UC Merced
UC Merced Previously Published Works

Title

Spatial snow water equivalent estimation for mountainous areas using wireless-sensor
networks and remote-sensing products

Permalink
https://escholarship.org/uc/item/2v96m8bg
Authors

Zheng, Zeshi

Molotch, Noah P
Oroza, Carlos A

Publication Date
2018-09-01

DOI
10.1016/j.rse.2018.05.029

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/2v96m8bs
https://escholarship.org/uc/item/2v96m8bs#author
https://escholarship.org
http://www.cdlib.org/

Remote Sensing of Environment, Vol. 215, 44-56, 2018
https://doi.org/10.1016/j.rse.2018.05.029

Spatial Show Water Equivalent Estimation for
Mountainous Areas Using Wireless-Sensor Networks
and Remote-Sensing Products

Zeshi Zheng'*, Noah P. Molotch?, Carlos A. Oroza', Martha Conklin3, Roger C. Bales' 3

Abstract

We developed an approach to estimate snow water equivalent (SWE) through interpolation of spatially representative point
measurements using a k-nearest neighbors (k-NN) algorithm and historical spatial SWE data. It accurately reproduced measured
SWE, using different data sources for training and evaluation. In the central-Sierra American River basin, we used a k-NN algorithm
to interpolate data from continuous snow-depth measurements in 10 sensor clusters by fusing them with 14 years of daily 500-m
resolution SWE-reconstruction maps. Accurate SWE estimation over the melt season shows the potential for providing daily, near
real-time distributed snowmelt estimates. Further south, in the Merced-Tuolumne basins, we evaluated the potential of k<-NN
approach to improve real-time SWE estimates. Lacking dense ground-measurement networks, we simulated k-NN interpolation of
sensor data using selected pixels of a bi-weekly Lidar-derived snow water equivalent product. k-NN extrapolations underestimate the
Lidar-derived SWE, with a maximum bias of -10 cm at elevations below 3000 m and +15 cm above 3000 m. This bias was reduced
by using a Gaussian-process regression model to spatially distribute residuals. Using as few as 10 scenes of Lidar-derived SWE
from 2014 as training data in the k-NN to estimate the 2016 spatial SWE, both RMSEs and MAEs were reduced from around 20-25
cm to 10-15 cm comparing to using SWE reconstructions as training data. We found that the spatial accuracy of the historical data is
more important for learning the spatial distribution of SWE than the number of historical scenes available. Blending continuous
spatially representative ground-based sensors with a historical library of SWE reconstructions over the same basin can provide
real-time spatial SWE maps that accurately represents Lidar-measured snow depth; and the estimates can be improved by using
historical Lidar scans instead of SWE reconstructions.
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1. Introduction to the spatial scale of each watershed. Therefore, the measurements may
not be representative of physiographic features required to capture spatial
variability of snow depth and snow water equivalent (SWE), either at
the site or basin scale. Satellite-based remote sensing, such as MODIS
and Landsat, has been used to map snow coverage at regional to global
scales. However, they provide only pixel-wise fractional snow-coverage
information, with no direct information on snow depth or SWE (Dozier
et al. (2008); Molotch and Margulis (2008); Painter et al. (2009); Raleigh
et al. (2013); Rittger et al. (2013); Rosenthal and Dozier (1996)). A
modeled snow-data product that is commonly used in the Continental
United States is the Snow Data Assimilation System (SNODAS), which
integrates snow information from both satellite and ground stations, pro-
viding daily snow depth and snow water equivalent information at 1-km?

In the state of California, ecosystem processes and water supplied for
agricultural and urban uses depend on the snowpack in the Sierra Nevada
as the primary source of spring and summer streamflow (Bales et al.
(2006)). As the prediction of water availability and flood peaks depend
in part on snowpack conditions, accurate knowledge of the snowpack
can assist decision making for water resources management (California
Department of Water Resources (2013)).

Current decision making for water management in California dur-
ing the snowmelt season relies on ground measurements in the Sierra
Nevada, which include continuous snow-pillow and snow-depth sensor
measurements, and monthly manual snow surveys (Molotch and Bales
(2005)). Ground stations are sparsely placed in the mountains compared
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resolution (Barrett (2003)). Recent work validating the SNODAS spatial
product with Lidar suggested that the performance of SNODAS in the
Tuolumne River basin is less accurate than 3-D (x, y,elevation) bilinear
interpolation of ground stations (Bair et al. (2016)).

Snow-coverage information and modeled spatial land-surface meteo-
rological data can be used to back-integrate SWE from the snow melt-out
date to the date of maximum SWE at the beginning of the snowmelt
season. This technique has been applied across several mountain ranges
and is referred to as the SWE-reconstruction technique (Bair et al. (2016);
Guan et al. (2013); Margulis et al. (2016); Rittger (2012)). Although
SWE reconstruction captures both temporal variability and spatial vari-
ability, it can only be done at the end of the season when the daily energy
inputs and snow covered area are known (Cline et al. (1998)).

As a complement to satellite-based estimates of snow distribution,
numerous statistical models have been developed to interpolate point-
based snow information. Multivariate linear regression, commonly used
in previous studies, can relate physiographic variables, historical SWE
data, and snow covered area imagery with the observed SWE; and the
accuracy is reasonably better than techniques such as inverse-distance
weighting and simple kriging (Schneider and Molotch (2016); Fassnacht
et al. (2003)). However, the linear-regression-based methods do not
provide spatially smooth maps and the independent variables do not
necessarily have a linear relationship with SWE (Zheng et al. (2016)).
Other than regression, one category of methods that have shown promise
are nearest-neighbor-based algorithms. These algorithms are attractive
because they are easy to implement, nonparametric, learning based, and
can learn linear and nonlinear trends in observations (Ni and Nguyen
(2009)). Simulations and estimations at either fine temporal or spatial
resolutions using parametric models can be computationally intensive.
Nearest-neighbor approaches have therefore become an alternative solu-
tion to many problems in spatio-temporal modeling, not only for their
advantage in time complexity, but also for their superior accuracy and
ability to preserve patterns from observations. The k-NN algorithm has
been used for multivariate time-series simulation for weather forecasting
(Rajagopalan and Lall (1999)), disaggregating meteorological time-series
data to finer time scales (Prairie et al. (2007); Kalra and Ahmad (2011)),
and downscaling spatial climate-model data (Gangopadhyay and Clark
(2005)). The k-NN algorithm was found to be superior in preserving
the spatio-temporal covariability of the observation than multivariate
autoregressive approaches.

