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Abstract 
Production and cost frontiers of a firm in an industry are directly affected by the uncertainty of 
market demand and the uncertainty of input availability.  The nonparametric approach of data 
envelopment analysis is generalized here in both static and dynamic directions by incorporating 
these uncertainties. 
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1. Introduction 

The nonparametric analysis of input-output efficiency by the data envelopment analysis (DEA) 

generally assumes a deterministic framework with no uncertainty.  In the real world however the 

input output decisions by a firm or decision-making unit (DMU) are constrained by both market 

uncertainty and technological uncertainty.  The former arises when firms have to sell their 

outputs in a market where expected demands may not always be realized by actual or observed 

demand.  Technological uncertainty occurs when inputs required for current production at time t 

may not be completely known to the firm; the firm has then to forecast the availability of inputs 

at t from past information at times t-1, t-2 and so on. 

 Our object here is two-fold.  We consider first an extension of the convex hull method of 

DEA for determining a production frontier in the presence of two types of uncertainty as above.  

Secondly, we consider some dynamic extensions of the efficiency model under uncertainty, when 

the firms have to consider inventory costs if supply of output exceeds demand. 

 

2. Static models of uncertainty 

We consider here two versions of the nonparametric approach known as the data envelopment 

analysis (DEA): the production frontier and the cost frontier approach.  The former deals with the 

decision problem of a firm or a decision-making unit (DMU) when it has to produce the 

maximum possible output from a given set of inputs.  The latter measures the firm’s success in 

choosing an optimal set of inputs by minimizing total input costs.  Two types of uncertainty have 

been generally considered in the DEA literature.  First, we have the case of uncertainty in the 

output and input prices, when future demand is unknown.  In such cases the DMUs consider the 
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riskiness of alternative production plans due to price fluctuations and allow for these in terms of 

the means and variances of prices to define an optimal risk adjusted production plan.  Sengupta 

[1,2] has dealt with this type of risk averse efficiency frontier approach in both static and 

dynamic forms and explored their relationship with the deterministic approach. 

 Secondly, the incompleteness of the information structure available to different DMUs 

has been recently used by Bogetoft [3] to consider the post productivity analysis problem of 

deciding which production plans to choose in the future given information from past and current 

production analysis. 

 We consider here another important class of uncertainty arising in DEA framework in 

both optimal and post optimal phase.  In the optimal phase we consider specifically the role of 

demand and supply uncertainty of output and inputs respectively.  In the post optimal phase we 

consider the role of demand and supply forecasts of output and inputs respectively, when 

information evolves over larger samples. 

 We start with a production model with one output (y), m inputs (xi) and N firms or 

DMUs.  We compare the relative efficiency of firms in choosing the inputs optimally by 

minimizing total input costs (TC) with given input prices (qi).  The DEA model takes the form 

  Min TC = �
=

m

1i
iixq  

   subject to (s.t.) 

    � λ
=

N

1j
jijx  ≤ xi; i=1,2,…,m     (1) 

    � λ
=

N

1j
jjy  ≥ y; ;1

j
j =�λ  λ j ≥ 0 
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Let *
ix , y* and *

jλ  denote the optimal values, where a cost efficient DMUj must be on the 

production frontier 

  y* = *
0γ  + �γ

=

m

1i

*
i xij; *

0γ  = *
0β /α*, *

iγ  = *
iβ /α*    (2) 

obtained from the Lagrangean 

  L = - +�
i

iixq �β
=

m

1i
i �

�
�

�
�
�

� λ−
=

N

1j
jiji xx  + α( � −λ

j
jj )yy(  + β0 (1- Σλj) 

with nonnegative optimal values of α*, *
iβ  and *

0β .  This type f cost minimization model is 

appropriate for public sector enterprises, where output prices are not market determined but input 

prices are.  For private sector firms the objective function in (1) may be replaced by a profit 

function π 

  Max π = py - �
=

m

1i
iq xi 

   s.t. (x,y) ∈  R 

where R is the constraint set defined by the linear constraints of (1) and p is the output price 

given for each firm. 

