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Receptor Tyrosine Kinase activation: from the ligand perspective
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94158, USA

2Department of Cellular and Molecular Pharmacology, University of California San Francisco, San 
Francisco, CA 94158 USA

Abstract

Fifty five members of the nineteen Receptor Tyrosine Kinase subfamilies in humans are all single-

span transmembrane receptors in which relatively conserved intracellular kinase domains are 

coupled to divergent extracellular modules. The extracellular domains initiate receptor signaling 

upon binding to either soluble or membrane-embedded ligands. The diversity of extracellular 

domain structures allows for coupling of many unique signaling inputs to intracellular tyrosine 

phosphorylation but, importantly, this diversity is further increased by the fact that multiple 

ligands can typically interact with the same receptor. Despite engaging with the same receptor, 

such ligands elicit specific and unique control over receptor signaling. Mechanisms behind such 

biased agonism are largely unknown and have been shown to include direct regulation of the 

kinase activation mechanisms, of the composition of recruited signaling regulators and sometimes 

of trafficking of the activated receptor complexes. Using recent progress in understanding the 

structures of active RTK signaling units, we discuss selected mechanisms by which ligands couple 

receptor activation to distinct signaling outputs.

RTK ligands may act as biased agonists.

Receptor tyrosine kinases (RTKs) enable communication between cells and with their 

extracellular environment, contributing to fundamental steps of tissue patterning and 

organogenesis in development and to the maintenance of adult organismal homeostasis [1]. 

Nineteen different RTK sub-families specialize in different functions but all are built 

similarly and contain an N-terminal extracellular domain (ECD), a single transmembrane 

domain (TMD) and an intracellular kinase domain followed by a largely unstructured C-

terminal tail region. The kinase domains share a conserved architecture among most RTKs. 

In contrast, ECDs are highly divergent between the receptor subfamilies, varying in size and 

composition of individual subdomains. This diversity allows receptors to recognize 

structurally distinct protein ligands which then exert unique control over the activation of the 

kinase domain.
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Most human RTKs can be activated by more than one ligand. For instance, three of four 

EGFR/HER receptors respond to a family of ligands expressed by 15 genes and a number of 

their splice variants ([2,3], Figure 1). Nine EphA receptors are each activated by five ephrin 

A ligands and five EphB receptors are each activated by five ephrin B ligands [4,5]. In case 

of the four human FGF receptors, their ligands are encoded by 22 genes and many have 

multiple isoforms [6–8]. The remarkable combinatorial power of the FGF signaling system 

is further diversified by engagement with additional binding partners such as heparin, 

heparan sulfate proteoglycans, and α- and β-Klotho co-receptors [6,7,9]. The expression of 

some of the RTK ligands is tissue-specific, however many are broadly expressed yet 

modulate the extent of receptor activation in a distinct way. Frequently, several ligands bind 

to the same receptor exerting qualitatively different signaling outputs, for instance by 

favoring signaling via the ERK pathway over AKT activation [10,11]. This phenomenon, 

called “biased agonism”, defined also as functional selectivity, has been extensively 

described for G protein coupled receptors (GPCRs). The mechanisms by which GPCR 

ligands exert biased agonism are complex and involve the kinetic and thermodynamic 

properties of the receptor ligand complex, kinetics of receptor endocytosis and its 

subsequent degradation, association with unique downstream effectors, triggering distinct 

negative/positive feedbacks and even induction of altered signaling properties within 

intracellular compartments after receptor internalization [12,13]. A lot of effort has been 

invested in trying to understand how receptors can modulate these variables differently 

depending on the bound ligand. One widely accepted view is that GPCRs exist in a dynamic 

equilibrium between multiple active conformations and that biased agonists shift this 

equilibrium stabilizing conformationally distinct active states [12–14]. These states then 

uniquely couple to downstream G proteins, β-arrestins and GPCR kinases (GRKs) resulting 

in distinct cellular responses [15]. Several such structures of GPCRs have been solved and 

demonstrated differential a range of conformational states that activating ligands can 

stabilize [14].

