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Abstract

Background: Epidemiological studies have linked adult height with breast cancer risk in women. However, the magnitude 
of the association, particularly by subtypes of breast cancer, has not been established. Furthermore, the mechanisms of the 
association remain unclear.

Methods: We performed a meta-analysis to investigate associations between height and breast cancer risk using 
data from 159 prospective cohorts totaling 5 216 302 women, including 113 178 events. In a consortium with 
individual-level data from 46 325 case patients and 42 482 control subjects, we conducted a Mendelian randomization 
analysis using a genetic score that comprised 168 height-associated variants as an instrument. This association was 
further evaluated in a second consortium using summary statistics data from 16 003 case patients and 41 335 control 
subjects.

Results: The pooled relative risk of breast cancer was 1.17 (95% confidence interval [CI] = 1.15 to 1.19) per 10 cm increase in 
height in the meta-analysis of prospective studies. In Mendelian randomization analysis, the odds ratio of breast cancer 
per 10 cm increase in genetically predicted height was 1.22 (95% CI = 1.13 to 1.32) in the first consortium and 1.21 (95% 
CI = 1.05 to 1.39) in the second consortium. The association was found in both premenopausal and postmenopausal women 
but restricted to hormone receptor–positive breast cancer. Analyses of height-associated variants identified eight new loci 
associated with breast cancer risk after adjusting for multiple comparisons, including three loci at 1q21.2, DNAJC27, and 
CCDC91 at genome-wide significance level P < 5 × 10–8.

Conclusions: Our study provides strong evidence that adult height is a risk factor for breast cancer in women and certain 
genetic factors and biological pathways affecting adult height have an important role in the etiology of breast cancer.

Breast cancer is a leading cause of cancer morbidity and mortal-
ity among women worldwide (1). Adult height has been found 
to be positively related to breast cancer risk in many epidemio-
logical studies (2–30), reporting mostly a linear dose-response 
relationship. Results from previous studies, however, have been 
inconsistent, particularly with regard to the magnitude of the 
association and the association by subtypes of breast cancer. 
For example, relative risks of breast cancer associated with per 
10 cm increase in adult height ranged from 1.08 to 1.38 in pre-
vious cohort studies. Furthermore, it remains unclear whether 

adult height is causally related to breast cancer risk through 
shared underlying genetic factors and biological pathways or 
serves only as a surrogate measure of certain environmental 
and lifestyle exposures that contribute to breast cancer risk. 
Answers to these questions may provide additional insight into 
breast tumorigenesis and strengthen the basis for classifying 
height as a breast cancer risk factor.

Mendelian randomization analysis can be used to mini-
mize potential biases encountered in conventional observa-
tional studies and to determine the causal association of a 
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given exposure with disease risk (31). The causal association 
can also be manifested by common genetic and biological 
pathways that determine two sequentially developed phe-
notypes, such as adult height and breast cancer risk. Adult 
height is a classic quantitative trait determined, to a large 
extent, by genetic factors (32). Since 2007, genome-wide 
association studies (GWAS) have identified single-nucleotide 
polymorphisms (SNPs) in approximately 180 loci related to 
adult height (33–38). SNPs identified to date by GWAS explain 
approximately 10% of height variation in populations of 
European ancestry (38). The alleles associated with adult 
height should be randomly assigned to offspring from parents 
during mitosis, a process analogous to a random assignment 
of subjects to an exposure of interest in randomized clinical 
trials. Thus, a genetic score summarizing the effects of these 
height-associated SNPs can serve as an instrumental variable 
in a Mendelian randomization analysis of adult height and 
breast cancer risk (39).

Here we comprehensively assessed epidemiologic evidence 
from conventional observational studies regarding the asso-
ciation between height and breast cancer risk by performing 
a meta-analysis of 159 prospective cohorts including more 
than five million women of European ancestry. To determine 
the nature of the association, we conducted two Mendelian 
randomization analyses using data from two large consortia 
totaling 62 328 breast cancer case patients and 83 817 control 
subjects.