To address the issues in presently available basin-scale water-balance
data, a prototype real-time observation network that includes monitoring
the snow conditions is being developed for the headwater areas of the
American River basin in the Sierra Nevada (Zhang et al. (2017)). The
system enables combining ground measurements of snow depth and his-
torical SWE reconstruction using a k-nearest neighbors (k-NN) algorithm
for real-time spatial SWE estimation (Larose (2005)).

This work documents the k-nearest neighbors spatial-SWE-estimation
method and evaluates the estimates against a spatial SWE product that is
derived from Lidar-measured snow depth. Three questions that motivated
the present study are:

1. Does a k-NN approach for spatial SWE interpolation in moun-
tainous regions provide accurate SWE estimates relative to other
products?

2. How is the error of the k-NN estimation distributed with regard to
topographic variables?

3. Isit possible to further decrease the error of the k-NN estimates
by distributing the residuals spatially?

2. Methods

We applied the k-nearest neighbors (k-NN) algorithm to estimate spatial
snow water equivalent (SWE) in three basins in the Sierra Nevada, Cali-
fornia, USA (Figure 1a, Table 1). The experiment for the American River
basin focused on estimating the 2014 spatial SWE using 10 clusters of
snow-depth measurements for 2014 from wireless-sensor networks, and
historical SWE reconstructions based on MODIS from 2001 to 2013, aim-
ing to evaluate the k-NN estimates temporally over the melt season. The
SWE reconstructions were used by the algorithm for learning the SWE
spatial distribution embedded in the data set. We did similar experiments
in the Merced (2014) and Tuolumne (2014, 2016) basins using Lidar-
based SWE estimates to evaluate the k-NN results spatially. For these
two basins, since we have fewer sensor networks deployed, we instead
selected representative pixels as hypothetical sensor-network locations
based on physiographic variables using a Gaussian-mixture model; and
used these Lidar-based SWE values for the k~-NN experiments. In this
setup we used historical SWE reconstructions, historical Lidar-derived
SWE, and historical SNODAS SWE as spatial training data to explore
if different data sources matter. The spatial results over the two basins
were evaluated using the Lidar-derived SWE as a ground-truth data set.

Table 1. Topography summary of the three studied basins (above
1500-m elevation only)

Basin Elevation range, m  Area, km?
American 142—-3070 2116
Tuolumne 408—-3870 1136

Merced 1021—-3927 853

2.1 American River basin analysis using wireless-sensor net-
work data

The 10 wireless-sensor networks (Table 2) were deployed in the season-
ally snow-covered region of the 5570 km? American basin (Figure 1b).
Each network has ten or eleven sensor nodes (Figure 1c) that measure

snow depth, temperature, relative humidity, soil moisture, and short-wave

solar radiation (Zhang et al. (2017); Brun-Laguna et al. (2016)). The

placements were strategically selected, aiming to capture snow depth and

meteorological variability from elevation gradients, south versus north-
facing slopes, steep versus flat areas, and various vegetation densities.
All sensors take measurements at a 15-minute intervals, and the network
manager of each sensor cluster forwards the data to a central webserver
(Zhang et al. (2017)). Daily data averaged over each cluster were used in

the current analysis.

2.2 Snow water equivalent reconstruction data

Snow water equivalent reconstruction is an existing data set that was
produced by estimating historical spatial SWE for past snowmelt seasons
(Guan et al. (2013); Molotch et al. (2017)). The time extent of the SWE
reconstructions is from 2000 to 2014 and the spatial extent covers the
entire Sierra Nevada. The SWE-reconstruction method uses a snow-
surface energy and mass-balance model:

MypL=S|(1—0o)+LW | +LW 1 +SH +LH (1)

where M, (m) is the potential snowmelt (assuming full snow coverage),
p(kg/ m3p) is the liquid-water density, L(kJ/kg) is the latent heat of fu-
sion, S | (J/m?) is the subcanopy insolation, & (unitless) is snow albedo,
LW | (J/m?) is the downwelling longwave radiation, LW 1 (J/m?) is
the longwave radiation emitted from the snowpack. SH(J/m?) and
LH(J/m?) are sensible heat exchange and latent heat exchange accord-
ingly. We need to note that the SWE-reconstruction model did not
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Figure 1. (a) The study areas of this research work are American River, Merced River and Tuolumne River basins that lie on the west side
of the Sierra Nevada. (b) American River basin is instrumented with 14 wireless-sensor networks, which forms the American River
Hydrologic Observatory (ARHO) (Zhang et al. (2017)). Please note the analysis in this study used 10 clusters’ data. (c) Sensor locations of
site Alpha in the Observatory, showing that the sensor locations of the network capture elevation gradient at the site.

Table 2. Topographic Statistics of Sensor Clusters in the American River basin.

Cluster Latitude Longitude Elevation, m Slope, deg Aspect,deg Canopy Coverage, %
Alpha 38.80 -120.21 2319 2.7 181.1 55
Bear Trap 39.09 -120.58 1538 3.5 328.7 61
Caples Lake 38.71 -120.04 2430 4.1 220.6 20
Rice Creek” 39.15 -120.37 2024 7.0 246.6 30
Duncan Peak 39.15 -120.51 2111 104 264.3 42
Echo Peak 38.85 -120.07 2510 16.8 197.1 21
Lost Corner” 39.02 -120.21 2310 13.6 266.6 15
Mount Lincoln 39.29 -120.33 2405 8.1 1944 2
Onion Creek 39.28 -120.36 1888 1.5 247.7 24
Owens Camp* 38.74 -120.24 1552 3.5 2233 25
Robbs Saddle 3891 -120.38 1828 3.5 107.9 32
Schneiders 38.75 -120.07 2694 9.9 2033 42
Talbot Camp* 39.19 -120.38 1756 4.8 151.2 60
Vanvleck 38.94 -120.31 2023 2.7 202.8 48

* These sites were operational after the summer in 2014 so they were not included in the k<-NN analysis.



