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ABSTRACT OF THE DISSERTATION

Optimal Integration of Battery Energy Storage and Transportation Electrification in

Distribution Grids

by

Behnam Khaki

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2019

Professor Rajit Gadh, Chair

Two pioneer states, California and New York, have set their ambitious targets to get 100%

and 70% of their electricity from renewable energy resources by 2045 and 2030, respectively.

Aligned with these endeavors, currently 19.2% of the electricity in California is coming from

the solar energy where the utilities are expected to add an additional 60% solar energy in the

next five years. To achieve this goal, Electrification- the transition from non-electric end-use

energy consumers to the electric consumers is a trend in the energy sector, as it facilitates to

have access to sustainable and clean energy infrastructure. The fact that 28% of the energy

in the USA is consumed by the transportation sector where 92% is provided by the fossil

fuel energy motivates Electrification strongly. This revolution is specifically happening in

the California state where 50% of the electric vehicle (EV) owners are living.

The increasing penetration of renewable energies, such as solar energy, as well as Electri-

fication in the electrical grids introduce new challenges for system operation and planning.

Solar energy, inherently, is intermittent and shows stochastic behavior which makes it a

non-dispatchable source of electricity. Therefore, the conventional models to capture its

generation profile are no longer applicable. Also according to a new report by National

Renewable Energy Laboratory (NREL) [MJL18], EVs are introduced as one of the most in-

fluential elements of Electrification. EVs can drastically change the load pattern, thus their

integration in the power grids is carefully observed by the electric utilities.
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To mitigate the stochastic behavior of solar energy and make it a dispatchable resource,

the energy storage can be utilized to capture its intermittency through the coordinated

charging and discharging sequences. That is one reason why the California and New York

states plan to integrate an additional 1.3 GW and 3.0 GW energy storage in their power

grids by 2024 and 2030, respectively. Moreover, EVs are controllable loads that provide

the flexibility and opportunity to shift their consumption profile according to the operating

conditions of the power grids. Nevertheless, the deployment of energy storage is challenging

as the generation profile of the solar energy should be modeled accurately, and an effective

and optimal controller should be designed to coordinate the charging and discharging of the

energy storage. Also designing an efficient charging load management system for EVs is a

difficult task since all the involved entities in the load management decision making, such

as the system operator, load aggregators, and the end customers, must be satisfied, and the

safe and stable operation of the grid should be guaranteed. Accordingly, the optimal load

management is a large scale problem, especially when it should be solved and repeated every

several minutes for the whole power grid.

The models proposed in the literature for the solar energy generation, load, and EV

charging demand modeling either can not capture their stochasticity accurately or are not

computationally efficient. Therefore, the coordination methods for energy storage as well as

EV loads are not effective in accommodating renewable energies and Electrification in the

power grids. In addition, the energy storage and load coordination methods are not scalable

and suffer from a considerable computation burden when the number of energy resource

units and controllable loads in the optimal decision-making increases.

In this dissertation, (1) modeling of the solar generation, load demand, and EV charging

load, (2) the integration of battery energy storage system (BESS) in the power grids, and

(3) the large scale accommodation of EV loads are addressed. For the modeling, a proba-

bility model based on kernel density estimator (KDE) is proposed which, comparing to the

previous models, provides a low-computation precise stochastic model. For the integration

of BESS in the electrical grids, a mobile BESS (MBESS) is prototyped to capture the ran-

dom behavior of the EV charging profile, reduce the charging demand cost and improve the
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reliability and resiliency of the charging service. The performance of MBESS is validated

through the experiments in the Civic Center parking structure, in the City of Santa Monica,

and it is shown that MBESS can effectively shave the peak load of the EV charging demand.

To address the lack of scalability in the previous load management methods, the distributed

optimization methods are used so that the optimal EV load coordination is solved through

an iterative negotiation procedure. The scalability of the proposed methods is coming from

the fact that each agent solves its desired problem locally while it exchanges the insensi-

tive limited information with the others. The proposed methods satisfy all the agents and

guarantee the power grid operation in the stability and safe region.

The proposed probability model is shown to improve the accuracy of the solar energy

profile up to 36.7%, the load demand profile up to 5.9%, and the EV charging parameters,

including the arrival time, required charging energy, and the departure time up to 26.6%,

49.3%, and 41.21%, respectively. In addition, the experiments with MBESS verifies that it

not only reduces the charging cost but also provides the emergency power to the charging

system in the case of failure in the power grid, which is called islanded operation. More-

over, through the numerical simulations using real data, it is validated that the distributed

multi-agent based methods for the load coordination can approximately decrease the conver-

gence time and the communication overhead by 94% while the computation burden for the

distribution system operator and the load aggregators reduces significantly. Also the load

coordination results validate the efficacy of the proposed frameworks in accommodating the

large populations of EV loads in the distribution grids by improving the voltage profile from

45% up to 93% and reducing the peak load from 50% up to 66%. The results show that an

efficient load management system is a necessity for Electrification integration without any

investment on the grid capacity expansion.
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CHAPTER 1

Introduction

1.1 Motivation

The integration of renewable energy sources (RESs) in the electrical power grids is increas-

ing at a fast pace. Two main reasons support this revolution in the energy industry: (1)

increasing the electricity demand dramatically is pushing the power grid operation close to

its capacity margins; (2) the traditional power generation stations located far from the end

consumers have a low efficiency and crucial contribution to the environment pollution. In

the United States, along with many other countries and industrial leaders in the world, strict

plans are mandating the replacement of the traditional sources of electricity with sustainable

and environment-friendly resources. Two major examples are the California and New York

states. Until April 2019, the data released by U.S. Energy Information Administration (EIA)

[eia] shows that approximately 35% of the electricity generation in California is coming from

the non-hydro RESs, and this number in New York is 7.5%. The two states have mandated

ambitious goals to supply 100% and 70% of their electricity sector with RESs by 2045 and

2030, respectively.

To meet the RES integration targets, not only the generation, but also the mix of

energy consumption is of vital importance. In addition to replacing the electricity end-

consumers with energy efficient technologies, the transition from non-electric to the electric

end-consumers, introduced as Electrification is a key factor for success. According to the

national renewable energy laboratory (NREL) report [MJL18], Electrification is mostly hap-

pening in two sectors, transportation and building, where the most influential elements are

the electric vehicles (EVs) and electric heat pumps (HPs). According to the EIA report re-
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leased in May 2019 [eia], one in four homes was all-electric in 2015, which shows a growth of

6% compared to 2005. To make it more clear that Electrification will be dominated by HPs,

let us have a look at the mix of electricity consumption in the residential and commercial

sectors in 2008 [eia], keeping in mind that these two sectors together consume 74.7% of the

total electricity in the United States. In the residential sector, 49.8% of the total electric-

ity, and in the commercial sector, 39.9% is consumed for heating, cooling, and ventilation.

These numbers verify the importance of HP loads in the future of energy and electricity

consumption.

In the transportation sector, however, there is still a considerable room for Electrification.

By 2018, 29% of the total energy is absorbed by the transportation sector [eia], 92% and 3%

of which are supplied by petroleum products and natural gas, and only 1% is provided by

electricity. In the USA, only 1 million EVs have been sold until September 2018 [doe, ins],

where 50% belongs to California [gre]. To meet the environment pollution reduction and

sustainable energy infrastructure goals, Electrification in the transportation sector needs

more investment certainly. California is a leading state in this field, where the government

has already passed the bills mandating petroleum use in cars and trucks to be cut by 50%

by 2030, and accommodating up to 1.5 million EVs by 2025.

1.2 Challenges

The integration of RESs, EVs, and HPs in the power grids introduces new challenges which

must be addressed otherwise the safe and efficient operation of the power grids is degraded.

The first challenge relates to the intermittent and stochastic behavior of the renewable ener-

gies, specifically solar, electricity load demand as well as the EV charging load Fig. 1.1. The

balance between the generation and demand must be always guaranteed in the power grids.

The solar energy, however, is available only during the day, and its peaks happen around

noon when the load demand is low. That is, a considerable discrepancy is observed between

the solar generation and load demand, which is known as Duck Curve Fig. 1.2. Duck Curve

can become worse by more penetration of solar energy in the power grid. In the electricity
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Figure 1.1: The stochastic behavior of solar energy (top), load demand (middle), and aggre-

gated EV charging load (bottom).

sector, solar energy is introduced as a non-dispatchable energy resource.

The EV charging load, depending on the user, can have different profiles. For the EV

chargers located in the residential sector, the charging demand starts in the evening and

ends in the morning, while in the commercial locations, the EV charging demand starts in

the morning and lasts until the afternoon. As discussed by NREL [MJL18], EV charging
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Figure 1.2: California Duck Curve [CAD].

load can drastically change the aggregated load demand profile which should be investigated

by the utilities.

To eliminate the discrepancy between the solar generation and load demand in the power

grids with rich integration of RESs and EVs, the first solution is to utilize energy storage.

The charging and discharging coordination of the energy storage, however, is challenging as

a reliable model is required to emulate the behavior and availability of RESs as well as the

fluctuations of the load, specifically EVs. This model can be used by the utilities or other

beneficiary entities to optimally coordinate the operation of the energy storage and provide

different grid or customer-side services.

Although energy storage can mitigate the intermittency and non-dispatchability of the

solar energy as well as the EV charging load fluctuations, relying on it as the only solution

is not practical. Studying the EV load profiles shows that they are often plugged-in for long

periods of time, which reveals their flexibility to participate in demand-side management

program where the load is shifted to the periods with more available energy from RESs, and

the power grid is not working close to its capacity boundaries. Nonetheless, there are three

challenges for EV load management implementation which should be addressed through

designing an effective load management system:

• Entities’ satisfaction: the benefit of the grid operator, load aggregators, and end-use
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customers should be considered in and satisfied by the load management.

• Computation burden: load management involves all the entities’ control and vari-

able parameters as well as the power grid constraints, which make it a large scale

optimization problem with significant computation effort.

• Entities’ privacy: each entity has its own constraints and variables which should not

be shared with others, otherwise its privacy might not be preserved. For example, the

EV’s arrival time, required charging energy, and departure time as well as building’s

occupancy are the private information of the grid customers which are used for optimal

load management.

1.3 Background

1.3.1 Solar Generation Modeling

Solar generation forecasting and modeling is a critical step for effective integration of pho-

tovoltaic (PV) solar panels in the power grids. The methods found in the literature provide

either deterministic [DDL13, WCC15, WYP17] or probabilistic models. However, as the

management of solar generation uncertainty is possible only with the stochastic optimization

methods, probabilistic methods are of interest. The probabilistic methods can be classified

into the statistical time-series, physics-based, and ensemble methods [SKR18]. The statistical

time-series methods use the historical observed data to find the best parameters of the proba-

bility models [ZW15, AGK18, AGK19]. These methods are featured by low computation bur-

dens, less expensive data collection setup, and descent accuracy [IPC13]. The physics-based

methods are able to forecast the solar generation by modeling the interaction between the

solar irradiance and the atmosphere components [AGK18]. The physics-based methods, how-

ever, are relatively expensive as they need a comprehensive measurement system and careful

calibration [NRF93]. The ensemble methods benefit from the combination of the single-

predictor methods to achieve a better accuracy [GPG16, BCD17, LZC18, ZLL19, WAM19],

nonetheless their computation burden is higher than the single-predictor statistical methods,
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and they need data collected for various parameters.

Due to less complexity and lower data measurement cost, the focus of this dissertation

is on the statistical time-series methods. In [ZW15], the authors use k -nearest neighbor and

kernel density estimation (KDE) to model the probability of solar power generation. Using

k -nearest neighbor, the closest historical data are found for training, and KDE is applied to

calculate the probability density function (p.d.f) of the solar generation. In [AGK18], the

correlation between different solar farms is utilized to improve the accuracy of the prediction.

Afterward, a spatio-temporal linear model is applied which its coefficients are calculated by

minimizing the residual sum of the squares method. Another spatio-temporal method is

proposed by the same authors in [AGK19], where they improve the scalability and speed

of their method by using an efficient feature selection approach. As using the neighboring

power plant production data raises the dimensionality and over-fitting issues, the authors

solve the quantile regression with least absolute shrinkage and selection operator (LASSO).

1.3.2 EV User Behavior Modeling

In the literature, a variety of methods have been proposed to model the stochasticity of

EV charging load demand [CTL12, ASD14, MQC15, WHQ15, LLY15, WWN17, LLL19].

In [CTL12], Gaussian distribution is used to model the arrival time and initial energy of

the EVs, while the authors in [ASD14] assume that the charging behavior underlays Pois-

son distribution. In [MQC15], the authors evaluate and compare the performance of several

methods including k-nearest neighbor, lazy-learning, and pattern sequence-based forecasting

to estimate the aggregated EV charging demand. Autoregressive integrated moving average

is proposed in [WHQ15] to predict the week-ahead aggregated EV charging load of the Uni-

versity of California, Los Angeles (UCLA) campus. It should be noticed that the aggregated

load estimation is applicable to the situations when there is no control on the EV charging

load, and the purpose is to coordinate the energy resources supplying the charging system. In

other words, aggregated EV load modeling is not practical when the purpose is to coordinate

the individual EV charging scheduling. KDE is used for EV charging estimation and control
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in [LLY15], where the authors calculate the probability model of the traveling distance and

end-time of the last trip for individual EVs. In [WWN17], KDE is proposed to estimate the

expected stay duration and charging energy of the individual EVs according to their arrival

time. The authors show the estimation accuracy using the data collected on the UCLA

campus, and apply the models to the optimal individual EV charging control problem. The

authors in [LLL19] propose to use Gaussian mixture model (GMM) to estimate both the

individual EV user behavior and the aggregated charging load. They validate the estimated

model using real EV data collected from the California Institute of Technology (CalTech)

campus and Jet Propulsion Lab (JPL) facilities.

In this dissertation, the focus is on the individual EV charging load demand, while the

proposed model is applicable to the aggregated EV load demand estimation as well.

1.3.3 EV Load Coordination

In the literature, there are two different structures for the integration of EV management

system (EVMS) in the distribution management system (DMS). In the first structure, EVMS

is introduced as a separate module which interacts with DMS [WCL15] to receive the infor-

mation about the available grid capacity for the EV charging load and to send the aggregated

EV load demand back to DMS after optimal scheduling. In the second structure, EVMS

problem, i.e. optimal scheduling of the EV charging demand and its corresponding con-

straints, is integrated with the optimal control and management of the distribution system

as a unified structure, and it is solved with the consideration of the power grid model. In

the following, these two structures are reviewed separately.

1.3.3.1 EVMS- A Separate Network Application

There is a rich body of literature proposing a variety of approaches for EVMS which fall

into two categories: centralized and distributed. In the former, a central aggregator (CA)

receives all the required data over the communication system from the dispersed EVs and

coordinates their charging demand. Then, the optimal charging profiles are sent back to
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EVs. In [CHD10], it is shown that the uncoordinated EV charging increases power loss and

voltage deviation, therefore the authors propose a centralized method where the EV owners

have no control over the charging profile, and their charging demand is controlled by CA;

a model predictive based algorithm is proposed in [TZ17] for total charging cost reduction

(CR), where the authors use the truncated sample average approximation to reduce the

complexity of their centralized method at the cost of performance degradation; the authors

in [WHW16] introduce a centralized event-triggered receding horizon (RH) method to reduce

EV charging cost in a charging infrastructure located in the UCLA campus parking; an

optimal strategy for vehicle-to-grid (V2G) aggregator is designed in [PZL17] to maximize the

economic benefit of EV aggregators by participation in frequency regulation while satisfying

EV owners’ load demand; a centralized algorithm is designed by the authors in [BNE18] to

flatten the netload fluctuations due to RESs using EV charging control; in [ZSS18], a real-

time EV charging scheduling is proposed where the computational complexity is reduced by

introducing a capacity margin and the charging priority indices; a centralized mechanism

is proposed in [PGM18] where a third-party entity coordinates a day-ahead bidding system

to optimize the global bid; a transactive EV charging management is presented in [LWS18]

to maximize the real-time profit based on the net electricity exchange with the grid; and

a two-layer centralized EV charging control (EVCS) is proposed by [MVS19] where each

aggregator optimizes active power of the EVs in the first layer, and the second layer provides

reactive power management for loss reduction in the power grid. Despite the effective EV

charging results, the centralized approaches have several issues: (I) they can not preserve

the EV owners’ privacy as sensitive charging information (e.g. arrival and departure times

as well as their battery energy level and capacity) must be communicated with CA, (II) they

suffer from the curse of dimensionality when EV penetration increases in the power grid, and

(III) they are vulnerable to a single point failure, i.e. if CA faces any problem, the whole

system breaks down. In the distributed approaches, which address the above issues, CA

coordinates the EV charging demand through communication with the EV charger agents

or EV aggregators (EVAs). Instead of solving the large-scale scheduling problem centrally,

it is solved through a distributed and iterative procedure in collaboration with the EVA and
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EV agents.

