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1.  Introduction
Earth's outer radiation belt is a region of geomagnetically confined electrons and can contain particles with multi-
MeV energies. Changes in the flux of the multi-MeV populations may be reversible (i.e., adiabatic) or irreversible 
and can arise from a number of processes, including large-scale magnetic field fluctuations and wave–particle 
interactions. Analysis of phase space density (PSD) profiles (e.g., Green & Kivelson, 2004; Loridan et al., 2019; 
Selesnick & Blake, 2000; Shprits et al., 2017; Tu et al., 2009; Turner et al., 2010) is a commonly used tool in 
radiation belt research to determine the relative contributions of population changes due to ULF activity (mono-
tonic radial profiles) and local acceleration (growing peaks profiles; Allison & Shprits, 2020; Baker, Jaynes, Li, 
et al., 2014; Chen et al., 2006; Iles et al., 2006; Olifer, Mann, Ozeke, Morley, & Louis, 2021; Reeves et al., 2013; 
Wu et al., 2020; Zhao et al., 2019). Shprits et al. (2017) noted that local deepening minima occurring in PSD 
profiles can also be indicative of fast localized loss processes, such as those resulting from resonant interactions 
with electromagnetic ion cyclotron (EMIC) waves studied here (e.g., Aseev et al., 2017; Blum et al., 2020; Capan-
nolo, Li, Ma, Chen, et al., 2019; Kim et al., 2021; Ma et al., 2020; Xiang et al., 2017).

EMIC waves are highly efficient at scattering multi-MeV electrons, and can play a major role in the occurrence 
of rapid depletions in the heart of the radiation belts (Shprits et al., 2013, 2016, 2018; Qin et al., 2019; Ukhorskiy 
et al., 2010; Xiang et al., 2017). At the outer boundary of the electron radiation belt, electrons can also be rapidly 
depleted by the combination of magnetopause shadowing and outward radial diffusion (Elkington et al., 2003; 
Hudson et  al.,  2014; Tu et  al.,  2019; Turner et  al.,  2012; Ukhorskiy et  al.,  2009; Xiang et  al.,  2017). ∼36% 
of geomagnetic storms result in a depletion of multi-MeV electrons, while for lower energies, this percentage 
is significantly lower, suggesting energy-dependent loss (Drozdov et al., 2019; Turner et al., 2019). Although 
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studies have shown simultaneous observations of electron depletions below 1 MeV and EMIC wave activity (e.g., 
Capannolo, Li, Ma, Shen, et al., 2019), EMIC waves typically only resonate with higher energy electrons (Cao 
et al., 2017; Kersten et al., 2014; Mourenas et al., 2016; Zhang et al., 2016), with a minimum resonant energy 
commonly reported at ∼2 MeV. Whether EMIC waves affect lower energy electrons remains an open question 
(e.g., Ripoll et al., 2020). Despite observed EMIC waves often being very radially localized (Matsuda et al., 2021; 
Usanova et al., 2008, 2016; Usanova & Mann, 2016) and transient (e.g., Blum et al., 2016, 2017, 2021; Wang 
et al., 2017), studies have explored their importance for local multi-MeV electron loss (e.g., Cervantes, Shprits, 
Aseev, Drozdov, et al., 2020; Drozdov et al., 2017, 2015; Xiang et al., 2018), however, the overall impact of EMIC 
waves on radiation belts as a whole is a subject of ongoing research (e.g., Ripoll et al., 2020). The consequences 
of EMIC wave activity to the overall shape and dynamics of the radiation belts still remains unknown.

To address the open questions raised above, here we perform analysis of observed PSD profiles to identify 
when fast localized loss occurs and explore the effect of EMIC waves. In this study, PSD minima are automat-
ically identified using 1 year of Van Allen Probes and GOES observations (1 October 2012–1 October 2013). 
Dropouts in the electron fluxes occurring in conjunction with PSD minima are identified. We consider whether 
the affected energy range of where PSD minima are typically observed is consistent with the current theory of 
EMIC wave–particle interactions. Long-term simulations with the VERB model are performed, including and 
excluding EMIC wave activity and minima in the modeled PSD profiles that are identified. We determined the 
values of first and second adiabatic invariants (μ and K) for which minima are found, and compare them to the 
corresponding values from observations. How frequently the PSD minima corresponds to the multi-MeV electron 
flux depletion helps us to determine the significance of the fast-localized losses caused by EMIC waves in the 
dynamics of the radiation belts.

