
UNIVERSITY OF CALIFORNIA SAN DIEGO

Improving the Dependability of Python-Based Database-Backed Web Applications

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Haochen Huang

Committee in charge:

Professor Yuanyuan Zhou, Chair
Professor Arun Kumar
Professor Deian Stefan
Professor Geoffrey M. Voelker
Professor Xinyu Zhang

2022



Copyright

Haochen Huang, 2022

All rights reserved.



The dissertation of Haochen Huang is approved, and it is

acceptable in quality and form for publication on microfilm

and electronically.

University of California San Diego

2022

iii



DEDICATION

Dedicated to my family.

iv



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 CFINDER: Protecting Data Integrity With Inferred Database
Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 PYLIVE: On-The-Fly Code Change . . . . . . . . . . . . . 5

Chapter 2 CFINDER: Protecting Data Integrity With Inferred Database Constraints . 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Problem: Missing Database Constraints . . . . . . . . . . . 7
2.1.2 Consequences of Missing Constraints . . . . . . . . . . . . 9
2.1.3 Why DB Constraints Are Better Guards? . . . . . . . . . . 10
2.1.4 Our Contributions . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Understanding Missing Database Constraints in Web Applications . 13
2.3 Design and implementation . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Design Choices: Possible Ways to Find Missing Constraints 16
2.3.2 CFINDER Overview . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Code Patterns with Assumptions on DB Constraints . . . . . 19
2.3.4 Code Patterns Detection Algorithm . . . . . . . . . . . . . 24
2.3.5 Database Constraints Extraction . . . . . . . . . . . . . . . 26

2.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.1 Effectiveness in Detecting Missing DB Constraints . . . . . 30
2.4.2 False Positives in Detected Missing DB Constraints . . . . . 32
2.4.3 Coverage of Database Constraints . . . . . . . . . . . . . . 33
2.4.4 Performance of CFINDER . . . . . . . . . . . . . . . . . . 36
2.4.5 Developers’ Feedback Discussion . . . . . . . . . . . . . . 36

v



2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6 Limitation & Discussion . . . . . . . . . . . . . . . . . . . . . . . 39
2.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Chapter 3 PYLIVE: On-The-Fly Code Change . . . . . . . . . . . . . . . . . . . . 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 PYLIVE Framework . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Design Objectives . . . . . . . . . . . . . . . . . . . . . . 46
3.3.2 PYLIVE’s Interfaces . . . . . . . . . . . . . . . . . . . . . 47
3.3.3 Support Dynamic Changes . . . . . . . . . . . . . . . . . . 49
3.3.4 Identify Safe Change Point . . . . . . . . . . . . . . . . . . 50
3.3.5 Support for Multi-threads and Multi-processes . . . . . . . 53

3.4 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.1 On-the-fly Logging for diagnosis . . . . . . . . . . . . . . 54
3.4.2 On-the-fly Profiling . . . . . . . . . . . . . . . . . . . . . . 55
3.4.3 Dynamic Patching . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.2 Overall Performance Results . . . . . . . . . . . . . . . . . 59
3.5.3 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5.4 Human Effort . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Limitations and Discussion . . . . . . . . . . . . . . . . . . . . . . 65
3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.8 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Chapter 4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.1 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

vi



LIST OF FIGURES

Figure 2.1: Three real-world issues [136, 168, 63] that violated three types of DB con-
straints and led to severe consequences. . . . . . . . . . . . . . . . . . . . 8

Figure 2.2: Comparison between applications with and without database constraints. . 10
Figure 2.3: A real-world issue [62] from Oscar caused by missing code validations. . . 11
Figure 2.4: Code snippets with implicit assumptions on database constraints. . . . . . 13
Figure 2.5: The overview of CFINDER.CFINDER contains three steps to infer the missing

database constraints from the application source code. The green boxes are
the output of the steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 2.6: Code patterns with implicit assumptions on three DB constraint types, to-
gether with real-world examples and explanations. . . . . . . . . . . . . . 20

Figure 2.6: Code patterns with implicit assumptions on three DB constraint types, to-
gether with real-world examples and explanations.(cont.) . . . . . . . . . . 21

Figure 2.7: Example of pre-defined syntax tree patterns. We use them to match with the
candidate syntax trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 2.8: Matching syntax tree T (left) with pre-defined syntax pattern P (right). . . 26
Figure 2.9: Infer the constraint table from code with two steps . . . . . . . . . . . . . 28

Figure 3.1: An example of unsafe change points for a patch from Django [11]. . . . . . 52
Figure 3.2: An example of state check function for the patch in figure 3.1 . . . . . . . 52
Figure 3.3: PYLIVE’s dynamic logging spec for an urgent, real world bug in Shuup

e-commerce system [28]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 3.4: On-the-fly profiling using PYLIVE to diagnose a critical performance issue

occurred in Oscar e-commerce system [21]. . . . . . . . . . . . . . . . . . 56
Figure 3.5: A real world security patch to Django [1] and PYLIVE’s dynamic change

spec for it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 3.6: Throughput comparison of three on-the-fly logging cases and three on-the-fly

profiling cases with PYLIVE in comparison with today’s practices—stop and
restart with logging added and profiling enabled. . . . . . . . . . . . . . . 61

Figure 3.6: Throughput comparison of three on-the-fly logging cases and three on-the-fly
profiling cases with PYLIVE in comparison with today’s practices—stop and
restart with logging added and profiling enabled.(cont.) . . . . . . . . . . . 62

Figure 3.7: Throughput comparison of two representative patching cases with PYLIVE

and restarting services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

vii



LIST OF TABLES

Table 1.1: Popular Python-based frameworks and applications for online services. . . . 2

Table 2.1: The web applications used in our study. . . . . . . . . . . . . . . . . . . . . 14
Table 2.2: The number of database constraints that are missed first and added in later

pull requests in each application. . . . . . . . . . . . . . . . . . . . . . . . 15
Table 2.3: Reasons why developers add the missing constraints. . . . . . . . . . . . . 16
Table 2.4: Evaluated applications and detected missing DB constraints from them. . . . 30
Table 2.5: Examples of confirmed missing database constraints. . . . . . . . . . . . . 31
Table 2.6: The breakdowns of the number of detected missing database constraints for

each constraint type and code pattern. . . . . . . . . . . . . . . . . . . . . . 32
Table 2.7: The precision of detected missing constraints by CFINDER. . . . . . . . . . 34
Table 2.8: The percentage of existing constraints already set in the database that CFINDER

can cover in the detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 2.9: The percentage of missing constraints that CFINDER can cover in the collected

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 2.10: Time (seconds) to run CFINDER’s static analysis. . . . . . . . . . . . . . . 36

Table 3.1: 20 real-world cases evaluated in our experiments. . . . . . . . . . . . . . . 58
Table 3.2: Lines of code (LOC) of change specification for PYLIVE. . . . . . . . . . . 64

viii



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor Professor Yuanyuan (YY) Zhou for

her tremendous support and advice throughout my Ph.D. journey. She guided me on how to be

a “system” researcher. I learned how to identify real-world problems worth solving and gain

unique insights; I learned the standard of top-level system research: a good research problem,

intellectual-challenging methodologies, solid evaluations, good writing, and presentation, etc.

Every week’s group meeting with her has been a challenging and fruitful adventure. Not only

research, but I also learned so many valuable life lessons from her that have dramatically changed

the way I see and behave in the world. She taught me to face the real world and be tough when

facing failures; She taught me to be my best, to seize every opportunity, and to fight for what I

want; She taught me to pursue what I truly believe in and am passionate for; and I believe I will

continue to benefit from these lessons for the rest of my life.

I then would like to thank my thesis committee members, Professor Arun Kumar, Professor

Geoffrey Voelker, Professor Deian Stefan, and Professor Xinyu Zhang. Their insightful feedback

and suggestions greatly improve this dissertation.

I would like to thank other professors and staff in the SysNet group. Professor Geoffrey

Voelker is always being so helpful and inspiring. He provided insightful advice for many of my

presentations and research projects. I would also like to thank Professor Stefan Savage, George

Porter, Yiying Zhang, and Alex Snoeren for holding system courses, syslunch and 294 seminars,

and gave me valuable feedback.

I would like to thank Tianwei Sheng, my supervisor during my internships at Whova

company for giving me the great opportunity. He guided me through exciting projects and gave

me the freedom to explore more. The invaluable experience gave me the insight into the real

backend and infrastructure in the industry and gave me a solid understanding of the problems in

system research. I would also like to thank my coworkers at Whova: Andrew Yoo, Xinxin Jin,

Sihan Li, etc. It was a pleasure working with them and I learned a lot from them.

ix



I would like to thank my lab mates in the Opera group. Chengcheng Xiang gave me

tremendous help in both research and life when I was in my junior year, and he set an example for

me. We collaborated on multiple projects and he taught me a lot hand-over-hand. Bingyu Shen

was another role model and friend in my life. He helped me with the experiment evaluations in

the second project. He always provided insightful discussions and lessons. I have also worked

closely with Li Zhong on several projects, and I enjoyed the discussions with her. Their hard

work contributed a lot to the projects presented in this dissertation and some other projects I’ve

worked on, which made the completion of this thesis possible. I also want to thank my other lab

mates and many others in the SysNet group for their valuable discussions and feedback: Yudong

Wu, Tianyi Shan, Eric Mugnier, Mingyao Shen, Vector Li, etc.

Finally, I want to thank my parents, Qianfan Huang and Jiexia Lu, who always give me

their full support and unconditional love. I dedicate this dissertation to my family. I would also

thank my roommates Zijin Lin, Jiayuan Gu, and Yutong Shao, we went through colorful Ph.D.

journeys together these years. Their company means a lot to me, especially during the pandemic.

Chapter 2, in full, is a reprint of the material as it appears in the 28th Conference

on Architectural Support for Programming Languages and Operating Systems (ASPLOS’23)

Haochen Huang, Bingyu Shen, Li Zhong, Yuanyuan Zhou, “Protecting Data Integrity of Web

Applications With Database Constraints Inferred From Application Code”. The dissertation

author was the primary investigator and author of this paper.

Chapter 3, in full, is a reprint of the material as it appears in the 2021 USENIX Annual

Technical Conference (ATC’21) Haochen Huang, Chengcheng Xiang (co-first authors), Li Zhong,

Yuanyuan Zhou, “PYLIVE: On-the-Fly Code Change for Python-based Online Services”. The

dissertation author was the primary investigator and author of this paper.

x



VITA

2018 B. S. in Computer Science, Shanghai Jiao Tong University

2022 M. S. in Computer Science, University of California San Diego

2022 Ph. D. in Computer Science, University of California San Diego

PUBLICATIONS

Haochen Huang, Bingyu Shen, Li Zhong, Yuanyuan Zhou, “Protecting Data Integrity of Web
Applications With Database Constraints Inferred From Application Code”, Proceedings of the
28th Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’23), March, 2023..

Haochen Huang, Chengcheng Xiang (co-first authors), Li Zhong, Yuanyuan Zhou, “PYLIVE:
On-the-Fly Code Change for Python-based Online Services”, Proceedings of the 2021 USENIX
Annual Technical Conference (ATC’21), July, 2021.

Chengcheng Xiang, Haochen Huang, Andrew Yoo, Yuanyuan Zhou, Shankar Pasupathy, “PracEx-
tractor: Extracting Configuration Good Practices from Manuals to Detect Server Misconfigura-
tions”, Proceedings of the 2020 USENIX Annual Technical Conference (ATC’20), July, 2020..

Chengcheng Xiang, Yudong Wu, Bingyu Shen, Mingyao Shen, Haochen Huang, Tianyin Xu,
Yuanyuan Zhou, Cindy Moore, Xinxin Jin, Tianwei Sheng, “Towards Continuous Access Control
Validation and Forensics”, Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security (CCS’19), November, 2019.

xi



ABSTRACT OF THE DISSERTATION

Improving the Dependability of Python-Based Database-Backed Web Applications

by

Haochen Huang

Doctor of Philosophy in Computer Science

University of California San Diego, 2022

Professor Yuanyuan Zhou, Chair

Python-based database-backed web frameworks have gained wide adoption in developing

online web applications in many commercial companies and open-source projects. They are

used in e-commerce, banking, social networking, and many aspects of our daily life. These web

applications have critical requirements on high dependability: any data corruption or service

downtime could lead to significant business loss. Unfortunately, such incidents caused by

application bugs or operator errors remain increasingly pervasive.

This dissertation explores the potential of building and maintaining more dependable

Python-based web applications by providing tooling support for developers. To achieve this,

we observe the two unique characteristics of these web applications: (1) They are backed by a

xii



database management system (DBMS), which enforces data integrity constraint checks. (2) The

main application logic is developed in Python, an interpreted language with unique language

features.

The first piece of this dissertation tackles the data integrity issues caused by application

bugs or operator errors. Our study observes that application developers often do not take

full advantage of the database-level integrity validations and miss specifying many database

constraints, resulting in many severe consequences. We then build a tool called CFINDER, to

automatically infer the missing database constraints from application source code by leveraging

the observation that many source code patterns imply certain data constraints.

Second, the dissertation tackles the demand of applying code changes for online diag-

nosing and fixing while keeping the service available. We observe the unique language features

of Python, i.e. meta-object protocol and dynamic typing, which makes dynamic code change

much easier for Python than for C or Java. We then propose a new framework called PYLIVE, to

support dynamic logging, profiling, and bug-fixing without restarting. It can be easily adopted

with no modification to the runtime system.
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Chapter 1

Introduction

1.1 Motivation

Python-based database-backed web applications have gained wide adoption in developing

online services. Many companies build their main online services with Python. For example,

Instagram’s web services and Quora’s main web services are built with Python [154, 132, 38].

Google’s Youtube front-end server is also built using Python [39, 77, 161]. In addition to

commercial companies, many open-source projects also build Python-based web applications

for various online services. Table 1.1 shows six categories of them, including web frameworks,

e-commerce applications, content management systems, etc.

Since these online web applications are powering many important aspects of our daily

lives such as e-commerce and social networking, they have high demands for dependability. We

focus on two critical requirements here: high availability and data integrity. A recent survey

shows that 99.99% of uptime (i.e., 52.6 minutes downtime per year) has become the minimum

availability standard for most web applications [87]. A report from Statista shows that one hour of

server downtime can cause more than $301K cost for 88% of companies and more than $5 million

cost for 17% of companies [146]. Besides server downtime, data corruption [76] is another severe
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Table 1.1: Popular Python-based frameworks and applications for online services.

Category Server Frameworks (Github stars)

E-commerce Odoo (26.8k), Saleor (17.2k), Oscar (5.5k), Shuup (1.9K)
Content management wagtail (13.4K), django-cms (8.9K), frappe (4.2K)
Social & Team chat Zulip (16.7K), Python Social Auth (1.7K)
Web framework Django (67.2k), Flask (61.0k), Pyramid (3.7k)
Web Server Gunicorn (8.6k), Tornado (20.8k), Unicorn (5.9k)
Message queue Celery (20.4), huey (4.3k), rq (8.6k)
Cache backend Django-cacheops (1.7k), Beaker (494)
FTP server pyftpdlib (1.4k), fbtftp (367), pyrexecd (213)

threat to the online service. Any violation of data integrity can result in severe consequences,

such as crashing the order placement page, corrupting the store inventory data, and blocking user

login [136, 168, 63], leading to significant business loss.

As various redundancy techniques have been used in computing, storage, and network

subsystems, availability and integrity issues caused by hardware errors [96, 46, 153] or crash

failures [86, 53] have been reasonably well addressed in today’s data centers. Unfortunately, appli-

cation bugs or operator errors cannot be solved by redundancy and are significantly understudied.

They remain as increasingly pervasive root causes for a large number of incidents.

In this dissertation, we notice the developers’ demand to protect data integrity and

maintain the high availability of web applications and aim to provide tooling support for them.

