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Abstract—A conventional periodic LC ladder circuit 

forms a transmission line that has a regular band edge 

between a pass and a stop band. Here for the first time we 

develop the theory of simple yet unconventional double 

ladder circuit that exhibits a special degeneracy condition 

referred to as degenerate band edge (DBE). The degeneracy 

occurs when four independent eigenstates coalesce into a 

single eigenstate at the DBE frequency. In addition to 

possible practical applications, this circuit may provide 

insight into DBE behavior that is not clear in more complex 

systems. We show that double ladder resonators exhibit 

unusual behavior of the loaded quality factor near the DBE 

leading to a stable resonance frequency against load 

variations. These two properties in the proposed circuit are 

superior to the analogous properties in single ladder 

circuits. Our proposed analysis leads to analytic expressions 

for all circuit quantities thus providing insight into the very 

complex behavior near degeneracy points in periodic 

circuits. Interestingly, here we show for the first time that 

DBE is obtained with unit cells that are symmetric along the 

propagation direction. The proposed theory of double 

ladders presented here has potential applications in filters, 

couplers, oscillators, and pulse shaping networks.  

Index Terms—Degenerate Band Edge, Cavity Resonators, 

Circuit Theory, Slow-Wave Circuits, Ladder Oscillators. 

I. INTRODUCTION 

ERIODIC structures and circuits have been utilized in many 

RF components and devices due to their unique properties 

such as the existence of electromagnetic band edges and 

bandgaps [1]–[3]. The “band edge” condition refers to a point 

in the phase-frequency dispersion relation which separate a pass 

band and a stop band in a periodic structure. Dispersion 

diagrams are associated with structures of infinite length with a 

unit cell periodically repeated. The band edge is accompanied 

with a significant increase in delay and quality factor of periodic 

resonators. The band edge is also associated with degenerate 

eigenstates of the field quantities (electric and magnetic field 

states in waveguides, or voltage and current states in circuits)  

 

 

 

 

 

  
and they correspond to a standing resonant mode.  Beyond the 

band edge, a band gap is typically formed in which signal flow 

is inhibited inside the periodic circuit resulting in only 

attenuation (evanescent wave in electromagnetic band gap 

structure). 

A particular class of degeneracy may exist in a periodic 

circuits where four periodic eigenstates coalesce and form a 

single degenerate periodic eigenstate [4]–[6]. This condition, 

explored here, is called a degenerate band edge (DBE), contrary 

to the scenario in conventional spatially periodic structures 

where only two periodic eigenstates coalesce forming a regular 

band edge (RBE). A DBE can be found in periodic structures 

employing stacks of anisotropic layers [4], [7], [8], structured 

transmission lines or striplines [9], [10], metallic [11] or optical 

waveguides [12], [13]. When four periodic eigenstates coincide 

at the edge of the Brillouin zone, the dispersion relation close 

to the degeneracy point is characterized by (ωd ω) ( )4  

where ωd is the angular frequency at which this fourth order 

degeneracy occurs, and  is the state phase delay of circuit 

quantities from one unit cell to the next. The exponent indicates 

that this degeneracy condition is of order four. The degeneracy 

condition in such a class of periodic waveguiding structures [7], 

[9], [11] is associated with a dramatic reduction of group 

velocity and an increase in loaded quality factor that is crucial 

for various application including filters, oscillators, and pulse 

forming networks for high speed communication [14]–[18]. 

DBEs were also investigated for directive antenna applications 

[10], [19]. Slow-wave structures (SWSs) with DBEs, in which 

phase velocity is much less than the speed of light, allow for 

superior electron beam synchronism condition that leads to high 

gain [6] compared to conventional SWSs. It has been also 

shown that utilizing a DBE in an active devices will lower the 

Theory of Double Ladder Lumped Circuits With 

Degenerate Band Edge 

Jeff Sloan, Mohamed A. K. Othman, and Filippo Capolino 

P 

 

Fig. 1. (a), (b) Unit cells of a conventional periodic single ladder of T and π 
configurations, respectively. (c), (d) Symmetric unit cells with four ports of 

periodic lumped circuits, called here “double ladders”, that develop DBE at 

an angular frequency 1/d LC  , with T/ π and π/T configurations 

respectively. All voltages are referred to the ground.  
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oscillation threshold in cavities [20] compared to operating near 

an RBE [21], in which the latter was shown to have modal 

oscillation instabilities and mode jumping issues [22], [23].  

Here we propose for the first time a periodic lumped double 

ladder circuit, whose unit cell is made of just a few reactive 

elements, that develops a degenerate band edge condition (in 

contrast to previous investigations that were focused on 

transmission lines).  

Because this lumped circuit is very simple, we show for the 

first time exact analytic steady state solutions for periodic 

voltage/current eigenstates in periodic double ladders; and the 

occurrence of an unusual resonance in double ladders with 

finite size. Our analysis provides a concrete insight into general 

DBE manifestation and characteristics of ladder lumped circuits 

for which analytical investigation of resonance and loading 

effects has not been reported before. It is important to point out 

that we do not just propose a double ladder filter design in this 

paper, but also we develop a novel theory of a class of circuits 

exhibiting a fourth order degeneracy; the applications of which 

may range from oscillators, pulse compressors and distributed 

amplifiers.  

A degeneracy of order four requires that the unit cell of the 

periodic structure consists of a four-port network with properly 

coupled and tuned reactive components. Higher order 

degeneracies can be achieved with more complicated unit cells 

with a higher number of ports, yet the same approach detailed 

in this paper can be utilized. We stress that the proposed circuit 

is one-dimensional. Two-dimensional [23], and even three-

dimensional ladder circuits may also be conceived whose 

analysis can be carried using the same Bloch-Floquet type 

solution for 2D and 3D periodic electromagnetic systems [2], 

but they are outside the scope of this study. The delay 

characteristics of these ladder circuit are analogous to wave 

propagation in one-dimensional crystals [24], [25], yet we show 

the characteristics of state degeneracies in ladder circuits that 

are analyzed here for the first time. 

