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Abstract:  Differential participation in observational cohorts may 
lead to biased or even reversed estimates. In this article, we describe 
the potential for differential participation in cohorts studying the eti-
ologic effects of long-term environmental exposures. Such cohorts 
are prone to differential participation because only those who sur-
vived until the start of follow-up and were healthy enough before 
enrollment will participate, and many environmental exposures are 
prevalent in the target population and connected to participation 
via factors such as geography or frailty. The relatively modest effect 
sizes of most environmental exposures also make any bias induced 
by differential participation particularly important to understand 
and account for. We discuss key points to consider for evaluating 
differential participation and use causal graphs to describe two exam-
ple mechanisms through which differential participation can occur 

in health studies of long-term environmental exposures. We use a 
real-life example, the Canadian Community Health Survey cohort, 
to illustrate the non-negligible bias due to differential participation. 
We also demonstrate that implementing a simple washout period 
may reduce the bias and recover more valid results if the effect of 
interest is constant over time. Furthermore, we implement simulation 
scenarios to confirm the plausibility of the two mechanisms causing 
bias and the utility of the washout method. Since the existence of 
differential participation can be difficult to diagnose with traditional 
analytical approaches that calculate a summary effect estimate, we 
encourage researchers to systematically investigate the presence of 
time-varying effect estimates and potential spurious patterns (espe-
cially in initial periods in the setting of differential participation).

Keywords: Adjusted survival curve; Differential participation; 
Environmental epidemiology; Observational study; Selection bias

(Epidemiology 2024;35: 174–184)

Most epidemiologic evidence regarding the health 
impacts of long-term exposures to air pollution—or 

other environmental exposures—has been obtained through 
observational cohort studies. However, spurious associations, 
sometimes counterintuitive and labeled as paradoxes, may 
commonly occur in such observational settings and be under-
reported in the published literature. These spurious associa-
tions can be due to a discrepancy between the study population 
and the target population.1(chap14) This lack of representative-
ness or selection bias has been dismissed by some authors,2 
but it has the potential to generate misleading associations.3 
Differential participation, which occurs frequently in observa-
tional cohorts, especially those studying the etiologic effects 
of long-term environmental exposures, is one likely cause of 
the discrepancy between the study and target populations.

Differential participation arises from non-participation 
when subjects in the target population (1) opt not to partic-
ipate (i.e., nonresponse) or (2) have the outcome of interest 
before the start of follow-up and thus are not eligible, lead-
ing to these outcomes being excluded from the cohort (i.e., 
left truncation).4,5 Since most cohorts only enroll subjects free 
of the outcome of interest (by design) and healthy enough to 
participate (in practice), the outcome is generally associated 
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with the probability of participation directly or via shared risk 
factors. If the magnitude of nonparticipation does not differ 
by the exposure of interest (i.e., nondifferential participation), 
analytical methods such as Cox proportional hazards models 
can account for it by only including person-times observed 
in the analysis and will estimate unbiased associations.6 
However, in real-life settings, participation is unlikely to be 
independent of long-term environmental exposures, and this 
can lead to misleading associations due to conditioning on a 
common effect of exposure and outcome (i.e., collider stratifi-
cation bias with participation as the collider).7

Selection bias caused by differential participation has 
been described in observational cohort studies of nonenviron-
mental exposures and is sometimes referred to as left trun-
cation,8,9 left informative censoring,10,11 non-representative,12 
nonresponse bias,5,13,14 healthy worker bias,4 survival bias,15 
live-birth bias,16 index event bias,17 or simply as collider bias 
and selection bias.18–21 A well-known example is the paradox 
in which smoking (i.e., exposure) appears to confer a counter-
intuitive protective effect against preeclampsia in a pregnancy 
cohort.22,23 This paradox can be explained by collider bias due 
to differential participation in the target population of all preg-
nancies—only subjects not experiencing early pregnancy loss 
were enrolled into the study population and followed for pre-
eclampsia, while early pregnancy loss (i.e., a collider) is both 
affected by smoking and abnormal placentation, a shared risk 
factor with preeclampsia. In other words, among cohort par-
ticipants or pregnant women not experiencing early pregnancy 
loss, smokers were less likely to have abnormal placentation 
and subsequent preeclampsia, which leads to a counterintui-
tive protective effect of smoking on preeclampsia.