Methods

Meta-Analysis of Prospective Studies

We searched electronic databases to identify prospective 
studies that investigated the association between height and 
breast cancer risk among women of European ancestry pub-
lished before December 2014 (Supplementary Figure  1, avail-
able online). We combined relative risks (RRs) of breast cancer 
with per 10 cm increase in height from each of the included 
studies using a random effects meta-analysis (40). We also per-
formed subgroup meta-analyses based on method of height 
assessment (measured or self-reported), as well as menopau-
sal, estrogen receptor (ER), and progesterone receptor (PR) sta-
tus. We used the Cochran’s Q statistic to test for heterogeneity 
(41) and the I2 statistic to quantify heterogeneity across studies 
(42). Potential publication bias was assessed using Begg’s and 
Egger’s approaches (43,44). Sensitivity analyses were performed 
to evaluate the robustness of the results. We considered P values 
of less than .10 in tests of heterogeneity and publication bias 
and P values of less than .05 in the meta-analyses to be statisti-
cally significant. All tests were two-sided, with the exception of 
tests of heterogeneity and publication bias. Details of literature 
searches, study inclusion criteria, and meta-analysis are pre-
sented in the Supplementary Methods (available online).

Mendelian Randomization Analysis

Our Mendelian randomization analysis was conducted using data 
from two consortia, the Breast Cancer Association Consortium 
(BCAC), and the Discovery, Biology, and Risk of Inherited Variants 
in Breast Cancer (DRIVE) Project (Supplementary Figure 1, avail-
able online). In BCAC, we included individual-level data for 
46 325 breast cancer case patients and 42 482 control subjects 
of European ancestry from 39 studies (Supplementary Table 1). 
In DRIVE, only summary statistics data were available to our 

study, and these data were obtained from 16 003 breast cancer 
case patients and 41 335 control subjects of European ances-
try from 11 studies (Supplementary Table  2, available online). 
Details of the methodology used by the BCAC and DRIVE have 
been published elsewhere (45–48) and are available on these 
websites (http://ccge.medschl.cam.ac.uk/research/consortia/
icogs/, accessed August 8, 2015, and http://gameon.dfci.harvard.
edu/, accessed August 8, 2015). Study descriptions and methods 
for SNP selection, genotyping, and imputation are presented in 
the Supplementary Methods (available online).

We examined associations between the 168 SNPs and adult 
height (in cm) in the BCAC using general linear models with 
adjustment for age and principal components. A weighted height 
genetic score (wHGS) was constructed for our primary analysis by 

using the 168 SNPs with the formula: wHGS 9.101559
1

168

= ∑( )βi i
i

SNP
=

,  

where 9.101559 is the coefficient to rescale the original wHGS 
to a mean of 336 risk alleles (Supplementary Table 3, available 
online), βi is the regression coefficient of the ith SNP for height, 
and SNPi is the dosage of the effect alleles (0,1, or 2) of the ith 
SNP. We converted all effect alleles to correspond to taller height 
in the SNP-based analyses and construction of the wHGS. 
Associations of breast cancer risk with the wHGS and each of the 
168 SNPs were evaluated using unconditional logistic regression 
models to derive odds ratios (ORs) and 95% confidence intervals 
(CIs), adjusting for age and principal components. All analyses 
were performed for each study separately, and summary statis-
tics were obtained using a fixed-effects meta-analysis.