 Next we consider a cost frontier model where all costs are combined as Cj for firm j with 

components Cij denoting labor costs, material cost and cost of capital services.  The input 

oriented DEA model may then be set up as  

  Min θ 

   s.t. � ≤λ
=

N

1j
jijC  θ Cih; � =λ

=

N

1j
jjC  Ch 

     Σ λ j = 1, λ j ≥ 0; j=1,…,N    (3) 
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where DMUh is tested for efficiency relative to all other DMUs.  If the optimal values *
jλ , θ* are 

such that θ* = 1.0 and all slack variables are zero, then DMUh is cost efficient in the sense 

  � λ
=

N

1j

*
jijC  = Cih; i=1,2,…,m 

and   Σ Cj
*
jλ  = Ch 

By duality this implies that if DMUj is on the cost frontier it must satisfy the condition 

  Cj = *
0x  + � γ

=

m

1i
ij

*
i C ; *

0x  = *
0β /b*, *

ix  = *
iβ /b*    (4) 

where b is the Lagrange multiplier associated with the constraint hj
j

j CC =λ� . 

One may also rewrite the model in  a form where each DMU is choosing the inputs xi optimally.  

Let cijxij denote Cij.  The model then takes the form 

  Min TC = Σ qixi 

   s.t. �
=

N

1j
ijijxc ≤ xi; � =λ

j
hjj CC      (5) 

    Σ λ j = 1, λ j ≥ 0; j=1,2,…,N 

where it is assumed that the input price qi equals the average input cost .ci   The cost frontier in 

this case for DMUj must satisfy the conditions: 

  ii
*
i qc ==β  

   Cj = ijij
m

1i

*
i

*
0 xc� γ+γ

=
       (6) 

 Another form of the cost frontier is generated when the cost output relation is considered, 

e.g., 
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  Min θ 

   s.t. � λ
=

N

1j
jjC  ≤ θ Ch; � ≥λ

j
hjj yy  

     � λ
j

j = 1; λ j ≥ 0, j=1,2,…,N    (7) 

If DMUj is efficient here, then it follows by duality that it is on the cost output frontier defined by 

  *
jC  = *)/( *

0 ββ  + (α*/β*) yj      (8) 

where the Lagrangean is 

L = -θ + β(θ Ch - � λ
j

jj )C  + α(� −λ
j

hjj )yy  + β0 (Σβ λ j - 1) 

If we add a second order output constraint to (7) as  

  2
hj

N

1j

2
j yy ≥λ�

=
        (9) 

then the cost output frontier becomes quadratic 

  2
j

*
2j

*
1

*
0

*
j yyC γ+γ+γ=        (10) 

where */*a and */*,/ *
2

**
1

*
0

*
0 β=γβα=γββ=γ , with a* as the nonnegative Lagrange 

multiplier of the output constraint (9).   

 The quadratic cost frontier (10) has two advantages over the linear frontier (8).  First, it is 

more flexible since marginal cost varies as output varies.  Secondly, one may further minimize 

the average cost for the efficient DMUj: 

  A j
*
2

*
1

j

*
0

j
*
j

*
j y

y
y/CC γ+γ+

γ
==       (11) 

 On minimizing this ACj one obtains the optimal size of output ( )y **
j  defining the most 

efficient scale as: 
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  2/1*
2

*
0

**
j )/(y γγ=  

with  2/1*
0

*
2

*
1

*
j

**
j )(ACminc γγ+γ==       (12) 

Clearly the observed average cost ( )c*
j  and output ( )y*

j  on the frontier would satisfy the 

inequalities: 

  **
jy  > *

jy  and **
jc  < *

jc        (13) 

This implies that demand for firm j must be high enough for producing **
jy  to meet demand.  

Thus with a lower demand the firm would supply *
jy , but a higher demand would generate a 

higher supply **
jy . 

 Now we consider the role of demand uncertainty in the DEA models introduced above.  

Consider first the cost minimizing model (1) where demand for output is r and it is random; also 

the input supply is zi and it is random.  We have to replace the objective function in (7) by the 

expected total cost, since output demand and input supply contain random fluctuations.  Let f(r) 

and f(zi) be the probability density functions of demand r and supply zi with F(r) and F(zi) 

denoting their cumulative distributions.  Then the DEA model can be transformed as 

  Min ETC = [ ]ii
x
0 iiiix ii

i
i dz)z(fzbdz)z(fxaq i

i
�+��

∞  

    + g dr)r(f)yr(hdr)r(f)ry( y
y
0 � −+� − ∞  

     s.t. �
=

N

1j
ijx λ j ≤ xi; 1,2,…m    (14) 

      �
j

jy λ j ≥ y; Σ λ j  1, λ j ≥ 0; j=1,2,…,N 
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Here the unit inventory costs are ai and g and the cost of lost sales and the input shortfall are h 

and bi respectively.  These parameters are assumed to be known by each firm.  The optimal 

inputs and output are now determined as 

  )qa/(1),(Fx ii
*
iii1

*
i β−=δδ= −  

  y* = F-1(φ), φ = (g + h)-1 (α* + h)      (15) 

  α*y* = ij
m

1i

*
i

*
0 x�β+β

=
 

Clearly higher inventory costs would tend to reduce optimal levels of output and input use.  The 

gaps *
iij xx −  and *yy j −  would indicate inefficiency in input usage and output production 

respectively. 