2.  Data
For the electron flux and PSD analysis in this work, we use Van Allen Probes (Spence et al., 2013) and Geosta-
tionary Operational Environmental Satellite (GOES) observations (e.g., Meredith et  al.,  2015; Rodriguez 
et al., 2014). The Van Allen Probes are two identical spacecraft (A and B) orbiting at low inclination (less than 
18°) between ∼1.5 and ∼6 Earth radii, while GOES satellites operate at geostationary orbit. In this study, we 
use the GOES-15 satellite data from the Energetic Proton, Electron, and Alpha particle Detector (EPEAD; ener-
gies >800 keV and >2 MeV) and the Magnetospheric Electron Detector (MAGED: energies ∼30–∼600 keV). 
Electron flux measurements from the Magnetic Electron Ion Spectrometer (MagEIS; energies ∼30 keV up to 
∼4 MeV; Blake et al., 2013) and the Relativistic Electron Proton Telescope (REPT; energies ∼2–10 MeV; Baker 
et al., 2013) are used from the Van Allen Probes. Baker, Zhao, et al.  (2019) showed that GOES-15 and Van 
Allen Probes flux measurements showed good agreement when spacecraft were physically close, and hence, we 
omit extra intercalibration between the datasets. We calculate PSD using a 5-min averaged flux measurement. 
The adiabatic invariants, equatorial pitch angle, and L* were calculated using the TS05 magnetic field model 
(Tsyganenko & Sitnov, 2005) and the International Geomagnetic Reference Field (IGRF) internal magnetic field 
model.

3.  Methodology
To perform the search for PSD minima, we use automatic identification of the local minima and maxima along 
the profile. Extrema were identified numerically. The results were validated against manually found PSD minima 
from Aseev et al. (2017). Note that Aseev et al. (2017) used fewer than 2 months of observations, three values 
of the first adiabatic invariant, μ, and one value of the second adiabatic invariant, K. In our investigation, we 
extended the period of study (1 October 2012–1 October 2013) and the range of μ and K, as detailed below.

3.1.  Data Preparation

The Van Allen Probes and GOES data are processed to obtain PSD in the extended range of μ ∈ [1,000, 5,500] 
MeV/G (10 values, distributed linearly with the step of 500 MeV/G), and K ∈ [0.001, 1] G 1∕2RE (10 values, with 
variable steps, e.g., K = 0.001, 0.003, 0.007, 0.01…1 G 1∕2RE, see Figure 3). To obtain selected values of μ and K, 
we used interpolation, excluding points outside of the interpolation interval and measurements that were lower 
than the background level determined similarly to Shprits et al. (2018). PSD is binned into steps of 0.1 L* along 
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each orbital pass (separating inbound and outbound passes) of Van Allen Probes A and B, taking the median 
within each bin, and extended the coverage at high L* using GOES observations.

As the search for the PSD local minima depends only on the shape of the profile, we normalized PSD profiles 
according to Equation 1:

����. ��� =
���(�∗)

∫ �∗=5.5

�∗=3.5 ���(�∗)��∗
� (1)

We search for local minima in the range L* ∈ [3.5, 5.5], as multi-MeV electrons do not penetrate into the low 
L-region (see Baker, Jaynes, Hoxie, et al., 2014).

3.2.  Determining the PSD Minima Search Method

Figure 1a shows an example of a processed PSD profile. To determine appropriate criteria for classifying local 
minima, we calculate the ratio between the local minimum and the smallest adjacent local maximum. In Figure 1a, 
the smallest local maximum is located at L* = 5.5, at the edge of the PSD profile, and the resulting ratio is 1.93. 
A minimum is then identified if this ratio is larger than the ratio threshold (green line in Figure 1a). Additionally, 
to exclude small variations that can result in a single point local minimum, we require that at least two points are 
below the ratio threshold. Hence, the narrowest localized PSD minimum that can be defined by this algorithm 
is 0.2 L* wide. In this study, as we focus on the effect of localized losses, we employ an additional criterion that 
PSD at the local minimum must be lower than for the previously available satellite pass. This criterion ensures 
that we only detect deepening minima.