Among the distributed methods, two different EV charging infrastructures (ECIs) are

considered: (I) bilayer structure which consists of either EVA and EVs or CA and EVAs,

and (II) trilayer structure which includes CA, EVAs, and EVs. Considering the bilayer

structure, the authors in [GTL13] propose a distributed charging scheduling which is solved

using the projected gradient descent and provides valley filling; in [RGJ17], the EVCS prob-

lem is formulated as the exchange problem which is efficiently solved by the alternating

direction method of multipliers (ADMM) [BPE11] for the valley filling and CR; the authors

in [XWC18] use a water filling algorithm incentivizing the EV owners to shift their charg-

ing demand to the off-peak hours; a mean-field game theory-based method is proposed in

[TK18] to provide valley filling and reduce the battery degradation cost; the work is further

expanded in [SK19] by considering the plug-in hybrid EVs, in which the propulsion provided

by gasoline gives more flexibility to EVs for participation in V2G services [KT05]; in[LRK19],

a distributed method is proposed where each EV communicates only with its neighbors to

reduce the communication overhead, and the optimal charging problem is addressed by the

full Nash Folk theorem; in [YZW13], the authors propose a bi-level programming-based hi-

erarchical decomposition EVCS where the objective is to reduce the generation unit cost for

CA; the authors in [MGT14] propose three algorithms based on the projected gradient de-

scent [GTL13] and ADMM, where EVAs communicate with their neighbors, and each EVA

centrally calculates the optimal charging profiles of EVs which it supplies; the proposed

distributed bilayer EVCS in [CLY18] reduces the charging cost and increases EV owners’

convenience, where EVAs update their aggregated charging load sequentially, not in parallel;

the authors in [SSG18] propose a decentralized method where the EVAs will be notified

by CA if their aggregated charging load results in the transmission line congestion. EVAs

reschedule all the EVs’ load demands and recalculate the available V2G capacity to relieve

the congestion. Considering the on-site uncertain wind generation, a distributed method is

proposed in [YJD18] to increase the local wind energy utilization and satisfy the EV load

demand through penalizing energy purchase from the grid.

Considering the trilayer EV charging structure, the authors in [WCT12] use ADMM to
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schedule the EV charging demand with the purpose of user convenience maximization, which

is characterized by the EV battery’s final state of charge; a distributed approach based on

the sub-gradient method is proposed in [QXS14] to satisfy customers’ charging demands

and the coupled constraints relating to the EVAs’ feeder capacity; the EVA constraints,

however, are relaxed in [QXS14] and included in the Lagrangian of the cost function which

results in sub-optimality of the coordinated charging profiles; the authors in [LLa14] design

a distributed framework for V2G scheduling where EVAs’ revenue is neglected, and the

gradient projection method is used to solve the optimal V2G scheduling problem which is

not computationally efficient, and the convergence of the method depends on the number of

EVs; the hierarchical framework designed in [SWW16] includes two iterative procedures: the

first procedure is between CA and EVAs, and the second one is between each EVA and its

EVs; the framework suffers from considerable communication overhead and computational

burden, and it does not provide flexibility for the agents to have their desired objective

function; in [LBM16], the EVCS problem is modeled as a weakly concave function which

is solved iteratively between the agents by the projected gradient method; to have a fully

distributed EVCS, the authors use the Lagrangian to consider the coupled constraints in the

optimization problem which leads to sub-optimal results; in addition, their framework does

not consider EVAs’ objective function, and there is a strict assumption on CA’s objective

function; in [CLL18], the framework proposed in [LLa14] is expanded to a generic V2G

scheduling framework which includes several layers of EVAs; there is, however, no flexibility

in the method to include any other desired scheduling objective, the optimization solved

by EVAs to calculate the V2G capacity depends on the number of EVs, and the agents

update their optimization variable sequentially; the authors in [ZHM18] develop a sequential

trilayer structure, where the transformers as EVA agents reach a consensus price minimizing

the generation cost in the first iterative procedure of the method, and EVs maximize their

payoff function according to their transformers’ price signal in the second procedure; the

convergence of the method, however, is based on the strict assumptions on the objective

function.

In this dissertation, to address the issues discussed above, two trilayer fully distributed
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frameworks are proposed. In the proposed methods, the strict assumptions considered in the

literature on the objective functions are relaxed. Furthermore, the feeder capacity constraints

are introduced as the local EVAs’ constraints, thus the charging scheduling results are not

sub-optimal.

1.3.3.2 EVMS- An Integrated Network Application

Similar to EVMS as a separate application, there are two approaches for the consideration of

the distribution grids’ constraints in EVCS problem: centralized and distributed. In the cen-

tralized approaches, the distribution system operator (DSO) coordinates the distributed en-

ergy resources (DERs) such as the energy storage and the controllable loads of all customers

with taking the power flow model and grid operation constraints (i.e. nodal voltages and feed-

ers’ loading capacity) into consideration [STS19, WBP19, HW18, MSK18, KMY19, HST19].

To this end, the EV owners send their information about the arrival and departure times as

well as required charging energy to DSO. After calculating the optimal individual EV charg-

ing profiles, DSO transmits them to the customers. Considering the centralized approach,

the authors in [STS19] propose a method based on the model predictive control, where the

optimization problem is reformulated as a semi-definite problem, solved by a non-smooth

algorithm; in [WBP19], EVs are considered as not only the active power load but also as a

source of the reactive power injection/absorption which can provide power factor correction

and voltage regulation services; to mitigate the grid congestion, a locational pricing mecha-

nism is designed in [HW18] which incentivizes the customers with controllable loads to shift

their energy profile to the time periods without grid congestion possibility; two charging

strategies for public parking stations are proposed in [MSK18], for total charging cost reduc-

tion and load leveling, where the EVCS problem is solved by DSO using a heuristic method;

the centralized method introduced in [KMY19] aims at minimizing the electricity cost for

the customers by coordinating EV load; the purpose is to minimize solar energy curtailment,

while the nodal voltages are within the acceptable range; in this method, the EV load is

controlled by the customers according to the constraints defined by DSO; in [HST19], a

methodology for the participation of EV aggregators in the day-ahead and real-time energy
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markets is proposed, which not only maximizes the aggregators’ benefit, but also minimizes

the effect of EV load uncertainty on the power grid operation. The centralized methods,

however, have two main drawbacks: the curse of dimensionality when DSO has to coordi-

nate a large population of DERs and controllable loads, and non-privacy preserving as the

customers have to share their sensitive information with DSO which makes it vulnerable to

data manipulation by an eavesdropper.

To address the drawbacks of the centralized approaches, the researchers have proposed

distributed demand control where the load coordination problem is solved in a distributed

manner between the involved entities. There are two structurally different distributed ap-

proaches depending on the interaction between the entities. Within the first approach, the

customers are not actively involved in load coordination procedure; instead, the load aggre-

gators collect the information relating to the customers which they supply and communicate

with DSO [YZW13, WSW17, HMC18, MML19]. In this approach, the load coordination

problem is solved through an iterative procedure between DSO and the aggregators. In

the second approach, either DSO communicates directly with the customers and the load

coordination problem is solved between them iteratively [LPS19], or DSO is in communi-

cation with the aggregators only, and each aggregator exchanges information with its own

customers. In this approach, the load coordination problem is solved through two iterative

procedures between (1) DSO and the aggregators, and (2) each aggregator and its customers

[ZKG17, XYF19].

Considering the first load coordination approaches, a bi-level programming method is pro-

posed in [YZW13] for optimal EVCS problem where DSO minimizes the energy resources’

cost subjected to the power flow constraints, and the aggregators are responsible for find-

ing the optimal charging schedules reducing the EVs’ battery degradation cost; the authors

in [WSW17] benefit from the separable objective function which minimizes the resistive

loss and electricity cost, and they apply ADMM to find the optimal load and BESS charg-

ing/discharging profiles through an iterative procedure between DSO and the aggregators;

in [HMC18], a distributed optimization between DSO and the aggregators based on the dual

decomposition method is proposed to coordinate the thermostatically controllable loads con-
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sidering the power flow model as well as the uncertainty of the solar energy. The authors

model the load as a lumped aggregated one located at each grid bus. Similar to the dis-

tributed method in [WSW17], a robust distributed optimization is proposed in [MML19]

where the optimal load control problem is formulated as a mixed-integer linear program and

solved by ADMM between DSO and the aggregators; the authors, however, do not provide

the details on how the integer variables are relaxed. Considering the second distributed

load control approaches, the authors in [LPS19] propose a novel shrunken primal-dual sub-

gradient method for valley-filling/load leveling problem, where DSO considers the linearized

power flow model and communicates directly with the residential customers; consequently,

the aggregators are excluded from the load coordination problem; in [ZKG17], a two-layer

framework is proposed where the first layer between DSO and the aggregators is solved using

ADMM based on the consensus problem, and the second layer which is defined between each

aggregator and its customers is solved using the distributed Frank-Wolf method; a similar

two-layer framework is introduced in [XYF19] where the first layer is solved by ADMM,

and the second layer of optimal load control problem between the aggregators and their

customers is solved using the gradient-based dual ascend already proposed in [GTL13].

In this dissertation, a distributed framework is proposed where the load control problem

is solved through an iterative procedure between DSO and the aggregators based on the

consensus problem. In this method, DSO regulates the voltage by controlling the aggre-

gated loads, and the aggregators minimize the load profile variance and electricity cost of

their customers. The formulated load control is further exploited mathematically to derive

a fully distributed two-layer framework where the customers are directly involved in the

load management problem. In this framework, the iterative procedure between the aggre-

gators and their customers is formulated as the sharing problem in which the dimension of

the optimization problem solved by the aggregators does not depend on their number of

customers.
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1.4 Objectives and Contributions

According to the literature review in the preceding section, the objectives of this dissertation

are as follows.

1. Generation and Load Modeling: as discussed earlier, the effective integration of

RESs and the Electrification’s elements, i.e. EVs and HPs, needs the accurate modeling

of uncertainties. The first objective of this work is to propose a low-computation and

accurate model for capturing the intermittency and fluctuations of the solar generation

profile, load demand, EV charging load.

2. Optimal BESS Control for EV and Solar Integration: As mentioned earlier, a

practical solution to integrate the solar energy and EV loads in the power system is

realized through the optimal BESS control. Accordingly, the second objective of this

work is to experiment with the BESS deployment in an EV charging system for load

leveling and mitigating the solar energy and EV charging uncertainties.

3. Scalable Load Coordination: According to the computational burden of the pro-

posed methods in the literature and the privacy-preserving issue in the centralized

and semi-distributed approaches for the optimal load coordination, the third objective

of this dissertation is to provide a fully scalable load management system where the

grid entities (e.g. DSO, aggregators and EVs) do not need to share their sensitive

information with others.

To meet the objectives of this dissertation, the contributions of this work are defined as

follows.

1. A non-parametric time-series based probability model is proposed for modeling the

solar energy, load demand, and EV charging load (both aggregated and individual).

The proposed model is based on KDE, which compared to the methods proposed in

the literature, it is adaptive to the history data, and therefore it improves the accuracy

of the estimated model. Comparing to the spatio-temporal methods, the proposed
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method needs only the time-series data history of the estimated parameter, therefore

it does not require a costly data acquisition system.

2. An experimental setup is prototyped to integrate BESS in an EV charging infras-

tructure. The setup provides EV load leveling and emergency power to decrease the

charging cost and increase the reliability of the charging system. The performance of

the prototyped BESS is validated by executing various services such as peak load shav-

ing and islanded operation, in which the emergency power is provided to the charging

infrastructure.

3. Two scalable and privacy-preserving frameworks are proposed for EVMS, which can

be included as a separate application in DMS. Both frameworks are designed based on

the multi-agent systems, in which the EVMS problem is solved using the distributed

optimization methods. Specifically, ADMM is used to solve EVMS through the iter-

ative negotiation procedures between the involved entities, i.e. CA, load aggregators,

and EV customers.

4. A semi-distributed method is proposed for EVMS as an integrated application in DMS,

where DSO and load aggregators negotiate to improve the nodal voltage profiles of the

distribution grid, minimize the load profile variance of the aggregators, and reduce the

charging cost for the EV customers. In this method, the EVMS problem formulated

as the consensus problem, and it is solved by ADMM.

5. A fully distributed and scalable framework is proposed to coordinate the EV and HP

loads in the distribution grids. The proposed method has a hierarchical structure in

which DSO negotiates with the load aggregators, and each aggregator negotiates with

its residential customers. The iterative negotiation procedure between DSO and the

aggregators is formulated as the consensus problem, and the iterative negotiation be-

tween the aggregators and the customers is written in the form of the sharing problem.

The feature of the proposed method is that the dimension of the aggregators’ opti-

mization problem does not depend on the number of their customers. In this method,

both negotiation procedures are solved by ADMM.
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1.5 Organization

The rest of the dissertation is organized as follows:

Chapter 2- In this chapter, the models for BESS, EV, HP, and the distribution power grids

are introduced. As the distributed optimization method used in the dissertation is

applicable to the convex optimization problems, the models provided in this chapter

are convex.

Chapter 3- In this chapter, an adaptive KDE based on diffusion is proposed to model the

p.d.f of solar generation, load demand, and EV charging load. To improve the accuracy

of the estimated models for solar generation and load demand, the k -means clustering

method is introduced to cluster the corresponding historical data.

Chapter 4- In this chapter, we first describe the prototyped BESS which provides load

leveling, cost reduction and emergency power to the EV charging system. Afterward,

we propose a stochastic optimization method to coordinate the charging/discharging

of BESS using the Monte Carlo Simulation (MCS) and adaptive KDE model developed

in Chapter 3.

Chapter 5- A hierarchical distributed framework is proposed in this chapter to optimally

control EV charging loads considering the capacity constraints of the aggregators’

feeders. The framework consists of two layers of the sharing problem which are solved

by ADMM.

Chapter 6- To improve the convergence time and reduce the communication overhead of

the method proposed in Chapter 5, the mathematical properties of the optimal EVCS

problem is exploited to rewrite the problem in the form of the exchange problem.

The new formulation eliminates the dual variable of the system agents, therefore the

convergence time and communication overhead are reduced considerably.

Chapter 7- In this chapter, an EVMS framework is proposed to consider the power grid

constraints including the voltage limitation. The proposed method aiming at regulating
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the nodal voltage and reducing EV charging cost is written in the form of the consensus

problem. The EVMS is then solved by ADMM through an iterative procedure between

DSO and the load aggregators.

Chapter 8- As the load aggregators of the proposed EVMS in Chapter 7 solve the optimal

charging problem for their customers, it results in a considerable computation burden.

Also, the customers have to share their sensitive information with the aggregators.

To mitigate those issues, a fully distributed load coordination method is proposed in

this chapter where each customer solves its problem locally and exchanges limited

information with the aggregators. In this chapter, the customers participate in the

optimal load management with controlling their EV as well as HP loads.

Chapter 9- The dissertation is concluded in this chapter, and possible future directions for

BESS control and load coordination in the distribution grids are discussed.
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CHAPTER 2

System Modeling

In this chapter, the model of BESS, EV, HP as well as the distribution grid are introduced,

respectively. In addition to the difference and differential equations which define the discrete-

time dynamics of the system, the inequalities forcing the power grid and its components to

operate within the acceptable domain are included in the models. Those equations and

inequalities guaranteeing the proper operation of the distribution grid and its components

build the set of equality and inequality constraints of optimal system control and management

problem. More details are provided in the following sections.