 Two implications of these results are to be noted.  First, the presence of expected 

inventory costs and costs of shortage would affect the DEA efficiency results derived under a 

deterministic framework.  This may explain why some firms may carry large ‘organizational 

slacks’ on the average and may then be judged as inefficient in the deterministic DEA approach.  

Secondly, the form of the distribution of demand for output and supply of inputs would affect the 

level of expected inventory or shortage carried by firms. 

 Consider now the transformation of the quadratic cost model specified by (7) and (8) 

when only demand uncertainty is present: 

  Max E(p min(y,r)) – w C 

   s.t. ;CC j
j

j ≤λ�  Σ yjλ j ≥ y, Σ λ j = 1, λ j ≥ 0 

where w = 1.0 and r is random demand with a distribution F(r).  The optimal output and the cost 

frontier can be easily calculated as follows for an efficient DMUj: 
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  Cj = γ0 + γ1 + γ2 ;y2
j  γ0 = */*

0 ββ , γ1 = α*/β*, γ2 = a*/β*  

  2a*y* + p F(y*) + α* - p = 0 

If the demand r is uniformly distributed with range 0 < r < k, then the optimal output reduces to 

  y* = (2a* + p/k)-1 (p - α*); p > α*     (15) 

where the Lagrangean is 

L = E[p min(y,r)] – C + b(C - Σ Cjλ j) + α(Σ yjλ j – y) + β0(Σ λ j – 1) 

For the linear cost output relation γ2 = 0 and we obtain 

  F(y*) = 1 - α*/p; y* = F-1(1 - α*/p)     (16) 

If for example the demand has an exponential distribution with parameter λ = 1/E(r), then (16) 

reduces to 

y* = ln(p/α*) r , r  = Er 

Thus the level of optimal output rises as mean demand r  or price rises and it falls when the 

implicit cost (α*) of output inefficiency rises. 

 Two comments are in order here.  First, the risk aversion factor for each firm can be 

included here by minimizing for example a linear combination of expected total cost and 

variance of total cost in the DEA formulation (14) for example.  However this would impart a 

higher degree of nonlinearity in the efficiency frontier.  Secondly, the firms have no control on 

the fluctuations of demand and input supply, since we are assuming a competitive market with 

firms as price takers.  In imperfectly competitive markets however price p will vary in relation to 

demand and thus the price elasticity would affect the optimal levels of output and inputs for 

instance. 
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3. Dynamic models under uncertainty 

We consider here two types of dynamic models under uncertainty.  One follows a production 

schedule in model known as the HMMS [4] model well known in operations research literature.  

Here we assume demand uncertainty only and each firm is assumed to maximize an 

intertemporal net expected return function defined as expected revenue minus expected input and 

inventory costs over time.  The second model assumes that each firm has incomplete knowledge 

of the inputs and output in the current period t and it has to decide on the levels of optimal input 

and output.  Clearly the efficient firm in this framework has two options.  One is to forecast the 

current levels of inputs and output on the basis of past levels and then use a DEA model to 

compute an efficiency frontier.  The second option is to use last period’s inputs and output as 

observed data and then estimate the optimal production frontier in the current under demand 

uncertainty.  These two cases would be discussed here. 

 The first type of dynamic model in a DEA framework has the following intertemporal 

form: 

  Max J = )]t(x)t(q))1t(I),t(I(EC))}t(r~),t(y){min(t(pE[ i
m

1i
i

T

1t
�−−−�
==

 

   subject to the constraint set R defined by 

    I(t) = I(t-1) + y(t) - r (t); I0 given 

    )t(x
N

1j
ij�

=
λ j(t) ≤ xi(t), i=1,…,m 

    )t(y
N

1j
j�

=
 λ j(t) ≥ y(t)      (17) 

    )t(I)t(I)t( j
j

j ≤�λ  
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    0)t(;1)t( j
j

j ≥λ=�λ ; j=1,2,…,N, t=1,2,…,T 

Here r (t) is random demand for output with a fixed distribution F(r) with mean r , E is 

expectation and the inputs xi(t), inventory I(t) and output y(t) are optimally chosen for the 

efficient firm.  The prices p(t) and qi(t) are given.  The expected inventory costs are of the 