First, to guarantee data integrity, fortunately, most of today’s relational database management

systems (RDBMS) provide integrity constraints [54, 131]. Specifically, application developers

specify database constraints based on their own business logic and enforce them in the database

schema, such as a not-null constraint for order.total, or a unique constraint for user.email. Such

database constraints would detect and refuse any incorrect data manipulation caused by either

bugs in application code, or operator mistakes when directly manipulating data via the database

administrator (DBA) console. Common constraints supported in popular RDBMSes include

Not-null, Unique, and Foreign key constraints [117, 106, 127, 103]. Modern web frameworks

2



have supported the migration helpers for all three common database constraints in recent years,

enabling applications to easily specify and enforce constraints in databases. However, despite

these initiatives, many app developers still do not take full advantage of database constraints to

protect their application data integrity. Therefore, it would be beneficial to help developers take

full advantage of the database constraints to guide their application data integrity.

Second, when the running service shows some failures or abnormal behaviors, developers

have high demands to apply the code changes to diagnose or fix it. Such code changes include

adding logs to gain more diagnostic information, instrumenting programs to profile performance

bottlenecks, and applying patches to fix bugs and security vulnerabilities. Applying the changes

on the fly is necessary when diagnosing challenging issues (e.g., resource leaking or performance

degradation) that are hard to reproduce in a testing environment or when patching critical bugs or

security issues that need to be patched as soon as possible. More importantly, such code changes

are required to cause little or no service downtime when being applied for high availability.

Therefore, developers would benefit greatly from tooling support to apply code changes on-the-fly

in production without restarting them.

1.2 Contribution

This dissertation seeks to provide tooling support for developers to build and maintain

more dependable Python-based database-backed web frameworks. The tools are based on our

observations on the unique features of these web applications:

• They are backed by a database management system (DBMS), which enforces data integrity

constraint checks. When constraints are enforced by the database, even if validations are

missed in some code paths, the database always acts as the final guard to perform integrity

checks and detect violations against specified constraints.

• The main application logic is developed in Python, an interpreted language with unique

3



language features. Python supports the meta-object protocol [89, 22] and dynamic typing,

which enables programs to dynamically modify their own metadata, including function

bodies/interfaces and class attributes. This makes dynamic code change much easier for

Python than for compiled languages (e.g., C/C++) and other interpreted languages that do

not support the full meta-object protocol or dynamic typing (e.g., Java).

The first characteristic reminds us that web applications should take full advantage of

database constraints to ensure data integrity when possible. We build a tool called CFINDER, to

automatically infer the missing database constraints from application source code by leveraging

the observation that many source code patterns imply certain data integrity constraints. The

second characteristic motivates us to support on-the-fly logging, profiling, and bug-fixing while

keeping the service available. We build a new framework called PYLIVE, which utilizes the

unique language features of Python, i.e. meta-object protocol and dynamic typing. The tool can

be easily adopted with no modification to the runtime system.

Thesis Statement: By leveraging the unique features of Python-based database-backed

web applications, including database support for constraint validation and Python’s language

features, we can provide tooling support to help developers build and maintain more dependable

web applications.

1.2.1 CFINDER: Protecting Data Integrity With Inferred Database Con-

straints

Chapter 2 presents CFINDER. CFINDER is a tool that can automatically infer missing

database constraints from the application source code, so that developers can take full advantage

of database constraints to ensure the data integrity of their web applications.

In chapter 2, we focus on the problem of missing database constraints in web applications.

We first study several widely used open-source e-commerce and communication applications,

4



and observe that all these applications have missed integrity constraints and many were added

later as afterthoughts after issues occurred. Also, most (82%) of these cases could result in severe

consequences, including page crashes and data corruption of order-related or payment-related

data. Our study also shows that most (87%) issues that missed database constraints also missed

code checks in some code paths in application code, indicating that solely relying on application

code checks is not a safe approach to guarantee data integrity.

Motivated by the observations, we build CFINDER to automatically infer missing database

constraints from the application source code by cleverly leveraging the observation that many

source code patterns usually imply certain data integrity constraints. By analyzing application

source code automatically, CFINDER can extract such constraints and check against their database

schemas to detect missing ones.

Chapter 2 evaluates CFINDER with eight widely-deployed web applications, including

one commercial company with millions of users. Overall, our tool identifies 210 previously

unknown missing constraints. We have reported 92 of them to the developers of these applications,

so far 75 are confirmed. Our tool achieves a precision of 78% and a recall of 79%.

1.2.2 PYLIVE: On-The-Fly Code Change

Chapter 3 presents PYLIVE. PYLIVE is a framework that aims to improve the system

robustness by enabling on-the-fly code change without restarting the servers. PYLIVE can be used

by developers with multiple scenarios, such as on-the-fly logging for diagnosing production-run

errors, on-the-fly profiling for diagnosing production-run performance issues, and urgent dynamic

patching for bugs or security patches. PYLIVE leverages the unique language features of Python,

meta-object protocol, and dynamic typing, to support dynamic code change without restarting

online services. PYLIVE requires no modification to the underlying runtime systems (i.e., Python

interpreters), making it easy to be adopted by online services with little portability concern.

Chapter 3 evaluates PYLIVE with seven Python-based web applications that are widely

5



used for online services. From these applications, we collect 20 existing real-world cases,

including bugs, performance issues, and patches for evaluation. PYLIVE can help resolve all the

cases by providing dynamic logging, profiling and patching with little overhead. Additionally,

PYLIVE also helped diagnose two new performance issues in two widely-used open-source

applications.
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Chapter 2

CFINDER: Protecting Data Integrity With

Inferred Database Constraints

2.1 Introduction

2.1.1 Problem: Missing Database Constraints

Data integrity is critical for database-backed web applications used in e-commerce,

banking, and many aspects of our daily life [76]. As various data redundancy techniques have

been used in computer storage and network subsystems, integrity issues caused by hardware

errors [96, 46, 153] or crash failures [86, 53] have been reasonably well addressed in today’s data

centers. In contrast, application bugs or operator errors are significantly understudied and remain

as increasingly pervasive root causes for data integrity issues in databases [76].

Fortunately, most of today’s relational database management systems (RDBMS) provide

integrity constraints that help applications to guarantee desired data integrity [54, 131].

The necessity of specifying database constraints to protect data integrity has received

increasing attention. For example, central players in modern web frameworks, such as Rails

(Ruby), Django (Python), and Hibernate (Java), have supported the migration helpers for all
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/*Saleor*/Violated constraint:
One Order.total field has null value. 

Consequence:

[Page crash] Shop admin cannot operate on the
dashboard page as it crashes. 

Resolution taken:

Add Not-null constraint to database.

/*Zulip*/Violated constraint:
Two UserProfile.email are the same, not unique. 

Consequence:

[Block business logic] Block either user from

logging in.

Resolution taken:

Add Unique constraint to database.

(a) (b)

(c)

Violated constraint:
Order.basket_id is an integer-field rather than a
foreign key to Basket. 

Consequence:
[Data corruption] Potential data corruption and
performance hits for user requests. 

Resolution taken:
Add Foreign key constraint to database.

/*Django-oscar*/

Figure 2.1: Three real-world issues [136, 168, 63] that violated three types of DB constraints
and led to severe consequences. These issues are from popular open-source web applications.
To fix the issues, the developers added the constraints to the database [137, 167, 61].

three common database constraints in recent years [129, 55, 156], enabling applications to easily

specify and enforce constraints in databases.

However, despite these initiatives, many app developers still do not take full advantage of

database constraints to protect their application data integrity against application bugs or operator

errors. We observe in our study (§ 2.2) that many constraints (10-72) for each studied app were

added as afterthoughts, i.e., they were missed first when columns were created and added much

later, often because a data integrity issue was detected and resulted in damages.

There are many reasons for such negligence. As the industry demands more engineers

to build various applications, many of them do not have solid database training and may not

be aware of data integrity or constraints at all [144, 145]; Additionally, to err is human, even

experienced developers can easily forget some required constraints due to deadline pressure.
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2.1.2 Consequences of Missing Constraints

Missing DB constraints can result in severe consequences. Figure 2.1 shows three real-

world examples [136, 168, 63] from three widely-used e-commerce and team chat applications.

These issues were caused by inconsistent data stored in databases that violate the not-null, unique,

or foreign key constraint. As a result, the applications suffer from severe consequences, such as

page crashes and failed login attempts. For e-commerce, any such issue can lead to significant

business loss [136].

To fix the problem caused by missing DB constraints, and more importantly to avoid

similar issues in the future, developers added the missing data constraints into their corresponding

databases [137, 167, 61]. Had these constraints been specified earlier, such issues would have

been detected and reported before invalid data being inserted into databases in the first place and

avoid the impact on users.

Missing DB constraints has two primary consequences:

• Without database constraints to guard data integrity, data corruption caused by application bugs

can easily stay dormant for a long time before being exposed, impacting users and leading to

business loss. Without early detection, the culprit application bug can cause many corruptions,

making database repairing a more challenging task.

• Missing database constraints also introduces challenges in diagnosing such issues because it

is difficult to trace back and identify when and how such inconsistent or erroneous data were

added into the databases.

We can look into one of the examples [136] in Figure 2.1(a) from the popular e-commerce

Saleor [138]. The app developers noticed a page crash caused by “an invalid order in database

with a null total price.” However, they got stuck in identifying the root cause of the null record.

After rounds of investigations in nine days, three developers finally found the application bug.

To detect future similar application bugs earlier before they corrupt databases, developers added

9
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Figure 2.2: In (a) when the constraints are not enforced in database, missing validation in any
code path or DB console could potentially cause invalid data to be inserted. Contrarily, in (b),
when database constraints are enforced, even if validations are missed in some paths, database
always conducts integrity checks and blocks invalid data as the final guard.

the not-null constraints into the database to “prevent reported weird and hard to reproduce bugs”,

according to their commit comment.

2.1.3 Why DB Constraints Are Better Guards?

Interestingly, many developers think that their own application code can check against

data integrity violations, and thereby there is no need to add DB constraints [80, 49]. Such

assumptions often fail to protect data integrity in practice because there are multiple places that

can change the database data and result in data integrity violations if not checked properly.

Specifically, as depicted in Figure 2.2, database data can be added or altered in various

places throughout the application’s code, and some of them may not even be in the same piece of

software (e.g. some batch job scripts to insert or change data in bulk). To make things even worse,

software may implement some code logic in a different language [102], or by different teams.

The fast turnover rates of today’s software engineers in IT companies further make it difficult to

ensure that every single code location has proper integrity checks.

Figure 2.3 shows one such real-world example [62] from Oscar [118]. In this e-commerce

application, each user’s email field needs to be unique as it is used for authentication. To ensure

this, when a new user signed up, the application code checked whether that email already existed

in DB. Unfortunately, on another code path that performed email updating for registered users,

10



class EmailUserCreationForm(Form):
def save(self, email):
if User.objects.filter(email=email).exists():
raise forms.ValidationError("A user with

that email already exists.")

user.save()

class UserAndProfileForm(Form):
def save(self, email):

user.save()

Validate uniqueness 
before save

Miss
validation

Save
invalid data

/* django-oscar/apps/customer/forms.py */

# Code path 1

# Code path 2

Figure 2.3: A real-world issue [62] from Oscar caused by missing code validations. The
user’s email should be unique. Developers specified the check in one code path (when new users
registered) but forgot to check in another code path (when a registered user updated his email).
To fix it, they enforced the unique constraint in DB.

there was no check at all. As a result, this application bug allowed the same email addresses to be

used for two or more user accounts, causing many login issues. It took developers quite some

time to diagnose, and even much longer to repair the database (since they needed to inform the

affected users to change to another email address).

Moreover, application code checks for data integrity often fail during concurrent exe-

cutions because of data races [160]. For example, two concurrently handled requests can both

receive non-existent results from the data integrity check in the first query, and then both insert

the same values in the second query, which violates the unique constraint.

A study on Rails applications [42] reveals that 13% of code validations for uniqueness and

foreign key are error-prone during concurrent executions, as is also warned in web frameworks’

documentations [59, 130]. Our study in §2.2 also confirmed such observation. Even encapsulating

validation logic within a transaction may not work because most production databases default to

non-serializable isolation [42, 160].

Furthermore, DB admins can also manipulate data using the “backdoor”, i.e., the DB

console, which bypasses all checks in the code. In comparison, in Figure 2.2(b), when constraints

11



are enforced by the DB, even if validations are missed in some paths, the DB always acts as the

final guard to perform integrity checks and detect violations against specified constraints.

As such, we believe that web applications should take full advantage of database con-

straints to ensure data integrity when possible.

2.1.4 Our Contributions

This paper focuses on the problem of missing database constraints in widely-used web

applications that leads to data integrity issues and results in system downtime and business loss.

First, we make one of the first attempts in understanding and evaluating the reality of the

adoption of database constraints in today’s web applications. We study five popular web apps in

Table 2.1 ranging from e-commerce to communication tools. Our study reveals several interesting

findings: (1) Many (10-72) database constraints were missed in the beginning and were added

much later as afterthoughts after some issues occurred. (2) Most (82%) of these cases could result

in consequences, including page crash and data corruption of order-related or payment-related

records. (3) Most (87%) issues that missed DB constraints also missed code checks in application

code, indicating that solely relying on application code checks instead of leveraging database

constraints is not a safe approach to guarantee data integrity (More details in §2.2).

Second, we leverage a unique observation that application code usually contains “hints”

that imply certain data constraint assumptions made by developers. Figure 2.4 shows two

examples of such code snippets. In (a), the code uses the column col as an identifier to check its

existence, and only creates a new record if it does not already exist, indicating that the col is a

unique identifier. In (b), the code invokes a method on col, indicating that col cannot be null.

§2.3.3 shows all our discovered code patterns that imply data constraints.

By leveraging this observation, we build CFINDER which employs program analysis to

analyze application source code to automatically infer and detect any missing database constraints

to improve database integrity (against application bugs and operator mistakes).

12



if not Table.get(col=val).exist():
Table(...).save()

Table.col.method()

!"# $"%&' !()&# !"#$%& !%# $"%&' !()&#*'() "%**

Figure 2.4: Code snippets with implicit assumptions on database constraints. (a) Unique
constraint: Save record only when no record filtered by the column exists. (b) Not-null constraint:
Invoke methods on the column which should not be nullable.

We evaluate CFINDER with eight widely deployed web applications, including an industry-

strength software from a commercial company with millions of users. CFINDER has detected

210 missing DB constraints from these applications. We have reported 92 of them to the

developers of these applications, so far 75 have been confirmed by these software. The tool

effectively detects the missing constraints with a precision of 78% for newly detected constraints

and a recall of 79% for an existing dataset.

2.2 Understanding Missing Database Constraints in Web Ap-

plications

Before we build a tool to infer the missing constraints, we first aim to understand more

about the current status of DB constraints in web applications. Specifically, we aim to answer:

(1) Is it common for developers to miss specifying some DB constraints? We define “missing”

constraints as those that are not specified when the columns are created, and added later in another

pull request. Missing constraints indicate the potential vulnerabilities which allow invalid data

to get stored in the database. (2) Do these missing DB constraints lead to issues with severe

consequences? Finally, (3) Do these missing constraints have validation checks in the code and

whether the validations can protect the data integrity effectively?

As a lens to answer these questions, we conduct the study on five widely-deployed real-

world web applications listed in Table 2.1, representing app domains including e-commerce, team

chat, etc. The apps are built on top of Django [57], a popular framework powering more than

13



Table 2.1: The web applications used in our study. Stars: Number of stars on Github. LoC:
Lines of code.

App. Category Stars LoC #Table #Column

Oscar [118] E-commerce 5.2K 74K 77 773
Saleor [138] E-commerce 15.3K 298K 98 1013
Shuup [141] E-commerce 1.8K 196K 227 2236
Zulip [173] Team chat 15.3K 361K 97 826

Wagtail [157] Content management 11.7K 181K 60 841

94K web apps, including large commercial companies like Instagram [68].