Cohorts studying etiologic effects of long-term environ-
mental exposures are especially susceptible to experiencing 
counterintuitive associations caused by differential participa-
tion because environmental exposures are generally prevalent 
in the target population long before the cohort enrollment and 
could impact participation via frailty or related geographic 
factors. Moreover, the expected effects of most environmental 
exposures are relatively small, making it easier for a reversed 
association to occur even in the presence of a small bias. 
However, the literature on differential participation in obser-
vational cohorts of environmental epidemiology is limited. 
Existing publications have mostly focused on specific sub-
populations such as birth cohorts and occupational cohorts, in 
which the bias is caused by a necessary restriction of analysis 
to live births,16,24 pregnancies without early loss,22,25 or existing 
employees.4 Yet, using cohorts of the general population may 
similarly yield counterintuitive associations due to differential 
participation, but such issues have not been discussed to date.

In this article, we provide an in-depth discussion of dif-
ferential participation in observational cohorts of the general 
population and how it might cause spurious or even counter-
intuitive associations in environmental health research. We 
also discuss the washout method as one potential analytical 

solution to account for such bias without the need for addi-
tional data on nonparticipants or shared risk factors between 
participation and outcome. Specifically, we first discuss key 
points to consider in evaluating and accounting for differen-
tial participation. We also use causal graphs to describe two 
possible bias mechanisms caused by differential participa-
tion (geographic factor-driven and frailty-driven). Next, we 
demonstrate the existence of a counterintuitive association 
in a survey-based national observational cohort studying fine 
particulate matter (PM

2.5
) and mortality and apply the washout 

method in this real-life example. Last, we conduct simple sim-
ulations to mimic the counterintuitive associations observed 
in the real-life example and demonstrate the efficacy of the 
washout analysis.

METHODS

How to Evaluate and Account for Differential 
Participation

We include a list of key points to consider in evaluat-
ing and accounting for differential participation in Table 1. 
To evaluate whether selection bias exists in an observational 
cohort, we need to specify the target population, which should 
be based on the research question of interest (Question 1 of 
Table 1). In this article, we assume that the target population is 
a population free of the outcome at cohort initiation. Second, 
we need to assess whether differential participation may exist 
between the study cohort and the target population based on 
our substantive knowledge of relationships among exposure, 
outcome, and potential reasons for nonparticipation (Question 
2 of Table 1). Below, we describe two distinct mechanisms 
through which such differential participation bias can occur 
and cause spurious exposure-outcome associations in etio-
logical studies of environmental exposures (Evaluation 2.1 of 
Table 1). Both mechanisms depend on the fact that only those 
who survived until the start of follow-up and were healthy 
enough before enrollment can enroll in the observational 
cohort studying long-term environmental exposures.

The first example is a frailty-driven mechanism 
(Figure 1A). The prebaseline health status would determine 
the probability of participation in the study. Since many envi-
ronmental exposures are prevalent in the target population 
long before the start of follow-up and are affecting the proba-
bility of surviving or being outcome-free, we would expect to 
see differential participation bias in such cohorts as long as the 
environmental exposure has a causal effect on the prebaseline 
health status (e.g., alive, outcome-free, and healthy enough to 
participate) and there exists an unmeasured shared risk factor 
(e.g., unobserved baseline frailty such as respiratory infec-
tion) between the prebaseline health status and the probability 
of having the outcome during follow-up.26 For example, when 
investigating the effect of air pollution on mortality in a cohort 
of recruited participants, those who are too sick at baseline 
will decline to participate in the study. Assuming air pollution, 
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in combination with other causes of illness, makes people 
unhealthy to participate in the study, an inverse correlation 
will emerge between air pollution and mortality through other 
causes of illness among the participants. That is, among those 
healthy enough to participate, individuals previously exposed 
to worse air pollution are less likely to have another unrelated 
health risk factor such as respiratory infection, and the lack 
of such risk factor would decrease their chances of mortali-
ty.27(p100) The bias arising from selecting participants alive and 

outcome-free differs from the bias stemming from selecting 
participants healthy enough to participate. One could argue 
that a target population is defined as those free of the outcome 
at the time of enrollment, and the susceptible population is 
stable in the target population. Subsequently, one could assert 
that no differential participation exists in the study population. 
However, many cohorts also require voluntarily active par-
ticipation from the subjects, such as completing a question-
naire or attending a medical appointment, which could lead 
to a stronger connection between exposure and participation 
through being healthy enough to actively participate at the 
time of enrollment than simply being outcome-free.28

The second example is a geographic factor-driven 
mechanism (Figure 1B). Even if the environmental exposure 
does not affect the prebaseline health status of potential partic-
ipants, participation could be connected to exposure via their 
spatial associations with geographical regions. Environmental 
exposures generally demonstrated spatial heterogeneity across 
geographical regions. Such geographical regions could be 
related to participation due to a variety of technical and social 
reasons. Particularly, cohorts based on existing datasets that 
were collected for purposes other than studying the etiologic 
effect of environmental exposure are being increasingly used 
in studies of environmental exposures, in which a sampling 
scheme intrinsically involving geographic factors is likely. 
For example, a survey targeted to study the general popu-
lation might sample more participants from the urban area 
for operational reasons, while urbanicity is associated with 
higher environmental exposures such as air pollution. Such 
sampling schemes can lead to an open backdoor path between 
exposure and outcome through participation. This geographic 
factor-driven bias mechanism would exist even when the envi-
ronmental exposure of interest is new instead of prevalent.