Spatial Snow Water Equivalent Estimation for Mountainous Areas Using Wireless-Sensor Networks and Remote-Sensing Products — 4/14

account for precipitation that occurs during the melt period, which may
introduce bias in the estimates. The potential snowmelt M), is scaled by
the fractional snow-covered area (fsca) derived from MODIS to estimate
the actual daily snowmelt,

M:Mp XfSCA (2)

The time-series SWE for the season is calculated by back integrating
the daily snowmelt since snow meltout:

n
SWEq = SWE, + Y M; ©)
=

where SWE,, is SWE at time step n, SWEj is the initial SWE, and M; is
the actual snowmelt during time step j. The initial SWE at each model
pixel can be reconstructed at the time when snow disappearance observed
from the satellite (fsca = 0):

n
SWEo = Y M; when SWE,, =0 4)
j=1

2.3 k-nearest-neighbor-based SWE estimation

A k-nearest neighbors algorithm was used to find the closest snowpack
conditions in historical SWE reconstructions to real-time ground obser-
vations from the sensor networks data that are introduced in Section 2.1.
The daily historical SWE reconstructions that were estimated for April
Ist to August 31st for each year from 2001 to 2013, resulted in a dataset
containing 1988 d-dimensional data points, where d is the number of
independent variables, with each variable being a SWE value estimated
from a spatially scaled ground measurement of snow depth. Before the
execution of the k-NN algorithm, preprocessing was involved:

1. The ground measurements are of snow depth, whereas the SWE re-
constructions are snow water equivalent. The conversion factor between
the two is snow density. The spatial variation of snow water equivalent
in the Sierra Nevada caused by snow density is small compared to the
snow depth (Painter et al. (2016)); and no spatial patterns in snow density
were apparent in the 2014 data (Zhang et al. (2017)). In our model, the
density value was estimated as the mean ratio of the co-located snow
pillows and snow-depth sensors’ measurements in the basin. We tested
the relationships between the snow densities and terrain variables but did
not find any. Therefore in further calculations we assumed that the snow
density is uniform across the model spatial extent at each time step.

2. The spatial resolution (i.e. 500 m) of the SWE reconstructions is
consistent with our model, however the sensor-network measurements
are not. To make the sensor-network measurements consistent, we
grouped the sensors bounded by the same SWE-reconstruction pixel
and took their mean as the ground observation that is representative
of the SWE-reconstruction pixel; these values were used in the k-NN
algorithm. The grouped sensors were mapped to 49 SWE-reconstruction
pixels. In this manner the multiple sensors within each 500-m pixel
account for some of the sub-pixel variability found within the pixel.
That said, the degree to which we sample the sub-grid variability cannot
be explicitly determined. A detailed analysis of sub-pixel snow depth
variability is beyond the scope of the current study.

3. Certain pixels in the SWE reconstructions that correspond to
sensor-network measurements can be highly biased and inaccurate based
on the comparison between 2014 sensor-network measurements and
the SWE reconstructed for the same year. The bias has been found to
affect the distance metric for the k-NN algorithm (Li et al. (2016); Liu
et al. (2014)). In order to filter out the biased and inaccurate SWE-
reconstruction pixels, we calculated the correlation coefficient in time

between each pair of ground measurements and SWE reconstructions
during the 2014 snowmelt. A threshold (p-value < 0.001) was used to
decide if the pixel was retained: if the p-value exceeded the threshold
then the ground measurements and SWE reconstructions for that pixel
were excluded. Of the 49 pixels, 21 were retained after filtering; and
the retained pixels’ correlation matrices are shown in Figure 2. All
pixel pairs show that the Rs are above 0.5. A high temporal correlation
between pixels suggests that the spatial patterns of SWE are consistent
in time but with the basin-wide mean SWE changing over the season.
This filtering step is not needed if the historical spatial data is from
measurements like Lidar.

4. The default setting of a k-NN algorithm uses the Euclidean dis-
tance as a metric for comparing pair-wise distance between data points.
The unique distribution and collinearity of a mountain snowpack’s spatial
distribution implies that using Euclidean distance might unevenly weight
each dimension when calculating the distance (Figure 2). Therefore, we
subtracted the mean from each variable and then used the Mahalanobis-
distance metric to normalize the data by its covariance matrix,

d(®.,%) = Y% —3)Ts7 (% - %) s)

where d(X],X,) is the Mahalanobis distance between two vectors X| and
X», S is the empirical covariance matrix. The ill-conditioned empirical
covariance matrix was adjusted by adding a small number to all diag-
onal elements such that the covariance matrix will become full rank
without losing much information and its inverse is computable after the
adjustment.

5. In the k-nearest neighbors algorithm, we stored the filtered 21 pixel
values from SWE reconstructions into a Balltree data structure (Cayton
(2009)). The number of nearest neighbors to be searched was determined
by a transformed leave-one-out cross-validation tuning scheme. A typical
cross-validation scheme leaves out part of the samples as a testing set
for evaluating the predictive model trained by the remaining samples
(training set). In our task, we need to test if the method is adequate to
estimate SWE spatially and holding out SWE reconstruction samples
does not help evaluating the spatial predictive performance. Therefore,
we left out one pixel in the training set and evaluated on it in validation;
and by doing so we validated whether the method developed can estimate
SWE at unobserved locations.

The 21 selected pixels’ time series from the 2001-2013 SWE recon-
structions were formated to the training data set and the corresponding
snow-depth ground measurements from 2014 were converted to SWE
and formated to the testing data set. We ran the k-NN algorithm using
these formated data. The number of nearest neighbors (k) was chosen to
be 30 since the error calculated in the leave-one-out cross-validation did
not significantly decrease when k became larger than 30.