To collect the history of adding DB constraints, we leverage the database migration

files [60], which maintain the historical modifications to the database schema. From them, we

collect the SQLs that add the new database constraints. To get the “missing” constraints, we

further filter out the constraints that are added together with the creation of columns. To collect

the related issues, we search the issue tickets that reference the commit of migration files. We

then manually examine the issues to understand the root causes and severity based on developer

comments and issue labels.

Threats to Validity The five apps in our study are specific to Python-based web applications

using Django, which may not represent all web applications; Other web frameworks, like Rails

(Ruby) and Hibernate (Java), let developers specify and use database constraints with similar

primitives.

Observation 1: Many constraints were added as afterthoughts, with 10-72 constraints missed

first and added in later pull requests for each application (Table 2.2). Such an overlook makes

the studied applications vulnerable to invalid data, as it can potentially be stored in the database

before the constraints are enforced correctly.

Observation 2: A majority (82%) of these missing constraints were noticed and added by

developers after data integrity issues were detected (Table 2.3). These issues could lead to

severe consequences. Moreover, they took a long time (on average 19 months) to get exposed.
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Table 2.2: The number of database constraints that are missed first and added in later pull
requests in each application.

App. Oscar Saleor Shuup Zulip Wagtail Total

Unique 22 10 5 16 6 59
Not-null 48 9 6 9 4 76
Foreign key 2 2 0 4 0 8

Total 72 21 11 29 10 143

We classify how developers find such missing constraints into four categories: (1) Developers

were notified from 30 issue tickets for 31 (22%) missing constraints. Users were likely to have

experienced some real-world issues with consequences. (2) After fixing the reported issues,

developers sometimes realized that more data fields had similar issues. Thus, they added 59

(41%) such missing constraints. (3) The other 27 missing constraints belong to “Fixed by dev”,

meaning that developers mentioned ”fix”, ”prevent issue”, etc. in comments, which indicates

their purpose to fix an issue. (4) 22 (15%) were added due to new features or code refactoring.

We find that 30 different issues with detailed user reports have led to various severe

consequences. Among them, 18 issues caused crashes, with 7 of them blocking critical business

logic (order or payment-related for e-commerce), causing poor user experience and revenue loss.

The other 8 caused data corruption, including order data and other users’ account data.

To make things worse, these missing constraints took a long time (on average 19 months)

to be noticed and fixed, opening up a long vulnerable time window that allowed constraint-

violating data to be inserted into the database.

Observation 3: Most (87%) issues that missed database constraints also missed some required

checks in the application code. For the rest (13%), even with code checks, the constraint-violating

data was still stored during concurrent requests. It indicates that the code checks are incomplete

and insufficient. The 30 issues belong to three categories. (1) 22 (73%) have no checks at all

in the application code. (2) Four (13%) issues have checks in some code paths but miss checks

in other paths that manipulate the same data. It indicates that developers usually fail to ensure
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Table 2.3: Reasons why developers add the missing constraints. The majority (82%)
originates from issues, either from user reports or developers’ findings.

Type Related to issue Feature /
Refactor

Unk-
nownFrom rep-

orted issue
Learn from
similar issue

Fixed
by dev

Unique 17 16 15 8 3
Not-null 11 40 12 12 1
FK 3 3 0 2 0

Total 31 (22%) 59 (41%) 27 (19%)
22 (15%) 4 (3%)117 (82%)

multiple places adhere to the same constraints. (3) Interestingly, for the rest four (13%) issues that

have full code checks, constraint-violating data still makes its way into the database. Developers

suspected the reason was that code checks failed to handle concurrent requests [166]. They

commented, “This is clearly the result of a race, since we have this check in the view code”, after

careful diagnosis.

Implication In summary, even for these widely deployed web applications, database constraints

are not fully leveraged by developers to protect their application data. A large number of database

constraints are missing, causing issues with severe consequences. Moreover, the validations in

the application code are ad-hoc and generally error-prone to concurrent requests, which makes

the situation even worse.

2.3 Design and implementation

2.3.1 Design Choices: Possible Ways to Find Missing Constraints

Given the consequences brought by missing database constraints, the current practice of

adding them after issues have been exposed is far from satisfaction. There are three possible

approaches to identify the missing constraints:

Manual inspection Letting developers inspect the whole database schema manually requires
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their expertise in both database and business logic. It is tedious and error-prone even for domain

experts, considering the large number of tables (up to thousands) and columns (up to hundreds

per table).

Infer from production data Another approach is to discover from the production data. For

example, if a column has a predominant percentage of records that satisfy a certain constraint

(e.g., 99.99% are not-null), a potential constraint is indicated.

Though the idea is intuitive, it has three main limitations. (1) Approaches based on

statistics are usually biased and limited by insufficient datasets. E.g., some rare cases may allow

the insertions of null data, but the cases have not been triggered yet. As a result, the wrong

conclusion of a not-null constraint can be drawn from the data. Similarly, due to lack of data, the

idea does not apply to newly created tables or added columns, from which most of the missing

constraints originate. (2) It is cumbersome for developers to gain access to the production data,

especially with access control and privacy concerns. (3) This approach has unacceptably high

false positive rates [35, 36]. In previous work [45], 95% of discovered statistically-valid unique

constraints are false positives (see more details in §2.5).

Infer from application code Inferring constraints from the code logic has several advantages.

Compared to data, the source code (1) is not limited by data and (2) contains the business logic of

what constraints the data should follow in semantics. Moreover, developers can always cross-

check the inferred constraints with the production data. The major concern is, given the code

complexity and diversity, how many data constraints can possibly be inferred from the source

code?

After looking into several real-world web applications, to our surprise, we observe many

code patterns that have implicit assumptions on database constraints for all three constraint types.

Developers have the assumptions about data constraints in mind, thus their code implementation

that retrieves or manipulates the data will follow certain patterns. We list the observed patterns

for each constraint type in Figure 2.6 (§2.3.3).
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Figure 2.5: The overview of CFINDER. CFINDER contains three steps to infer the missing
database constraints from the application source code. The green boxes are the output of the
steps.

Based on the above trade-offs and observations, we choose to extract missing database

constraints from the application code.

2.3.2 CFINDER Overview

Figure 2.5 illustrates the three steps of our approach. In step 1 , we recognize the

code patterns that imply certain DB constraint assumptions (§2.3.3). In step 2 , with observed

patterns and application code as input, CFINDER applies control and data flow analysis to find

code snippets that match each pattern’s conditions (§2.3.4); In step 3 , from the found snippets,

CFINDER extracts and infers the formal DB constraints (§2.3.5); The output of CFINDER is the

set of missing DB constraints.

The static analysis is flow-sensitive. It is also field-sensitive because CFINDER treats the

fields of a model class differently. Currently, it does not consider alias. In our evaluation, we

didn’t catch any false positives caused by aliasing.
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2.3.3 Code Patterns with Assumptions on DB Constraints

Code Patterns

From many web applications, we have observed that many code patterns with assumptions

on each constraint type widely exist, but have not been studied before. Figure 2.6 lists the patterns

we discovered, along with real-world examples from e-commerce apps. We name each pattern as

PA(type)(idx), where type stands for constraint types and idx is the index.

Check existence before save/error handling (PAu1 unique): The code explicitly checks if the data

constraints hold. As Figure 2.6a shows, it first retrieves records filtered by product, then only

saves a new record if no existing record returns. It reflects developers’ intention on uniqueness:

only one record with the value of product can exist in DB. Similarly, the pattern can be extended

to do error-handling after the check, i.e., throwing exceptions when the record already exists.

APIs with assumptions (PAu2 unique): Web frameworks provide developers with QuerySet

APIs [58] to encapsulate data manipulations. Some APIs are implemented with similar assump-

tions as Check existence before error handling. For example, get uses column(s) as the unique

identifier to retrieve the record and throws an exception when multiple records are returned [56].

Thus, when developers use this API, they expect the column(s) to be unique. Such APIs include

{get,get or create, get obj or 404} in Django.

Method/field invocation on column without NULL check (PAn1 not-null): When invoking a

method or accessing a field on a column, the column should be not-null. Otherwise, invocation

on NULL will throw an exception. We further exclude cases that have explicit NULL checks

before the invocation, as the check avoids the exception, making them false positives.

Check NULL before assignment/error-handling (PAn2 not-null): Similar assumptions as PAu1

can be applied to not-null with some tweaking. For example, when order.creator is null, the app

raises an error “Anonymous orders not allowed”. One variant is, when the field is NULL, the

code explicitly assigns a value to the field before saving, making it not-null.
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Field with default value (PAn3 not-null): Some fields have a default value, which works similarly

as PAn2, i.e., assigns the default value to the field if it has not been set before saving. If nowhere

in the code would explicitly assign the field a null value, we assume it is not-null.

Column referring primary key (PAf1,PAf2 foreign key): Patterns in Figure 2.6c reflect the

referential assumption between tables: the column in the dependent table refers to the primary

key (PK) value in the referenced table (PAf1), or vice versa (PAf2). For example, in PAf1, the

value from Voucher (referenced table)’s PK is saved to Discount (dependant table)’s column

named voucher id, indicating that Discount.voucher id should be a foreign key to Voucher.

Our evaluation in §2.4.2 and §2.4.3 shows that these code patterns are effective for

detecting missing DB constraints (found 210 previously unknown constraints) and have good

coverage (79% recall on a collected dataset). We also discuss potential improvements and

extensions to the patterns there. Besides, since these patterns reflect semantic code logic, they are

general and applicable to applications in other frameworks or languages.

Conditions of Code Patterns

After observing these code patterns, a natural question would be how to detect them

in the application code. A naı̈ve way is to represent the patterns with some predefined regular

expressions and match the code with them. This may work for simple cases with well-defined

APIs, such as get. But it cannot detect most other cases. Take PAn2 “check NULL before

assignment” as an example, matching any assignment after any NULL check would introduce too

many false positives, since the two operations could come from unrelated code blocks and operate

on unrelated data. Such complex control and data logic can hardly be defined and matched with

regular expressions. Moreover, it cannot infer the table of the constraints as that requires the data

flow information (§2.3.5).

Instead, CFINDER represents patterns as the conjunction of three types of conditions,

which involve control and data dependencies built on top of the abstract syntax tree (AST) [128].

22



Based on it, our detection algorithm (§2.3.4) traverses the AST and finds snippets that match all

conditions of a pattern.

To introduce the three types of conditions, we use the first pattern PAu1 for unique

constraint in Figure 2.6 as the example, which checks existence before save/error handling.

Control dependencies (C-D) Each pattern consists of several sub-components (subtrees in

AST), and each subtree has its specific semantic meaning. These subtrees follow certain control

dependencies. For example, PAu1 requires two sub-components, check existence and save. They

represent two subtrees that satisfy the control flow of the IF block, i.e., condition for check

existence, and body or else for save.

Other types of control dependencies include one syntax tree Ti being the parent of another

tree Tj, etc. Using another pattern PAn1 as the example, we require that for all parent trees of the

field invocation, no one T has a condition branch Tcond that has the NULL check.

Syntax pattern matching (P-M) As we mentioned, each subtree needs to represent a specific

semantic meaning. To bridge their gap, we pre-define a set of syntax-based patterns P∗, where

each P∗ consists of a category of simple syntax tree patterns with the same semantic meaning

S∗. Therefore, whether a subtree T∗ represents a semantic meaning S∗ can be evaluated by T∗

matching with one syntax pattern of P∗.

For example, we define Pexist to represent the category of patterns indicating a check

on the existence of a record. One such syntax tree could be a Call block with a Attribute

subtree with name exist (Check more in Figure 2.7). These syntax patterns are general to the

framework and easy to customize.

Back to PAu1, it requires: (1) the if-condition checks whether the record exist or not exist,

i.e., Tcond matches with Pexist or ¬Pexist. (2) Respectively, the two subtrees Tbody and Telse in two

branches match with Psave (save record when not exist) or Perror (error-handling when a record

exists). The results (R∗) of these syntax pattern matching are connected with AND and OR, to

form the final evaluation of this condition.
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Figure 2.7: Example of pre-defined syntax tree patterns. We use them to match with the
candidate syntax trees. Each category of P∗ can have several patterns representing the same
semantic meaning.

Data dependencies (D-D) This condition requires the data in subtrees to follow certain data

dependencies, i.e., the two subtrees operate on the same tables and columns.

In PAu1, we require the match of the table and column that (1) get saved in Tbody and (2)

perform the NULL check in Tcond. We evaluate the data dependencies by first inferring those

tables and columns from each subtree using data-flow analysis (§2.3.5) and then matching them.

To sum up, we list the formal representation of PAu1:

(C−D) [Tcond,Tbody,Telse] = IF block subtrees()

(P−M) Rcond∧ (Rbody∨Relse),where

[Rcond,Rbody,Relse] =

MATCH([Tcond,Tbody,Telse], [Pexist,Perror,Psave]) ∨

MATCH([Tcond,Tbody,Telse], [¬Pexist,Psave,Perror])

(D−D) DataDepend(Tcond, Tbody∨Telse)

2.3.4 Code Patterns Detection Algorithm

In step 2 , CFINDER detects code snippets that can match the conditions of one code

pattern from the application code. Taking the first code snippet for PAu1 in Figure 2.6a as the

example, we show how it can be detected from the code.
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Overall Algorithm

The steps are as follows.

• CFINDER walks the module’s AST in a breadth-first fashion to identify the candidate code

snippets whose root types match the pattern’s root type (IF node in PAu1).

• For each code snippet, CFINDER then extracts their subtrees following the control dependency

of the pattern, i.e., extracts subtrees Tcond, Tbody,Telse from the root IF node.

• CFINDER then performs the syntax pattern matching on each subtree. E.g., match subtree

Tbody (wishlist.lines .save) with predefined Psave (details in next paragraph).

• CFINDER further checks the data dependencies using the use-definition graph to see if variables

in two subtrees refer to the same table and columns (details in §2.3.5).

• If all pattern conditions evaluate to True, then we find a candidate snippet with assumptions on

DB constraint.

Match Subtree with Syntax Pattern

Figure 2.8 shows the syntax tree of the example snippet on the left, with some subtrees

collapsed. The MATCH function matches its subtree Tbody (left) with the predefined syntax pattern

Psave (right).

Here, Psave represents the category of syntax patterns that have the meaning of “saving a

record”. In the AST form, one example of the syntax pattern is a Call node calling an Attribute

node named save or create.

To implement MATCH, CFINDER performs a breath-first traversal in Tbody and finds the

node which matches the root of Psave, i.e., the Call node. Then for each child node of Call in

Psave (the Attribute node), CFINDER checks if there is a corresponding subtree node in Tbody.
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Figure 2.8: Matching syntax tree T (left) with pre-defined syntax pattern P (right). The
subtree with bold red borders on the left is the match. T (left) is constructed from the example
in Figure 2.6a.

CFINDER recursively repeats this process until the leaf nodes of P. If all children have a match,

CFINDER concludes that Tbody matches Psave.

Figure 2.7 shows more examples: two categories of pre-defined syntax patterns for Pexist

and Perror. Note that these patterns are as simple as a syntax tree with a depth of only one or

two, and they have no control or data dependencies. We collect them heuristically by studying

the application code. They are general to applications, and more importantly, they can be easily

customized and extended.

2.3.5 Database Constraints Extraction

In step 3 , CFINDER automatically converts the snippets into formal DB constraints.

After detecting the second code snippet in Figure 2.6a that matches PAu1, in Figure 2.9, this

step infers the table WishListLine and columns (wishlist,product) from it. To achieve it,

CFINDER traces the definitions in code using use-definition analysis [81] and table metadata.

Identify the Table

The MATCH step identifies the variable list (to wishlist.lines) that represents the table

object. However, identifying which table it represents (WishListLine) is often non-trivial due
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to two challenges:

• Python’s language feature, dynamic typing, i.e., a variable’s type is defined at runtime. There-

fore, static analysis doesn’t know to wishlist’s type (class of WishList table).