In analogy to the GPCR field, a concept of biased agonism in RTK signaling was proposed a 

decade ago to explain functionally discrete outcomes of activation of the same receptor by 

different ligands [10]. Similarly to GPCRs, many factors determine unique signaling 

properties of an RTK ligand, including altered kinetics of receptor binding, induction of 

distinct receptor oligomeric states, association with signaling co-receptors, differential 

regulation of receptor endocytosis, trafficking, degradation and finally signaling from 

intracellular compartments. However, from a receptor perspective, in contrast to GPCRs, a 

much sparser repertoire of RTK structures, in particular of those spanning the ligand-bound 

extracellular domains, and lack of any high-resolution structures of full-length receptors 

limit the extent of mechanistic insights into whether ligands actually stabilize structurally 

distinct receptor states. Moreover, in the absence of direct insights into whether ligand 

binding to the ECDs is conformationally coupled to the activation of the kinase domains, it 

is difficult to know if structural changes associated with binding of different ligands can be 

robustly interpreted by the intracellular receptor module on the other side of the membrane. 

Here we discuss recent work in the EGFR/HER, Ephrin, RET, SCF and FGF receptor 

families to illustrate the current understanding of these mechanisms for RTKs.
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Direct effect of ligands on receptor conformation and dimerization

In the canonical model of HER receptor activation, ligand binding to the ECDs results in 

receptor dimerization by promoting an extended conformation of the ECD [16–19]. Through 

a still unclear mechanism, the ECD dimer communicates with the intracellular fragments of 

the receptor. It is well established that in the active complex, the intracellular kinase domains 

form an asymmetric dimer in which one kinase allosterically activates the other [20]. This 

conformation is stabilized by the interactions made by the intracellular JM domains [21]. 

The activated kinase then phosphorylates C-terminal tails of the receptors providing docking 

sites for numerous downstream signaling molecules (Figure 2)[20–22]. Three out of the four 

different EGFR/HER receptors, EGFR, HER3 and HER4, recognize multiple ligands, while 

HER2 is an orphan receptor. EGFR itself binds EGF, TGFα, epigen, epiregulin, 

amphiregulin, HB-EGF and betacellulin (BTC), which are believed to be monomeric in 

solution and engage the receptor through their conserved albeit slightly divergent EGF-like 

domains (Figure 1 and 2) [23]. The seven cognate ligands activate EGFR signaling in 

qualitatively different ways, resulting in responses ranging from cell differentiation, 

proliferation, migration to plethora of other phenotypes [10,24–34]. For example, TGFα and 

HB-EGF are more potent stimulators of DNA synthesis in isolated rat hepatocytes than EGF 

despite similar receptor binding affinities [35], and amphiregulin causes greater mobility and 

invasiveness of MCF10A human mammary gland epithelial cells than EGF [36]. Whether 

different ligands cause distinct structural changes in the intracellular receptor modules is not 

known, but they certainly promote unique phosphorylation states of the receptor tails and 

modulating patterns of recruited downstream signaling proteins such as AKT, ERK, PLCγ 
and STAT3 [25,34,37]. Signaling downstream from HER4 is also differentially modulated 

by saturating levels of its cognate ligands that include four family members of the 

neuregulin family, in addition to BTC, epiregulin and HG-EGF [38].

Some of the reported ligand-unique responses might be a result of the cross-reactivity 

between ligands and multiple HER receptors. However, recent structural insights into the 

interaction modes between EGFR ECD homodimers and two of its ligands, epiregulin and 

epigen, offer mechanistic insights how the ligands could act as biased structural agonists. A 

crystal structure of the EGFR ECD with epiregulin revealed that this ligand promotes a less 

symmetric ECD dimer than seen in previously solved structures of EGFR ECD in complex 

with EGF and TGFα [18,19,26]. Although epigen crystalized in a monomeric complex with 

the EGFR ECD, it induced ECD dimers in solution, and in the structure stabilized an EGFR 

ECD conformation that resembled HER2. A HER2-like conformation is predicted to weaken 

the canonical ECD dimerization interface [26,39]. While it is unclear whether these different 

conformations of ECDs are directly involved in modulation of the active kinase dimer 

module, itself asymmetric [20], it appears that non-canonical, asymmetric complexes of 

