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ARTICLE

Mapping tropical forest functional variation at
satellite remote sensing resolutions depends on
key traits
Elsa M. Ordway 1,2✉, Gregory P. Asner 3, David F. R. P. Burslem 4, Simon L. Lewis 5,6, Reuben Nilus7,

Roberta E. Martin 3, Michael J. O’Brien 8, Oliver L. Phillips 5, Lan Qie9, Nicholas R. Vaughn 3 &

Paul R. Moorcroft1

Although tropical forests differ substantially in form and function, they are often represented

as a single biome in global change models, hindering understanding of how different tropical

forests will respond to environmental change. The response of the tropical forest biome to

environmental change is strongly influenced by forest type. Forest types differ based on

functional traits and forest structure, which are readily derived from high resolution airborne

remotely sensed data. Whether the spatial resolution of emerging satellite-derived hyper-

spectral data is sufficient to identify different tropical forest types is unclear. Here, we

resample airborne remotely sensed forest data at spatial resolutions relevant to satellite

remote sensing (30m) across two sites in Malaysian Borneo. Using principal component and

cluster analysis, we derive and map seven forest types. We find ecologically relevant var-

iations in forest type that correspond to substantial differences in carbon stock, growth, and

mortality rate. We find leaf mass per area and canopy phosphorus are critical traits for

distinguishing forest type. Our findings highlight the importance of these parameters for

accurately mapping tropical forest types using space borne observations.
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Tropical forests are the most biologically diverse biome on
Earth, encompassing an estimated 96% of all tree species1.
Although categorized as a single biome, tropical forests

differ substantially within and across continents. Differences in
ecosystem structure and function corresponding to variation in
species composition directly influence ecosystem processes and
will likely influence tropical forest responses to climate change.
For example, field observations indicate that the carbon sink in
tropical Africa has been stable for three decades (1983–2011),
which is in stark contrast with a long-term decline in the
Amazon2. However, a study using Orbiting Carbon Observatory
(OCO-2) satellite data revealed net carbon emissions across
Africa, Asia, and the Americas following the 2015 El Niño event,
albeit with unique drivers3. The ability to map and characterize
distinct tropical forest types is thus critical for identifying where
further research can examine mechanistic controls on differences
in structure and function, and how different forest types within
the tropical forest biome will respond to a changing planet. This
is of particular importance as tropical forests are threatened by
deforestation, degradation, and climate change, and are critical
for carbon sequestration and many other important ecosystem
services.

Networks of tropical forest inventory plots offer valuable
ground-based insights into mechanisms and processes. However,
remote sensing data can be used to scale these insights to entire
landscapes and regions and highlight previously unexplored areas
for further investigation of mechanism and process. Remote
sensing can thus serve as a powerful tool to measure and map
functionally distinct forest types across the tropics that may be
inaccessible for ground-based investigation. The recent surge in
ecologically orientated satellite remote sensing missions, includ-
ing spaceborne LiDAR (i.e., light detection and ranging) and
imaging spectroscopy (i.e., hyperspectral remote sensing), makes
this a critical moment to evaluate tropical forest function map-
ping at spaceborne resolutions (e.g., ~20–30 m) and assess the
relative importance of forest structure and canopy leaf traits for
characterizing tropical forest function.

Forest types in the tropics differ in canopy structure and function,
which vary with climate4, topography5, soil biogeochemistry6,7, and
natural and anthropogenic disturbance histories and regimes8,9.
Airborne imaging spectroscopy and LiDAR have enabled the mea-
suring, mapping, and monitoring of tropical forest functional and
structural diversity at large spatial scales, in ways that inform eco-
logical understanding10,11, support conservation efforts12, and con-
strain terrestrial biosphere models13. In the tropics, airborne
imaging spectroscopy has been used to map patterns of diversity
across forests in Borneo11 and the Amazon10,14. Airborne imaging
spectroscopy has also been used to characterize leaf traits across the
sunlit portions of tropical forest canopies that are detectable by a
satellite or airborne sensor (which we refer to here as canopy traits)
and identify relationships between these traits and underlying
environmental drivers. For example, Asner and coauthors12 identi-
fied relationships between imaging spectroscopy-derived canopy
traits and variation in geology, topography, hydrology, and climate
across the Peruvian Amazon, sorting the region into 36 distinct
forest types. In Malaysia, airborne imaging spectroscopy and LiDAR
data showed a strong influence of fine-scale topography on forest
structure, composition and diversity5, and the role of interacting
geomorphology and topography on canopy foliar traits across larger
elevation gradients15.

Expanded research opportunities will be made possible by the
newly available ecologically oriented hyperspectral and LiDAR
satellite missions, including the operational PRISMA16 and
DESIS17 spectrometers, NASA’s Global Ecosystem Dynamics
Investigation spaceborne LiDAR18, and the planned NASA Surface
Biology Geology (SBG)19, and European Space Agency Copernicus

Hyperspectral Imaging Mission for the Environment (CHIME)20

spaceborne spectrometers. Satellite instruments overcome expen-
sive and spatially restricted airborne campaign limitations by
providing extensive coverage over tropical forest regions. However,
the data from these sensors are or will be at spatial resolutions of
~20–30m (400–900m2), far coarser than the 1–5m (1–25m2)
resolutions of airborne remote sensing data used in the studies
described above. In addition, lack of knowledge of what traits to
prioritize to enable distinguishing between different tropical forest
types hinders satellite sensor and algorithm development. Here, we
hypothesize that functionally distinct forest types can be mapped
using a combination of canopy foliar traits and canopy structure
information using moderate (30 m) spatial resolution, equivalent to
the resolution available via forthcoming satellite sensors (H1). We
evaluate what canopy traits or structural attributes are most critical
for mapping distinct forest types. We hypothesize that mapped
forest types, distinguishable at the 30m spatial resolution, exhibit
distinct ecosystem function (H2) related to carbon stocks (H2a),
growth (H2b), and mortality (H2c).

