini-Hochberg correction no p-values 
were statistically significant. 

Protein association with organisms of interest 

Each protein cluster was considered present in an organism of interest if a protein from that cluster 
was encoded in the organism’s genome. The recall and precision of each cluster with organisms 
of interest was calculated as follows: recall = the number of organisms of interest the cluster in / 
the total number of organisms of interest; precision = the number of organisms of interest the 
cluster is in / the total number of genomes the cluster is in. The recall and precision of each protein 
cluster was plotted (Figure 5.5b), and clusters with recall and precision over 0.7 were considered 
enriched in organisms of interest.  

The 85 protein clusters enriched in organisms of interest were profiled using using the pFam 
database (El-Gebali et al., 2018) with provided noise cutoffs, and the two most common pFams 
were PF00419.19 (Fimbrial) and PF00005.26 (ABC transporter) with four proteins each. We next 
determined if organisms encoding these proteins were enriched in pre-NEC samples. For each 
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pFam with at least three proteins enriched in organisms of interest, we compared the total relative 
abundance of all bacteria encoding that pFam in pre-NEC vs. control samples, as well as all iRep 
values of bacteria encoding that pFam in pre-NEC vs. control samples using the Wilcoxon rank-
sum test with Benjamini-Hochberg p-value correction (Supplemental Table S5.8). 

5.2.9 Fimbriae 
Chaperone-usher fimbriae were identified in our dataset using pFam PF00577.19 (usher protein) 
and clustered using usearch (Edgar, 2010) with the command “usearch -cluster_fast -id 0.9”. The 
taxonomic profile of each fimbriae cluster was determined based on the taxonomy of organisms 
encoded by that cluster, and relative abundance and iRep associations with pre-NEC vs. control 
samples were calculated using the Wilcoxon rank-sum test applied to all bacterial genomes 
encoding each cluster. A similar procedure was performed using genomes which were not 
classified as organisms of interest but did encode fimbriae cluster 49, comparing between pre-NEC 
and control samples and between all samples from NEC infants and all samples from control 
infants (Supplemental Figure S5.6). 

A phylogenetic tree was made in order to establish the type of usher proteins identified in our 
study. Three reference sequences from each previously established type (Nuccio and Bäumler, 
2007) were aligned with three representatives of each of our clusters using MAFFT. All columns 
with gaps in over 50% of sequences were trimmed from the alignment, IQtree was used with 
default parameters to generate a phylogenetic tree (Nguyen et al., 2015), and tree annotation was 
performed using iTol (Letunic and Bork, 2007). 

5.2.10 Effect size calculations 
To determine when signals first become apparent relative to NEC diagnosis, control samples were 
compared to samples collected over different sliding 3-day windows (Figure 5.6). To compare the 
signal at 5 days prior to NEC diagnosis, for example, a rarefied set of samples was chosen from 4-
6 days prior to diagnosis where one sample from each infant that has a sample in that window was 
randomly chosen. This procedure was repeated 10 times, and the average effect size and 95% 
confidence intervals were plotted. The effect size was calculated based on the Wilcoxon rank-sum 
test statistic (as calculated by SciPy (scipy.stats.ranksums) (Jones et al., 2001)) using the formula: 
effect size = (test statistic / square root ((observations in population 1) + (observations in 
population 2))). For iRep all iRep values were compared between the two sets, for secondary 
metabolite gene clusters the total relative abundance of genomes encoding secondary metabolite 
gene clusters classified as producing sactipeptides, bacteriocins, or butyrolactones was compared, 
for Klebsiella the total relative abundances of all genomes classified as the genus Klebsiella were 
compared, and for Fimbriae cluster 49 the total relative abundances of all genomes encoding 
fimbriae cluster 49 were compared. 

5.3 Results 

5.3.1 Metagenomic characterization of premature infant fecal samples 
We analyzed 1,163 fecal metagenomes from 34 preterm infants that developed NEC and 126 
preterm infants without NEC (Figure 5.1). Premature infant subjects were matched for gestational 
age and calendar date, and recruited from the UPMC Magee-Womens Hospital (Pittsburgh, PA) 
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over a 5 year period. Fecal samples were banked and specific samples were later chosen for DNA 
extraction and sequencing to preferentially study samples immediately prior to NEC. An average 
of 7.2 samples per infant, mostly from the first month of life, were sequenced and a total of 4.6 
terabase pairs of shotgun metagenomic sequencing generated (Supplemental Table S5.1). 
Detailed sequencing information (Supplemental Table S5.1) and patient metadata 
(Supplemental Table S5.2) are provided. 

 
Extensive computational analyses were performed on all samples to recover genomes de novo, and 
determine their phylogeny, metabolic potential, and replication rates (iRep (Brown et al., 2016)). 
We also searched samples for eukaryotic viruses, virulence factors, secondary metabolite gene 
clusters, and previously implicated pathogens (Ward et al., 2016; Zhang et al., 2018) (Figure 5.1a). 
This analysis resulted in 36 gigabase pairs of assembled sequence, 2,425 de-replicated bacterial 
genomes (average of 92% completeness and 1.1% contamination), 5,218 bacteriophage genomes, 
1,183 plasmid genomes, 7 eukaryotic genomes, and 804,185 de novo protein clusters (Figure 5.1b; 
Supplemental Table S5.6). As NEC can be a rapidly progressive disorder, for most statistical 
tests we defined NEC samples as those taken within 2 days prior to NEC diagnosis (“pre-NEC” 
samples). For infants that did not develop NEC, only one sample from the period associated with 
NEC onset was used (“control” samples). Pre-NEC and control samples were matched for day of 
life (DOL), gestational age, and recent antibiotic administration (Figure 5.1c; Supplemental 
Figure S5.1). For other analyses, when explicitly stated, all samples were used. 

5.3.2 Klebsiella pneumoniae is enriched in samples from infants with NEC 
The gut microbiomes of all infants were dominated by Proteobacteria, regardless of NEC 
development (Figure 5.2a,b). As compared to previous studies of full-term infants (Bokulich et 
al., 2016; Penders et al., 2006), the premature infants in this study had increased 
Enterobacteriaceae (a family of Proteobacteria to which many nosocomial pathogens belong (Khan 
et al., 2017)) and notably low abundances of Actinobacteria and Bacteroidetes. Factors that could 
select for these organisms include prophylactic antibiotics given to all premature infants at birth, 
high rates of birth by cesarean-section, predominance of formula feeding and immaturity of the 
intestine and immune system. Only the NEC microbiomes contained Fusobacteria and Tenericutes 
(Figure 5.2). Compared to control infants, the NEC infant microbiomes exhibited less stability, 
lower levels of Firmicutes, and higher levels of Enterobacteriaceae than the microbiomes in control 
infants (p = 8.9E-7; Wilcoxon rank sums test; Figure 5.2a). The general association of 
Enterobacteriaceae and infants that go on to develop NEC has been described previously (Morrow 
et al., 2013), but this prior analysis was not restricted to the period immediately prior to NEC 
detection. In our study, the gut microbiomes of infants that developed NEC were not significantly 
enriched in Enterobacteriaceae in pre-NEC vs. control samples (p = 0.15; Wilcoxon rank sums 
test), so the association of Enterobacteriaceae and NEC infants overall may be due to the 
proliferation of these bacteria after administration of antibiotics to treat NEC (Supplemental 
Figure S5.2). 

A principal component analysis based on weighted UniFrac distance was performed to compare 
the microbiomes of all samples from all time points (Figure 5.2b). The first two principal 
components explained 73% of the overall variance, but samples collected from NEC infants (red) 
did not cluster separately from control infants (black dots). Consideration of higher principal 
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components (up to the 5th principal component) did not separate pre-NEC and control samples, 
and samples coded by clinical metadata also did not cluster together (Supplemental Figure S5.7). 

To identify strains enriched in pre-NEC samples, the percentage of pre-NEC vs. control samples 
carrying each assembled bacterial, bacteriophage, and plasmid genome was calculated (Figure 
5.2c,d). Klebsiella pneumoniae strain 242_2 was the most associated with NEC, and was present 
above the threshold of detection in 52% of pre-NEC samples vs. 23% of control samples (p = 
0.008; Fisher's exact test) (Supplemental Table S5.12). Interestingly, closely related bacteria 
(>99% average nucleotide identity (ANI)) colonized up to 35% of all infants (Figure 5.2c). This 
is likely the result of colonization of multiple infants by the same hospital-associated bacteria 
(Brooks et al., 2017). Importantly, no organisms in this study satisfied Koch’s postulate that a 
disease causing organism should be found in all NEC infants and no healthy patients. 

5.3.3 Bacterial replication rates are higher prior to NEC development 
Bacterial replication rates are measured from metagenomic data by determining the difference in 
DNA sequencing coverage at the origin vs. terminus of replication, yielding an index of replication 
(iRep) that correlates with traditional doubling time measurements (Brown et al., 2016; Korem et 
al., 2015). Remarkably, iRep values of bacteria overall were significantly higher in pre-NEC vs. 
control samples (p = 0.0003; Wilcoxon rank sums test), in a cohort balanced for DOL, gestational 
age, and recent antibiotic administration (Figure 5.3). Further, iRep values followed a striking 
pattern in relation to NEC diagnosis: bacterial replication was stable four or more days prior to 
NEC diagnosis, increased daily in the three days prior to diagnosis, and crashed following 
diagnosis (probably due to resulting antibiotic administration) (Figure 5.3a). Individual species 
did not have enough data-points to be plotted confidently (minimum of 5 measurements per DOL), 
but genomes of the family Enterobacteriaceae displayed similar but more dramatic patterns than 
other bacteria overall (Figure 5.3ab). Increased bacterial replication prior to NEC could promote 
disease onset or merely be a reaction to changing conditions in the gut that led to NEC. 

