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Abstract

BACKGROUND—The cause of most fetal anomalies is not determined prenatally. Exome
sequencing has transformed genetic diagnosis after birth, but its usefulness for prenatal diagnosis
is still emerging. Nonimmune hydrops fetalis (NIHF), a fetal abnormality that is often lethal, has
numerous genetic causes; the extent to which exome sequencing can aid in its diagnosis is unclear.

METHODS—We evaluated a series of 127 consecutive unexplained cases of NIHF that were
defined by the presence of fetal ascites, pleural or pericardial effusions, skin edema, cystic
hygroma, increased nuchal translucency, or a combination of these conditions. The primary
outcome was the diagnostic yield of exome sequencing for detecting genetic variants that were
classified as either pathogenic or likely pathogenic according to the criteria of the American
College of Medical Genetics and Genomics. Secondary outcomes were the percentage of cases
associated with specific genetic disorders and the proportion of variants that were inherited.

RESULTS—In 37 of the 127 cases (29%), we identified diagnostic genetic variants, including
those for disorders affecting the RAS-MAPK cell-signaling pathway (known as RASopathies)
(30% of the genetic diagnoses); inborn errors of metabolism and musculoskeletal disorders (11%
each); lymphatic, neurodevelopmental, cardiovascular, and hematologic disorders (8% each); and
others. Prognoses ranged from a relatively mild outcome to death during the perinatal period.
Overall, 68% of the cases (25 of 37) with diagnostic variants were autosomal dominant (of which
12% were inherited and 88% were de novo), 27% (10 of 37) were autosomal recessive (of which
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95% were inherited and 5% were de novo), 1 was inherited X-linked recessive, and 1 was of
uncertain inheritance. We identified potentially diagnostic variants in an additional 12 cases.

CONCLUSIONS—In this large case series of 127 fetuses with unexplained NIHF, we identified a
diagnostic genetic variant in approximately one third of the cases. (Funded by the UCSF Center
for Maternal-Fetal Precision Medicine and others; ClinicalTrials.gov number, NCT03412760.)

PRENATAL DIAGNOSIS HAS HISTORICALLY been performed with the use of G-banded karyotyping
to detect chromosomal abnormalities. This approach results in a diagnosis in 9 to 19% of
fetal anomalies, and chromosomal microarray analysis provides an additional 6% yield.1~
Therefore, the cause of the majority of fetal anomalies remains unknown.2® Identification of
the cause of fetal anomalies is essential to determine prognosis, inform recurrence risk, and
guide clinical management.

Recent studies in which exome sequencing was used to diagnose unexplained fetal
anomalies showed diagnostic yields of 8.5% and 10%.57 These relatively low yields
probably reflect the wide range of structural anomalies that were included, some of which
were unlikely to be syndromic. In particular, limited data exist regarding the usefulness of
exome sequencing for diagnosing specific, severe prenatal phenotypes.

In nonimmune hydrops fetalis (NIHF), a disorder that affects 1 in 1700 to 3000 pregnancies,
fluid overload develops in the fetus and there is a high risk of stillbirth, preterm birth, and
neonatal complications or death.8-11 Pregnant women with fetuses that have NIHF are also
at risk for complications resulting from a form of preeclampsia called mirror syndrome.8:°
NIHF is a shared, severe presentation of many genetic disorders. Standard genetic testing
with karyotyping or chromosomal microarray analysis identifies the cause of only 25% of
NIHF cases and does not detect single-gene disorders.12-25 The contribution of single-gene
disorders to NIHF is unknown but is potentially substantial. Some genetic disorders
underlying NIHF portend mild long-term outcomes, whereas others are lethal despite
treatment.8:12-24 An accurate diagnosis enables focused prenatal management and early,
directed neonatal care to improve outcomes for this severe condition. The aims of this study
were to establish the diagnostic yield of exome sequencing for single-gene disorders in
unexplained NIHF and to describe the spectrum of underlying disorders.