In this study, we combine airborne imaging spectroscopy-
derived canopy trait measurements with airborne LiDAR-derived
measurements of canopy structure, resampled to resolutions
corresponding to new satellite missions (30 m) to (1) identify,
characterize, and map structurally and functionally distinct tro-
pical forests across two landscapes in Malaysian Borneo; (2)
determine the key canopy traits and canopy structural attributes
that distinguish different forest types; and (3) compare mapped
forest types with inventory plot data to explore differences in
carbon stocks, growth, and mortality within each forest type. We
used canopy trait maps developed by Martin et al.21 that used co-
aligned LiDAR and imaging spectroscopy data collected by the
Global Airborne Observatory from an aircraft in April 201622,
and structural metrics that we calculated directly from the air-
borne LiDAR data (Supplementary Figs. 1 and 2). Canopy traits
and structural attributes were selected to capture two main forest
type trait axes, which explain roughly half of the global trait
variation. These axes include plant stature and resource acquisi-
tiveness, which are linked to tree growth and mortality
tradeoffs23,24. The canopy traits and structural attributes that we
evaluated included leaf economic spectrum traits indicative of
resource acquisition—leaf mass per area (LMA), leaf nitrogen
(N), and leaf phosphorus (P), as well as stature—maximum
canopy height, and crown and canopy architecture. To more
directly evaluate canopy photosynthetic capacity, we estimated
the maximum rate of Rubisco carboxylase activity (Vcmax) from
canopy N, canopy P, and the ratio of N:P using a statistical
equation described in ref. 25 This enabled exploration of an
additional axis of variation related more directly to the impacts of
nutrient co-limitation on growth across forest types. However, it
is important to note that this is a statistical estimate, and not a
process-based model. In addition, we evaluated leaf area index
(LAI) and variation in the height above ground of peak LAI in the
canopy, given that LAI is an important ecophysiological attribute
that is widely used in terrestrial ecosystem and biosphere models
to upscale estimates of leaf-level processes26,27.

To map functionally distinct forest types across all pixels, testing
hypothesis one, we conducted a principal component analysis
(PCA) to reduce dimensionality of all ten canopy traits and
structural attributes (hereafter canopy properties), and ran a k-
means cluster analysis28 on the first two principal components to
categorize pixels into functionally distinct forest types. To first
evaluate the influence of spatial resolution on forest type mapping,
we conducted analyses on canopy traits and structural attributes at
their original resolution (4m) and 15 coarse-scale resampled
resolutions from 8 to 200m. We used three methods to determine
the appropriate number of clusters (k): (1) the gap statistic (Gapk),
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which defines the number of clusters based on the first local and
global maxima; (2) the elbow approach using the within group sum
of squares (Wk), and (3) the between cluster sum of squares (BSS)
divided by the total sum of squares (TSS), where a higher value of
BSS/TSS indicates improved fit of the cluster analysis to the data.
To test hypothesis two and evaluate whether clustered forest types
exhibited distinct functional dynamics, we compared our forest
functional composition maps to 4 ha inventory plot data estab-
lished within three distinct forest types Sepilok and one large 50 ha
inventory plot at Danum. We demonstrate that forest types can be
successfully mapped using data at the 30m spatial resolution
corresponding to new hyperspectral satellite missions revealing
biologically relevant heterogeneity in tropical forest structure and
function. Two canopy traits—LMA and canopy foliar phosphorus
—were found to be critical for accurately distinguishing between
forest types, while structural characteristics were found to be of
secondary importance.

Results
Our analysis identified between two and four distinct forest types
in Sepilok, and a single forest type at Danum that could be further
distinguished as three distinct forest types (Fig. 1). The influence

of spatial resolution on the degree of variance explained for the
first 2–4 principal components and the k-means BSS/TSS satu-
rated around 20–40 m resolution for both Sepilok and Danum
(Supplementary Fig. 3). Here, we present results from analyses at
the 30 m spatial resolution that corresponds to existing and
forthcoming hyperspectral satellite missions.

At Sepilok, the Gapk metric identified three clusters (BSS/
TSS= 68.5%). However, the Wk elbow and BSS/TSS metrics
suggest that Sepilok can also be characterized as two (BSS/
TSS= 51.9%) or four (BSS/TSS= 76.7%) distinct forest types
based on the magnitude of the decline in Wk, and gains in BSS/
TSS before the values of both metrics level-off with increasing k
(Supplementary Figs. 4 and 5). Cluster analysis results for dif-
fering values of k indicated nested forest types at Sepilok
(Fig. 2a–c): the highest level (k= 2) distinguished an alluvial
forest type from sandstone and kerangas forest type; k= 3 dis-
tinguished sandstone forests from kerangas forests; and k= 4
partitioned the alluvial forest into two forest types, revealing a
mudstone forest type as distinct. At Danum, we identified a single
cluster using the Gapk metric (BSS/TSS= 0.0%); however, the Wk

elbow BSS/TSS methods both indicate that Danum can be char-
acterized as three distinct forest types (BSS/TSS= 61.3%; Figs. 1
and 2; Supplementary Figs. 4 and 5). Two of these forest types
(Danum 1 and 2) were found within the 50 ha ForestGEO
inventory plot when k= 2 and k= 3 (Fig. 1). The 50 ha inventory
plot appears to be dominated by one forest type (Danum 2),
although the northeast corner was identified as distinct (Danum
1) when k= 2 and k= 3 (Fig. 1; Supplementary Fig. 8).

