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Abstract. Identifying the anisotropies in a cosmologically sourced stochastic gravitational
wave background (SGWB) would be of significance in shedding light on the nature of pri-
mordial inhomogeneities. For example, if SGWB carries isocurvature fluctuations, it would
provide evidence for a multi-field inflationary origin of these inhomogeneities. However, this
is challenging in practice due to finite detector sensitivity and also the presence of the astro-
physical foregrounds that can compete with the cosmological signal. In this work, we explore
the prospects for measuring cosmological SGWB anisotropies in the presence of an astro-
physical counterpart and detector noise. To illustrate the main idea, we perform a Fisher
analysis using a well-motivated cosmological SGWB template corresponding to a first order
phase transition, and an astrophysical SGWB template corresponding to extra-galactic bi-
nary mergers, and compute the uncertainty with which various parameters characterizing the
isotropic and anisotropic components can be extracted. We also discuss some subtleties and
caveats involving shot noise in the astrophysical foreground. Overall, we show that upcoming
experiments, e.g., LISA, Taiji, Einstein Telescope, Cosmic Explorer, and BBO, can all be
effective in discovering plausible anisotropic cosmological SGWBs.
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1 Introduction

With the discovery of the binary black hole merger by the LIGO/Virgo collaboration in
2015 [1], gravitational waves (GW) have become a powerful new long-range messenger of our
Universe. Since then many such mergers, also involving neutron stars [2], have been discov-
ered, ushering in a new era of multi-messenger astronomy. Very excitingly, pulsar timing array
(PTA) measurements have recently reported [3, 4] evidence for, not an individual merger, but
rather a stochastic gravitational wave background (SGWB). Such an SGWB might be formed
by the combination of numerous, far-away super-massive binary black hole inspirals in nano-
Hz frequency ranges or it might have a cosmological origin [5, 6] (see Refs. [7–9] for recent
reviews on SGWB). A similar detection in ∼Hz frequencies could also be around the corner,
especially with Advanced LIGO runs, with the A+ upgrade [10]. With confirmation of such a
discovery of SGWB, a natural next step would be to characterize its strength and properties.
In particular, anisotropies of an SGWB can give us extremely valuable information, as we
explore in this work.

Cosmological SGWB, as an observable, can be enormously useful from the perspective of
probing particle physics and the very early Universe. This is especially because following their
production GW can propagate almost freely, and therefore bring pristine information from
the primordial epoch. Since various plausible sources of GW could have been active before the
decoupling of the cosmic microwave background (CMB) photons or big bang nucleosynthesis
(BBN), GW might be a unique observable using which we can probe the pre-BBN era, i.e.,
the primordial dark age [11, 12]. Such early Universe sources include cosmic phase transitions
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(PT), cosmic strings, preheating after inflation, and enhanced scalar curvature perturbations
at small scales among others (for reviews on cosmological sources of SGWB see, e.g., Refs. [13,
14]).

The recent evidence for an SGWB [3, 4] is an intriguing milestone. At the same time,
some of the most plausible cosmological sources of SGWB, such as a PT or preheating, predict
anisotropies within the associated SGWB [15–17].1 In the case of a PT, these anisotropies
would be present since the sector undergoing PT would typically obtain inflationary large-
scale density fluctuations2 which would get imprinted on the resulting SGWB when the PT
takes place. An observation of these anisotropies would provide us with a new map of the
primordial, inhomogeneous Universe, potentially different from the CMB. Thus a non-trivial
cross-correlation (or lack thereof) between CMB and SGWB anisotropies, can reveal the
existence of new degrees of freedom or isocurvature perturbations in the early Universe [15, 21–
23]. In fact, even without cross-correlating, if we confirm a cosmological origin of an SGWB
and find that anisotropies of such an SGWB are much larger than 10−5, that alone would
provide strong evidence that isocurvature fluctuations are generated in the early Universe.
A discovery of isocurvature perturbations would be very significant since it may hint toward
multi-field dynamics during inflation. It has been noted in Ref. [15] that future detectors
such as LISA, DECIGO, and BBO can have a sufficient angular resolution so as to detect
such anisotropies, at least for PT-generated SGWB. Anisotropies in SGWB would also get
induced via other means, for example, during the propagation of GW due to effects analogous
to the Sachs-Wolfe and integrated Sachs-Wolfe effects [24–26] within the CMB anisotropies.
In addition, anisotropic SGWB can arise at relatively late times, for example, in the presence
of cosmic strings [27–30].

A crucial challenge in extracting primordial physics from an SGWB and its anisotropies
comes from the fact that astrophysical sources, such as individually unresolvable binaries,
would also give rise to an anisotropic SGWB. Such anisotropies arise as the galaxies hosting
the mergers themselves follow an inhomogeneous distribution. Therefore, it is important to
develop methodologies that can distinguish between the two classes of anisotropies. In this
context, we will denote astrophysical and cosmological anisotropies as Aa and Ac, respectively.
To explain the notation, which will be further detailed in Sec. 2, Ac roughly captures the
intensity fluctuation of a cosmological SGWB. That is, an adiabatic O(10−5) primordial
fluctuation on top of an isotropic GW abundance (as a fraction of critical density) ΩGW ∼
10−8, for example, would correspond to Ac ∼ 10−5×10−8. The same notation is also followed
for Aa.

Existing work has focused on distinguishing between several components of SGWB, but
primarily focusing on the isotropic component [31–46] (see also [47, 48] for ideas utilizing the
time-dependence of an SGWB). An important feature that has been used so far is that the
astrophysical and cosmological components typically have different frequency dependencies.
In this work, we build upon these ideas to further discriminate between anisotropic compo-
nents. We utilize the fact that the power spectrum of anisotropies from an astrophysical
source would have different behavior as a function of multipole mode ℓ, compared to that

1Anisotropic SGWB could also arise if primordial fluctuations of scalar and tensor modes are non-Gaussian,
see, e.g., [18–20].

2In principle, the very inhomogeneous PT sector itself creates anisotropies at length scales 1/HPT, where
HPT is the Hubble scale during PT. However, these will be at extremely small and unresolvable angular
scales when compared with the present-day Hubble scale. Therefore, our focus is on pre-existing, inflationary
superhorizon perturbations in the PT sector.
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from a cosmological source. This, coupled with the angular sensitivity of upcoming GW
detectors, enables us to discriminate between the two sources. We note that the extraction
of cosmological anisotropies could help confirm the cosmological nature of the SGWB itself
since both the monopole and the anisotropies would have identical frequency spectra, under
certain reasonable assumptions that we will elaborate on in Sec. 2.

In detail, we carry out a Fisher analysis to understand the precision with which the
cosmological and astrophysical sources can be distinguished. We first note that because
of the frequency- and ℓ-dependencies of the astrophysical and cosmological signals, the pa-
rameters Aa and Ac, that capture the magnitude of anisotropy at one fixed scale and fre-
quency, are not sufficient to achieve a discrimination between the two sources. Therefore
we need to parametrize both the frequency and ℓ dependence of the anisotropies of the two
sources. For the cosmological source, as an example, we consider a cosmological phase transi-
tion. We parametrize the frequency dependence of the associated SGWB as a broken power
law [13, 49–53] dominated by bubble collisions. We parametrize the frequency dependence
of the astrophysical component as f2/3, as is the case for merger-generated SGWB [54, 55],
assuming circular orbits. For the cosmological anisotropies, we consider an approximately
scale-invariant spectrum Cc

ℓ,GW ∝ ℓκ/ℓ2 with |κ| ≪ 1. Astrophysical anisotropies were com-
puted in several works [56–61]. In this article, we consider a dependence Ca

ℓ,GW ∝ ℓδ/ℓ as
derived in [56, 57, 59, 60] with |δ| ≪ 1. We note that while these correspond to motivated
benchmark choices to illustrate our methodology, possibilities of other frequency and angu-
lar dependencies exist. For example, if bubble collision, sound waves, and turbulence all
contribute to an SGWB, the combined frequency dependence would be more involved than
a broken power-law with just two spectral tilts. Similarly, one can also consider a signifi-
cant violation of scale invariance in the cosmological anisotropy component through certain
‘primordial features’ [62, 63] as studied in Ref. [22]. For such scenarios, we expect our method-
ology can be adapted appropriately.