2.1 Battery Energy Storage System

The BESS installed at the ith node of the distribution system is indicated by BESi, and it

is modeled by a discrete-time linear time-invariant system as follows:

cbsi (t+ 1) = αbsi c
bs
i (t) + Td

(
ηbsi

+
pbsi

+
(t) + pbsi

−
(t)/ηbsi

−)
(2.1a)

pbsi (t) = pbsi
+

(t) + pbsi
−

(t), (2.1b)

for ∀t ∈ N where cbsi , pbsi
+

, pbsi
−

, Td ∈ R, and (αbsi , η
bs
i

+
, ηbsi

−
) ∈ R+3

61. c
bs
i (t) is the energy

stored in BESS at time t, Td is the length of the sampling intervals and discretization in time,

and pbsi
+

and pbsi
−

are the charging and discharging powers, respectively. The parameter αbsi

models the self-discharging energy loss, and ηbsi
+

and ηbsi
−

model the energy conversion loss

during charging and discharging, respectively. The energy stored in the ith BESS and its
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charging and discharging powers are limited by the following constraints [ZRF19]:

sbsi
2
(t) = pbsi

2
(t) + qbsi

2
(t) 6 sbsi

2
(2.2a)

0 6 pbsi
+

(t) 6 pbsi (2.2b)

pbs
i
6 pbsi

−
(t) 6 0 (2.2c)

Cbs
i 6 cbsi (t) 6 C

bs

i , (2.2d)

for ∀t ∈ N where pbsi (t), qbsi (t) ∈ R, and sbsi (t) ∈ C. qbsi (t) and sbsi (t) are, respectively, the

reactive and apparent powers of the BESS and its bi-directional converter. sbsi ∈ R is the

apparent power rating of the bi-directional converter, and pbs
i

and pbsi ∈ R are the minimum

and maximum power ratings of BESS. Cbs
i (t) and C

bs

i (t) ∈ R are the BESS energy constraints

defined according to the battery manufacturer’s recommendations.

The set of feasible charging and discharging trajectories of the ith BESS is defined by:

Pbsi =

{
pbsi ∈ RN | (2.1)− (2.2) ∀t ∈ Jt′, t′ +N − 1K

}
. (2.3)

In this dissertation, for the time index t ∈ N and the time horizon N ∈ N, the vector

notation:

y(t) =
(
yT1 (t),yT2 (t), . . . ,yTN (t)

)T
,

is used where yn(t) =
(
yTn (t), yTn (t + 1), . . . , yTn (t + N − 1)

)T
, n ∈ {1, ...,N}, is defined

component-wise.

Remark 2.1.1. The most popular BESS technologies utilized for grid applications are Li-

ion, NiCd, and Lead-acid. The authors in [CCY09] compare different BESS technologies

from the self-discharging and conversion loss perspectives during a day. It is discussed in

[CCY09] that batteries have lower self-discharging and conversion loss comparing to the other

storage technologies (e.g. flywheel, super-capacitor, fuel cell, etc.). Considering the values

in Table 2.1 and a discretization of Td = 0.5[h], we obtain αbsi > 0.999 and (ηbsi
+
, ηbsi

−
) >

(0.9, 0.9). Therefore, the self-discharging loss can be neglected.
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Table 2.1: Comparison of three BESS technologies [CCY09].

Battery Type Self-Discharging Conversion Loss Life (cycles) Environmental Impact

Li-ion 0.1-0.3% 5-10% 1000− –

NiCd 0.2-0.6% 5-10% 2000-2500 –

Lead-acid 0.1-0.3% 5-10% 500-1000 Negative

2.2 Electric Vehicle

The ith EV charger, which is supplied through the feeder connected to the j th node of the

distribution grid, is indicated by EVi,j. Similar to BESS, EV is modeled as a discrete-time

linear time-invariant system as follows:

cevi,j(t+ 1) = αevi,jc
ev
i,j(t) + Td

(
ηevi,j

+pevi,j
+(t) + pevi,j

−(t)/ηevi,j
−) (2.4a)

pevi,j(t) = pevi,j
+(t) + pevi,j

−(t), (2.4b)

for ∀t ∈ N where cevi,j, p
ev
i,j

+, pevi,j
−, Td ∈ R, and (αevi,j, η

ev
i,j

+, ηevi,j
−) ∈ R+3

61. c
ev
i,j(t) is the energy

stored in the EV’s battery at time t, Td is the discretization in time, and pevi,j
+ and pevi,j

−

are the charging and discharging powers, respectively. The parameter αevi,j models the self-

discharging energy loss, and ηevi,j
+ and ηevi,j

− model the energy conversion loss during charging

and discharging, respectively. The constraints on the EV charging/discharging, relating to

the EV charger power rating and the EV’s battery capacity, are:

0 6 pevi,j
+(t) 6 pevi,j (2.5a)

pev
i,j

6 pevi,j
−(t) 6 0 (2.5b)

0 6
pevi,j
−(t)

pev
i,j

+
pevi,j

+(t)

pevi,j
6 1, (2.5c)

Cev
i,j(t) 6 cevi,j(t) 6 C

ev

i,j(t), (2.5d)

for ∀t ∈ N where pev
i,j

, pevi,j ∈ R are the minimum and maximum power ratings of the EV

charger, respectively, and Cev
i,j(t), C

ev

i,j(t) ∈ R are the EV’s battery time-varying energy

constraints which are defined as follows; if EVi,j is:

• not plugged in the charger, Cev
i,j(t) = C

ev

i,j(t) = 0.
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• plugged in the charger, but it is in idle mode, Cev
i,j(t) = 0 & C

ev

i,j(t) = Cev
i,j , where

Cev
i,j ∈ R is the EV’s battery energy capacity (Assumption 2.2.1).

• plugged in the charger, and it is needed by time t, Cev
i,j(t) = C

ev

i,j(t) = Cev
i,j .

The constraint (2.5c) does not allow the battery to dissipate its energy surplus by avoiding

charging and discharging, and it makes possible that the battery changes from charging to

discharging mode and vice versa between the consecutive time steps [BFG18].

Assumption 2.2.1. All the vehicles should be fully charged before they are unplugged.

Remark 2.2.1. The EV chargers may have V2G capability to discharge EV’s battery and

inject power to the grid [KT05]. If the charger has V2G capability, we will set pev
i,j

= −pevi,j,

otherwise pev
i,j

= 0

The set of feasible charging trajectories of EVi,j is defined by:

Pevi,j =

{
pevi,j ∈ RN | (2.4)− (2.5) ∀t ∈ Jt′, t′ +N − 1K

}
. (2.6)

2.3 Electric Heat Pump

The model of the building for the purpose of optimal HP control is represented as a single

zone where uniform air temperature is assumed in the whole zone. In this model, the

building components, i.e. walls, floor, roof, and windows, are considered as lumped ones.

Every lumped component is modeled by the thermal resistance and capacitance as shown in

Fig. 2.1.

Although all the optimal BESS, EV, and load management methods proposed in this

dissertation are built on the discrete-time variables, for consistency with the literature and

better understanding, we present the continuous-time linear model of HP [KJC17]. However,

for the purpose of optimal load management, the model is converted to the discrete-time

linear system with the appropriate sample time (in our case, Td = 0.5[h]). The superscripts z,

w, o, f are used to denote, respectively, the zone, inner wall, outer wall, and floor parameters.
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Figure 2.1: Single zone model of the building.

The heat pump located at the ith residential customer building, which is supplied through

the feeder connected to the j th node of the distribution grid, is denoted by HPi,j. The

differential equations modeling the dynamic behavior of HPi,j are as follows:

Ṫ zj,i = 1
Rvi,jC

z
i,j

(T ai,j − T zi,j) + 1
Rwi,jC

z
i,j

(Twi,j − T zi,j) + 1
Ro1i,jC

z
i,j

(T oi,j − T zi,j) +

1

Rf1i,jC
z
i,j

(T f1i,j − T zi,j) +
szi,j
Czi,j

ϕsgi,j +
gzi,j
Czi,j

ϕigi,j +
fzi,j
Czi,j

ϕhpi,j (2.7a)

Ṫwi,j = 1
Rwi,jC

w
i,j

(T zi,j − Twi,j) +
swi,j
Cwi,j

ϕsgi,j +
gwi,j
Cwi,j

ϕigi,j +
fwi,j
Cwi,j

ϕhpi,j (2.7b)

Ṫ oi,j = 1
Ro2i,jC

o
i,j

(T aei,j − T oi,j) + 1
Ro1i,jC

o
i,j

(T zi,j − T oi,j) +

soi,j
Coi,j

ϕsgi,j +
goi,j
Coi,j

ϕigi,j +
foi,j
Coi,j

ϕhpi,j (2.7c)

Ṫ fi,j = 1

Rf2i,jC
f
i,j

(T gi,j − T
f
i,j) + 1

Rf1i,jC
f
i,j

(T zi,j − T
f
i,j) +

sfi,j

Cfi,j
ϕsgi,j +

gfi,j

Cfi,j
ϕigi,j +

ffi,j

Cfi,j
ϕhpi,j , (2.7d)

where T zi,j, T
w
i,j, T

o
i,j, and T fi,j ∈ R are the temperatures; Rv

i,j ∈ R stands for the lumped

thermal bridge of the envelop area together with the ventilation and infiltration losses; Rw
i,j,

Ro1
i,j, R

o2
i,j, R

f1
i,j , and Rf2

i,j ∈ R are the thermal resistances; Cz
i,j, C

w
i,j, C

o
i,j, and Cf

i,j ∈ R are the

thermal capacitances; T aei,j , T
a
i,j, T

g
i,j, ϕ

sg
i,j, and ϕigi,j ∈ R are defined as the equivalent ambient

temperature, ambient temperature, ground temperature, solar gain through the windows,

and internal gain from the occupants and devices, respectively; and ϕhpi,j ∈ R is the total

power of HP, and it is proportional to the compressor power phpi,j ∈ R as follows:

ϕhpi,j = ηhpi,jp
hp
i,j , (2.8)
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where ηhpi,j ∈ R+
61 is the coefficient of compressor performance. The constraints on HPi,j

relating to the power rating of the compressor and the resident’s thermal comfort are:

0 6 phpi,j(t) 6 phpi,j (2.9a)

T zi,j 6 T zi,j(t) 6 T
z

i,j, (2.9b)

where phpi,j is the maximum power of the compressor, and T zi,j and T
z

i,j are the acceptable

lower and upper zone temperatures.

The model of HP can be represented in the state-space form as:

ẋhpi,j = Ahpi,jx
hp
i,j +Bhp

i,ju
hp
i,j +Dhp

i,jw
hp
i,j (2.10a)

yhpi,j = Chp
i,jx

hp
i,j (2.10b)

where xhpi,j = [T zi,j, T
w
i,j, T

o
i,j, T

f
i,j]

T is the state vector, uhpi,j = ϕhpi,j is the control variable,

whpi,j = [T aei,j , T
a
i,j, T

g
i,j, ϕ

sg
i,j]

T is the disturbance vector, and yhpi,j = T zi,j is the output or

measurement vector.

The set of feasible compressor power trajectories of HPi,j is defined by:

Phpi,j =

{
phpi,j ∈ RN | (2.7)− (2.9) ∀t ∈ Jt′, t′ +N − 1K

}
. (2.11)

2.4 Power Distribution Grid

The distribution grid is modeled as a connected graph shown by G = (Nb, ζ), where Nb

denotes the set of the edges which are grid buses (nodes), and ζ denotes the set of the links

which are the distribution grid branches (lines or transformers). (i, j) ∈ ζ denotes the line

connecting the ith bus to the j th bus. The distribution grids are typically radial (Fig. 2.2),

that is the connected graph is a tree with a root node, branches, and leaves. Accordingly,

the first bus is denoted by 1, and the other buses in Nb are indexed by i = 2, 3, · · · ,Nb,

where Nb is the cardinality of Nb.

For each branch (i, j) ∈ ζ, we show the impedance by the complex number zij = rij+ixij,

zij ∈ C, and the current by iij(t) ∈ C, ∀t ∈ N. The apparent power of the branch is shown
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Figure 2.2: Radial distribution feeder and its corresponding parameters.

by Sij(t) ∈ C, ∀t ∈ N, and it is obtained by Sij(t) = Pij(t) + iQij(t), where Pij(t) and

Qij(t) ∈ R are the active and reactive powers, respectively, flowing from the ith to the j th

bus.

For each bus i ∈ Nb, we show the voltage by vi(t) ∈ C, and the bus netload by Si(t) =

Pi(t) + iQi(t), Si(t) ∈ C. The netload is the total power consumption minus the generation

(possibly by RESs) at the ith bus.

Given the radial distribution grid G = (Nb, ζ), the voltage at the root bus (1 ∈ Nb), and

the impedances of the grid branches ({zij}i,j ∈ ζ), the branch power flows and currents as

well as the bus voltages should satisfy the physical power grid laws, at any time t ∈ N, as

follows:

• Ohm’s law:

vi(t)− vj(t) = zijiij(t). (2.12)

• Power flow:

Sij(t) = vi(t)iij
∗(t). (2.13)

• Power balance:

Sj(t) = Sij(t)− zij|iij(t)|2 −
∑

(j,k)∈ζ

Sjk(t). (2.14)

Substituting (2.12) and (2.13) in (2.14), the following steady-state power flow model is
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obtained [Low14a], ∀i & j ∈ Nb and ∀(i, j) ∈ ζ:

Pj(t) = Pij(t)− rijIij(t)−
∑

(j,k)∈ζ
Pjk(t) (2.15a)

Qj(t) = Qij(t)− xijIij(t)−
∑

(j,k)∈ζ
Qjk(t) (2.15b)

Vi(t)− Vj(t) = 2
(
rijPij(t) + xijQij(t)

)
− (rij

2 + xij
2)Iij(t) (2.15c)

Vi(t)Iij(t) = P 2
ij(t) +Q2

ij(t), (2.15d)

where Iij(t) = |iij(t)|2 and Vi(t) = |vi(t)|2. Although the angles of bus voltages and branch

currents are not directly included in (2.15a)-(2.15d), they can be uniquely determined for

the radial distribution grids [Low14b].

The voltage at the root bus (v1) should be equal to a specific value, assuming that

the distribution grids are connected to an infinite bus with infinite inertia. The other bus

voltages, however, should be within the tolerance constraints to keep the distribution grids

stable. That is shown by:

v1(t) = vref . (2.16a)

v 6 |vi(t)| 6 v, ∀i ∈ Nb \ {1}. (2.16b)
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CHAPTER 3

Non-Parametric Probabilistic Load and Solar

Generation Modeling

One of the important steps in optimal load management is to estimate the generation, load

demand and EV charging with acceptable accuracy. Those parameters are the stochastic

random variables and the inputs to the optimal load management problem. Therefore, the

accuracy of their model directly affects the optimization results. The probabilistic estimation

is a strong tool to model the uncertain generation and loads. However, it is shown that the

known probability density functions (i.e. Gaussian, Beta, Gamma, etc.) do not provide an

accurate estimation, specifically for the load demand and EV charging.

In this chapter, the non-parametric kernel density estimation (KDE) is proposed for solar,

load demand, and EV charging load estimation. To this end, the Gaussian KDE (GKDE)

is first introduced, and its deficiencies are discussed. Afterward, the adaptive diffusion

KDE (DKDE) is proposed to address those deficiencies [BGK10]. Before estimating the

probabilistic model of the solar generation and load demand, the clustering methods should

be used to only choose the data history which has more similarities with the prediction time

horizon. Therefore, k -means clustering is introduced in this chapter, as well. In order to

evaluate the performance of GKDE and DKDE and compare their estimation accuracy, they

are applied to the real datasets, and the results are discussed.
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3.1 Gaussian Kernel Density Estimation

In kernel density estimation, given an observed dataset X = [X1, X2, ..., XN ], where Xi ∈

Rd,∀i ∈ {1, · · · , N} and X ∈ Rd×N , its p.d.f can be estimated as follows [Cri16]:

f̂x (x; t) =
1

N

N∑
i=1

Kr (x,Xi; t), (3.1)

where f̂x is the estimated p.d.f., Kr(·) is the Gaussian kernel function, and
√
t is its band-

width. The kernel function is defined by:

Kr (x,Xi; t) =
1√
2πt

exp(−(x−Xi)
2

2t
). (3.2)

The bandwidth
√
t defines the shape of the kernel function, therefore it is a deterministic

factor to the performance of the estimator. A large
√
t oversmoothes the density function

that masks the structure of data, while a small
√
t generates a spiky one that makes the

interpretation difficult. It is desired to find the value of t that minimizes the error between

the estimated density and the actual density. However, there is a bias-variance trade-off

for the bandwidth selection, which means a large bandwidth reduces the variance of f̂x but

increases the bias with respect to the actual density. On the other hand, a small bandwidth

decreases the bias of f̂x at the expense of a larger variance. Silverman’s rule of thumb

[Sil86], also known as the normal reference rule, provides a simple solution for the optimal

bandwidth (
√
t
∗
) calculation, with the assumption that the actual density has Gaussian

normal distribution:
√
t
∗ ≈ 1.06 σN−

1
5 , (3.3)

where σ is the standard deviation of N training observations. Silverman’s rule usually leads

to an oversmoothed p.d.f in multi-modal models as it assumes that the true density has a

Gaussian normal distribution.