In this paper, we demonstrate various new concepts and 

detailed analyses relative to degeneracies in circuits as follows: 

(ii) we propose a periodic circuit with the minimum number of 

reactive elements that exhibits a DBE and (ii) we develop 

analytical theory of such double ladders and explore their 

unusual characteristics in Sections II through V. (iii) We show 

that such DBE properties can be obtained in symmetric circuits 

in Section IV. (iv) We investigate the properties of double 

ladder resonators made of a cascade of a finite number of cells, 

and we provide analytic expressions for their design in Section 

VI.  (v) We analyze how the quality factor is affected by loading 

and importantly how it scales with structure size along with 

various loading effects. (vi) We show the superior performance 

of double ladder resonator compared to a single LC ladder with 

an RBE in Fig. 1, in terms of stability of resonance frequency 

with loading effects and the anomalous scaling of the quality 

factor in Section V.  

Throughout this paper we assume steady-state 

monochromatic signals, and phasors are based on the 
j te 

 time 

convention that is implicitly assumed. 

II. DOUBLE LADDER CIRCUIT WITH SYMMETRIC UNIT CELL 

An example of a periodic circuit’s constitutive symmetric unit 

cell that develops a DBE in the steady state regime is depicted 

in Fig. 1(c) and (d). There are other circuits that have DBEs but 

this circuit is the simplest, in part due to symmetry. It is 

important to distinguish between two kinds of symmetries. The 

first is the symmetry of the top and bottom ladders (in double 

ladder case). There exists a strong asymmetry in the sense that 

the top ladder does not have nodes with capacitances to the 

ground, unlike its bottom counterpart. Therefore, the anisotropy 

here is created (top and bottom ladders are not identical) and it 

is crucial for achieving the DBE [4], [9], [11]. The second, and 

the more interesting kind of symmetry is manifested about a cut 

in the middle of the unit cell (left and right symmetry) which 

represent symmetry about a perpendicular axis to the signal 

propagation direction. It is also possible to cut this circuit in a 

variety of ways that yield a variety of unit cells, but the ones 

that are shown are the simplest due to symmetry. Contrary to 

most DBE implementations in waveguiding systems, a 

symmetric unit cell in the wave-propagation direction has not 

been reported before, see for example in [9], [13], [26]. 

Moreover, there have been some persistent difficulties in 

designing circuits with a DBE. One difficulty is that multiple 

parameters must be 

simultaneously tuned to get close to a DBE condition with 

negligible analytical insight. A related issue is that the DBE 

condition is never met exactly, but only in an approximate way. 

This can cause problems in numerical calculations; for instance 

 

 

Fig. 2.  Dispersion diagram, frequency-phase shift, relative to the unit cell 

of the periodic, infinitely long, double ladder circuit in Fig.1(c) or (d). Each 

of the 2 curves corresponds to two (backward and forward) periodic 

eigenstates. Four eigenstates coalesce at the degenerate band edge (DBE) at 

ω = ωd. Two eigenstates coalesce at the RBE at ω = ωg. Square symbols 

denotes a fitting of the DBE flat feature with  
4

( )d a       , and a 

is the fitting constant / 32da  . (b) Complex dispersion curve showing 

complex branches of ( )  . 



(b) 

(a) 
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when inverting a matrix. Another difficulty is that the 

eigenvectors are generally not easy to calculate in a simple way, 

potentially obscuring some useful information. In fact, our 

analysis shows for the first time a mathematically exact 

condition in circuits to observe a DBE.  Moreover, we believe 

that the circuit investigated in this paper is the simplest circuit 

(and one of the simplest physical systems) to exhibit a DBE. 

The eigenstate description as well as the resonance conditions 

are simple enough to be put in a very compact and concise 

analytical form near the DBE. Here we study a symmetric unit 

cell, which can be cut in either the T/π or the π/T configuration 

shown in Fig. 1. This portrays also how a double ladder that 

develops a DBE can be constructed from a simple single LC 

ladder connected in tandem, using either the conventional   or 

T topologies [15]. We assume lossless, linear reactive 

components for simplicity in our analysis. Losses in the 

resonator will be incorporated in Section VI in the form of 

external loading.  

A. Dispersion relation and state vector 

First, we qualitatively explore the voltage/current periodic 

eigenstates (in a steady state regime) of the infinitely-long 

periodic circuit whose unit cell is depicted in Fig. 1, and we 

resort to a rigorous analytical description detailed in Section IV. 

It is convenient to define a four-dimensional state vector that 

comprises the phasors for voltages and currents at the nth unit 

cell’s two ports as seen in Fig. 1 viz.  

  1 2 1 2( ) ( ) ( ) ( ) ( )
T

n V n V n I n I nΨ   (1) 

In an infinitely long periodic structure, steady state time-

harmonic solutions have the form of periodic eigenstates, i.e., 

eigenstates where the current and voltage at location n in a unit 

cell of the infinite periodic circuit in Fig. 1 is a complex 

multiple of the current and voltage at the same locations in an 

adjacent unit cell (location 1n ), as described in the following. 

We seek those periodic solutions (more properly, pseudo 

periodic, because they are periodic in space except for the 

exponential term 
( )je  

)  for the state vectors, where ( )nΨ  is 

translated to that of the next unit cell ( 1)nΨ  via  

 ( )( 1) ( ) jn n e   Ψ Ψ    (2) 

for any n.  Note that here the exponential term ( )   can be 

complex. A purely real ( )   implies simply a phase shift from 

cell to cell, whereas a complex ( )   also implies exponential 

attenuation or growth and must be accounted for completeness. 

The evolution of this four-dimensional state vector ( )nΨ   from 

cell to cell is described by a 4×4 transfer matrix T  that relates 

voltages and currents between contiguous cells at location n and 

n+1 

 ( 1) ( )n n Ψ TΨ  (3) 

Here and in the following bold fonts indicate vectors whereas 

underlined bold fonts indicate matrices. The determination of 

the transfer matrix  T  for the circuit in Fig. 1 is reported in the 

Appendix. In general, for an infinite long periodic circuit whose 

unit cell has four ports as shown in Fig. 1, there are four distinct 

and independent solutions for the cell-to-cell phase progression 

at each frequency [see (2)], with 1,2,3,4m  , each of which is 

associated with a periodic eigenstate voltage/current 

eigenvector mΨ . Again, here ( )   is allowed to be complex 

so that it can describe also stop bands. To retrieve periodic 

solutions for ( )nΨ , i.e., in the form of (2), we solve the 

eigenvalue problem obtained by combining (2) and (3) 

 ( ) ( ) 0je n   
 
T 1 Ψ  (4)  

Here 1  is the 4×4 identity matrix and   is the Bloch phase 

shift between two adjacent cells. For the circuit in Fig. 1, the 

four ( )m   solutions are shown in Fig. 2, for m = 1,2,3,4, with 

the circuit parameters given in the Appendix. This is because 

the number of possible states is twice the number of nodes  

(excluding ground), or ports, shared by two contiguous unit 

cells [27], [28]. Analogously, triple ladders circuits are 

constructed by 6×6 matrices, and so forth. Analysis of higher 

order ladders can be done by increasing the dimensionality of 

the  T  matrix; which is left for another investigation.  