Distinguishing characteristics of forest types. The first principal
component (PC1) corresponded to variation in remotely sensed
LMA in grams of dry mass per square meter (LMA, g DM m−2),
percent canopy leaf nitrogen (N, %), and percent canopy leaf
phosphorus (P, %). The second principal component (PC2)
reflected variation in remotely sensed canopy stature—maximum
canopy height in meters (Max H, m) and the percent of canopy
cover at 20 m height above ground (Cover20, %), which corre-
sponds to field measurements of basal area; a measure of canopy
architecture indicating the vertical distribution of plant foliage (P)
relative to the total canopy height (P:H ratio); and estimated
photosynthetic capacity (Vcmax, µmol m−2 s−1). These patterns
were consistent at Danum and Sepilok (Fig. 2; Supplementary
Fig. 6). Remotely sensed LAI (LAI, m2 m−2) explained little
variation across the forest types, with weak loading values (PC3 at
Sepilok, PC4 at Danum; Supplementary Fig. 6). Figure 3 shows
variation in canopy properties across forest types, shown for the
largest number of forest types identified at each landscape (i.e.,
k= 3 and k= 4; see Supplementary Figs. 7–9 for results from
other values of k). The sandstone and kerangas forests had the
lowest mean canopy leaf nutrient concentrations and estimated
photosynthetic capacity (Fig. 3a –N, P, Vcmax). Despite having
lower canopy height than other forest types, the sandstone and
kerangas forests had the highest fraction of canopy cover above
20 m height, high P:H values, and the highest peak height of LAI
(Hpeak LAI, m) (Fig. 3a – Cover20, P:H, Hpeak LAI).

Strong gradients in LMA, canopy N, and canopy P were
observed across all forest types. The highest canopy leaf nutrient
concentrations and the lowest average LMA were observed in the
three Danum forest types, and the Sepilok mudstone and alluvial
forests (Fig. 3a – LMA). These patterns were consistent across
different values of k (Supplementary Figs. 7 and 8). Average
canopy N and P in the mudstone forest were equivalent to or
higher than the alluvial forest, yet the mudstone forest had
significantly lower estimated Vcmax. Significantly lower maximum
canopy heights (max H) and greater foliage density near the

Fig. 1 Mapped forest types. Mapped forest type results from PCA and k-
means clustering of 10 variables across forest ecosystems in Sepilok Forest
Reserve for k= 2, 3, and 4, and in Danum Valley Conservation Area around
the 50 ha Smithsonian ForestGEO plot for k= 2 and 3. Here, we omit the
Danum k= 1 map, which would show a single color for the entire area, and
instead highlight the difference between k= 2 and k= 3 cluster results. At
Sepilok, the partitioning of the alluvial forest into alluvial and mudstone
forest types is revealed with k= 4. The canopy height shading scale
indicates the top-of-canopy height information from the airborne LiDAR.
Black areas in the clustered forest type maps indicate No Data where pixels
were omitted, or cloud, cloud shadow, and water masked.
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ground (lower P:H) also distinguished the mudstone and Danum
1 forests from the alluvial and Danum 2–3 forests. The Danum 1
forest (when k= 2 or 3) was structurally similar to the mudstone
forest; however, the two forest types differed in LMA, canopy N,
canopy P (Fig. 3a).

While average canopy LAI was similar across forest types
(Fig. 3a – LAI), ranging from 5.4 to 6.3, (coefficient of variation
(CV)= 0.05), the average height of maximum LAI (Hpeak LAI),
canopy architecture (P:H), and canopy cover at 20 m (Cover20) all
exhibited much greater variation across forest types (CV= 0.48;
0.12; 0.25 respectively). Vertical LAI patterns further illustrated
differences in structure across forest types despite similar total
LAI (Fig. 3b, c, Supplementary Fig. 9), with strong clumping in
the understory and the upper canopy at the alluvial and Danum
forests. Vertical LAI profiles indicated less height heterogeneity in
the sandstone and kerangas forests (Fig. 3b, c). Maximum canopy
height, which varied significantly across clusters, was correlated
with estimated Vcmax between the different forest types
(R2= 0.72, p= 0.017) and at the pixel scale (R2= 0.24,
p < 0.0001) (Supplementary Fig. 10). Given that Vcmax was
estimated based on the linear relationship between canopy leaf
N and P (i.e., not derived from leaf-level measurements as the
other remotely sensed traits were—see Methods), it was thus
surprising to find variation in the estimated canopy trait that was
uncorrelated with either N or P.