Although presented separately here, both mechanisms 
can co-exist in the same cohort. The association between 
exposure and outcome observed in cohorts affected by either 

TABLE 1.  Key Points to Consider in Evaluating and Accounting for Differential Participation

Question Exploratory Analyses/Evaluations 

1. What is the target population? Specified based on the research question

2. Is there differential participation (discrepancy 

between the cohort and the target popula-

tion)?

2.1. �Draw causal graphs based on subject-matter knowledge and evaluate whether participation creates a 

backdoor path based on causal graphs.

2.2. �Evaluate the extent to which the distributions of exposure and outcome in the study cohort deviate from 

their expected distributions in the target population (can suggest the presence of differential participation 

but cannot verify the lack of differential participation).

2.3. �Calculate time-varying effect estimates such as adjusted survival curves and evaluate whether any 

observed differences in effect estimates over time are consistent with subject-matter knowledge.

3. How to account for bias due to differential 

participation in effect estimates?

3.1. �With additional data from nonparticipants, use inverse probability weighting on participation (or selec-

tion) models.

3.2. �With additional data on all risk factors shared by participation and outcome, control for them using any 

method.

3.3. �Without additional data, conduct a washout method that drops the first few years of follow-up. A naïve 

analysis including all follow-up years might be conducted first to help identify the years to be dropped.

Environmental 
Exposure

Pre-baseline 
health status Outcome

Par�cipa�on

Geographic factor

Baseline 
frailty

Environmental 
Exposure

Pre-baseline 
health status Outcome

Par�cipa�on Baseline 
frailty

A

B

FIGURE 1.  Causal graphs for two mechanisms in which differ-
ential participation could cause a spurious association between 
environmental exposure and adverse health outcomes. Bias 
still exists even if we remove the arrows between exposure and 
outcome, assuming no direct effect. A, frailty-driven mecha-
nism. B, Geographic factor-driven mechanism.
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or both mechanisms could be attenuated or even reversed from 
the true effect in the target population. Empirical evidence of 
disparity in exposure and outcome distributions between par-
ticipants and nonparticipants or between the study population 
and the target population might suggest differential participa-
tion (Evaluation 2.2 of Table 1). However, the lack of disparity 
in such distributions does not rule out the possibility of dif-
ferential participation and spurious exposure-outcome asso-
ciation.5,29 As a complementary step, estimating time-varying 
effect estimates like adjusted survival curves could also aid 
the identification of differential participation as it allows the 
effect to vary over time, and counterintuitive effects at the 
beginning of follow-up might suggest differential participa-
tion (Evaluation 2.3 of Table 1).

Although differential participation is ideally prevented 
at the stage of study design, such induced bias could also 
be controlled via statistical methods in the analytical stage. 
For example, if we had extra information on those not par-
ticipating, we could use inverse probability weighting of par-
ticipation in our analysis to create a pseudo population not 
affected by differential participation,15,30 or use selection mod-
els to account for informative missingness (Analysis 3.1 of 
Table 1).11 If we had information on all risk factors shared by 
prebaseline health status and outcome, we could also control 
for them in epidemiologic models to eliminate or mitigate 
the bias (Analysis 3.2 of Table 1).31 However, the above cor-
rection methods are infeasible if the required additional data 
were not collected before the analytical phase, which is very 
likely. In such settings, where this bias cannot be addressed by 
considering additional measured covariates, a simple wash-
out method (by removing data from the first few years of  
follow-up) has been proposed as a possible solution (Analysis 
3.3 of Table 1).32,33 Some studies, in nonenvironmental set-
tings, have employed a washout analytical method so that the 
impact of differential participation would decrease as people 
with high baseline frailty either died or recovered during the 
washout period and the remaining study population could 
better approximate the target population.34–36 Empirically, the 
period to be removed could be determined by identifying the  
elbow or turning point in the adjusted survival curves of  
the naïve analysis (including all follow-up years), before 
which the differential participation bias was still strong.32 
Below, we demonstrate the effect of differential participation 
bias in a real-life example, employ the washout analytical 
method to account for this bias, and conduct a simulation 
study to demonstrate the efficacy of this method.