2.4 Analysis using Lidar data

The Merced-Tuolumne basins were surveyed by airborne Lidar at sub-
monthly temporal frequency during snowmelt by NASA’s Airborne Snow
Observatory (ASO). The surveyed areas have elevation ranges of 1021
to 3927 m in the Merced basin and 408 to 3871 m in the Tuolumne
basin. ASO produces a 50-m resolution SWE product that is derived
from Lidar-measured snow-depth and modeled snow density (Painter
et al. (2016)). We used the ASO products from 2014 and 2016 (Table 3)
to evaluate the k-NN estimation method spatially.

ASO collected and processed Lidar under the following standards:
The raw Lidar data were collected using a Riegl Q1560 airborne laser
scanner to measure surface elevations. Snow-depth maps were calculated
by subtracting snow-off gridded surfaces from snow-on gridded surfaces.
The spatial resolution of the Lidar snow-depth raster product is 3-m reso-
lution and the snow-depth estimates have mean absolute errors of < 8 cm,
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Figure 2. Lower triangle of correlation matrices of SWE reconstruction, ground measurements and correlation between the two for the

American River basin, with autocorrelations excluded.

Table 3. Lidar survey dates in 2014 and 2016 at Merced and Tuolumne basins.

2014 2016
03-24, 04-06, 04-14, 04-23, 04-29
Merced 05-03, 05-12 A
03-23, 04-07, 04-13, 04-20, 04-28  04-01, 04-07, 04-16, 04-26, 05-27
Tuolumne

05-02, 05-11, 05-17, 05-27, 05-31

06-07, 06-13, 06-20

with bias < 1 cm when compared with manually measured depths at the
15 x 15m scale (Painter et al. (2016)). This 3-m snow-depth raster prod-
uct was resampled to 50-m resolution to match the spatially distributed
version of the snowcover energy and mass balance model resolution
(ISNOBAL) (Marks et al. (1999)). The resampled 50-m snow-depth data
were then converted to SWE by multiplying by the spatial snow density
estimated from the ISNOBAL model. Our k-NN simulations were based
on the 50-m resolution SWE products. To enable simulating k-NN using
Lidar data, the ASO 50-m resolution SWE product was resampled again
to 500-m resolution by averaging all 50-m grids inside the correspond-
ing 500-m grid. The SWE estimates from the k-NN simulation were
evaluated against the 500-m Lidar product. The evaluation of the k-NN
simulation was compared to an evaluation of SNODAS against the Lidar
data. SNODAS is an operational, spatial snow product. It produces
a spatially distributed SWE estimates at 1-km resolution in near real
time since 2004. SNODAS assimilates a physically based model with
SNOTEL observations and remotely sensed snow-covered-area images
(Barrett (2003)). Previous work suggests that SNODAS works well in
environments that are geographically closer to the SNOTEL stations,
and the accuracy decays as the distance increases (Clow et al. (2012)).
The snow-depth comparison results between SNODAS and Lidar in Col-
orado’s Rocky Mountains show that the accuracy is reasonable in general
(Hedrick et al. (2015); Schneider and Molotch (2016)). Therefore we
used it as a SWE-estimation performance benchmark.

Since there are only 4 small sensor clusters deployed in the Merced
and Tuolumne basins, and in order to conduct similar experiments as
what we did in the American River basin, we used a Gaussian-mixture
model to select physiographically representative locations and treated
them as sensor-network instrumented locations. These locations’ corre-
sponding pixel values were extracted from the Lidar-derived SWE maps
and they were used as inputs in the k-NN algorithm for both basins. After
running the k-NN algorithm, Gaussian-process regression was conducted

to distribute residuals spatially across these two basins. In order to de-
termine if the spatial SWE estimates perform better than a typical SWE
product, the k-NN SWE estimates were compared to SNODAS.

As the spatial distribution of SWE is highly dependent on physio-
graphic variables such as elevation, slope, aspect and vegetation (Zheng
et al. (2016)), the 3-m resolution digital elevation models (DEM) of both
basins retrieved from the snow-off Lidar measurements were resampled
to 500-m resolution DEMs and were further processed to derive slope
and aspect at 500-m resolution. A 30-m resolution National Land Cover
Database 2011 (NLCD 2011) USFS Tree Canopy Analytical dataset was
clipped, resampled, and georegistered to the same resolution and extent
as the 500-m resolution DEMs. These 4 variables were combined with
latitude and longitude to form a 6-dimensional vector (i.e., the combined
RG, X = [xlatitude7xlongitude7xelevation’xslope7xaspect7xcanopyb. Selection of
the most-representative locations for siting sensor networks was accom-
plished using a Gaussian mixture model (Oroza et al. (2016)). The
Gaussian mixture model is a parametric probability density function
represented as a weighted sum of Gaussian component densities as given
by the equation,

M
px[A) =Y wi (x|u;, %)) (6)
=1

where w; is the mixture weight and g(x|;, Z;) is the component Gaussian
density for each Gaussian component. Each component density is a D-
variate Gaussian function of the form,

1 1 _
</V(X|Ili72i) = WCXP{*E(X*‘UI-)/ZI» 1(X*/J,l-)} (7)

with mean vector y; and covariance matrix X;. The mixture weights
satisfy the constraint that Zﬁ‘i 1 wi = 1. The objective of the Gaussian
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mixture model is to maximize the likelihood function (8) by estimating
the parameters using the Expectation Maximization (EM) algorithm.

T
p(X|A) =TT pxA) (8)
=1

where A4 is the collection of parameters (i.e., A = {w;,u; L;} i=
1,...M).

The estimated mean vector of each Gaussian component is the ex-
pected 6-dimensional vector. Since the given set of data does not nec-
essarily have a data point equal to this mean, the data point that has the
smallest Euclidean distance to the estimated mean vector is selected as
the sampling location.

The number of sampling locations needed is decided by the Akaike
information criterion (AIC). AIC is a measure of the relative quality
between statistical models that are fitted with the same given set of data.
It offers a relative estimate of the information lost when a given model
is used to represent a process that generates the given data. In doing
so it addresses the trade-off between the model’s goodness of fit and
model complexity. For the Gaussian-mixture model, the parameter that
differentiates between models is the number of Gaussian components
(i.e., sampling locations in this case). By using the AIC equation,

AIC(A) = —2In(p(X|A)) +2d ©9)

where p(X|A) is the maximized likelihood and d is the number of Gaus-
sian components, the integer value of d was selected as the number of
sampling locations for which the corresponding model had the lowest
AIC score.