In the first Mendelian randomization analysis, we estimated 
the potential causal association between height (X) and breast 
cancer risk (Y) by using the wHGS (G) as an instrumental vari-
able. Specifically, the causal effect (βYX) was calculated by using 

the Wald estimator: β
β
βYX
YG

XG

=
 
(49), and the standard error for 

the causal effect (SEYX) was derived using the delta method: 

SE
S S rS S

YX
YG

XG

XG YG

XG

XG YG YG

XG

=






+
( )

−








β

β
β

β
β

2 2

4 3

2
 (50), where βYG is the 

natural log-scale OR of breast cancer risk associated with the 
wHGS, βXG is the regression coefficient of the wHGS on height, SYG 
and SXG are the corresponding standard errors, and r is the cor-
relation between βYG and βXG. Sensitivity analyses were performed 
(Supplementary Table  3, available online), and the strength of 
instrumental variables was evaluated using F statistic (51). The sec-
ond Mendelian randomization analysis was conducted using the 
inverse-variance weighted method for summary statistics data to 
further evaluate the association (52). Specifically, the causal effect 
(βYX) was estimated using a fixed-effects meta-analysis model:

β

β β

β
YX

XGi YGi

YGii

YGii

XGi

S

S

=













=

=

∑

∑

2
1

168

2

1

168
, with its standard error (SEYX) estimated using 

formula: SE

S

YX

YGii

XGi

=




=

∑

1
2

1

168 β
, where βXGi is the regression coeffi-

cient of the ith SNP on height obtained from approximately 
110 500 women included in a GWAS of adult height published 
previously (38), and βYGi and SYGi are the natural log-scale odds 
ratio of breast cancer risk associated with the ith SNP and the 
corresponding standard error, obtained from the DRIVE Project. 
Details of methodology for statistical analyses are presented in 
the Supplementary Methods (available online).
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Analyses were performed using SAS (version 9.3), R (version 
3.0.0), and PLINK (version 1.07). All tests were two-sided, and P 
values of less than .05 were considered statistically significant 
unless stated otherwise.

Results

Meta-Analysis of Association Between Height and 
Breast Cancer Risk

We identified 26 articles (5–30), containing information from 
159 prospective cohorts that were eligible for inclusion in our 

meta-analyses (Table  1). Of these, 22 articles reported results 
from individual cohorts, while the remaining four articles pro-
vided results from combined analyses of two to 121 cohorts. 
After excluding overlapping cohorts, 5 216 302 participants of 
European ancestry were included in our analyses, including 
113 178 women with breast cancer. Figure  1 presents relative 
risks (RRs) of breast cancer associated with per 10 cm increase 
in height for each of the published studies, all studies combined, 
and study subgroups. The pooled relative risk of breast cancer 
was 1.17 (95% confidence interval [CI] =1.15 to 1.19, P < .001) per 
10 cm increase in height for all studies combined, with strong 
evidence of heterogeneity across studies (Pheterogeneity < .001, 
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Figure 1. Meta-analysis of associations between height and risk of breast cancer in prospective cohort studies. All tests for meta-analyses were two-sided. CI = confi-

dence interval; ER = estrogen receptor; PR = progesterone receptor; RR = relative risk.
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I2 = 61%). Removal of the smallest, the largest, the first signifi-
cant, or the study with adjustment only for age did not change 
the pooled risk estimate. There was little evidence of publication 
bias (P > .33).

The association between height and breast cancer risk 
was stronger in the meta-analysis of studies with meas-
ured height than in the studies with self-reported height 
(RR = 1.20, 95% CI = 1.17 to 1.23 vs RR = 1.14, 95% CI = 1.11 to 
1.17, Pheterogeneity  =  .001). The association was similar among 
postmenopausal and premenopausal women (RR  =  1.17, 95% 
CI = 1.14 to 1.21 vs RR = 1.16, 95% CI = 1.12 to 1.21, Pinteraction = 
.79). Statistically significant associations of height with breast 
cancer risk were found for ER-positive case patients (RR = 1.18, 
95% CI = 1.13 to 1.23), PR-positive case patients (RR = 1.16, 95% 
CI = 1.10 to 1.22), and ER/PR-positive case patients (RR = 1.16, 
95% CI = 1.10 to 1.22). The association was not statistically sig-
nificant for ER-negative and ER/PR-negative breast cancer and 
was only nominally significant for PR-negative breast cancer 
(P = .01).