Figure 1.  (a) Example of processed and normalized PSD profile (blue line). Purple and red markers show a local minimum and two local maxima. Green line is the 
ratio threshold below which the PSD minima are identified (green markers). Dashed profiles correspond to the PSD at the previously available pass, showing that the 
identified minimum is deepening. (b) Formation of the PSD minima between 9 October and 29 November 2012. Red points - automatically identified PSD minima (at 
least one per day). Blue points - days without formation of PSD minima. Purple circles - PSD minima identified by Aseev et al. (2017).
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After establishing the identification criteria, we select the ratio threshold based on PSD minima that were manu-
ally identified by Aseev et al. (2017) in an interval between 9 October and 29 November 2012, which showed 
multiple events of enhanced EMIC wave activity observed on the ground (Usanova et al., 2014). In their study, 
PSD profiles were analyzed for μ = 2,500, 3,500, 4,500 MeV/G at K = 0.1 G 1∕2RE, and eight events of pronounced 
minima were found. Figure 1b shows the number of days when PSD minima are detected using our algorithm in 
comparison to the events manually found by Aseev et al. (2017). We successfully identify the previously detected 
PSD minima when the ratio threshold is set to ≥1.2. Increasing the threshold led to not identifying all minima 
from the Aseev et al. (2017) study. Our algorithm identified more events than Aseev et al. (2017), because the 
authors only focused on the first appearance of the pronounced PSD minima. Several identified PSD minima are 
persistent and continued to decrease after the initial appearance. In Section 4, we compare the identified PSD 
minima events throughout the entire 1-year period to associated electron flux depletions to identify the PSD 
minima driven by localized loss.

Using our algorithm, we perform the search of PSD minima for the 1-year period and, following Aseev 
et al. (2017), the found minima are grouped daily. To confirm that these PSD minima are a result of EMIC wave 
activity, we perform a numerical simulation using the Versatile Electron Radiation Belts (VERB) code.

3.3.  The VERB Code Simulations

In order to perform long-term simulations (from 1 October 2012 to 1 October 2013) with and without EMIC 
waves, we use a similar model setup as in Drozdov et al. (2017) (see Text S1 in Supporting Information S1). The 
VERB code solves the Fokker-Planck equation using an approach of a single grid of modified adiabatic invar-
iants (Subbotin & Shprits, 2012). The simulation includes Kp-driven hiss (Spasojevic et al., 2015) and chorus 
(Zhu et al., 2019) waves; constant lightning-generated whistler waves and very low frequency (VLF) waves from 
man-made transmitters (Subbotin et al., 2011). When enabled, EMIC waves (Meredith et al., 2014) are param-
eterized by solar wind dynamic pressure according to Drozdov et al. (2017) (see Figure S1 in Supporting Infor-
mation S1). The plasmapause location is defined by Carpenter and Anderson (1992). We use the Kp-dependent 
electromagnetic part of Brautigam and Albert (2000) radial diffusion parameterization, which is consistent with 
our previous simulations, and provide optimal performance based on the comparative analysis among other radial 
diffusion parameterizations (see Drozdov et al., 2021). The initial and outer boundary (L* = 5.5) conditions are 
set by Van Allen Probes measurements. Other boundary conditions and the size of the simulation domain are the 
same as in Drozdov et al. (2017), and the simulation timestep is set to 1 hour.