The sensor-network locations selected were used to extract 500-
m resolution Lidar-derived SWE pixels. These pixels were used to
simulate k-NN algorithm with historical SWE reconstructions (described
in Section 2.3). The preprocessing steps were not applied because they
are specific to the snow-depth sensor data. The k-NN estimated SWE
maps were evaluated against the Lidar-derived SWE map on a pixel-wise
basis and the error statistics calculated. The error statistics used were
root-mean-square error (RMSE),

=

&
RMSE = [~} (% —i)? (10)
i=1
and mean-absolute error (MAE),
14,
MAE = — 3 [§ =i (1)
i=1

where 7 is the number of pixels, ¥ is the k-NN estimated pixel value and
y is the Lidar-derived pixel value.

2.5 Bias-correction on k-NN simulation using Gaussian pro-
cess regression
The SWE-reconstruction product is inherently embedded with systematic
bias because of (i) the inaccuracy to infer the final date of the seasonal
snow cover from remote sensing; (ii) errors and coarse spatial scales of
meteorological data; and (iii) weaknesses in the snow model used for
SWE reconstructions (Slater et al. (2013)). The k-NN interpolated SWE
could be biased because the spatial distribution of SWE depends on SWE
reconstructions. To correct the bias inherited from SWE reconstructions,
we calculated the k-NN estimation residuals for all sensor observed
locations and the residuals were modeled using a Gaussian-process

regression. The entire process of applying k-NN algorithm and Gaussian-
process regression is called k--NN+GP in the following text.

Gaussian-process regression, the same as simple kriging in geostatis-
tics, is a technique that has been extensively used in spatial inference.
The regression relates the observation y to an underlying function f(x)
through a Gaussian noise model:

y=f(x)+.4(0,6%) (12)

The essence of regression is the search for f(x); in Gaussian process
regression, what relates one observation to another is the covariance
function, k(x,x"). For example, a popular choice of covariance function
is the squared exponential function, and by folding the Gaussian noise
into the covariance function, we have

/ 2 —(x—x)? 2 '

k(x,x') = ofexp —r +0;,6(x,x") (13)

where Gj% is the maximum allowable covariance, / is the length scale
parameter of the covariance function, and & (x,x’) is the Kronecker delta
function.

Since the key assumption in Gaussian-process modeling is that our
data can be represented as a sample from a multivariate Gaussian distri-
bution, we have

y | K K
el ) w
where K, K, and K, can be summarized in the equations below.
k(xp,x1)  k(x,x2) k(x1,xn)
k(XZaxl) k(x27x2) k(x27xl’l)
K= . . . (15)
k(xn,X1) k(xruXZ) k(xnvxn)
Ky = [k(x*vxl) k(x*7x2) "'k(x’hxn)] (16)
Kis = k(x4,x4) an
From the above equations,
Vely ~ A (K. Ky, Koo — K. K'KT) (18)

In doing the SWE residual interpolation, the independent variables
x are the same as those being used in the Gaussian mixture model. The
Matérn covariance function was used for its better prediction accuracy
than other functions. The parameters in the covariance function were
optimized with regards to SWE residuals at observed locations.

2.6 Using historical Lidar scans and SNODAS as training
data
Considering that the k-NN interpolation method for estimating spatial
SWE can be used with any historical spatial SWE product, not just SWE
reconstructions, we repeated the k-NN and k-NN+GP analysis for 2016
over the Tuolumne basin, but with all SWE reconstructions replaced
with two different historical data sets, the 2014 Lidar-derived SWE and
the SWE estimated from SNODAS for the years of 2004—2015. In the
setup with 2014 Lidar data, only 10 scenes are included in the training
set, which is only 0.5% of the number of historical SWE reconstructions.
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When running the k-NN algorithm we used £ = 1 because we had a
limited number of historical Lidar scenes. The setup with SNODAS has
1461 scenes so we kept the same configuration as in the analysis using
the SWE reconstructions. We compared these estimates based on the
mean bias error (MBE), systematic root-mean-square error (RMSEj),
unsystematic root-mean-square error (RMSEy;) that are introduced in
Willmott (1982).

3. Results

3.1 k-nearest neighbors plus Gaussian-process regression
(k-NN+GP) using SWE reconstructions

Spatial estimates of American River SWE of three days around peak
season in 2014 are shown in Figure 3. Snow accumulated across the high-
elevation region of the basin during March and early April and the peak
SWE is observed on April Sth. The snowpack melted quickly within two
weeks. The SWE for most high-elevation regions are below 0.25 m and
only the peak regions of the mountains have about 0.5 m of SWE, as is
shown in the spatial SWE map estimated for the May 3rd. A comparison
between ground observations and the k-NN estimates (Figure 4) suggests
that the k-NN algorithm has low bias on a basin-wide scale, but can be
highly biased for certain pixels. The bias is likely attributable to both
error induced by upscaling ground measurements to 500-m resolution
and the inherent bias in the SWE reconstructions as sensor-network
measurements are more accurate than SWE reconstructions.

Figure 3. Snow water equivalent maps in the American River basin
created using ground measurements and historical
SWE-reconstruction data through k-NN algorithm. Bi-weekly
maps are shown in Figure S1.
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Figure 4. Scatter plot showing ground measurements and searched
k-nearest neighbors at 21 locations (each location is a different
color, referred as pixel index) in the American River basin. The
estimations vs. measurements shows 1:1 trend overall; however,
the relationship for each individual sensor is not necessarily 1:1
and the intercept for each may not be zero.