EGFR ECDs are less stable than the symmetric ones [26]. Epigen and epiregulin 

consequently promote the formation of weaker EGFR dimers than EGF and TGFα. These 

altered dimerization affinities lead to ligand-specific differences in the average lifetime of 

active signaling complexes. Counterintuitively, weaker EGFR dimers promoted more 

sustained signaling resulting in cellular differentiation in comparison to EGF, which 

activated transient signaling responses and cell proliferation [26].
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Regulation of the signaling outcomes via stability of active receptor complex formation is a 

signature of kinetic proofreading - a mechanism first described in the receptor field for the T 

cell receptor [40]. This model assumes a time lag between initial receptor-ligand interactions 

and the formation of active, phosphorylated complexes, and consequently further 

recruitment of downstream signal transducers. Such delay can be caused by quick 

dissociation of unstable complexes and/or their effective dephosphorylation by 

phosphatases, ensuring that unproductive receptor complexes fail to signal. If a pool of 

downstream proteins varies in recruitment kinetics to the receptor then the assembly of 

signaling complexes will be determined by the lifetime of active receptor complexes. An 

interesting example is provided by the FGFR1 receptor in which autophosphorylation of 

tyrosine residues in the kinase domain, which serve as docking sites for downstream 

signaling proteins, occurs sequentially in time [41]. Therefore, the extent of FGFR1 

phosphorylation and its ability to recruit signaling effectors depends on the lifetime of the 

active receptor complexes [41]. On the other hand, the extent of autophosphorylation of 

HER receptors seems to depend more on the recruitment of phospho-tyrosine phosphatases 

(PTPs) to active receptor complexes [42,43].

Kinetic proofreading can play an important role in tuning RTK signaling in response to 

different agonists, and this property allowed for its harnessing for a number of therapeutic 

strategies [44]. When a native ligand for the c-Kit receptor, stem cell factor (SCF), binds to 

the receptor as a non-covalent homodimer it stimulates both the maintenance and survival of 

bone marrow hematopoietic stem and progenitor cells (HSPCs) as well as the development 

and activation of mast cells [45]. Selective activation of HSPCs without mast cell activation 

is often desired in the clinic but cannot be achieved using native SCF dimers. However, an 

engineered dimerization-deficient SCF variant reduced the dimerization propensity ligand-

bound receptors and achieves biased activation of HSPCs without simultaneous activation of 

mast cells in vitro and in vivo [44]. Similarly, activation of several isoforms of FGFR by 

FGF1 can induce different biological pathways and for instance regulates both cell 

proliferation and glucose metabolism in various cell lines [46]. A mutant FGF1 ligand that 

induces weaker FGFR dimers selectively abrogates FGFR’s mitogenic potential while 

preserving its full metabolic activities [47], thereby providing another example for how the 

stability of receptor ligand complexes may regulate distinct signaling responses.

Allosteric coupling across the membrane

It remains poorly understood how much unique signaling responses induced by RTK ligands 

are a result of conformational coupling between the ECDs and the intracellular domains, in 

addition to kinetic proofreading. Lack of high resolution structures of full-length receptors 

precludes direct insights into such coupling, but several less direct approaches support the 

notion that at least in a number of receptors the conformational changes in different receptor 

domains are coordinated, and that coordination can be further tuned by ligand binding. An 

increasing number of structural and biochemical studies of the interactions between the 

transmembrane (TM) helices of RTKs suggest that these single spanning modules adopt 

different orientations depending on a ligand that engages the receptor, which in some cases 

affects the orientation of the adjacent intracellular JM domains [48–52]. In EGFR, this has 

been investigated using bipartite tetracysteine display, which relies on the presence of four 
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cysteine residues that when brought into close proximity for long enough can form a 

fluorescent complex by coordinating bis-arsenical fluorophore (ReASH). In these 

experiments, the relative orientation of the JM domains containing engineered cysteines was 

used as a sensor of conformational states of ECDs upon binding to different ligands [53,54]. 

The JM domains have been previously shown to dimerize in the active receptor complex but 

the structure of this dimer in the context of the full-length receptor has not been solved 

[21,55]. The ReASH measurements showed that binding of seven cognate EGFR ligands to 

ECDs generates at least three distinct cytosolic juxtamembrane domain conformations 

propagated through unique configurations of the transmembrane domains [53,54,56]. 

Interestingly, while EGF and TGFα both stabilize symmetric ECD dimer structures and 

consequently stable dimers, their corresponding juxtamembrane domain arrangements 

within a dimer seem to differ (denoted as ‘EGF-type’ and ‘TGFα-type’ in Figure 2). Thus 

the intracellular JM and kinase conformations seem sensitive to the identity of a bound 

ligand.