Mendelian Randomization Analyses of Association 
Between Height and Breast Cancer Risk

Of the 168 height-associated variants, 146 showed an associa-
tion with height at P values of less than .05 in the BCAC in the 
same direction and with comparable effect sizes as reported in 
previous GWAS (Supplementary Table  4, available online). The 
wHGS, constructed using all the 168 SNPs, ranged from 257 to 
407 (mean = 336, standard deviation [SD] = 16.17) in BCAC par-
ticipants, explaining approximately 8.99% of the height varia-
tion. A clear relation between the wHGS and height was found 
in the study (Table 2). The wHGS was associated, at a P value of 
.02 or lower, with age at menarche, parity, age at first live birth, 
use of menopausal hormone therapy, weight, and body mass 
index (BMI), and these associations were no longer statistically 

significant after adjusting for height. No association was 
observed between wHGS and other risk factors for breast can-
cer. The mean wHGS was higher in case patients than in control 
subjects (336.02 vs 335.98, P < .001). The wHGS was positively 
associated with breast cancer risk (P = 6.97 × 10–7) with an odds 
ratio of 1.22 (95% CI = 1.13 to 1.32) by an increment of the wHGS 
corresponding to a 10 cm increase in height (Figure 2). There was 
little evidence of heterogeneity across studies (Pheterogeneity =  .27, 
I2 = 11%). This positive association between breast cancer risk 
and wHGS remained essentially unchanged after adjustment 
for breast cancer risk factors, including age at menarche, age 
at menopause, parity, family history of breast cancer, age at the 
first live birth, breast feeding, and use of oral contraceptive or 
postmenopausal hormone (data not shown). A  13% elevated 
risk of breast cancer was found to be associated with per 10 cm 
increment in measured or self-reported height in the BCAC 
(Table 3). Adjustment for measured/self-reported height elimi-
nated the association between the wHGS and breast cancer risk 
(P = .20). On the other hand, the significant association between 
measured/self-reported height remained unchanged (OR = 1.13, 
95% CI = 1.10 to 1.17, P < .0001) after adjusting for wHGS.

Table  3 presents associations of breast cancer risk with 
adult height as predicted using the wHGS as the instrument in 
Mendelian randomization analysis. As a comparison, results 
derived from the meta-analysis of prospective studies and the 
meta-analysis of studies included in BCAC are also presented. 
A 10 cm increase in height as predicted by the wHGS was asso-
ciated with an approximately 22% elevated risk of breast can-
cer for all women combined (OR = 1.22, 95% CI = 1.13 to 1.32, 
P  =  7.52 × 10–7), compared with the meta-analysis of prospec-
tive cohort studies and the meta-analysis of BCAC case-control 
studies, which showed a 17% and a 13% elevated risk per 10 cm 
increment in height, respectively (Table 3). Odds ratios associ-
ated with genetically predicted height did not vary by meno-
pausal status (Pinteraction = .86). The association, however, was 
restricted primarily to hormone receptor–positive breast cancer. 

Table 2. Associations of the weighted height genetic score with height and traditional breast cancer risk factors

Variable
Number of

participants
Summary

effect*
Standard

error P

Height, cm†
 All participants 50 706 0.11 0.002 <1 × 10–500

 Control subjects 20 458 0.11 0.003 <1 × 10–200

 Case patients 30 248 0.11 0.002 <1 × 10–200

Traditional risk factors
 Age, y 80 455 -0.0033 0.002 .17
 Age at menarche, y 53 990 0.0015 0.0004 2.67 × 10–4

 Menopausal status, post vs pre 61 686 0.00043 0.0008 .61
 Age at menopause, y 26 921 -0.0013 0.002 .54
 Family history of breast cancer, yes vs no 47 417 0.00097 0.0007 .19
 Parous, yes vs no 62 683 -0.0012 0.0007 .09
 Parity, numbers 61 837 -0.00071 0.0003 .02
 Age at first live birth, y 44 736 0.0047 0.001 8.50 × 10–4