Real-life Example: The Canadian Community 
Health Survey

With a retrospective cohort of respondents to the 
Canadian Community Health Survey (CCHS), we demonstrate 
the emergence of counterintuitive associations and the effect 
of the washout method in accounting for bias. Employing 
the parametric g-computation demonstrated in Chen et al.37 

2023, we aim to evaluate the effectiveness of hypothetical 
intervention strategies targeting long-term exposure to PM

2.5
 

in this real-life example through the comparison of adjusted 
survival curves with and without the intervention. CCHS is a 
cross-sectional survey of the general Canadian population for 
multiple enrolling cycles.38 For illustration, we used data from 
the 2000/2001 enrolling cycle. We obtained data on the par-
ticipants’ vital statistics, annual exposure to PM

2.5
, and other 

time-varying and time-fixed covariates between the survey 
date (cohort inception) and 31 December 2014 (the end of  
follow-up) via linkage to administrative datasets and previously 
estimated exposure surfaces. Several published articles study-
ing environmental exposures used multiple enrollment cycles 
from this cohort and reported further details.39,40 Here we list a 
few relevant aspects of the cohort (Evaluation 2.1 in Table 1). 
First, although aimed to study the general population, partic-
ipation in the CCHS was voluntary and a complete response 
required participation in an in-person or telephone interview,38 
which inherently restricted the participants to be healthier 
than the general population and might have caused frailty- 
driven differential participation (Figure 1A). Second, this 
cohort used health regions to aid sampling and over-sampled  
rural communities,39 which might cause geographic factor- 
driven differential participation (Figure 1B).

To explore whether differential participation exists, 
we plotted age group-specific 4-year cumulative mortality 
rates over time (Evaluation 2.2 in Table 1). To estimate the 
adjusted survival curve with and without intervention, we 
conducted a naïve analysis without considering potential 
differential participation using 10 years of follow-up data 
from 2000/2001 to 2010 (Evaluation 2.3 in Table 1). To save 
computation time, we did not use all 14 years of follow-up 
in naïve analysis. Specifically, we conducted a paramet-
ric g-computation analysis to evaluate the potential health 
benefits of a hypothetical intervention that reduces partici-
pants’ long-term exposure to PM

2.5
 to 5 μg/m3 if they were 

exposed to PM
2.5

 higher than 5 μg/m3, compared to having 
no intervention. We included a 3-year moving average of 
PM

2.5
, indicators for the year, interaction terms between 

year and PM
2.5

, rurality, a spline function of age with five 
knots, and other potential confounders in the pooled logistic 
model for outcome as part of the parametric g-computation.  
We included urbanicity as a covariate in the outcome model, 
and therefore the bias pathway shown in Figure 1B is likely 
blocked (assuming rurality is the only geographic factor 
affecting participation). We estimated the 95% confidence 
intervals of differences in survival probabilities between 
interventions using standard errors from 200 bootstrap 
iterations. More details on this analysis were discussed 
elsewhere.37

Next, as an approach to account for differential partici-
pation, we applied the washout method by removing observa-
tions in the first 4 years of follow-up by delaying the cohort 
entry until 2005, with a total of 10 years of follow-up data until 
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2014, followed by repeating the parametric g-computation  
analysis (Analysis 3.3 in Table 1). We incorporated four more 
years of follow-up than those utilized in the naïve analysis so 
that the length of follow-up would be comparable. We decided 
to delay the cohort entry until 2005 because the difference in 
survival probability reached the inflection point in the fifth 
year in the naïve analysis (Figure 2A), suggesting that the bias 
caused by differential selection was weakened from that time 
point onwards. In addition, we excluded those older than 79 
in 2005 in the washout analysis to ensure that all participants 
would be followed for up to 10 years or until death because 
the original administrative dataset censored individuals after 
age 89.

Last, to facilitate comparison with traditional survival 
analysis methods, we repeated the naïve and washout analyses 
using a Cox proportional hazards model and an Aalen additive 
hazard model with 3, 5, and 10 years of follow-up. Like pre-
vious studies using traditional survival analysis methods, we 
assumed a constant association between PM

2.5
 and mortality 

and included the same set of confounders as those used in 
the outcome model of parametric g-computation other than 
indicators for the year and interaction terms between year and 
PM

2.5
. All analyses of the CCHS cohort were carried out in 

R version 4.0.541 and relevant codes for g-computation can 
be found at: https://github.com/suthlam/cchs_g_computa-
tion.git. The Health Canada-Public Health Agency of Canada 
Research Ethics Board approved the study.