• The “variable” may involve a chain of field accesses, which transfers from one table to another

following the foreign key reference. For a real example in Oscar, self.attribute. option

group. options involves the reference between three tables. It is hard to sort out the

relationship with such complex code even with human inspection.

To handle the first challenge, CFINDER infers the definition using use-def chain analysis.

Starting from the first variable, CFINDER traces its definitions in the use-definition chain and

identifies one of the definitions being table class. In the example, to wishlist gets the definition

from WishList .objects.get, which returns an instance of WishList class. To be scalable to

large applications, CFINDER does not perform the inter-procedure analysis.

Second, CFINDER follows the list of field accesses and tracks the corresponding tables

using the table’s metadata. Starting from to wishlist, which is an instance of WishList

class, .lines retrieves the instance of a WishListLine class through the foreign key reference.

CFINDER repeats this process until the end of the field list.

Identify the Column

The columns of the not-null and foreign key constraints are usually obvious and CFINDER

gets them directly from the specified patterns. Here we discuss two special cases, i.e., composite

and conditional unique constraints:

• When retrieving referenced objects through the foreign key field, it contains the implicit join on

table ID. In the example, to wishlist.lines retrieves the lines related to the to wishlist

instance. Consequently, besides product, the generated SQL statement filters on wishlist id
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/* Oscar: wishlists/views.py */

class MoveProductToAnotherWishList(View):
def get(self, request):

to_wishlist= WishList.objects.get(key=xxx)

if to_wishlist.lines.filter(product=xxx).count()>0:

raise Error("WishList already containing product")

Class WishList(Model):
lines = ManytoOneRel(WistListLine)

Figure 2.9: Infer the constraint table from code: (1) Infer the definition using data flow
analysis (2) Track the tables along the chain of field accesses. Specifically, to wishlist
represents the WishList class and to wishlist.lines refers to the final WishListLine class
through the foreign key.

as well. Thus, CFINDER infers that the final constraint requires columns (wishlist, product)

to be composite unique.

• When retrieving records by filtering on columns with fixed values (e.g.,

filter(col,valid=True)), it indicates a “partial (conditional) unique constraint” [126],

which restricts the uniqueness of col over a subset of data defined by the condition

(valid=True).

Get Missing DB Constraints

After inferring all DB constraints from the code, CFINDER filters the existing constraints

retrieved from information schema tables of databases.

2.4 Evaluation

As shown in Table 2.4, we evaluate CFINDER on eight large web applications includ-

ing seven widely-adopted open source web applications and the main web application of one

commercial enterprise (COMPANY) with millions of end-users. The open-source applications

are top-starred in each category on Github, with three of them having 10K stars and five having
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5K stars. Moreover, Saleor is adopted by e-commerce companies including one with 50M rev-

enue [139], Edx by 160 institutes and has millions of users [66], Zulip by large communities and

universities [169], etc. These open-source applications have 74K to 617K LOC, more than 60,000

commits, and have high demands on data integrity and reliability due to their wide adoption

and millions of users. We use the latest version of all applications (commit hashes are in the

references).

We evaluate the effectiveness of CFINDER based on how many new missing database

constraints can be detected (§2.4.1). We further report them to the app developers and get their

confirmations (Table 2.4).

Moreover, we evaluate the precision of the detected missing constraints (§2.4.2) and

study the reasons for false positives. We have two human inspectors independently examine

the detected missing constraints and label a case as true positive only when consensus was

reached. Furthermore, we evaluate the coverage (recall) of CFINDER (§2.4.3) on two datasets.

The first dataset contains all the existing (not missing) database constraints already set by the

latest application code. The second dataset contains 117 real-world missing constraints collected

from the past commit history (Table 2.3). These missing constraints were noticed because data

integrity issues were detected. We further evaluate CFINDER’s performance (§2.4.4) and discuss

the developer’s feedback (§2.4.5).

Databases are fully set up and populated with testing data only. All experiments are done

on a single machine with a 2.30GHz CPU (6 core), 16GB Memory and 256GB SSD running a

Ubuntu 18.04 distribution.
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Table 2.4: Evaluated applications and detected missing DB constraints from them. “De-
tected existing”: Detected constraints that already exist in DB. “Detected missing”: Detected
constraints that miss in DB. “ACK by dev”: numbers of missing constraints acknowledged by
developers that need to be added. For three apps with zero confirms, we received no response to
our issue reports.

App. Category Github
stars LOC Detected

existing
Detected
missing

ACK
by dev

Oscar [118] E-comm 5.2K 74K 159 24 5
Saleor [138] E-comm 15.3K 298K 220 15 0
Shuup [141] E-comm 1.8K 196K 290 31 0
Zulip [173] Team chat 15.3K 361K 265 21 12

Wagtail [157] CMS 11.7K 181K 69 10 7
Edx [116] Online course 6K 617K 509 43 0

EdxComm [67] E-comm 122 93K 97 14 6

COMPANY Enterprise - - - 52 45

Total - - - 1609 210 75

2.4.1 Effectiveness in Detecting Missing DB Constraints

Overall Results

Table 2.4 shows the number of detected missing database constraints from each web

application. Overall, CFINDER detects 210 missing database constraints from eight web applica-

tions, including 10-43 missing constraints for each open-source web application and 52 missing

constraints for a commercial company with millions of users.

We manually validated the detected constraints and reported the identified true missing

constraints to app developers. When we contacted the developers, we prioritized these applications

that actively responded to our issue reports. For three apps with zero confirms, we received no

response to our reports.

So far we reported 92 of them and we have got 75 confirmed by developers as real missing

database constraints, including 30 of them from seven open-source web applications and 45 from

the commercial company. Among the 75 confirmed constraints, there are 37 unique constraints,
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Table 2.5: Examples of confirmed missing database constraints. The first two examples are
already merged in their main branches.

Confirmed Unique constraints (37 cases)
Example: ProductAttr Unique(code,product class) [64]
Potential
consequence:

Product attributes with same attribute code for a
product class are invalid and invisible to customers.

Confirmed Not null constraints (22 cases)
Example: Attachment Not NULL (realm) [170]
Potential
consequence:

The attachment is not valid when uploaded without a
realm (organization). Similar as a data loss to users.

Confirmed Foreign Key constraints (16 cases)
Example: OrderDiscount (offer) Ref Offer (id) [65]
Potential
consequence:

The discount on an order is not valid without linking
to an existing offer.

22 not-null constraints, and 16 foreign key constraints. We provided one example for each

constraint type in Table 2.5 to demonstrate the potential consequence of not having the missing

constraints.

Breakdown of the Detected Missing Constraints

To understand the effectiveness of CFINDER in detecting each type of missing database

constraints, we present the breakdown for different code patterns in three constraints types,

Unique, Not-null, and Foreign key in Table 2.6.

• Unique constraint: CFINDER detects 66 missing unique constraints, with two code patterns

detecting 16 and 56 respectively. Moreover, among them, 13 are “partial unique constraints”

(§2.3.5). Some app developers are not aware of this type of constraint, thus not taking advantage

of them.

• Not-null constraint: For total 77 detected constraints, three patterns detect 44, 11, 22, respec-

tively.

• Foreign key constraint: CFINDER detects 15 missing foreign key constraints in total. The
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Table 2.6: The breakdowns of the number of detected missing database constraints for each
constraint type and code pattern. One constraint can be detected by multiple code patterns,
and we only count them once in Tot.(Total).

App.
Detected missing constraints

Unique Not null Foreign Key
PAu1 PAu2 Tot. PAn1 PAn2 PAn3 Tot. PAf1 PAf2 Tot.

Oscar 3 10 12 9 1 0 10 1 1 2
Saleor 2 3 5 7 0 1 8 1 1 2
Shuup 2 4 6 12 5 7 24 1 0 1
Zulip 5 7 10 2 1 4 7 2 2 4

Wagtail 0 4 4 2 0 4 6 0 0 0
Edx 3 22 23 6 3 6 15 1 4 5

EdxComm 1 6 6 6 1 0 7 0 1 1

Total 16 56 66 44 11 22 77 6 9 15

number is relatively small, which is consistent with our study (§2.2) on real-world missing

constraints in history. A possible reason is that when developers use the field to reference

another table, the referential relationships are usually so obvious that developers are unlikely to

neglect them.

2.4.2 False Positives in Detected Missing DB Constraints

As Table 2.7 shows, CFINDER’s precision in detected missing constraints is reasonably

high for all three types of database constraints, 82%, 75%, 80% for unique, not-null, and foreign

key constraints, respectively.

In total, 34 false positives (FPs) are introduced. There are two main reasons. First, 12

(35%) FPs are caused by the static analysis being unsound. Five have wrongly inferred database

tables (§2.3.5) and seven have unrecognized or implicit NULL checks before the field invocation

(thus these columns could be NULL without throwing exceptions). These FPs could be mitigated

by fine-tuned code analysis, such as incorporating the inter-procedure information. Second, 13

(38%) FPs are caused when code matches the pattern but contains no assumption on constraints.
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For example, one code snippet satisfies the pattern PAu1, but it is only meant for a sanity check to

handle a special case of no valid voucher, which does not involve uniqueness assumptions. To

prune those FPs, CFINDER can further refine the patterns with finer-grind semantics.

Impacts of False Positives

The reported FPs can be easily recognized by developers, thus will not cause serious

consequences. (1) Developers won’t be misled after checking the code snippet (reported by

CFINDER) that implies the constraint. For example, developers who read the error message can

easily determine if it warns about a constraint violation. (2) Developers can run simple scripts to

automatically check if the constraint is consistent with the production data, i.e., using data-driven

approaches as complementary. (3) Even if they wrongly add a constraint, the DBMS will reject

the schema migration if any existing data violates it. Developers then decide whether this is a

FP or if data cleaning is required. In either case, if a constraint can be added, existing data must

adhere to the constraint already.

Human Inspection Efforts

(1) It took two graduate students about 40 hours to manually inspect the FPs from

158 constraints that CFINDER reported in open source applications. Most time is spent on

understanding how the field is used all over the codebase. (2) Based on our interactions with app

developers, they are familiar with code and they do thorough inspections including the production

data. The inspection time is acceptable. Half of the missing constraints we reported to Zulip’s

work channel are diagnosed within 20 minutes.

2.4.3 Coverage of Database Constraints

We then evaluate the percentage of database constraints that CFINDER can cover in its

detection, i.e., the recall of CFINDER, on two different datasets. We further look into what are
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Table 2.7: The precision of detected missing constraints by CFINDER. Tot.: Total number of
detected missing DB constraints. Precision: TruePositive

TruePositive+FalsePositive .

App. Unique Not null Foreign Key

Tot. TP Precision Tot. TP Precision Tot. TP Precision

Oscar 12 9 75% 10 8 80% 2 2 100%
Saleor 5 3 60% 8 7 88% 2 2 100%
Shuup 6 5 83% 24 17 71% 1 1 100%
Zulip 10 7 70% 7 5 71% 4 2 50%

Wagtail 4 4 100% 6 4 67% 0 0 -
Edx 23 20 87% 15 11 73% 5 4 80%

EdxComm 6 6 100% 7 6 86% 1 1 100%

Overall 66 54 82% 77 58 75% 15 12 80%

missed by CFINDER.

Evaluation with Existing DB Constraints

Even though the goal of CFINDER is to detect the missing constraints, we can evaluate

whether the existing constraints behave consistently with the code patterns. Specifically, we

evaluate how many existing DB constraints already set in the database can be covered by CFINDER.

It reflects the generalization of the patterns. Note that we exclude foreign keys, as the existing

ones are used differently from the patterns for missing ones. Specifically, for foreign keys that

already exist in DB, developers mostly retrieve the referenced table through field invocations,

such as order.product when product is a FK.

Table 2.8 shows that CFINDER has a reasonable recall. It can detect 61%-74% of unique

constraints and 70%-83% of not-null constraints for seven web applications.

We randomly sample and study 40 false negatives for each of the two constraint types.

They belong to three categories: (1) 57 (71%) do not exhibit any general patterns with assumptions

on constraints. Among them, 20 are fields used for specific purposes and they might be improved

by incorporating some application-specific domain knowledge. For example, some fields are used
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Table 2.8: The percentage of existing constraints already set in the database that CFINDER
can cover in the detection.

App.
# Existing constraints

already set
What percentage can

CFINDER cover
Unique Not null Unique Not null

Oscar 49 156 67% 81%
Saleor 70 210 74% 80%
Shuup 89 298 70% 77%
Zulip 47 278 72% 83%

Wagtail 18 79 61% 73%
Edx 133 569 65% 74%

EdxComm 30 110 67% 70%

in the URL as the identifier, which may imply uniqueness. (2) 17 (21%) are fields not used in the

application code logic, just placeholders for legacy or future use. (3) 6 (8%) have usages with

assumptions but are not detected, mainly because code patterns are hard to recognize when they

span different functions in the call chain. These can be improved by tracing the inter-procedure

information.

Evaluation with Dataset on Missing Constraints

In our study (§2.2), we collect a dataset of 117 missing database constraints from the

schema migration history (Table 2.3). These missing constraints were noticed after having some

data integrity issues that caused real damage. We evaluate if CFINDER can detect these missing

constraints on old versions of code, which could help prevent the issues from happening.

Table 2.9 shows that CFINDER has a good coverage. Out of the 117 real-world missing

constraints in the dataset, CFINDER can detect 93 (79.5%) of them. These missing constraints

would be caught if CFINDER had been adopted. We failed to detect 24 constraints mainly because

they are too specific, i.e., do not exhibit general patterns. Note that we also mark those constraints

that “learned from similar issues” as detected if the original issue is detected.
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Table 2.9: The percentage of missing constraints that CFINDER can cover in the collected
dataset. The dataset from our study (§2.2) contains constraints that missed first and added by
later commits.

# Missing constraints
in dataset

What percentage can
CFINDER cover

Unique Not null Foreign Key Unique Not null Foreign Key
48 63 6 79% 83% 50%

Table 2.10: Time (seconds) to run CFINDER’s static analysis.

App. Oscar Saleor Shuup Zulip Wagtail Edx EdxComm

Analysis
time (s)

22 64 75 59 40 147 30

2.4.4 Performance of CFINDER

CFINDER is designed to run in the testing environment thus its performance is not time-

critical. Table 2.10 shows that the analysis time of CFINDER’s static code analysis is less than

150 seconds for each application, and is near proportional to the application’s lines of code (up to

620K LOC for Edx).

2.4.5 Developers’ Feedback Discussion

We reported 92 of the detected constraints to the application developers and have got 75

confirmed so far. The others are rejected or still under investigation. Here we share the experience

of the interactions with developers.

We are encouraged by the positive feedback from many developers of the evaluated

applications. For example, Zulip developers quickly responded to our reported issues and actively

examined their code base for similar issues with us [170, 172]. The confirmed missing constraints

were either due to a lack of considerations in the design, or due to missing checks after business

requirements changes. As one developer replied in the report for a not-null constraint, “Being
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after that migration has run, ...,there’s no reason to keep it nullable”.

In contrast, we find that maintainers hesitated to enforce some missing constraints we

reported. For example, in one issue [119], the developers worried that the data migration might

take too long a time to process the null values for large tables. In another issue, the developers

assume that the invalid record will not be generated during normal workloads in current code

logic, and thus are reluctant to add fixes [171].

2.5 Related Work

Empirical study of data constraints in web applications Previous studies have investigated

the adoption of data constraints in the application layer [42, 164]. Bailis et al. [42] study

the effectiveness of application-level validations as substitutes for their respective database

constraints counterparts in web frameworks (Rails). Their quantitative experiment shows that app

validations lead to data corruption due to concurrency errors in 13% of usages. Yang et al. [164]

study the location, expression and evolution of data constraints. They find that developers struggle

with maintaining consistent data constraints among the front-end browser, the application (using

framework’s validation APIs), and the database. In contrast, our study in §2.2 focuses on the

missing constraints neglected by developers in the database layer, which motivates tooling support

to systematically detect the missing constraints.