With these parametrizations at hand, we use the noise sensitivity as a function of ℓ
(Ωℓ

GW,n) of LISA, LISA-Taiji combination (LT), Einstein Telescope (ET), Cosmic Explorer
(CE), and Big-Bang Observer (BBO) to obtain the 1σ forecast precision with which the
anisotropic map can be reconstructed, as a function of Ac. For this purpose, we assume
that the monopole of a cosmological SGWB has already been detected with its frequency
dependence precisely measured. Using that information, we then ask how well we can measure
the anisotropies.3 Therefore, we do not vary the cosmological frequency dependence in our
Fisher analysis. While we focus on these detectors, detection prospects for other detectors
can also be obtained using similar methods given appropriate Ωℓ

GW,n. In particular, in this
work, we restrict our attention to ground and space-based experiments in the mHz-Hz range.
A similar analysis could also be carried out in the context of PTA.

We now briefly summarize our findings in the context of these detectors. For this pur-
pose, we need to make some assumptions about the strength of both the monopole and the
anisotropies of the astrophysical signal, a subject of active research. Since our goal in the
present work is to extract cosmological anisotropies in the presence of potential foregrounds,
we take a conservative approach. In particular, we assume the monopole of the (extra-galactic)
astrophysical SGWB is as large as allowed by the current data [64].4 For lower frequencies,

3We note that this assumption can be relaxed and one can measure the frequency dependence from
anisotropies separately if those are large enough. A confirmation of the consistent frequency dependence
of the monopole signal and anisotropies would then corroborate a specific origin of the associated SGWB.

4We discuss the contribution from the galactic white dwarf foreground in Sec. 2.
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we extend this result assuming an f2/3 scaling of ΩGW. For the anisotropies, we follow the
Refs. [56, 57, 59, 60]. With these choices, we find the astrophysical anisotropies coming from
extra-galactic binary mergers are likely unobservable at LISA and LT (more details can be
found in Sec. 2). On the other hand, for an SGWB from a PT with Ac ∼ 10−11, LISA (LT)
can observe some of the individual ℓ-modes at ∼ 10% (1%) precision. In Sec. 2, we will
give examples of how a large Ac ∼ 10−11 can arise while satisfying the current observational
bounds on isocurvature perturbations [65, 66]. Restricting to adiabatic initial conditions in-
stead, we find that a PT with a monopole strength of ΩGW ∼ 10−8 (corresponding to PT
parameters α ≳ 1 and βPT/HPT ∼ 10, reviewed below), LT would be able to observe up to
ℓ ≲ 5 modes.

For frequencies relevant for ET/CE and BBO, both astrophysical and cosmological
anisotropies are relevant. While there are studies [67, 68] suggesting astrophysical foreground,
especially from binary black holes, can be efficiently subtracted with the future ground-based
detectors, recent LIGO data and related investigations [69, 70] found that such subtraction
may be more challenging than previously thought and large residuals could remain. Given
this, we use the current upper limit on isotropic SGWB [64] for the astrophysical monopole
signal strength, as above. We then show that for Ac ∼ 10−11, for example, the combination
of ET and CE would be able to extract an anisotropic cosmological SGWB at ∼ 5 − 30%
precision, depending on the precise ℓ-mode, and up to ℓ ≲ 6. For the same Ac, ET alone
would be able to extract cosmological signals corresponding to ℓ = 2 and ℓ = 4 modes.

In the frequency band ∼ 0.1 Hz–1 Hz, relevant for DECIGO or BBO, Ref. [71] showed
that it might be possible to subtract binary mergers individually so as to reduce astrophysical
foreground by a factor ∼ 102. However, again taking a conservative approach for the astro-
physical monopole, we extend the current upper limit [64] to the 0.1 Hz–1 Hz frequency band,
as above. Even with these conservative choices, we will show that it is possible to extract
cosmological anisotropy in the presence of astrophysical foreground in Sec. 3. As an example,
for Ac ∼ 5× 10−14, we find Ac can be extracted with ∼ 20% precision with BBO. Larger Ac

for fixed Aa would lead to better precision in measurements of Ac, as expected. Similarly,
if the astrophysical foreground can be subtracted, a given value of Ac can be measured with
better precision, and also smaller values of Ac can be accessed (unless it is limited by detec-
tor noise). We note that these conclusions are based on Fisher forecast alone, and therefore
realistic detector effects could degrade the forecast precision that we find. We also clarify
that we conservatively restrict our attention to ℓ ≤ 6 modes, since LISA, ET, CE would be
less sensitive to higher ℓ modes. However, we expect BBO to have powerful sensitivity to
ℓ > 6 modes as well (see, e.g., [72]), and the inclusion of those modes would improve the
measurement prospects of both the astrophysical and cosmological anisotropies.

The rest of this article is organized as follows. We describe the various properties of
astrophysical and cosmological anisotropies in Sec. 2, including a discussion of the shot noise,
while establishing the benchmark values of Aa and Ac for different frequency ranges. We
then set up the Fisher analysis in Sec. 3 and use the benchmarks to estimate the 1σ forecast
precision on Aa, Ac, and ℓ dependence. We conclude in Sec. 4.

2 Sources of GW Anisotropy

We start with a review of some of the relevant quantities that can be used to describe
anisotropies in SGWB, following the notation in Ref. [73]. We denote the spectral energy
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density of gravitational waves as,

ΩGW(f, x⃗) =
1

ρc,0

dρGW(f, x⃗)

d ln f
, (2.1)

where ρc,0 is the critical energy density of the Universe at the present day, x⃗ is the location
of the GW detector, and f is the frequency of the GW. To characterize anisotropy, we define
the variable ωGW(x⃗, f, n̂) via

ΩGW(f, x⃗) =
1

4π

∫
d2n̂ωGW(x⃗, f, n̂), (2.2)

where n̂ is a unit vector pointing towards the sky. The density perturbations are then defined
as,

δGW(x⃗, f, n̂) =
ωGW(x⃗, f, n̂)− Ω̄GW(f)

Ω̄GW(f)
. (2.3)

Here Ω̄GW(f) is derived from ΩGW(f, x⃗) by averaging over x⃗. To analyze δGW(x⃗, f, n̂), we go
to the harmonic space and write,

δGW(x⃗, f, n̂) =
∑

ℓ,m

δGW,ℓm(x⃗, f)Yℓm(n̂). (2.4)

Using the multipole moments δGW,ℓm, we can define the expected power spectrum Cℓ,GW as,

⟨δGW,ℓm(x⃗, f)δ∗GW,ℓ′m′(x⃗, f)⟩ = Cℓ,GW(f)δℓℓ′δmm′ . (2.5)

We can characterize the power in a single ℓ-mode (averaged over m-modes) by,

Ωℓ
GW(f) ≡

√
Cℓ,GWΩ̄GW(f), (2.6)

where we have dropped the argument x⃗ assuming we have averaged over all such positions.
We have also assumed a ‘factorization’ between the ℓ dependence and the f dependence,
such that the anisotropy power spectrum Cℓ,GW is independent of f . Such a factorization
ansatz have been widely applied in literature (e.g. [74, 75]). Although few studies have been
done to justify this assumption, a dedicated study on GW anisotropies from astrophysical
sources demonstrated that the frequency-direction factorization is valid for the f and ℓ range
of interest in our work, while deviation may occur at regimes with f > 50 Hz [60] and large
ℓ > 100. Given that all our analyses are focused on frequencies smaller than 50 Hz and we
consider ℓ ≤ 6, we will assume this factorization of the astrophysical foreground for the rest
of the article.

For the PT-generated cosmological source, the frequency dependence is primarily deter-
mined by the subhorizon physics during the PT (except for the low-frequency tail, determined
by causality). On the other hand, the superhorizon ℓ-dependence is determined by inflation-
ary era fluctuations. Therefore, we expect a factorization to be valid for the cosmological
source as well.