METHODS
STUDY DESIGN AND PARTICIPANTS

We evaluated a series of consecutive NIHF cases with the use of exome sequencing. All five
University of California (UC) Fetal-Maternal Consortium sites (UC, Davis; UC, Irvine; UC,
Los Angeles; UC, San Diego; and UC, San Francisco [UCSF]) participated. Referrals were
also accepted from providers across the United States. We aimed to enroll 100 participants
on the basis of the prevalence of NIHF, but because recruitment was more rapid than
anticipated, we exceeded our target. Approval for the study was obtained from the
institutional review board at UCSF, and all the participants provided written informed
consent.
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We defined NIHF by the presence of one or more pathologic fetal fluid collections,
including an increased thickness of nuchal translucency (=3.5 mm), cystic hygroma, pleural
effusion, pericardial effusion, ascites, skin edema, or a combination of these conditions.
Although the current definition of NIHF (as defined by the Society for Maternal-Fetal
Medicine) specifies at least two pathologic fluid collections, this definition is poorly
supported; genetic disorders can be manifested by only one abnormal fluid collection, and
the types of abnormal fluid collections may change during gestation.8-12-14.23.26.27 o
nondiagnostic karyotype analysis or chromosomal microarray analysis was required for
eligibility in the study. Cases in which concurrent fetal structural anomalies had been present
in the index pregnancy with NIHF were eligible for inclusion, as were cases of ongoing
pregnancy, stillbirth, termination, live birth, and infant death. Women could be enrolled
either during the pregnancy with NIHF or after birth had occurred if NIHF had been
documented prenatally but diagnostic testing had been deferred. We excluded cases in which
there was established pathophysiological evidence of hydrops, including alloimmunization,
congenital viral infection, or twin-to-twin transfusion syndrome. Additional exclusion
criteria were an insufficient fetal or infant sample or the presence of a diagnostic result that
had been obtained through gene-panel sequencing or other genetic testing.

The primary outcome was the diagnostic yield of exome sequencing for detecting
pathogenic or likely pathogenic variants in unexplained cases of NIHF. Secondary outcomes
were the percentage of cases associated with specific genetic disorders and the proportion of
variants that were inherited.

PROCEDURES

Participants provided informed consent either in person or by video call. Consent included
their decision to receive or decline the results of secondary genomic findings (e.g.,
predisposition to cancer or cardiac disease), as recommended by the American College of
Medical Genetics and Genomics (ACMG).28 Records were obtained and reviewed for
medical and family history, previous genetic testing, detailed prenatal and postnatal
phenotyping, and pregnancy outcomes. Cases were categorized according to the presence of
NIHF features at the time of enrollment: increased nuchal translucency or cystic hygroma, a
single abnormal fetal fluid collection (e.g., isolated ascites), and at least two abnormal fluid
collections (pleural effusion, pericardial effusion, ascites, or skin edema).

For cases in which chorionic villus sampling, amniocentesis, or another prenatal procedure
was performed, cultured cells or extracted DNA were used. For cases in which testing was
carried out after pregnancy, umbilical-cord blood, a buccal-swab sample, or other tissue was
obtained from the infant or stillborn fetus. Trio-exome sequencing, which requires a blood or
saliva sample from each biologic parent and a sample from the fetus or infant, was
performed whenever possible. In cases in which only the biologic mother was available,
duo-exome sequencing was performed. In one case of a pregnancy resulting from a donor
egg and donor sperm, a sample from only the fetus was sequenced. In cases in which an
older sibling had been affected by NIHF, quad-exome sequencing, which included DNA
from that sibling, was performed.

N Engl J Med. Author manuscript; available in PMC 2021 April 29.
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The UCSF Genomic Medicine Laboratory, which is certified by the Clinical Laboratory
Improvement Amendments program, performed exome sequencing with the use of the
Illumina HiSeq 2500 sequencer in rapid-run mode or with the lllumina NovaSeq 6000
sequencing system. Variant call format files were uploaded for variant filtering into
Ingenuity Variant Analysis (Qiagen) before March 2020 and into Moon (Diploid) beginning
in March 2020. Clinical informatics experts at the UCSF Genomic Medicine Laboratory
manually curated the variants. In cases of ongoing pregnancies and live births, results of
exome sequencing were prioritized to inform clinical management.