 Use of oral contraceptives, ever vs never 28 941 0.00073 0.0009 .42
 Use of menopausal hormone therapy, ever vs never 30 983 0.0018 0.0008 .02
 Breastfeeding, ever vs never 43 321 -0.00076 0.0007 .26
 Smoking, ever vs never 39 562 -0.000068 0.0006 .92
 Weight, kg 51 634 0.070 0.004 2.01 × 10–82

 BMI, kg/m2 47 221 -0.0074 0.001 1.21 × 10–7

* Regression coefficient is presented for continuous variables and natural log-scale odds ratio for dichotomous variables, per unit increase of the weighted height 

genetic score. BMI = body mass index.

† There was no heterogeneity in the association of the weighted height genetic score with height among case patients and control subjects (P = .72). All tests were 

two-sided.
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For example, the odds ratios were 1.26 (95% CI  =  1.14 to 1.38) 
and 1.02 (95% CI = 0.87 to 1.18), respectively, for ER-positive and 
ER-negative breast cancer (Pinteraction = .02), similar to the results 
obtained from meta-analyses of previous cohort studies and 
BCAC case-control studies. Sensitivity analyses were performed 
to evaluate the robustness of the associations between breast 
cancer risk and various height-associated genetic scores (all F 
statistics > 3500) (Figure 3). All analyses yielded similar results, 
with little evidence of heterogeneity (P > .66 for all tests). In 

the second Mendelian randomization analysis using summary 
statistics data from DRIVE for breast cancer risk and published 
GWAS for height, we found that a 10 cm increase in height as pre-
dicted by the 168 height-associated SNPs was associated with an 
approximately 21% elevated risk of breast cancer (OR = 1.21, 95% 
CI = 1.05 to 1.39, P = .008), highly consistent with that observed in 
the analysis using individual-level data from BCAC. Sensitivity 
analyses similar to those performed in the analysis of data from 
BCAC described above yielded similar results (data not shown).

0.40 1.00 2.00 4.00

NBCS

MEC

kConFab/AOCS

SBCS

MTLGEBCS

KBCP

HMBCS

SASBAC

CECILE

GENICA

RBCS

UKBGS

pKARMA

TNBCC

BBCS

SEARCH

CNIO−BCS

ABCFS

MBCSG

HEBCS

LMBC

ORIGO

CGPS

MCCS

MARIE

GC−HBOC

BIGGS

BBCC

OFBCR

ABCS

KARBAC

MCBCS

SKKDKFZS

BSUCH

PBCS

CTS

ESTHER

OBCS

SZBCS

Overall 42482

70

741

897

848

436

251

130

1378

999

427

699

470

5537

424

1397

8069

876

551

400

1234

1388

327

4086

511

1778

0

719

458

511

1429

662

1931

168

954

424

71

502

414

315

46 325

22

731

613

843

489

445

690

1163

1019

465

664

476

5434

756

1554

9347

902

790

488

1664

2671

357

2901

614

1818

0

836

564

1175

1325

722

1862

136

852

519

68

478

507

365

1.22 (1.13 to 1.32)

14.31 (0.63 to 326.5)

2.59 (1.39 to 4.82)

2.11 (1.13 to 3.93)

1.93 (1.08 to 3.47)

1.88 (0.84 to 4.22)

1.80 (0.70 to 4.61)

1.79 (0.55 to 5.78)

1.75 (1.10 to 2.79)

1.63 (0.99 to 2.69)

1.52 (0.68 to 3.41)

1.42 (0.75 to 2.66)

1.40 (0.67 to 2.93)

1.39 (1.08 to 1.78)

1.33 (0.64 to 2.80)

1.30 (0.78 to 2.15)

1.23 (1.03 to 1.46)

1.21 (0.69 to 2.13)

1.19 (0.63 to 2.27)

1.18 (0.52 to 2.64)

1.14 (0.64 to 2.02)

1.10 (0.71 to 1.73)

1.10 (0.44 to 2.72)