3.4.  Searching for Multi-MeV Electron Flux Depletion Events

Identifying multi-MeV electron flux depletions allows us to associate PSD minima with observed electron loss. 
In order to find periods when the multi-MeV electrons show a net depletion, we bin the electron flux with a time 
step of 8 hr, and an L* step of 0.5. Then we perform a moving median analysis with a time window of 24 hr and 
calculate the difference between the logarithm of fluxes at the selected time and 24 hr later. We defined a flux 
depletion event if the flux decreases by a factor of 3 within the 24 hr period according to Equation 2:

Δ���10(�) = ���10
(

��0…�0+24ℎ

)

− ���10
(

��0
)

≤ ���10(1∕3)� (2)

We search for flux depletion events in nine energy channels using the REPT instrument (E ∈ [1.8, 9.9] MeV), at 
6 equatorial pitch angles (𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒 = 15

◦

, 30
◦

, 45
◦

, 60
◦

, 75
◦

, 85
◦ ), and at 7 L* values (L* ∈ [3, 6], ΔL* = 0.5). Note 

that we interpolate flux to obtain values at fixed equatorial pitch angles.

Figures 2a and 2b show an example of 1.8 and 4.2 MeV electron flux at 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒 = 30◦ and 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒 = 75◦ during the period 
of interest. Figures 2c–2g and 2h show the calculated difference of logarithm of flux according to Equation 2. 
Horizontal solid lines indicate the thresholds of the electron flux depletion and when the differences cross the 
threshold, an electron flux depletion event is identified (vertical dotted lines). There are significantly more deple-
tion events of 1.8 MeV electrons at 𝐴𝐴 𝐴𝐴∗ = 5 (97–120) than at 𝐴𝐴 𝐴𝐴∗ = 4 (∼20). For 4.2 MeV electrons, the number 
of depletions is similar at 𝐴𝐴 𝐴𝐴∗ = 4 and 𝐴𝐴 𝐴𝐴∗ = 5 (∼40–50). Enhancements of 1.8 MeV electrons are more common, 
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Figure 2.  Observed electron flux at (a)–(d) 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒 = 30
◦ , (e)–(h) 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒 = 75

◦ ; at (a), (e) 1.8 and (b), (f) 4.2 MeV. (c, d, g, h) 𝐴𝐴 Δ𝑙𝑙𝑙𝑙𝑙𝑙10(𝑗𝑗) constructed at L* = 4 and L* = 5, at 
1.8 and 4.2 MeV. Vertical dotted lines correspond to the found flux depletion events (Δ���10(�) ≤ ���10(1∕3) ).
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hence depletions are observed more often. However, 4.2 MeV electron enhancements are less common (e.g., 
Baker, Hoxie et al., 2019), but EMIC waves are more effective at scattering electrons at those energies.

4.  Results
4.1.  Distribution of PSD Minima

Figure 3a shows the distribution across μ and K, where deepening PSD minima are observed by Van Allen Probes 
and GOES. The statistics show that PSD minima are seen regularly, observed for hundreds of days in particular 
cells, over the year period. We see that for lower values of μ, PSD minima are seen most commonly at the highest 
values of K, and as μ increases, the most common K value for the deepening minima decreases. Figure 3b shows 
a similar histogram as in Figure 3a, with PSD minima identified from the output of the VERB simulation with 
EMIC waves. The distribution of PSD depletions across μ and K space very closely resembles the distribution 
obtained from the observations, both in terms of the typical μ and K coverage and the trends seen. This agreement 
suggests that the parameterized model of the EMIC wave diffusion coefficients used in the simulation well covers 
the typical μ and K values where the effects of EMIC waves are generally seen. A quantitative difference is, 
however, observed, which can be explained by the idealistic nature of the simulation results. The depletion of the 
PSD due to the EMIC waves strictly obeys the diffusion process, while observations include small variations from 
orbit to orbit. This leads to some over-counting of the persistent minima that are present after the electron flux 
depletion. The automatic algorithm periodically detects PSD at the minimum that is lower than on the previously 
available orbit, and therefore, counts it as an event, while the simulation results provide a stable and smooth PSD 

Figure 3.  Distribution of the PSD minima in μ and K space. Each cell corresponds to the number of days when PSD minima were detected. The distribution is 
constructed based on: (a) Van Allen Probe and GOES observations, VERB code simulation (b) with and (c) without EMIC waves. (c) EMIC wave pitch-angle diffusion 
coefficient at L = 4.
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change and count only the individual occurrences of the flux depletion. Applying harder criteria to the algorithm 
to counter this effect led to the disappearance of the events found by Aseev et al. (2017). Nevertheless, the results 
of the simulation with EMIC waves confirm the dynamics of multi-MeV electrons fluxes, as shown by Drozdov 
et al. (2017).