3.2 Diffusion Kernel Density Estimation

Different from the normal reference rule, the optimal bandwidth can be derived from the

observed dataset X using an improved plug-in method introduced in [BGK10].
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As shown by the authors in [BGK10], GKDE (3.1) is the unique solution to the Fourier

heat equation as follows [BGK10]:

∂

∂t
f ′ (x; t) =

1

2

∂2

∂x2
f ′ (x; t) , x ∈ X, t > 0, (3.4)

with initial condition:

f ′ (x; 0) =
1

N

N∑
i=1

δ (x−Xi), (3.5)

where f ′ (x; 0) represents the empirical density of X, and δ(x−Xi) is the Dirac measure at

Xi. The Neumann boundary condition to solve the diffusion equation (3.4) is as follows:

∂

∂x
f ′ (x; t)|x=Xl =

∂

∂x
f ′ (x; t)|x=Xu = 0, (3.6)

where Xl and Xu are, respectively, the lower and upper bounds of the domain. Exploiting

the link between GKDE and the Fourier heat equation, finding the optimal bandwidth of

(3.1) is equivalent to finding the optimal mixing time t∗ of the diffusion process governed

by (3.4) [Bot07]. Considering those conditions and the finite domain [0, 1] (i.e. Xl = 0,

Xu = 1), the analytical solution of (3.4) is obtained by:

f̂ (x; t∗) =
1

N

N∑
i=1

κ (x,Xi; t
∗) , x ∈ [0, 1], (3.7)

in which the kernel function is given by:

κ (x,Xi; t
∗) =

∞∑
k=−∞

Kr (x, 2k +Xi; t
∗) +Kr (x, 2k −Xi; t

∗), x ∈ [0, 1]. (3.8)

Although both estimators (3.1) and (3.7) behave similarly in the interior of the domain

[0, 1] for a small bandwidth, (3.7) shows a better performance near the boundaries where

x ∈ {0, 1}. The reason is that DKDE is consistent with the true density while GKDE

is inconsistent at the boundaries [BGK10]. For further clarification, two conditions are

considered as follows.

1. The behavior of κ(x,Xi; t) for the small bandwidth, t→ 0, x ∈ [0, 1], is similar to the

asymptotic behavior of (3.1):

∞∑
k=−∞

Kr (x, 2k +Xi; t) +Kr (x, 2k −Xi; t) = κ (x,Xi; t) . (3.9)
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2. For the large bandwidth, t→∞, x ∈ [0, 1], the behavior of DKDE is equivalent to:

κ (x,Xi; t) ∼
∞∑

k=−∞

e−k
2π2t/2cos(kπx)cos(kπXi)

∼ 1 + 2e−π
2t/2cos(πx)cos(πXi),

(3.10)

which means κ (x,Xi; t) approaches the uniform density when the bandwidth becomes

larger.

Accordingly, (3.8) can be approximated by:

f̂ (x; t) ≈
n∑
k=0

ake
−k2π2t/2cos

((2i + 1)kπ

2n

)
, (3.11)

where n ∈ N is the number of segments which X is split by the bandwidth
√
t, and ak is

given by:

ak =


1 k = 0

2
N

∑N
i=1 cos(kπXi), k ∈ {1, · · · , n− 1}.

(3.12)

The coefficient ak can be calculated by:

ak = α(k)
n−1∑
j=0

b(j)cos
((2i + 1)πk

2n

)
, k ∈ {1, · · · , n− 1}, (3.13)

where b(j) denotes the probability that Xi is in the interval [ j
n
, j+1

n
], and:

α(0) = 1, α(k) = 2 ∀k ∈ [1, · · · , n− 1]. (3.14)

Finally, t∗ using the plug-in method in [BGK10] is obtained by:

t∗ =

(
6
√

2− 3

7

)2/5

γ[l](t), (3.15)

in which [XYX15]

γ[l](t) = γ1(· · · γl−1(γl(t)) · · · ), l ≥ 1, (3.16)

and

γl(t) =

2
(
1 + (1/2)(l+1/2)

)
(1× 3× · · · (2l − 1))

3N
√
π/2
(∑n−1

k=l (kπ)(2l+2)a2ke
−k2π2t

)
 , (3.17)

where l = 5 in this paper as recommended by [BGK10].
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3.3 Netload Clustering

In data mining, clustering is the general task of dividing a set of objects in the groups within

each the objects show more similarity to each other than those in other groups. In order to

achieve a better model estimation using KDE methods, the solar generation and daily load

profiles with more similar features should be used for training. Therefore in this section,

k -means clustering, more specifically its improved version known as k -means++, is used to

cluster the data set into several groups. In the following subsections, k -means and k -means++

are introduced, and the methods finding the optimal number of clusters are discussed.

3.3.1 k-Means Clustering

k -means is an unsupervised learning method which is utilized for clustering the data set

including unlabeled data points. Considering the data set X ⊂ Rd×N , the object is to find a

set of K ∈ N centers, C = {C1, · · · , CK},C ⊂ Rd×K , which minimizes the potential function

defined as follows:

φ̂ =
∑
X∈X

min
C∈C
‖X − C‖22. (3.18)

Using the obtained center set C, K clusters can be formed around K center points. Each

cluster includes a center point and the data points which their distance to the cluster’s

center point is less than their distance to the other clusters’ center points. The procedure

of clustering the dataset starts by choosing the initial center pints uniformly at random

from X. The algorithm is shown in Algorithm 1 where Gi is the ith cluster which its

cardinality is denoted by Gi. The closest center point to the j th X is denoted by CD
Xj

, and

the distance between them is denoted by φ̂Xj , i.e. φ̂Xj = min{φ̂(Xj ,C1), · · · , φ̂(Xj ,CK)}, in

which φ̂(Xj ,Ci) = ‖Xj − Ci‖22 .

Although φ̂ is monotonically decreasing, there are only Kd possible choices for the clus-

ters, and the iterative process (Algorithm 1) always terminates, k -means may terminate at

the points which are not appropriate centers. To address this issue and make the algorithm

faster, k -means++ is proposed [AV07].
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Algorithm 1: k -means clustering.

1 Initilize: Choose Cl ⊂ Rd×N initial set of center points.

2 while Cl+1 6= Cl do

3 for i = 1 : K do

4 Set the cluster Gi =
{
∀Xj ∈ X|CD

Xj
= Ci

}
.

5 end

6 for i = 1 : K do

7 Ci = 1
Gi

∑
Xj∈Gi,Xj.

8 end

9 end

3.3.2 k-means++ Clustering

By weighting the data points using their squared distance from the closest center point,

the authors in [AV07] introduce k -means++ clustering. Seeding the center points using the

weighted data points and augmenting the technique in k -means, it shows faster convergence

and less potential functions which means the clusters are optimal. Algorithm 2 shows the

augmented steps which significantly improve the clustering results [AV07].

According to the better clustering results reported in the literature for k -means++, it is

used in this dissertation for the data clustering before applying KDE methods.

3.3.3 Fining Optimal K

According to the algorithms described in the preceding subsections, the first step of k -means

clustering method and its variant is to choose K center points. However, we have not dis-

cussed how many center pints should be chosen. Although there is no specific mathematical

solution to choose the optimal value of K, there are two popular approaches called Elbow

criterion and Silhouette coefficient which have been shown useful.

In the Elbow criterion approach, the potential function (3.18) is calculated for different

values of K within each cluster. That is, the total within-cluster sum of square (WCSS)
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Algorithm 2: k -Means++ clustering.

1 Initilize: Choose C l
1 ⊂ Rd×N uniformly at random.

2 for i = 2 : K do

3 Choose C l
i = Xj with probability

min{φ̂(Xj,C1)
,··· ,φ̂(Xj,Ci−1)

}∑
X∈X min{φ̂(X,C1)

,··· ,φ̂(X,Ci−1)
} .

4 end

5 while Cl+1 6= Cl do

6 for i = 1 : K do

7 Set the cluster Gi =
{
∀Xj ∈ X|CD

Xj
= Ci

}
.

8 end

9 for i = 1 : K do

10 Ci = 1
Gi

∑
Xj∈Gi,Xj.

11 end

12 end

value is computed. As the maximum possible number for K is equal to N , increasing K

monotonically decreases the potential function value. However, the goal is to choose a small

value for K while the potential value has also an acceptable small value. Plotting the

potential function for different K values, the optimal choice is the point where the potential

function does not change considerably, which is also called the knee point.

The Silhouette coefficient approach shows how similar the data points in a cluster are to

the other points in its cluster comparing to the other clusters. Let us denote the average

dissimilarity of each data point (Xj ∈ Gi) to all the data points is other clusters (Xj′ ∈

Ci′ , i
′ 6= i) by φ

b

Xj
, i.e.:

φ
b

Xj
= min

i 6=i′
1

|Gi′|
∑
j′∈Gi′

√
φ(Xj ,Xj′ )

. (3.19)

Also, let us denote the average dissimilarity of each data point (Xj ∈ Gi) to all other points

in the same cluster (Xj′ ∈ Gi, j 6= j′) by φ
a

Xj
, i.e.:

φ
a

Xj
=

1

|Gi′ | − 1

∑
j′∈Gi

√
φ(Xj ,Xj′ )

. (3.20)
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The Silhouette coefficient for Xj ∈ Gi denoted by SilXj is obtained by:

SilXj =
φ
b

Xj
− φaXj

max{φbXj , φ
a

Xj
}
. (3.21)

If the Silhouette coefficient is:

• equal to 1, the number of clusters is optimum.

• equal to 0, there is overlapping between the clusters.

• equal to −1, the data point is wrongly assigned to the cluster.

We use the Elbow criterion method in the following section to find the optimal number of

clusters for netload and solar generation estimation.

3.4 Probabilistic Estimation Results

In this section, the KDE methods (GKDE and DKDE) described in the preceding sections

are applied to the probabilistic netload, solar energy, and EV load modeling. For the netload

and solar energy, the historical data is first clustered using k -means++ method to group the

days with similar features. To compare the accuracy of GKDE and DKDE, the mean absolute

percentage error (MAPE) and the root-mean-square error (RMSE) are calculated. MAPE

is defined as:

MAPE =
100%

N

N∑
t=1

| F̂t − Ft
F̂t

|, (3.22)

where F̂ is the estimated value obtained by GKDE or DKDE, F is the observed data, and

N is the number of estimated values. RMSE is defined as:

RMSE =

√√√√ 1

N

N∑
t=1

(
F̂t − Ft

)2
. (3.23)

3.4.1 Netload Estimation

Considering the daily load profiles, five features can be obtained for each profile which help

group the historical data. These five features are: (1) the minimum load demand from
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midnight until noon (MinAMP), (2) the minimum load demand from noon until midnight

(MinPMP), (3) the maximum load demand from midnight until noon (MaxAMP), (4) the

maximum load demand from noon until midnight (MaxPMP), and (5) the total load energy

demand (TEC) during the day. The correlation between these features is shown in Fig. 3.1.

As the correlation values are small, the features can be used effectively to cluster the daily

load profiles.
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Figure 3.1: Correlation map of the daily load profile features.

Before clustering the daily load profiles, WCSS values are computed for different numbers

of clusters which are shown in Fig. 3.2. According to the results, the daily load profiles are

divided into 3 groups shown in Fig. 3.3.
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Figure 3.2: WCSS values for various number of daily load profile clusters.

The MAPE and RMSE results for the netload clusters are shown is Table 3.1. Comparing

the results, DKDE has a better accuracy owing to its optimal bandwidth selection.
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Figure 3.3: Daily load profile clusters, from left to right respectively: cluster#1, cluster#2,

and cluster#3.

Table 3.1: MAPE and RMSE results for netload estimation obtained by GKDE and DKDE.
MAPE RMSE

Cluster# GKDE DKDE Improvement (%) GKDE DKDE Improvement (%)

1 17.5 16.4 6.3 0.109 0.105 3.2

2 18.55 16.67 10 0.045 0.041 5.9

3 16.47 15.21 7.6 0.099 0.094 4.6

3.4.2 Solar Generation Estimation

To cluster the daily solar energy generation, four features are considered which are: (1) the

duration of solar energy availability (PD), (2) the maximum solar power (MaxP), (3) the

time of the maximum solar power (TMaxP), and (4) the total solar energy generation during

the day (TotP). The correlation between these features is shown in Fig. 3.4. The correlation

values are fairly small meaning that they can provide the promising clustering results.
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Figure 3.4: Correlation map of the daily solar generation profile features.
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WCSS values are computed for different numbers of clusters, and they are shown in

Fig. 3.5. According to the results, the daily solar generation profiles are divided into 4

groups shown in Fig. 3.6.
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Figure 3.5: WCSS values for various number of daily solar generation clusters.
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Figure 3.6: Daily solar generation profile clusters.

According to the MAPE and RMSE results shown in Table 3.2, DKDE outperforms

GKDE as the adaptive diffusion method finds the optimal bandwidth, while the Silverman’s

rule of thumb results in an oversmoothed estimation.
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Table 3.2: MAPE and RMSE results for solar generation estimation obtained by GKDE and

DKDE.
MAPE RMSE

Cluster# GKDE DKDE Improvement (%) GKDE DKDE Improvement (%)

1 22.54 17.37 23 0.096 0.06 37

2 25.70 16.23 37 0.156 0.099 37

3 23.58 14.47 38 0.153 0.112 27

4 23.92 14.41 40 0.152 0.11 27

3.4.3 EV Load Estimation

For the EV load estimation, three random variables should be modeled which are the arrival

time, stay duration, and required charging energy. These random variables are estimated for

each individual EV owner. The available dataset to apply GKDE and DKDE includes 240

EV owners.

The MAPE and RMSE results for the estimation of the EV load parameters are shown is

Table 3.3. As it is expected, DKDE improves the estimation for arrival time, stay duration

and charging energy comparing to GKDE.

Table 3.3: MAPE and RMSE results for the estimation of the EV load parameters by GKDE

and DKDE.
MAPE RMSE

Estimated Parameter GKDE DKDE Improvement (%) GKDE DKDE Improvement (%)

Arrival Time 24.34 18.99 22 0.089 0.065 27

Stay Duration 98.4 79.4 19.2 0.078 0.039 49

Charging Energy 30.33 11.69 61 0.1146 0.067 41

3.5 Conclusion

In this chapter, two non-parametric probabilistic methods based on kernel density estima-

tion, namely Gaussian KDE and diffusion KDE, have been proposed. Comparing to GKDE,

DKDE provides a more accurate estimation on the boundaries owing to its optimal band-

width selection. The performance of the methods has been evaluated using real netload,
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solar energy, and EV load parameters data. For the netload and solar energy generation,

the historical data has been first clustered using k -means++ clustering to group the load

and generation profiles with similar features. Applying GKDE and DKDE, it was shown

that DKDE can improve the model estimation accuracy at least 6.3% (MAPE) and 3.2%

(RMSE) for netload, and 23% (MAPE) and 27% (RMSE) for solar generation. In addition,

both methods applied to EV data to estimate the arrival time, stay duration and charging

energy of 240 EV owners. The results showed significant estimation improvement specifically

for the charging energy.

38



CHAPTER 4

Battery Energy Storage for Electric Vehicle Charging

Station: Implementation and Emulation

In this chapter, the integration of BESS in an EV charging infrastructure is studied. The

purpose of BESS integration here is to reduce the charging cost by shifting the load profile and

providing peak shaving. To this end, optimal coordination of BESS charging and discharging

with the consideration of EV charging load demand, availability of local energy resources

such as solar energy, and the electricity price is of vital importance.

The chapter is presented through two main sections: implementation and emulation.

Implementation: The purpose of the implementation is to show the effectiveness of BESS

in shaving the excess power demand in the public ECIs. In addition, the BESS can increase

the resiliency of ECI in the case of a failure in the distribution grid which results in blackout

or load shedding. In most of the public stations currently available to EV owners, EV charg-

ing load control has not been implemented as it needs a secure communication, monitoring

system, and efficient controllers. In these facilities, the integration of BESS (with local solar

energy resources) gives the ECI the capability to manage the fluctuations and undesirable

peak power demands by optimal control of the BESS charging and discharging. The im-

plementation section discusses the details of BESS integration in the Civic Center Public

Parking, in the City of Santa Monica, and validates the performance of BESS in shaving the

peak load and increasing the resiliency.

Emulation: The purpose of this section is to utilize the probabilistic modeling approach

proposed in Chapter 3, i.e. DKDE, for optimal BESS control. In this section, the model of
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the aggregated ECI power, which includes the building load, solar power, and EV charging

demand, is derived. Afterward, due to the stochasticity of the aggregated ECI power, a

Monte Carlo Simulation (MCS) method, more specifically sample average approximation

(SAA), is used to solve the stochastic BESS control optimization problem.

The contributions of this chapter are as follows:

1. A mobile battery energy storage (MBESS) setup is developed to provide peak load

shaving and emergency power to EV charging stations. The experimental results for

the MBESS integration in a public charging station are shown and possible applications

are discussed.