In order to generalize the above expressions in the presence of an astrophysical (a) and
a cosmological (c) component, we note that all our operations above have been linear in the
perturbations. Hence we can write,

δGW,ℓm(f) = δcGW,ℓm(f)
Ω̄c
GW

Ω̄GW
+ δaGW,ℓm(f)

Ω̄a
GW

Ω̄GW
. (2.7)
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Here we have defined,

δ
c/a
GW(f, n̂) =

ω
c/a
GW(f, n̂)− Ω̄

c/a
GW(f)

Ω̄
c/a
GW(f)

, (2.8)

and the total signal is a sum of the cosmological and astrophysical components,

Ω̄GW = Ω̄c
GW + Ω̄a

GW. (2.9)

In terms of Cℓ and assuming no correlation between cosmological and astrophysical signals
(as elaborated upon below), for simplicity, we get

Cℓ,GW = Cc
ℓ,GW

(
Ω̄c
GW

Ω̄GW

)2

+ Ca
ℓ,GW

(
Ω̄a
GW

Ω̄GW

)2

. (2.10)

Therefore, the sum of cosmological and astrophysical contributions can be written as

(Ωℓ
GW)2

∣∣∣∣
signal

= Cc
ℓ,GW(Ω̄c

GW)2 + Ca
ℓ,GW(Ω̄a

GW)2. (2.11)

We note that the astrophysical and the cosmological anisotropies may be correlated for
multiple reasons: (a) they would undergo a similar (integrated) Sachs-Wolfe effect, and (b)
they can originate from the same adiabatic source of primordial perturbations. However,
as we will see in Sec. 3, for LISA/LT and CE/ET we will be interested in cases where
cosmological anisotropies are comparable to or larger than the astrophysical ones. In such
scenarios including correlation would not change the result significantly. On the other hand,
for BBO we will be considering situations where cosmological anisotropies are much smaller
than the astrophysical ones. In these cases, including a correlation is expected to allow a
better extraction of Ac due to a linear sensitivity of (Ωℓ

GW)2 to δcGW, as opposed to quadratic.
However, properly accounting for the primordial correlation as the matter fluctuations evolve
in the late Universe is technically more involved and we will leave it for future work. On the
other hand, when SGWB carries isocurvature fluctuations, we expect the correlations between
astrophysical and cosmological anisotropies to be of minimal advantage. In summary, our
current assumption of no correlation provides a more conservative but simpler overall analysis.

Motivated by the relation in Eq. (2.11), we now also include detector noise (assuming
no correlation with the signal),

(Ωℓ
GW)2 = Cc

ℓ,GW(Ω̄c
GW)2 + Ca

ℓ,GW(Ω̄a
GW)2 + (Ωℓ

GW,n)
2. (2.12)

Here we have used the notation of Ref. [73] to include the detector noise contribution. The
angular dependence of the cosmological and astrophysical components can be parametrized
(given frequency-direction factorization, as discussed above) as,

Cc
ℓ,GW(Ω̄c

GW)2 = A2
cS(f)2

ℓκ

ℓ(ℓ+ 1)
, (2.13)

Ca
ℓ,GW(Ω̄a

GW)2 = A2
a

(
f

f0

)2γ ℓδ

(2ℓ+ 1)
. (2.14)

For an approximately scale-invariant primordial cosmological spectrum, we expect κ ≈ 0 at
large scales, while the expected astrophysical contribution corresponds to δ ≈ 0 [60]. We
will therefore set κ = δ = 0 in the Fisher analysis, and then compute with what precision
we can extract bounds on |κ| and |δ|. Here S(f) characterizes the frequency dependence
of the cosmological signal, and we have assumed a power-law frequency dependence for the
astrophysical signal. We explain the various parameters above in more detail in the following.
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2.1 Cosmological Contribution

As mentioned in the Introduction, several cosmological sources can produce an SGWB within
the reach of upcoming experiments such as LISA, Einstein Telescope (ET), Cosmic Explorer
(CE), and BBO. Given that all these GW signals get produced and propagate in the inho-
mogeneous Universe, an SGWB must be anisotropic. The resulting spectrum Cc

ℓ,GW can vary
among different cosmological sources and is sensitive to the evolution of cosmological pertur-
bations. Therefore, an anisotropic SGWB can be a precious probe of the early Universe for
studying the pre-BBN Universe. In particular, through anisotropies, an SGWB is directly
sensitive to fluctuations of light fields during inflation, beyond just the inflaton. Therefore,
a discovery of isocurvature perturbations within the SGWB anisotropies would give strong
evidence for multi-field inflationary dynamics.

In this work, we focus on an SGWB originating from a first order PT as an example to
illustrate the prospect of identifying an anisotropic cosmological SGWB in the presence of an
astrophysical foreground. We consider a scenario where the PT happens above temperature
T ∼ TeV so that the horizon size at the time of the PT is much smaller than the angular
resolution of the GW detectors. The detectors, therefore, only see a diffuse GW background
from superposing GW from sources within a large number of causally independent Hubble
patches that went through the PT. The local temperature when the PT completes in each
finite region of the sky is nearly identical and equals the bubble nucleation temperature
Tn. However, since the thermal history of each Hubble patch depends on the primordial
fluctuation, each point on the T = Tn surface has a varying distance in redshift from us. The
variation of the redshift leads to a modulation of the GW energy density as a function of
angle on the sky, and the resulting SGWB is therefore anisotropic.

2.1.1 Frequency and the ℓ-mode Dependence

If the sector going through the PT carries approximately scale-invariant inflationary pertur-
bations, analogous to those of the CMB, then Cc

ℓ,GW ∝ [ℓ(ℓ+1)]−1 for the larger angular scales
ℓ ∼< 50. The Sachs-Wolfe effect only gives an extra O(10)% enhancement to the scale-invariant
spectrum for lower ℓ modes [76]. For ℓ ∼> 100, the integrated Sachs-Wolfe (ISW) effect dom-
inates the correction [72, 76]. Since GW is produced long before the CMB decoupling, the
SGWB anisotropy experiences the changes in metric perturbations for a larger duration com-
pared to CMB fluctuations. Therefore, the early-ISW effect gives a larger enhancement of
Cc
ℓ,GW at higher ℓ modes.

Besides the anisotropy from the cosmological perturbations, the peculiar motion of a
GW detector also generates kinematic anisotropies due to Doppler effect [29]. The size of the
kinematic anisotropies depends on the frequency spectrum Ω̄c

GW(f), and the effect introduces
an additional frequency dependence to the total anisotropic spectrum. However, given that
the PT signals we consider are chosen as benchmarks to have monopole components well above
the LISA, ET/CE, and BBO sensitivities, we can measure Ω̄c

GW(f) precisely and calculate
the kinematic anisotropies by knowing the detector motion. Therefore, it is plausible that the
Doppler signal can be subtracted from the anisotropic background, and we do not consider
such kinematic anisotropies in this work. For different sources of the GW production, such
as a large primordial scalar perturbation with a peaked spectrum [77, 78] or cosmic strings
that generate GW for an extended period of time [29, 30], the Cc

ℓ,GW can have different
ℓ dependence. However, one can still apply our analysis to these cosmological signals by
changing the spectral shape of Cc

ℓ,GW.
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Primarily three processes determine GW production from a first order PT: bubble wall
collisions, plasma sound waves, and magneto-hydrodynamic (MHD) turbulence. Recent sim-
ulations indicate that the contribution from sound waves and turbulence can dominate over
bubble wall collisions, depending on the microphysical models. For concreteness, however, we
will focus on scenarios where bubble collisions dominate the GW production, as in the case
of a supercooled PT, e.g., [79–81], where the plasma of the PT sector gets diluted via super-
cooling. For such cases, we can approximate the frequency dependence of the cosmological
signal by [82]

S(f) =
(

(a+ b)faf b
∗

afa+b + bfa+b
∗

)
(2.15)

with a ≈ 3, b ≈ 1, and f∗ being the peak frequency of the spectrum. Taking such models as
benchmarks, we will use the spectrum in Eq. (2.15) as an example for the Fisher analysis.
On the other hand, if sound waves and/or turbulence contributions dominate, then our anal-
ysis can be straightforwardly modified to include the appropriate frequency dependence, by
including parameters beyond a and b for frequency characterization.

2.1.2 Amplitude of the Perturbation

The strength of the GW signal primarily due to bubble collisions can be approximated in the
thin-wall regime by [82]

Ωpeak
GW h2 = 1.3× 10−6

(
HPT

βPT

)2( α

1 + α

)2

. (2.16)

Here we have assumed that the bubble walls propagate at close to the speed of light and
the effective number of degrees of freedom in the thermal bath g∗ ≈ 100. The parameter
α determines the ratio of the released vacuum energy density to the energy density of the
surrounding plasma. In the supercooling regime α ≫ 1. The inverse duration of the PT is
determined by βPT ≡ d ln Γ/dt ≈ −4 + TndSb/dT |Tn where Γ is the bubble nucleation rate
per unit volume, and Sb is the bounce action at Tn. Finally, the Hubble rate at Tn is given
by HPT. This bubble collision-generated spectrum peaks at

f∗ = 0.04mHz

(
HPT

βPT

)−1( Tn

TeV

)
. (2.17)

Having discussed the monopole SGWB strength, we now move on to the anisotropic
signal. If the SGWB carries a primordial density perturbation δGW, the anisotropy of the
SGWB is

δΩpeak
GW h2 ≡ δGWΩpeak

GW h2. (2.18)

In the scenario where the inflaton reheats all sectors, the density perturbation would be
adiabatic and we would have δGW ≈ (4/3)

√
As on large scales, where As = 2.1 × 10−9 [83]

is fixed by the normalization of the CMB power spectrum. In the scenario where the PT
sector comes from the reheating of a ‘curvaton’ field [84–87] that carries different quantum
fluctuations than the inflaton, the SGWB picks up isocurvature fluctuations that allow δGW ≫√
As [15, 21]. In the isocurvature scenario, the primary observational bound comes from

bounds on dark radiation isocurvature [66], since the emitted GW behaves as dark radiation.
Saturating this bound implies δΩpeak

GW h2 ≲ 10−10. However, the monopole perturbation ΩGW
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can now be smaller and get compensated by a larger δGW > (4/3)
√
As while ensuring the

isocurvature bound. Cosmological mechanisms leading to such scenarios have been recently
constructed in Ref. [23]. In the Fisher analysis, we pick a range of Ac (as defined in Eq. (2.13))
that can arise from either the adiabatic or isocurvature perturbations. We now consider these
two possibilities in more detail.