HMMS form:  

EC(I(t), I(t–1) = ½(I(t) - )t(Î )2, )t(Î = k r (t) 

with )t(Î = k r (t) as the target level of inventory viewed as a proportion of mean demand.  On 

using the Lagrangean function 

  L = J + s(t){I(t) – I(t-1) – y(t) + r (t)} 

  + )}t()t(x)t(x{)t( j
j

iji
m

1i
i λ�−�β

=
 

  + b(t){I(t) - �
j

j )t(I λ j(t)} + α(t){ �
j

j )t(y λ j(t) –y(t)} 

  + β0(t){1 - �λ
j

j )t( } 

and applying the Euler-Lagrange conditions it follows that the optimal efficiency frontier for firm 

j must satisfy for each t=1,2,…,T the following necessary conditions for positive levels of y*(t), 

)t(x*
i and I*(t): 

  p(1 – F(y*)) = s*(t) + α*(t); )t(*
iβ = qi(t) 

  I*(t) = k r (t) + b*(t) – s*(t) + s*(t)    (18) 

  α*(t) yj(t) = )t(*
0β + �β

=

m

1i

*
i )t( xij(t) + b*(t) )t(I*

j  

  I*(t) = I*(t–1) + y*(t) - r (t) 
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where asterisks indicate optimal values.  Several implications follow.  First of all, price equals 

the marginal costs of lost sales, inventories and output in the form of shadow prices.  Optimal 

inventories at time t depend on the target or desired level )t(Î of inventories, the shadow price of 

inventories and the change ∆s*(t) = s*(t+1) – s*(t) in the shadow price of incremental inventories 

∆I(t) = I(t) – I(t–1).  This implies that firms with higher desired levels of )t(Î j will carry higher 

optimal inventories and hence have higher inventory costs.  Secondly, if these conditions (18) 

hold for any j over all t, then an optimal recursive decision rule for each of the optimizing 

variables z*(t) = (y*(t), ),t(x*
i  I*(t)) can be constructed as a linear function of lagged z*(t – 1) 

and ,ru it
1T

0i
i +

−

=
�  where ui is a function of the parameters already computed and r t+i is the forecast 

level of mean demand at time t+i.  The advantage of this optimal linear decision rule is that it 

allows a sequential revision of policies over time as the precision of forecasting of demand 

improves.  Finally, the relative inefficiency of any firm h can be estimated as in the DEA model, 

i.e., output shortfall below the optimal or excess inputs over the optimal level. 

 Next we consider the uncertainty associated with incomplete information available to 

each DMU at time t.  Here we assume that each DMU wants to select the optimal inputs xi(t) and 

output y(t) at the current time t, given the information at time t-1.  The DEA model is of the form 

  Min TC = )t(x)t(q̂ i
m

1i
i�

=
 

   s.t. )t(x)t()t(x̂ ij
N

1j
ij ≤λ�

=
     (19) 

    )t(y)t()t(ŷ j
N

1j
j ≥λ�

=
 

    Σ λ j(t) = 1; λ j(t) ≥ 0; j=1,2,…,N 
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Here the hat over a variable denotes its forecast from the past levels.  Assuming a Markovian 

framework we assume the forecasts to be generated by an exponentially weighted scheme (EWS) 

as follows: 

  ẑ (t) = ẑ (t-1) + v[z(t-1) - ẑ (t-1)]; 0 < v < 1   (20) 

where z(t) may denote any of the variables qi(t), xij(t) and yj(t) above.  It is important to note two 

important features of the EWS of generating forecasts.  First, the forecast value ẑ (t) may be 

viewed as the weighted average of past value z(t-1) and its forecast at t-1, i.e., ẑ (t) = vz(t-1) + 

(1-v) ẑ (t-1).  Secondly, one could rewrite (20) in the form 

  ẑ (t) = )it(z)v1(v 1i

1i
−−�

−∞

=
 

   = � −=−
∞

=

−

1k

1k
kk )v1(vw),kt(zw     (21) 

where the weights wk attached to past values decrease exponentially.  Note that if v is close to 

one, the recent observations get more weight so that in the limit v=1.0 the past observations have 

no influence on the forecast values. If v is small, then the past values are important.  Clearly the 

EWS yields smoothed input output data with reduced noise when compared with the observed 

data containing fluctuations.  Hence the DEA model (19) with optimal estimates of ),t(x*
i  y(t) 

would yield a more stable production frontier. The degree of stability of this production frontier 

may be assessed if the observed time series z(t) can be decomposed into two independent 

additive components, e.g., the permanent component ẑ (t) and the transitory component n(t).  