5.3.4 Machine learning identifies additional differences between NEC and control cases 
2,119 features (e.g., the abundance of organisms encoding secondary metabolite gene clusters and 
each of 600 KEGG modules (specific metabolic pathways)) were measured for each of the 1,163 
metagenomic samples (Figure 5.1; Supplemental Table S5.3). In order to evaluate which features 
are most different between pre-NEC and control samples, a machine learning (ML) classifier was 
developed. Multiple ML algorithms were evaluated, and although all performed with similar 
accuracy (Supplemental Table S5.10), the boosted gradient classifier was ultimately chosen due 
to its known ability to handle class imbalance. The classifier was trained on all 2,119 features to 
predict if samples were pre-NEC or control, and accuracy was measured through cross-validation 
over 100 iterations. The classifier achieved a median accuracy of 64% on balanced sets; 14% better 
than random chance. While a classifier with this accuracy may have limited utility in a clinical 
setting, it allowed us to interrogate which features were most informative for differentiating pre-
NEC and control samples.  

The most important individual features used by the ML classifier were replication rates (iRep 
values), KEGG modules, secondary metabolite gene clusters, and overall plasmid abundance 
(Figure 5.4). iRep values of both specific bacterial taxa and median iRep values overall were some 
of the most important features (Figure 5.4b), while KEGG modules accounted for over 50% of 
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the total feature importance (Figure 5.4a) (Supplemental Table S5.4). A similar number of 
KEGG modules were positively and negatively associated with NEC (Figure 5.4c), but 
descriptions of the pathways associated with NEC (e.g., erythritol and galactitol transport systems) 
and anti-associated with NEC (e.g., sodium and capsular polysaccharide transport systems) bear 
no obvious relationship to the disease (Supplemental Table S5.4). Secondary metabolite gene 
clusters were the second most important category overall (Figure 5.4a), but unlike KEGG 
modules, very few were negatively associated with NEC (Figure 5.4c). The most significant 
secondary metabolite gene cluster encodes an unusual operon of biosynthetic genes found in 
Klebsiella (cluster 416). In other species, similar operons are implicated in biosynthesis of quorum 
sensing butyrolactones (Du et al., 2011). The second most significant cluster of genes occurs in 
Enterococcus and is involved in biosynthesis of a sactipeptide resembling subtilosin A1, an 
antimicrobial agent with known hemolytic activity (Huang et al., 2009) (cluster 438) 
(Supplemental Table S5.5). Interestingly, another cryptic secondary metabolite gene cluster with 
a high feature importance (cluster 432) is closely related to a previously characterized cluster on a 
plasmid of Enterotoxin-producing Clostridium perfringens adjacent to the enterotoxin gene (cpe) 
and beta2 toxin gene (cpb2) (Miyamoto et al., 2006). Overall, high plasmid abundance was 
correlated with pre-NEC samples (Figure 5.4b) and K. pneumoniae plasmids in particular were 
significantly more abundant in pre-NEC samples (p = 0.03) (Supplemental Figure S5.3).  

Feature importances were also analyzed in combination. Each bacterial strain was assigned an 
importance value based on the sum of the importance scores for the KEGG modules encoded by 
its genome. 150 genomes have high KEGG importance values (hereinafter referred to as 
“organisms of interest”) (Supplemental Table S5.7; Supplemental Figure S5.4). Interestingly, 
the organisms of interest were significantly more abundant in pre-NEC samples as compared to 
control samples (p = 0.004) (Figure 5.4d), and they cluster phylogenetically (Figure 5.4f). 97% 
were in the family Enterobacteriaceae, and of those, 90% were in the genus Klebsiella. The 
prevalence of K. pneumoniae in pre-NEC samples (Figure 5.2c) may explain the high abundance 
of K. pneumoniae plasmids in these samples. 

Secondary metabolite biosynthetic gene clusters identified to be important by the ML classifier 
occur in 218 organisms that are significantly associated with pre-NEC samples (Figure 5.4e). 
Several types of secondary metabolite gene clusters were enriched in this these genomes (p < 0.01; 
Fisher's exact test), including sactipeptides, bacteriocins, and butyrolactones (encoded by 382, 286, 
and 11 genomes, respectively) (Supplemental Table S5.7). As opposed to organisms of interest, 
these bacteria were dispersed around the phylogenetic tree (Figure 5.4f). This may indicate that 
the clusters themselves are associated with pre-NEC samples. Overall, the results point to quorum 
sensing and anti-microbial peptide production as being associated with NEC onset. 

 

5.3.5 Bacteria associated with NEC encode specific types of fimbriae 
We leveraged the gene content information provided by genome-resolved metagenomics to search 
for proteins associated with 1) pre-NEC samples and 2) organisms of interest. Three clustering 
algorithms were evaluated for their ability to reconstruct known clusters of ribosomal proteins 
(Supplemental Table S5.11), and a hybrid Markov Cluster algorithm approach (Meheust et al., 
2018) performed best. Application of the algorithm to the 36,701,491 proteins reconstructed in 
this study yielded 804,277 protein clusters, none of which was statistically associated with NEC 
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(Fisher's exact test with false discovery rate correction) (Figure 5.5a). However, 85 protein 
clusters were associated with organisms of interest with high precision and recall (>0.7) (Figure 
5.5b). The most common pFam annotations for these clusters were fimbriae and ABC transport 
proteins (Supplemental Table S5.8). However, only genomes encoding fimbrial proteins also had 
a significant association with NEC (p = 0.02; Wilcoxon rank-sum with Benjamini-Hochberg FDR 
correction; Supplemental Table S5.8). 

Comparison of fimbrial operons against public databases revealed that the majority encode 
chaperone-usher (CU) type fimbriae. A classification scheme exists for CU fimbriae based on 
usher protein pFam PF00577.19 (Nuccio and Bäumler, 2007), (El-Gebali et al., 2018). The 32,646 usher 
proteins identified in our sequencing data (Supplemental Table S5.9) were clustered into groups 
based on amino acid sequence identity, and the ten most prevalent groups were placed in a 
phylogenetic tree with reference sequences from each subtype of CU fimbriae (Figure 5.5d). All 
ten fimbriae clusters fit into the established CU fimbriae taxonomy, with 9/10 falling in the γ super-
clade and one into the π clade (Figure 5.5d). Four fimbriae clusters identified in this study were 
significantly more abundant in pre-NEC samples, and genomes encoding cluster 49 (γ4 clade) also 
had significantly higher iRep values in pre-NEC samples (Figure 5.5c). 27 genomes that encode 
fimbrial cluster 49 were not identified as genomes of interest, yet they were at significantly higher 
abundance, and have significantly higher iRep values, when considering all samples from NEC 
vs. control infants (Supplemental Figure S5.6) (p < 0.01; Wilcoxon rank-sums test). This suggests 
fimbrial cluster 49 itself may be associated with NEC and not incidentally associated with 
metabolically important genomes. 

5.3.6 Biomarkers of NEC are most informative closer to NEC diagnosis 
Statistical tests uncovered four factors significantly associated with pre-NEC samples (samples 
taken within day days prior to NEC diagnosis): iRep values overall (Figure 5.3b), genomes 
encoding specific types of secondary metabolite gene clusters (sactipeptides, bacteriocins, and 
butyrolactones) (Supplemental Table S5.7), Klebsiella (Figure 5.2c), and fimbriae cluster 49 
(Figure 5.5c). We performed a similar analysis each day up to eight days prior to NEC diagnosis 
(Figure 5.6). Genomes encoding specific types of secondary metabolite gene clusters and 
Klebsiella genomes were always significantly more abundant in NEC samples, though the effect 
size of the difference became slightly higher closer to NEC diagnosis. iRep values and the 
abundance of genomes encoding fimbriae cluster 49, on the other hand, were only significantly 
higher 3 days and 1 day prior to diagnosis, respectively. 

5.4 Discussion 
Given that we found no single predictor of NEC and identified several factors as important by 
machine learning, our results support prior indications that NEC is a complex and likely 
multifactorial disease (Ballance et al., 1990; Neu and Walker, 2011). Of the four aspects of the gut 
microbiome that differ in pre-NEC compared to control samples (Figure 5.6), the iRep values of 
all organisms in each sample had the highest effect size. Given that iRep is a measure of bacterial 
replication rather than relative abundance, the result highlights that reliance on relative abundance 
alone could be misleading. This is largely due to the fact that relative abundance metrics are 
themselves misleading because an organism can increase in relative abundance simply due to the 
decline in relative abundances of other organisms. The higher bacterial replication rate prior to 
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NEC diagnosis could be sustained by nutrient release from the breakdown of gut tissue. 
Alternatively, increased bacterial replication may trigger onset of NEC, possibly because high 
activity of a specific organism leads to imbalance in concentrations of compounds in the gut 
environment.  

Secondary metabolite gene clusters of specific types (bacteriocins, sactipeptides, and 
butyrolactones) were significantly enriched in pre-NEC compared to control samples 
(Supplemental Table S5.5). Bacteriocins are small peptides that kill closely related bacteria, and 
when produced, cell lysis could contribute to onset NEC via release of immunostimulatory 
compounds such as LPS. Sactipeptides are a class of posttranslationally modified peptides with 
diverse bioactivities (Arnison et al., 2013). The sactipeptide with the highest overall importance is 
related to a subtilosin (antimicrobial agent) with known hemolytic activity. Interestingly, all 
sactipeptides identified in this study were encoded by Firmicutes, including Clostridium 
perfringens and Clostridium difficile (Supplemental Figure S5.5; Supplemental Table S5.5). 
Production of sactipeptides by these species could trigger NEC through direct toxicity to human 
cells or via release of immunostimulatory bacterial compounds following bacterial cell lysis. This 
phenomenon could explain previous reports that implicate Clostridium in development of NEC 
(de la Cochetiere et al., 2004; Dittmar et al., 2008; Morowitz et al., 2010).  