1.10 (0.83 to 1.46)

1.08 (0.54 to 2.14)

1.06 (0.73 to 1.56)

0.98 (0.47 to 2.06)

0.94 (0.46 to 1.94)

0.92 (0.47 to 1.79)

0.91 (0.58 to 1.42)

0.91 (0.46 to 1.80)

0.90 (0.62 to 1.32)

0.86 (0.21 to 3.62)

0.84 (0.47 to 1.50)

0.82 (0.37 to 1.81)

0.65 (0.07 to 6.32)

0.65 (0.31 to 1.37)

0.54 (0.23 to 1.29)

0.47 (0.18 to 1.23)

Study Control 
subjects

Case 
patients

OR (95% CI)
per 10 cm increase

Pheterogeneity = .27
I−squared = 11%

Figure 2. Association of the weighted height genetic score with breast cancer risk in the Breast Cancer Association Consortium. CI = confidence interval; OR = odds ratio.
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Height-Associated Variants and Breast Cancer Risk

Statistically significant associations with breast cancer at P val-
ues of less than .05 in the same direction as observed for height 
were found for 16 SNPs in BCAC and 18 SNPs in DRIVE, both 
higher than expected by chance (P = .01 for BCAC and P = .002 for 
DRIVE) (Supplementary Tables 4 and 5, available online). In the 
combined analysis of data from both consortia, 25 SNPs were 
associated with breast cancer risk at P value sof less than .05 
in the same direction as observed for height (Supplementary 
Table 6, available online). In particular, the association for eight 
SNPs remained statistically significant after adjusting for multi-
ple comparisons of 168 independent SNPs, significantly higher 
than expected by chance (P < 10–15) (Table 4). The association for 
three SNPs, rs11205277 near the SF3B4 gene at 1q21.2, rs4665736 
in the DNAJC27 gene at 2p23.3, and rs2638953 in the CCDC91 
gene at 12p11.22, reached the genome-wide significance level of 
P values of less than 5.0 × 10–8 (Table 4 and Figure 4). These three 
loci have not been previously reported in GWAS to be associated 
with breast cancer risk.

Discussion

The association between adult height and breast cancer risk in 
women has been investigated in many epidemiological studies 
(2–4). However, the magnitude of this association, particularly for 
subtypes of breast cancer, has not been established. In our meta-
analysis of data from more than five million women, including 
approximately 110 000 breast cancer events, we estimated that 
a 10 cm increase in height was associated with a 17% elevated 
risk of breast cancer. The association was stronger in the meta-
analysis of studies with measured height than in meta-anal-
ysis of studies with self-reported height. This association was 
confirmed in our Mendelian randomization analysis including 
62 328 breast cancer case patients and 83 817 control subjects 
from two large consortia, in which a 21% to 22% elevated risk of 
breast cancer was associated with per 10 cm increase in geneti-
cally predicted height. The weaker association observed in the 

meta-analysis of previous cohort studies was expected because 
some of these conventional observational studies may have 
suffered from possible biases, including confounding biases 
and measurement errors. In both meta-analysis of prospective 
studies and Mendelian randomization analysis, the association 
between height and breast cancer risk was observed in both 
premenopausal and postmenopausal women but was limited 
primarily to hormone receptor–positive breast cancer. Using the 
Mendelian randomization approach, our study provides strong 
evidence for a possible causal association between adult height 
and breast cancer risk. Results from this study have clarified the 
nature of the height and breast cancer association and provided 
additional insight into the genetic and biological basis of breast 
cancer development.