Remotely sensed estimates of aboveground carbon density, an
emergent property of ecosystem function, differed significantly
across clustered forest types, with high values on average in
sandstone forests and widely varying values in the alluvial and

Danum forest types (Fig. 4a). Aboveground carbon, in megagrams
of carbon per hectare (MgC ha−1), within the inventory plot
boundaries generally corresponded to aboveground carbon distribu-
tions derived from the entire forest type (Fig. 4a). The one exception
was the alluvial forest. When three forest types were distinguished at
Sepilok (k= 3), the alluvial forest inventory plot had significantly
higher aboveground carbon than the cluster-derived alluvial forest
extent (Fig. 4a, p < 0.001). However, when the mudstone and alluvial
forests were differentiated (k= 4), the inventory plot aboveground
carbon distribution was comparable to aboveground carbon in the
clustered alluvial forest extent. As a result, the mudstone forest
encompassed significantly lower aboveground carbon on average.
Annual relative growth and mortality rates calculated from forest
inventory plot data differed significantly across forest types (Fig. 4b).
Growth rates corresponded inversely to mean aboveground carbon
at the sandstone (232MgC ha−1), alluvial (223MgC ha−1), and
Danum 50 ha (194MgC ha−1) inventory plots (Fig. 4a, b). The
kerangas forest did not follow this trend, exhibiting an intermediate
plot-level growth rate despite lower average aboveground carbon
(180MgC ha−1). Mortality rates were similar in the alluvial and
Danum 50 ha plots, and significantly higher than the mortality rates
in the sandstone or kerangas plots.

The relative importance of canopy traits and structural attri-
butes. Cluster analyses conducted with only structural attributes,
only canopy traits, or reduced combinations of canopy traits and
structural attributes, indicated that leaf P, LMA, maximum canopy
height and Cover20 are critical for capturing the observed forest types

Fig. 2 Principal component analysis results. The first two loadings from the principal component analysis at Sepilok (a–c) and Danum (d). a–c Illustrate
the partitioning of pixels into k= 2, 3, and 4 clusters at Sepilok. d illustrates k= 3 clusters at Danum. Cover20: the percent of canopy cover at 20m height
above ground; H peak LAI: height of peak leaf area index, LAI: Leaf area index, LMA: Leaf mass per area, max H: maximum height, N: Nitrogen, N:P:
Nitrogen to phosphorus ratio, P: Phosphorus, P:H: the vertical distribution of plant foliage (P) relative to the total canopy height (H).
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(Fig. 5). Clustering with LMA, leaf P, Cover20, and maximum height
resulted in similar forest types to those identified when ten canopy
properties were used (overall accuracies (OA) of 96.0% and 86.0% for
k= 2 and k= 4 respectively) at Sepilok (Fig. 5a; Supplementary
Fig. 11a), as well as higher BSS/TSS values at both Sepilok (Supple-
mentary Fig. 12a) and Danum (Supplementary Fig. 12b). At Danum,
LMA, leaf P, and Cover20 alone yielded the strongest similarity to the
cluster results with all ten variables (OA= 88.0%; Fig. 5b, Supple-
mentary Fig. 11b). The highest overall accuracy for k= 3 at Sepilok
was achieved with LMA, canopy leaf P, and N, equal to 85.9%,
although the combination of maximum height, LMA and leaf P
(OA= 84.8%), and just LMA and leaf P (OA= 84.7%) yielded
similar results (Fig. 5a). We were unable to obtain distinct mapped
forest types using structural attributes alone. The inclusion of leaf P
improved output in all cases in terms of correspondence with plot
locations and noise (speckling) reduction.

Discussion
We hypothesized that functionally distinct forest types can be
mapped at moderate spatial resolutions, using a combination of
canopy foliar traits and canopy structure information. Our analysis
of LiDAR and imaging spectroscopy data at spatial resolutions
ranging from 4 to 200m (16m2–40,000m2), with an emphasis on
the 30m (900m2) spaceborne hyperspectral spatial resolution,
reveals that few remotely sensed canopy properties are needed to
successfully identify ecologically distinct forest types at two diverse
tropical forest sites in Malaysian Borneo. In testing our second
hypothesis that mapped forest types exhibit distinct ecosystem
function, we found that forest types identified using remotely sensed
leaf P, LMA, Max H, and canopy cover at 20m height (Cover20)
closely align with forest types defined from field-based floristic
surveys29–33 and inventory plot-based measurements of growth and
mortality rates (Fig. 4b). Our approach, however, enables mapping

of their entire spatial extent (Fig. 1) and reveals important structural
and functional variation within areas characterized as a single forest
type in previous studies (Fig. 3). Current and forthcoming satellite
hyperspectral platforms, including PRISMA (30m), CHIME
(20–30m), and SBG (30m), have or will have comparable spectral
resolution, higher temporal revisits, and much greater geographic
coverage. The ability to conduct this type of analysis using remote
sensing measurements at 30m resolution suggests that our method
can be applied to these emerging spaceborne imaging spectroscopy
data to reveal important differences in structure and function across
the world’s tropical forests.