Butyrolactones are generally involved in quorum sensing in Actinobacteria (Du et al., 2011), but 
in this study were mostly found encoded in genomes of Proteobacteria, and over half were 
identified in Klebsiella genomes. Whereas known quorum sensing systems in Proteobacteria are 
responsible for the production of virulence factors, including fimbriae (Rutherford and Bassler, 
2012; Sturbelle et al., 2015), the functions of butyrolactones in Proteobacteria remain unstudied. 
Higher proportions of Klebsiella were found in infants that went on to develop NEC, and their 
capacity to produce secondary metabolites and fimbriae could explain this association. 

Organisms with genomes encoding fimbriae cluster 49 were at significantly higher abundances on 
both the day of and the day before NEC diagnosis. Fimbriae are known stimulants of TLR4 
receptors (Fischer et al., 2006), immune receptors that are overexpressed in premature infants and 
previously linked to NEC in animal studies (Jilling et al., 2006; Leaphart et al., 2007). Fimbriae 
are the hallmark pathogenicity factors of uropathogenic E. coli (Wiles et al., 2008), a group of 
organisms that have been previously implicated as a causative agent of NEC (Ward et al., 2016). 
Uropathogenic E. coli were specifically evaluated in this study and not found to be significantly 
enriched in pre-NEC compared to control samples (Supplemental Table S5.3; Figure 5.2c). The 
associations in prior work and the current study may instead reflect a general link between fimbriae 
and TLR4 receptor stimulation. 

An advantage of genome-resolved metagenomics is that it provides whole community information, 
going far beyond what can be deduced from 16S rRNA gene surveys that are the hallmark of most 
prior and much current human microbiome research. Here we applied this approach to a 
sufficiently large dataset to achieve statistical power unprecedented in a genome-resolved 
metagenomic study, and find that there is likely no single bacteriophage, plasmid, eukaryote, virus, 
or even protein that is responsible for NEC. However, we identify several promising associations 
through machine learning, many of which have previously been proposed to explain NEC onset 
but none of which alone can explain all cases. Bacteria of the genus Klebsiella emerged from our 
analyses as organisms of potential importance, with secondary metabolite, LPS and fimbriae 
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production all being possible contributors. The association of these bacteria, as well as bacteria of 
the Clostridium genera, with NEC and their presence in the NICU (Brooks et al., 2017) supports 
prior reports proposing that colonization of premature infants by nosocomial microbes may be 
clinically significant. Overall, we provide insight into how previously proposed but distinct 
explanations for development of NEC are interconnected, and identify bacterial growth rates as 
the strongest predictor of disease onset. 

5.5 Figures 

 
Figure 5.1 Metagenomic characterization of 1,163 samples from 160 premature infants. Each 
infant is represented by a horizontal line, and dots on the line represent sequenced metagenomic 
samples. Red sections indicate periods in which the infant was undergoing treatment for 
necrotizing enterocolitis. For some statistical tests one sample was chosen for each infant (pre-
NEC and control samples); these samples are marked with larger circles. 
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Figure 5.2 Comparison of microbes in premature infants that do and do not develop NEC. (a) 
The compositional profile of microbes colonizing infants that were and were not diagnosed with 
NEC. Bacteria were classified based on their phyla and other microbes were classified based on 
their domain. Each color represents the percentage of reads mapping to all organisms belonging 
to a taxon, and the stacked boxes for each sample show the fraction of reads in that dataset 
accounted for by the genomes assembled from the sample. Proteobacteria were subdivided into 
the family Enterobacteriaceae and other. All relative abundance values were averaged over a 5-
day sliding window. Boxplots show the days of life in which samples were collected (top) and in 
which infants were diagnosed with NEC (bottom). (b) Principal component analysis (PCA) 
based on weighted UniFrac distance for all samples from NEC infants (red) and control infants 
(black). (c, d) The percentage of NEC infants vs. the percentage of non-NEC infants colonized 
by strains of (c) bacteria or (d) bacteriophage (gold) and plasmids (blue). Colonization by 
bacteria is defined as the presence of a strain at ≥ 0.1% relative abundance. Plasmid and 
bacteriophage detection required read-based genome breadth of coverage of ≥ 50%. Each dot 
represents a strain, and dashed lines show a 1:1 colonization rate. 
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Figure 5.3 Bacterial replication rates are significantly higher prior to NEC development. (a) 
Replication rates for bacterial groups relative to day of NEC diagnosis. Dots represent the mean 
value for each group on each day, and error bars represent standard error of the mean. Days of 
life in which growth rates were calculated from at least 5 infants are shown. (b) Growth rates in 
control (white) vs pre-NEC (grey) samples. p-values shown from Mann–Whitney U test.  
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Figure 5.4 Machine learning identifies differences between pre-NEC and control samples. (a) 
The sum of all individual importances for each feature category. The number of features in each 
category is listed in parentheses. (b) Importance of all individual features associated with NEC 
with classifier importances over 1%. (c) Signed importances of all individual KEGG modules 
(top, red) and secondary metabolite clusters (bottom, blue). Negative values are negatively 
associated with pre-NEC samples, positive values are positively associated with pre-NEC 
samples. (d, e) The relative abundance of genomes enriched in important KEGG modules (d) 
and important secondary metabolite enriched genomes (e) in pre-NEC vs. control samples. p-
values shown from Mann–Whitney U test. (f) The distribution of genomes enriched in important 
KEGG modules (red star) and important secondary metabolite clusters (blue star) around a 
phylogenetic tree of all recovered bacterial genomes. Genomes enriched in important KEGG 
modules are more clustered on the tree than those enriched in important secondary metabolite 
clusters. 
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Figure 5.5 Genomes encoding fimbriae are associated with necrotizing enterocolitis 
development. (a, b) Association of protein clusters with pre-NEC2 samples (a) and organisms of 
interest (b). Each dot represents a protein cluster. Recall is (a) the number of pre-NEC samples 
the cluster in / the total number of pre-NEC samples and (b) the number of organisms of interest 
the cluster in / the total number of organisms of interest. Precision is (a) the number of pre-NEC 
samples the cluster is in / the number of total pre-NEC samples, and (b) the number of organisms 
of interest the cluster is in / the total number of genomes the cluster is in. Clusters annotated as 
fimbriae are marked with a red star. Contour lines are drawn to indicate density. (c) The number 
of bacterial genomes encoding each fimbriae cluster, the special-level phylogenetic profile of 
genomes encoded by each fimbriae cluster, and each cluster’s association with NEC. (d) 
Phylogenetic tree of CU usher proteins built using IQtree. Three amino acid sequences from each 
de novo CU cluster and three reference amino acid sequences from each defined CU clade was 
included in the tree. Colors mark the phylogenetic breadth spanned by reference sequences, and 
stars represent de novo CU clades. For all de novo clusters the three randomly chosen sequences 
fell extremely close to each other on the tree. 
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Figure 5.6 Biomarkers of NEC are most informative closer to NEC diagnosis. The effect size for 
difference of each feature in pre-NEC vs. control samples is shown based on a Mann Whitney 
rank sums test over a 2 day sliding window (e.g., -5 compares samples collected from -6 to -4 
days relative to NEC diagnosis to control samples). Comparisons with p < 0.05 are marked with 
an asterisk. 

For supplemental figures, tables, and information for Chapter 5, see 
https://doi.org/10.1101/558676 
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6 Consistent metagenome-derived metrics verify and define 
bacterial species boundaries 

Longstanding questions in microbiology relate to the existence of naturally distinct bacterial 
species and genetic approaches to distinguish them. Bacterial genomes in public databases form 
distinct groups, but these databases have isolation and deposition biases. Here we compared 5,203 
bacterial genomes obtained from 1,457 environmental metagenomic samples to test the existence 
of naturally distinct clouds of diversity and evaluated metrics that could be used to define the 
species boundary. Bacterial genomes from the human gut microbiome, soil, and the ocean all 
exhibited gaps in average nucleotide identities (ANI) near the previously suggested species 
threshold of 95% ANI. While pairwise genome-wide dN/dS ratio levels off at around 98% pairwise 
ANI, estimates for homologous recombination approached zero at ~95% ANI, supporting the idea 
that sequence divergence-based breakdown in homologous recombination is a species-forming 
force. We next evaluated 45 genome-based metrics for their ability to distinguish species in cases 
where full genomes are not recovered. Full length 16S rRNA genes were least able to distinguish 
species and were under-recovered from metagenomes, but many ribosomal proteins displayed both 
high recoverability and species-discrimination power. Taken together our results verify the 
existence microbial species in metagenome-derived genomes and highlight the usefulness of 
ribosomal genes for gene-level species discrimination.  

6.1 Introduction 
A fundamental question of microbiology is whether bacterial diversity is a genetic continuum or 
divided into distinct clusters (Cohan, 2019, 2002; Shapiro and Polz, 2015). The existence of 
sequence discrete populations have been identified in public databases (Goris et al., 2007; 
Konstantinidis and Tiedje, 2005), most recently in a study using the ~90,000 bacterial genomes 
available in the public NCBI Genome database as of 15 March 2017 (Jain et al., 2018). These 
studies all describe a gap in average nucleotide identity (ANI) values at 95%, and based on this 
have proposed a 95% ANI species threshold. However it is still unclear whether the observed 
population structures are confounded by biases of microbial cultivation or whether they reflect true 
relationships between microbial cells across different natural environments, as comparison of 
biased genome sets could form spurious patterns of sequence clusters.  