Although SWE reconstructions are not accurate estimates of SWE, it
is still interesting to determine whether k-NN could be a technique for
extrapolating the ground measurements across the basin. Figure 5 shows
a time series comparison between ground observations, k-NN estimates,
and SWE reconstructions at 3 selected 500-m-resolution pixels. The
k-NN estimation for each pixel is evaluated using leave-one-out cross-
validation. Comparing the k-NN estimates with ground observations,
some pixels have low bias at all times, while most of the pixels differ
somewhat throughout time series. We found that the bias does not depend
on elevation (Figure S2). The magnitude of error could be as large as 0.4
m for certain pixels. The SWE-reconstruction curve suggests that SWE
reconstructions underestimate SWE at all locations during the entire
snowmelt season and the magnitude of error can be as large as 0.8 m for
certain pixels.

To evaluate the k-NN estimation in the Merced and Tuolumne basins,
24 locations in the Merced and 33 locations in the Tuolumne were
selected using a Gaussian mixture model (Figure 6). Figure 7 shows
a pixel-wise comparison of three estimation methods with the Lidar-
derived SWE. Point colors on the scatter plots represent the estimated
Gaussian distribution kernel density of these data points over R?. The &-
NN+GP estimation exhibits minimum bias relative to Lidar (fitted linear
regression line is closest to the 1:1 line in Figure 7 on the majority of
days in both basins). Slopes and coefficients of determination presented
in Figure 8 suggest the same. The RMSEs and MAE:s of these estimation
methods for each Lidar date are shown as a time series, also in Figure
8. From these we observe that RMSEs and MAEs of the k-NN and the
k-NN+GP estimates are smaller than SNODAS for the majority of days
in 2016 over the Tuolumne basin. Both error statistics can be reduced
as much as 10 cm during a normal snow season (2016). Similar results
were observed from the analysis over the Merced basin in 2014. The
estimated bias in reconstructed SWE starts to increase with elevation.
The elevation-band-mean SWE estimated from £-NN has a maximum
bias of -15 cm at elevations below 3000 m and +15 cm above 3000



Spatial Snow Water Equivalent Estimation for Mountainous Areas Using Wireless-Sensor Networks and Remote-Sensing Products — 8/14

—— Ground measurement
— kNN estimate

1.2

kNN uncertainty
---- Reconstruction

2363 m

0.8
041

1.2

0.8
€
wo4dr
<

W)

0.8

0.4}
et S

O'9)ct Apr Oct
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selected pixels, in the American River basin for the 2014 water
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m. k-NN+GP can correct part of the bias over a few elevation bands.

However, SNODAS has large underestimation bias for regions above
3000 m (Figure 9).
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Figure 6. Snow pillows, snow courses, and selected simulation
sensor locations at Merced and Tuolumne basins.

3.2 Estimation using historical Lidar-derived SWE and SNODAS
as training set

Although only 10 Lidar-derived SWE maps produced in 2014 were
included in the training set, the prediction SWE for 2016 is highly
correlated with the SWE derived from Lidar (correlation inferred from
scatterplots and kernel densities in Figure 10). The detailed statistics
(Table 4) reinforce that by showing that R2s are in the range of 0.82—0.87
for these four days. Also, both RMSEs and MAE:s estimated using Lidar-
derived SWE are at least 10 cm less than that using SWE reconstructions.
Also, the systematic error decreases drastically when GP is used. The
only drawback we found from this experiment is that the slopes of the
scatter plots decrease as the season approaches to the end. The MBEs
suggest that the basin-wide mean SWE is unbiased if using SNODAS
SWE as training data but the R2s suggest it can only explain 40—50% of
the variability (Table 4).

3.3 k-NN estimation accuracy versus number of SWE recon-
struction scenes

The performance of a statistical prediction model depends in part on the
size of the training data set, as verified in computer vision and machine
learning research (Zhu et al. (2016)). This finding agrees with our
intuition to include as many SWE-reconstruction scenes as possible in
the data set used to train the nearest neighbors algorithm. Since each
SWE-reconstruction scene is embedded with a unique spatial distribution
of snow water equivalent, the estimation accuracy should be improved as
long as more scenes are stored. In other words, the k&-NN algorithm will
have a higher probability of finding closer neighbors when more scenes
are included in the training set.

We verified this hypothesis by randomly selecting SWE-reconstruction
scenes and increasing the number of scenes incrementally in our training
set from 10% to 100% of the total number of scenes available (rounding
up the percent scene numbers to the closest integer if needed). We com-
pared the k-NN estimation results with the 500-m Lidar-derived SWE
from the Tuolumne basin, using RMSE:s as error statistics representing es-
timation performance. RMSEs decrease when more SWE-reconstruction
scenes are included in the training set for most days simulated for the
Tuolumne basin (Figure 11). Similar patterns were observed when run-
ning the same experiment on the American-River-basin wireless-sensor-
network data (Figure 12), in which the cross-validation RMSEs are
shown because a Lidar evaluation set is not available. Both figures imply
that in general the decrease of the RMSEs tends to become saturated
when the training set has more than 50% of all SWE reconstructions,
suggesting 1000 SWE reconstructions are sufficient for capturing spatial
SWE variability. There is also case when RMSEs are not sensitive to
the number of SWE reconstructions (April 23rd, 2014, Figure S4), when
Lidar data was collected immediately following a storm. The SWE-
reconstruction model did not include the melting season precipitation
events in the surface energy and mass balance calculation, which could
explain why the k-NN results estimated for post-precipitation days were
insensitive to the number of SWE-reconstruction scenes.

4. Discussion

4.1 Importance of ground measurements

The American River basin wireless-sensor networks provided unprece-
dented spatially distributed snowpack observations. The spatio-temporal
data allow us to evaluate existing spatial SWE products and enable
real-time spatial SWE estimation. The comparison between the sensor-
network observations and SWE reconstructions over time (Figure 5, S2)
suggests that the SWE reconstructions we are using are biased over the
sensor locations. However, the bias was reduced in the k&-NN estimates
that used SWE reconstructions as training data. This emphasizes that
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Figure 7. (a) k-NN (b) SNODAS and (c) k-NN+GP estimated snow water equivalent versus Lidar derived snow water equivalent on four
dates during the peak season in 2016 at the Tuolumne River basin, with color showing the point density (red is high density and blue is low
density). (d) Snow water equivalent estimation error distribution shows that k.-NN+GP is the best spatial estimation method.

accurate and spatially distributed ground measurements are important
for correcting the error when the historical training data are biased. The
more ground measurement locations we have, the less error that the k-NN
estimates would have, even though it is used with a biased training data
set (Figure S5).