The genetic score used in our Mendelian randomization 
analysis explains approximately 10% of the height variation in 
populations of European ancestry. The remaining 90% of height 
variation would be explained by both environmental factors 
and genetic variants not yet identified. Given the small height 
variation explained by the genetic score used in our study, we 
expected that the association between measured/reported 
height and breast cancer risk should be similar with or with-
out adjusting for the height-associated genetic score. Indeed, 
this is what we observed in the study. It has been reported that 
in addition to genetic factors, adult height is influenced by 
energy intake and socioeconomic status during growth spurts 
(53). It has been suggested that certain nutritional factors dur-
ing childhood and adolescence may be related to breast cancer 
risk (2–4). Height is also influenced by the timing of puberty, 
which is affected by endogenous estrogen, a hormone that 
plays a central role in breast cancer etiology (2–4). However, 
very few studies have collected sufficiently detailed data on 
childhood and adolescent nutrition and health status and 
pubertal development to clearly disentangle the association 
of breast cancer risk with adult height from these exposures 
that could also contribute to breast cancer risk (54). Therefore, 
it has been unclear whether height is just a simple surrogate 
measure of early life exposures of breast cancer risk factors, in 
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which height per se is not causally related to breast cancer risk. 
It is also possible that the height–breast cancer association is 
causal, in which genetic and/or environmental factors deter-
mine height and subsequently contribute to breast cancer risk 
through the shared underlying biology. Using the Mendelian 
randomization approach, our study provides strong evidence 
for a possible causal association between adult height and 
breast cancer risk, suggesting that factors, both genetic variants 
and environmental exposures, that determine adult height, col-
lectively, may be causally related to breast cancer risk. The pri-
mary goal of Mendelian randomization analyses is to minimize 
possible biases commonly encountered in conventional obser-
vational studies in order to provide strong evidence for causal 
influence. Like any other Mendelian randomization study, we 
cannot estimate the relative contribution of genetic variants 
and environmental exposures to the association between adult 
height and breast cancer risk in our study, particularly because 

many additional genetic variants related to height have not 
yet been identified. Given the incomplete understanding of the 
genetic component for complex traits, such as adult height, 
body weight, and blood lipids, no Mendelian randomization 
study conducted to date has attempted to determine relative 
contribution of genetics and environment in the association 
between these traits and disease risk (69–74).

Adult height is the result of various growth and development 
processes that are determined by many biological pathways. 
Among them, the insulin-like growth factor (IGF) signaling path-
way is of particular interest. Multiple genetic variants in the IGF 
signal pathway have been identified by GWAS to be related to 
height (55). In fact, it is known that IGFs, particularly IGF1, are 
major regulators of growth in utero and during childhood and 
adolescence (56). IGF1 also plays an important role in carcino-
genesis through promotion of epithelial cell proliferation and 
inhibition of apoptosis (57). Circulating IGF1 levels were found 

Figure 4. Regional association plots of the three new loci associated with breast cancer risk in the Breast Cancer Association Consortium. The three plots represent: 

(A) 1q21.2, (B) 2p23.3, and (C) 12p11.22. For each plot, the -log10 (P values) (y-axis) of single-nucleotide polymorphisms (SNPs) are shown according to their chromosomal 

positions (x-axis) in National Center for Biological Information (NCBI) Build 37. Blue lines represent the estimated recombination rates from the HapMap Project (NCBI 

Build 37). Arrows indicate genomic locations of genes within the LD block centered on the index SNPs in the NCBI Build 37 human assembly. The color of SNPs represents 

their LD (r2, the 1000 Genomes Project Europeans), with the index SNP shown as a purple diamond at each locus.
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to be higher among taller compared with shorter women and 
were positively associated with breast cancer risk in a recent 
pooled analysis of 17 prospective studies (58). In contrast, low 
levels of IGF1 due to mutations in the GHR gene were associ-
ated with severe short stature and absence of breast cancer (or 
overall cancer) in individuals with Laron dwarfism in a prospec-
tive study (59). In addition to the IGF signal pathway, multiple 
other biological pathways have also been identified by GWAS 
to be associated with adult height, including Hedgehog, MARK, 
TGF-β, WNT, BMP, and mTOR (38,55,60). Some of these may also 
be involved in the pathogenesis of breast cancer (61–66). To our 
knowledge, to date no genetic variants in these pathways have 
been conclusively associated with breast cancer risk. Our study 
suggests that height and breast cancer susceptibility share 
some common genes and biological pathways, and thus focused 
search in future studies for variants in genes and biological 
pathways established for height may help to identify additional 
genetic risk variants for breast cancer.