Over 75% of the genomes with taxonomy in the NCBI Genome database are from the 
Proteobacteria and Firmicutes phyla, and over 10% are from the genus Streptococcus alone (Jain 
et al., 2018). Attempts have been made to un-bias the genome set when looking for sequence 
identity gaps: for example by sampling five genomes from each named species with at least 5 
genomes present in the database (Jain et al., 2018), but all biases of selective cultivation and 
sequencing are difficult to account for. These include a historical bias to sequence and deposit 
isolates that meet the expected phenotypic criteria of target species, or cultivation biases against 
alternative genotypes using defined media. Sets of genomes without selection and cultivation 
biases can be acquired through the direct sequencing of environmental DNA (genome-resolved 
metagenomics). While metagenomic methods do suffer from their own set of biases like better 
DNA extraction from gram positive than gram negative bacteria (Albertsen et al., 2015; Guo and 
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Zhang, 2013), it is unlikely that this kind of  broad bias would contribute to patterns of species-
level sequence groups. 

If distinct microbial species do exist, a relatively comprehensive analysis of public data may 
uncover the roles of recombination and selection in their origin. Several hypotheses have been 
proposed to explain genetic discontinuities, including a drop in homologous recombination at the 
species threshold (Majewski and Cohan, 1999; Vulić et al., 1997), periodic selection events that 
purge genetic diversity (Gevers et al., 2005), and neutral processes (Wilmes et al., 2009). 
Computer simulations suggest that both homologous recombination and selection are needed to 
form genotypic clusters (Fraser et al., 2007), and leading theory points to the declining rates of 
homologous recombination concurrent with sequence divergence as the force behind the 
clustering. Quantitative population genomic analyses of metagenomics data support this concept 
(Eppley et al., 2007). While compelling descriptions of speciation have been shown for a limited 
number of organisms (Cadillo-Quiroz et al., 2012; Shapiro et al., 2012), these evolutionary forces 
have not been measured and analyzed at scale across thousands of genomes nor in direct relation 
to the recently proposed 95% ANI species threshold.  

Here, we analyzed thousands of bacterial genomes recovered directly from the sequencing of 
environmental DNA to test for the existence of a sequence identity gap, and developed software 
to estimate the strength of recombination and selection forces between these genomes. Discrete 
sequence gaps were identified in all environments tested, and both estimated recombination rates 
and genome-wide dN/dS ratios showed clear patterns in relation to the 95% ANI species threshold. 
Whole genome ANI methods were compared to various marker gene alignments (including 16S 
rRNA) for the ability to create species-level groups, and recommended species thresholds are 
provided for each method. Overall our results support the existence of discrete species-level groups 
for bacteria in the three divergent environments tested, provide sequence-based evidence for the 
likely evolutionary forces at play, and provide metrics for species delineation in metagenomics 
studies. 

6.2 Materials and Methods 

6.2.1 Preparation of genome sets 
All publicly available genomes available in RefSeq as of February 21, 2018 were downloaded 
using ncbi-genome-download (https://github.com/kblin/ncbi-genome-download) with the 
command “ncbi-genome-download --format genbank -p 4 bacteria” . Taxonomy of all genomes 
was determined using ETE3 (Huerta-Cepas et al., 2016). A genome set consisting of a subset of 
the entire RefSeq set was generated to balance taxonomic representation- ten genomes were 
randomly chosen from of the 480 species in RefSeq that contained at least 10 species, leading to a 
total of 4,800 genomes. Genomes from metagenomes assembled from the ocean, soil, and 
premature infant fecal samples were accessed as deposited from the following publications 
(Diamond et al., 2018; Olm et al., 2019; Tully et al., 2018). CheckM (Parks et al., 2015) was run 
on all genome sets and only those with greater than or equal to 70% completeness and less than 
5% contamination were retained.  
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6.2.2 Visualization of average nucleotide identity gap 
All genomes in each genome set were compared to each other in a pairwise manner using FastANI 
(Jain et al., 2018)), and the genome alignment fraction was calculated by dividing the count of 
bidirectional fragment mappings by the number of total query fragments. ANI values and genome 
alignment fraction values were averaged for reciprocal comparisons and comparisons of genomes 
to themselves were removed. The density of each combination of ANI and alignment fraction was 
calculated using scipy.stats.kde (Jones et al., 2001). The density was plotted in a 3-dimensional 
histogram using matplotlib (Hunter, 2007). 

6.2.3 Calculation of dN/dS and estimated homologous recombination 
dRep (Olm et al., 2017) was used to compare each genome set in a pairwise manner on a gene-by-
gene basic using the command “dRep dereplicate $wd --S_algorithm goANI -pa 0.8 -con 5 -comp 
70”. Briefly, this identifies open reading frames using Prodigal (Hyatt et al., 2010) and compares 
their nucleic acid sequences using NSimScan (Novichkov et al., 2016). The script 
“dnds_from_drep.py” was then used to calculate the dN/dS ratio among aligned sequences 
(https://github.com/MrOlm/bacterialEvolutionMetrics). This involved first aligning the amino 
acid sequences encoded by pairs of genes which at least 70% of the genes aligned with at least 
70% sequence identity, and which were reciprocal best hits. Sequences were aligned globally using 
the BioPython Align. PairwiseAligner (Cock et al., 2009), using a blosum62 substitution matrix, -
12 open gap score, and -3 extend gap score. The alignment was then converted into a codon 
alignment using biopython, and the number of synonymous sites, synonymous substitutions, non-
synonymous sites, and nonsynonymous substitutions recorded. Finally, the overall dN/dS was 
calculated for each genome alignment using the following formula: ((non-synonymous 
substitutions / non-synonymous sites) / (synonymous substitutions / synonymous sites)). 

Homologous recombination between genome pairs was calculated as the bias towards identical 
genes based on the overall ANI between genome pairs, similar to previously described methods 
(Brito et al., 2016). First, the set of aligned genes was filtered to only those with at least 500 bp 
aligned. The probability of each gene alignment being identical by chance was determined using 
the formula (overall genome ANI(length of genome alignment)). The genome-wide number of expected 
identical genes was calculated as the sum of the probabilities of each individual gene alignment 
being the same. The actual number of identical genes for each genome pair was calculated as the 
number of alignments with a percent identity greater than 99.99%. Finally, the genome-wide bias 
towards identical genes was calculated using the formula ((number of identical genes - expected 
number of identical genes) /  number of aligned genes). 

6.2.4 Marker gene analyses 
Bacterial single copy genes were identified based on a previously curated set of Hidden-Markov 
Models (HMMs) for 16 ribosomal proteins (Albertsen et al., 2013), as accessed on GitHub at the 
following link on April 10, 2019 https://github.com/MadsAlbertsen/multi-
metagenome/blob/master/R.data.generation/essential.hmm. The amino acid sequences of all 
genomes were annotated using prodigal (Hyatt et al., 2010) and searched against the single copy 
gene HMMs using the command “hmmsearch -E .001 --domE .001” (hmmer.org). All hits with 
scores above the trusted cutoff for each HMM were retained. Both nucleic acid and amino acid 
sequences for each hit were compared using usearch (Edgar, 2010) with the command “usearch -
calc_distmx”. 
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16S rRNA genes were identified using SEARCH_16S (Edgar, 2017), with the specific command 
“usearch -search_16s $loc -bitvec gg97.bitvec”. gg97.bitvec was created using the commands 
“usearch -makeudb_usearch 97_otus.fasta -wordlength 13” and “usearch -udb2bitvec” based on 
the Greengenes reference database (as accessed at  https://github.com/biocore/qiime-default-
reference/blob/master/qiime_default_reference/gg_13_8_otus/rep_set/97_otus.fasta.gz) 
(DeSantis et al., 2006). Identified 16S rRNA genes were aligned to each other using Mothur 
((Schloss et al., 2009) with RDP release 11, update 5 (Cole et al., 2014) used as the template. 
Distance matrices were calculated using the Mothur command dist.seqs. 

Species delineation scores were calculated based the ability to recreate species-level clusters 
defined by RefSeq. A pairwise matrix was established listing each pair of genomes in our RefSeq 
genome subset and whether or not the pair belonged to the same species. The recall of a given 
genome clustering was defined as the number of genome pairs correctly identified as belonging to 
the same species divided by the total number of pairs of genomes belonging to the same species. 
The precision of a genome clustering was defined as the total number of pairs of genomes correctly 
identified as belonging to the same species divided by the total number of pairs of genomes 
correctly or incorrectly identified as belonging to the same species. The species delineation score 
was calculated as the sum of the recall and precision. 

Optimal thresholds for species delineation were empirically determined based on a distance matrix 
between all genomes in our RefSeq genome subset (distance matrix generation described above). 
For each tested genome comparison method, all distance thresholds between 50% and 100% were 
tested, incrementing by 0.1% (50%, 50.1%, 50.2%, etc.). Each pair of genomes at least as similar 
as the threshold were considered belonging to the same species, and remaining pairs are considered 
to belong to different species. A species delineation score was calculated for each threshold, and 
the threshold with the highest score was considered optimal.  

Recoverability was based on the total number of comparable units that could be recovered from a 
given metagenomic assembly. For each compared set of MAGs, the total number of recovered 
genomes was set as 100% recoverability. The recoverability of each compared protein was 
calculated as the number proteins that could be identified from each set of assemblies that genomes 
were binned from, divided by the number of quality-filtered genomes recovered from that set of 
assemblies. For example, if 100 genomes were recovered from a set of samples, and 300 proteins 
were recovered from the same set of samples, the recoverability of the protein would be 300%. 
The recoverability of all 16 ribosomal proteins concatenated together was calculated as the 
percentage of recovered genomes that contained all 16 ribosomal proteins.  