Phase progression of an eigenstate, or evanescence (i.e., 

exponential growth or decay) from cell to cell in the lossless 

circuit can be understood by examining both the real and 

imaginary parts of ( )m  . For instance, in a lossless structure, 

an eigenstate whose voltages and currents exhibit only phase 

progression (propagating in the context of electromagnetic 

structures) has  Im ( ) 0   , however an evanescent 

eigenstate (in the stop band of the periodic circuit) has 

 Im ( ) 0    while  Re ( )   can be non-zero. We focus on 

the simple unit cell in Fig. 1 whose dispersion diagram is 

depicted in Fig. 2 considering the circuit parameters given in 

the Appendix. The circuit is linear and reciprocal, therefore if 

( )   is a solution (even complex) then also ( )   is. 

Furthermore, the dispersion diagram of the periodic structure is 

periodic, and exhibits a mirror symmetry around the band edge 

(between pass and stop bands) that occurs at   . A typical 

dispersion diagram is conventionally illustrated by the real 

eigenstates only, whose phase ( )   is purely real, as shown in 

Fig. 2. A complex representation of the dispersion diagram is 

also shown in Fig. 2 and can be found in [6], [12], [29] for 

structures that involve wave propagation. 

At low frequency, such that ω < ωg, the ( )    relation 

shows purely real modal phase shifts ( )  , from cell to cell as 

in (2), versus frequency as depicted in the dispersion diagram 

in Fig. 2. At high frequency, such that ω > ωd, the circuit 

exhibits a cutoff where energy flows in the circuit is highly 

suppressed resembling the high frequency response of a low-

pass filter. At an intermediate angular frequency (shown in Fig. 

2) we observe two important distinct features of the dispersion 

diagram.  

B. Band edges and band gaps 

The dispersion diagram (Fig. 2) shows that there are 4 

independent periodic eigenstates (corresponding to 4 distinct 

eigenvalues of the periodic circuit) everywhere except at two 

specific frequencies, denoting the “band edges”. The band edge 

is a transition condition from power-carrying eigenstates(s) to 

evanescent eigenstates(s). The band edge point itself represents 

a standing wave eigenstate that does not allow energy to flow 
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in the periodic circuit (a point of singularity in group delay). 

There are two band edge conditions: 

1) Regular band edge: At ω = ωg  an RBE is manifested where 

two branches (phase eigenstates with opposite directions of 

energy flow) coalesce. Therefore, an RBE is a point of 

degeneracy of two states’ eigenvalues and eigenvectors. Near 

ω = ωg, in virtue of small frequency detuning, the phase-

frequency asymptotically behaves as  ( )g       2 with 

a proportionality constant specific to the circuit and 

proportional to the non-zero first derivative of the group delay. 

(For the circuit in Fig. 1, it happens that ωg =  ωd / 2 ). Exactly 

at the RBE there are three independent periodic eigenstates with 

three regular eigenvectors, which are found by solving the 

periodic system (4). One of the periodic eigenstates represents 

a standing resonant mode with infinite group delay. In fact, the 

RBE designates a transition from two states with phase 

progression ω < ωg into two purely evanescent states for ω > 

ωg, resulting in a second order degeneracy at ω = ωg. The other 

two eigenstates (the two upper branches) at ω = ωg are 

independent phase-propagating solutions and are not affected 

by the RBE. As such, there must exist one degenerate eigenstate 

in order to provide a complete basis of four eigenvectors and it 

is constructed with a non-periodic eigenstate (or pseudo-

periodic eigenstate described by generalized eigenvector [4], 

[30], [31]) that grows linearly along the double ladder. 

2) Degenerate band edge: At d   a degenerate band edge 

(DBE) is manifested. A DBE is a point of degeneracy of four 

states’ eigenvalues and eigenvectors (4). The phase-frequency 

relation near DBE is  ( )d a       4 with a 

proportionality constant specific to the circuit, that provides the 

non-zero third derivative of the group delay, and this constant 

will be found in the subsequent analysis. Despite at other 

frequencies there are generally four independent eigenstates, at 

the DBE there is only a single, degenerate, periodic eigenstate 

at d   comprising a standing resonant mode that is a 

transition from two states with phase progression and two 

evanescent ones, for d  , into four purely evanescent states 

for d  . Since there is only one independent periodic 

eigenstate solution at d  there must be three non-periodic 

eigenstates i.e., three pseudo-periodic solutions growing as n, 

n2 and n3 [32], [33] besides phase factor exp( )jn , where n 

is the integer index of the unit cell. Therefore, exactly at the 

DBE, state vectors propagate from cell to cell as ( )n nΨ q

exp( )jn , with 0,1,2,3,q   (see analogues non-periodic 

solutions in stack of anisotropic layers at the DBE in [32]). The 

rest of this paper will be dedicated to developing analytic 

framework for the intriguing properties associated with DBE in 

the infinitely periodic double ladder first, and then, most 

importantly, for double ladders resonators with finite size. 

III. CIRCUIT ANALYSIS NEAR THE DBE 

Kirchhoff’s voltage law (KVL) provides a straightforward 

route to analyzing steady state solutions in the periodic lumped 

circuit.  It is convenient to define loop currents (phasors) as 

shown in Fig. 3 for the periodic double ladder with the unit cell 

as in Fig. 1. We consider the two current loops per unit cell with 

current phasors nI  and nI  .  Current in adjacent unit cells vary 

by the constant e j  based on (2) and the band edge condition 

( )    corresponds to standing eigenstates. In the following 

we analyze the state vector (1) in close vicinity of (and not 

exactly at) the DBE where there are four periodic solutions as 

in (2). As such, we define an incremental phase angle  that is 

small in magnitude near the DBE. The DBE angular frequency 

is set to be 1/d LC  , according to the parameters of the 

circuit in Fig. 1, with a characteristic impedance parameter 

defined as cZ L C . (This will be evident in Section IV.) 