Adiabatic perturbations. In this case, the size of SGWB density perturbation is around

δΩpeak
GW h2 = 8× 10−11

(
HPT

βPT

)2( α

1 + α

)2

. (2.19)

Depending on the PT model, (βPT/HPT)
2 can vary from 10 to 104. The lower range of

(βPT/HPT)
2 can be achieved for a non-standard SGWB from a PT (see, e.g., Ref. [80]),

while the upper range comes from matching Γ ∼ H4
PT. By choosing α ≳ 1, we then get

δΩpeak
GW ∼ 10−14 − 10−11. We will see in Sec. 3.1 that LISA, LT, or ET+CE can observe

anisotropies for δΩpeak
GW ≳ 10−13. For (βPT/HPT)

2 ≳ 103 and/or α ≪ 1, anisotropies become
smaller than this, and BBO would be the primary probe of such anisotropies, as we will
demonstrate.

Isocurvature perturbations. In the case of adiabatic perturbation, we have seen that
LISA would be sensitive to cosmological SGWB anisotropies only for a sufficiently strong
SGWB. However, in the presence of primordial isocurvature perturbations, this need not be
the case. For example, we can consider δGW ∼ 10−3, βPT/HPT ∼ 30, and α ∼ 1 leading to
Ωpeak
GW ∼ 10−9 and δΩpeak

GW h2 ∼ 10−12.
In the following Fisher analysis, we parametrize the cosmological signal as in Eq. (2.13).

According to the discussion above, we choose benchmark numbers κ = 0 and Ac ∼ 10−14 −
10−9. Our choice of κ = 0 is motivated since we assumed SGWB carries the standard,
approximately scale-invariant primordial spectrum.

2.2 Astrophysical Contribution

An SGWB also naturally arises due to astrophysical effects. For the frequency bands around
the peak sensitivities of experiments such as LISA, BBO, ET or CE, the dominant fore-
ground comes from the incoherent superposition of a large number of unresolved sources,
including merging stellar-mass black holes, binary neutron stars, and white dwarves [67, 88–
92]. Therefore, the anisotropy of the astrophysical GW background depends on the formation
of large-scale structure and the local astrophysics on sub-galactic scales. The fluctuations are
significantly different compared to the above-mentioned cosmological signals.

2.2.1 Frequency and the ℓ-mode Dependence

Parameters of the ΛCDM model are now precisely measured [83], which determines the Uni-
verse’s expansion history from the beginning of stellar activity until today. The cosmology
of structure formation is also well understood at scales ≳ 10 Mpc, which mainly contributes
to the modes with ℓ ≲ 1000, the regime we focus on for studying the SGWB anisotropy
power spectrum Cℓ,GW. Different from the comparatively short duration of production of
GW during a specific epoch, such as from a PT which is the cosmological benchmark we
choose, GW from astrophysical sources is produced over an extended period. As a result,
the ℓ-dependence of Ca

ℓ,GW is different from that of its counterpart sourced from a PT, where
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Cc
ℓ,GW ∝ [ℓ(ℓ+ 1)]−1, as mentioned above. After taking into account the growth of the mat-

ter density perturbation and integrating the signal over time, one finds that the anisotropic
spectrum is roughly proportional to Ca

ℓ,GW ∝ (2ℓ+ 1)−1 [56, 57, 59, 60].
As discussed in Sec. 2, we assume frequency-direction factorization for the astrophysical

anisotropies and parametrize them via Eq. (2.14), where δ ≈ 0. For f < 50 Hz, the frequency
spectrum in Eq. (2.14) is well approximated by γ ≈ 2

3 [54, 55]. As we will see, the difference in
the shape of the frequency and anisotropic spectra of astrophysical sources as compared to the
PT signal plays an essential role in distinguishing the cosmological signal from astrophysical
foreground. Even if our simple template of the astrophysical foreground (2.14) does not apply
to higher frequency signals, one can still perform a similar Fisher analysis with a more complex
Ca
ℓ,GW in (f, ℓ) space by including the GW emission from other astrophysical sources.

2.2.2 Amplitude of the Perturbation

The amplitude of the power spectrum Aa has a significant uncertainty due to sub-galactic
scale physics [60]. Since Aa depends on the time evolution of both the large scale structure
and the formation of merger systems, various sub-galactic scale physics such as the black hole
formation process or the merger rate [58, 60], can significantly modify Aa. Despite affecting
Aa, the shape of the Ca

ℓ,GW spectrum is only mildly modified at O(10)% level, for ℓ ∼< 10 [59].
Despite this uncertainty in Aa, just as for cosmic variance, we can use a benchmark

model for the astrophysical anisotropies with the understanding that in reality they may vary
due to sub-galactic uncertainties. However, we expect the benchmark model to represent
the rough size of astrophysical anisotropy for each spherical harmonic. This will allow us to
extract our best estimate for the precision we can obtain for the cosomological anisotropies
from the Fisher analysis.

LIGO/Virgo observations have set an upper limit on the size of the isotropic energy
density Ω̄a

GW(f) < 3.4 × 10−9 (95% C. L.), for γ = 2/3 [64] and reference frequency 25 Hz.
They also consider a fiducial model for Ω̄GW(f) utilizing the data of observed merger events,
with a central value a factor of 2-3 below this upper limit. Therefore, for our benchmark
choice, we conservatively take into account the above-mentioned upper limit, as our goal
is to demonstrate how well we can extract the cosmological signature in the presence of
astrophysical foregrounds. The number translates to Ω̄a

GW ≈ 7× 10−12 around the frequency
of peak sensitivity of LISA f0 = 2.5× 10−3 Hz.

The astrophysical power spectrum Ca
ℓ,GW varies somewhat in the literature [58–61]. We

use the computation of [59, 60] for concreteness, and take (ℓ+ 1/2)Ca
ℓ,GW ≈ 4× 10−4. With

this choice, and saturating the upper limit on the monopole Ω̄a
GW [64], we find Aa ≃ 10−13.

We will see in Sec. 3 that these astrophysical anisotropies are likely unobservable at LISA
and LT. Using the upper limit in [64] and using the f2/3 scaling, we find Ω̄a

GW(f) ≤ 10−10

at 0.25 Hz. An estimate similar to the above then gives Aa ∼ 2 × 10−12. The resulting
anisotropies are indeed observable in BBO, and therefore, they need to be accounted for
when extracting a cosmological signal. Finally, a similar analysis gives Ω̄a

GW(f) ≤ 7× 10−10

around ET/CE peak sensitivity frequency 6 Hz, which corresponds to Aa ∼ 2× 10−11. Such
anisotropies are also observable in ET and CE. More quantitative results will be given in
Sec. 3.

Foreground subtraction. Although our analysis follows a conservative assumption by
saturating Aa utilizing the upper limit in [64], it is possible that future experiments can
model and subtract the foreground with enough computing power. For example, Ref. [71]
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shows that under certain assumptions of the detector sensitivity, BBO has a chance to identify
neutron star merges up to redshift z ≈ 3.6, which allows the subtraction of ≈ 99% of the
foreground. Given the above upper limit at frequencies relevant for BBO, it means after
a 102 reduction the astrophysical monopole is below Ω̄a

GW < 10−12. For the anisotropies,
it would imply a strength, Aa ∼ 2 × 10−14. A less efficient subtraction capability would
imply a larger Aa. In this regard, Ref. [69] shows that when subtracting merger signals in
the ET/CE frequency range, the residual background from imperfect removal of resolved
sources can be large and can limit the sensitivity to the cosmological signal. Therefore, it
is still important to use the f and the ℓ dependence in identifying the cosmological signal
as we investigate in this work. Given these considerations, in the Fisher analysis, we take a
conservative approach and will saturate the astrophysical monopole strength at the current
upper limit [64]. An efficient subtraction would typically imply better prospect for detection
of cosmological anisotropies. To give an example, we consider the limit where astrophysical
anisotropies are much larger than cosmological anisotropies and detector noise, both before
and after foreground subtraction. In that case, a reduction in Ω̄a

GW by a factor of x, through
foreground subtraction, would imply the precision on cosmological anisotropies would roughly
improve by the same factor of x. This can be seen by considering the explicit form of the
Fisher matrix in Eq. (3.1).