6.3 Results 

6.3.1 Generation of unbiased genome sets 
Four criteria were used to identify sets of genomes unbiased by isolation and selection biases. 1) 
Genomes must be assembled from DNA extracted directly from the environment without 
enrichment or culturing. 2) There must be no preference for particular taxa during metagenomic 
genome binning and/or curation. 3) Genomes must be available from at least 50 samples from the 
same or similar environments, and there must be at least 1000 genomes total. 4) All genomes must 
be publically available for download, not just the de-replicated genome set. Many potential 
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metagenomic studies were disqualified based on criteria (3) and (4), leading to the ultimate 
selection of three genome sets for follow up analysis (Diamond et al., 2018; Olm et al., 2019; Tully 
et al., 2018). Recent studies involving large-scale genome binning (Parks et al., 2017; Pasolli et 
al., 2019) were disqualified, both because their de-replicated genome sets used a cutoff of 95% 
ANI (thus excluded natural strain clusters) and because their pre-de-replication sets included 
identical genomes from the same time series, leading to artificial genome clusters. 

In this study, the first analysis set contains 2,178 bacterial genomes from 1,163 premature infant 
fecal samples, all of which were collected from infants born into the same neonatal intensive care 
unit (Olm et al., 2019) (Supplemental Table S1). These samples are low diversity and 
Proteobacteria and Firmicutes account for >80% of the bacteria (and for most samples, >90% of 
the reads could be assigned to genomes). The second set contains 1,166 genomes from the ocean, 
including Bacteria and Archaea (Tully et al., 2018). The third set contains 1,859 genomes from a 
meadow soil ecosystem (Diamond et al., 2018) with extremely diverse and complex microbial 
communities. We also included 4,800 genomes from NCBI GenBank, accessed February 2018, 
where we randomly selected 10 genomes from each of the 480 bacterial species with at least 10 
genomes. 

6.3.2 Discrete sequence groups exist in all analyzed genome sets 
All genomes within each set were compared to each other in a pairwise manner using the FastANI 
algorithm (Jain et al., 2018). Discrete sequence groups based on both ANI and genome alignment 
percentage were found in all genome sets (Figure 6.1). Notably, species identity gaps were even 
more prominent in genome sets based on MAGs (metagenome assembled genomes) than GenBank 
(which mainly consists of cultured isolate genomes). Comparison of GenBank genomes marked 
as belonging to the same vs. different bacterial species showed the identity gap is largely consistent 
with annotated NCBI species taxonomy, and most genome clusters segregate from each other with 
a cluster boundary at around 95%. Thus, the analysis is consistent with prior suggestions that this 
cutoff delineates the species boundary. MAGs from the human microbiome were often very similar 
to each other (>98% ANI), whereas MAG clusters from the ocean included more divergent strain 
types. In contrast, most of the comparisons involving genomes from soil involved distinct species. 

6.3.3 Gaps in ANI spectra are consistent with measurements of recombination and selection 
We next looked for clues of the evolutionary forces that could lead to discrete sequences clusters. 
An open-source program was written to estimate the rate of horizontal gene transfer and the dN/dS 
ratio from each pairwise genome alignment in a rapid and high-throughput manner (see methods 
for details). Rates of homologous recombination were estimated based on the presence of more 
identical genes than would be expected by random chance based on the genome-wide ANI, similar 
to previously described methods (Brito et al., 2016). Genome-wide average dN/dS ratios, a 
measurement of bias towards nonsynonymous vs synonymous substitutions, were calculated using 
a python implementation of the Nei equation (Nei and Gojobori, 1986). Genes with a bias towards 
non-synonymous substitutions (potentially reflecting diversifying selection) have high dN/dS 
ratios (>1), while genes with a bias against non-synonymous mutations (potentially reflecting 
purifying selection) have low dN/dS ratios (<1).  

Measurements of estimated homologous recombination and dN/dS both followed consistent 
patterns in relation to the 95% ANI species threshold in all three measured genome sets (Figure 
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6.2). Estimated homologous recombination rates followed showed a sharp decline from 100% ANI 
to around 95% ANI. This could be due to decreasing efficiency of homologous recombination with 
decreasing sequence similarity. 

All dN/dS ratios were below 1, as expected for whole-genome dN/dS comparisons (Rocha et al., 
2006). Values were highest (~0.4) between organisms with high sequence similarity and decreased 
with decreasing ANI, reaching a bottom plateau of about 0.1 (Figure 6.2). Interestingly, the dN/dS 
plateau did not tend to occur at 95% ANI, like homologous recombination, but earlier at around 
98% ANI. It is well documented that whole-genome dN/dS values tend to be higher in recently 
diverged genomes (i.e., those with high ANI values) (Castillo-Ramírez and Feil, 2013; Rocha et 
al., 2006), and it is hypothesized that this is because it takes time for selection to purge non-
synonymous mutations that are only slightly deleterious (nearly neutral). MAG clusters from soil 
had a slower decline in dN/dS with increasing divergence than was observed in other environments.  

6.3.4 Evaluating alternative methods for bacterial species delineation 
Species distinctions needed to generate an overview of the species composition of an environment 
could be generated using whole genome ANI comparisons if genomes were reconstructed 
comprehensively from metagenomes. However, this is not possible when genomes are not 
reconstructed for most organisms, a common outcome for high-complexity environments like soil. 
For example, (Howe et al., 2014) only 11% of the reads from soil were reconstructed from soil, 
essentially precluding genome recovery. Even in better cases, only 36.4% of reads were assembled 
into binned contigs and genomes were reconstructed for only ~23% of the detected bacteria 
(Diamond et al. 2019). Thus, we investigated thresholds for taxonomic species delineation using 
17 marker genes that occur in single copy in all genomes, benchmarked using RefSeq. Marker 
gene thresholds were generally above 99% ANI (Figure 6.3a; Supplemental Table S6.2). Whole-
genome alignments performed best (Figure 6.3b) and full-length 16S rRNA alignments performed 
worst for species discrimination. All ribosomal protein genes performed reasonably well, with the 
best result for rpL6. 

It is important that genes used to generate species inventories are well reconstructed from 
metagenomes. We compared the number of marker genes that could be assembled from each 
dataset as to the number of genomes that were assembled from the same dataset, and found that on 
average five times more ribosomal genes than genomes were recovered (Figure 6.3b). This finding 
is generally consistent with results from soil, where Diamond et al. reconstructed 795 genomes 
and 3325 rpS3 genes (although the dereplication of the rpS3 genes was not as stringent as is now 
recommended). 16S rRNA genes were recovered much less often than ribosomal protein genes. 
16S rRNA sequences were assembled in <15% of genomes from metagenomes, whereas genes 
encoding ribosomal proteins were reconstructed for >80% of genomes (Supplemental Figure 
S6.3). Thus, while whole genome comparison methods are most accurate, ribosomal proteins are 
a good option for species-level marker gene analysis in studies when genomes were not 
comprehensively recovered. 

6.4 Discussion 
In line with previous studies using reference databases, here we show that bacterial diversity in 
natural communities is clustered in all three environments studied. Estimated rates of horizontal 
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gene transfer fell to near zero at the 95% ANI boundary in all tested environments, and genome-
wide dN/dS ratios consistently leveled near values of 0.15  at around 98% ANI in most 
environments. The three independent metrics support the existence of natural “microbial species”. 

The observed drop in estimated homologous recombination with decreasing DNA similarity 
suggests that sequence-dependent homologous recombination is likely a homogenizing force 
preventing dissolution of bacterial species, in line with previous experimental laboratory studies, 
computer simulations, (Fraser et al., 2007; Majewski and Cohan, 1999; Vulić et al., 1997), and 
direct measurements of recombination vs.  mutation rates in natural populations (Eppley et al., 
2007). The drop in dN/dS values at ANIs significantly above  95% suggests that purifying 
selection is not likely a species-preserving evolutionary force, and is evidence against the model 
of speciation positing that species clusters result from series of genetic sweeps (Gevers et al., 
2005). Taken together, these observations support the notion that bacteria that share >95% ANI 
can recombine due to shared sequence similarity, but the rates decline as this threshold is 
approached. In combination, the observations support the applicability of the eukaryotic biological 
species concept to bacteria.   

 
Given that an increasing number of genomes derive from metagenomic DNA without culturing or 
isolation, a sequence-based method for species delineation is a practical necessity. While 
thresholds are always prone to exceptions, a genome-wide 95% ANI threshold for species 
delineation appears to be optimal given the data presented here and previously (Goris et al., 2007; 
Jain et al., 2018; Konstantinidis and Tiedje, 2005),  as well as current species-level taxonomic 
assignments in NCBI. Importantly, we identified many single copy genes that are well 
reconstructed for metagenomes and provide metrics that can proxy for ANI values, and thus are 
useful for descriptions of community composition. 