Recent biochemical studies in cells provide evidence that different FGF ligands might also 

stabilize structurally unique conformations of full-length FGF receptors (FGFRs), providing 

an explanation for observed biased agonism. Most FGF ligands serve as autocrine and 

paracrine growth factors and activate their cognate receptors in a heparin or heparan sulfate 

proteoglycan-dependent manner [6]. When engineered constructs of FGFR1, FGFR2 and 

FGFR3, in which the ICDs are replaced by fluorescent proteins as FRET pairs, are 

stimulated with saturating levels of FGF1 or FGF2, FRET signals are different for each 

ligand suggesting different conformational states [50]. These states then are coupled to 

unique receptor activation profiles, as evidenced in case of FGFR1 and FGFR3, where 

saturating FGF2 levels induced stronger receptor phosphorylation than treatment with FGF1. 

While these studies do not provide direct structural evidence for the existence of multiple, 

conformationally distinct active FGFR complexes at the plasma membrane, they are in 

agreement with such structures existing and being functionally unique.

Are high resolution structures of full-length RTKs attainable? As of now, numerous full-

length RTKs have been characterized by lower resolution negative-stain electron 

microscopy, including the EGF, PDGFRβ, Insulin and Kit receptors [57–61]. While these 

studies do not yet offer sufficient detail to discriminate between conformational changes 

resulting from binding of different ligands, they do show promise in capturing distinct 

conformations of full-length receptor dimers [57–60]. First cryo-EM attempts have been 

recently published for the Insulin and type-I Insulin-like growth factor receptors [62,63]. 

These receptors form disulfide-linked constitutive dimers even in the absence of a ligand and 

are activated by conformational rearrangements within the ECD dimer upon ligand binding 

[57,62,64–70]. It is still unclear how kinase domains of the Insulin and Insulin-like growth 

factor receptor behave before and after ligand binding in the full-length receptor complex. 

Structural studies on intracellular modules of this receptor alone have identified distinct 

inactive and active dimer complexes [71–75]. Regretfully, the cryo-EM analysis, which was 

conducted on detergent-solubilized receptors, failed to resolve intracellular kinase domains 

raising a concern that full-length receptor might be too flexible to enable high resolution 

structure determination. However, it is likely that this flexibility is ameliorated by the 

presence of the membrane bilayer with which receptors, such as EGFR have been speculated 
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to extensively interact [48,76–78]. Such interactions would not be adequately modelled 

experimentally in detergent micelles, but rather by utilization of membrane mimetics, such 

as nanodiscs [79].

Ligands can induce distinct changes in receptor oligomerization

In addition to stabilizing structurally distinct RTK homodimers with different half-lives, a 

number of growth factors promotes association of RTKs into higher-order oligomers. Such is 

the case for ephrins, which are membrane tethered growth factors that engage Eph receptors 

on neighboring cells in a juxtacrine fashion [5]. This leads to activation of many distinct 

signaling pathways with often paradoxical cellular responses [5,80]. For instance, receptor 

activation can either lead to strong cell adhesion or facilitate cell separation, all within the 

same cellular context [81–83]. Activation of Eph receptors by ephrins proceeds through 

formation of higher-order receptor oligomers that condensate in a time- and concentration-

dependent manner into aggregates that eventually become inactive [84]. It is known that 

different Eph receptors can form structurally distinct clusters [83,85,86]. Recent FRET 

studies provided evidence that different EphA2 agonists can induce conformationally 

distinct dimeric units of the same receptor, resulting in formation of structurally distinct 

oligomers [87]. The extent to which other Eph receptors can flexibly adopt different 

oligomeric structures depending on a bound ephrin, as well as the functional consequences 

of these distinct structures for Eph receptor signaling, are yet to be comprehensively 

analyzed.

An intricate interplay between structural differences of ligand-bound receptors and their 

distinct propensities for higher-order oligomerization over time appears to also play an 

important role in determination of the signaling outcome from the EGFR/HER receptors. 

Upon EGF binding, EGFR is often observed to form large clusters on the plasma membrane 

that appear to have functional consequences on downstream signaling [88–96]. The extent of 

oligomerization under different conditions and how such different oligomeric EGFR/HER 

states affect signaling still remains to be fully understood, but they clearly matter. For 

example - like the native ligand, EGF, synthetic EGFR ligands and some therapeutic 

antibodies can constitutively dimerize the receptor and potently stimulate its 

phosphorylation, however they fail to activate the Ras/MAPK pathway (Figure 3A) [97,98]. 

In case of the synthetic ligands, this effect is correlated with lack of receptor clustering [99]. 