Therefore, the relation of loop currents between adjacent cells 

is In+1 = In e  j = In e j()  and we assume that n nI I   

where   is a frequency dependent constant, evaluated as 

follows.  

 

Application of KVL yields the loop voltage drops  

 

   

   

1 1 1

1 1 1
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4 0
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which in turn leads to the two following relations 

 

 

 

 

2

( )

2 ( )

2 1 cos ( ) ,

1
4 1 cos ( )

j

d

j

d

e

e

 

 


   




 

 

 
         

 

    
         

     

 (6) 

By dividing the two equations in (6) we get 

    ( ) 2 ( )1 2 1 0j je e            (7) 

whose solutions for   can be easily written as  

 
 

 

2 1 ( )
2 2

1
2

1 1 4sin ( )

2sin ( )

j
j e

  


 

 
    (8) 

Equations (7) or (8) provide the exact relationship between the 

phase delay between contiguous unit cells and the ratio   of 

the upper and lower current loops within a unit cell. We show 

now a convenient approximation to derive both the phase delay 

and the current ratio as a function of angular frequency near the 

 
Fig. 3.  Loop currents used in the KVL analysis for a double ladder circuit. 

Near the DBE, the current flowing in the lower half of the circuit represented 
by the blue loops is much larger in magnitude compared to that flowing in 

the upper half of the circuit represented by the green loops. Exactly at the 

DBE only the lower blue loops carry current.
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DBE. Near the DBE 1   and we rewrite (8) using the first 

order Taylor expansion for small   as 

 

( )

2( )
j

j e

 

  


   (9) 

 Then, substitution of  into (6), and keeping only terms with 

lowest power ( )   leads to 

  41 / 32
d





    (10) 

that yields to a simple form of the asymptotic dispersion 

relation  

  
44 ( ) ( )d a a            (11) 

with / 32da  . It is very important to stress that the Taylor 

expansion of (8) was carried out for || 0 , but not for small 

Δω = ωdω as an expansion parameter, owing to the 

degeneracy condition. In other words, to expand (8) in terms of 

small   it would require the use of a fractional power series, 

often called Puiseux series [32], [34], when dealing with a 

degenerate system. The four steady state solutions following 

from the approximate result (11) obtained with KVL near the 

DBE are shown with squares in Fig. 2(a) and are consistent with 

the exact eigenmode solution and dispersion diagram obtained 

by solving (4) for ( )   with the transfer matrix method near 

the DBE. However, when d   this first order 

approximation deviates from the exact calculations as 

demonstrated in Fig. 2. From (5) and (11) we get the current 

eigenstates near the DBE 

 
2

1 , lower loops

, upper loops

j
n n

j

n n

I e I

I j e I











 

 

 (12) 

The resulting state vector near the DBE for the T/π and π /T 

configurations in Fig.1 are constructed from the voltage and 

current of the loops, and omitting details, one gets 

T / 1 2 1 1 3 4

2 2 2

/T 1 3 1 1 2 4

2 2 2

(0) ( ) 1 ( ) ( ) ( ),

(0) ( ) ( ) 1 ( ) ( )

T
m m m

m

T
m m m

m

j j j O

j j j O

   

   





  

  

  
 

  
 

Ψ

Ψ

 

  (13) 

with m=1,2,3,4, and they are scaled such that the current 

(voltage) in upper (lower) ladder is unity in the T/π (π/T) 

topology, respectively. Near the DBE radian frequency d , the 

incremental phase angle is given by the 4th root 

1/41/4
( ) m ds a     , where we assume  

1/4
.  to be the 

principal fourth root, then  1, 1, ,ms j j   for d  , while 

sm = {j (1− j)/ 2 , − j (1− j) / 2 , j (1+ j) / 2 , − j (1+ j) / 2 }, 

for d  . Complex branches of the dispersion are shown in 

Fig. 2(b).  As such, we have four solutions for   except at the 

DBE frequency where all states coalesce to a single degenerate 

state with 0  , for d  . As mentioned in Section II, for  

d   a stop band forms and inhibits signal flow along the 

double ladder since all  solutions are complex-valued.  

IV. RESONANCES IN DOUBLE LADDERS WITH FINITE NUMBER 

OF CELLS 

A. State Vector and Boundary Conditions 

We now consider a lossless circuit with N unit cells (versus 

infinite cascaded unit cells as in previous sections) as in Fig. 4, 

whose unit cell is depicted in Fig. 1(c-d), with a signal generator 

and terminal impedances, as depicted in Fig. 4. Other 

terminations would not alter the conclusions of this Section. In 

general, close to (but not exactly at) the DBE, the state vector 

( )nΨ  at the nth node in the circuit (n = 0,1,2,…,N) is written in 

terms of the eigenvectors  (0)mΨ  of (2) at location n = 0 as 

 
4

1

( ) (0)mj n
m m

m

n c e




 Ψ Ψ   (14) 

with 1,2,3,4m   and mc  being unknown coefficients which 

indicate the weights of the four periodic eigenstates excited by 

the generator. (Note that exactly at the DBE frequency the 

expansion should be done with generalized eigenvectors since 

they form complete basis.) The weights cm’s depend on left and 

right boundary conditions (BCs), i.e., the all terminations.  In 

the case seen in Fig. 4, the upper node at node n = N is 

terminated with a load impedance LZ , and a generator with 

voltage gv  and impedance LZ   is located at the upper ladder 

node n = 0. The lower end nodes are shorted in this specific 

example. These BCs put constrains on the state vectors at n = 0 

and n = N leading to  

 
 

 

1 1 2

1 1 2

(0) (0) 0 (0) (0) ,

( ) ( ) 0 ( ) ( )

T

g L

T
L

v Z I I I

N Z I N I N I N

  
 



Ψ

Ψ

 (15) 

 

 
 

B. Transfer function and DBE resonance 

We define a voltage transfer function as 

1 1( ) ( ) / (0)FT V N V   that is calculated numerically using the 

transfer matrix method and depicted in Fig. 5 varying as a 

function of normalized angular frequency near the DBE for the 

T /  topology in Fig. 1(c), assuming L LZ R  to be purely 

real, and taking /L cR Z L C   as an example. For clarity 

we also plot the quantity  1( ) / / 2gV N v  which, for the circuit 

in Fig. 4, is always less than or equal unity. Circuit simulations 

 
 
Fig. 4.  A double ladder finite size array driven at one end with a voltage 
generator. The upper nodes are loaded with impedance Z L at both ends. 