2. A stochastic charging/discharging method is developed for BESS integration in the

commercial ECIs. The proposed method is based on the non-parametric probability

model of the stochastic parameters and MCS method.

4.1 Battery Energy Storage Implementation

MBESS setup includes the multi-module battery energy storage, the bi-directional inverter

connecting BESS to the grid and load, the power transformer providing appropriate AC

voltage level, as well as the measurement, communication, and monitoring devices. Those

components are described in the following, and the collected real data showing the operation

of MBESS in different modes are visualized.

4.1.1 Battery Storage Module

In the first phase of our project, a BESS with 2.2 kWh energy capacity including 17 battery

cells connected in series was set up, which was able to provide 48 VDC nominal voltage.

Each battery cell has a nominal voltage of 3.2 VDC and a nominal capacity of 128 Wh. In

order to facilitate the transportation of the battery, the BESS setup with its circuit breaker

were installed in a small box Fig. 4.1, called mobile battery module. Through the second

phase of the project, the capacity of BESS was scaled up to 8.7 kWh by connecting 3 more
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BESS setups in parallel and mounting them on a cart together with the other components

as shown in Fig. 4.1.

Figure 4.1: Mobile BESS: 2.2 kWh (left), 8.7 kWh (right).

4.1.2 Bi-directional Inverter

BESS and EV charger (as the load) are connected to the main AC distribution grid through

a bi-directional inverter Fig. 4.2. The AC supply voltage of the inverter is 240 VAC (phase

to phase) and 120 VAC (phase to neutral) with the nominal power rating of 6.8 kW. The DC

voltage range is 40-64 VDC (nominal voltage 48 VDC), and the maximum DC current is 140

A. The bi-directional inverter is the interface of BESS with the load as well as the distribution

grid, and it communicates with them through the Xanbus protocol [Xana, Xanb].

4.1.3 Power Transformer

The bi-directional inverter used in the setup works only with 240 VAC (phase to phase) as

the grid supply. Since the power supply is provided by a commercial 3-phase system, only

208 VAC (phase to phase) voltage is available. Therefore, a 208/240 power transformer is

utilized to connect the inverter with the distribution grid. Also, a portable frame, shown in

Fig. 4.3 was designed to facilitate its transportation from SMERC lab to the project location.
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Figure 4.2: 6.8 kW bi-directional inverter (MBESS charger).

Figure 4.3: 208/240 VAC power transformer.

4.1.4 Measurement and Communication Devices

The BESS voltage and current are measured by Conext Battery Monitor module Fig. 4.4 (on

the left) which is able to calculate the state of the charge (SOC), temperature, and voltage

imbalance between the paralleled battery cells. A user can communicate with the inverter

to monitor its operation and change its internal settings by ComBox module Fig. 4.4 (on

the right).
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Figure 4.4: Conext and ComBox, measurement and communication devices of MBESS.

4.1.5 Monitoring Interface

The operation of MBESS can be monitored on a computer which is connected to the ComBox

module through the Ethernet cable. The interface shows the power flow directions among

the grid, battery, and load, as well as their corresponding voltages and currents Fig. 4.5. It

also gives the option to store all the measurements by the rate of 1 sample per 5 seconds on

an SD card.

Figure 4.5: MBESS monitoring interface.

4.1.6 Communication Layout

The communication network is a collection of Xanbus-enabled devices which operate indi-

vidually while interacting with each other through the Xanbus network. In MBESS setup,

the components of the Xanbus network are the bi-directional inverter, battery monitoring

module, Conext, ComBox, and the system control panel. Those devices are connected to-

gether in a series configuration, called daisy chain Fig. 4.6 [Xanb]. Each device is linked

with a separate Category 5 (CAT) cable, and two network terminators are required at each
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end of the chain to ensure the communication signal quality. The main advantage of this

network configuration is its affordability as no network connector is required.

Battery 
Monitoring

Inverter/
Charger

SCP ComBox

Category 5 (CAT 5) cable

Network
Terminator

Network
Terminator

Figure 4.6: Layout of the communication links between the MBESS Xanbus-enable devices.

4.1.7 Electrical Layout

The inverter is the interface of MBESS with the EV charger and the distribution grid. It is

able to charge the battery when its voltage is less than a user-defined value, and discharge

the battery to supply the load or support the grid if the voltage of the battery is greater than

a user-defined threshold. The electrical layout of the inverter, BESS, and the EV charger

is shown in Fig. 4.7. As it is seen, the inverter is not connected to the grid directly. The

reason is that 240 VAC (phase to phase) voltage is required by the inverter, as discussed

(Subsection 4.1.3), while the available 2-phase voltage from the grid is 208 VAC (phase to

phase). Therefore, the power transformer is connected between the grid and the inverter

and provides the required nominal 2-phase AC voltage.

Phase A
Phase B
Phase C

Ground

208/240
Transformer

Inverter/
Charger

Level 2 EV
Charger

Battery
Module

Figure 4.7: Layout of the electrical connection of MBESS with the EV charging system and

AC distribution grid.
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4.1.8 Operation Modes

Three modes are defining the operation of MBESS based on the voltage of BESS, load

current, grid status (if grid supply exists), and the time of the day. Those modes are

described in the following.

Mode1- Charging BESS & Supplying Load: In the first mode, the grid charges BESS

and supplies the EV charger (load) simultaneously. The power received from the grid is

equal to the total power charging the battery storage and supplying the EV charger. For the

inverter to start charging the battery storage, there are two conditions which should be met

(Fig. 4.8). The first condition relates to the voltage level of the battery, and the second one

relates to the time of the day. That is, if the battery voltage (Vbatt) is less than a threshold

(Vth1), and the time is between Chg Block Start and Chg Block Stop, which define the time

to stop battery charging and the time to allow charging, respectively, the inverter starts

charging BESS.

𝑽𝒃𝒂𝒕𝒕 < 𝑽𝒕𝒉𝟏

𝑻஼௛௚ ஻௟௢௖௞ ௦௧௔௥௧ < 𝒕

< 𝑻஼௛௚ ஻௟௢௖௞ ௦௧௢௣

Figure 4.8: Logic diagram for the inverter to start charging BESS- Mode1.

The inverter stops charging the battery if either the charging current (Ibatt−chg) is less

than a threshold (Ith1) or the charging duration (dchg) becomes larger than a threshold (dth)

(Fig. 4.9).

𝑰𝒃𝒂𝒕𝒕ି𝒄𝒉𝒈 < 𝑰𝒕𝒉𝟏

𝒅𝒕𝒉 < 𝒅𝒄𝒉𝒈

Figure 4.9: Logic diagram for the inverter to stop charging BESS- Mode1.
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Mode2- Peak Load Shaving: In the second mode, MBESS provides peak load shaving to

reduce electricity cost. It means that the EV charger load is supplied by both the distribution

system and BESS, so the energy received from the grid decreases. MBESS starts peak load

shaving when the BESS voltage is greater than a user-defined threshold (Vth2), the load

current (IL) is greater than a user-defined value (Ith2), and the time is within a user-defined

period defined by Load Shave Start and Load Shave Stop. The logic diagram showing the

peak load shaving operation mode is displayed in Fig. 4.10.

𝑽𝒕𝒉𝟐 < 𝑽𝒃𝒂𝒕𝒕

𝑰𝒕𝒉𝟐 < 𝑰𝑳

𝑻௅௢௔ௗ ௌ௛௔௩௘ ௌ௧௔௥௧ < 𝒕
< 𝑻௅௢௔ௗ ௌ௛௔௩௘ ௌ௧௢௣

Figure 4.10: Logic diagram for MBESS to provide peak load shaving- Mode2.

Mode3- Islanded Operation: In the third mode, MBESS is disconnected from the AC

distribution system (islanded) and supplies the EV charger. To operate in the islanded mode,

three conditions should be satisfied simultaneously Fig. 4.11: the BESS voltage should be

larger than a threshold (Vth3), the grid voltage should be less than a threshold (Vth4) meaning

that there is no power available from the grid, and the load current (IL) should be larger

than a value (Ith2) showing that there is a load to be supplied.

𝑽𝒕𝒉𝟑 < 𝑽𝒃𝒂𝒕𝒕

𝑰𝒕𝒉𝟐 < 𝑰𝑳

𝑽𝒈𝒓𝒊𝒅 < 𝑽𝒕𝒉𝟒

Figure 4.11: Logic diagram for MBSES to supply the load in islanded mode- Mode3.
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4.1.9 Experimental Results

The MBESS setup has been tested on the Civic Center parking structure in the City of Santa

Monica. The load terminals of the inverter are connected to a level-2 EV charger, and the

data is collected for around 1 hour. The measurement samples are recorded every 5 seconds.

The results illustrated in Fig. 4.12 show the operation of MBESS in three modes. In the

first mode (blue area), there is no load in the system, but the conditions for the inverter to

charge BESS are met, therefore BESS is charger by the power from the grid. In the second

mode (green area), an EV is plugged in, therefore the power from the grid is charging both

BESS and EV simultaneously. In the last mode (grey area), there is no power supply from

the grid. However, BESS is capable to supply the EV charger since its voltage (Vbatt) is

more than the defined threshold (Vth3). As described earlier, the operation of MBESS in this

mode is called islanded mode. The fact that the MBESS setup can provide power to the EV

charging station during the outage in the distribution grid verifies increasing the resiliency.

Islanded operation mode is specifically desirable when in an emergency situation EV should

be charged while there is not power supply from the grid.
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Figure 4.12: Experimental results for the operation of MBESS supplying an EV charging

infrastructure..
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4.2 Battery Energy Storage Emulation: Stochastic Optimization

In this section, the model of a grid-connected microgrid (µG) consisting of a building (com-

mercial or residential), the uncontrolled EV chargers, PV panels, and BESS is presented.

The purpose is to design an optimal BESS charging/discharging method which minimizes

the electricity cost of the µG or its total load variations. As the building load, the EV

charging demand, and the PV power generation are random variables (RVs), we are dealing

with a stochastic optimization problem. To make the problem tractable, SAA which is a

distribution-free MCS method is utilized. To generate the scenarios for the stochastic load

and generation, DKDE which is introduced in Section 3.2 is used.

4.2.1 Model Description and Problem Formulation

As we consider only the active power of the building load here, instead of the model developed

in Section 2.1, we slightly modify the EV model described in Section 2.2 and use it for BESS

as follows:

cbs(t+ 1) = αbscbs(t) + Td
(
ηbs

+
pbs

+
(t) + pbs

−
(t)/ηbs

−)
(4.1a)

pbs(t) = pbs
+

(t) + pbs
−

(t), (4.1b)

subjected to the constraints:

0 6 pbs
+

(t) 6 pbs (4.2a)

pbs 6 pbs
−

(t) 6 0 (4.2b)

0 6 pbs
−
(t)

pbs
+ pbs

+
(t)

pbs
6 1, (4.2c)

Cbs(t) 6 cbs(t) 6 C
bs

(t), (4.2d)

in which, the definition of parameters is similar to Sections 2.1 and 2.2.

µG can either receive or inject power from/to the grid, and its exchanged power is limited

by the following constraint:

pµG 6 pµG(t) 6 pµG, ∀t ∈ N. (4.3)
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We can write pµG(t) as the aggregated power of the PV panels, EV charging, building load,

and BESS as follows:

pµG(t) = pbs(t) + pbl(t, ξbl) + ppv(t, ξpv) + paev(t, ξaev), ∀t ∈ N, (4.4)

in which, pµG ∈ R is the total power of µG, pbs is already defined in Section 2.1, and pbl,

ppv, and paev ∈ R are the building load demand, PV panel power, and the aggregated EV

charging load, respectively. ξbl, ξpv, and ξaev denote, respectively, the uncertainty set of

the building load, PV generation, and aggregated EV charging demand. To reduce the

computation burden of the scenario generation, we define an aggregated RV as follows:

pbpe(t, ξ) = pbl(t, ξbl) + ppv(t, ξpv) + paev(t, ξaev), ∀t ∈ N, (4.5)

therefore (4.4) can be rewritten as:

pµG(t) = pbs(t) + pbpe(t, ξ), ∀t ∈ N. (4.6)

The optimal BESS charging/discharging control (OBESC) with the objective function FµG

is written as:

VµG := min
pµG

E[FµG(pµG,pbpe)]

s.t. (4.1)− (4.6).

(4.7)

in which, E[.] is the expected value.

4.2.2 Sample Average Approximation

As there is an RV in OBESC problem, deterministic methods can not be used directly.

However, using SAA which is an MCS technique makes our stochastic optimization problem

tractable. To this end, DKDE is used first to find a non-parametric distribution estimation

for the RV, pbpe. Afterward, a large number of samples, called scenarios, are generated for

each of which the optimization problem (4.7) is solved using deterministic methods. If an

appropriate number of scenarios is generated, their average approaches to the expectation

value [SDR09]. It should be noted that the average of the generated scenarios converges
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to the expectation if the optimization variable is continuous and the random variables are

independent and identically distributed (i.i.d). According to the model developed for µG,

the optimization variable in (4.7) is continuous. Also, we have only one random variable

(pbpe(t, ξ)), and use DKDE to estimate its p.d.f instead of considering pbl(t, ξbl), ppv(t, ξpv),

and paev(t, ξaev) separately. therefore SAA converges to the expectation value for our prob-

lem.

Algorithm 3 shows the application of SAA for OBESC. Nit denotes the number of iter-

ations that the procedure is repeated, and Nsc denotes the number of scenarios generated

at each iteration. FµG
k,l shows the calculated optimal value at the lth scenario of the kth

iteration, and FµG
k denotes their average for the kth iteration. FµG

opt is the expected optimal

value for OBESC.

Algorithm 3: SAA procedure for OBESC.

1 Initialization: Set the values for Cbs(t = 0), Cbs(t = N), Nit, Nsc

2 for k = 1 : Nit do

3 for l = 1 : Nsc do

4 Generate pbpek,l using DKDE.

5 Solve (4.7).

6 FµG
k,l = F opt.

7 end

8 FµG
k = 1

Nsc

∑Nsc
l=1 FµG

k,l .

9 end

10 FµG
opt = E[FµG

k ]

4.2.3 Numerical Simulation

In this subsection, OBESC is applied to a grid-connected µG shown in Fig. 4.13. The

data sets for the solar energy and building load demand are collected from [Aus], and the

aggregated EV charging profile is collected in the UCLA campus parking lots by SMERC.
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The simulation parameters and the corresponding values are shown in Table 4.1.

𝐩௣௩

𝐩௔௘௩

𝐩௕௟𝐩ఓீ

𝐩௕௦

𝐩௕௣௘

Figure 4.13: Grid-connected µG with BESS, PV panels and uncontrolled EV charging sys-

tem.

Table 4.1: µG, BESS, and SAA simulation parameters.

Parameter Value Parameter Value

C
bs

40 [kWh] Cbs 4 [kWh]

pbs 20 [kW] pbs −20 [kW]

pµG 30 [kW] pµG −30 [kW]

(αbs, ηbs
+
, ηbs

−
) (0.99, 0.95, 0.95) N 48

Nit 50 Nsc {50, 100, 300, 500}

Two objective functions are defined to assess the effect of BESS on the µG operation. The

first objective aims at cost reduction (CR), and the second one is to provide load variance

minimization (LVM). CR function is defined by:

FµG
cr (pµG) := ΠT .pµG (4.8)

where Π ∈ RN is the wholesale electricity price from CAISO [CAI]. LVM function is defined

as:

FµG
lvm(pµG) :=

∥∥∥ΩµG − pµG
∥∥∥
2
, (4.9)

in which, Ω
µG

is the average power of µG, and it is defined as:

ΩµG :=
1

N

N∑
t=1

pµG(t). (4.10)
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The aggregated load data (pbpe) is clustered using the k -means++ clustering method.

Then, DKDE is applied to model the optimization problem RV. For each cluster, OBESC

problem is solved by Algorithm 3, and for different number of scenarios, the expected value of

the objective function (Mean), its standard deviation (STD), and the computation time (CT)

are calculated. For cluster#1, the results are shown in Table 4.2. As it is expected, increasing

the number of scenarios increases CT but decreases STD. Also, CT in LVM problem is more

than CR, as it takes a longer time to find the solution for a quadratic objective function

comparing to a liner function.

Table 4.2: Expected value, STD, and CT for various number of scenarios- cluster#1.