Detecting data dependencies from applications Yang et al. [164] study the constraints specified

in framework’s validation APIs and their inconsistencies with constraints in the database. Liu

et al. [95] detect constraints specified in framework’s validation APIs in model classes with the

motivation to use constraints to optimize query execution performance.

Our work differs largely in the following ways. (1) These works require developers to

already know and specify these constraints using validations. In other words, they cannot help

with the missing database constraints neglected by developers. Thus, our identified missing
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constraints cannot be discovered by their works. Besides, in order to infer from the code logic

with implications, CFINDER proposes more advanced code analysis algorithms. (2) Their goal

is to optimize the performance or study inconsistencies, while CFINDER proposes to enforce

the missing DB constraints to protect the data integrity. (3) Majority (88%) of their detected

constraints are defined only in the framework level and are not DB built-in constraints, as they

stated “defining inclusion and format constraints requires writing UDFs, which is tedious to

implement in most DBMS” [95]. Thus they are orthogonal to CFINDER.

Inferring constraints from data Previous works on data profiling [35, 36] discover the data

constraints by collecting statistics about the data itself. Aside from the limitation of biased and

insufficient datasets we discussed in §2.3.1, these works still lack effective techniques to discover

missing constraints that apps truly require. Specifically, as unique or foreign key constraints

involve multiple columns, they traverse the search space of a powerset of column combinations

and validate if the data satisfies the constraint. A majority of works focus on pruning the search

space [37, 83, 45, 165, 120]. However, it is understudied which of the discovered statistically-

valid constraints are truly required by apps in semantics. In fact, a vast majority (¿95%) of them

are false positives [45, 36]. Some [165, 134, 71] propose heuristic rules to prune FPs, but their

effectiveness lack evaluations on real world large datasets.

In contrast, the source code (1) is not limited by data quality and (2) reflects what con-

straints the data really needs to follow in semantics. The evaluation shows CFINDER introduces

reasonable precision (78%) and recall (79%).

Invariant detection from trace The line of work on invariant detection tools, like Daikon [69,

70], dynamically traces program runtime states and infers likely invariants in code. Typically

dynamic approaches have a challenge of coverage problem. For likely invariants, the coverage

problem of test cases or product runs can also lead to many false positives and false negatives,

particularly false positives.

Application verification and synthesis using constraints. Another line of work focuses on
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using data constraints for program verification and synthesis. Li et al. [93] detect the application

bugs that violate the numerical data assertions inferred from the data. Wang et al. formally

verify the equivalence of programs with different DB schemas [158] and synthesize equivalent

programs [159]. These works are orthogonal and may help with code evolution when adding new

constraints.

Leveraging constraints to improve performance and security Various constraints have been

used to find better query plans and optimize query performance [94, 162, 95]. Our work reveals

that there are opportunities to find more required database constraints, thus could complement

their works.

Some works study methods to impose and verify the security and privacy “policies” [88,

109, 163]. These policies are usually too complex to be supported by current databases, thus

are orthogonal to our work. Future work can study the automatic detection of these missing

privacy-related policies from code. They are promising to improve the data quality in the further.

2.6 Limitation & Discussion

CFINDER targets on web applications that are backed by RDBMS and have a high

requirement on data integrity, which widely exist in our daily life. Some systems shift the

responsibility of data quality to the application layer as a design choice for better scalability and

customization. It includes apps backed by NoSQL databases, which typically do not support

constraints in DB. Though not our targets, CFINDER can still benefit them by identifying the

missing data constraints and helping them check at the application/framework level. Moreover,

NoSQL databases such as MongoDB recently start to support constraints at the database [105]

level, showing its importance and potential.

CFINDER is currently implemented for Python-based web applications, as it relies on web

frameworks’ APIs to identify database operations when performing pattern matching in §2.3.4.
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For example, we use Django’s five APIs for record retrieval, three for record creation or updating,

and one for existence check. However, CFINDER’s code patterns in §2.3.3 are general as they

catch the semantic assumptions on data constraints in code logic. We also studied Rails (Ruby),

Flask (Python), and Hibernate (Java), and they all encapsulate similar sets of APIs for the four

database operations. Thus, CFINDER can be migrated to other frameworks or languages with

reasonable implementation efforts.

Adding the missing constraints may require extra efforts to clean the data if application

data is already erroneous or incompatible. The overhead to perform data cleaning and migration

sometimes is not negligible for large tables. However, we consider the effort essential and

beneficial because these corrupted data could lead to serious business loss in the future.

Like most issue detection tools, CFINDER still have false positives (§2.4.2) and false

negatives (§2.4.3), and there is still space for further improvement. The false negatives could be

improved by extending CFINDER with more application-specific code patterns and fine-tuning

the static analysis. To avoid the false positives, we would have to rely on developers to manually

examine their semantics in code. CFINDER can perform more refinement steps in the static

analysis to prune those false positives.
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Chapter 3

PYLIVE: On-The-Fly Code Change

3.1 Introduction

Motivated by Python’s popularity and the demand of applying code changes while keeping

high availability, this paper presents a new idea that leverages the unique language features of

Python to perform dynamic code changes. Specifically, we design and implement a framework,

called PYLIVE, that enables dynamically changing Python programs for on-the-fly logging,

profiling, and bug-fixing on production systems without restarting them.

PYLIVE’s capability to change code during production runs can be used by online services

for various purposes including:

(1) On-the-fly logging for diagnosing production-run errors. When an online service exhibits

some abnormal behaviors, engineers can use PYLIVE to dynamically add logs at certain locations

to collect debugging information from production-run. The logs can be enabled only during

certain time (e.g. when the load is light) to minimize the performance impact. Production-run

information is useful for diagnosing challenging issues (e.g., resource leaking) that are hard to

reproduce in a testing environment and only manifest after a long-time (e.g., weeks) running.

(2) On-the-fly profiling for diagnosing production-run performance issues. When an online
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service has performance issues observed for certain types of requests, engineers can use PYLIVE

to dynamically profile a set of functions for a short period of time to collect production-run timing

information to troubleshoot the issues. The capability to (1) dynamically start and stop profiling

during production runs and (2) only profile a small set of specified functions allows engineers to

troubleshoot elusive performance issues without introducing much performance overhead. These

performance issues may only emerge in production-run but are hard to reproduce during offline

testing, making it necessary to perform in-production profiling.

(3) Urgent dynamic patching (bug-fixing or security patch). PYLIVE allows dynamically

applying urgent patches to fix some critical bugs or security issues without stopping and restarting

an online service. These bugs and issues can either cause major failures or open up vulnerabilities

to attackers and thus needs to be patched as soon as possible.

PYLIVE complements the commonly-used system update practice—rollout deploy-

ment [47, 7, 140]. Rollout is not the best choice for dynamic logging and profiling for two

reasons. First, rollout still requires a restart of each service instance, which can clear the key

program states for diagnosis. These states (e.g., resource leaks) may only be reproduced after

a long production run, which is undesirable to be cleared by the rollout. Second, a rollout

deployment is heavyweight and overkill for just collecting logging/profiling information. For

instance, sometimes only a few servers of a fleet exhibit abnormal behaviors because of their

unique memory states. If engineers want to diagnose the issue by rolling out a patch with new

logging statements, this patch needs to be batched together with many other patches and will not

be applied until the next deployment (wait for a few hours or even a few days). PYLIVE provides

a better solution from both perspectives. It requires no restart of service instances so it retains the

issue states for logging/profiling. In addition, it enables dynamically adding logging/profiling

statements to a running program quickly and also removes the statements flexibly.

PYLIVE is designed based on the unique language features of Python. Python is an

interpreted language that supports the meta-object protocol [89, 22] and dynamic typing. The
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meta-object protocol enables programs to dynamically modify their own metadata, including

function bodies/interfaces and class attributes, while dynamic typing allows changing variable

types during running. This makes dynamic code change much easier for Python than for compiled

languages (e.g., C/C++) and other interpreted languages that do not support the full meta-object

protocol or dynamic typing (e.g., Java):

• For compiled languages, dynamically changing a program requires many complex trans-

formations to its code (e.g., patch functions) and memory layout (e.g., load new code

into memory), as shown in previous work [84, 40, 107, 52, 82, 122, 121]. At run time,

a compiled program’s code is binary code and its memory layout is fixed in different

segments. Modifying binary code or memory layout may introduce safety concerns.

• Some other interpreted languages, like Java, do not support the full meta-object protocol

or dynamic typing. For example, Java does not support many types of dynamic changes,

like adding/deleting methods or changing methods’ signatures. Java is also statically-typed,

making it hard to change variable types. For such languages, implementing dynamic code

change requires modification to the language runtime (e.g., JVM), as in previous work

[149, 111, 123]. This introduces portability concerns as different versions of runtime may

be used by different systems.

PYLIVE makes two main contributions: (1) PYLIVE realizes safe and portable dynamic

code change by leveraging Python’s language features. PYLIVE is safe as it requires no low-

level transformations of machine code or memory layout. PYLIVE is portable as it relies only

on the interfaces provided by standard Python interpreters and thus can be easily adopted by

existing Python-based systems. (2) Besides patching, PYLIVE also enables instrumentation-

based code changes for dynamic logging and profiling. PYLIVE provides convenient interfaces

to flexibly instrument customized code to a selected set of functions at running time. This is

useful for collecting diagnostic information in production-run systems without causing significant
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performance degradation.

We evaluate PYLIVE with 20 real-world cases from seven widely-used Python-based

applications (including the popular Django framework and Gunicorn used by Instagram [34]). All

these applications have been deployed in various companies to serve millions of customers [68,

13, 5, 23, 26, 27]. PYLIVE successfully helps resolve the cases with on-the-fly logging, profiling

and patching with little overhead. Additionally, PYLIVE has helped two widely-used open

source e-commerce applications diagnose two new performance issues. We also measure the

performance benefit of PYLIVE by comparing it with restarting services to apply code changes.

During normal time (no code change), PYLIVE’s overhead is negligible. Upon a code change,

PYLIVE causes no downtime and has little performance degradation (¡0.1%). In comparison,

restarting the applications to apply changes can cause 2-17 seconds downtime and take up to 4.5

minutes to warm up (up to 90% performance downgrade during warmup).

3.2 Background

This section briefly describes the unique language features of Python that enables

PYLIVE’s dynamic code change.

Meta-object protocol. Python is designed with a full support of the meta-object protocol [89,

22]. A meta-object is an object that contains a program’s metadata, including types, interfaces,

classes and methods, etc. The meta-object protocol provides programming interfaces for programs

to manipulate these metadata at runtime. For example, a new method named A can be dynamically

added to class C simply with C.A = D (D is A’s definition). Similarly, an existing function’s code

body can also be changed at runtime with A. code = D. code . Once it is changed, the new

D is called when A is invoked. Other supported changes include changing a function’s interface,

adding a new field to a class, changing a variable’s type, etc. All the above changes are supported

by the standard Python interpreter [32].
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Dynamic typing. Python defines and checks variable types at running time, which makes it

easy to dynamically change them. For instance, a Python variable a can be changed from a string

to a bool. And at running time each time before a is used, a type checking is performed. A

wrong typed call compare(a,b) is detected by the Python interpreter, which will throw a runtime

exception. In comparison, for Java, it is impossible to dynamically change a variable’s type

without changing the underlying JVM. For C/C++, this is also almost impossible as a string is

passed by pointer while a bool is passed by value.

Python bytecode. A Python interpreter stores and interprets programs in bytecode, providing

an opportunity for dynamically instrumenting code. Compared to machine code, bytecode is

much easier to analyze and change with automatic tools. First, it is architecture-independent.

Although Python can run on X86-64, ARMv7 and other architecture, it has the same bytecodes for

all architectures. So the same tool can be used for Python on all platforms. Second, bytecode also

has fewer instructions than machine instructions. Python 3.8 bytecode only has 112 instructions,

while X86 alone has 1503 instructions, let alone all various architectures. Third, Python bytecode

retains more type information than machine code.

3.3 PYLIVE Framework

PYLIVE is a runtime framework that accepts dynamic change requests from engineers

and applies them dynamically into production-run systems without a restart. PYLIVE can be used

for on-the-fly logging, profiling and bug-fixing.

In this section, we begin with the design objectives (§3.3.1) and interfaces (§3.3.2) of

PYLIVE. We then discuss the three challenges faced by PYLIVE: (1) How to support dynamic

changes for function interface, function body and data structure? (§3.3.3) (2) How to identify

safe change points to apply a change without causing inconsistency problems? (§3.3.4) (3) How

to update programs with multi-threads and multi-processes? (§3.3.5)
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3.3.1 Design Objectives

PYLIVE is designed with the following objectives:

(1) General. PYLIVE’s generality comes from three aspects: (a) it requires no change to the

standard Python interpreter. Therefore, engineers need not to download a modified interpreter,

which may not be compatible with their systems. (b) PYLIVE is also general on the types of

changes supported. It supports not only changes to function body, but also changes to function

interfaces (e.g. add one more parameter) and data structures (e.g. add one more field). (c)

Since most online services have multiple threads/processes, PYLIVE also provides support for

multi-threads and multi-processes.

(2) Flexible. PYLIVE is flexible from two perspectives. First, PYLIVE is flexible in terms of when

to apply a change and when to revert a change, all based on engineers’ requirements. This can

help engineers collect logs for a short amount of time to minimize the performance impact. For

example, they can perform on-the-fly logging or profiling only during light-load time. Second,

PYLIVE is also flexible with where to profile or log. PYLIVE allows engineers to specify which

modules or functions to instrument logging/profiling code.

(3) Consistent and Safe. Dynamic changes to a running program need to be performed at a

carefully selected execution point (aka, a safe point) to avoid inconsistency problems. For

instance, changing an unlock function to its new implementation after an old lock function is

already executed may cause inconsistency, leading to incorrect states. Unfortunately, choosing a

safe point for general changes has proved to be undecidable [79]. So PYLIVE relies on engineers’

knowledge to decide when a change is safe to happen: either when the changed functions are not

executing, or a user-specified check function (e.g., specifying a lock is not held) returns true.

(4) Low Overhead. PYLIVE is designed to impose as little overhead as possible. At normal

time when no change needs to be applied, the PYLIVE thread is sleeping and simply waiting for

engineers’ inputs. Once engineers instruct it to make code changes, PYLIVE’s thread is woken
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up to perform the change. Once a change is already applied in this target program’s meta-data,

PYLIVE gets to sleep again and is no longer involved in the execution of the target program.

(5) Little Human effort. PYLIVE aims to minimize engineers’ efforts in using it. PYLIVE itself

is downloaded as a small Python library that can be easily installed. Only two lines of Python

code are needed to set up PYLIVE at the initialization of the target program. To insert a dynamic

change, PYLIVE only needs engineers to write a small Python snippet to specify what needs to

be changed. As shown in our evaluation of 20 real-world cases from seven widely-used Python

software systems (cf. Table 3.2), each change specification needs only 7-13 lines of code).

3.3.2 PYLIVE’s Interfaces

To make it easy to use, PYLIVE allows engineers to write the specification for dynamic

code change in Python code. To enable dynamic changes for various purposes, PYLIVE supports

two change interfaces: instrument and redefine.

Instrument. The instrument interface can instrument code to specified locations in certain

functions or modules. It is useful for instrumenting log statements or profiling code to diagnose

bugs or performance issues. The interface is:

instrument(scope, jointpoint callback, time).

scope is a list of function/module names that need to instrument. When only the module name

is given, all functions in it are instrumented. jointpoint callback is key-value dictionary of

jointpoints (instrument location) and callback code to instrument. PYLIVE supports different

granularity of jointpoints: coarse-grained, such as function begin/end, and fine-grained, such

as before/after a line and before/after a variable’s definition. This allows engineers to flexibly

customize the instrument locations. time allows engineers to specify when to perform an
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instrumentation and when to revert the instrumentation. time can be either a specific time or a

function that decides if an instrumentation should be performed. Engineers may want to profile

an online service only when it is lightly-loaded and only for a period of time.