For both exome-sequencing analysis and genetic variant interpretation, detailed phenotypic
data were incorporated as appropriate from prenatal laboratory and imaging findings,
pathological findings in fetuses and infants, and examination, laboratory, and imaging
findings in infants. Phenotypic data were described with the use of Human Phenotype
Ontology terms to improve exome-sequencing findings.2? A multidisciplinary review of
curated variants in the context of phenotypic features occurred for each case during weekly
in-person board meetings at UCSF that included experts in clinical informatics,
bioinformatics, clinical genetics, pathology, perinatology, pediatrics, and bioethics.

Genetic variants were classified according to ACMG and Association for Medical Pathology
recommendations.3C Variants classified as pathogenic or likely pathogenic were considered
to be diagnostic. Variants of uncertain clinical significance were considered to be potentially
diagnostic and were reported if there was gene- or variant-level evidence to support strong
potential for clinical significance but criteria for pathogenicity were not met. All reported
genetic variants were confirmed by means of Sanger sequencing. Exome-sequencing results
and a formal report were provided directly to participants and to referring providers.

STATISTICAL ANALYSIS

RESULTS

Percentages and proportions are reported for primary and secondary outcomes. For
demographic variables, prenatal phenotypes, and pregnancy outcomes, categorical variables
are summarized as percentages and proportions, and continuous variables are reported as
median values with interquartile ranges. Data were analyzed with the use of Stata software,
version 15.0 (StataCorp).

STUDY PARTICIPANTS

A total of 233 cases of NIHF were referred from October 2018 through May 2020. Overall,
106 women were not enrolled in the study because they were lost to follow-up, declined to
participate, did not meet the inclusion criteria, had an inadequate fetal or infant sample
available for exome sequencing, or had a diagnostic result from a karyotype analysis,
chromosomal microarray analysis, or gene-panel sequencing (Fig. 1). Ultimately, 127
women were enrolled and underwent exome sequencing.

Before exome sequencing was performed, karyotype analysis only was performed in 4% (5
of the 127 cases), chromosomal microarray analysis only in 34% (43 cases), and both
karyotype analysis and chromosomal microarray analysis in 62% (79 cases). Trio-exome

N Engl J Med. Author manuscript; available in PMC 2021 April 29.
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sequencing was performed in 90% (114 cases), duo-exome sequencing in 7% (9 cases),
quad-exome sequencing in 2% (3 cases), and proband-only-exome sequencing in 1% (1
case). Among the sources of fetal and infant DNA, 21% (in 27 cases) were from chorionic
villus sampling, 57% (in 73 cases) from amniocentesis, 2% (in 2 cases) from fetal-blood
sampling, 1% (in 1 case) from pleural fluid, 2% (in 3 cases) from umbilical-cord blood at
delivery, 13% (in 17 cases) from placental tissue, and 3% (in 4 cases) from a buccal-swab
sample. In total, 27 of the 127 samples (21%) were cultured (of which 85% were prenatal).
In cases of ongoing pregnancies and live births, results were sent directly to participants and
referring providers within 2 to 4 weeks after the receipt of samples at the laboratory. In cases
of stillbirth, termination, and infant death, results were sent within 8 to 12 weeks.

Participants were enrolled in locations throughout the United States (Table 1), with 49% (62
of the 127 participants) within the University of California Fetal-Maternal Consortium and
the remainder outside this system. A total of 58% (74 women) identified themselves as
White, 15% (19 women) as Asian, 14% (18 women) as multiracial, 9% (12 women) as
Hispanic or Latino, 2% (3 women) as Black, and 1% (1 woman) as unknown. Among the
completed pregnancies, 31% (18 of 59) resulted in a live-born infant. Demographic
characteristics, prenatal phenotypes, and preghancy outcomes, according to exome-
sequencing results, are provided in Table S1 in the Supplementary Appendix, available with
the full text of this article at NEJM.org.