Nested functional forest types revealed. To test our first
hypothesis, rather than making an a priori decision about the
number of k-means clusters (k), we explored the capacity of
remotely sensed data to reveal ecologically relevant variation in
forest types. Baldeck and Asner took a similar unsupervised
approach to estimating beta diversity in South Africa34. Because
the choice of k directly influences analysis outcomes, careful
selection of k is required. Different approaches for identifying the
number of clusters, using the Gapk and Wk elbow metrics35,
yielded varying optimal numbers of clusters for the Sepilok and
Danum landscapes (Fig. 1, Supplementary Figs. 4 and 5). How-
ever, at both sites, a comparison of results based on different
values of k revealed ecologically meaningful structural and
functional differences and graduated transitions between forest
types (Fig. 2, Supplementary Figs. 7 and 8), indicating that the
exploration of traits that aggregate or separate forest types as k
changes is a valuable exercise. Overlap between the remotely
sensed forest type boundaries and inventory plots within distinct
forest types indicate that the series of clustered forests align
closely with forest types defined based on in situ data on species
composition and ecosystem structure. In part, this type of analysis

Fig. 3 Canopy trait and structural attribute distributions. Trait distributions by cluster for Sepilok k= 4 and Danum k= 3. Forest types are ordered based
on their median leaf mass per area (LMA) to illustrate differences in traits for forest types that vary along the leaf economics spectrum. Identical letters
represent clusters where there is no significant difference between forests based on one-way ANOVA tests (p < 0.01). **= traits that varied significantly
between all seven forest types. *= traits that varied significantly between at least five forest types (a). Vertical leaf area index (LAI) profiles for all pixels
within each inventory plot (b) and forest types identified based on k= 3 clusters at Danum and k= 4 clusters at Sepilok (c). Shading around lines in
b, c indicate 95% confidence interval.
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Fig. 4 Functional dynamics across forest types. a Aboveground carbon density for each field inventory plot (solid line) compared to aboveground carbon
for the entire forest type based on cluster results where k= 1 for Danum and k= 3 for Sepilok (dotted line) and k= 3 for Danum and k= 4 for Sepilok
(dashed line). b Annual relative growth (gray) and mortality (black) rates for each forest type calculated from forest inventory plot data. Growth and
mortality rates could not be calculated for the Mudstone forest type due to the lack of an inventory plot with repeat census measurements. Identical letters
represent inventory plots with no significant difference in terms of carbon, mortality rates, and growth rates respectively, based on one-way ANOVA tests
(p < 0.01). Error bars in b indicate 95% confidence interval.
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requires careful selection of the number of clusters. Additionally,
however, we gained valuable insights via the exploration of
varying numbers of clusters as it relates to biologically meaningful
categorization of forest types. Extending this method to other
parts of the tropics will require similar decision-making, which
will either require user input, or the development of robust
automated algorithms for selecting k.

Forest types capture differences in ecosystem dynamics. We
further evaluated the canopy traits and structural attributes that
were most critical for mapping distinct forest types, hypothesizing
that mapped forest types exhibit distinct ecosystem function.
Forest types revealed by the cluster analyses were distributed
along the leaf economic spectrum, where the leaf economic

spectrum characterizes a tradeoff in plant growth strategies36.
LMA, which can covary strongly with leaf N and P, is a key
indicator of plant growth strategies along the spectrum37. At the
slow-return end of the leaf economics spectrum, plants in
nutrient-poor conditions with low leaf nutrient concentrations
invest in leaf structure and defense, expressed as high LMA,
strategizing longer-lived, tougher leaves with slower decomposi-
tion rates. This strategy comes at the cost of slower growth. At the
quick-return end of the spectrum, plants in nutrient-rich envir-
onments with higher leaf nutrient concentrations invest less in
structure and defense, enabling faster growth and more rapid leaf
turnover, i.e., shorter leaf lifespans. This quick-return growth
strategy supports higher photosynthetic rates and more rapid
carbon gain36.

Fig. 5 Trait importance in forest type mapping. Change in overall accuracy for reduced k-means clustering models using forest structure variables
(purple), canopy leaf trait variables (orange), and combinations of structural and leaf trait variables (blue) for k= 2, 3, and 4 for Sepilok and k= 3 for
Danum. All results are compared to the full 10-variable k-means clustering analysis for Sepilok (a) and Danum (b). LES traits: leaf economic spectrum traits
which include leaf mass per area (LMA), foliar nitrogen (N) and foliar phosphorus (P).
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In this study, the principal components and clustering results
yielded forest types that are indicative of community level
differences associated with leaf economic spectrum differences.
The nutrient rich sites (Danum1 and Danum2, Supplementary
Fig. 8) show high canopy N and P and low LMA compared to the
nutrient poor and acidic sites (Sandstone and Kerangas), which
contributes to lower leaf photosynthetic capacity (Vcmax) and
growth (Fig. 4b). Foliar N:P also increased with site fertility,
confirming that tropical forests are primarily limited by
phosphorus, and not nitrogen38,39, with large implications for
carbon sequestration in these forests. Orthogonal differences in
canopy structure and architecture between Danum forest types
and Sepilok Sandstone and Alluvial forests could be indicative of
ecosystem scale differences in the sensitivity of these forests to
endogenous disturbance processes40.