Shot noise. The power spectrum of the astrophysical foreground contains shot noise com-
ponents arising from finite sampling from the underlying galaxy distribution and average
binary coalescence rate [58, 93]. While the spatial shot noise, resulting from the discrete-
ness of galaxy distribution, has negligible impact on Ca

ℓ,GW for low ℓ modes (< 10) [60] that
we consider, the temporal shot noise (also called popcorn noise) originating from discretized
compact binary coalescence event rates can be significant. It can dominate over the discussed
anisotropic foreground in the frequency band of ET and CE.

Proposed approaches, such as cross-correlation with dense galaxy maps, have been sug-
gested to mitigate both types of shot noise [60, 94]. Sensitivities from ET/CE measurements
are expected to further reduce temporal shot noise and resolve additional popcorn events at a
higher redshift [94]. However, without precise knowledge of the performance of ET/CE or the
effectiveness of the proposed remedies, it is challenging to make a meaningful estimation at
this stage. Therefore, in this study, we optimistically assume that these remedies successfully
eliminate shot noise in the ET/CE measurements and omit them from the Fisher analysis.
For the LISA and BBO bands, however, the foreground originates from binary systems in the
inspiralling phase, lasting much longer than the observation time span. Hence, the popcorn
shot noise in these bands is absent [60], and only spatial shot noise is present. However,
as mentioned above, for ℓ < 10, the spatial shot noise is subdominant to the ‘theoretical’
astrophysical anisotropy power spectrum that we have been considering so far. Given that
we do not include popcorn noise for ET/CE, in Sec. 3, we first discuss the projections for
LISA/LT and BBO, and then move on to the comparatively less robust results for ET/CE.

2.2.3 Signal from Other Astrophysical Sources

Before ending the discussion of astrophysical signals, we briefly comment on astrophysical
sources other than the stellar-mass black holes and neutron stars which are expected to be
the leading sources for our study. For instance, LISA is sensitive to GW emission from
white dwarf (WD) mergers in the Milky Way, and we expect most of the WD binaries to be
unresolved and produce a stochastic signal [95, 96]. The white dwarf signal can be highly
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anisotropic and have an annual modulation due to detector motion. The frequency spectrum
of this galactic signal will not be a simple power law as well [96, 97].

There have been proposals regarding separating the WD signal from the other astro-
physical foregrounds and subtracting it, e.g., [36, 95, 98]. Furthermore, as estimated in, e.g.,
Ref. [96], the unresolved WD signals become significant at frequencies slightly below the peak
sensitivity of LISA while rapidly declining for f ∼> 3 mHz. On the other hand, our benchmark
cosmological PT signals in the LISA/LT range have peak frequencies at 4 mHz and 10 mHz,
and these choices ensure that the WD signal does not significantly interfere with our ability
to isolate the cosmological signal, even without any subtraction. Given these reasons, we do
not consider white dwarf mergers in our analysis.

Another source, potentially relevant for LISA and mid-band detectors, originates from
intermediate mass black holes (IMBHs), with masses between the stellar mass (O(10)M⊙)
and supermassive black holes (O(104)M⊙) [99, 100]. Although IMBH was hypothetical, the
recent GW190521 event has provided indirect evidence for the existence of such black holes
[101]. One can then postulate Intermediate Mass Ratio Inspirals (IMRIs) resulting from the
merger of stellar mass black holes and IMBHs. Ref. [37] estimates the Ω̄GW(f) of the IMRIs
using a similar model as for stellar mass binary black holes and modifying only the mass
distribution of the IMBH and the fiducial merger rate. The estimate gives a stochastic GW
background that is a bit smaller than signals from the stellar mass binaries merging near
frequencies of the peak LISA and BBO sensitivities. The shape of frequency spectrum is also
degenerate with the stellar mass mergers at frequencies below the highest frequency ∼1 Hz of
the IMRI signal from the merger phase. Although more precise modeling is needed to better
determine the IMRI signal, the result should not significantly change the signal spectrum
assumed in Eq. (2.13).

Besides the IMRI, LISA is also sensitive to extreme mass ratio inspirals (EMRIs), merg-
ers between stellar mass and supermassive black holes [99, 102]. From the estimate in [37]
based on [102, 103], the EMRI signal can be comparable to the signal from the stellar mass
mergers near the center of LISA frequency band. However, precise modeling of the overall
signal from EMRIs is complex, and we expect a larger uncertainty in the estimate of EMRI
signals than signals from stellar mass mergers. Given the current large uncertainties on IMRI
and EMRI, we make the reasonable assumption that these sources are subdominant to the
unresolved binary BH/NS sources and do not include them in the Fisher analysis. With
better understanding enabled by future data and further research, these other sources can be
incorporated into the analysis in case observations prove their significance.

3 Detector Sensitivity to an Anisotropic GW Sky

3.1 Fisher Analysis

To perform a Fisher analysis, we take into account the factorization between frequency and
angular dependence. That is, as explained in Sec. 2, we assume for the cosmological signal,
each ℓ-mode follows the same frequency dependence, and the same is assumed for the astro-
physical signal as well. Furthermore, as discussed before, we consider multipole modes up
to ℓ ≤ 6, and therefore cosmic variance plays an important role in determining the precision
with which various fundamental parameters can be extracted.

Given these considerations, we carry out the Fisher analysis in two steps. First, we ask
how precisely a given cosmological and astrophysical ℓ-mode can be separated purely based
on the different frequency dependence of the cosmological and the astrophysical signal. At
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this step, the parameters κ and δ, determining the spectral tilt in Eq. (2.13) and Eq. (2.14),
do not play any role since we analyze each ℓ-mode separately. Therefore, these results are
model-independent and can be used to further study any angular dependence of the signals.
In the next step, we use the above results to perform another Fisher analysis to determine
the precision on κ, assuming an ℓ-dependence as in Eq. (2.13).

3.1.1 Frequency Space Analysis

The Fisher matrix for the frequency space analysis for each individual ℓ-mode is given by [73],

[Fℓ]αβ = 2(2ℓ+ 1)Tobs

∫
df

∂
∂λα

(
Ω̄GW

√
Cℓ

)
∂

∂λβ

(
Ω̄GW

√
Cℓ

)

Cℓ(Ω̄GW)2 +
(
Ωℓ
GW,n

)2 . (3.1)

Here, we sum over all the m modes for a given ℓ-mode, subject to the conservative assumption
of uncorrelated astrophysical and cosmological anisotropies,

Cℓ(Ω̄GW)2 = Cc
ℓ,GW(Ω̄c

GW)2 + Ca
ℓ,GW(Ω̄a

GW)2. (3.2)

We take the observation time to be Tobs = 3 years. The Fisher matrix Fℓ is two-dimensional,
with λ1 = lnCc

ℓ,GW and λ2 = lnCa
ℓ,GW. We also assume that the frequency dependencies

of the cosmological (say, by measurement of a large monopole moment) and astrophysical
signals, and the detector noise are known. Then we need the following derivatives to evaluate
the Fisher matrix,

∂

∂ lnCc
ℓ,GW

(Ω̄GW

√
Cℓ) =

Cc
ℓ,GW(Ω̄c

GW)2

2
√
Cc
ℓ,GW(Ω̄c

GW)2 + Ca
ℓ,GW(Ω̄a

GW)2
(3.3)

∂

∂ lnCa
ℓ,GW

(Ω̄GW

√
Cℓ) =

Ca
ℓ,GW(Ω̄a

GW)2

2
√
Cc
ℓ,GW(Ω̄c

GW)2 + Ca
ℓ,GW(Ω̄a

GW)2
. (3.4)

From the Fisher matrix, we can compute the fractional precision σ with which the multipoles
can be measured as σ2

Cc
ℓ,GW

=
[
F−1
ℓ

]
11

and σ2
Ca

ℓ,GW
=

[
F−1
ℓ

]
22

.