6.5 Figures 
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Figure 6.1 Average nucleotide identity gaps exist near ~95% ANI in all tested genome sets. Each 
plot is a histogram of average nucleotide identity and genome alignment percentage values 
resulting from pairwise comparison within a genome set. Height and color represent density, with 
higher peaks and hotter colors representing higher numbers of comparisons with that particular 
ANI and genome alignment percentage. The top row contains three sets of metagenome assembled 
genomes (MAGs) from different environments. On the bottom row is NCBI GenBank (rarefied to 
reduce taxonomic bias; see methods), GenBank only including comparisons between genomes 
annotated as the same species, and GenBank only including comparisons between genomes 
annotated as different species.  
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Figure 6.2 Markers of recombination and selection follow patterns related to the proposed 95% 
ANI species threshold. Each plot displays a histogram of ANI values resulting from pairwise 
comparison with a genome set (light grey bars), the median estimated recombination rate at each 
ANI  level (green line), and the median dN/dS ratio at each ANI level (orange line). A dotted line 
is drawn at at 95% ANI to mark the commonly proposed threshold for species delineation, and 
95% confidence intervals are shown shaded around green and red lines. 

 



 

  86	

 
Figure 6.3 Whole genome alignment outperforms marker genes for species discrimination. (a) 
Histograms of ANI values between bacteria from GenBank annotated as belonging to the same 
species (green) or different species (red). Each row is a different method of nucleotide sequence 
alignment, and vertical black lines indicate the ANI value with the highest species discrimination 
score for that method. (b) The highest species discrimination score, a metric for how well microbes 
of the same vs. different species can be separated, for various nucleotide alignment methods. 
Shown are three algorithms for whole genome alignment (purple), nucleotide alignments of 16 
ribosomal proteins (brown), an alignment resulting from concatenating all ribosomal proteins 
(green), and a full length 16S rRNA gene alignment (red). A black line indicates the average 
recoverability of each comparison method across all three tested datasets. Recoverability describes 
the ability of the feature being compared by the metric to be assembled. The number of genomes 
recovered from a dataset is defined as 100%, and the recoverability of a feature that was recovered 
twice as often as genomes would have a recoverability of 200%, for example.  

Supplemental Table S6.1. Information on MAG sets 

Set Genomes Samples DOI 

infantMAGs 2178 1163 https://doi.org/10.1101/558676 

soilMAGs 1859 60 https://doi.org/10.1101/445817 
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oceanMAGs 1166 234 https://doi.org/10.1038/sdata.2017.203 

 

Supplemental Table S6.2. Optimal species delineation thresholds 

Method Sequence type Threshold Precision Recall Score 

Mash DNA 94.9 0.80936106 0.85215909 1.66152015 

ANImf DNA 94.4 0.80715056 0.85087121 1.65802177 

FastANI DNA 94.5 0.80790634 0.84689394 1.65480028 

RPL6 DNA 99.3 0.79069307 0.75625 1.54694307 

RPL2 DNA 99.2 0.75317177 0.77579545 1.52896723 

RPL24 DNA 99.4 0.77576988 0.75287879 1.52864866 

RPS17 DNA 99.3 0.73539121 0.7932197 1.5286109 

RPL3 DNA 99.1 0.72483635 0.80113636 1.52597272 

RPL5 DNA 99.1 0.69889019 0.81579545 1.51468564 
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RPL4 DNA 98.7 0.65225812 0.84193182 1.49418994 

RPL15 DNA 99.1 0.718292 0.77227273 1.49056472 

RPS3 DNA 99.5 0.74522001 0.73965909 1.4848791 

RPS8 DNA 99 0.62661546 0.84666667 1.47328212 

RPS10 DNA 99.4 0.70115657 0.7692803 1.47043687 

RPL18 DNA 99.2 0.67850759 0.79079545 1.46930304 

RPL22 DNA 99.4 0.65202713 0.80473485 1.45676198 

RPL14 DNA 99.2 0.61561444 0.83511364 1.45072808 

All RP DNA 99.1 0.73423015 0.705 1.43923015 

RPL16 DNA 99.6 0.69596251 0.73128788 1.42725039 

RPS19 DNA 100 0.68101452 0.7017803 1.38279482 

16S rRNA DNA 99.7 0.65569738 0.58568182 1.2413792 

RPL6 AminoAcid 99.7 0.73725194 0.73878788 1.47603982 
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All RP AminoAcid 99.9 0.86037332 0.57791667 1.43828998 

RPL3 AminoAcid 99.6 0.65177335 0.76640152 1.41817486 

RPS8 AminoAcid 99.3 0.54718347 0.85878788 1.40597135 

RPL5 AminoAcid 99.5 0.54341432 0.83280303 1.37621735 

RPL2 AminoAcid 99.9 0.57972268 0.78708333 1.36680601 

RPL24 AminoAcid 99.1 0.52917235 0.83723485 1.3664072 

RPL15 AminoAcid 98.7 0.46445273 0.89159091 1.35604364 

RPS17 AminoAcid 98.9 0.48545339 0.86590909 1.35136248 

RPL18 AminoAcid 99.2 0.470282 0.82121212 1.29149412 

RPS3 AminoAcid 99.3 0.31017773 0.91162879 1.22180651 

RPL16 AminoAcid 99.6 0.32937547 0.88159091 1.21096638 

RPL22 AminoAcid 99.1 0.29092691 0.91056818 1.2014951 

RPL14 AminoAcid 99.7 0.25883927 0.92340909 1.18224836 
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RPL4 AminoAcid 98.1 0.24711558 0.93136364 1.17847921 

RPS19 AminoAcid 99.4 0.21774692 0.90655303 1.12429996 

RPS10 AminoAcid 98.1 0.07505528 0.97333333 1.04838861 

 

Supplemental Table S6.3. Marker gene recoverability from metagenomes 

Set Gene Percentage 

Recovered (%) 

Average copy number Median length (bp) 

GenBank 16s 85.1666667 2.37059687 1502 

GenBank RPL14 99.5833333 1.00439331 369 

GenBank RPL15 99.125 1.0023119 441 

GenBank RPL16 99.0416667 1.00694152 417 

GenBank RPL18 97.5208333 1.00640889 357 

GenBank RPL2 99.6458333 1.00188166 831 
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GenBank RPL22 99.625 1.00418235 342 

GenBank RPL24 99.1875 1.00231044 315 

GenBank RPL3 99.2291667 1.00209952 636 

GenBank RPL4 99.7291667 1.01044496 621 

GenBank RPL5 99.8958333 1.00208551 540 

GenBank RPL6 99.4791667 1.00586387 537 

GenBank RPS10 99.7291667 1.00376018 309 

GenBank RPS17 99.5833333 1.00251046 261 

GenBank RPS19 97.8333333 1.00212947 279 

GenBank RPS3 99.7708333 1.00313218 699 

GenBank RPS8 99.8958333 1.00479666 399 

GenBank concat_16 93.9791667 1 7356 

infantMAGs 16s 13.4891349 1.37575758 1490 
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infantMAGs RPL14 84.2148421 1.01605839 369 

infantMAGs RPL15 88.601886 1.01248844 441 

infantMAGs RPL16 84.3378434 1.00777454 432 

infantMAGs RPL18 83.1898319 1.00935961 360 

infantMAGs RPL2 83.6818368 1.00391773 831 

infantMAGs RPL22 83.1488315 1.01084278 339 

infantMAGs RPL24 83.2718327 1.00442913 315 

infantMAGs RPL3 85.895859 1.00572519 630 

infantMAGs RPL4 85.5268553 1.01724964 624 

infantMAGs RPL5 84.0918409 1.00633528 540 

infantMAGs RPL6 84.4608446 1.01358564 537 

infantMAGs RPS10 86.797868 1.003305 309 

infantMAGs RPS17 83.3948339 1.00737101 261 
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infantMAGs RPS19 82.1648216 1.00498753 279 

infantMAGs RPS3 83.8458385 1.00537634 669 

infantMAGs RPS8 84.4608446 1.01213003 399 

infantMAGs concat_16 67.6916769 1 7347 
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Concluding	remarks	and	future	work	

An overarching conclusion from this work is that techniques for cultivation independent research 
of the human microbiome are rapidly advancing, with large-scale changes in the research 
landscape occurring over the five years during which this thesis was written. It has been known 
for over a century that there are microbes that inhabit humans and likely impact health (Gordon, 
2008; Shulman et al., 2007), but the vast complexity and diversity of the bacteria that make up 
human oral and fecal microbiomes were not established until the mid-2000s through the use of 
16S rRNA gene sequencing (Aas et al., 2005; Gill et al., 2006). These discoveries in part led to 
the establishment of the NIH human microbiome project in 2007, a large-scale multi-center effort 
to characterize the healthy human microbiome using 16S rRNA sequencing and limited shotgun 
metagenomic sequencing.  
 
The first major results from the Human Microbiome Project, published in 2012, used an OTU-
based analysis pipeline to analyze 16S rRNA sequencing data, QIIME, and methods that involve 
mapping metagenomic reads to reference genomes to analyze metagenomic data, MetaPhlAn and 
HUMAnN (Abubucker et al., 2012; Caporaso et al., 2010; Human Microbiome Project 
Consortium, 2012; Segata et al., 2012). 16S rRNA sequencing is still heavily in use today, but 
there have many significant changes to algorithm specifics in recent years. These include a move 
away from OTU-based pipelines, which have low specificity, to the use of oligotypes and exact 
sequence variants (ESV)s, which involve more computational complexity during analysis but 
result in more detailed taxonomic calls (Callahan et al., 2017; Eren et al., 2013; Nayfach et al., 
2015)). These methods are still not able to achieve species-level resolution, however, as presented 
in Chapter 6 of this thesis. Mapping-based shotgun metagenomic pipelines are also still in use 
today, and thanks to computational improvements and the increasing size of reference databases, 
these methods can achieve reasonable specificity and accuracy when reference genomes are 
available (Nayfach et al., 2016). However, large fractions of bacterial strains in the human 
microbiome do not have representatives in public databases to this day (Nayfach et al., 2019; 
Pasolli et al., 2019), making genome-resolved metagenomics the best option for strain-resolved 
analyses and functional potential prediction. This resolution is especially important when profiling 
human microbiome samples, where single genes or mutations can alter the pathogenicity of an 
organism (Schloissnig et al. 2012; Franzosa et al. 2015). 
 