Redefine. The redefine interface is for code changes that replace the definitions of existing

functions and classes (data structures) with new ones. To perform such code changes, engineers

use the following Python interface:

redefine(prepFunc, old new map, safepoint).

prepFunc is a user-defined Python function that engineers need to provide to execute before

making the specified change. Inside prepFunc, engineers can import new modules and perform

various initialization tasks. old new map is a key-value dictionary that specifies the changes.

Each pair

{'old func/old class': new func/new class}

specifies an old function or class needs to be replaced by a new function or class. Engineers also

need to provide the new function or class definition. To add a field to a class, just specify the field

name and its initialization code with:

{'class.new field': field init}.

safepoint defines at what execution point it is safe to apply the specified change. It can be either

”FUNC QUIESCENCE” or a user-specified consistency check function (cf.§3.3.4).
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3.3.3 Support Dynamic Changes

Change function interface and body. PYLIVE supports changes on both function interfaces

and code bodies. Changing function interfaces includes altering the number of parameters,

parameter types, and function names. To make these changes, PYLIVE utilizes Python’s meta-

object protocol and dynamic typing. For parameter number changes, Python functions’ parameters

are defined in a list (i.e. co varnames), and PYLIVE directly edits the list to add or remove

parameters. For parameter type changes, Python uses dynamic typing, and so PYLIVE needs

not explicitly change anything. For function name changes, PYLIVE defines a new function and

modifies the callers to call the new function.

For function body changes, PYLIVE supports two types of changes: redefine a function

body with a new one and instrument the old function body with extra statements (e.g., for logging

or profiling). For both types, PYLIVE replaces functions’ code object ( code ) as a whole, as

code objects are immutable and can only be replaced by reference change. For instrument changes,

PYLIVE first copies the function’s code object, builds an instrumented version by modifying its

bytecode [10], and then sets the function’s code to point to the instrumented code object.

PYLIVE may also need to change caller functions when changing the callee functions.

For changes that modify callees’ interfaces, PYLIVE needs to change all the callers’ function

body to call the new interface. PYLIVE expects that engineers include all changes to callers

in the same patch as normal patching practice. For changes that only modify callees’ function

bodies, PYLIVE needs not to change the callers. This is because Python function calls are made

by function names instead of addresses. Every time a function call happens, Python interpreters

translate its name into address by looking up its metadata. Therefore, as long as the function

metadata is updated (e.g. modify the code as discussed before), function calls can always be

directed to the newest code objects. Note this differs from dynamic code changes in C/C++—they

may need to update callers’ function body as the function calls are made by address directly.

49



Change data structure. Data structure changes include changes to class attributes, object

attributes and methods.

Class attributes are data fields defined in classes and shared by all the object instances.

PYLIVE changes class attributes by modifying the namespace tables of the target classes. In order

to hook class attributes access for profiling or debugging, PYLIVE adds getter and setter

functions for attributes need to be changed. In Python, getter and setter are automatically

called if an attribute is annotated as property.

Object attributes are more difficult to change since they are individually stored in different

objects even though they are instantiated from the same class. In order to change an object

attribute, it is necessary to go through all objects of the class and change each individually.

Previous works typically need to refactor a system ahead of time so they can have Factory objects

to keep track of all live objects at runtime [44]. PYLIVE utilizes Python’s garbage collector (GC)

to track live objects and modify each one when a change is requested. Specifically, PYLIVE

calls gc.get objects() to obtain a list of all live objects tracked by GC [14]. As Python uses

reference counting to decide objects’ liveness, this does not trigger a heap walk but returns a list

immediately instead.

Methods are just functions defined in classes and so can be changed in the same way as

global functions as described above. Methods’ code is only stored in their classes instead of all

instantiated objects, and so simply updating the classes’ methods is sufficient to apply a change.

3.3.4 Identify Safe Change Point

Changing code at run time is not always safe. For instance, changing a function when it is

executing may cause inconsistency problems. Therefore, dynamic code change systems need to

carefully choose a safe execution point to apply a change. Unfortunately, choosing a safe point for

general changes has proved to be undecidable [79]. As a result, it is necessary to have engineers’

knowledge to choose a safe change point. PYLIVE categorizes safe points into different types and
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lets engineers select one based on the changes they want to make. Note that choosing the safe

update point is only necessary when applying patches. PYLIVE can always apply code changes

for logging and profiling as they only add code but do not change the existing code. PYLIVE

supports two kinds of safe points:

Quiescence of the changed functions. This requirement means a change is only applied when

the changed functions are not under execution. This is also the update point used by many

previous dynamic code change systems [40, 41, 40, 143, 150]. It ensures that no function is

executed with a mixture of old and new code during changes. PYLIVE provides automatic support

for this safe point. To specify it, engineers only need to specify safepoint=‘FUNC QUIESCENCE’.

PYLIVE supports function quiescence for both changing one function and multiple

functions. When changing one function, PYLIVE directly takes advantage of Python meta-object

protocol to guarantee the quiescence. In Python, when a function’s code is changed, the change

only takes effect the next time it is called. When changing multiple functions, PYLIVE checks

every thread’s stack for any changed function. If any changed function is on a stack, PYLIVE

defers the change, retries the checks later and applies the change when no changed function is on

any stack.

Consistent state check. When the changed functions modify shared states between them,

function quiescence may not be enough for safety. Consider an example shown in Figure 3.1,

two functions lock and unlock need to be changed, and both of them modify the lock state.

Applying the change when the program is executing between the calls to lock and unlock is not

safe, even though the functions themselves are not executed. The new unlock may be called with

an old lock state and the behavior is undefined.

To address this, PYLIVE allows engineers to provide a customized boolean function to

decide when it is safe to apply a change. This is also noted as state quiescence in previous

work [73]. Engineers can easily write such boolean functions in normal Python code. Figure 3.2
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Figure 3.1: An example of unsafe change points for a patch from Django [11]. it is unsafe
to change lock() or unlock() when the program is executing between line 61 and 67, as
the change can cause that a new unlock() to be called against an old lock, which can lead to
undefined behavior.

def state_check_func():
for fd in all_fds():
if locks.check_lock(fd) != locks.UNLOCK:

return False
return True

Figure 3.2: An example of state check function for the patch in figure 3.1. It returns true
when the lock is not currently held.

shows the state check function for changing lock and unlock. It checks if no lock is held before

applying the change. PYLIVE periodically evaluates it and only applies the change when it returns

true.

Note for most code changes, it does not require any customized consistency check. In our

evaluation with 20 real-world cases from seven widely-used Python programs, only a few cases

require a simple consistency check.

Guidance for engineers. We provide guidance to help engineers identify and specify safe

change points for their needs:

First, if the changed functions have no side effects or negligible side effects on execution

state, engineers can specify function quiescence as the safe change point. For example, if the

changed functions modify no non-local variables, perform no database write and only write a few
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logs, it is safe to update them as long as they are not under execution.

Second, if the changed functions have some non-negligible side effects on execution

states, engineers need to identify the states that the side effects of the old and new functions will

not affect each other. Specifically, the variables Vold defined and propagated from old functions

fold will not be used by new functions fnew, and vice versa. To ensure this, the target consistent

states are either no variable in Vold is defined or all of them are dead. An example of this is shown

in Figure 3.2 that no lock is held at the point of change. Such states may not exist or may not be

easy to express in state check functions, and in such cases it may be better to perform a restart

than to use PYLIVE.

3.3.5 Support for Multi-threads and Multi-processes

Multi-threads. A server program may have multiple threads to serve different user requests.

Different threads have different program counters while sharing the same code and global

variables. Therefore, it is not straightforward to apply a change at a given safe change point for

multiple threads.

To change multiple threads correctly, PYLIVE applies a given change synchronously. The

synchronous change is ensured by Python global interpreter lock (GIL). At any execution point,

only one thread can hold GIL and so can get executed [15]. Therefore, when PYLIVE is actively

applying a dynamic change, all other threads to be changed are blocked. When applying changes,

PYLIVE also explicitly holds GIL lock to make sure no other threads can preempt it [17].

Based on the type of safe point, PYLIVE applies changes differently. If the safe point

is function quiescence, PYLIVE either immediately applies the change when only one function

needs to change or check program stacks to make sure no target function on stacks when multiple

functions need to change. Applying one function change is simpler because Python’s meta-object

protocol ensures the change to not take effect during its execution. If the safe point is a consistent

state check, PYLIVE first executes the check function provided by engineers. If the consistent
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check succeeds, PYLIVE then applies the change. If it fails, PYLIVE sets a timer t and goes to

sleep to let other threads execute. The timer will wake up PYLIVE later to perform a state check

again. The timer t is configurable by engineers. After several attempts, if it still fails, PYLIVE

will give up and report an error to engineers.

Multi-processes. Online services may use multiple processes, and dynamic code change needs

to be applied to all of them. Different Python processes reside in different address spaces and

share code through copy-on-write. When code is changed in a process, a copy-on-write happens

and other processes will continue to use the old code. As such, dynamic code change needs

to be performed explicitly in all processes. PYLIVE adopts a controller-stub architecture to

communicate changes to all processes. A stub is a change thread residing in a target process.

PYLIVE starts one stub thread for each target process at its starting time. A stub thread listens

to a controller for patches and applies the received patches at a safe change point. A PYLIVE

controller is a standalone process that accepts engineers’ change input and sends the specified

code change to the stub thread in each process.

3.4 Use Cases

PYLIVE enables three types of use cases that require a running system to be dynamically

changed.

3.4.1 On-the-fly Logging for diagnosis

Systems may exhibit abnormal behavior during running. To collect run time info for

diagnosis, engineers may want to add new log messages dynamically without restarting services.

An example of this is the diagnosis of a bug [28] from the Shuup [24] e-commerce system.

This bug is related to its shopping cart: when some users click “add to cart”, the product is not
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# callbacks to instrument
# logging right/left-hand variables in each line
def call_b(_righthands):
logging.info(_righthands)

def call_a(_lefthands):
logging.info(_lefthands)

# instrument code to every line in two functions
instrument(scope=['...add_product',

'..._find_product_line_data'],
jointpoint_callback={line_before: call_b,

line_after: call_a},
time='24:00-2:00')

Figure 3.3: PYLIVE’s dynamic logging spec for an urgent, real world bug in Shuup e-
commerce system [28]. This spec tells PYLIVE to dynamically instrument code to log some
variable values in two functions add product and find product line data for a period of
time. line before and line after are two jointpoints PYLIVE provides to instrument code
before and after each line in functions.

added to the cart. This prevents users from purchasing products and causes direct revenue loss to

businesses. Since the bug has no error logs, it is quite challenging for engineers to diagnose it

off-line.

Figure 3.3 shows how engineers can use PYLIVE to add log messages to diagnose the

issue. Engineers direct PYLIVE to add line-by-line logs in two functions add product and

find product line data. Engineers also specify to only collect logs during light-load time

(24:00-2:00).

3.4.2 On-the-fly Profiling

Performance issues often occur in production as systems have more and more features

and scale up to a larger size. When such an issue emerges, engineers may want to enable profiling

to certain parts of a system during production run.

An example [21] of such issues is from the Oscar e-commerce system. This issue happens

when there are a lot of product categories in Oscar. The issue causes a performance downgrade in

many pages displayed to customers in Oscar, preventing customers from buying products.
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# profiling code to instrument
def call_b(start):
start = time.time()

def call_a(start):
logging.info(time.time()-start)

# instrument code to all functions of two classes
instrument(scope=['...AbstractCatagory.*',

'...CatalogueView.*'],
jointpoint_callback={func_before: call_b,

func_end: call_a},
time='24:00-2:00')

Figure 3.4: On-the-fly profiling using PYLIVE to diagnose a critical performance issue
occurred in Oscar e-commerce system [21]. This example requires PYLIVE to instrument code
to profile the execution of every method in two classes AbstractCategory and CatagolueView
for a period of time.

Figure 3.4 shows how to use PYLIVE to dynamically instrument code to profile the system.

Engineers instruct PYLIVE to instrument customized profiling code into the methods in two

classes, AbstractCatagory and CatalogueView, that are speculated to be related to the issue.

3.4.3 Dynamic Patching

Online services frequently have urgent bugs (e.g., security bugs) that need to be patched

as quickly as possible to minimize damages since they may cause information leakage/system

compromise and prevent customers using online services.

An example [1] of such patches is from Django. It fixes a severe cross-site scripting

(XSS) [8] issue, CVE-2019-12308 [9]. The issue is scored as “6.1” since it can expose malicious

URLs as clickable links to victim users and direct them to vulnerable sites. Django developers

quickly post a security release [12] to fix the vulnerability and encourage all online services that

use Django to apply it as soon as possible.

Figure 3.5 shows part of the patch and the change spec that engineers need to provide for

PYLIVE to dynamically apply it. This patch is non-trivial to be dynamically applied, as it changes

both function interfaces and data structures. It adds a new parameter validator class to the
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# patch: add a parameter validator_class
# add an object attribute validator
class AdminURLFieldWidget(...):
def __init__(self, attrs=None, 

validator_class=URLValidator):
self.validator = validator_class()
...

# change specs.
def preupdate_call():
from django.core.validators import URLValidator

redefine(
preupdate = preupdate_call,
old_new_map={

'...AdminURLFieldWidget.__init__':__init__},
safepoint='FUNC_QUIESCENCE')

Figure 3.5: A real world security patch to Django [1] and PYLIVE’s dynamic change spec
for it. This patch adds a parameter to function init and adds an object attribute validator
to class AdminURLFieldWidget. Other part of the patch is omitted due to space limit. The
change spec indicates: preupdate — import URLValidator before the change; old new map —
replace AdminURLFieldWidget. init with a new one; safepoint — apply the change when
the changed function is quiescent.

init function and adds a new attribute self.validator to AdminURLFieldWidget. The

change spec calls the redefine interface with three arguments: preupdate specifies that PYLIVE

needs to import a new class URLValidator before applying the change; old new map indicates

that the original init will be replaced with the new code. safepoint='FUNC QUIESCENCE'

tells PYLIVE to apply the change when the changed functions are quiescent. This requirement is

safe enough in the case as there is no inter-dependency between the changed functions.

3.5 Evaluation

3.5.1 Methodology

We evaluate PYLIVE with 20 cases from seven Python-based real-world applications, as

shown in Table 3.1. These applications are deployed in many companies, serving millions of
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Table 3.1: 20 real-world cases evaluated in our experiments. They are from seven widely
used Python-based server applications that have powered many commercial e-commerce and
ad-based web services including Instagram, serving millions of customers.

Applications Category Logging Profiling Patching

Django [33] Web framework 1 0 2
Gunicorn [16] Web server 0 0 1
Oscar [6] E-commerce 1 2 1
Odoo [25] E-commerce 1 1 2
Shuup [24] E-commerce 1 0 1
Pretix [27] E-commerce 1 0 1
Saleor [92] E-commerce 1 1 2
Total 6 4 10

customers [68, 13, 5, 23]. Django is a popular web framework that powered over 94,319 websites,

of which many are for e-commerce [142]. Gunicorn is a production web server used by many

big companies for their main services, such as Instagram [34]. All the online services need to be

almost non-stop since any downtime can result in revenue loss.

To evaluate PYLIVE’s benefit, we compare PYLIVE with a typical restart approach:

modify code for logging/profiling/patching offline, stop the services and restart the services

immediately. To precisely measure the restart impact, we only restart the Python part of a service,

which does not restart other parts (e.g., database) to avoid the impact of warming up their cache.

For profiling, we also compare PYLIVE with cProfile [72], which is Python’s official profiling

tool for collecting comprehensive profiling information in test environments. Note PYLIVE is not

a substitute for cProfile as it collects less information than cProfile. However, as we will present

in the results, some cases only need little dynamic information to diagnose. We conduct this

comparison to study the benefit that PYLIVE can bring for such cases.