Inability of phosphorylated EGFR to form clusters and signal in response to these ligands 

suggests that they might fail to induce a specific EGFR conformation that is required to form 

functional higher order oligomers. What is this conformation is unclear because high-

resolution structures of higher-order oligomeric EGFR states do not exist, and thus far only 

their molecular models emerged from molecular dynamics simulations [94,96,100]. Ligands 

could possibly additionally tune these oligomeric receptor states by stabilizing distinct ECD 

structures, as observed in crystal structures of EGFR ECDs with different ligands 

[18,19,101]. While EGFR clusters have been frequently observed, it is important to note that 

receptor dimers seem to be the main population of EGFR on the cell surface [102]. Ligand 

binding is also not absolutely necessary for EGFR to signal as indicated by the ability of 

certain oncogenic mutations in EGFR to promote EGFR dimerization and activation via the 

Ras/MAPK pathway in a ligand-independent manner [103,104]. Thus, the exact differences 
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in structural identity of different EGFR oligomeric states and their contribution to signaling 

remain an open question.

HER receptor ligands also act as biased agonists by preferentially stabilizing unique hetero-

oligomeric receptor complexes [29,37,92]. Due to cross-reactivity of these ligands with 

different receptors, studies of such effects need to be conducted under conditions when HER 

receptor expression is known and controlled. We have shown that the catalytically inactive 

member of the EGFR family, HER3, organizes into larger complexes at the plasma 

membrane with its dimerization partners EGFR and HER2 but does so differently depending 

on the bound ligand (Figure 3B) [92]. In response to EGF, HER3 clusters with EGFR, which 

subsequently phosphorylates HER3 without engaging it in a canonical allosteric kinase 

dimer. In contrast, in response to NRG1β, HER3 and EGFR form the allosteric kinase dimer 

which does not evolve with time into higher-order clusters. The same ligand, NRG1β, leads 

to formation of HER3 clusters when HER2 is its dimerization partner. In this case signaling 

depends on the allosteric kinase dimer interface. Another study found that the EGFR ligands 

EGF and BTC have different effects on EGFR interaction with HER3. BTC induced weaker 

EGFR but stronger HER3 phosphorylation than EGF, leading to increased cell migration 

[29]. This suggests that EGF might preferentially stabilize EGFR homodimers while BTC 

promotes EGFR/HER3 heterodimerization. Given that each HER receptor has distinct 

tyrosine phosphorylation sites that serve as docking sites for downstream signaling proteins, 

such ligand-specific, biased formation of signaling complexes will result in distinct signaling 

outcomes. Thus, promotion of different heterodimers and/or oligomers emerges as important 

ways by which ligands establish the astounding combinatorial potential of the HER family 

of receptors to signal.

Ligand-distinct signaling can be mediated by co-receptors

A number of RTKs have low intrinsic affinity for their cognate ligands and either partially or 

fully rely on non-catalytic co-receptors for ligand binding and activation. Examples include 

the MuSK, FGF and Ret receptor families [7,9,105–107]. The RET receptor offers a 

particularly captivating case of such regulation as illustrated recently by elegant structural 

analysis of its ECD complexes with different co-receptors. Upon activation, RET interacts 

with one of four glial cell-derived growth factor (GDNF) receptor α family members (GFRα 
1–4) or with GFRα-like protein (GFRAL) which act as non-catalytic co-receptors. These 

interactions are mediated by specific ligands: GDNF, Neurturin (NRTN), Artemin (ARTN), 

Persephin or GDF15, respectively, and result in unique cellular responses (Figure 4A) 

[106,108–112]. Cryo-EM structures of four different RET ECD/co-receptor/ligand 

complexes outline common features of the receptor activation mechanism by the four 

ligands that involves the formation of V-shaped complexes with 2:2:2 stoichiometry (Figure 

4B) [113]. This unifying principle is then customized by each ligand which stabilizes a 

unique angle of protomers within the V-shaped structure, suggesting a mechanism for how 

they lead to distinct signaling outputs. One of these ECD complexes, NRTN/RET/GFRa2, 

further oligomerizes into tetramers, which show a reduced rate of endocytosis, prolonged 

signaling and unique signaling profiles [113,114]. Exactly how these structural differences 

in RET ECD complexes translate into activation of the kinase domain modules and further to 

distinct signaling remains to be shown.
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Similar to RET receptors, all four human FGFR family members rely on the presence of co-

factors for activation by FGF ligands. Depending on their distribution within the body, FGF 

ligands are categorized as paracrine/autocrine or endocrine FGFs. Paracrine/Autocrine 

ligands (FGF 1–14, FGF16–18, FGF20, FGF22) generally have high affinity for heparan 

sulfate, which concentrates the ligands at the site of secretion and is obligatory for receptor 

binding and activation (Figure 4C+D) [115,116]. Endocrine FGF ligands (FGF19, FGF21, 