The VERB simulation, which does not include EMIC waves, results in a total absence of deepening PSD minima 
(Figure 3d). Therefore, all PSD minima in the simulation with EMIC waves are a result of EMIC wave activity. 
Figure 3c shows pitch-angle diffusion coefficients in μ and K space due to EMIC waves that are used in the 
simulation. Once again, there is a close resemblance between the distribution of the EMIC wave pitch-angle 
diffusion coefficient (Figure  3c) and where the deepening PSD minima were most readily observed in data 
(Figure 3a), suggesting that the quasi-linear theory for the energy range over which EMIC waves are resonant is 
well supported by the occurrence distribution of PSD minima observations. Additionally, the agreement between 
the observed and the modeled minima distributions shown in Figures 3a and 3b indicates that the observed PSD 
minima in Figure 3a are likely the result of EMIC activity.

4.2.  Conformity Between PSD Minima and Electron Flux Depletions

To ascertain the role EMIC wave-driven loss plays in the overall depletions in radiation belt flux, the depletion 
events identified in Section 3.4 are compared with the observed PSD minima. The first row in Figure 4 (a, b, c, 
and d) shows the statistics of all found flux depletions across different energies and L* for four values of equato-
rial pitch angle. No depletions are recorded at energies >7.7 MeV (deep purple color), simply because there is no 
electron flux above the background noise level. A noticeably large number of electron flux depletions occurred 
at L* > 5, with a distribution similar for different pitch angles, consistent with frequently occurring outward 

Figure 4.  (a, b, c, d) Distribution of the electron flux depletion events in L* and energy space at different equatorial pitch angles (from left to right column: 
𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒 = 30

◦

, 45
◦

, 60
◦

, 75
◦ , respectively). (e, f, g, h) Distribution of the electron flux depletion events occurring in conjunction with minima in PSD. (i, j, k, l) The 

percentage of the flux depletion events that are associated with PSD minima in comparison to all flux depletion events (average per L* is shown on top). Deep purple 
color corresponds to zero. White color corresponds to absence of the data.
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radial diffusion and magnetopause shadowing (e.g., Drozdov et al., 2019; Fei et al., 2006; Olifer, Mann, Ozeke, 
Claudepierre, et al., 2021; Pierrard et al., 2020, 2021; Xiang et al., 2017). The number of depletion events at L* 
> 5 decreases with increasing energy, because high-energy electrons occur less frequently in the radiation belts.

In order to compare the electron flux depletion events with the occurrence of PSD minima, we convert the ener-
gies and pitch angles at which depletions were identified to μ and K using a dipole magnetic field model and then 
search for PSD minima within ±12 hr. The second row in Figure 4 (e, f, g, and h) shows electron flux depletion 
events that are associated with PSD minima via this technique. There are significantly fewer depletion events at 
high equatorial pitch angle (𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒 = 75

◦ ) in comparison with lower pitch angles (𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒 < 75
◦ ) when the associated 

PSD minima restriction is applied. This is consistent with diffusion by EMIC waves since, alone, they do not 
typically affect electrons with equatorial pitch angles near 90°, but are very effective at lower pitch angles (e.g., 
Jordanova et al., 2008; Kersten et al., 2014; Shprits et al., 2016; Usanova et al., 2014).