3.1.2 Multipole Space Analysis

Having used the frequency space information to separate the astrophysical and cosmological
signals, we can analyze their ℓ-space spectra separately. This way we can determine the
precision with which the spectral tilts κ and δ in Eqs. (2.13) and (2.14) can be measured. In
particular, we focus on a benchmark κ = 0 and δ = 0, and then compute the precision with
which κ and δ can be extracted. The associated Fisher matrix, which is just a number in this
case, for the cosmological component can be written as,

Fc =
∑

ℓ

(
∂Cc

ℓ,GW

∂κ

)(
∂Cc

ℓ,GW

∂κ

)

Var(Cℓ)
(3.5)
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where Var(Cℓ) = σ2
Cc

ℓ,GW
(Cc

ℓ,GW)2+(Cc
ℓ,GW)2/(2ℓ+1). The precision σCc

ℓ,GW
follows from the

frequency space analysis, and the second contribution represents cosmic variance. The above
expression can be simplified,

1

σ2
κ

=
∑

ℓ

(ln ℓ)2

σ2
Cc

ℓ,GW
+ 1

2ℓ+1

. (3.6)

The Fisher matrix Fa for the astrophysical component to determine δ is defined analogously.
With these expressions, we can now evaluate the detection prospects of cosmological and
astrophysical anisotropies at various GW detectors. We organize this discussion based on the
frequency ranges the detectors are sensitive to.

As discussed in Sec. 2, both the spatial and temporal shot noise can be safely ignored
for our analysis around the mHz band. Therefore, we start our discussion with LISA and
LISA-Taiji. For around 10 Hz frequencies, on the other hand, the temporal shot noise is
significant. While there are mitigation proposals [60, 94], without a dedicated analysis in the
context of ET/CE, it is not immediately clear to what extent the temporal shot noise can be
mitigated. As mentioned earlier, in this work, we take an optimistic approach by assuming
that the temporal shot noise can be fully mitigated. Given this assumption, we discuss our
comparatively less robust results for ET/CE towards the end of this section.

3.2 LISA and LISA-Taiji

To forecast the detection prospects at LISA, we use schnell [104] to obtain noise sensitivity
curves Ωℓ

GW,n as a function of frequency. We also specify parameters for Taiji and obtain
Ωℓ
GW,n for the LISA-Taiji (LT) combination using schnell. We find that while LISA has the

necessary sensitivity to only the ℓ = 2, 3, 4 modes, LT has powerful sensitivity to the other ℓ
modes as well, ℓ = 1 through ℓ = 6. We will see below that these additional ℓ-modes play an
important role in constraining κ and δ, as expected.

A representative plot for the frequency dependence of the cosmological and astrophysical
signal, along with Ωℓ

GW,n for ℓ = 2 is given in Fig. 1. We choose Cc
ℓ=2,GW = 10−8, Ω̄c

GW

∣∣
peak

=

10−8, f∗ = 4 mHz (solid olive), and scale the Ω̄a
GW = 10−9 at 10 Hz [64] upper limit along

with Ca
ℓ=2,GW = 2 × 10−4. For this choice, the noise, rather than the astrophysical source,

determines the precision with which κ can be measured in LISA or LT. We also show another
benchmark with f∗ = 10 mHz (dot-dashed olive), but otherwise identical parameters.

To further quantify the ranges of cosmological anisotropy Cc
ℓ,GW that are potentially

observable, we compute σCc
ℓ,GW

as a function of various values of Cc
ℓ,GW(Ω̄c

GW)2. We show
the results in Fig. 2 for LISA (solid) and LT (dot-dashed). We also show the isocurvature
constraint [66] via the vertical band, ruling out the region

√
Cc
ℓ,GW(Ω̄c

GW)2 > 10−10, and for
detectability, consider only the regions with σCc

ℓ,GW
, σCa

ℓ,GW
< 0.5. Because of the fact that LT

has useful sensitivity to more ℓ-modes, its constraining power is much better than LISA alone.
In particular, Fig. 2 implies that we can observe ℓ = 2, 3, 4 modes with reasonable precision
at LISA, while LT can cover all the modes from ℓ = 1 to ℓ = 6, for cosmological anisotropies.
Since we saturate the LIGO-Virgo upper bound [64], while the actual astrophysical monopole
could be lower, the results for σCa

ℓ,GW
in Fig. 2 suggest that the (extra-galactic) astrophysical

anisotropies are likely unobservable at LISA and LT.
Given the discussion in Sec. 2.1, for the case of adiabatic perturbations, our result implies

that LISA can observe cosmological SGWB anisotropies (ℓ = 2, 4) only for a strong SGWB,
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Figure 1. Comparison between astrophysical anisotropy (dot-dashed teal), cosmological anisotropy
(olive) with respect to detector sensitivity at LISA (red) and LT (blue) for the ℓ = 2 mode. We
use Cc

ℓ=2,GW = 10−8, Ω̄c
GW

∣∣
peak

= 10−8 with f∗ = 4 mHz (solid olive) and f∗ = 10 mHz (dot-
dashed olive) for the cosmological signal. We also use Ca

ℓ=2,GW = 2 × 10−4 [59, 60]. As explained
in the text, since our purpose is to extract cosmological anisotropies, we conservatively saturate the
astrophysical monopole to its current upper limit, Ω̄a

GW = 10−9 at 10 Hz [64], and then extend it to
LISA/LT frequencies using a f2/3 scaling, assuming circular binary orbits [54, 55] for compact binary
coalescence events. We also show constraints from ∆Neff from Planck 2018 [83] and projection for
CMB-S4 [105].

such as arising from (βPT/HPT)
2 ≃ 10 and α ≃ 1. Nevertheless, weaker PT can still give rise

to observable anisotropies if the GW signal carries isocurvature perturbations as discussed
toward the end of Sec. 2.1. LT, on the other hand, can access weaker signals such as with
(βPT/HPT)

2 ≃ 100 and α ≃ 1 along with adiabatic perturbations.

Varying the peak frequency. In Fig. 2, we assumed a PT-generated cosmological signal
with a peak frequency of 4 mHz, which is quite close to the frequencies where LISA and
LT have the most sensitivity. To understand how the forecast precision changes as the peak
frequency is varied, we now focus on a cosmological signal with a peak frequency at 10 mHz.
The result is shown in Fig. 3. As expected, the cosmological anisotropies can now be measured
with less precision. However, LISA and LT continue to be sensitive to ℓ = 2, 3, 4 and ℓ = 1 . . . 6
modes, respectively.

3.3 Big Bang Observer

To forecast detection prospects at BBO, we use the results of [106] to obtain noise sensitivity
curves Ωℓ

GW,n as a function of frequency. Since BBO is proposed to have multiple LISA-like
triangles, it has powerful sensitivity to both odd and even ℓ-modes. A representative plot for
the frequency dependence of the cosmological and astrophysical signal, along with Ωℓ

GW,n for
ℓ = 2 is given in Fig. 4. We choose Cc

ℓ=2,GW = 10−10, Ω̄c
GW

∣∣
peak

= 10−8, f∗ = 0.25 Hz, and
Ω̄a
GW = 9×10−11 at 0.25 Hz, scaling the upper limit in [64] with Ca

ℓ=2,GW = 2×10−4 [59, 60].
As can be seen from Fig. 4, for this choice the astrophysical component, rather than the
detector noise, determines the precision with which cosmological modes can be extracted in
BBO.
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Figure 2. Precision on cosmological and astrophysical uncertainties from a Fisher analysis. We
assume a PT centered around a frequency of 4 mHz. Left: Cosmological anisotropy. Right: Astro-
physical anisotropy. Via the vertical bands, we show dark radiation isocurvature constraints [66],√
Cc

ℓ,GW(Ω̄c
GW)2 > 10−10, since GW behave as dark radiation and can carry non-adiabatic perturba-

tions. For detectability, we consider only the regions where σCc
ℓ,GW

and σCa
ℓ,GW

are smaller than 0.5.
These results illustrate that LISA and Taiji, in combination, can extract anisotropies much better, by
accessing more ℓ modes, than individually.
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Figure 3. Same as Fig. 2, except the cosmological signal has a peak at 10 mHz, instead of 4 mHz.
As expected based on the dashed olive curve in Fig. 1, the precision on cosmological anisotropies is
worse. However, LISA and LT are still sensitive to anisotropies in open parts of the parameter space,
consistent with bounds on dark radiation isocurvature.
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Figure 4. Comparison between astrophysical anisotropy (dot-dashed teal), and cosmological
anisotropy (solid olive) with respect to detector sensitivity at BBO (red) for the ℓ = 2 mode. The sum
of the two anisotropy sources is shown in dashed orange. We use Cc

ℓ=2,GW = 10−10 and Ω̄c
GW

∣∣
peak

=

10−8 with f∗ = 0.25 mHz for the cosmological signal. We also use Ca
ℓ=2,GW = 2× 10−4 [59, 60]. As in

Fig. 1, we saturate the astrophysical monopole to its current upper limit, Ω̄a
GW = 10−9 at 10 Hz [64],

and then extend it to BBO frequencies using a f2/3 scaling.