Nsc MeanCR STDCR STCR (sec) MeanLVM STDLVM CTLVM (sec)

50 23.08 0.243 850 22.90 0.639 1098

100 23.08 0.179 1704 22.96 0.475 2197

300 23.08 0.105 5092 22.93 0.299 6634

500 23.08 0.094 8481 22.93 0.217 10825

The µG and BESS powers for both CR and LVM optimization functions are shown in

Fig. 4.14 and Fig. 4.15, respectively. Considering the BESS power in Fig. 4.14, charging and

discharging depend on the energy price. That is, when the price is high, BESS supplies the

load to decrease the peak power demand from the grid, while the grid charges BESS and

supplies the load when the electricity price is low. Also comparing µG power in LVM with

CR, BESS integration makes more capacity available for supplying additional load in LVM

mode, while the µG power is close to the constraint defined in (4.3) in CR mode.

The Mean, STD, and CT results obtained for cluster#2 in both CR and LVM modes are

shown in Table 4.3.

Table 4.3: Expected value, STD and CT for various number of scenarios- cluster#2.

Nsc MeanCR STDCR STCR (sec) MeanLVM STDLVM CTLVM (sec)

50 18.79 0.246 836 11.13 0.573 1109

100 18.77 0.174 1682 11.19 0.378 2193

300 18.73 0.106 5089 11.19 0.202 6448

500 18.75 0.089 8448 11.20 0.179 10873
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Figure 4.14: µG power without (left) and with (middle) BESS, electricity price and BESS

power profile (right) for CR problem- cluster#1.
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Figure 4.15: µG power without BESS (left), µG power with BESS and charging/discharging

profile of BESS (right) for LVM problem- cluster#1.

The µG power without and with BESS as well as the charging/discharging profile of BESS

for both CR and LVM modes which are obtained for cluster#2 are shown in Fig. 4.16 and

Fig. 4.17, respectively. Comparing to cluster#1, the expected value for both optimization

functions is smaller as the total load profile of µG has smaller peak loads and fluctuations.

The Mean, STD, and CT results obtained for cluster#3 in both CR and LVM modes are

shown in Table 4.4.

Table 4.4: Expected value, STD and CT for various number of scenarios- cluster#3.

Nsc MeanCR STDCR STCR (sec) MeanLVM STDLVM CTLVM (sec)

50 13.11 0.214 860 12.32 0.659 1073

100 13.12 0.133 1702 12.30 0.469 2171

300 13.12 0.079 4950 12.31 0.268 6431

500 13.13 0.058 8376 12.31 0.201 10633
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Figure 4.16: µG power without (left) and with (middle) BESS, electricity price and BESS

power profile (right) for CR problem- cluster#2.
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Figure 4.17: µG power without BESS (left), µG power with BESS and charging/discharging

profile of BESS (right) for LVM problem- cluster#2.

The µG power without and with BESS as well as the charging/discharging profile of

BESS for both CR and LVM modes which are obtained for cluster#3 are shown in Fig. 4.18

and Fig. 4.19, respectively.
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Figure 4.18: µG power without (left) and with (middle) BESS, electricity price and BESS

power profile (right) for CR problem- cluster#3.
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Figure 4.19: µG power without BESS (left), µG power with BESS and charging/discharging

profile of BESS (right) for LVM problem- cluster#3.

The Mean, STD, and CT results obtained for cluster#4 in both CR and LVM modes are

shown in Table 4.5.

Table 4.5: Expected value, STD and CT for various number of scenarios- cluster#4.

Nsc MeanCR STDCR STCR (sec) MeanLVM STDLVM CTLVM (sec)

50 29.46 0.320 894 26.81 0.742 1123

100 29.48 0.186 1697 26.86 0.593 2189

300 29.46 0.105 5076 26.79 0.282 6476

500 29.48 0.088 8335 26.82 0.245 10881

The µG power without and with BESS as well as the charging/discharging profile of

BESS for both CR and LVM modes which are obtained for cluster#3 are shown in Fig. 4.20

and Fig. 4.21, respectively.
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Figure 4.20: µG power without (left) and with (middle) BESS, electricity price and BESS

power profile (right) for CR problem- cluster#4.
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Figure 4.21: µG power without BESS (left), µG power with BESS and charging/discharging

profile of BESS (right) for LVM problem- cluster#3.

In all clusters, the results reveal that BESS integration in µG can effectively reduce

electricity cost and minimize the load variance. In the latter case, load variance minimization

results in more available capacity on the µG feeder which can be utilized for supplying

additional load.

4.3 Conclusion

In this chapter, the prototyped MBESS has been presented, and its integration in a real EV

charging system has been shown. The experimental results reveal that BESS is capable of

providing load leveling, charging cost reduction, and emergency power services to ECI. Based

on our experience, it is worthwhile to mention that currently one of the main obstacles in

implementing and testing BESS is that the setup components are not vendor-free, and they

all should be ordered from the similar vendors. This issue can make the system maintenance

costly. In addition, the cost of BESS installation is significant, an in some cases it can be

more than the cost of the system itself.

In addition to prototyping BESS, the integration of BESS in a microgrid consisting of a

building, EV charging system, and PV panels has been modeled by the numerical simulations,

and a stochastic method for its optimal operation has been developed. The purpose of the

BESS integration is to provide two services: electricity cost reduction and load variance

minimization. Due to the stochasticity of the building load, EV charging demand, and
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solar power, a stochastic optimization problem has been formulated. To make the problem

tractable, SAA which is an MCS method has been applied. The numerical simulation results

show the efficacy of BESS in accommodating EV charging demand by preventing the total

power of the microgrid from exceeding the feeder capacity constraint. BESS can also reduce

the electricity cost by optimal charging and discharging. Depending on the EV charging

system operator, the optimal control of BESS can either reduce the electricity bill or utilize

the feeder capacity efficiently so that additional loads (e.g. EV chargers) can be added to

the microgrid.
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CHAPTER 5

EV Charging Scheduling with Feeder Capacity

Constraints: Fully Distributed Hierarchical ADMM

In this chapter, a hierarchical distributed framework for optimal coordination of EVs’ charg-

ing demand with the consideration of feeder capacity constraints is proposed. The proposed

framework consists of three layers of entities including CA, the feeder agents or EVAs, and

EVs, in which each individual entity has its own objective function. By exploiting the math-

ematical properties of the EVCS problem, the interaction between the agents is formulated

as a hierarchical sharing problem which is solved efficiently by ADMM in a distributed fash-

ion. The developed hierarchical ADMM is embedded in RH feedback control to make the

optimization results robust against the uncertainties in the system. RH provides the agents

with Plug and Play (PnP) capability as well, i.e. they may change their optimization objec-

tive function at any RH iterations. The performance of the proposed framework in satisfying

distribution feeder capacity constraint and LVM is validated by the numerical simulations.

5.1 Problem Formulation

We consider an ECI with a hierarchical trilayer structure shown Fig. 5.1 including CA, sev-

eral EVAs, and the corresponding EV chargers. Defining an agent for each feeder provides

the chance to include the feeder capacity constraints in the scheduling problem and to im-

prove the flexibility of the infrastructure by considering an objective function for each EVA.

The objective of the EV charging scheduling is not only to alleviate the negative effects of

uncontrolled EV charging load on the system, but also to deploy EVs for regulation services

such as load leveling. Accordingly, in the proposed general framework each of the ECI agents,
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namely CA, EVAs, and EVs, has its own objective function. The purpose of the agents is

to optimize their local objectives while the local and coupled constraints, introduced in the

following, are satisfied.

EVA3

EVB3,3

EVA1

EVA4 EVA2

CA

EVB2,3

EVB1,3

EVB3,1

EVB2,1

EVB1,1

EVB1,4

EVB2,4

EVB3,4

EVB1,2

EVB2,2

EVB3,2

LV Line

MV Line

EV Charger

MV/LV  
Transformer

HV/MV 
Transformer

Figure 5.1: Multi-agent trilayer EV charging infrastructure.

Considering that the charging infrastructure has N v ∈ N EVs, Na denotes the set of

EVAs, Nv
j denotes the set of EVs supplied by the j th EVA, and their cardinalities are shown

by N a and N v
j , respectively. EVi,j shows the ith EV supplied by the j th EVA.

It is assumed that each EVi,j is located in either a commercial or a residential building.

Hereafter, EV Bi,j is used to show EVi,j and its corresponding building. Assuming that each

EVB is equipped with a solar panel and considering the EV load model (2.4)-(2.5), the total

load demand of EV Bi,j is obtained by:

pevbi,j (t) = pli,j(t) + ppvi,j(t) + pevi,j(t) = puci,j(t) + pevi,j(t), (5.1)

where pevbi,j , pli,j, p
pv
i,j, p

uc
i,j ∈ R. pevbi,j is the total load demand, pli,j is the total building load

excluding the EV charging load, ppvi,j is the solar panel power output, and puci,j is the total

netload demand (load plus solar power).

The set of feasible trajectories of EV Bi,j is defined as:

Pevbi,j =

{
pevi,j ∈ RN | (2.4)− (2.5) and (5.1), ∀t ∈ Jt′, t′ +N − 1K

}
. (5.2)
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It is the responsibility of each EVA to prevent its aggregated EV power demand from

exceeding the available feeder capacity. This is shown by:

paj (t) 6 P
a

j (t) (5.3a)

paj (t) =
∑
i∈Nvj

pevi,j(t) (5.3b)

P
a

j (t) = P
ac
j −

∑
i∈Nvj

pevbi,j (t), (5.3c)

where paj , P
a

j , P
ac
j ∈ R. paj is the aggregated EV power demand of the j th EVA, P

a

j is its

maximum capacity available for EV power demand, and P
ac
j is the maximum capacity of

the feeder supplying the j th EVA. According to (5.3b), the maximum capacity available for

EV charging load is time-varying as it depends on the aggregated netload demand, while the

maximum feeder capacity is a constant value depending on the technical specification of the

feeder.

CA controls the total EV power demand of the distribution grid so that it does not

exceed the maximum capacity available for EV charging, which is determined by DMS. This

constraint is shown by:

pca(t) 6 P
ca

(t) (5.4a)

pca(t) =
∑
j∈Na

paj (t) (5.4b)

P
ca

(t) = P
cac −

∑
j∈Na

paj (t), (5.4c)

where pca, P
ca

, P
cac ∈ R. pca is the aggregated EVAs’ power demand, P

ca
is the grid’s

maximum capacity available for EVAs’ load demand, and P
cac

is the maximum available

capacity to supply the loads. Similar to EVAs’ constraints, the maximum capacity available

for EVAs is time-varying as it depends on the aggregated EVAs’ demand, while tP
cac

is a

constant value depending on the technical specifications of the grid.

The objective function of EVCS is threefold which is written as follows:

V := min
pca,pa,pev

Fca(pca) + Fa(pa) + Fev(pev)

s.t. (5.2)− (5.4), ∀i ∈ Nv
j , ∀j ∈ Na,

(5.5)

60



where Fca, Fa, and Fev are the convex objective functions of the ECI’s agents which are cou-

pled by the constraints (5.3) and (5.4). The constraints on the EVs and their corresponding

EVB shown by (5.2) are local constraints.

We show that the optimization problem in (5.5) is the sharing problem which can be

solved in a distributed fashion. The objective function can be written as:

V := min
pca,pa,pev

Fca(pca) +
∑
j∈Na

Fa
j (p

a
j ) +

∑
j∈Na

∑
i∈Nvj

Fev
i,j(p

ev
i,j)

= min
pca,pa,pev

Fca(pca) +
∑
j∈Na

(
Fa
j (p

a
j ) +

∑
i∈Nvj

Fev
i,j(p

ev
i,j)
)
,

(5.6)

in which the first expression is the CA’s objective function, and the second expression includes

the objective function of each EVA and its corresponding EVBs. We define the functions:

F′j(p
ev
i,j,p

a
j ) =

∑
i∈Nvj

Fev
i,j(p

ev
i,j) + Fa

j (p
a
j ) (5.7a)

F′(pev,pa) =
∑
j∈Na

F′j(p
ev
i,j,p

a
j ), (5.7b)

in order to rewrite (5.6) in the form which can be solved in a distributed manner by ADMM

as follows:

V := min
pca,pa,pev

Fca(pca) + F′(pev,pa)

s.t. pcaj − paj = 0, j ∈ J1,N aK,
(5.8)

where only the coupled constraint between the CA and EVAs is shown. Note that pca and

pa have the same dimension, which is shown by the coupled constraint. This results in

the objective function in the form of the sharing problem which is further discussed in the

following section.

5.2 Hierarchical Alternative Direction Method of Multipliers

In this section, ADMM algorithm is briefly introduced to solve the convex optimization

problem, formulated in the preceding section. It is also shown how the EVCS problem is

a special case of the block separable problems referred to as the sharing problem [BPE11,

Chapter 7.3].
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5.2.1 ADMM

The problem in (5.8) is solved by ADMM, which is a variant of the augmented Lagrangian

approach and uses the partial updates of the dual variables in each iteration. For a given

time horizon N ∈ N, the augmented Lagrangian of (5.8) L : RN vN ×RNaN ×RNaN ×RNaN

is given by:

Lρ(pca,pa,pev, λ) = Fca(pca) + F′(pev,pa) + λT (pca − pa) +
ρ

2
‖pca − pa‖22 , (5.9)

with the Lagrangian multipliers λ = (λT1 , . . . , λ
T
Na)

T , which are also called dual variables,

and ρ ∈ R>0 is the penalty factor.

Theorem 5.2.1. [BPE11, Chapter 3.2] Let the extended-real-valued functions Fca and F′

be closed, convex and proper. Also, suppose that a saddle point (pca
?
,pa

?
, zev

?
, λ?) of the

Lagrangian L0 exists, i.e.:

L0(p
ca? ,pa

?

, zev
?

, λ) 6 L0(p
ca? ,pa

?

, zev
?

, λ?) 6 L0(p
ca,pa,pev, λ?),

holds for all λ and all (pca,pa,pev). Then, the following iterative primal and dual updates:

(paj ,p
ev
j )k+1 := argmin

paj ,p
ev
j

Lρ(pca
k

,pa,pev, λk), ∀j ∈ Na (5.10a)

pca
k+1

:= argmin
pca

Lρ(pca,pa
k+1

,pev
k+1

, λk) (5.10b)

λk+1 := argmin
λ
Lρ(pca

k+1

,pa
k+1

,pev
k+1

, λ), (5.10c)

satisfy the following properties for any feasible initial values pca
0
, pa

0
, pev

0
, λ0 and fixed

penalty term ρ [BFG18].

• (pca
k − pa

k
)k∈N converges to zero which ensures the feasibility of the optimization

problem (5.8).

• for k → ∞, (pca
k
,pa

k
,pev

k
)k∈N converges to (pca

?
,pa

?
,pev

?
) which gives the optimal

value of (5.8), i.e. V ?.

• for k →∞, the dual variable λk converges to the optimal dual point λ?.
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The first update, (5.10a), can be computed in a distributed manner and in parallel by

each EVA due to the separability of the cost function and the penalty term. Expanding

(5.10a), we have:

(paj ,p
ev
j )k+1 := argmin

paj ,p
ev
j

F′j(p
a
j ,p

ev
j ) + λTj (paj − pca

k

j ) +
ρ

2

∥∥∥paj − pca
k

j

∥∥∥2
2
, ∀j ∈ Na. (5.11)

The second update, (5.10b), is written as:

pca
k+1

:= argmin
pca

Fca(pca) + λT (pa
k+1 − pca) +

ρ

2

∥∥∥pak+1 − pca
∥∥∥2
2
. (5.12)

Since Lρ is not differentiable at λ, the third update, (5.10c), is solved using the gradient

method for each element of the vector λ, i.e.:

λk+1
j = λkj + ρ(pa

k+1

j − pca
k+1

j ), ∀j ∈ Na. (5.13)

5.2.2 Scaled Form

ADMM can be written in a different form by combining the linear and quadratic penalty

terms and scaling the dual variable. Defining r = pa−pca, we have [BPE11, Chapter 3.1.1]:

λT r +
ρ

2
‖r‖22 =

ρ

2

∥∥∥∥r +
1

ρ
λ

∥∥∥∥2
2

− 1

2ρ
‖λ‖22 =

ρ

2
‖r + ν‖22 −

1

2
‖ν‖22 , (5.14)

where ν = 1
ρ
λ. Therefore, ADMM updates can be expressed in the scaled form as:

(paj ,p
ev
j )k+1 := argmin

paj ,p
ev
j

F′j(p
a
j ,p

ev
j ) +

ρ

2

∥∥∥paj + νkj − pca
k

j

∥∥∥2
2
, ∀j ∈ Na (5.15)

pca
k+1

:= argmin
pca

Fca(pca) +
ρ

2

∑
j∈Na

∥∥∥pak+1

j + νkj − pcaj

∥∥∥2
2

(5.16)

νk+1
j = νkj + pa

k+1

j − pca
k+1

j , ∀j ∈ Na. (5.17)

The first and the third update steps of ADMM, i.e. (5.15) and (5.17), respectively, are solved

by EVAs in parallel, while the second update (5.16) is solved by CA.