Each application is set up on a machine with a 2.30GHz CPU (6 core), 16GB Memory and

256GB SSD. Each application runs with 2 processes and 4 threads/processes. Each application is

initialized with ˜2000 web pages. To mimic real-world workloads, JMeter [4] is used to generate

random web page accesses. The JMeter client is started with 8 threads and can generate up to
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15K requests/second.

We use throughput as the performance metric and normalize it to the max throughput of

normal service run (41-752 requests/second). All the experiments are conducted within a LAN,

which ensures that the network is not the bottleneck.

3.5.2 Overall Performance Results

Overall, PYLIVE avoids 2-17 seconds downtime and avoid up to 4.5 minutes warmup

time, during which the performance downgrade can be 55%-90%. PYLIVE causes negligible

(¡0.1%) overhead during normal run as well as applying changes. PYLIVE causes 0.1%-1.4%

overhead during profiling. Compared with cProfile, PYLIVE’s selective instrumentation avoids

10.5%-33.6% overhead.

Figure 3.6,3.7 show the results of eight representative cases. Two newly identified

performance issues and the other twelve existing real-world cases have similar results and due to

space limit are put online [3].

For logging cases, PYLIVE’s benefits mainly come from avoiding the time to restart and

warm up. The service restart is relatively fast (2-17 seconds), but the warmup takes much longer

time. Our experiments set up applications with only ˜2000 web pages, but the warmup still takes

2.3-3 minutes.

For profiling cases, PYLIVE makes the performance impact caused by profiling affordable

in production-run systems. The benefit comes from two aspects. First, PYLIVE allows engineers

to perform customized profiling, so they need not profile applications in a whole as with cProfile.

The customized profiling is not a substitute for comprehensive profiling with cProfile because it

collects less information. However, it’s sufficient to diagnose many cases that only needs limited

timing information, as shown later in our case studies (cf. §3.5.3). Second, PYLIVE avoids

restart and warmup time (up to 4.5 minutes), which is needed by cProfile. With PYLIVE, the

performance downgrade during profiling is 0.1%-1.4%. While with cProfile, the performance
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downgrade can be 11%-39%.

For patching cases, PYLIVE can apply them dynamically with almost no performance

downgrades. This benefits urgent security patches, for which waiting for the next rollout can be

dangerous. Our evaluation includes 5 security patches and PYLIVE successfully applied them

on-the-fly.

3.5.3 Case Studies

This section dives into the details of eight representative cases. The remaining twelve

cases evaluated are similar and due to space limit we put them online [3].

Case 1: Diagnose a purchase bug in Shuup [28]. This case is about diagnosing a bug related

to the shopping carts of Shuup [24], a widely-deployed e-commerce website. As mentioned in

§3.4.1, the bug causes an error in production and prevents customers from adding new items to

shopping carts. To help diagnose it, PYLIVE dynamically instruments logging statements on the

running application. Figure 3.6a shows that PYLIVE avoids 3 seconds downtime and 2.3 minutes

warmup time. It imposes only ¡ 0.1% performance overhead.

Case 2: Diagnose a payment bug in Odoo [114]. Odoo [25] is an e-commerce website

and this bug prevents customers from paying an order. It is an “urgent” bug as it results in

business loss. Odoo engineers diagnosed it by adding two logging statements and restarting the

service. With PYLIVE, the logging statement can be added on-the-fly with 11 LOC. As shown in

Figure 3.6b, PYLIVE avoids 4 seconds service downtime with ¡ 0.1% overhead. Differing from

other applications, Odoo does not have much cache and so requires little warmup time.

Case 3: Diagnose a purchase bug in Pretix [20]. Pretix [27] is an ticket-booking website that

allows event organizers to sell event tickets online. In this case, when customers request a PayPal

refund, it fails silently with no error messages. PYLIVE can dynamically instrument logging code

to diagnose the reason. Figure 3.6c shows that PYLIVE successfully avoids 17 seconds downtime

and 3 minutes warmup (by restarting Pretix) with ¡ 0.1% performance overhead.
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(a) Shuup: on-the-fly logging to diagnose a payment bug [28]. PYLIVE causes ¡
0.1% overhead only when adding logs. In comparison, restarting causes 3 seconds of
downtime and needs 2.3 minutes to warmup.
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(b) Odoo: on-the-fly logging to diagnose a shopping-cart bug [114]. PYLIVE causes
¡ 0.1% overhead only when adding logs. In comparison, restarting causes 4 seconds of
downtime. Odoo does not have much cache so has a short warmup time.
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(c) Pretix: on-the-fly logging to diagnose a payment bug [20]. PYLIVE causes ¡
0.1% overhead only when adding logs. In comparison, restarting causes 17 seconds of
downtime and needs 3 minutes to warmup.

Figure 3.6: Throughput comparison of three on-the-fly logging cases and three on-the-fly
profiling cases with PYLIVE in comparison with today’s practices—stop and restart with
logging added and profiling enabled.
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(d) Saleor: on-the-fly profiling a long-loaded web page [135]. PYLIVE causes 1.4%
overhead only during profiling. In comparison, restarting causes 3 seconds of downtime
and needs 4.5 minutes to warmup. Using cProfile causes 35% overhead.

0 2 4 6 8
Timestamp (minutes)

0.0

0.5

1.0

N
or
m
al
iz
ed

th
ro
ug
hp
ut

Normal run

PyLive with profiling

Restart with cProfile

(e) Oscar: on-the-fly profiling a long-loaded web page [21]. PYLIVE causes 0.5%
overhead only during profiling. In comparison, restarting causes 2 seconds of downtime
and needs 3 minutes to warmup. Using cProfile causes 11% overhead.
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(f) Odoo: on-the-fly profiling a long-loaded web page [115]. PYLIVE causes 0.1%
overhead only during profiling. In comparison, restarting causes 9 seconds of downtime.
Using cProfile to profile causes 38.5% overhead.

Figure 3.6: Throughput comparison of three on-the-fly logging cases and three on-the-fly
profiling cases with PYLIVE in comparison with today’s practices—stop and restart with
logging added and profiling enabled. (cont.)
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Case 4: Profile a main web page in Saleor [135]. This case is about diagnosing a slowly-loaded

web page. This case is difficult to reproduce in testing as it only emerges when the product

category grows to large. Currently, engineers use cProfile to profile the whole application [135].

Enabling cProfile needs an application restart, causing downtime and warmup time as shown

in Figure 3.6d. Also, cProfile profiles every function, so after warmup it still imposes 35%

performance downgrade.

PYLIVE can benefit the diagnosis in two ways. First, it can dynamically instrument

profiling code into a running application. Figure 3.6d shows this can avoid 3 seconds downtime

and 4.5 minutes warmup of Saleor services. Second, it can be customized to only profile the

relevant functions suspected by engineers and thus reduces profiling overhead to only 1.4%.

Case 5: Profile a slowly-loaded web page in Oscar [21]. This case is about diagnosing a slowly-

loaded product-listing page. It happens when the number of products grows to large. PYLIVE

enables dynamic profiling to Oscar with 9 LOC to specify the change. As shown in Figure 3.6e,

PYLIVE causes only 0.5% performance overhead during profiling and nearly no overhead during

normal run. In contrast, cProfile causes as much as 11% performance downgrades as well as 2

seconds of downtime and 3 minutes warmup time.

Case 6: Profile a slow action in Odoo [115]. This case is about diagnosing a slow receipt-

validating action. It is hard to reproduce in testing as it only emerges when the database contains a

large number of products and orders. PYLIVE enables dynamic profiling with 9 LOC. Figure 3.6f

shows PYLIVE’s performance benefit. PYLIVE causes only 0.1% performance overhead during

profiling and nearly no overhead during normal run. In contrast, cProfile causes as much as 38.5%

performance downgrades as well as 9 seconds of service downtime.

Case 7: Patch CVE-2019-12308 security vulnerability in Django [1]. This patch fixes a

severe XSS security issue CVE-2019-12308 [9]. As we discussed in §3.4.3, it may lead users

to click into malicious websites and can possibly affect many users. This patch is non-trivial to

be dynamically applied, as it involves adding a parameter to a method interface and adding a
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Table 3.2: Lines of code (LOC) of change specification for PYLIVE. For patches, this only
count extra code for PYLIVE.

Use Case Software LOC Use Case Software LOC
Case1 Shuup 7 Case5 Oscar 9
Case2 Odoo 11 Case6 Odoo 9
Case3 Pretix 9 Case7 Django 8
Case4 Saleor 9 Case8 Gunicorn 13

new class attribute [1]. With PYLIVE, this patch is allowed to be applied safely with 8 additional

LOC. Figure 3.7a shows the performance benefit of PYLIVE and PYLIVE avoids 2 seconds of

downtime and 2.8 minutes warmup time. PYLIVE dynamically applies the patch with ¡ 0.1%

overhead.

Case 8: Patch CVE-2018-1000164 in Gunicorn [78]. This patch fixes a HTTP Response

Splitting Vulnerability [112]. It has a severity score of “7.5 High” in the CVE system [113]. It

can be exploited by various attacks, such as Cross-site Scripting (XSS), Cross-User Defacement,

Hijacking [112]. The patch requires a modification to a function body. It can be dynamically

applied with PYLIVE with only 13 additional LOC. As shown in Figure 3.7b, PYLIVE avoids 4

seconds of downtime, when a non-cached service runs on Gunicorn. PYLIVE introduces ¡ 0.1%

overhead while applying the patch.

3.5.4 Human Effort

PYLIVE requires only a little human effort to adopt it in real-world applications. To enable

PYLIVE in a Python-based application, it only needs to add two lines of code in the application’s

initialization stage. To apply dynamic change for different purposes, PYLIVE allows engineers to

write Python code to specify the intended changes. Table 3.2 shows the lines of code (LOC) to

specify the changes in the eight representative cases. For all cases, it requires only 7-13 lines of

code to specify each change.
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(a) Django: urgent security patching for CVE-2019-12308 [1]. Compared with
restarting, PYLIVE avoids 2 seconds of downtime and 2.8 minutes warmup time, with ¡
0.1% performance overhead during patching.
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(b) Gunicorn: security patching for CVE-2018-1000164 [113]. Compared with
restarting, PYLIVE avoids 4 seconds of service downtime, with negligible overhead
during patching. Gunicorn’s workload is Odoo, which has little cache, so it takes a short
time to warmup.

Figure 3.7: Throughput comparison of two representative patching cases with PYLIVE and
restarting services.

3.6 Limitations and Discussion

There are many kinds of code changes that PYLIVE cannot apply. First, PYLIVE cannot

apply changes to long-running functions because dynamic changes only take effect next time

when the functions are called. Fortunately, online services are usually request based and the major

part is the request handling functions, which finish running in a short amount of time. Second,

PYLIVE cannot apply patches that assume an initial program state. Patches for memory-leak bugs
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may need to reinitialize the program state to free the leaked memory, which needs a restart of the

target program. Third, PYLIVE is not suitable for applying major changes to a target program.

Such changes include adding new features, updating library versions, and refactoring the program

structure. These changes may involve major changes to program states and code logic of many

functions. Therefore, it is hard for engineers to write code to initialize the states and to specify a

safe update point that considers all the dependencies between the changed functions.

PYLIVE relies on engineers to specifies the safe update points for dynamic patching.

PYLIVE targets on simple bug-fixing and security patches that only update a few functions and

data structures. For these patches, the safe update points can be specified as when the targeted

functions are not executing or when a customized state check passes (e.g. a lock is not held as

in Figure 3.1). However, for more complex patches that change many interdependent functions

and data structures, the safe update point may not be easy to specify. For such cases, it is safer to

restart the target program than to use PYLIVE. Note the safe update point is only necessary for

applying patches but not for logging or profiling. Code changes for profiling and logging can

always be safely applied as they only add code but do not change the existing code.

PYLIVE cannot prevent errors introduced by buggy patches. PYLIVE expects that engi-

neers thoroughly test their patches in a testing environment before dynamically applying them to

production-run systems. For logging and profiling cases, PYLIVE wraps the instrumented code

in try-catch blocks so that buggy logging or profiling code does not affect the normal program

execution.

PYLIVE has two security implications. First, in terms of the type of code changes that can

be made dynamically, PYLIVE does not expand the attack surface of Python’s own meta-object

protocol. PYLIVE does not modify the Python interpreter to enable more types of code changes

but just provides convenient interfaces purely based on Python’s meta-object protocol. Second,

the introduction of a change controller (cf. §3.3.5) expands the attack surface from one single

process to two processes. The change controller is an additional process that commands a target
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program process to apply a change dynamically. Therefore, it would be dangerous if attackers gain

access to the change controller. It can be mitigated by setting the change controller’s permission

to make it only executable by a privileged user. We also plan to implement PYLIVE’s own access

control for the change controller in future work.

PYLIVE’s design and implementation are generally applicable to Python variants and

other interpreted languages as long as they support three language features:

• Meta-object protocol—PYLIVE uses this to modify a program’s code at running time (cf.

§3.2);

• Dynamic typing—PYLIVE relies on this to modify variable types at running time (cf. §3.2);

• Interpreter interfaces to freeze non-current threads—PYLIVE uses them to pause the

execution of any other threads to safely apply changes (cf. §3.3.5).

All three features are supported by popular python variants including Pypy [29] and Pyston [2],

and so PYLIVE can be easily ported to them. PYLIVE can also potentially be ported to two other

popular interpreted languages: JavaScript [19] and Ruby [30]. The first two features are directly

supported by JavaScript and Ruby. The third feature can also be implemented in JavaScript and

Ruby in different ways. JavaScript uses a single-threaded event loop model—at any time only

one event handler is running and it cannot be preempted before its completion. Therefore, when

PYLIVE is running in JavaScript, any other thread is ensured not running at the same time. Ruby’s

official interpreter YARV [31] has a similar GIL lock as Python’s GIL, which allows PYLIVE to

hold GIL in Ruby to prevent preemption as in Python (cf. §3.3.5).

3.7 Related Work

Dynamic Code Change for C/C++ and Java. Many works have been done for dynamic

changing C/C++-based operating systems [143, 44, 43, 51, 99, 41, 74] and applications [85, 40,
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108, 82, 52, 98, 148, 133]. While simple dynamic change (e.g. patch only function bodies)

to OS kernels has been used in production, more general change to applications has not been

widely adopted. General dynamic change usually requires many unsafe transformations to target

programs including modifying both machine code and memory layout. This may introduce

safety concerns in production. Contrarily, PYLIVE realizes general changes by utilizing Python’s

standard language features—meta-object protocol and dynamic typing, making it safer to be

adopted in production.

Works on dynamic changing Java either need to modify JVM [149, 111] or rely on some

unsafe operations of JVM [123], introducing portability and safety concerns in production. When

running a Java program, JVM maintains many metadata such as method signatures and class

attributes as internal data but provides no safe operations to modify them. However, it is necessary

to modify these metadata in order to support general dynamic change. In comparison, PYLIVE

makes use of Python’s meta-object protocol to safely modify related metadata when dynamically

changing Python programs. This imposes no modification to a standard Python interpreter and so

can be easily adopted in existing production systems.

Dynamic Code Change for Python. Pymoult [101] made a preliminary exploration on the

feasibility of dynamically changing Python programs. As a preliminary proposal, it has no

experimental result. More importantly, Pymoult relies on a special Python interpreter, Pypy,

which is not fully compatible with the standard Python interpreter (i.e. CPython [32]). In order to

use Pymoult, engineers need to port their systems to Pypy interpreter, which requires considerable

human efforts. Contrarily, PYLIVE is based on the standard Python interpreter and so can be

easily adopted in the field.

PyReload [152] is a dynamic code change tool based on the standard Python interpreter.