We next compute σCc
ℓ,GW

as a function of various values of Cc
ℓ,GW(Ω̄c

GW)2. We show
the results in Fig. 5. We notice that thanks to the different frequency dependence of the
cosmological and the astrophysical signals, both the cosmological and astrophysical signals
can be extracted with reasonable precisions. In particular, in contrast to LISA and LT, BBO
can probe astrophysical anisotropies with better than 10% precision. We also describe the
relative precision with which the cosmological and astrophysical signals can be measured in
Fig. 6 for ℓ = 1 to ℓ = 5 modes for a benchmark choice

√
Cc
ℓ,GWΩ̄c

GW = 10−13. Since the
astrophysical anisotropies are much larger than the cosmological ones for this choice, we get
σCa

ℓ,GW
≪ σCc

ℓ,GW
. This result also illustrates the fact that BBO has better sensitivity to ℓ = 2

and ℓ = 4 modes compared to the other ℓ modes.
Given the discussion in Sec. 2.1, we conclude that BBO can probe adiabatic SGWB

anisotropies from a PT corresponding to (βPT/HPT)
2 ≃ 103 and α ≃ 1 with O(10%) preci-

sion. As we discussed in Sec. 2, properly accounting for correlations between astrophysical
and cosmological anisotropies in this case would improve on the expected precision, but we
leave this for future work. For the scenario where SGWB anisotropies carry isocurvature
perturbations, BBO can access benchmarks such as Cc

ℓ,GW ≃ 10−8, (βPT/HPT)
2 ≃ 104, and

α ≃ 1 with O(10%) precision as well.

3.4 Einstein Telescope and Cosmic Explorer

We now focus on frequencies in the range of ∼1-100 Hz. As discussed in Sec. 2, temporal
shot noise is significant in these frequencies [93]. While some mitigation strategies have been
proposed [60, 94], a dedicated study for Einstein Telescope (ET)/Cosmic Explorer (CE) would
be useful in assessing a reduction. In this work, we optimistically assume that the temporal
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Figure 5. Precision on cosmological and astrophysical uncertainties from a Fisher analysis. We
assume a PT centered around a frequency of 0.25 Hz. Left: Cosmological anisotropy. Right: As-
trophysical anisotropy. Via the vertical bands, we show dark radiation isocurvature constraints [66],√
Cc

ℓ,GW(Ω̄c
GW)2 > 10−10, since GW behaves as dark radiation and can carry non-adiabatic pertur-

bations. For detectability, we consider only the regions where σCc
ℓ,GW

and σCa
ℓ,GW

are smaller than
0.5. Since BBO is expected to have multiple LISA-like detectors on the same orbit, but at different
locations, it can alone be sensitive to both odd and even ℓ modes. In our analysis, we consider modes
only up to ℓ = 5, but BBO is expected to powerful sensitivity up to even ℓ ≃ 50 (see, e.g., Ref. [72]),
although, for these higher ℓ-modes, spatial shot noise would become important [60, 93].
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Figure 6. Comparison between precision for measuring astrophysical and cosmological anisotropies
in the context of BBO for different ℓ modes. We choose

√
Cc

ℓ,GW(Ω̄c
GW)2 = 10−13. For this choice,

the astrophysical anisotropies are much larger than the cosmological ones, as is clear from Fig. 4 for
the ℓ = 2 mode. Nonetheless, we can reliably extract the cosmological anisotropies, albeit with a
lower precision compared to the astrophysical ones, i.e., σCa

ℓ,GW
≪ σCc

ℓ,GW
≪ 1.
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mode. The total anisotropy is shown in dashed orange. We use Cc

ℓ=2,GW = 10−6, Ω̄c
GW

∣∣
peak

= 10−8

with f∗ = 7 Hz for the cosmological signal. We also use Ca
ℓ=2,GW = 2 × 10−4 [59, 60]. As explained

in Fig. 1, we conservatively saturate the astrophysical monopole to its current upper limit [64]. We
also show projected constraints from ∆Neff for CMB-S4 [105].

shot noise can be fully reduced and consider only the actual astrophysical anisotropies. With
that in mind, to forecast the detection prospects at ET and the combination of ET and
CE (ET+CE), we use schnell to encode detector specifications and obtain Ωℓ

GW,n. While
ET or CE alone does not have powerful sensitivity to odd ℓ modes, ET+CE significantly
improves that, making the combination sensitive to all modes between ℓ = 1 and ℓ = 6. A
representative plot for the frequency dependence of the cosmological and astrophysical signal,
along with Ωℓ

GW,n for ℓ = 2 is given in Fig. 7. We choose Cc
ℓ=2,GW = 10−6, Ω̄c

GW

∣∣
peak

= 10−8,
f∗ = 7 Hz, and Ω̄a

GW = 10−9 at 10 Hz [64] with Ca
ℓ=2,GW = 2× 10−4 [59, 60]. As can be seen

from Fig. 7, for this choice the astrophysical component and the cosmological component are
comparable, and we rely on the frequency dependence to separate the two.

In Fig. 8, we show the results for σCc
ℓ,GW

and σCa
ℓ,GW

for various choices of cosmological
anisotropies Cc

ℓ,GW(Ω̄c
GW)2. We note that ET alone can provide useful sensitivity to ℓ = 2

and ℓ = 4 modes, while the combination of ET and CE is more powerful, and can extract
information from up to ℓ = 6 modes.

In the context of models and focusing on adiabatic perturbations, ET+CE are sensitive
to strong SGWB corresponding to (βPT/HPT)

2 ≃ 10 and α ≃ 1, and can extract the associ-
ated anisotropies with O(10%) precision. On the other hand, if SGWB carries isocurvature
perturbations, ET+CE can access benchmarks such as Cc

ℓ,GW ≃ 10−6, (βPT/HPT)
2 ≃ 103,

and α ≃ 1 with O(10%) precision.

3.5 Tilt of the Cosmological Anisotropy Power Spectrum

Having obtained σCc
ℓ,GW

, we can use Eq. (3.6) to compute the precision with which the tilt of
the cosmological anisotropy power spectrum can be measured. To this end, we parametrize
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Figure 8. Precision on cosmological and astrophysical anisotropies from a Fisher analysis. We
assume a PT centered around a frequency of 7 Hz. Left: Cosmological anisotropy. Right: Astro-
physical anisotropy. Via the vertical bands, we show dark radiation isocurvature constraints [66],√

Cc
ℓ,GW(Ω̄c

GW)2 > 10−10, since GW behave as dark radiation and can carry non-adiabatic pertur-
bations. For detectability, we consider only the regions where σCc

ℓ,GW
and σCa

ℓ,GW
are smaller than

0.5.

the cosmological power spectrum as,

ℓ(ℓ+ 1)

2π
Cc
ℓ,GW ≡ Bℓκ. (3.7)

We then compute σκ as a function of B and Ω̄c
GW. The result is shown in Fig. 9. Given

the flattening of the curves for large
√
BΩ̄c

GW, we find that at best the spectral tilt can be
measured with O(10%) precision by considering modes up to ℓ = 6. This is because for large
enough

√
BΩ̄c

GW, σCc
ℓ,GW

≪ 1, and it drops out from Eq. (3.6). In that case, the cosmic
variance term dictates the precision. We show, via dot-dashed horizontal lines, the values
of σκ when only cosmic variance is taken into account. The various curves asymptote to
these values, as expected. We also see how combining two different detectors helps measure
κ better. For example, both ET+CE and LT are sensitive to ℓ = 1 through ℓ = 6 modes, and
correspondingly the reach in σκ is better than ET alone (ℓ = 2, 4) and LISA alone (ℓ = 2, 3, 4),
respectively.

4 Conclusion and Discussion

A discovery of anisotropies imprinted in a cosmologically sourced GW background would be
significant, as it can potentially reveal a new map of primordial fluctuations, complemen-
tary to what we have learned from CMB anisotropies. In particular, a GW background
can hide primordial isocurvature fluctuations, a detection of which would give evidence for
multi-field dynamics during the inflationary era. However, without a dedicated analysis such
primordial anisotropies could remain masked by GW anisotropy in the inevitable astrophys-
ical foreground or buried under the detector noise. It is thus of paramount importance to
ask whether and how well we can unravel the cosmological GW anisotropy from its astro-
physical counterpart and the detector noise. This is especially relevant given the recent
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√
BΩ̄c

GW, both the cosmic variance term and σCc
ℓ,GW

in Eq. (3.6) contribute. However, as√
BΩ̄c

GW gets larger, we can measure the anisotropy corresponding to each ℓ mode much better, i.e.,
σCc

ℓ,GW
≪ 1/

√
2ℓ+ 1 in that limit. For those values, the cosmic variance term in Eq. (3.6) dominates

and the solid curves asymptote to the dot-dashed lines.

evidence for a stochastic GW background (SGWB) reported by pulsar timing array (PTA)
measurements [3, 4]. In recent years, various approaches have been developed in identifying
the cosmological signal in the presence of experimental noise and astrophysical foreground,
for the isotropic or the ‘monopole’ component of an SGWB. In contrast, the analogous work
involving anisotropies within an SGWB is still lacking.