Simulation Scenarios
For illustrative purposes and to demonstrate that the 

two hypothesized bias mechanisms discussed above could 
plausibly attenuate or even reverse the true effect, we con-
ducted simulations for each mechanism separately based on 
causal graphs in eFigure 1; http://links.lww.com/EDE/C103. 

The underlying structures of bias are the same as shown in 
Figure 1 except that we added the direct effect from exposure 
to the outcome and updated the label of the knot to mimic the 
CCHS example for easier interpretation.

We generated time-to-event data using structural equa-
tions of additive hazards with modified simulation codes from 
Strohmaier et al. 2015.42 To mimic the real world, we used 
coefficients based on statistics and effect estimates from the 
CCHS cohort (e.g., 0.0002 increase in hazard rate per 1 μg/
m3 increase in PM

2.5
 for the association between PM

2.5
 and 

mortality). For simplicity and didactic purposes, we used 
time-fixed exposure and assumed no direct effect from base-
line frailty (frailty-driven mechanism) or prebaseline health 
status (geographic factor-driven mechanism) on death after 
3 years of follow-up. We also assumed no unmeasured con-
founding between residential PM

2.5
 and mortality. The simu-

lation involved three steps: (1), we simulated a full cohort of 
100,000 individuals with 10 years of follow-up and no dif-
ferential participation; (2) we created an observed cohort by 
only including 70% of individuals with the highest probability 
of participating at baseline, which is affected by a geographic 
factor (geographic factor-driven mechanism only) and the pre-
baseline health status (both mechanisms) separately; and (3) 
we iterated each simulation 100 times. Specific coefficients 
and distributions used in the simulation are included in eAp-
pendix 1; http://links.lww.com/EDE/C103.

To estimate the association between PM
2.5

 and death, 
we repeated the same analyses for the simulated full cohort 
(representing the target population) and observed cohort 
(representing the analytical cohort) separately as we did for 
the CCHS cohort: g-computation, Aalen model, and Cox 
model with and without applying the washout method. The 
maximum length of follow-up year is 10 in naïve analy-
sis and seven in washout analysis. Details are included in 
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eAppendix 2; http://links.lww.com/EDE/C103. Aside from 
visually comparing summaries of effect estimates from the 
full and observed cohorts, we also calculated absolute bias 
as the difference between effect estimates in the observed 
cohort and the corresponding full cohort before summa-
rizing the bias across iterations. This comparison used 
estimates from the full cohort as the target parameters and 
reduced the influence of random errors generated by the 
data simulation process. We report absolute biases from the 
Aalen model and relative biases from the Cox model (per-
centage difference in hazard ratios between the observed 
and the full cohort). 95% simulation intervals (SIs) were 
calculated using the Wald standard error of estimates from 
the 100 iterations. All simulations and analyses were car-
ried out in R 4.1.0 and relevant codes can be found at: 
https://github.com/suthlam/differential_participation_sim-
ulation.git.

RESULTS
The naïve analysis of the CCHS cohort included a final 

cohort of 65,470 individuals. Using parametric g-computation, 
we found negative values for the difference in annual proba-
bilities of survival (with the 5 μg/m3 threshold intervention 
minus without intervention) during most years of follow-up 

(Figure 2A), suggesting a worse survival probability in the 
study population after reducing the level of ambient PM

2.5
. 

This finding is contrary to subject-matter knowledge about 
the harmful effect of chronic exposure to PM

2.5
 on mortality.43 

Additionally, we observed low cumulative mortality rates in 
the first few years of follow-up across all age groups (eFigure 
2; http://links.lww.com/EDE/C103). Results from the Aalen 
model and the Cox model were consistent with those from 
the g-computation, with null or negative associations between 
residential PM

2.5
 and mortality across all follow-up periods 

(Table 2, eFigure 3A and C; http://links.lww.com/EDE/C103).
After applying the washout method to the CCHS cohort, 

the cohort size was reduced to 62,365. The estimated differ-
ences in annual probabilities of survival were positive during 10 
years of follow-up after applying washout analysis, suggesting 
a beneficial effect of PM

2.5
 reduction on mortality (Figure 2B). 

We also observed positive associations for all follow-up periods 
in the Aalen model (Table 2, eFigure 3A; http://links.lww.com/
EDE/C103), while the associations were null in the Cox model 
(Table 2, eFigure 3C; http://links.lww.com/EDE/C103).