The ground measurements are also important for residual distribu-
tion. Although the ground measurements used in the Tuolumne-Merced
experiment were simulated from the Lidar products, the results that are
shown in Table 4 suggest that spatially dense and representative ground
measurements are important when systematic bias exist in the training
data and non-removable from the k-NN method. The bias in the k&-NN
estimates can be corrected systematically with a Gaussian process re-
gression model trained from the residuals over the ground measurement
locations.

The importance of the ground measurements is also relative to the
quality of the historical training data. Comparing the analysis from
using SWE reconstructions versus Lidar, we believe there is a trade-off
between the quality of the historical training data and the amount of
ground measurements that are needed. With more Lidar scans or more
accurate historical SWE products available, we may not need to have
that many sensor locations for accurate k-NN estimates and the residual
distribution procedure may not be needed.

4.2 Bias and uncertainties in the k-NN SWE estimates

In general, the k-NN approach intrinsically preserves the autocorrelation
structure of the spatial SWE, which was also found and reported in other
applications of the k-NN method (Gangopadhyay and Clark (2005);
Prairie et al. (2007)). These studies also found that the k-NN method
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Figure 8. Slopes and coefficients of determination estimated from linear regressions between SWE estimations vs. Lidar, RMSE and MAE
of SWE estimations and Lidar at Tuolumne basin in 2016. Statistics for other years and basins are shown in Figure S3.

Table 4. Statistics estimated from predicted SWE and Lidar-derived SWE using historical Lidar and SNODAS as training set.

Date Training Data +GP MAE,m MBE,m RMSE,m RMSE;, m RMSEy,, m Slope R2
2016-04-01 SNODAS 0.24 -0.08 0.31 0.15 0.27 0.61 0.37
v 0.20 -0.02 0.26 0.09 0.24 0.73  0.51

Lidar 0.43 0.43 0.48 0.48 0.05 0.34  0.82

v 0.11 -0.05 0.15 0.05 0.14 093 0.82

2016-04-07 SNODAS 0.23 0.03 0.30 0.17 0.24 0.51 0.36
v 0.22 0.02 0.29 0.16 0.24 0.54 0.39

Lidar 0.38 0.38 0.45 0.45 0.04 0.33  0.89

v 0.10 -0.03 0.14 0.05 0.13 0.88 0.85

2016-04-16 SNODAS 0.23 0.07 0.31 0.19 0.24 049 034
v 0.20 0.04 0.27 0.14 0.23 0.62 048

Lidar 0.34 0.34 0.42 0.42 0.04 0.34  0.89

v 0.11 -0.02 0.15 0.05 0.14 0.88 0.84

2016-04-26  SNODAS 0.22 0.09 0.30 0.19 0.23 0.52  0.39
v 0.21 0.08 0.28 0.17 0.22 0.56 043

Lidar 0.37 0.37 0.44 0.44 0.03 0.34 092

v 0.09 -0.02 0.13 0.05 0.12 0.87 0.87

MBE: mean-bias error
RMSE;: systematic root-mean-square error
RMSEs: unsystematic root-mean-square error

does not fully preserve the temporal autocorrelation structure, which was
not observed in our results (not shown) and the finding can be specific to
particular applications. The unexplained spatial variabilities are mostly
due to the bias and inaccuracies of the historical training data, which can
be decomposed into the following aspects:

1. As was discussed in Section 2.5, multiple error sources can
contribute to the bias in SWE reconstructions; and thus affect the esti-
mation accuracy of the k-NN interpolation method. Since we can use a
Gaussian-process regression model to correct the bias in the k-NN SWE
estimates, the bias is likely due to physiographic features affecting the
SWE reconstructions.

2. The MODIS fsca, which was the basic of the SWE-reconstruction
products that we used, was derived using the method in Painter et al.
(2009). The local zenith for fgc4 can be significantly affected by the
subpixel topographic variability, which can cause errors in the estimate
of both fractional snow cover and derived snow properties. In densely
vegetated area, quantifying fractional snow cover is beyond our capacity
of using MODIS and we may only detect snow’s presence or absence,

which contributes uncertainties in SWE reconstructions over forested
areas, with the bias accumulating throughout the entire modeling season
(Raleigh et al. (2013)). Also, MODIS has the detection capacity down to
10—15% of fractional snow covered area; and thus the inferred final date
of seasonal from MODIS snow coverage can be earlier than the actual
melt-out date (Painter et al. (2009); Liu et al. (2008); Rice et al. (2011)).

3. Other than the snow-covered-area images, errors can also be
caused by the spatial meteorological data that are used for estimating the
heat flux that drives the snowmelt. These data have a much larger spatial
scale than the SWE-reconstruction model, and downscaling is often
performed by predicting values at the smaller scale using a statistical
model that takes topographic variables as predicting features. Since the
model is trained using the coarser-scale data, applying the model at a
different scale, especially a smaller scale can cause errors in the estimates
(Hostetler (1994); Fowler and Wilby (2007)).

4. In addition to these snowmelt estimation errors in most SWE re-
constructions, the SWE-reconstruction model used in this study does not
capture precipitation events during the melt season (Guan et al. (2013)).
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Figure 9. The Tuolumne basin’s snow water equivalent mean and
standard deviation along the elevation gradient.

Warm winds usually come with rain-on-snow events and they can drive
snowpack to melt faster by altering the energy balance (Garvelmann
et al. (2014)) and it is more likely to happen in the rain-snow transi-
tion zones (1500—2000 m in elevation) in the Sierra Nevada (Lundquist
et al. (2008)). Not considering precipitation events can greatly affect
the accuracy of the estimated snow distributions at different elevation
ranges.