The significant differences in aboveground carbon stocks and
growth and mortality rates between forest types further suggests
strong differences in ecosystem dynamics. In general, growth
rates varied inversely to aboveground carbon, and higher
aboveground carbon corresponded to lower mortality rates. As
an example, the Sepilok sandstone forests, which are largely
comprised of slow-growing dipterocarp species29,33, had the
highest median aboveground carbon (236Mg C ha−1), with
higher canopy P and N, and lower LMA. The taller canopy and
low canopy leaf nutrient concentrations are consistent with the
low growth and mortality rates found in the sandstone forest,
indicating a slow-growth strategy yielding larger trees and higher
aboveground carbon stocks. In contrast, alluvial forests exhibit
high turnover with mortality and growth rates higher relative to
Sandstone forests corresponding to lower aboveground carbon on
average. Kerangas forests exhibited low aboveground carbon
despite an intermediate plot-level growth rate, and mortality rates
that were significantly lower than the Danum or alluvial forest
types. Kerangas forests, which were characterized by the highest
LMA, lowest foliar P and N (Fig. 2a), and the lowest plot-level
aboveground carbon density (186Mg C ha−1; Fig. 4a), are known
to have higher stem densities, lower canopy heights, and long-
lived leaves5,32,41, suggesting well-developed strategies for nutri-
ent retention42. Interestingly, despite significantly different
aboveground carbon and demography, the kerangas and
sandstone forests did not differ in LAI or canopy architecture
(P:H); although maximum height, Cover20, and Hpeak LAI were
significantly higher in the sandstone forest, highlighting the need
to account for differences beyond LAI when scaling processes
from leaves to ecosystems.

In addition, when three forest types were distinguished at
Sepilok, the alluvial inventory plot had significantly higher
aboveground carbon than the remote sensing-derived alluvial
forest extent (Fig. 4a, p < 0.001). It was only when the mudstone
and alluvial forests were differentiated when k= 4 that the
inventory plot and clustered alluvial forest areas exhibited similar
aboveground carbon distributions, with significantly lower carbon
in the mudstone forest. Although Sepilok mudstone and alluvial
forests are often characterized as a single forest type5,43,
independent research first identified mudstone hills as unique
based on differences in soil cation exchange capacity, pH, and
nutrient concentrations that translated into intermediate plant
growth rates in mudstone forests44. More recently, higher clay
fractions and higher exchangeable Mg, Ca, and K were found at
varying soil depths in Sepilok mudstone forests compared to
alluvial forests, although alluvial forests exhibited higher foliar N,
P, K, and Mg concentrations compared to mudstone forests30.
Our remote sensing findings independently support the unique-
ness of mudstone forests based on both leaf traits and structural
attributes (Figs. 2 and 3). The lower aboveground carbon in the
mudstone forest may be due to lower leaf nutrient concentrations

and higher soil acidity, as well as differences in hydrology
associated with seedling and sapling responses to flooding that
influence the species assembly45,46. Because the mudstone forests
in Sepilok are also closer to anthropogenic forest edges than
alluvial forests, edge effects—which have been shown to
significantly influence large tree mortality and lower aboveground
carbon—may also be a factor47–49.

At Danum, our results indicate that the region is comprised of
one to three forest types that differ in LMA, foliar N and P,
canopy height, and vertical structure (Figs. 1 and 2; Supplemen-
tary Figs. 7–8). Our finding that two of these forest types (Danum
1 and 2) were found within the 50 ha Smithsonian ForestGEO
inventory plot interestingly aligns with recent, independent
research. Differences in species composition and soil character-
istics have been identified between the northeast corner and the
remainder of the 50 ha plot30. A recent study also identified the
northeast corner (Danum 1) has having lower species richness,
diversity, stem density, and basal area compared to the rest of the
plot (Danum 2), linked to less acidic soils with a higher cation
exchange capacity and higher Ca, Mg, and Ni content31.

Implications for modeling tropical forest biomes. We did not
find significant variation in total ecosystem LAI across forest
types in this study. In contrast, vertical variation in structure was
more strongly linked to differences between functionally distinct
forest types. LAI is considered one of the most important eco-
physiological attributes of vegetation, and is widely used in ter-
restrial ecosystem and biosphere models to upscale estimates of
leaf-level processes to ecosystems and to model land atmosphere
interactions26,27. LAI varies significantly among the world’s
biomes50. Within tropical forests, previous studies have shown
that variation is correlated with maximum water deficit, mini-
mum temperature, and forest protection status51. However, as
shown here, LAI variation does not vary significantly across the
different lowland forest types (alluvial, sandstone, mudstone, and
kerangas) found at Sepilok and Danum. Average canopy LAI
(estimated from the airborne LiDAR data using the method
described in ref. 52) was similar across forest types, ranging from
5 to 6. A recent study argued that total LAI may not be directly
relevant for many processes in ecosystems (e.g., productivity)
beyond a value of three53.

However, our finding of significant variation in vertical LAI
profiles, despite no substantial variation in average ecosystem
LAI, provides important evidence that vertical foliar distributions
may be more important than the absolute amount of leaf area for
characterizing differences across ecosystems, underscoring the
importance of evaluating additional LiDAR-derived metrics and
leaf traits. In particular, the vertical distribution of leaf area is
important for many canopy processes since the total amount of
leaf surface area and its vertical organization can vary
independently54,55. Although terrestrial biosphere models differ
in their representation of vertical forest strata, there has been a
growing effort to incorporate vertical variation more directly in
many models56. Several recent model developments are at the
cutting edge of representing vertical variation, which implement
vertical gradients of irradiance, water content, and leaf tempera-
ture in ways that better enable models to capture differences in
function within and between forest ecosystems57–59.