FGF23) have lower affinity for heparan sulfate, allowing them to enter the blood stream and 

act as functionally distinct hormones. Due to their low affinity for both heparan sulfate and 

receptors, endocrine FGFs require the co-receptors α- or β−Klotho, which preassemble with 

FGFRc receptor isoforms creating a high affinity ligand-binding site (Figure 4C+D) [9,107]. 

This specific, bipartite recognition of two receptors by the ligand has recently been 

unraveled by several crystal structures [117–119]. The ECD complex of the FGFR1c 

receptor bound to α−Klotho and FGF23 revealed that Klotho engages the C-terminal tail 

region of the ligands, which is unique to endocrine FGFs (Figure 4C) [119]. Interestingly, 

the complex could only be crystalized in the presence of heparan sulfate, which, despite its 

reduced affinity to endocrine ligands, was still required for receptor dimerization. Thus, 

numerous FGF ligands explore a broad array of mechanisms to stabilize unique ligand/

receptor complexes in different tissues, linking them to distinct signaling responses.

Regulation by endocytosis

RTK activation generally leads to rapid internalization of activated receptor complexes. As 

illustrated by the example of the RET receptor [113], different ligands can alter signaling 

outcomes by altering the kinetics of RTK endocytosis. In case of EGFR, stimulation via 

TGFα and EGF leads to comparable rates of endocytosis, but EGF/EGFR-containing early 

endosomes more frequently fuse with lysosomes than those carrying TGFα/EGFR 

complexes, possibly due to a more stable interaction between EGF and EGFR under 

acidifying conditions [120,121]. In result, EGF is more efficient in promoting EGFR 

degradation terminating signaling. In contrast, a significant portion of TGFα/EGFR-

containing endosomes is recycled back to the plasma membrane, keeping the cell more 

responsive to TGFα over time and changing the overall cellular response to the two ligands.

In addition to signaling from the plasma membrane, many RTKs continue to signal from 

intracellular compartments generating qualitatively different outputs [122–125]. Thus 

differential regulation of subcellular distribution of RTKs by different ligands could be 

another mechanism behind biased agonism. In support of this notion comes a recent study 

showing that the ability of TGFα and EGF to induce distinct dynamic changes in the EGFR 

interactome, ubiquitome, phosphoproteome and late proteome is dependent on the 

trafficking route of EGFR [126].

Conclusions

RTK ligands employ a wide array of mechanisms to achieve unique RTK signaling 

outcomes. But how cells differentiate between different ligand/receptor complexes to 

orchestrate these unique responses is still a big mystery. We are only starting to discover the 

detailed molecular mechanisms governing the formation of ligand/receptor assemblies and 
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how their different structure, composition and/or stability are interpreted by intracellular 

signaling machinery. Recent advancements in high resolution structural studies by cryo-EM 

of these “difficult” targets bring promise of many exciting future discoveries that will help to 

uncover the architecture of such complexes and to provide new clues to their regulation.
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Figure 1: Diversity of the human RTK ligands.
RTKs are shown on the top categorized into 19 different families as originally described [1] 

and recently revised to remove the LMR1–3 family due to its re-classification as Ser/Thr 

receptor kinases [127]. Ligands for each RTK family are shown underneath in mature, 

secreted form. All membrane-tethered ligands are cleaved off the membrane except for 

ephrins, which activate their cognate receptors in a juxtacrine fashion. The ligands are drawn 

with their N-terminus pointing away from the membrane. Main structural domains are 

depicted in a cartoon form in their known oligomeric state except for Angiotensins*, which 

may form higher-order oligomers in addition to dimers. If applicable, domain labels are 

included as captions. Sizes of individual domains are not drawn up to scale.
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Figure 2: Ligand-specific signaling through EGFR homodimers.
EGFR forms high-affinity complexes with its cognate ligands Transforming Growth Factor 