The biggest hurdle to genome-resolved metagenomic analysis is the assembly step. While the first 
genome-resolved metagenomic study was published in 2004 using DNA extracted from acid mine 
drainage biofilms (Tyson et al., 2004), the higher complexity of the human gut microbiome 
precluded genome-resolved metagenomic study until sequencing technologies improved. The first 
culture-independent genomes recovered from the human microbiome were described in 2011, and 
were based on relatively simple premature infant fecal samples (Morowitz et al., 2011). Thanks to 
increases in sequencing throughput, genome-resolved metagenomic studies have since been 
performed on many aspects of the adult human microbiome (Di Rienzi et al., 2013; Bäckhed et al., 
2015; Vineis et al., 2016), including the thousands of genomes recovered in this thesis, and recent 
studies have assembled and binned hundreds of thousands of microbial genomes from the human 
microbiome (Nayfach et al., 2019; Pasolli et al., 2019).  
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The increasing popularity of genome-resolved metagenomics has led to a number of new analysis 
methods and pipelines for genome-resolved metagenomic data. Arguably the most important 
development is the ability to measure in situ genome replication rates from metagenomic data. 
First proposed for use with complete reference genomes (Korem et al., 2015), improvements have 
been made to allow its use in fragmented draft genomes (Brown et al., 2016 and Appendix 1.1) 
and to improve measurement accuracy (Gao and Li, 2018). New algorithms have also been 
developed to compare large number of genomes at speeds that are orders of magnitude faster than 
before (Jain et al., 2018; Olm et al., 2017, see Chapter 3; Ondov et al., 2016), and a plethora of 
automatic genome binning algorithms have been recently developed as well (Lu et al., 2017; Sedlar 
et al., 2017; Sieber et al., 2018). An exciting prospect afforded by the increasing number of samples 
generated per study is the ability to perform statistical and machine-learning based analyses. The 
use of classic machine learning algorithms have led to significant improvements in our ability to 
predict microbiome responses (see Chapter 5, Rahman et al., 2018; see Appendix 1.4; Smillie et 
al., 2018), and the full exploitation of these and future algorithms will likely lead to our next level 
understanding of the complex dynamics that govern human microbiome assembly. 
 
Another overarching conclusion from this work is the power of custom metagenomic methods. 
Many studies restrict their sequencing-based analysis to what can be performed by a pre-developed 
pipeline, like QIIME for 16S rRNA data or MIDAS for mapping based metagenomic data 
(Caporaso et al., 2010; Nayfach et al., 2015). While this is sufficient to address questions like “are 
these microbiomes different?” and “which microbes are significantly more abundant in specific 
samples?”, many other detailed questions can only be answered by customizing analysis methods 
to address specific questions. For example, the progressive fixation of SNPs of identical genomes 
in different body-sites, described in Chapter 2 of this thesis, was only possible by linking together 
several previously described algorithms and developing a significant amount of new 
methodologies as well.  As shown throughout this thesis, analysis of the sequencing reads and 
generation of inventories of polymorphic sites can address many interesting questions, such as 
patterns of microbial strain dispersal, in situ evolutionary rates, strain-specific growth  rates, strain-
specific gene content and zygosity and ploidy of eukaryotic genomes. 
 
A conclusion of this work is that there is vast amount left to learn about the human microbiome. 
In this thesis, significant effort was made to fully characterize the microbiomes studied, including 
consideration of bacteria, bacteriophages, plasmids, and eukaryotes. While this led to assignment 
of ~90% of the reads to genomes, the remaining 10% of reads probably derive from important, but 
low abundance community members, and deeper sequencing would reveal additional such rare 
members. Further, while in situ evolution was characterized for relatively high-abundance 
microbial community members, rare evolutionary events that could be insightful about the 
evolutionary pressures faced by other microbiome members may be missed. For example, 
acquisition of mobile elements known to heavily modulate the virulence of common bacterial 
pathogens like Vibrio cholera (Reidl and Mekalanos, 1995) may only occur in a few cells.  
 
Gaps in knowledge about microbial communities can also be due to fragmentation of assemblies. 
Recently, it was shown that large bacteriophages are common in many different microbiome types 
(Al-Shayeb et al., 2019; Devoto et al., 2019).  However, these are likely far more widespread than 
currently realized because their genomes are almost always fragmented. New methods for 



 

  96	

automatic genome curation would be both to solve this problem and to greatly   improve the 
reliability of microbial genomes.  
 
Human microbiome research could benefit enormously from the use of models. For example, a 
model describing the sequences from microbial populations as clouds, rather than genomes with 
specific sequence variants, would more closely reflect reality and could be useful for both between-
sample with within-sample comparisons. This model should include consideration of linkage and 
clonality, and would immediately be useful for identifying positions within the genome that are 
experiencing unique selective pressures. Machine learning models may also find application.  Such 
models have been successfully applied to microbial genomic data, but significant improvements 
could be made by altering the models to better handle the complex inputs from human microbiome, 
including genes, growth rates, and species relationships.  
 
There are several readily identifiable next research steps to follow up on this work. First, efforts 
should be made to follow cohorts of infants over longer time periods. This would allow 
determination of how long initial strains persist, what life events most effect strain acquisition, and 
patterns of microbiome assembly. Work presented in this thesis shows the short term-effects of 
things like antibiotic administration and acute disease, but it is unclear how long these changes 
persist. Additional consideration of the initial colonization sources of strains is needed as 
well.  The hospital room is a likely prominent source of initial infant-colonizing strains, as 
discussed in Appendix 1, but the maternal microbiome likely has a large influence as well. 
Characterization of the relative impact of these sources, as well as the how long strains from 
different environments persist over time, would provide greater clarity into which exposures are 
most important to develop a healthy microbiome. These questions can all be addressed as research 
transitions to rely on genome-resolved metagenomics methods that leverage the important 
information contained in the sequencing reads. 
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Appendix 1.1 | Measurement of bacterial replication rates in microbial communities 
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Culture-independent microbiome studies have increased our 
understanding of the complexity and metabolic potential 
of microbial communities. However, to understand the 
contribution of individual microbiome members to community 
functions, it is important to determine which bacteria are 
actively replicating. We developed an algorithm, iRep, that 
uses draft-quality genome sequences and single time-point 
metagenome sequencing to infer microbial population 
replication rates. The algorithm calculates an index of 
replication (iRep) based on the sequencing coverage trend 
that results from bi-directional genome replication from a 
single origin of replication. We apply this method to show 
that microbial replication rates increase after antibiotic 
administration in human infants. We also show that 
uncultivated, groundwater-associated, Candidate Phyla 
Radiation bacteria only rarely replicate quickly in subsurface 
communities undergoing substantial changes in geochemistry. 
Our method can be applied to any genome-resolved 
microbiome study to track organism responses to varying 
conditions, identify actively growing populations and measure 
replication rates for use in modeling studies. 

Dividing cells in a natural population contain, on average, more than 
one copy of their genome (Fig. 1). In an unsynchronized population of 
growing bacteria, cells contain genomes that are replicated to different 
extents, resulting in a gradual reduction in the average genome copy 
number from the origin to the terminus of replication1. This decrease 
can be detected by measuring changes in DNA sequencing coverage 
across complete genomes2. Bacterial genome replication proceeds  
bi-directionally from a single origin of replication3,4, therefore the ori-
gin and terminus of replication can be deduced based on this coverage 
pattern2. GC skew5–7 and genome coverage8 analyses of a wide variety 
of bacteria have shown that this replication mechanism is broadly 
applicable. Further, early studies of bacterial cultures revealed that 
cells can achieve faster division by simultaneously initiating multiple 

Measurement of bacterial replication rates in microbial 
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rounds of genome replication9, which results in an average of more 
than two genome copies in rapidly growing cells.

Korem et al.8 used the ratio of sequencing coverage at the origin 
compared to the terminus of replication to measure replication rates 
for bacteria. Because the origin and terminus correspond to coverage 
peaks and troughs, respectively, the authors named their method PTR 
(peak-to-trough ratio). They applied PTR to calculate replication rates 
for specific bacteria in the human microbiome, but the requirement 
for mapping sequencing reads to a complete, closed, circular refer-
ence genome for a bacterium of interest is a major limitation. The vast 
majority of bacteria remain uncultivated and lack reference genomes.

Metagenomics methods routinely generate draft genomes for 
bacteria and archaea that lack reference genomes10–23 (Fig. 1 and 
Supplementary Fig. 1). Often these organisms are from little known 
microbial phyla, and are vastly different from organisms for which there 
are complete genomes in databases15–17,24–27. It is sometimes possible 
to recover hundreds or thousands of draft or near-complete genomes 
from a single ecosystem. We introduce a method that can extend cov-
erage-based replication rate analyses to enable measurements based 
on sequencing coverage trends for these draft genomes. The method 
works, even though the order of the fragments is unknown. Unlike 
PTR, our approach can be applied in virtually any natural or engineered 
ecosystem, including complex systems such as soil, for which complete 
genomes for the vast majority of bacteria are unavailable.