As it is seen, CA has to solve an optimization problem with N a ×N variables meaning

that the complexity of the optimization problem solved by CA increases with the number

of EVAs. However, it will be possible to make the number of variables in CA’s problem

independent of the number of EVAs, if the optimization problem can be written in the form

of the sharing problem, which is shown in the following.
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5.2.3 Sharing Problem

According to (5.4), the function Fca takes the sum of individual EVAs’ decision variables

as input. By introducing pca = 1
Na

∑
j∈Na

pcaj (t) and pa = 1
Na

∑
j∈Na

paj (t), the scaled form of

ADMM, (5.15)-(5.17), is written in the following form which is called the sharing ADMM.

(paj ,p
ev
j )k+1 := argmin

paj ,p
ev
j

F′j(p
a
j ,p

ev
j ) +

ρ

2

∥∥∥paj − pa
k

j + pa
k − pca

k

+ νk
∥∥∥2
2
, ∀j ∈ Na (5.18)

pca
k+1

:= argmin
pca

Fca(N apca) +
N a.ρ

2

∥∥∥pak+1 − pca + νk
∥∥∥2
2

(5.19)

νk+1 = νk + pa
k+1 − pca

k+1

. (5.20)

Lemma 5.2.2. [BFG18] For given a and bj ∈ RN (j ∈ Na), we have c?j = bj + a − b, with

b = 1
Na

∑
j∈Na

bj , as the optimal value:

c?j := argmin
cj∈RN

∑
j∈Na
‖cj − bj‖ s.t.

1

N a

∑
j∈Na

cj = a.

Proof. For bj = 0 (j ∈ Na), the triangle inequality implies that:

‖N a.a‖ = min
cj :

1
Na

∑
j∈Na

cj=a

∥∥∥∥∥∑
j∈Na

cj

∥∥∥∥∥ 6 min
cj :

1
Na

∑
j∈Na

cj=a

∑
j∈Na
‖cj‖,

where the equality holds for cj = a (j ∈ Na). Using the coordinate transformation c̃j = cj−bj,

the equality constraint results in

1

N a

∑
j∈Na

c̃j =
1

N a

∑
j∈Na

cj −
1

N a

∑
j∈Na

bj = a− b,

which verifies the assertion.

Now, we use the lemma to prove the sharing ADMM. More details are provided in

[BPE11, Chapter 7.3].

Proof. Applying Lemma 5.2.2 to (5.16), we obtain:

pca
k+1

j = pa
k+1

j + νkj + pca
k+1 − pa

k+1 − νk, (5.21)
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for j ∈ Na. Therefore, (5.16) is rewritten as:

pca
k+1

:= argmin
pca

Fca(N apca) +
ρ

2

∑
j∈Na

∥∥∥pak+1

+ νk − pca
∥∥∥2
2
,

which yields (5.19). Substituting (5.21) for (5.17) gives:

νk+1
j = νk + pa

k+1 − pca
k+1

,

which means that the dual updates for all EVAs are equal, i.e. νk+1
j = νk+1

j′ for all j 6= j′ ∈ Na.

Therefore, the dual update of ADMM is independent of the number of EVAs and is written

as (5.20). Finally, replacing the results in (5.15), we can obtain (5.18).

To decrease the communication overhead between CA and EVAs, we define Vk = νk +

pa
k − pca

k
. Thus, at each ADMM iteration after the third update (5.20), CA broadcasts V

to EVAs.

5.2.4 Fully Distributed Hierarchical ADMM

Hereafter, the iterative ADMM procedure between CA and the EVAs is called ADMM1.

Considering the first update of ADMM1 (5.18), each EVA has to solve an optimization

problem of (N v
j + 1) × N unknown variables. This limits the scalability of the charging

scheduling algorithm. Also, as each EV has to communicate its information, such as arrival

time, departure time, and required energy with the corresponding EVA, EV owners’ privacy

may not be preserved. Therefore, we further explore the first update of ADMM1 in order to

propose a fully distributed charging scheduling algorithm where each EV schedules its own

charging profile through communication with its EVA.

Considering (5.6) and (5.7a), the first update of ADMM1 (5.18) for the j th EVA can be

written as follows:

(paj ,p
ev
i,j)

k+1 := argmin
paj ,p

ev
i,j ∀i∈Nvj

Fa
j (p

a
j ) +

∑
i∈Nvj

Fev
i,j(p

ev
i,j) +

ρ

2

∥∥∥paj − pa
k

j + pa
k − pca

k

+ νk
∥∥∥2
2
.

Considering (5.3b), which shows the coupled constraint between each EVA and its EVs, the

second and third parts of the above expression are the functions of
∑
i∈Nvj

pevi,j, and it can be
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written as follows:

(paj ,p
ev
i,j)

k+1 := argmin
paj ,p

ev
i,j ∀i∈Nvj

F”j(
∑
i∈Nvj

pevi,j) +
∑
i∈Nvj

Fev
i,j(p

ev
i,j).

According to Lemma 5.2.2, the above optimization problem is the sharing problem, and it

can be solved by a similar iterative procedure (5.18)-(5.20), however between each EVA and

EVs which it supplies. Hereafter, the sharing ADMM which is executed between each EVA

and its EVs is called ADMM2. Therefore, ADMM2 for the j th EVA, namely ADMM2,j, is

written as follows:

pev
l+1

i,j := argmin
pevi,j

Fev
i,j(p

ev
i,j) +

γ

2

∥∥∥pevi,j − pev
l

i,j + pev
l

j − pa
l

j + θlj

∥∥∥2
2

s.t. (5.2)

(5.22)

pa
l+1

j := argmin
paj

Fa(N v
j paj ) +

ρ

2

∥∥∥N v
j paj − pa

k

j + Vk
∥∥∥2
2

+
N v
j .γ

2

∥∥∥paj − θlj − pev
l+1

j

∥∥∥2
2
)

s.t. (5.3)

(5.23)

θl+1
j = θlj + pev

l+1

j − pa
l+1

j , (5.24)

where pevj ∈ RN , pevj = 1
N vj

∑
i∈Nvj

pevi,j and γ ∈ R>0. Similar to ADMM1, to decrease the

communication overhead, we define Θl
j = θlj + pev

l

j − pa
l

j . Thus, at each ADMM2 iteration

after the third update (5.24), the j th EVA broadcasts Θj to its EVs. Note that in (5.23),

we replace νk + pa
k − pca

k
with Vk.

The whole procedure of the proposed fully distributed optimal EVCS including the two-

layer hierarchical ADMM is shown in Algorithm 4, where line 5 to line 18 show ADMM2

which is solved in parallel by EVAs and their corresponding EVs. For more details about

the stopping criteria, we refer to [BPE11, Chapter 3.3]

5.2.5 Receding Horizon Hierarchical ADMM

In this subsection, we apply RH to the hierarchical ADMM , celled RH-ADMM, to generate

the optimal feedback control sequences for the EV chargers. Utilizing RH results in a more
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Algorithm 4: Hierarchical ADMM.

1 Initialization: Set initial values for pca
0
, pa

0
, pev

0
, γ0, and θ0.

2 k ← 0.

3 l← 0.

4 while Err1 < Th1 do

5 for j = 1 : N a do

6 while Err2 < Th2 do

7 for i = 1 : N v
j do

8 calculate pev
l+1

i,j by (5.22).

9 end

10 update pev
l+1

j = 1
N vj

N vj∑
i=1

pev
l+1

i,j .

11 Calculate pa
l+1

j by (5.23).

12 Update θl+1
j by (5.24).

13 Update & broadcast Θl+1
j to ∀i ∈ Nv

j .

14 Update Err2.

15 l← l + 1.

16 end

17 Send pa
k+1

j = N v
j .p

al+1

j to CA.

18 end

19 update pa
k+1

= 1
Na
Na∑
j=1

pa
k+1

j .

20 Calculate pca
k+1

by (5.19).

21 Update ν by (5.20).

22 Update & broadcast V to ∀j ∈ Na.

23 Update Err1.

24 k ← k + 1.

25 end
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robust optimal EVCS, as it iteratively updates the control sequences according to the most

recent EV load demand requests and other measurement variables of the system. This also

helps reduce system modeling errors [RM09].

The proposed RH-ADMM executes the following steps consecutively. First, according

to the predicted EV charging requests and other required data at the time instant t over

the time horizon N ∈ N, Algorithm 4 finds pev
?
(·). Then, only the first element of pev

?

i,j (·)

is implemented by EVi,j. Afterward, t is incremented, and the same procedure is repeated.

The RH-ADMM is shown in Algorithm 5. In addition to the advantages mentioned above,

there is one more advantage for applying RH to the proposed hierarchical framework. It

gives the flexibility to ECI agents to change their objective functions, as long as it is convex,

at each RH iteration. It is worthy to mention that in this case, as each optimization function

is solved locally, the agents do not need to notify each other about changing the objective

function. This feature is also known as PnP [BFG18].

Algorithm 5: Hierarchical RH-ADMM.

1 while t 6 N do

2 Initialization Update the arrival/departure time, initial state of energy of EVs,

other required data.

3 Run Hierarchical ADMM, Algorithm 4, to calculate pev
?
(·), cev

?
(·), and pevb

?
(·).

4 Apply the first element of the optimal value pev
?

i,j (·),∀i ∈ Nv
j & ∀j ∈ Na.

5 Increment the time index t.

6 end

5.3 Numerical Simulations and Discussion

In this section, first, the optimization objective functions are defined, and different perfor-

mance metrics are introduced. Then, in order to evaluate the performance of the proposed

hierarchical RH-ADMM, the numerical simulations are executed, and the results are dis-

cussed. Through this section, the optimization problems are solved by CVX [GB14] using a
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PC with Intel® Core� i7− 4770 3.40 GHz CPU, 4 cores and 8 GB RAM.

5.3.1 Case Study Setup

For the numerical simulations, we assume that the purpose of CA is to minimize the peak load

in the distribution grid, which is equivalent to LVM [SHM11], while EVs aim at minimizing

their charging cost. Therefore, CA needs to have access to the netload demand prediction of

the feeders over the EV charging scheduling horizon, and each EVB should have knowledge

about the arrival time, departure time, and required energy of its own EV. We assume that

CA receives the netload demand prediction from DMS, and EVBs have a priori knowledge

about their EVs’ charging data or predict it using the method proposed in Chapter 3.

To formulate CA’s objective function, we define Ωj(t) of the j th EVA by:

Ωj(t) :=

N vj∑
i=1

puci,j(t). (5.25)

Also, Ω(t) over the time horizon N ∈ N is defined by:

Ω(t) :=
1

N

t′+N−1∑
t=t′

Na∑
j=1

Ωj(t). (5.26)

Hence, the CA’s objective function is written as:

Fca(pca) := min
pca

(
Ω−

Na∑
j=1

(Ωj + paj )
)2

s.t. (5.4).

(5.27)

For EVAs, it is assumed that their purpose is only to keep the total charging demand of the

feeder less than the capacity constraint (5.3). Therefore, the objective function of the j th

EVA is the indicator function defined as follows:

Fa
j (p

a
j ) := min

paj


0, if paj 6 P

a

j

∞, otherwise.

(5.28)

The objective function of EV Bi,j is the inner product of Π and the charging profile,
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which is written as follows:

Fev
i,j(p

ev
i,j) := min

pevi,j
ΠT .pevi,j

s.t. (5.2),

(5.29)

where Π ∈ RN is the wholesale electricity price available from CAISO [CAI].

Other objective functions which can be defined for EVs are CO2 emission minimization

and peak shaving [DPM18]. In the former, the EV is charged over the time periods when

CO2 emission at the system level is low, which can be achieved by weighting the charging

profile by the emission vector, and the result is a convex objective function. In the latter,

EV is charged such that the least-square error of the building load demand, i.e. (5.1), over

the optimization horizon decreases, which is a quadratic convex function.

According to (5.27)-(5.29), the objective function of EVCS (5.5) is written as follows:

V := min
pca,pa,pev

∑
j∈Na

∑
i∈Nvj

(ΠT .ui,j) +
(
Ω−

J∑
j=1

(
Ωj + wj

))2
s.t. (5.2)− (5.4),∀i ∈ Nv

j & ∀j ∈ Na.

(5.30)

5.3.2 Performance Metrics

According to the CA’s objective function, three metrics are defined to assess the performance

of the proposed hierarchical RH-ADMM. The first performance metric is the peak-to-peak

(PTP) variation of the power demand, which is the difference between the maximum and

minimum total power demand of the distribution grid over the time horizon N ∈ N, and it

is obtained by:

PTP = max
t∈J1,NK

ε(t)− min
t∈J1,NK

ε(t), (5.31)

where ε(t) =
∑
j∈Na

∑
i∈Nvj

pevbi,j (t), ε(t) ∈ R.

The second performance metric is the peak-to-average (PTA) [DPM18], which is given

by:

PTA =
maxt∈J1,NK ε(t)

E(t)
, (5.32)
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where E(t) = 1
N

∑
t∈J1,NK

∑
j∈Na

∑
i∈Nvj

puci,j(t), E(t) ∈ R is the average of the total netload demand

of the distribution grid over the time horizon N ∈ N.

The last performance metric is the root-mean-square (RMS) deviation from the average

which is given by:

RMS =

√√√√ 1

N

N∑
t=1

(
E(t)− ε(t)

)2
. (5.33)

5.3.3 Simulation Results

The proposed framework is applied to an ECI including 5 EVAs and 300 EVBs, where the

real netload demand dataset is available on [Aus], and it is assumed that the departure and

arrival times of the EVs are normally distributed over [5:00 − 9:00] and [15:00 − 20:00],

respectively. In the following, the simulation results comparing coordinated EV charging

(CC) and uncoordinated EV charging (uCC), with and without RH, as well as the feeders’

loading condition with and without capacity constraints are illustrated. In uCC, EVs start

charging with the maximum power rating as soon as they are plugged. In addition, PnP

feature is shown for the case in which an EV owner changes the charging mode from CR to

the battery degradation cost reduction (BDR). There, it is also discussed how the total load

demand profile is affected when the EV owners prefer to charge their EV in BDR mode,

instead of CR mode.

RH and Feeder Constraints: the effectiveness of the proposed framework in feeder

constraint satisfaction is shown, and its robustness to the netload demand uncertainty is

evaluated. To this end, CC is executed for the netload demand with (PreError) and without

(noPreError) prediction error. Then, CC is scheduled for three cases: using RH and feeder

constraints (RH-CC-PreError), without RH but with feeder constraints (nRH-CC-PreError),

and with RH but without feeder constraints (Unconstrained CC). As it is shown in Fig. 6.2,

CC flattens the load profile in all simulated cases. The figure also verifies that RH makes the

proposed framework robust against the netload prediction error, as the load profile obtained

by nRH-CC-PreError considerably deviates from the expected total load profile specifically

at the end of the scheduling time horizon ([20:00− 24:00]).
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Figure 5.2: Total load profile for uCC, RH-CC with and without prediction error, nRH-CC,

and unconstrained CC.

Fig. 5.3 shows the aggregated daily charging costs for EVAs using uCC and CC. It obvi-

ously justifies that the annual charging cost saving using the RH-ADMM can be substantial.
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Figure 5.3: Comparing the charging cost of uCC with the proposed CC.

Considering that the maximum loading capacity is 82 kW for EV A1 and 78 kW for

the other EVAs, if the feeder constraints are not included in the EVCS problem, all the

feeders experience overloading condition (Fig. 5.4). However, the consideration of the feeder

limitations as the charging scheduling optimization constraints avoids feeders’ overloading

as shown in Fig. 5.5.

EV Penetration Level: the proposed charging algorithm is simulated for different EV

penetration levels in the distribution grid, namely 25%, 50% and 75%. In all three scenarios,
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Figure 5.4: Feeder overloading condition in unconstrained CC.

EVs charge only in CR mode. In Fig. 5.6, the illustrated results compare the total load

demand profile with (CC-RH-CR) and without (uCC) EV load scheduling for different EV

penetrations, and they validate that the proposed RH-ADMM effectively shaves the peak

load and smooths the total load profile.

Moreover, to show the performance of RH-ADMM, the algorithm is run for 1 RH iteration

with 2 and 4 cores, and the computation time and memory usage is measured for various

EV penetration levels for which the results are tabulated in Table 5.1. The results show

that both the computation time and memory usage increase with EV penetration growth.

However, it is worthwhile to note that the proposed framework is designed for a multi-agent

ECI, and it is not supposed to run on a server similar to [RGJ17].

Table 5.1: Computation Performance of RH-ADMM for Various EV Penetrations.