Assume the permanent component to follow a linear stochastic process 

ẑ (t) = ẑ (t-1) + ε(t) = ,)i(
t

1i
�ε
=

 ẑ (0) = 0 
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where the ε’s are serially independent with mean zero and constant variance .2
εσ   The forecasting 

problem is then to find the coefficients wk in (21) which minimize the error variance v 

v = E[z(t) - ẑ (t)]2 

Following Muth [5] one can show that the optimal weights *
kw  are given by 

*
kw  =  (1-µ1) 1k

1
−µ  

where µ1 is the smaller characteristic root less than unity satisfying the characteristic equation 

0/)1()/( 22
n

2 =µµ−−σσε  

where 2
nσ  is the variance of the transitory component.  With the optimal values of *

kw , the 

optimal weights v* can be easily determined from (21).  Thus if the fluctuations or noise in the 

observed input output data are large, then a smaller value of v* helps.  The reverse holds for 

smaller fluctuations in observed data.   

 The generality of this smoothing approach may be seen by applying this EWS to the cost 

efficiency model defined by (7) and (9) by replacing Cj, yj and λ j by )t(ŷ),t(Ĉ jj  and λ j(t) 

respectively.  The smoothed efficiency frontier for DMUj may then be derived as: 

)t(ŷ~)t(ŷ~~)t(Ĉ 2
j

*
2j

*
1

*
0

*
j γ+γ+γ=  

This frontier may be compared with the frontier (10) derived from observed data.  Secondly, the 

optimal weights v* may be different from the inputs and output and one could select different 

values of v to simulate the cost efficiency frontier.  Thus the sensitivity of the DEA efficiency 

frontier may be directly evaluated.   

 Finally, one could apply this method to estimate a stable growth efficiency frontier by the 

DEA approach.  Let )t(Ŷ and )t(X̂ jij denote the relative growth )t(x̂/)t(x̂ ijij∆  and )t(ŷ/)t(ŷ jj∆  
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of inputs and outputs in their smoothed values.  In order to test the relative efficiency of DMUh 

we set up the linear programming model: 

  Min 0ih
m

1i
i )t(X̂ β+�β

=
      (22) 

   s.t. β0 + )t(Ŷ)t(X̂ jij
m

1i
i ≥�β

=
 

    ,1
m

1i
i =�β

=
 βi ≥ 0; β0 free in sign 

This assumes constant returns to scale since .1
m

1i
i =�β

=
  Without this constraint we would have 

variable returns to scale.  Let the optimal values of βi and β0 be . and *
0

*
i ββ   If DMUh is efficient, 

then its growth efficiency frontier is 

  *
0ijij

m

1i

*
ihh )t(x̂/)t(x̂()t(ŷ/)t(ŷ β+∆�β=∆

=
 

  *
0

m

1i

*
i ,1 β=�β

=
 free in sign.      (23) 

 When *
0β  is positive, it measures according to Solow [7] the rate of technological 

progress.  Solow assumed the Cobb-Douglas production function 

y(t) = A(t) );t(x)t(x 21
21
ββ  β1 + β2 = 1 

with two inputs: labor x1(t) and capital x2(t) and derived by differentiation  

∆y(t)/y(t) = ∆A(t)/A(t) + ))t(x/)t(x( ii
2

1i
i ∆�β

=
 

where ∆A(t)/A(t) = β0 is termed the rate of technological progress (β0>0) or regress (β0<0).  

Clearly the growth efficiency frontier (23) above can be used to estimate both scale economies 

(e.g., variable returns to scale) and technological progress.  The smoothing technique would 
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permit a more stable estimate of the growth efficiency frontier of a typical firm or DMUh and this 

may be compared with the level efficiency frontier, when only the input and output levels are 

considered.  Sengupta [6] has recently applied this method to the computer industry over the 

period 1987-2000. 

 

4. Conclusions 

Models of data envelopment analysis have been generalized here in both static and dynamic 

versions under conditions of uncertainty of demand and the uncertainty of input supply.  The role 

of inventory cost and the loss due to lost sales are captured in this framework.  In a dynamic 

setting the uncertainty of the information structure is captured through an exponentially weighted 

forecasting technique, which allows us to characterize a more stable production and cost frontier.  

This characterization can also be applied to estimate nonparametrically a stable growth efficiency 

frontier, which can measure the scale economies and the rate of technological progress. 
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