α (TGFα), Epidermal Growth Factor (EGF), Amphiregulin (AREG), Betacellulin (BTC) 

and Heparin-Binding-EGF (HB-EGF) but lower-affinity complexes with Epiregulin (EREG) 

and Epigen (EPGN). Available structures of EGF, TGFα±EPGN and EREG bound to EGFR 

ECDs are so far consistent with the EGFR ECDs adopting symmetric dimers with high 

affinity ligands and asymmetric structures with lower affinity ligands. Weaker EGFR dimers 

lead to sustained signaling and cell differentiation while formation of strong complexes 

causes transient receptor signaling and cell proliferation. Thus, the dynamics of ligand-

dependent receptor association and dissociation has an important impact on the recruitment 

of downstream effectors and the ligand-specific cellular responses (kinetic proofreading). 

Biochemical studies on the EGFR juxtamembrane (JM) segment and studies of full-length 

EGFR in cells are consistent with the presence of the JM coiled-coil dimer in active receptor 

complex. Conformation of the JM dimer appears to change depending on a bound ligand. At 

least three specific JM dimer modes have been described for EGFR, denoted here as ‘TGFα-

type’, the ‘EGF-type’ and the ‘BTC-type’.
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Figure 3: Ligands can diversify RTK signaling via promotion of higher-order receptor oligomers.
(A) Cartoon representation of active EGFR dimers in the plasma membrane dimerized via 

DNA-bases crosslinkers (left) or upon EGF binding (right). Both receptors undergo 

autophosphorylation but only EGF-bound receptors further progress into clusters and induce 

signaling via Ras. (B) Simplified illustration of EGFR, HER2 and HER3 oligomerization 

patterns upon EGF or NRG1β stimulation in cells. EGF treatment of cells co-expressing 

EGFR and HER3 causes phosphorylation and clustering of both receptors with HER3 

phosphorylation occuring via a non-canonical mechanism that does not rely on asymmetric 

dimerization of the kinase domains. In contrast, NRG1β treatment induces HER3 

phosphorylation by EGFR via canonical asymmetric kinase dimerization, without promoting 

clustering of the receptors. In yet another scenario, NRG1β stimulation of HER2/HER3 

expressing cells induces clusters of both receptors in which HER3 phosphorylation is 

dependent on formation of asymmetric kinase dimers.
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Figure 4: Co-receptors assure ligand specificity and control of downstream signaling in the FGF 
and RET signaling systems.
(A) Domain architecture of the 2/2/2 RET receptor/co-receptor/ligand complex. The 

receptor with its structural domains is shown in grey. The co-receptors GFRAL and 

GFRα1–4 are shown in blue and the ligands GDF15, GDNF, NRTN, ARTN, Persephin are 

shown in cyan. (B) Cryo-EM structures of the 2:2:2 RET ECD receptor/co-receptor/ligand 

complexes are shown as top and front views (PDB codes from left to right: 6Q2N, 6Q2O, 

6Q2S, 6Q2J). Adapted from [113]. (C) Domain architecture of the autocrine/paracrine and 

endocrine active 2:2 and 2:2:2 complexes of receptor/ligand and receptor/ligand/Klotho 

complexes, respectively. Both representations illustrate heparan sulfate (HS) bound to the 

complexes. (D) Simplified overview of receptor specificity for autocrine/paracrine and 

endocrine ligands. Paracrine/autocrine ligands bind to HS with high affinity, which traps the 

ligands close to the site of secretion and enables them to bind the cognate receptors. 

Autocrine/paracrine ligands can be either specific towards FGFR1–3b or c isoforms or bind 

both isoforms promiscuously. The presence of HS is mandatory for activation by the 

paracrine/autocrine ligands. Endocrine ligands FGF19, FGF21 and FGF23 have low affinity 

for both FGFR isoforms and HS and require the presence of either α-Klotho or β-Klotho co-

receptors for binding and activation of their cognate FGF receptors. The low affinity of 

endocrine ligands to HS facilitates secretion from the tissue of origin to distal organs that 

express the respective Klotho/FGFRc complexes. Despite low affinity in the absence of 
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Klotho, HS appears to be required for receptor dimerization upon ligand binding. (E) Crystal 

structure of the FGFR1c/α-Klotho/FGF23 ECD complex (PDB code: 5W21). The structure 

illustrates tight interactions between FGF23 and the α-Klotho ECD via the Klotho binding 

arm, and with the receptor ECD via a truncated FGF core homology domain.
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