With regard to prenatal phenotype at enrollment, 23% of the cases (29 of 127) had increased
nuchal translucency or cystic hygroma, 17% (21 cases) had a single abnormal fetal fluid
collection, and 61% (77 cases) had at least two abnormal fetal fluid collections. In Table 1,
these categories are further subdivided into isolated cases and cases with concurrent
structural anomalies. Among the 15 cases of isolated increased nuchal translucency or cystic
hygroma, the median thickness of nuchal translucency was 5.0 mm (interquartile range, 3.9
to 7.0).

PRIMARY AND SECONDARY OUTCOMES

No data were missing for the primary or secondary outcomes. We identified diagnostic
variants in 37 of the 127 fetuses (29%); these variants caused a wide variety of genetic
disorders (Table 2 and Fig. 2). Disorders affecting the RAS-MAPK cell-signaling pathway
(known as RASopathies) composed the largest proportion (30%, 11 of 37 cases). Inborn
errors of metabolism and musculoskeletal disorders each composed 11% (4 cases), and
lymphatic, neurodevelopmental, cardiovascular, and hematologic disorders each composed
8% (3 cases). The least common disorders were immunologic disorders (5%, 2 cases),
followed by renal disorders, ciliopathies, overgrowth syndromes, and others (3% each, 1
case). Among four consanguineous families, no diagnostic variants were identified.

The 11 cases with RASopathies included the Noonan syndrome (caused by mutations in
PTPN11, KRAS, and R/TI), Noonan-like syndrome with loose anagen hair (SHOC2),
cardiofaciocutaneous syndrome (BRAF), and the Costello syndrome (HRAS). All the
RASopathy variants were de novo and were autosomal dominant. There were 4 cases with
inborn errors of metabolism, including Niemann—Pick disease type C (NMPCI), GM1
gangliosidosis (GLBI), and mucopolysaccharidosis type VII (GUSB); all were autosomal

N Engl J Med. Author manuscript; available in PMC 2021 April 29.
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recessive and inherited from parents who were heterozygous carriers. Four cases with
musculoskeletal disorders were seen, including the Nager syndrome (SF3B4), thanatophoric
dysplasia type | (FGFR3), nemaline myopathy (KLHL40), and multiple pterygium
syndrome (MYH3). The SF3B4, FGFR3, and MYH3 variants were autosomal dominant and
de novo, whereas both KLHL40variants for autosomal recessive nemaline myopathy were
inherited from carrier parents. Among the 3 cases with lymphatic disorders (Milroy’s
disease, lymphedema distichiasis syndrome, and generalized lymphatic dysplasia), all the
variants (FLT4, FOXCZ2, and PIEZOI) were inherited. The FL74and FOXCZ2 variants were
inherited from a parent with previously unexplained mild swelling in the legs and feet. Three
cases with neurodevelopmental disorders were seen, including the DeSanto—Shinawi
syndrome (WAC), the Mowat-Wilson syndrome (ZEBZ2), and desmosterolosis (DHCRZ24).
The autosomal dominant WAC and ZEBZ2 variants were de novo, whereas both variants for
autosomal recessive desmosterolosis were inherited. There were 3 cases with hematologic
disorders, including 1 case of Diamond-Blackfan anemia (RPL11) and 2 cases of
dehydrated hereditary stomatocytosis (P/EZ0O1). All were autosomal dominant; the RPL 11
variant and one P/EZO1 variant were de novo, and the other P/EZO1 variant resulted from
suspected maternal mosaicism. Table 2 and Figure 2 show all the diagnoses, and Table S2
shows full genomic details, the prenatal phenotype, and the pregnancy outcome for each
diagnostic variant.

Exome-sequencing results informed the risk of recurrence on the basis of Mendelian
recurrence estimates, which ranged from 1 to 2% with de novo variants3! to 50% with
inherited autosomal dominant variants (Table 2). Overall, 68% of the cases of diagnostic
variants (25 of 37) were autosomal dominant, 27% (10 of 37) were autosomal recessive, 1
was X-linked recessive (FOXP3), and 1 had uncertain inheritance. In the case with uncertain
inheritance, 1 maternally inherited NEXN variant and 1 de novo NEXN variant were seen,
but the phase remained unclear on the basis of exome sequencing; these variants were
associated with autosomal dominant dilated and hypertrophic cardiomyopathy. The majority
of autosomal dominant variants were de novo (88%, 22 of 25 variants) and 36% (9 of 25)
were novel, whereas the majority of autosomal recessive variants were inherited (95%, 19 of
20 variants) and 80% (16 of 20) were novel.