Using simulations with the frailty-driven and geo-
graphic factor-driven mechanisms, we successfully mim-
icked the patterns of estimates observed in the naïve analysis 
of the CCHS cohort in the observed cohort simulated. Like 

TABLE 2.  Effect Estimates When Differential Participation Exists With and Without Applying the Washout Method in Analysis by 
Cohort, Model, and Length of Follow-up Time

Cohort Analysis Length of Follow-up Time 

Hazard Difference Per Unit Change in PM
2.5

 

per 1000 Persons

(95% CI for CCHS, 95% SI for Simulated 

Cohorts)

(Aalen model)

Hazard Ratio Per Unit Change in PM
2.5

 

(95% CI for CCHS, 95% SI for Simu-

lated Cohorts)

(Cox Model)

Full Cohort Observed Cohort Full Cohort Observed Cohort 

CCHS Naïve 3-year NA 0.03 (−0.15, 0.22) NA 0.99 (0.96, 1.03)

5-year −0.18 (−0.36, −0.01) 0.98 (0.96, 1.00)

10-year −0.13 (−0.29, 0.02) 0.99 (0.98, 1.01)

Washout 3-year 0.40 (0.10, 0.70) 0.99 (0.96, 1.03)

5-year 0.63 (0.38, 0.87) 1.01 (0.98, 1.04)

10-yeara 0.38 (0.19, 0.58) 1.01 (0.99, 1.03)

Frailty-driven simulation Naïve 3-year 0.12 (−0.06, 0.29) −0.05 (−0.26, 0.17) 1.02 (1.00, 1.04) 0.99 (0.97, 1.02)

5-year 0.15 (0.03, 0.27) 0.01 (−0.16, 0.17) 1.02 (1.01, 1.04) 1.00 (0.98, 1.03)

10-year 0.18 (0.09, 0.27) 0.11 (−0.01, 0.22) 1.02 (1.01, 1.04) 1.02 (1.00, 1.03)

Washout 3-year 0.13 (−0.04, 0.30) 0.14 (−0.07, 0.35) 1.03 (1.00, 1.05) 1.03 (0.99, 1.06)

5-year 0.16 (0.02, 0.29) 0.16 (−0.02, 0.35) 1.03 (1.01, 1.04) 1.03 (1.00, 1.05)

7-yearb 0.17 (0.07, 0.28) 0.18 (0.03, 0.32) 1.03 (1.01, 1.04) 1.03 (1.01, 1.05)

Geographic factor-driven simulation Naïve 3-year 0.12 (−0.01, 0.25) −0.01 (−0.16, 0.13) 1.02 (1.01, 1.04) 1.00 (0.98, 1.02)

5-year 0.16 (0.07, 0.25) 0.03 (−0.08, 0.15) 1.02 (1.01, 1.04) 1.01 (1.00, 1.02)

10-year 0.18 (0.11, 0.25) 0.12 (0.04, 0.2) 1.03 (1.02, 1.03) 1.02 (1.01, 1.03)

Washout 3-year 0.14 (0.02, 0.26) 0.13 (−0.01, 0.27) 1.03 (1.01, 1.05) 1.03 (1.01, 1.05)

5-year 0.16 (0.06, 0.27) 0.17 (0.05, 0.28) 1.03 (1.01, 1.04) 1.03 (1.01, 1.05)

7-yearb 0.17 (0.09, 0.26) 0.18 (0.07, 0.29) 1.03 (1.02, 1.04) 1.03 (1.01, 1.04)

aIn the real-life example of CCHS, we have 14 years of follow-up time thus it is possible to have 10 years of follow-up time after dropping the first 4 or 5 years of follow-up in the 
washout analyses.

bIn the simulation, we created a cohort with 10 years of follow-up time thus we only have 7 years of follow-up time after dropping the first 3 years of follow-up in the washout 
analyses.

http://links.lww.com/EDE/C103
https://github.com/suthlam/differential_participation_simulation.git
https://github.com/suthlam/differential_participation_simulation.git
http://links.lww.com/EDE/C103
http://links.lww.com/EDE/C103
http://links.lww.com/EDE/C103
http://links.lww.com/EDE/C103
http://links.lww.com/EDE/C103
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g-computation results from the CCHS cohort, we observed 
negative differences in survival probability comparing 5 μg/
m3 threshold intervention to no intervention under both bias 
mechanisms in the observed cohorts from the simulation 
without applying the washout method, and the differences 
became positive in later years of follow-up (Figure 3A,C). 
The differences in survival probability in the full cohort were 
positive (Figure 3A,C). In analyses of simulations using 
Aalen and Cox models, we found null or negative associa-
tions between PM

2.5
 and mortality in most simulations of the 

observed cohort with shorter follow-up periods in analysis, 
while the associations were positive in most simulations of 
the full cohort (Table 2, eFigure 3B and 3D; http://links.lww.
com/EDE/C103). When directly comparing estimates of the 

observed and full cohort from one iteration of the simula-
tion, we found negative bias for both Aalen and Cox models 
(Figure 4, eTable 1; http://links.lww.com/EDE/C103). The 
bias became smaller as we included more follow-up years in 
the analysis, suggesting that a long follow-up period dilutes 
the initial period of severe bias.