The lower end nodes are grounded at both ends.  
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were also carried out using Keysight ADS and the results in Fig. 

5(b) show identical match between the transfer matrix analysis 

and ADS simulations for the voltage transfer function (and all 

other circuit quantities, not reported here for brevity).  

Several resonances are observed at angular frequencies ,r k

, at which 1 1( ) (0)V N V  or 1( ) / 2gV N v , for a lossless 

circuit, and k is the order of the resonance with k =1,2, 3,…, d, 

in the close vicinity of the DBE. The closest transmission 

resonance’s frequency to DBE radian frequency ωd, denoted by 

ωr,d (i.e., with subscript k=d) is the narrowest and the most 

significant. We show here how the transmission resonance 

mode can be analytically calculated using the asymptotic 

 
expansion for the eigenstates near the DBE, discussed in 

Section III. Since the transmission resonance angular frequency 

ωr,k is in close vicinity of the DBE, i.e., relation (11) is still 

satisfied.  At the transmission resonance, the input impedance 

seen to the right at n = 0 from the generator side is equal to LR  

for the lossless and symmetric double ladder circuit in Fig. 4. 

  Therefore, the state vectors’ quantities, i.e., voltage and 

current at the two boundaries at n=0 and N depicted in Fig. 6 

are equal in magnitude but vary in phase thanks to the symmetry 

of the circuit, and both BCs in (15) are related via 

,( ) (0)r kj
N e


Ψ Ψ , where r,k represents the accumulated 

phase shift across the N cell double ladder. Here we aim also at 

calculating r,k in terms of r,k (ωr,k) which is the periodic (real 

and positive) phase shift of the eigenstate across one unit cell at 

the transmission resonance radian frequencies. We analytically 

evaluate the resonance frequency ωr,k as well as the state vector 

at any location in the circuit at resonance by carrying out the 

following steps: Using (14) and the BCs in (15) we construct a 

system of equations to calculate the cm coefficients, as a 

function of frequency.  Once the cm coefficients are obtained as 

a function of frequency, the state vector at any location in the 

circuit is readily found from (14). Subsequently, the resonance 

frequency ωr,k, and phase shift   r,k are found by applying the 

resonance condition  ,( ) 1F r kT    or equivalently |V1(N)| = 

|V1(0)|. In the following we provide analytic expressions of the 

resonance frequency, transfer function and state vectors.  

The possible transmission resonance angular frequencies ωr,k 

(or equivalently we calculate the phase shift r,k  at ωr,k since 

the asymptotic dispersion relation is known from (11)) near the 

DBE are obtained by solving transcendental equation 

   
2

, , , , ,tanh( )cot( ) tan( )coth( ) 16c

L

Z
r k r k r k r k r kR

N         

for ,r k , where we have defined , , / 2r k r kN  , and 

, ,( )r k r k      is obtained from (11). It can be easily shown 

from (16) that for large load resistance, L cR Z , the 

resonance frequency shifts (slightly) away from the DBE to 

lower frequencies, whereas for low load resistance L cR Z  

the resonance frequency tends to approach the DBE frequency. 

At the resonance angular frequency ωr,k obtained from (16), the 

total phase shift r,k of the N double ladder circuit at resonance 

ωr,k is obtained from 

 

 
   
   

, ,,2

, ,

tan tanh
tan

2 cot coth

r k r kr k

r k r k

 

 

 
 

 
  (17) 

Currents at any node n = 0,1,2,…,N in the double ladder are 

calculated as the state vector current elements, at frequencies 

,r k  that are close to the DBE as 

 

 

0
2
,

1 2 3 0 1

2 0 , 2 3 0 1

( ) cos( ) cos( ) sin( ) sin( ) ,

( ) cos( ) cos( ) sin( ) sin( )

r k

I
n n n n

r k n n n n

I n a a j a a j

I n I a a j a a j


   

    

   

   

                       (18) 

where , ,n r k r kn    , and  , / 2
0 / 4r kj

g cI jv e Z


  with  

 

, ,

, ,

2 2
0 1

, ,

2 2
2 3

, ,

cos( ) cos( )
, ,

cos( ) cosh( )

sin( ) sin( )
,

sin( ) sinh( )

r k r k

r k r k

r k r k

r k r k

a a

a j a j

 

 

 

 

  

  

 (19) 

The transfer function of such circuit at any of the resonance 

frequencies ,r k  near the DBE is then obtained as  

 

Fig. 5.  (a) Transfer function for a finite double ladder with N =17 unit cells 

shown in Fig. 4, with and RL=Zc, defined as 1 1( ) ( ) / (0)FT V N V   and we 

also superimpose the quantity  1( ) / / 2gV N v . (b) Zoomed version of (a) 

around the DBE. The sharpest peak of  1( ) / / 2gV N v  is the one occurring 

at ,r d  , at which  1 1( ) (0)V N V . Symbols are relevant to ADS circuit 

simulations. 

 
 

Fig. 6.   Normalized loop currents nI   and nI  at the resonance frequency 

closest to the DBE, for a T / double ladder of N =17 unit cells. Two cases 

are considered: / 0.1L cR Z   (blue solid lines) and / 10L cR Z   (red 

dashed-dotted lines). Symbols are based on the asymptotic analysis, whereas 

lines are based on the exact calculations using the transfer matrix method, in 

very good agreement. For the case with /L cR Z = 0.1 (=10) the resonance 

normalized frequency , /r d d   is equal to 0.99995 (0.9998) respectively. 