Among the 29 cases with increased nuchal translucency or cystic hygroma (either isolated or
concurrent with other anomalies), 31% (9 of 29) had a diagnostic variant (Table S1).
However, among the cases with isolated increased nuchal translucency or cystic hygroma,
the diagnostic yield was 7% (1 of 15); nuchal translucency measured 4.5 mm thick for the 1
diagnostic case (CHARGE syndrome [coloboma of the eye, heart anomaly, atresia of the
choanae, retarded growth and development, and genital and ear anomalies]). Among the 77
cases with at least two abnormal fluid collections, 26 (34%) had a diagnostic variant. Further
details of diagnostic yield according to phenotype are provided in Table S1.

VARIANTS OF POTENTIAL CLINICAL SIGNIFICANCE

We identified a variant with gene-level or variant-level evidence of potential clinical
significance in 12 of the 127 affected fetuses (9%), but these variants did not meet the
criteria for pathogenicity or likely pathogenicity (Table S3). Potentially implicated disorders

N Engl J Med. Author manuscript; available in PMC 2021 April 29.
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included a RASopathy, generalized lymphatic dysplasia, several neurodevelopmental
disorders, and others. In some cases, such as with POU3F3-associated emerging
developmental delay disorder, gene-level evidence was insufficient. In other cases, such as
with ERCC5-associated cerebrooculofacioskeletal syndrome, the gene—disease fit was
strong, but variant-level data were insufficient.

In an additional 2% of the fetuses (2 of 127), one genetic variant was detected for an
autosomal recessive disorder consistent with the phenotype. However, a second variant in
the same gene was not identified. These genes were CATNI (Compton—North congenital
myopathy) and RYRI (lethal multiple pterygium syndrome).

SECONDARY FINDINGS

In total, 91% of the families of the participants (115 of 127) chose to receive secondary

findings; 3% (4 of 115) had a pathogenic or likely pathogenic variant in each of APOB

(familial hypercholesterolemia), MYH~7 (familial hypertrophic cardiomyopathy), PTEN
(PTEN hamartoma tumor syndrome), and BRCA1 (hereditary breast and ovarian cancer
syndrome).

DISCUSSION

In this large series of NIHF cases unexplained by standard genetic testing, exome
sequencing was used to identify diagnostic variants in 29% of the cases. A variant of
potential clinical significance was detected in an additional 9% of the cases, many of which
were probably associated with the phenotype but were novel variants and emerging genes.
The yield in our series is substantially higher than the 8.5% and 10% yields that were
reported in studies of unselected fetal anomalies,® 7 findings that reflect the burden of single-
gene disorders underlying NIHF. The postnatal prognoses for the diseases we identified
ranged from relatively mild to severely affected with limited life expectancy, and diagnoses
affected both counseling and direct clinical care.

RASopathies were common in our series. The Noonan syndrome has been well established
in its association with NIHF,12-15.23 byt in utero manifestations of RASopathies beyond the
Noonan syndrome are less well characterized. In contrast to approximately half of
RASopathy variants being inherited in postnatal series,32 the de novo nature of all the
RASopathy variants in our series highlights those capable of severe in utero presentations.
Also common were cases of inborn errors of metabolism, as well as musculoskeletal,
lymphatic, neurodevelopmental, cardiovascular, and hematologic disorders. Despite having
similar prenatal phenotypes, these disorders are associated with a wide range of outcomes,
from relatively mild lymphedema to probable perinatal death, and their clinical management
differs greatly.