The last row in Figure 4 (i, j, k, and l) shows the percentage of all the depletion events in panels a–d that are asso-
ciated with local deepening minima in PSD. Note that 𝐴𝐴 𝐴𝐴 = 1, 000𝑀𝑀𝑀𝑀𝑀𝑀 ∕𝐺𝐺 corresponds to energy of ∼1–4 MeV 
(depending on 𝐴𝐴 𝐴𝐴∗ at 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒 = 30

◦

− 75
◦ ) and 𝐴𝐴 𝐴𝐴 = 5, 500𝑀𝑀𝑀𝑀𝑀𝑀 ∕𝐺𝐺 corresponds to energy of ∼4–10 MeV. Excluding 

bins outside of the valid 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 K range, we find that the percentage of depletion events associated with local deep-
ening minima is dependent on the equatorial pitch angle. For the lowest equatorial pitch angle bin, on average, 
53% of the depletion events for L* < 5 have an associated minimum in the PSD profiles (47%–64% per L* bin), 
suggesting that EMIC wave scattering is partly responsible for the identified flux depletions at this pitch angle, 
despite the localized and transient nature of EMIC waves. At higher pitch angles, the percentage of depletions 
associated with PSD mimina decreases, showing 33%–34% for the 45° equatorial pitch angle bin; and 23%–33% 
at 60° per L* bin. Depletion events associated with PSD minima are very infrequent at the highest equatorial pitch 
angle considered (only 6% on average at L* < 5 at 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒 = 75

◦ , 3%–9% per L* bin, Figure 4l). The small percentage 
here is likely a result of the combination of pitch-angle scattering by hiss and chorus waves with EMIC waves 
(e.g., Drozdov et al., 2020). Figure 4 also shows that depletions with associated PSD minima are rarely observed 
at L* > 5 (1%–21%, on average, at 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒 ≥ 45

◦ , panels j–l) and, as such, the flux depletions observed in this L* 
range are likely to be primarily due to magnetopause shadowing (which is more effective with increasing pitch 
angles) and associated effects.

The large percentage of depletion events that are associated with PSD minima indicates that, very often, the 
depletion of the multi-MeV electron radiation belts is linked to fast localized loss processes originating from 
EMIC wave activity, consistent with previous results (e.g., Cervantes, Shprits, Aseev, & Allison, 2020; Ross 
et al., 2021; Xiang et al., 2018).

5.  Conclusions
In this study, we performed a statistical analysis of the occurrence of deepening PSD minima and explored their 
relation to multi-MeV flux depletions. We find that deepening minima in PSD, which can only be formed by a 
fast localized loss process, are commonly observed in the outer radiation belt (L* between 3.5 and 5.5) at multi-
MeV energies. The observed distribution across μ and K space of the PSD minima shows close agreement with 
both the values of EMIC wave diffusion coefficients as well as the distribution of PSD minima achieved in the 
VERB simulation with EMIC waves included. When EMIC wave activity was omitted from the simulation, 
deepening PSD minima were not identified. We therefore conclude that EMIC waves play a significant role in 
the formation of PSD minima in the radiation belts and that the quasi-linear theory for the electron energy range 
affected by EMIC waves is well supported by the observed occurrence distribution of PSD minima.

Electron flux depletion events were most frequently identified at L* > 5 but, of these, only 1%–21% (𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒 ≥ 45
◦ ) 

had associated PSD minima. We consider these depletions to be a result of outward radial diffusion and magne-
topause shadowing. Depletion events, which were associated with PSD minima, were rarely observed at high 
equatorial pitch angle (𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒 = 75 ), indicating the dominating role of other loss processes, aside from EMIC waves 
in this pitch angle range (despite possible EMIC wave scattering at lower pitch angle). For L* < 5, simultane-
ous observations of multi-MeV electron flux depletions and PSD minima occurred often (from 23% to 64%, on 
average, depending on pitch angle and L*). The large percentage of electron flux depletion events which were 
observed in conjunction with PSD minima profiles indicates the significant role of fast localized loss processes 
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in the dynamics of the multi-MeV radiation belts. In future research, we will investigate a longer period and 
extended energy range (including sub-MeV electrons).

Data Availability Statement
We thank the Van Allen Probe ECT team for providing the data (https://rbsp-ect.newmexicoconsortium.org/). 
The GOES measurements are available at the NOAA NGDC website (https://ngdc.noaa.gov/stp/satellite/goes/
dataaccess.html). The authors used geomagnetic indices provided by OMNIWeb (https://omniweb.gsfc.nasa.
gov/). The data to reproduce the figures are available at UCLA dataverse repository (https://doi.org/10.25346/
S6/B05T1T).
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