In this work, we took a first step in evaluating the prospect of distinguishing cosmolog-
ical GW anisotropies from astrophysical sources and detector noises. To this end, we make
some assumptions regarding astrophysical anisotropies. The magnitude of the astrophysical
foreground is an active area of research. However, since our purpose here is to understand
how well we can extract cosmological anisotropies in the presence of an (extra-galactic) as-
trophysical foreground, we (conservatively) assume that the monopole of the foreground is
the same as the current upper limit on an isotropic SGWB [64]. Of course, the actual astro-
physical monopole can be much lower, in which case the prospect of extracting cosmological
anisotropies will improve. For simplicity, we have also assumed that astrophysical and cos-
mological anisotropies are uncorrelated. However, if significant correlations are present such
as when all sources carry adiabatic fluctuations, this would improve the precision with which
the cosmological signal can be extracted, especially at BBO, as discussed in Sec. 2. The other
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assumption we make involves shot noise [93]. While the spatial shot noise can be neglected
for the ℓ ≤ 6 modes that we consider [60, 94], the temporal (popcorn) shot noise can be
significant in the Hz band, relevant for ET/CE. There are proposals [60, 94] for mitigating
such shot noise, although dedicated studies for ET/CE would be useful. Here we optimisti-
cally assume that the temporal shot noise can be fully mitigated and only focus on the ‘true’
astrophysical anisotropies. In this sense, our forecasts for ET/CE are somewhat less robust
compared to the forecasts for other experiments. Once a more detailed mitigation strategy is
developed, one can still use a similar Fisher analysis to obtain more robust forecasts.

With these caveats and subtleties in mind, our Fisher forecasts, done on motivated
benchmark models for cosmological phase transitions, render a positive outlook. As exam-
ples, we show in Fig. 2 and Fig. 8 that LISA, LISA-Taiji (LT), and ET+CE combination can
measure low-lying (ℓ ≤ 6) modes of an anisotropic cosmological SGWB map with O(10%)
error at 1σ when a first-order phase transition generates a sufficiently strong SGWB. We
find astrophysical anisotropies corresponding to extra-galactic binary neutron star and bi-
nary black hole mergers might be unobservable at LISA and LT, but we might be able to
detect them in ET+CE. This is because the astrophysical foreground rises as f2/3 as we
go to larger frequencies, and therefore the magnitude of the anisotropies, δΩGW, is larger
at frequencies relevant for ET+CE. For BBO frequencies, astrophysical anisotropies can be
important, especially as the foreground subtraction may not be perfect. We show in Fig. 5
cosmological anisotropies can be constrained with O(10%) precision at 1σ even when the
astrophysical anisotropies are one order of magnitude larger than cosmological ones. The
generic differences in the dependence on frequency between the two sources are key factors
aiding the discrimination. Detectors with higher angular resolution, in particular a sustained
good sensitivity over a range of ℓ modes, yield better discriminating power. Our forecasts
also indicate that the simultaneous operation of multiple detectors probing similar frequencies
would be qualitatively more powerful in extracting anisotropies, as evident, for example, by
comparing the results of LISA alone with LISA+Taiji.

We also identified the complementarity between monopole and anisotropy discoveries.
We generally expect that the discovery or hint of the monopole component of a cosmological
GW background would precede any evidence for anisotropy, which can provide important
information on the signal frequency spectrum. This can then help improve the sensitivity to
the anisotropic component. Anticipating this, in our Fisher analysis we have used a fixed
frequency dependence for the cosmological signal and obtained forecasts for its anisotropic
power. On the other hand, in the likely scenario that a monopole SGWB gets discovered
first, but with debate lingering around whether it is astrophysical or cosmological, further
discrimination can be achieved based on their different patterns of anisotropy spectrum.

To demonstrate the basic idea, we chose the benchmark examples with a cosmologi-
cal GW source from a first-order phase transition and an astrophysical source from binary
BH/NS mergers. For cosmological anisotropy, we assumed that it originates from the typi-
cal scale-invariant primordial fluctuation, and for its astrophysical counterpart we considered
an approximation based on the result in [60]. These set the baseline for the shapes of the
monopole frequency spectra and the anisotropy spectra in ℓ. While the specifics of the re-
sults would differ by considering alternative modeling, our analysis provides a protocol for
more general studies, and the positive prospect shown here is expected to hold up for many
other cases. Given the current uncertainties, in particular, on the astrophysical background,
making reasonable assumptions is the best one can do to progress in this direction. Prac-
tically, one can improve the modeling of astrophysical GW background based on the data

– 22 –



LIGO/Virgo/KAGRA is expected to accumulate in the coming years. Furthermore, the as-
trophysical GW anisotropy map is expected to closely trace galaxy distribution and thus can
be inferred by correlating with its electromagnetic counterpart observations such as galaxy
survey and weak lensing [107].

Astrophysical foreground subtraction for cosmological SGWB anisotropy may be im-
proved with various approaches. First, as discussed, with the improved sensitivity of the
next-generation GW detectors, astrophysical sources can be potentially resolved and sub-
tracted. It was recently shown [69] that such subtraction may be more difficult than previ-
ously estimated, leaving a sizable foreground. Nevertheless, future dedicated study making
use of advancing computing techniques may optimize the effectiveness of such subtraction. It
may also draw inspiration from techniques developed for analogous study in the context of
CMB anisotropy [108, 109]. However, there are key differences between GWs and CMB, which
make discovering a primordial GW anisotropy a unique and new challenge. For instance, while
there are uncertainties in modeling astrophysical foreground for the CMB, the foreground is
known to be most prominent in the galactic plane, and thus galactic masking is effective in
greatly reducing the foreground [109]. In fact, except for B-modes, galactic masking alone
is sufficient for mitigating foregrounds for most CMB anisotropy modes [109, 110]. On the
other hand, the astrophysical foreground for SGWB is generally diffuse, with exceptions such
as that originated from galactic white dwarfs. Furthermore, importantly the CMB signal has
well-known features: it dominates the foregrounds in the frequency region around 70 GHz
while it fades away at the two sides, and follows a black body distribution in frequency. Such
known information plays an important role in facilitating foreground subtraction. In con-
trast, for SGWB searches, so far the cosmological signal itself is still a moving target that
requires a template hypothesis. For GW anisotropy searches, this situation would improve
in light of the evidence or discovery of a monopole component. The extraction of cosmo-
logical CMB anisotropies certainly benefits from the data from observations across multiple
frequency bands and good angular resolution. In comparison, GW experiments are still at
the beginning stages in these regards. Future continuous improvements in GW facilities are
thus expected to enable better discrimination of a cosmologically sourced anisotropy against
its astrophysical counterpart.

With this work as a hopefully inspiring starting point, various future directions can
be pursued. For instance, we analyzed a set of GW detectors spanning a wide range of
frequencies, from mHz to 10 Hz. It would be interesting to consider other future GW detectors
which may boast low detector noise and high angular resolution such as AEDGE, DECIGO,
and TianQin, as well as by the combinations of detectors [107, 111–114]. Furthermore, it
would be useful to carry out similar studies in the context of PTAs, especially given the
recent evidence for an SGWB [3, 4], but in this case the spatial shot noise would be a major
complication [115] which is not present in our current analysis. In addition, the synergy of
GW experiments targeting different frequency bands is expected to provide more information
on the frequency spectral shape of an SGWB signal, thus facilitating the separation between
a cosmological and astrophysical source [37, 116]. Our study also provides useful guidance on
how future experiments may be optimized for identifying a primordial GW anisotropy which
may inform the ongoing design/planning. Finally, we took the relatively simple approach
of Fisher analysis to illustrate how well the cosmological signal can be distinguished from
astrophysical sources, which may not be poised for optimal signal significance. It would
also be more optimal to do a combined Fisher analysis that uses frequency and anisotropy
spectrum at the same time, instead of analyzing them separately, as we did here. That would
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be especially useful if somewhat higher ℓ-modes are considered. This work, along with related
future development, may help fulfill the unique promise of GW anisotropies to shed light on
primordial cosmology.
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