In conclusion, we explore the ability to map forest types at the
spatial resolution of forthcoming hyperspectral satellite sensors
and evaluate the ability of those forest types to capture differences
in three aspects of ecosystem dynamics: aboveground biomass
stocks, growth rates, and mortality rates. It was beyond the scope
of this study to conduct ground validation of the entire extent of
the mapped forest types. However, an important next step for
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further research entails a more detailed analysis of differences in
forest composition, structure, and ecosystem dynamics at the
larger landscape scale, beyond the inventory plots evaluated in
this study. Establishing 1 ha plots and repeatedly censusing them
across the extent of each forest type mapped would yield more
robust accuracy assessments of the forest type maps reported here
and will be critical for disentangling the mechanisms and
processes underpinning differences in structure and function.
Despite this need for further in situ analyses, this study provides
the first step toward reliably characterizing differences in forest
types over large areas, where forest inventory plots are not readily
available. This type of mapping alone offers invaluable insights
into differences across vast areas of tropical forest that are
otherwise often characterized as a single biome in ecosystem
models. The ability to capture this variation within the global
critical tropical forest biome sets a new bar for terrestrial
biosphere modeling. Results from this type of analysis can be used
to parameterize and benchmark earth system models, further
constraining high uncertainty in the future dynamics of these
ecosystems.

Since the main axes of variation in canopy properties
correspond to quantities measurable from spaceborne LiDAR
and imaging spectroscopy, our approach offers a framework for
large-scale mapping of functionally distinct forest types that can
be employed across highly diverse tropical forest ecosystems at
regional and global scales. Canopy leaf phosphorus (P) and leaf
mass per unit area (LMA) were critical for distinguishing between
forest types and will thus be essential to accurately map from
spaceborne sensors for ecological applications. Maximum canopy
height, and the fraction of canopy cover taller than 20 m, were
important for distinguishing forest types, although variation in
structure alone was insufficient to capture differences. These types
of analyses at pan-tropical scales will be invaluable for improving
understanding of ecosystem variation across a biome that is both
incredibly threatened by and critical to mitigating global climate
change. Our findings also underscore synergies between ground-
based and remote-sensing ecological analyses, whereby
landscape-scale remote surveys can efficiently pinpoint locations
that can be targeted as high priority for discovery-oriented
fieldwork and ground-based measurements.

Methods
Study landscapes. The study landscapes are in Sabah, Malaysian Borneo,
encompassing forests in Danum Valley with the tallest trees in the tropics60, and
nutrient-poor kerangas forests with stunted canopies and unique floristic
composition61. The first landscape is Sepilok, a 4500 ha reserve of lowland mixed
dipterocarp forests spanning varying topography and soil nutrients5,32,41,44. The
second landscape is Danum, a 44,000 ha conservation area with predominantly
lowland, intact tropical rain forest. In this study, we focus on the 50 ha ForestGEO
inventory plot located in the eastern part of Danum.

Both landscapes exhibit differences in structure, function, and composition that
correspond to underlying soil and geologic substrate5,33,41,43,44. Sepilok is
characterized by three forest types: alluvial forests on fertile ultisols along alluvial
flats and gentle slopes; sandstone forests on well-drained, nutrient-poor ultisols
along steep ridges; and kerangas forests that dominate acidic, extremely nutrient-
poor podosols along lower dip slopes of cuesta landforms33,62. Total phosphorus,
nitrate, and base cations are significantly higher in alluvial soils than in the
sandstone and more acidic kerangas forest soils, influencing forest type differences
in species composition, leaf traits, and stand structure29,32. An earlier field study
also identified mudstone hills within the alluvial forests as being further
distinguishable in terms of soil chemistry and plant growth44, although mudstone
and alluvial areas in Sepilok are typically characterized as a single forest type5,43.

Airborne remote sensing data. To measure forest structure and foliar traits, we
used co-aligned LiDAR and imaging spectroscopy data collected by the Global
Airborne Observatory in April 2016, which are described in detail in the Supple-
mentary Methods and in ref. 22. We examined ten forest structure variables and
canopy foliar characteristics that are strongly linked to ecosystem function and
have demonstrated measurability with high accuracy using airborne remote-
sensing techniques (Supplementary Tables 1 and 2, Supplementary Figs. 1 and 2).

Variation in canopy structure was characterized using five metrics: 99th percentile
of total canopy height (Max H, m), LAI (LAI, m2 m−2), the peak height of LAI
(Hpeak LAI, m), a measure of canopy architecture indicating the vertical distribution
of plant foliage (P) relative to the total canopy height (P:H ratio), and the fraction
of canopy cover taller than 20 m height above the ground (Cover20, %). Variation
in canopy leaf traits were analyzed based on differences in leaf mass per area (LMA,
g DM m−2), foliar nitrogen (N, %) and phosphorus (P, %) concentrations, and
foliar N:P ratios. To assess differences in maximum photosynthetic capacity, Vcmax

was estimated from remotely sensed maps of leaf N and P using the equation in
Table 3, model 1 from25. Estimated Vcmax was not validated with in situ ecophy-
siology measurements and is thus simply meant to provide an additional axis of
functional variation in this study. To examine the feasibility of conducting these
analyses at coarser resolutions, we resampled data and ran analyses at resolutions
ranging from 16 m2 to 40,000 m2. LiDAR and imaging spectroscopy data and
processing are described in Supplementary Methods.