The current is sampled only at the beginning of each unit cell. 
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20

L
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r k
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F r k N N

v
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j
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which implies that ,( ) 1F r kT   . As indicated earlier, the 

most prominent feature of the circuit is the transmission 

resonance closest to the DBE whose resonance frequency is 

denoted by ,r d , and is also found from solving (16) and by 

taking the angular frequency ,r k  that is closest to d . For 

illustration, in Fig. 6 we show the magnitude of the current in 

the double ladder made of N = 17 unit cells at the DBE-related 

resonance whose angular frequency is ,r d ,  for two cases of 

load resistance RL= 0.1Zc and RL =10Zc. Results in Fig. 6 show 

good agreement with the asymptotic analysis (symbols) in (18) 

and (19), and the exact one (lines) calculated using the transfer 

matrix method in Section II. Note that exactly at the DBE a 

general solution is represented as a composition of generalized 

eigenvectors discussed in Section II, therefore for resonances 

very close to the DBE, even if we have four independent 

eigenvectors, the solution still grows since it shows the DBE 

feature. Furthermore, the weights of those excited eigenstates 

depend on the load impedance as will be shown next. Such 

analysis provides insight into the behavior of the circuit, and 

importantly to analytically show what happens when loads 

change. Note that one can draw analogous conclusions for 

higher order ladder circuits operated at the points of 

degeneracy. 

C. Load resistance effect on transmission phase and 

resonance frequency 

The current distribution at the DBE resonance whose angular 

frequency is ,r d , in Fig. 6 for T /  double ladder, shows 

that most of the energy is concentrated in the lower ladder near 

the central cells. While nI  is not significantly changed by the 

load value, nI   is affected by the large or small load resistance 

compared to the characteristic impedance Zc. This is related to 

the weight of the excited state eigenvectors, namely cm in (14), 

required to match the BCs at the two terminations at n = 0 and 

n = N. It can be inferred that when the load resistance is low 

compared to the characteristic impedance, i.e., L cR Z , the 

coefficients cm’s of the two eigenstates vector with complex 

phase shift    are negligible in magnitude, compared to the 

same for the two eigenstates vectors with purely real phase shift 

near the DBE. On the contrary, for L cR Z , all the 

eigenstates are excited with comparable weights cm. This is 

observed from the numerical solution of (17) for the T /  

double ladder in Fig. 1. The opposite trend is observed for the 

/ T  double ladder, not shown here for brevity.  Moreover, 

the terminal impedance has an impact on the transmission phase 

as indicated in (16) and (17). To demonstrate that effect, we 

show in Figs. 7(a) and (b) the normalized DBE resonance 

frequency ωr,d /ωd and the total phase shift r,k/, respectively, 

varying as function of the normalized load resistance   /L cR Z  

for a double ladder of N = 16 and N = 17 unit cells calculated 

using the transfer matrix method developed in Section II. As 

seen in Fig. 7(a), the resonance frequency slightly changes 

(scale is zoomed to show the insignificant variation) whereas 

the change in phase shift in Fig. 7(b) is significant when the 

load varies from low to high, though it varies slowly. This can 

be also inferred from solving (16) and (17). The total phase shift 

at resonance r,k  varies from ~ 0 rad  for low impedance  loads 

to ~   for high impedance loads, for odd number of cells (vice 

versa for even number of cells). However, the resonance 

frequency always shifts slightly to lower frequencies than the 

DBE frequency as load impedance increases. We also use 

Keysight ADS for simulating the circuit behavior and the 

results in Fig. 7 show identical match between the transfer 

matrix analysis and ADS simulations. 

D. Load impedance effect on total Quality factor 

The loaded or total quality factor, denoted by Qtot, of a 

reactive circuit [pp. 302, 37] such as the one in Fig. 4 is defined 

as 

 
 

tot
r e m

l

W W
Q

P

 
   (21) 

where , , ande m lW W P  are the total time-average stored electric 

energy, stored magnetic energy, and power loss, respectively, 

given by  

  
2 4

2 2

1 1

1 1
,

2 4

N N

e Cp m Lq

p q

W C V W L I
 

     (22)  

and  2 21
1 12

| (0) | | ( ) |l LP R I I N  , all at ωr,k. For simplicity 

here we consider only circuits with no internal losses, and losses 

occur only at the termination load. Here  CpV   and  LqI   are the 

voltage across the pth capacitor and the current in the qth 

inductors in the double ladder circuit, respectively, that are 

 
Fig. 7.  (a) Small variation of the resonance frequency of the T/π double 

ladder circuit closest to DBE varying as a function of the load impedance. 

(b) The corresponding transmission phase 
,r d .  Cases with for N = 16 and 

17 cells are shown. Identical results are obtained using transfer matrix as 

well as ADS. 
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excited by the generator, and are easily related to the node 

voltages and currents. For the symmetric T/ double ladder 

circuit we calculate the loaded Qtot factor of the resonance at 

,r d  and show it in Fig. 8 versus load impedance. Here we use 

the transfer matrix method to obtain the state vector voltage and 

current at any node in the circuit, thereupon we use (21) to 

numerically calculate the loaded Qtot factor.   Indeed, the loaded 

Qtot has a minimum at the same value of RL where the total 

phase shift ,r d , in Fig. 7(b), has the steepest slope. In the 

Appendix we provide an analytic expression for the loaded Qtot 

factor using the asymptotic analysis developed in this paper for 

large N. It can be inferred that tot tot,min coshQ Q 2

( / )L cR Z   where   is a fitting constant (see the Appendix). 

Indeed, the loaded Qtot varying as a function of RL has a 

minimum value denoted by tot,minQ  that occurs at a certain load 

impedance RL,min, for a fixed ladder size. Therefore, we notice 

the important property that Qtot of the resonant state of the 

circuit close to the DBE exhibits slight dependence on the load 

value RL, since the variations in r,d with loading are smooth as 

seen in Fig. 7(b), contrary to what happens in single ladders 

which is discussed in the next section. It is worth mentioning 

that it is important to study the behavior of  Qtot,min occurring at 

RL,min, because such load RL,min corresponds to the maximum 

 
power delivered to the load in oscillators [36]; which also 

would be the preferable load for minimizing phase noise [the 

reader is referred to [36] for preliminary investigation of the 

double ladder oscillators].  Note that such unusual behavior of 

the Q factor is often referred to as giant resonance [4], [5], [10], 

[37]. Here we demonstrate rigorously the unusual behavior of 

the DBE resonance of double ladders in terms of stability of 

resonance frequency against loading and the scaling of the 

loaded Q factor. 