Comparing to the analysis using the SWE reconstructions, the ac-
curacy of the estimates using historical Lidar as training set improved
significantly (Figure 10). Most reported error statistics (Table 4) were
greatly reduced in the k-NN estimates if the GP was applied. This sug-
gests that the GP model is effective on correcting the systematic errors
in the k-NN estimation. Erratically, the coefficients of determination
(R%s) are generally greater in the k-NN estimates that are without the
GP corrections comparing to these with the GP corrections, suggesting
that the spatial distribution of SWE is stationary, such that the real-time
SWE distribution can be accurately quantified by blending the real-time
ground measurements and historical Lidar scans.

The uncertainties of the estimates that use SNODAS as training data
are much greater than that using either Lidar or SWE reconstructions.
The statistics of the k-NN analysis suggest that the historical SNODAS
SWE estimates cannot capture the spatial pattern of the SWE distribu-
tion.The GP does not boost the performance, as observed in the analysis

using historical Lidar as training data, which suggests that the residuals
cannot be related with the physiographic variables and most of the errors
are unsystematic and are difficult to be corrected.

Comparing to linear-regression-based interpolation methods, the
RMSE:s of the SWE estimates from k-NN+GP that uses historical Lidar
as training set are all below 15 cm, which are similar to the errors
reported in Fassnacht et al. (2003). We need to notice that the errors
reported in our study could be more credible because the results are
evaluated with a spatial data set, while previous studies only reported
cross-validation errors. Also, most previous interpolation studies use
SNOTEL data in the Rocky Mountains as ground observations, which
can be biased training samples of the studied area because the SNOTEL
sites in the Rocky Mountains can overestimate surrounding SWE by up
to 200% (Molotch and Bales (2005)). Considering that the total snow
accumulation in the 2016 water year is about the average of the long-term
historical records, an acceptable spatio-temporal SWE estimation should
have RMSEs below 20 cm.

4.3 Potential of the k-NN SWE estimation approach
Considering that SWE reconstructions can capture the spatial patterns
of SWE, plus the high density of scenes available for these daily data, it
can be an adequate data set to use with the &-NN method even though
SWE reconstructions underperform in estimating the absolute magnitude
of SWE. However, the experiment introduced in Section 2.6 and 3.2
suggests that the k-NN approach does not have to be limited to using
SWE reconstructions as the training set, and any improvements that lead
to better SWE distribution estimates can help in advancing the k-NN
estimates. Other time series of historical spatial SWE data can be used
as the training set, these include:

1. A more-accurate SWE-reconstruction data set produced by finer-
resolution meteorological data and better fsc4 product processed
by a more-advanced snow-coverage-mapping algorithm.

2. A new archive of Lidar-derived SWE maps. We observed a
performance boost with using only 10 scenes of historical Lidar
instead of historical SWE reconstructions. Although those scenes
were collected during the recent drought, we can see they are able
to help predict spatial SWE in a normal SWE year. It will be
also interesting to see how much more the k&-NN approach can be
improved when we have a longer series of Lidar-derived SWE
maps.

3. A new satellite-based SWE mapping product. We envision that
in the future there will be Lidar systems helping to map the land
surface from the space, in real time. Considering they can be
easily affected by cloud cover, we can apply the k-NN method
with their historical record to fill in the gap and better serve real-
time water-resources decision making.

We summarized the existing spatial SWE products for the Sierra
Nevada that were introduced in previous studies and can be used for
studying the spatial distribution of SWE in mountainous area (Table 5).
The information provided in these data sets are worth studying for their
rich content of spatio-temporal distribution of SWE, which can poten-
tially motivate new techniques being developed for real-time spatial SWE
estimation and water-resources decision making. Also, with similar tech-
niques as k-NN, the number of real-time Lidar flights can be greatly
reduced during the winter season and thus reduce the financial cost to
water agencies. With changes in global climate and increased variability
of regional climate in the mountains, it requires having techniques that
are data driven and model assisted, like the k-NN approach, for providing
more-accurate and timely spatial SWE estimates. Thus more-precise and
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Figure 10. k-NN+GP estimated snow water equivalent versus Lidar derived snow water equivalent on four dates during the peak season in
2016 at Tuolumne River basin, using the 2014 Lidar-derived SWE as training set, with color showing the point density (red is high density
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Figure 11. Solid lines are root-mean-square error versus the
percentage of total number of SWE-reconstruction scenes (1988
scenes) that were included in the k-NN method. The errors are
estimated from the results of the analysis for the 2016 Tuolumne
basin data. The dashed lines are the errors of SNODAS at the same
dates, which are used as baselines of prediction performance. The
RMSEs decrease saturates around 30% of total number of
SWE-reconstruction scenes. RMSEs and MAEs for more days in
2014 for the Merced basin are shown in Figure S4.

efficient water-resources management can be achieved for coping with
the future challenges.

5. Conclusions

k-NN and k-NN+GP are effective approaches to blend ground-measured
snowpack and remotely sensed snow-coverage information to estimate
spatial snow water equivalent. The k-NN approach, using spatially
representative snow-depth sensor data, built on historical spatial SWE
estimates, can provide a near-real-time spatial estimate of SWE. The
residual-distribution analysis using the Gaussian-process model indi-
cated that the estimation errors from the k&-NN method depend on the
topography of each modeled pixel. By using the Gaussian-process model
to distribute the errors spatially, estimation errors can be reduced by
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Figure 12. Root-mean-square error versus the percentage of total
number of SWE-reconstruction scenes (1988 scenes) that were
included in the k-NN method. The errors are estimated from the
results of the analysis for the 2014 American River basin data.

about 5—10% during the peak season. The k-NN and k-NN+GP simu-
lation results using Lidar data from the Merced and Tuolumne basins
reached R = 0.7 for most modeled days during a normal snow season in
2016, with RMSEs < 15 cm (< 25 cm) and MAEs < 10 cm (< 20 ¢cm)
in 2014 (2016). The comparison with SNODAS indicates that these two
approaches are able to provide a more-accurate estimation, regardless
of climate conditions (2014 is a drought year; 2016 is a normal year).
The decreasing RMSE with increasing number of SWE reconstructions
suggests that the more historical information in a training set, the better
quality the k-NN can achieve. The k-NN method can also be significantly
improved as more-accurate historical spatial-SWE products, such as
Lidar snow-depth products, become available.
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