However, it has two key limitations that prevent it to be practical. First, PyReload needs engineers

to refactor a target program into modules, which requires huge human efforts. Second, PyReload
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only supports single-threaded programs. Considering that servers usually have multiple threads,

PyReload is not suitable for server systems. In contrast, PYLIVE requires no refactor to the target

program and supports updating multi-thread server programs.

Language level support for dynamic code change. Language level support for dynamic code

change is not new. Besides Python, many other dynamically-typed programming languages, such

as Common Lisp [147], Smalltalk [75], JavaScript [19] and Ruby [30], have provided support for

meta-object protocol. Meta-object protocol can be directly used to update a single function/class;

however, there are still many challenges in using meta-object protocol to practically update

server programs, which usually needs to update multiple functions/classes and threads/processes.

Very few works have been done on these challenges. Rivet [104] proposes interesting ideas to

leverage JavaScript’s reflection capabilities to debug single-threaded browser-side programs. But

the ideas cannot be directly borrowed to update server programs, which usually have multiple

threads/processes.

Focusing on Python, PYLIVE addresses three challenges of leveraging meta-object pro-

tocol to update server programs. First, to make it easy to update multiple functions and classes,

PYLIVE provides two APIs: Redefine and Instrument (§3.3.2) and adopts the meta-object

protocol and bytecode instrumentation to implement them (§3.3.3). Second, to make it safe to

update multiple functions and classes, PYLIVE borrows ideas from previous works [40, 41, 73]

and provides two different safe points (§3.3.4). Third, to support updating programs with multiple-

threads and multiple-processes, PYLIVE proposes new synchronous update mechanisms based

on Python GIL and a controller-stub architecture (§3.3.5).

Aspect-oriented programming. PYLIVE’s Instrument interface is a type of aspect-oriented

programming (AOP) [91]. AOP is a programming paradigm to break down independent program

logic into different modules. A common usage of AOP is to allow developers to write a function’s

main logic and its logging code separately. The AOP framework then “weaves” the code together
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at compile time or load time. Several works also aim to enable dynamic weaving at run time

for AOP [125, 151, 124]. PYLIVE’s Instrument interface is an AOP support for Python and

is inspired by previous work on AOP interfaces for Java [90, 100]. However, AOP’s main

target is to insert additional code without modifying the existing code. PYLIVE also provides

a Redefine interface to modify the existing code of a running program, which is challenging

especially when the target program has multiple threads/processes. To realize Redefine, PYLIVE

further considered the challenge of supporting safe update points and multiple-threads/processes

programs.

Dynamic Instrumentation. PYLIVE’s Instrument interface is related to previous works on

dynamic binary instrumentation (DBI), including Pin [97], Valgrind [110], and DynamoRIO [48].

DBI enables modifying a running binary program at the machine instruction level and is usually

used for logging and profiling a compiled program. However, DBI cannot be directly adopted

for profiling a Python program in production. When DBI is used for a Python program, DBI is

instrumenting the Python interpreter instead of the Python program. This can cause two folds

of problems. First, the logging and profiling results are verbose and hard to understand by

Python developers as they are mostly about the execution of the Python interpreter but not about

the Python program. Second, this can introduce an unacceptable performance downgrade to

the Python program as interpreting one line of Python code may need to run multiple lines of

interpreter code. PYLIVE addresses these problems by instrumenting code at the granularity of

Python bytecode. Therefore, the logging and profiling results can be directly mapped back to the

Python program and so are easy to understand by Python developers. In addition, much less code

is instrumented and so much less performance downgrade.

PYLIVE complements DTrace [50] on dynamic instrumentation. DTrace is a dynamic

instrumentation framework for production systems. To enable DTrace for Python, it needs to

embed “markers” in Python interpreters. This introduces additional compatibility requirements for
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Python interpreters to use DTrace. As noted by the official Python document [18], “DTrace scripts

can stop working or work incorrectly without warning when changing CPython versions.” PYLIVE

takes a complementary approach to instrument Python application code without modifying Python

interpreters, avoiding the compatibility concerns.

Rollout Update. An alternative way to avoid whole system downtime is rollout update [47, 7,

140]. In rollout update, a cluster of servers are restarted one by one or batches by batches so that

during an update there are still servers alive to serve users’ requests. However, for just collecting

logging/profiling information, rolling out patches to a whole cluster at the next deployment is

heavyweight and an overkill. It would be handy to quickly apply a simple patch that temporarily

logs extra information or collects extra metrics to some servers on-the-fly. Furthermore, rollout

update is less effective for collecting diagnostic or profiling information for certain types of issues

because rollout update still requires restarting every service instance. As a result, errors that

appear only after a long running time, such as resource leaks and concurrency issues, may not

reappear quickly after restarting to provide diagnostic information [155]. Finally, rollout update

can still result in a subset of servers restarting and warming up before providing service at their

full capacity. This means during the rollout update, the entire system will suffer from certain

levels of throughput degradation.
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Chapter 4

Conclusion

This dissertation presents two tools for developers to develop and maintain dependable

Python-based database-backed web applications. This dissertation first presents CFINDER

to protect the data integrity by automatically inferring the missing database constraints from

application source code, leveraging the observation that many source code patterns imply certain

data integrity constraints. This dissertation then presents PYLIVE to support dynamic code change

without restarting the service by leveraging the unique language features of Python. The example

use cases include dynamic logging, profiling, and bug-fixing.

CFINDER focused on the problem of missing database constraints in web applications with

resulting data integrity issues and the feasibility of extracting the missing database constraints from

the application code. Specifically, we first conducted an empirical study on missing constraints

in five popular web applications. Then we designed and implemented a tool that identified 210

previously unknown missing constraints with reasonable accuracy from eight widely-deployed

web applications, including one commercial company with millions of users. We have reported

92 of them to the developers of these applications, and so far 75 of them are confirmed.

PYLIVE leverages Python’s unique language features, meta-object protocol, and dy-

namic typing, to support dynamic code change for on-the-fly logging, profiling, and patching in
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production-run systems. PYLIVE only relies on standard Python interpreters and can be easily

adopted by existing systems. We evaluated PYLIVE with seven widely-deployed Python-based

systems for online services. PYLIVE successfully helped resolve 20 existing real-world cases

from these systems with dynamic logging, profiling, and patching. PYLIVE also helped two of the

systems diagnose two new performance issues. In comparison to restart, PYLIVE avoids service

downtime and warmup time. PYLIVE imposes no overhead during the normal run and negligible

overhead during the code change. For profiling, PYLIVE adds only 0.1%-1.4% overhead.

4.1 Lessons Learned

Finally, I will share some lessons that I learned, which may be helpful for future research

and guide future directions.

First, today’s web applications become increasingly complex and it’s challenging for

developers to understand their dependencies. The application could have multiple tiers of

components such as the front end, the backend servers, the database, the cache, async workers,

etc. And the components may be written in different programming languages and maintained

by different teams. As the industry demands more engineers to build various applications, many

of them do not have solid backgrounds and training to understand them all. Additionally, to err

is human, even experienced developers can easily forget and neglect the dependencies between

components due to deadline pressure. As a result, developers make many wrong assumptions

about other components, leading to various mistakes in their web application code, and causing

severe reliability, availability, and security issues. Neglecting the database constraints in the

database layer presented in this dissertation is one example. Some other examples include: (1)

inconsistent or missing checks (for both integrity and security) widely exist among multiple tiers,

such as the front-end, back-end, and data layer. (2) changes to one component could lead to the

failure of another dependent component if neglected and not updated together. More work can be
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done to understand the dependencies between the various components, take advantage of each

tier to provide the defense in depth, and find better ways to control and manage the dependencies.

Second, more useful semantic information could potentially be inferred from the applica-

tion source code. Previous work has mainly focused on detecting syntax errors from the source

code. However, the code also contains certain patterns that can infer the underlying semantics

because the developers make assumptions about the semantics when they write the code. The

extracted semantics can be used in a variety of ways to build more reliable applications, such as

checking the consistency between components or comparing with developers’ specifications. For

example, the application code has checks on access control, but they are spread in multiple code

paths. Future work can extract these security policies, check their consistency across modules

and components, and impose and verify them in a central place.

Third, more work can be done on tooling support for diagnostics and stop-the-bleeding

operations in the production environment for web applications. To minimize the time to resolve

an incident, it would be very helpful for developers to fix it in production while keeping all the

in-memory data. As it’s always challenging or even impossible to reproduce the issues in an

offline environment. While at the same time, the challenge is that we still want to make sure

we don’t harm the production environment and make things worse. PYLIVE is a first step in

providing the ability to change the running code while keeping the in-memory data without

restarting the servers, such as adding more logs. We could potentially support or automate more

operations to stop the bleeding, such as adding branches to bypass some unexpected inputs that

trigger the errors.
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[83] Arvid Heise, Jorge-Arnulfo Quiané-Ruiz, Ziawasch Abedjan, Anja Jentzsch, and Felix
Naumann. Scalable discovery of unique column combinations. Proceedings of the VLDB
Endowment, 7(4):301–312, 2013.

[84] Michael Hicks, Jonathan T. Moore, and Scott Nettles. Dynamic software updating. In
Proceedings of the ACM SIGPLAN 2001 Conference on Programming Language Design
and Implementation, PLDI ’01, page 13–23, New York, NY, USA, 2001. Association for
Computing Machinery.

[85] Gisli Hjalmtysson and Robert Gray. Dynamic c++ classes-a lightweight mechanism to
update code in a running program. In USENIX Annual Technical Conference, volume 98,
1998.

[86] IBM. Error and crash recovery from data corruption. https://www.ibm.com/docs/en/ztpf/
1.1.0.15?topic=concepts-error-crash-recovery-from-data-corruption, 2021.

80

https://sre.google/sre-book/data-integrity/
https://sre.google/sre-book/data-integrity/
https://quintagroup.com/cms/python/google
https://github.com/benoitc/gunicorn/issues/1227
https://github.com/benoitc/gunicorn/issues/1227
https://dhh.dk/arc/2005_09.html
https://dhh.dk/arc/2005_09.html
https://www.ibm.com/docs/en/ztpf/1.1.0.15?topic=concepts-error-crash-recovery-from-data-corruption
https://www.ibm.com/docs/en/ztpf/1.1.0.15?topic=concepts-error-crash-recovery-from-data-corruption


[87] Information Technology Intelligence Consulting Corp. ITIC 2020 Global Server Hardware,
Server OS Reliability Report. https://www.ibm.com/downloads/cas/DV0XZV6R, April
2020.

[88] Nikolaos Karapanos, Alexandros Filios, Raluca Ada Popa, and Srdjan Capkun. Verena:
End-to-end integrity protection for web applications. In 2016 IEEE Symposium on Security
and Privacy (SP), pages 895–913. IEEE, 2016.

[89] Gregor Kiczales, Jim Des Rivieres, and Daniel Gureasko Bobrow. The art of the metaobject
protocol. MIT press, 1991.

[90] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G
Griswold. An overview of aspectj. In European Conference on Object-Oriented Program-
ming, pages 327–354. Springer, 2001.

[91] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented programming. In European conference
on object-oriented programming, pages 220–242. Springer, 1997.

[92] Mirumee Labs. A modular, high performance, headless e-commerce storefront built with
python, graphql, django, and reactjs. https://saleor.io/, 2020.

[93] Boyang Li, Denys Poshyvanyk, and Mark Grechanik. Automatically detecting integrity vio-
lations in database-centric applications. In 2017 IEEE/ACM 25th International Conference
on Program Comprehension (ICPC), pages 251–262. IEEE, 2017.

[94] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. Wander join: Online aggregation via random
walks. In Proceedings of the 2016 International Conference on Management of Data,
pages 615–629, 2016.

[95] Xiaoxuan Liu, Shuxian Wang, Mengzhu Sun, Sharon Lee, Sicheng Pan, Joshua Wu, Cong
Yan, Junwen Yang, Shan Lu, and Alvin Cheung. Leveraging application data constraints
to optimize database-backed web applications. In arXiv, 2022.

[96] Raymond A Lorie. Physical integrity in a large segmented database. ACM Transactions on
Database Systems (TODS), 2(1):91–104, 1977.

[97] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,
Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building customized
program analysis tools with dynamic instrumentation. Acm sigplan notices, 40(6):190–200,
2005.

[98] Kristis Makris and Rida A Bazzi. Immediate multi-threaded dynamic software updates
using stack reconstruction. In USENIX annual technical conference, volume 2009. San
Diego, CA, 2009.

81

https://www.ibm.com/downloads/cas/DV0XZV6R
https://saleor.io/


[99] Kristis Makris and Kyung Dong Ryu. Dynamic and adaptive updates of non-quiescent
subsystems in commodity operating system kernels. In Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007, pages 327–340, 2007.
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Divide & conquer-based inclusion dependency discovery. Proceedings of the VLDB
Endowment, 8(7):774–785, 2015.

[121] Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan Bachrach,
Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou, Greg Sullivan, Weng-
Fai Wong, Yoav Zibin, Michael D. Ernst, and Martin Rinard. Automatically patching errors
in deployed software. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, SOSP ’09, page 87–102, New York, NY, USA, 2009. Association for
Computing Machinery.

[122] Luı́s Pina, Anastasios Andronidis, Michael Hicks, and Cristian Cadar. Mvedsua: Higher
availability dynamic software updates via multi-version execution. In Proceedings of
the Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 573–585. ACM, 2019.

[123] Luı́s Pina, Luı́s Veiga, and Michael Hicks. Rubah: Dsu for java on a stock jvm. In
Proceedings of the 2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA ’14, page 103–119, New York, NY, USA,
2014. Association for Computing Machinery.

[124] Andrei Popovici, Gustavo Alonso, and Thomas Gross. Just-in-time aspects: efficient
dynamic weaving for java. In Proceedings of the 2nd international conference on Aspect-
oriented software development, pages 100–109, 2003.

83

https://owasp.org/www-community/attacks/HTTP_Response_Splitting
https://owasp.org/www-community/attacks/HTTP_Response_Splitting
https://nvd.nist.gov/vuln/detail/CVE-2018-1000164
https://github.com/odoo/odoo/issues/39406
https://github.com/odoo/odoo/issues/39406
https://github.com/odoo/odoo/issues/46900
https://github.com/odoo/odoo/issues/46900
https://github.com/openedx/edx-platform/tree/97edc47
https://github.com/openedx/edx-platform/tree/97edc47
https://docs.oracle.com/en/database/oracle/oracle-database/21/cncpt/data-integrity.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/cncpt/data-integrity.html
https://github.com/django-oscar/django-oscar/tree/18c87e
https://github.com/django-oscar/django-oscar/tree/18c87e
https://github.com/django-oscar/django-oscar/pull/3868
https://github.com/django-oscar/django-oscar/pull/3868


[125] Andrei Popovici, Thomas Gross, and Gustavo Alonso. Dynamic weaving for aspect-
oriented programming. In Proceedings of the 1st international conference on Aspect-
oriented software development, pages 141–147, 2002.

[126] Postgresql. 11.8. partial indexes. https://www.postgresql.org/docs/current/indexes-
partial.html, 2021.

[127] Postgresql. 5.4. constraints chapter 5. data definition. https://www.postgresql.org/docs/
current/ddl-constraints.html, 2021.

[128] Python. ast — abstract syntax trees. https://docs.python.org/3/library/ast.html, 2022.

[129] Rails. Active record migrations. https://edgeguides.rubyonrails.org/active record
migrations.html, 2021.

[130] Rails. Concurrency and integrity for uniqueness in rails. https://github.com/rails/rails/
blob/main/activerecord/lib/active record/validations/uniqueness.rb#L179, 2021.

[131] Raghu Ramakrishnan, Johannes Gehrke, and Johannes Gehrke. Database management
systems, volume 3. McGraw-Hill New York, 2003.

[132] Romain Komorn. Python in production engineering. https://engineering.fb.com/production-
engineering/python-in-production-engineering/, May 2016.

[133] Florian Rommel, Christian Dietrich, Peng Huang, Daniel Friesel, Sangeetha Abdu Jyothi,
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