RESULTS
The iRep metric
The method that we developed determines replication rates based on 
measuring the rate of the decrease in average sequence coverage from 
the origin to the terminus of replication. This rate of coverage change 
can be used to accurately estimate the ratio between the coverage 
at the origin and terminus of replication, which is proportional to 
replication rate. The values are comparable to PTR, but are derived 
differently so we named this method and metric iRep (Index of 
Replication). With PTR, the origin and terminus of replication must 
be identified and the calculation requires position-specific coverage 
values. In contrast, the iRep algorithm is distinct in that it makes use 
of the total change in coverage across all genome fragments.

iRep values are calculated by mapping metagenome sequencing reads 
to the collection of assembled sequences that represent a draft genome 
(Fig. 1, Supplementary Fig. 1, Online Methods and Supplementary 
Code). The read coverage is evaluated at every nucleotide position 
across every scaffold. The series of coverage values for the scaffolds are 
then concatenated, and the average coverage values within 5-Kbp sliding 
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Appendix 1.2 | The developing premature infant gut microbiome is a major factor shaping 
the microbiome of neonatal intensive care unit rooms 
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The developing premature infant gut
microbiome is a major factor shaping the
microbiome of neonatal intensive care unit
rooms
Brandon Brooks1 , Matthew R. Olm1, Brian A. Firek2, Robyn Baker3, David Geller-McGrath4, Sophia R. Reimer4,
Karina R. Soenjoyo4, Jennifer S. Yip4, Dylan Dahan5,6, Brian C. Thomas4, Michael J. Morowitz2 and Jillian F. Banfield4*

Abstract

Background: The neonatal intensive care unit (NICU) contains a unique cohort of patients with underdeveloped
immune systems and nascent microbiome communities. Patients often spend several months in the same room,
and it has been previously shown that the gut microbiomes of these infants often resemble the microbes found in
the NICU. Little is known, however, about the identity, persistence, and absolute abundance of NICU room-associated
bacteria over long stretches of time. Here, we couple droplet digital PCR (ddPCR), 16S rRNA gene surveys, and recently
published metagenomics data from infant gut samples to infer the extent to which the NICU microbiome is shaped by
its room occupants.

Results: Over 2832 swabs, wipes, and air samples were collected from 16 private-style NICU rooms housing very low
birth weight (< 1500 g), premature (< 31 weeks’ gestation) infants. For each infant, room samples were collected daily,
Monday through Friday, for 1 month. The first samples from the first infant and the last samples from the last infant were
collected 383 days apart. Twenty-two NICU locations spanning room surfaces, hands, electronics, sink basins, and air were
collected. Results point to an incredibly simple room community where 5–10 taxa, mostly skin-associated, account for
over 50% of the amplicon reads. Biomass estimates reveal four to five orders of magnitude difference between the least
to the most dense microbial communities, air, and sink basins, respectively. Biomass trends from bioaerosol samples and
petri dish dust collectors suggest occupancy to be a main driver of suspended biological particles within the NICU. Using
a machine learning algorithm to classify the origin of room samples, we show that each room has a unique microbial
fingerprint. Several important taxa driving this model were dominant gut colonizers of infants housed within each room.

Conclusions: Despite regular cleaning of hospital surfaces, bacterial biomass was detectable at varying densities. A
room-specific microbiome signature was detected, suggesting microbes seeding NICU surfaces are sourced from
reservoirs within the room and that these reservoirs contain actively dividing cells. Collectively, the data suggests that
hospitalized infants, in combination with their caregivers, shape the microbiome of NICU rooms.

Keywords: Infant gut, Microbiome, Built environment, Neonatal intensive care unit
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Appendix 1.3 | Strain-resolved analysis of hospital rooms and infants reveals overlap between 
the human and room microbiome 
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Strain-resolved analysis of hospital rooms and
infants reveals overlap between the human and
room microbiome
Brandon Brooks 1, Matthew R. Olm1, Brian A. Firek2, Robyn Baker3, Brian C. Thomas4, Michael J. Morowitz2 &
Jillian F. Banfield4

Preterm infants exhibit different microbiome colonization patterns relative to full-term

infants, and it is speculated that the hospital room environment may contribute to infant

microbiome development. Here, we present a genome-resolved metagenomic study of

microbial genotypes from the gastrointestinal tracts of infants and from the neonatal

intensive care unit (NICU) room environment. Some strains detected in hospitalized infants

also occur in sinks and on surfaces, and belong to species such as Staphylococcus epidermidis,

Enterococcus faecalis, Pseudomonas aeruginosa, and Klebsiella pneumoniae, which are frequently

implicated in nosocomial infection and preterm infant gut colonization. Of the 15 K. pneu-

moniae strains detected in the study, four were detected in both infant gut and room samples.

Time series experiments showed that nearly all strains associated with infant gut colonization

can be detected in the room after, and often before, detection in the gut. Thus, we conclude

that a component of premature infant gut colonization is the cycle of microbial exchange

between the room and the occupant.
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Appendix 1.4 | Machine Learning Leveraging Genomes from Metagenomes Identifies 
Influential Antibiotic Resistance Genes in the Infant Gut Microbiome 

 
 

Machine Learning Leveraging Genomes from Metagenomes
Identifies Influential Antibiotic Resistance Genes in the Infant
Gut Microbiome

Sumayah F. Rahman,a Matthew R. Olm,a Michael J. Morowitz,b Jillian F. Banfieldc

aDepartment of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
bDepartment of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
cDepartment of Earth and Planetary Sciences and Environmental Science, Policy and Management, University
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ABSTRACT Antibiotic resistance in pathogens is extensively studied, and yet little is
known about how antibiotic resistance genes of typical gut bacteria influence micro-
biome dynamics. Here, we leveraged genomes from metagenomes to investigate
how genes of the premature infant gut resistome correspond to the ability of bacte-
ria to survive under certain environmental and clinical conditions. We found that for-
mula feeding impacts the resistome. Random forest models corroborated by statisti-
cal tests revealed that the gut resistome of formula-fed infants is enriched in class D
beta-lactamase genes. Interestingly, Clostridium difficile strains harboring this gene
are at higher abundance in formula-fed infants than C. difficile strains lacking this
gene. Organisms with genes for major facilitator superfamily drug efflux pumps have
higher replication rates under all conditions, even in the absence of antibiotic ther-
apy. Using a machine learning approach, we identified genes that are predictive of
an organism’s direction of change in relative abundance after administration of van-
comycin and cephalosporin antibiotics. The most accurate results were obtained by
reducing annotated genomic data to five principal components classified by boosted
decision trees. Among the genes involved in predicting whether an organism in-
creased in relative abundance after treatment are those that encode subclass B2
beta-lactamases and transcriptional regulators of vancomycin resistance. This dem-
onstrates that machine learning applied to genome-resolved metagenomics data
can identify key genes for survival after antibiotics treatment and predict how or-
ganisms in the gut microbiome will respond to antibiotic administration.

IMPORTANCE The process of reconstructing genomes from environmental sequence
data (genome-resolved metagenomics) allows unique insight into microbial systems.
We apply this technique to investigate how the antibiotic resistance genes of bacte-
ria affect their ability to flourish in the gut under various conditions. Our analysis re-
veals that strain-level selection in formula-fed infants drives enrichment of beta-
lactamase genes in the gut resistome. Using genomes from metagenomes, we built
a machine learning model to predict how organisms in the gut microbial commu-
nity respond to perturbation by antibiotics. This may eventually have clinical applica-
tions.

KEYWORDS Clostridium difficile, antibiotic resistance, genome-resolved
metagenomics, infant, machine learning, microbiome, resistome

Antibiotic use steadily increased over the past several decades and is correlated with
the prevalence of antibiotic resistance in bacteria (1). Widespread antibiotic resis-

tance, in combination with the decline in development of new antibiotics, presents a
major threat to human health (2). The gut microbiome is a reservoir for antibiotic
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Appendix 1.5 | Impacts of microbial assemblage and environmental conditions on the 
distribution of anatoxin-a producing cyanobacteria within a river network 
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within a river network
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Abstract
Blooms of planktonic cyanobacteria have long been of concern in lakes, but more recently, harmful impacts of riverine
benthic cyanobacterial mats been recognized. As yet, we know little about how various benthic cyanobacteria are distributed
in river networks, or how environmental conditions or other associated microbes in their consortia affect their biosynthetic
capacities. We performed metagenomic sequencing for 22 Oscillatoriales-dominated (Cyanobacteria) microbial mats
collected across the Eel River network in Northern California and investigated factors associated with anatoxin-a producing
cyanobacteria. All microbial communities were dominated by one or two cyanobacterial species, so the key mat metabolisms
involve oxygenic photosynthesis and carbon oxidation. Only a few metabolisms fueled the growth of the mat communities,
with little evidence for anaerobic metabolic pathways. We genomically defined four cyanobacterial species, all which shared
<96% average nucleotide identity with reference Oscillatoriales genomes and are potentially novel species in the genus
Microcoleus. One of the Microcoleus species contained the anatoxin-a biosynthesis genes, and we describe the first
anatoxin-a gene cluster from the Microcoleus clade within Oscillatoriales. Occurrence of these four Microcoleus species in
the watershed was correlated with total dissolved nitrogen and phosphorus concentrations, and the species that contains the
anatoxin-a gene cluster was found in sites with higher nitrogen concentrations. Microbial assemblages in mat samples with
the anatoxin-a gene cluster consistently had a lower abundance of Burkholderiales (Betaproteobacteria) species than did
mats without the anatoxin-producing genes. The associations of water nutrient concentrations and certain co-occurring
microbes with anatoxin-a producing Microcoleus motivate further exploration for their roles as potential controls on the
distributions of toxigenic benthic cyanobacteria in river networks.

Introduction

When cyanobacteria proliferate in freshwaters, their toxins
can threaten water quality and public health [1]. Harmful
cyanobacterial blooms in lakes have been described for
decades (e.g. [2]). In rivers, however, first reports of animal
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