Establishing a diagnosis allows precise determination of the risk of recurrence and can guide
perinatal care. Two thirds of the diagnostic variants were autosomal dominant; 12% were
inherited with a 50% recurrence risk, as compared with a 1 to 2% recurrence risk for the
many de novo cases. In contrast, 27% of the diagnostic variants were autosomal recessive,
and nearly all were associated with a 25% recurrence risk. ldentifying these diagnoses

N Engl J Med. Author manuscript; available in PMC 2021 April 29.
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improves the accuracy of counseling, allows the option of preimplantation genetic diagnosis
in future pregnancies, and improves clinical care in the affected pregnancy. Examples from
our series include screening for fetal anemia in pregnancies with dehydrated hereditary
stomatocytosis and Diamond-Blackfan anemia to determine whether intrauterine
transfusions are indicated, as well as prenatal magnetic resonance imaging and pediatric
neurology consults in a case of the Imagawa—Matsumoto syndrome to plan for postnatal
needs. Furthermore, only 31% of the completed pregnancies resulted in a live-born infant,
highlighting the critical need for accurate diagnosis to guide perinatal care and improve
outcomes.

Our study has several important strengths. Our series represents a large, national population.
It highlights the importance of accurate prenatal diagnosis for NIHF, contributes data about
the scope of underlying genetic disorders, and identifies novel variants that can portend a
poor prognosis. Exome-sequencing analysis and the multidisciplinary UCSF board reviews
incorporated thorough details of evolving prenatal phenotypic data, pathological findings in
fetuses and infants, and postnatal phenotypic data, which are critical for accurate
identification and interpretation of genetic variants.

However, this study is not without limitations. Although the participants were
geographically diverse, more than half identified themselves as White. Among cases with
increased nuchal translucency or cystic hygroma, many later showed additional fluid
collections or concurrent anomalies, and the diagnostic yield for isolated increased nuchal
translucency or cystic hygroma cases was low. Further studies are warranted to determine
the usefulness of exome sequencing for isolated increased nuchal translucency or cystic
hygroma, since the risk of subsequent pathological conditions is unknown. There are
limitations of prenatal phenotyping, especially in early gestation. Because accurate genetic
variant classification relies in part on phenotypic fit, it is possible that disease-causing
variants were missed or incorrectly classified. Although some copy-number variants and
intronic variants were detected, exome sequencing is not designed to routinely detect these
genomic changes. Future studies in which whole-genome sequencing or functional assays
are used to evaluate additional genomic changes when exome sequencing shows normal
results are warranted. Finally, it is possible that providers and patients motivated by the
desire for genomic information were more likely to participate, potentially affecting the
generalization of our results.

Exome sequencing identified a diagnostic variant in 29% of NIHF cases unexplained by
standard genetic testing. These data support the use of exome sequencing for NIHF cases
with nondiagnostic results of chromosomal microarray analysis or karyotype analysis in
order to inform prognosis, establish recurrence risk, and direct prenatal and postnatal clinical
care.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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233 Consecutive NIHF cases were
referred for participation

106 Were excluded
53 Were lost to follow-up
23 Declined to participate
7 Did not meet inclusion criteria
e 6 Had insufficient fetal or neonatal sample
15 Had diagnostic results from karyotype
analysis or CMA
2 Had diagnostic results from gene-panel
sequencing

y

127 Were enrolled

127 Underwent exome sequencing
114 Had trio-exome sequencing
9 Had duo-exome sequencing
3 Had quad-exome sequencing
1 Had fetus-only exome sequencing

Figure 1. Study Enrollment and Testing.
CMA denotes chromosomal microarray analysis, and NIHF nonimmune hydrops fetalis.
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Immunologic
disorders  Renal

Hematologic (2 cases) disorders
disorders

(3 cases)

(1 case)
Ciliopathies (1 case)

Overgrowth disorders (1 case)
|

Cardiovascular
disorders

(3 cases) Other disorders (1 case)

Neurodevelopmental
disorders (3 cases)

Lymphatic disorders

(deases) RASopathies

(11 cases)

Musculoskeletal
disorders (4 cases)

Inborn errors
of metabolism
(4 cases)

Figure 2. Categories of Genetic Disorders Detected through Exome Sequencing in Cases of
NIHF.

RASopathies were defined as disorders affecting the RAS-MAPK cell-signaling pathway.
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