With the washout method applied to the simulated 
cohorts, we observed positive differences in survival proba-
bility under both bias mechanisms for the observed cohorts, 
which were close to the corresponding estimates for the full 
cohorts (Figure 3B,3D). Furthermore, the bias became negli-
gible when washout analysis was applied in the Aalen model 
and the Cox model (Figure 4, eTable 1; http://links.lww.com/
EDE/C103).
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FIGURE 3.  Difference in survival probability (5 μg/m3 threshold intervention minus no intervention) over time estimated with 
parametric g-computation in simulated cohorts. A, naïve analysis in cohorts under frailty-driven mechanism using 10 years of 
follow-up; B, washout analysis in cohorts under frailty-driven mechanism where first 3 years of follow-up are dropped; C & D, 
naïve and washout analyses in cohorts under geographic factor-driven mechanism. Shadowed bands are 95% confidence inter-
vals estimated with bootstrapping. In simulation results, the cumulative survival probabilities were calculated by standardizing to 
confounder distributions of the observed cohort (see eAppendix 2; http://links.lww.com/EDE/C103 for more details).
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DISCUSSION
As large cohorts not originally designed to study envi-

ronmental exposures are being increasingly used to answer 
etiological questions in environmental research, spurious or 
even counterintuitive associations are more likely to occur due 
to differential participation. It is important to be mindful of 
the possibility of bias from differential participation in such 

settings. In this article, we discussed key points to consider 
in evaluating and accounting for differential participation 
(Table 1); we described two distinct mechanisms of differen-
tial participation that might cause counterintuitive associations 
in observational cohorts of environmental exposures using 
causal graphs (Figure 1). We demonstrated how differential 
participation due to the selection of healthier individuals into 
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washout analysis.



Copyright © 2023 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

	 Epidemiology  •  Volume 35, Number 2, March 2024

182  |  www.epidem.com	 © 2023 The Author(s). Published by Wolters Kluwer Health, Inc.

Chen et al.

the cohort could lead to a counterintuitive protective associa-
tion between long-term air pollution and mortality in a real-
life example based on the CCHS cohort. We also successfully 
mimicked patterns in the CCHS cohort using simulation, 
which confirmed that the proposed mechanisms could plau-
sibly cause counterintuitive associations. Last, we described 
the washout analysis, removing data from the first few years 
of follow-up, as one viable analytical solution to differential 
participation that does not require additional data.

Although both proposed bias mechanisms for dif-
ferential participation might happen simultaneously in the 
same cohort studying long-term environmental exposures, 
different cohorts might be more susceptible to one or the 
other. Both bias structures rely on the fact that the prebase-
line health status (e.g., death/outcome of interest or illness) 
of people in the target population would likely affect their 
probability of participation in the cohorts. The bias through 
death or experiencing the outcome of interest before cohort 
initiation (i.e., left-truncation) could also be framed as a 
failure of target trial emulation due to misalignment in the 
start of exposure and the start of follow-up, which is inher-
ent to studies of long-term/prevalent exposure.44 If we have 
a birth cohort with many decades of follow-up, using a tar-
get trial emulation framework, we could align the start of 
eligibility, exposure, and follow-up in our study cohort and 
estimate the effect of exposure duration or trajectory from 
the time of birth.45 Alternatively, if we are studying a cohort 
where a stable susceptible population could be assumed, the 
impact of this part of the bias might be negligible. If not, 
we might consider exploring a different type of question by 
treating previous exposure as a confounder and evaluating 
the impact of change in exposure (i.e., treatment decision 
design).46,47