By analyzing height-associated SNPs, we identified eight vari-
ants associated with breast cancer risk after adjusting for mul-
tiple comparisons. In particular, the association with three loci 
previously not reported in relation to breast cancer risk reached 
the genome-wide significance level of P values of less than 
5.0 × 10–8. At locus 1q21.2, the risk-associated SNP rs11205277 is 
located in an intergenic region between SV2A and SF3B4. Two 
other genes, MTMR11 and OTUD7B, are also included in the link-
age disequilibrium (LD) block tagged by the SNP. At the 2p23.3 
locus, the risk-associated variant rs4665736 lies in intron 2 of the 
DNAJC27 gene. This SNP is related to the expression of the ADCY3 
and DNAJC27 genes in peripheral blood samples (67). At the 
12p11.22 locus, rs2638953 maps to intron 6 of the CCDC91 gene. 
Data from the ENCODE Project suggest that rs2638953 and other 
highly correlated SNPs (r2 > 0.8) in the LD block might have regula-
tory functions (68). Additional studies are warranted to fine-map 
and functionally characterize the regions identified in our study.

Our analysis based on height-associated genetic score is 
consistent with a Mendelian randomization. The instrumental 
variable (wHGS) was strongly associated with adult height, the 
exposure of interest. The large F-statistic value (>3500) indicated 
that wHGS is a very strong instrumental variable. Although 
wHGS was related to some known breast cancer risk factors, 
all of the observed associations were much weaker than adult 
height, and all of the association can be explained by height. 
Indeed, we have shown that the associations between the wHGS 
and these breast cancer risk factors all disappeared after adjust-
ing for measured/reported height. One possible limitation for 
the Mendelian randomization analysis is that of the 168 height-
associated SNPs included in our study, 145 were imputed in 
BCAC, which could lead to an overall less precise estimate for 
the genetic association with height, underestimating the asso-
ciation between genetically predicted height and breast cancer 
risk. However, this bias should not be substantial because the 
imputation R2 was greater than 0.50 for all of the SNPs included 
in the analysis with a mean value of 0.88. Furthermore, results 
from BCAC were replicated in DRIVE, and the results from these 
two large consortia were very close. Our meta-analysis of pro-
spective cohort studies may be subject to potential biases inher-
ent in the original studies. To minimize these biases, we included 
only prospective studies with age or multivariable-adjusted rela-
tive risks and excluded non-European studies from our analysis 
to minimize heterogeneity. We also conducted subgroup meta-
analyses and found that the association of breast cancer risk 
was stronger with measured height than self-reported height. 
Most studies participating in BCAC are case-control studies, 

with height information obtained after cancer diagnosis. This 
may have contributed to the lower risk estimates for the associ-
ation between adult height and breast cancer risk in BCAC than 
those obtained from the meta-analysis of prospective studies 
and the Mendelian randomization analysis. We present results 
from the analyses of prospective cohort studies, Mendelian ran-
domization, and case-control studies in parallel to illustrate a 
potential biased estimate of the association between height and 
breast cancer risk from conventional case-control studies.

To our knowledge, this is the largest Mendelian randomiza-
tion analysis conducted to date for any cancer. With 62 328 breast 
cancer case patients and 83 817 control subjects, our study has 
excellent power to quantify the association with overall breast 
cancer and by breast cancer subtypes. Our study, with data 
from a large meta-analysis of prospective cohort studies and 
Mendelian randomization analysis, provides strong evidence 
that adult height is a risk factor for breast cancer in women and 
that the association between adult height and breast cancer risk 
is likely to be causal. Furthermore, our study revealed that there 
are shared underlying genetic pathways affecting both height 
and the pathogenesis of breast cancer.
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