Characterizing functionally distinct forests. We mapped forest types across
Sepilok and Danum. At Danum, we restricted our analysis to the 50 ha ForestGEO
plot location and a 1 km buffer around the plot. To characterize functional and
structural diversity across all pixels, we (1) conducted a PCA to reduce dimen-
sionality of all ten canopy leaf traits and structural attributes (hereafter canopy
properties), and (2) ran a k-means cluster analysis28 on the first two principal
components to categorize pixels into functionally distinct forest types. PCA and k-
means cluster analysis data processing is described in Supplementary Methods.

The primary metric for identifying the appropriate number of clusters (k) was
the gap statistic (Gapk), which defines the number of clusters based on the first
local and global maxima35. We also evaluated output for k= ks+ 1 and for
k= ks – 1, where ks represents the number of clusters selected using Gapk. Two
secondary cluster metrics were also considered: (1) the elbow approach using the
within group sum of squares (Wk), and (2) the BSS divided by the TSS. A higher
value of BSS/TSS indicates improved fit of the cluster analysis to the data63. Because
BSS/TSS increases monotonically as k increases, we evaluated the k at which BSS/
TSS increases flattened, in addition to Gapk and the Wk elbow approach35.

We visually evaluated cluster results against inventory plot data from forest
ecosystems that have been studied extensively in the field and exhibit clear
differences in structure and function. Significant differences in canopy properties
between clusters were calculated based on one-way ANOVAs using the aov and
TukeyHSD functions from the stats base package in R64. To explore the minimum
number of canopy properties required to capture differences in forest types, we
evaluated cluster results using only LiDAR variables (structural attributes), only
imaging spectroscopy variables (leaf traits), and reduced combinations of canopy
properties. To evaluate these reduced models, we calculated overall accuracy as the
proportion of pixels mapped the same as the full 10-variable model.

Inventory plot data. To evaluate cluster analysis performance, we compared our
forest type maps to inventory plot data at Danum and Sepilok. Our plot dataset
consisted of nine existing 4 ha forest inventory plots distributed across alluvial
(n= 3), sandstone (n= 3), and kerangas (n= 3) forests at Sepilok, and one 50 ha
plot at Danum. Data from the nine 4 ha Sepilok plots and the Danum 50 ha plot
were from the ForestPlots.net online repository65 and the ForestGEO online
repository66, respectively. The datasets include stem diameter measurements and
taxonomic identification to species level for every tree ≥1 cm and ≥5 cm in dia-
meter in the ForestGEO and ForestPlots.net plots, respectively. Census years from
each plot were as follows: alluvial—2001, 2009, 2014; sandstone—2001/03, 2008/09,
2013/14; kerangas—2001, 2008/10, 2014/15; Danum—2011/15, 2019. The Global
Airborne Observatory campaign in Sabah was conducted in 2016.

Observed differences in ecosystem properties. In lieu of direct measurements
of ecosystem function at the study locations (e.g., net primary productivity), we
quantified differences in three related ecosystem properties: aboveground carbon,
growth, and mortality. We compared stand-level growth and mortality rates cal-
culated from forest inventory data and remotely sensed estimates of aboveground
carbon density (ACD, Mg C ha−1)—including stem, branch, and leaf biomass—at
plot locations within the inventory plots, and across all mapped pixels within each
forest type to examine differences in aboveground carbon beyond the plots. ACD at
30 m resolution was estimated from the Global Airborne Observatory top-of-
canopy height (TCH) and Cover20 data following67, described in ref. 68. The
method involves estimating ACD from a network of 0.25 to 1 ha field plots using
the BIOMASS workflow described in conjunction with the pan-tropical biomass
allometry69,70. Equations from71, modified by68, were used to estimate ACD from
the TCH data, modified based on67 to incorporate Cover20 as a proxy for stand-
level basal area. Annual relative DBH growth rates and annual mortality rates were
calculated from plot data (stems ≥ 10 cm) following72. When calculating growth
rates, we excluded trees with broken or resprouted stems and stems that grew
>7.5 cm yr−1 or shrunk >25% of their initial DBH following72. Negative growth
rates <25% of initial DBH were converted to zero.
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Data availability
The data associated with this paper are published on Zenodo via the Global Airborne
Observatory account and can be found via the searchable DOIs cited below. Trait Maps:
Global Airborne Observatory foliar trait maps for Sepilok Forest Reserve and the Danum
Valley ForestGEO 50-ha plot with a 1 km buffer in Sabah, Malaysia derived from
imaging spectroscopy data collected 31 March to 30 April 2016: Foliar N, Foliar P, Leaf
Mass per Area (LMA) rasters. https://doi.org/10.5281/zenodo.7051897; https://zenodo.
org/record/7051897#.YxZ_m3bMJPZ. LiDAR: Global Airborne Observatory LiDAR data
for Sepilok Forest Reserve and the Danum Valley ForestGEO 50 ha plot with a 1 km
buffer in Sabah, Malaysia collected 31 March to 30 April 2016: Top-of-canopy height
(TCH), P:H, Leaf Area Density (LAD), rasters. https://doi.org/10.5281/zenodo.7051897;
https://zenodo.org/record/7051897#.YxZ_m3bMJPZ.

Code availability
Code to organize, resample, and merge data for application of PCA and k-means
clustering. Also includes code to estimate Vcmax, and calculate Leaf Area Index (LAI)
from Leaf Area Density (LAD), Peak height of LAI (PeakLAI), and Cover20. https://doi.
org/10.5281/zenodo.7052347; https://zenodo.org/record/7052347#.YxbQnHbMJPY.
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