 We also report how Qtot changes with a reactive load, in 

which the load impedance is given as L L LZ R jX  . The 

reactive component of the load contributes to increasing Qtot for 

a lossless double ladder, as can be seen in Figs. 9(a) and (b), for 

both capacitive and inductive loads. Remarkably, the Qtot is 

stable (independent of the reactance value) within the range 

1 / 1L cX Z    especially for / 1L cR Z  .  

V. SINGLE LADDER VERSUS DOUBLE LADDER CIRCUIT 

COMPARISON 

We compare transmission phase characteristics across 

ladders of finite size as a function of the load resistance RL for 

the two cases of single and double ladders, supporting an RBE 

and a DBE, respectively. A single ladder is constructed by 

cascading unit cells and terminating both ends by ZL, with both 

conventional T and   topologies, in which the inductors and 

capacitors L and C have the same values as in their double 

ladder counterpart (Fig. 1). Accordingly, these periodic single 

ladder circuits develop an RBE, occurring at an angular 

frequency that coincides with the DBE angular frequency 

1/d LC   of the double ladder. For the sake of assessment, 

we compare single and double ladder of the same size, i.e., same 

number N of unit cells, in addition to having the same 

termination impedances for the double and single ladders. We 

compare four topologies, two pertaining to double ladders (

T /  and / T  topologies as in Fig. 1) and two pertaining to 

single ladders ( T and   topologies as in Fig. 1). The total 

phase shifts across the single/double ladders, namely r,d, are 

defined as the phase of the transfer function 

, 1 1( ) ( ) / (0)F r dT V N V   calculated at their respective 

transmission resonance angular frequencies that are the closest 

to 1/d LC   in each of the four cases (recall that some 

properties of band edge resonance in RBE periodic structures  

are discussed in details in [4], [38]). In Fig. 10 we show the 

transition of the total phase shift r,d varying as a function of the 

load resistance RL for four topologies for the resonance closest 

 
Fig. 8. Loaded Quality factor versus load resistance at the DBE resonance 

,r d  of a circuit with a finite number of unit cells (N =4, 8, 16). The quality 

factor never decreases to low values for any loading. The minimum quality 

factor for each given N-length, 
tot,minQ , slightly shifts to lower load 

resistances when increasing the double ladder size N. 

 

 
Fig. 9.  Quality factor versus normalized load reactance (capacitive loads 
with X L <  0 on the left, inductive loads with X L > 0 on the right) at the 

DBE resonance ,r d  for various values of load resistance /L cR Z , and N 

= 16. 

 

 
Fig. 10.  Total transmission phase shift 

,r d across the circuit in Fig. 4 made 

of N=8 unit cells versus load resistance for double and single ladder 

topologies. Notice the abrupt phase transition in single ladder’s phase shift 
versus load impedance, compared to the double ladder. 
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to ωd. It is important to observe that the phase shift as a function 

of load is qualitatively different for the single ladder and double 

ladder, which is a non-intuitive feature for these circuits.  

The single ladder T-topology’s phase transitions abruptly 

from zero phase shift at low load resistance to   at some high 

load resistance. The transition is abrupt because the single 

ladder has a high Q transmission resonance at the RBE 

frequency for low-impedance terminations, that appears 

(disappears) for high impedance loads in the   (T) 

configuration [23]. In other words, in an N cell single ladder, 

the number of transmission resonances at very low and high 

load impedance is N+1 and N respectively for the T topology 

and vice versa for the   topology. This may render the single 

ladder circuit’s resonance unstable near this transition (a known 

phenomenon related to mode jumping [23] in single ladder  

multimode oscillators).  In contrast, the T /  double ladder 

topology (with the unit cell shown in Fig. 1(c)) transitions 

smoothly from   at low load resistance to 2 at high load 

resistance. The transition is smooth because the DBE resonance 

makes the transition by maintaining the resonant mode at a 

frequency lower than the DBE frequency and therefore it is 

stable. Thus the number of resonance modes close to the DBE 

is conserved; and the DBE resonance has a stable resonance 

frequency not prone to load variation contrary to what occurs 

for single ladders. This indicates that the total Qtot factor of the 

single ladder circuit can be quite different for some specific 

variations of load impedances and its resonance frequency is 

not stable. Obviously, for extremely high/low load impedances, 

loading effects on the Qtot  are insignificant.  

Now we compare in Fig. 11 the performance of a finite 

double ladder circuit to that of a finite single ladder in terms of 

Qtot when the load resistance varies. Note that despite the total 

inductance and capacitance of the single ladder unit cell is half 

that of the double ladder unit cell (Fig. 1), only the lower ladder 

in the DBE configuration stores most of the energy, in the sense 

that the upper ladder nodes are essentially shorted (RF ground) 

as well as the middle node in T/π lower ladder unit cell (see the 

current distribution in Fig. 6). Therefore, the total number of 

elements that store energy is effectively the same in both 

configurations. The Qtot factor of both circuits has a minimum 

when varying the load value, denoted as Qtot,min corresponding 

to a transition of the transmission phase shift as discussed 

earlier.  Note that the value of the load resistance at which  Qtot 

= Qtot,min differs from Zc as N increases, as discussed in Section 

IV. Observe also that the double ladder has higher Qtot,min for 

larger N (e.g., N = 8, 16) than the single ladder. Such load 

impedance at which  Qtot = Qtot,min diverges from Zc more rapidly 

in the single ladder compared to the same in the double ladder, 

indicating that double ladders tend to maintain its resonance 

frequency and quality factor regardless of the load.  

As shown in Fig. 12 the minimum quality factor Qtot,min 

increases with increasing number of cells for both single and 

double ladders. However, for long ladders (i.e., for N > 5) the 

double ladder has significantly higher Qtot,min than single ladders 

Remarkably, the loaded quality factor for a double ladder scales 

as Qtot,min N 5 while the same for the single ladder scales as 

Qtot,min N 3. For small sized ladders (N < 5) the single ladder 

may have comparable loaded quality factor since the DBE 

feature rises for sufficiently large N.  

For these reasons, double ladder oscillators are the immediate 

application of such resonance circuit that provides for low 

 
threshold as well as stable oscillator frequency to drive a 50 Ω 

impedance load, without the need of external current mode 

logic (CML) buffers to drive such load.  