On the other hand, the bias through illness (affecting 
participation but not necessarily related to outcome) might 
be more severe because it is more common than mortality. 
Thus, cohorts that require extra voluntary in-person activ-
ities such as filling out questionnaires or attending medical 
appointments could experience a more severe nonrepresenta-
tiveness. Examples of such cohorts include the UK Biobank 
cohort,48–50 the CCHS,39,51 and the US National Institutes of 
Health–AARP Diet & Health cohort.52 Similarly, cohorts with 
a higher probability of losing participants before enrollment 
might experience a more severe nonrepresentativeness, such 
as cohorts restricted to live births16 and existing employees.4 
Besides, the geographic factor-driven mechanism assumes 
that some geographic factors are directly associated with the 
exposure of interest and affect participation. Cohorts not orig-
inally designed to explore the etiological impacts of environ-
mental exposures are particularly prone to this bias structure 
because the sampling scheme in the original design is likely 
driven by geographic factors such as rurality for operational 
reasons. These mechanisms also apply to cohorts based 
on electronic health records, in which case it is healthcare 

utilization, instead of prebaseline health status, that affects 
participation in the cohort.

Calculation of time-specific effect estimates, such 
as adjusted survival curves, is essential to identify the 
differential participation bias, while a single estimate of 
association averaged across the study period (e.g., a haz-
ard ratio from the Cox model or a hazard difference from 
the Aalen model) could hide the heterogeneity in effect 
estimates over time. As the spurious association between 
exposure and outcome caused by differential participation 
would gradually disappear over time (when the follow-up 
period is long enough), a single estimate of association 
averaged across a long enough period would only seem 
to be slightly attenuated compared with what is expected 
in the target population. Such issues regarding the use 
of hazard ratios have been previously described,53,54 and 
many authors recommended relying on alternative methods 
based on discrete-time models so that time-specific effect 
estimates can be obtained. When estimating time-specific 
effect estimates with adjusted survival curves (Figure 2A), 
we were able to detect such bias in the earliest periods and 
attempt to account for such bias using the washout method 
(Figure 2B). In addition, adjusted survival curves are more 
causally interpretable compared to single-effect estimates 
such as the hazard ratio.53 Adjusted survival curves could 
also help choose the appropriate washout period.

Although results in both the real-life example and sim-
ulations supported the efficacy of the washout method in 
achieving unbiased estimates when differential participation 
exists, it is an ad hoc method with limitations. The wash-
out method aims to start analysis when the arrows connect-
ing prebaseline health status and the outcome (i.e., death) in 
later times become weaker as those frailer participants with 
lower exposure died over time or the participant’s health status 
changed over time, which could better approximate the target 
population. Although our simulation demonstrated an elimi-
nation of bias after applying the washout method, its success 
depends on two conditions: (1) correctly excluding enough 
of the follow-up time; and (2) the effect of the exposure is 
relatively constant over time (i.e., the susceptible population 
remained steady). In a real-life scenario, we could estimate 
the length of time to exclude by identifying the turning point 
in the adjusted survival curve of the naïve analysis. However, 
the connection between differential participation and outcome 
during later times of follow-up might decrease gradually with 
no clear turning point, making the decision a bias-variance  
tradeoff with no clear inflection point to choose. In that case, 
it is unlikely that the washout method could remove the bias 
entirely. Alternative analytical methods such as inverse prob-
ability weighting (for participation or censoring) requiring 
additional data could eliminate the bias in both mechanisms 
by removing arrows in the bias pathway and should be con-
sidered if a sufficient set of participation predictors were 
measured.15,55
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Aside from collider stratification bias, selection bias 
could also be caused by conditioning on an effect modifier of 
the exposure-outcome association without being a collider 
(i.e., differential participation due to an effect modifier). 
Such mechanisms are unlikely to cause a counterintuitive 
association because the observed association is biased for 
the target population but unbiased for the study popula-
tion.56 Nonetheless, they can still lead to invalid inferences 
for the target population.29 It is also worth mentioning that 
other paths of selection bias might lead to spurious associ-
ations in observational cohorts, including competing risk/
right censoring,10,57–59 which warrants future discussion in 
the context of observational cohorts studying environmental 
exposures.

Finally, although differential participation could lead 
to spurious associations in observational cohorts studying 
environmental exposures, we are not suggesting that research-
ers should systematically apply the washout analysis to all 
observational cohorts. Instead, we would like to draw atten-
tion to this differential participation pattern (and different 
mechanisms driving it) so that environmental epidemiologists 
can investigate such patterns in their observational cohorts, 
especially when counterintuitive associations are observed. 
Furthermore, the bias introduced by differential participation 
might be disguised in single estimates of association aver-
aged across a relatively long study period (e.g., hazard ratio). 
Therefore, we recommend systematically conducting analyses 
(at least as sensitivity analyses) that derive time-specific effect 
estimates to identify not only such differential participation 
but also any potential violations of the proportional hazards 
assumption when using Cox models.
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