VI. CONCLUSION 

We have presented for the first time a comprehensive 

theoretical formulation that explains the physical behavior and 

the loading properties of double ladder periodic circuits with a 

fourth order degeneracy. We have demonstrated that a periodic 

circuit whose unit cell is made of only five lumped elements 

exhibits a degenerate band edge in the phase-frequency 

dispersion relation; and we have shown analytically the 

eigenstates (voltage/current) behavior of such periodic circuit 

near the DBE. We have also analytically derived the transfer 

function, resonance frequency and the total quality factor near 

the DBE in such double ladders. The analytical theory 

developed here can be utilized to analyze and design other DBE 

structures.  

The double ladder circuit has several advantages over an 

equivalent single ladder of the same size, in terms of stability 

of the resonance frequency and quality factor against loading 

 
Fig. 11. Quality factor versus normalized load resistance RL/Zc for both 

single and double ladders.  Notice how it never reaches very low values, for 

any loading, especially for circuits with larger number of unit cells. Double 

ladders show smaller variation of quality factor. 

 

 
 

Fig. 12.  Minimum quality factor tot.minQ  vs number of unit cells N (in log-

log scale) for double ladders (squares) and for single ladders (circles). 
Curves are fitted with N5 and N3 trends respectively (lines). For circuits 

having more than 5 unit cells, the double ladder has always larger loaded 

quality factor and has the special growing trend as N5. 
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effects. A double ladder exhibits unusual scaling of the loaded 

Qtot  as N5, where N is the number of unit cells, versus that of the 

single ladder that scales as N3. The finite double ladder is less 

sensitive in several respects to variation in the load resistance 

and has a higher Qtot than the single ladder for somewhat large 

N. Moreover, a double ladder may provide for a low-threshold 

resonance conditions for oscillators, with the property that the 

threshold as well as oscillation frequency is weakly dependent 

on the load as it will be shown in future. In particular, a double 

ladder would operate with a single frequency because the 

resonance near the DBE has the highest quality factor Qtot for a 

certain load, therefore, due to nonlinearity and saturation effects 

discussed in [36], the oscillation frequency will more or less 

coincide with the resonance at the DBE. In addition, the 

oscillation frequency is independent of loading contrary to 

conventional LC tank oscillator or even single ladder 

counterpart. Other applications of such circuit may include 

pulse forming delay lines, pulse compressors, filter, and 

distributed amplifiers.  

APPENDIX: ANALYTICAL EXPRESSIONS FOR THE 

TRANSFER MATRIX AND THE QUALITY FACTOR 

Although the results and conclusions reported in this paper 

are independent of the values of L, and C, yet we have used L = 

45 µH and C = 65 pF that provide for a DBE condition at 100.23 

MHz throughout this paper. These values of L and C can be 

obtained with commercially available discrete off-the-shelf 

components. We stress that the main circuit parameters are the 

DBE frequency and the characteristic impedance; not the 

precise value of L and C. Yet, values and frequency can be 

properly scaled, and other circuit topologies can be devised as 

well. The transfer matrix of the unit cell in Fig. 1 is calculated 

by multiplying the 4×4 matrices of each individual element. The 

calculation is cumbersome, but after simplification the transfer 

matrix reads,  

2

1 (1 / 2) (2 )

1 2 / 2 (2 )
( 1)

2 (2 ) 1

2 (1 ) (4 )(1 / 2) (1 / 2) 1 (2 / 2)

j L j L

j L j L
A

j C j C

j C j C

 

 

 

 

      
 

     
 
    
 
        

T

 

where 22( / )d    . Analytic expressions for the state-

vector solution at resonances ωr,k is given in  [39].  

To calculate the quality factor of the double ladder resonator 

with N unit cells at the resonance frequency ωr,d, we 

conveniently assume that all the energy is stored in the lower 

ladder branch therefore the capacitor and inductors in the upper 

ladder and coupling branches store negligible energy. That is 

compliant with the characteristics of the voltage distribution 

seen in Fig. 6 and with having proven that 0nI    exactly at the 

DBE. Using the currents of the nodes as analytically expressed 

in (21), we write the loaded Qtot factor of the DBE resonant 

mode whose frequency is ,r d  as 

 

  

22
20 2 2

tot 2
2 2

,

( )(1)
1 ( 2)

(0) (0)/ 1

N

r d d

IQ I
Q A

I I 

 
    
    

  

where 0 /d cQ L Z . Note the term ((ωr,d/ωd)2 1)   in the 

denominator that is responsible for the large enhancement of 

totQ  near the DBE, since the resonance ,r d  very rapidly 

approaches d  as N increases. This term ((ωr,d/ωd)2 1)  is also 

strongly dependent on the load RL as discussed next. The second 

term in (A2) simply represents a sum of the magnitude of the 

normalized current in the circuit. We analyze two cases: 

 i) Variation of totQ  as a function of N for constant load 

resistance LR . In that case, the term ((ωr,d/ωd)2  1) is 

proportional to 
41/ N  [4], [29]. The contribution of the current 

summation term 
2 2

2 2 2 21 2 (1) / (0) ( / 2) / (0)I I I N I    to 

totQ  depends on the load, but for the specific circuit in Fig. 4 it 

is numerically shown that it is proportional to N, hence the Qtot  

of the circuit in Fig. 4 is proportional to 
5N , regardless of the  

specific value of the load LR .   

ii) Variation of totQ  as a function of load resistance LR  for 

constant N. The load resistance also affects the term ((ωr,d/ωd)2 

 1)  in the way described earlier in (19). It can be seen in Fig. 

7(a) that the resonance frequency is varying as a function of the 

load, in an asymptotic fashion as , tanh( / )r d L cR Z    

where   is a fitting constant, as also deduced from (19) and 

(20), and in Fig. 8 we have 0.3   for the specific circuit under 

analysis. Therefore ((ωr,d/ωd)2
  1) 2sech ( / )L cR Z   . 

Finally, the behavior of Qtot versus load resistance RL can be 

expressed as 2
tot cosh ( / )L cQ R Z    which confirms that 

the loaded Qtot factor has a minimum versus load impedance RL, 

at the location where the total phase shift changes, which 

happens close to the condition L cR Z .   
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