Core# 25% 50% 75% 100%

Computation Time (sec.)
2 537.2 568.4 591.6 614.3

4 409.7 423.3 434.5 446.8

Memory Usage (MB)
2 36.11 36.40 36.68 36.96

4 36.11 36.40 36.68 36.96

PnP and BDR: as it was mentioned earlier, one advantage of RH is PnP in terms of
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Figure 5.5: Feeder constraints’ satisfaction using RH-ADMM.
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Figure 5.6: Total load profile for various EV penetrations charging in CR mode.

agents’ objective functions. That is, each agent may change its objective function at any RH

iterations. This is illustrated in Fig. 5.7 where the charging profile of EV, which is plugged

in at 19:30 and unplugged at 5:00, respectively, is displayed. Notice that EV does not start

charging until 22:00 because of the high electricity price. The EV charger works in CR

mode until 24:00 at which it switches to BDR mode. The BDR optimization function is

defined by [MSF13]:

Fev
i,j(p

ev
i,j) := min

pevi,j
δ
∥∥pevi,j∥∥22 , (5.34)

where δ ∈ R is the simplified battery degradation cost.
∥∥pevi,j∥∥22 penalizes the fluctuation

of the charging power, therefore it will result in a constant charging profile if no other
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constraints affect it. The figure shows the charging powers and the energy profiles with and

without PnP.
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Figure 5.7: PnP using RH-ADMM.

It is shown in Fig. 5.8 that the total load profile is affected if a considerable percentage

of the EV owners are interested to charge their EVs only in BDR mode. By increasing the

number of EVs charging in BDR mode, less RMS and PTP improvements are obtained.

Considering a weighting factor for EVBs’ objective function, the performance metrics are

improved or degraded by decreasing or increasing the weighting factor, while EVBs’ local

objective functions show the opposite behavior.
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Figure 5.8: Total load profile for various numbers of EVs charging in BDR mode.

To better illustrate the effectiveness of the proposed EVCS, the values obtained for the

performance metrics in Fig. 5.6 and Fig. 5.8 are summarized in Table 6.1. As it is clear,

all three performance metrics are significantly improved by the proposed hierarchical EVCS
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Table 5.2: Performance Metrics Improvement Using RH-ADMM.

Charging Type EV Penetration% PTP% PTA% RMS%

CR

25 24 22 32

50 33 31 33

75 34 32 29

100 36 34 28

Charging Type EV% in BDR PTP% PTA% RMS%

CR+BDR

25 35 37 26

50 34 34 25

75 33 32 24

framework.

5.4 Conclusion

In this chapter, a multi-agent framework for optimal EV charging scheduling has been pro-

posed. In the proposed method, CA only communicates with EVAs, and each EVA commu-

nicates with the EVs which it supplies. The EV charging optimization problem has been

formulated as a two-layer hierarchical sharing problem which is solved efficiently by ADMM.

The first sharing problem is between CA and EVAs, and the second one is between each EVA

and its EVs. The features of the proposed framework are that the feeder capacity constraints

are considered in the optimization problem, and each agent has its own objective function

solved locally. Furthermore, to make the EV charging optimal solution robust against the

uncertainties and to provide PnP for the ECI agents, the proposed hierarchical ADMM has

been embedded in the receding horizon control. The simulation results for an EV charging

infrastructure including 5 EVAs and 300 EVs using real data verify the effectiveness of the

proposed hierarchical RH-ADMM in feeder capacity constraint satisfaction, load variance

minimization, and charging cost reduction.
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CHAPTER 6

Hierarchical Distributed Framework for EV Charging

Scheduling Using Exchange Problem

In this chapter, a distributed trilayer multi-agent framework is proposed for optimal EVCS.

The framework reduces the negative effects of the electric vehicle charging demand on the

electrical grids. To solve the scheduling problem, a novel hierarchical distributed EVCS

(HDEVCS) is developed as the exchange problem, where the agents are clustered based

on their coupling constraints. According to the separability of the agents’ objectives and

the clusters’ coupled constraints, HDEVCS is solved efficiently in a distributed manner by

ADMM. The ECI structure considered in this chapter is similar to Fig. 5.1 which consists of

CA, EVAs, and EV chargers; each agent has its own local objective function and constraints,

while its performance is influenced by the other agents due to the coupled constraints. Com-

paring to the exiting trilayer methods, HDEVCS reduces the convergence time and the

iteration numbers since its structure allows the agents to update their primal optimization

variable simultaneously. The performance of HDEVCS is evaluated by the numerical simula-

tions of two small and large scale case studies consisting of 306 and 9051 agents, respectively.

The results verify the scalability and efficiency of the developed method, as it reduces the

convergence time and iteration numbers by 60% compared to the state-of-the-art methods,

flattens the aggregated load profile of the distribution grid, and decreases the charging cost

for the EV owners without violating the grid feeders’ capacity constraints.
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6.1 Problem Formulation

The trilayer ECI includes CA, EVA, and EVB agents. The objective of EVCS is to generate

a sequence of feasible EV charging profiles which minimize (maximize) a desirable loss (rev-

enue) function while the operational constraints are satisfied. The objective of the trilayer

EVCS is threefold which is written as:

V := min
pca,pa,pev

Fca(pca) +
∑
j∈Na

(
Fa
j (p

a
j ) +

∑
i∈Nvj

Fev
i,j(p

ev
i,j)
)

= min
pca,pa,pev

Fca(pca) + Fa(pa) + Fev(pev)

s.t. (5.2)− (5.4), ∀i ∈ Nv
j , ∀j ∈ Na,

(6.1)

where Fca, Fa, and Fev are the convex objective functions of CA, EVAs, and EVs, respec-

tively. The constraint set of EVBs (5.2) as well as (5.3a) and (5.4a) are the local constraints,

while (5.3b) and (5.4b) are the coupled constraints of the scheduling problem (6.1).

We define an auxiliary variable for each EVAj as pauj = −paj in order to rewrite (6.1) in

the exchange problem form which can be solved efficiently by ADMM. Considering (5.3b)

and (5.4b), we have:

pca +
∑
j∈Na

paj +
∑
j∈Na

pauj +
∑
j∈Na

∑
i∈Nvj

pvei,j = 0, (6.2)

where 0 ∈ RN is the zero vector. This equality constraint helps us write (6.1) as a hierarchical

exchange problem. In that way, we do not write the local constraints and only show the

coupled constraint (6.2).

V := min
pca,pa,pev

Fca(pca) + Fa(pa) + Fau(pau) + Fev(pev)

s.t. (6.2),

(6.3)

in which Fau denotes the indicator function depending on the EVAs’ auxiliary variable (pau),

and it is defined as follows for the j th EVA:

Fau
j (pauj ) =


0, if pauj = −paj

∞, otherwise.

(6.4)
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In the following subsection, it is shown that the optimization problem in (6.3) is the

hierarchical exchange problem which can be solved in a distributed manner by ADMM. It

is called HDEVCS as the proposed framework results in the network through which CA

communicates only with EVAs, and EVAs communicate with their own EVs. That is, there

is no direct communication between CA (the highest-level agent) and EVs (the lowest-level

agent), so the proposed EVCS has a hierarchical structure. Nevertheless, all the agents solve

their optimization problem locally and simultaneously which decreases the convergence time

and communication overhead.

6.2 Hierarchical Distributed EVCS

In this section, the EVCS problem is manipulated mathematically to derive the hierarchical

and clustered exchange problem. Then, ADMM is applied to solve it in a fully distributed

manner.

6.2.1 Exchange Problem and HDEVCS

To derive HDEVCS framework, the following aggregated objective function and optimization

variable are introduced.

F = (Fca,Fau,Fa,Fev)

p = (pca,pau,pa,pev),

where F,p ∈ RN f×N , N f = (N v + 2×N a + 1) ∈ N. Therefore, we can rewrite (6.3) as:

V := min
N f∑
n=1

Fn(pn) + G(z)

s.t. pn = zn, ∀n ∈ J1,N fK,

(6.6)

where z ∈ RN f×N , and G(z) is the indicator function defined by:

G(z) =


0, if

N f∑
n=1

zn = 0

∞, otherwise.

(6.7)
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The augmented Lagrangian of (6.6) is written as:

Lρ(p, z, λ) = F(p) + G(z) + λT (p− z) +
ρ

2
‖p− z‖22 , (6.8)

in which ρ is the penalty factor, and λ is the Lagrangian variable, also known as the dual

variable. The Lagrangian (6.8) can be solved by ADMM using the partial updates of the

dual variables in each iteration. The iterative primal and dual updates of ADMM are:

pk+1 := argmin
p
Lρ(p, zk, λk) (6.9a)

zk+1 := argmin
z
Lρ(pk+1, z, λk) (6.9b)

λk+1 := argmax
λ
Lρ(pk+1, zk+1, λ), (6.9c)

in which k is the iteration index. Hereafter, the scaled form of ADMM (5.14) is used where

Λ = λ/ρ. The first step of ADMM (6.9a) is expanded as:

pk+1 =
N f∑
n=1

(
Fn(pn) +

ρ

2

∥∥pn − zkn + Λk
n

∥∥), (6.10)

which is separable and can be solved in parallel by each agent of ECI, i.e. CA, EVAs and

EVs. Further details will be provided after simplifying the ADMM steps using the exchange

problem.

According to (6.6), each zn is equivalent to pn. Using the defined auxiliary variable pau

and also (5.3b) and (5.4b), the charging infrastructure can be partitioned into N c = (N a+1)

clusters denoted by CLs. For each cluster, the coupled equality constraint which is the sum-

mation of the involved agents’ primal variables is defined. That equality constraint is equal

to zero, and it is known as the equilibrium constraint. The clusters and the corresponding

equilibrium constraints of HDEVCS are defined as follows:

• CLj, ∀j ∈ J1, (N c − 1)K, includes EVAj and EVB i,j, ∀i ∈ Nv
j , and its equilibrium

constraint is
N vj∑
i=1

pevi,j + pauj = 0.

• CLNc includes CA and all EVAs, and its equilibrium constraint is
Na∑
j=1

paj + pca = 0.
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• According to the equality constraints of the defined clusters, we have:

∑
n∈CLj

zn = 0, ∀j ∈ J1,N cK. (6.11)

The above three statements mean that the charging infrastructure includes Nc clusters where

the interaction among the agents within each cluster can be written as the exchange problem.

To show that, we write the Lagrangian for z (6.9b) in a partitioned form as:

L(z, υ) =
Nc∑
j=1

∑
n∈CLj

(
ρ

2

∥∥pk+1
n − zn + Λk

n

∥∥2
2

+ υjzn

)
, (6.12)

where υj is the Lagrangian multiplier corresponding to the coupled equality constraint of

the j th CL. Using the KKT conditions for each cluster and adding up the gradients of

Lagrangian in terms of zn, n ∈ Nc
j, we have:

∇znL(zn, υj) = 0⇒ zn = pk+1
n + Λk

n −
1

ρ
υj (6.13)

∇υjL(zn, υj) = 0⇒
∑
n∈Ncj

zn = 0 (6.14)

(6.13), (6.14)⇒
∑
n∈Ncj

(
pk+1
n + Λk

n

)
−
N c
j .υj

ρ
= 0,

where Nc
j is the set of the agents in the j th CL, and N c

j denotes its cardinality. Finally, the

dual variable of the j th CL is obtained by:

υj = ρ
(
pk+1
j + Λ

k

j

)
, (6.15)

in which pj = 1
N cj

∑
n∈Ncj

pn, and Λj = 1
N cj

∑
n∈Ncj

Λn. Using (6.13) and (6.15), a closed-form to

update zn, n ∈ Nc
j is obtained as:

zk+1
n = pk+1

n − pk+1
j + ΛΛΛk

n − Λ
k

j . (6.16)

Using the gradient method, Λn is updated by:

Λk+1
n = Λk

n + pk+1
n − zk+1

n . (6.17)

81



Substituting (6.16) for (6.17) gives:

Λk+1
n = pk+1

j + Λ
k

j , (6.18)

meaning that the dual updates for all the agents in CLj shown by Λj are equal and inde-

pendent of the number of agents. Therefore, zk+1
n is obtained by:

zk+1
n = pk+1

n − pk+1
j . (6.19)

In (6.10), substituting (6.19) for zn eliminates the second primal-update step of ADMM

(6.9b), so there is not any sequential primal update in HDEVCS owing to reformulating

EVCS as the exchange problem. Now, it can be shown that the primal variables (pn) are

updated in parallel by CA, EVAs, and EVs at each iteration of HDEVCS using ADMM.

– primal variable update for EVi,j, ∀i ∈ Nc
j:

pev
k+1

i,j = argmin
pevi,j

(
Fev
i,j(p

ev
i,j) +

ρ

2

∥∥∥pevi,j − pev
k

i,j + pkj + Λ
k

j

∥∥∥2
2

)
s.t. (5.2).

(6.20)

– primal variable update for EVAj′ , j
′ ∈ Nc

j:

pa
k+1

j′ = argmin
pa
j′ ,p

au
j′

(
Fa
j′(p

a
j′) +

ρ

2

∥∥∥−paj + pa
k

j′ + pkj′ + Λ
k

j′

∥∥∥2
2

+
ρ

2

∥∥∥paj′ − pa
k

j′ + pkN c + Λ
k

N c

∥∥∥2
2

)
s.t. (5.3),

(6.21)

in which −paj′ substitutes for pauj′ in the second right-hand-side expression, meaning that the

j th EVA deals with only one primal variable.

– primal variable update for CA:

pca
k+1

= argmin
pca

(
Fca(pca) +

ρ

2

∥∥∥pca − pca
k

+ pkN c + Λ
k

N c

∥∥∥2
2

)
s.t. (5.4).

(6.22)

After updating the primal variables by all the agents in parallel (6.20)-(6.22), EVs send

out their updated variable to their EVAs, and EVAs transmit their updated variable to
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CA. The average power (pj) and the dual variable (Λj) for each CLj are updated by EVAs

and CA. To lower the communication overhead, Ωj is broadcast to the other agents in CLj

which is defined as Ωj = pj + Λj. The whole procedure of the proposed HDEVCS is shown

in Algorithm 6, where r and s are the primal and dual residuals, respectively, and Thp and

Thd are their corresponding feasibility tolerance. For more details about primal and dual

residuals and stopping criteria, we refer to [BPE11, Chapter 3.3].

The communication network links between the agents as well as the broadcast variables

within each CLj are shown in Fig. 6.1. Note that the index of each cluster, i.e. CLj, is

shown next to the agent which updates the average power (pj) and the dual variable (ΛΛΛj).
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Figure 6.1: HDEVCS’s communication network and broadcast signals.

6.2.2 Receding Horizon HDEVCS: RH-HDEVCS

Similar to RH-ADMM developed in 5.2.5, the receding horizon feedback control is applied to

HDEVCS to generate the optimal control sequences for the EV chargers. Utilizing RH gives

the flexibility to the EV owners, EVAs, and CA to change their objective functions, as long

as it is convex and feasible, at any RH iteration. In that case, as each agent’s optimization

function is solved locally, they do not need to notify other agents about changing the objective

function. RH-HDEVCS shown in Algorithm 7 executes the following steps consecutively.

First, according to the requested EV charging and total netload demand of the system at
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Algorithm 6: HDEVCS

1: Initialization: Set initial values for pca
0
, pa

0
, pev

0
, and Λ0.

2: k ← 0.

3: l← 0.

4: while Errp > Thp or Errd > Thd do

5: for all CA, EVAs, and EVs do in parallel

6: Update pev
k+1

i,j ∀EVB i,j, i ∈ Nv
j , j ∈ Na, by (6.20).

7: Update pa
k+1

j′ ∀EVA′j, j
′ ∈ Na by (6.21).

8: Update pca
k+1

by (6.22).

9: end for

10: for j = 1 : N c do in parallel

11: if j ∈ J1,N c − 1K then

12: EVAj receives pev
k+1

i,j , ∀EVB i,j ∈ CLj.

13: Update pk+1
j = 1

N cj

∑
n∈Ncj

pk+1
n .

14: Update Λ
k+1

j = pk+1
j + Λ

k

j .

15: Broadcast Ω
k+1

j to ∀EVB i,j ∈ CLj.

16: Update rk+1
j ,sau

k+1

j and sev
k+1

i,j , ∀i ∈ Nc
j.

17: else

18: CA receives pa
k+1

j ,∀j ∈ Na.

19: Update pk+1
N c = 1

(Na+1)
(
∑
j∈Na

pa
k+1

j + pca
k+1

).

20: Update Λ
k+1

N c = pk+1
N c + Λ

k

N c .

21: Broadcast Ω
k+1

N c to all EVAs.

22: Update rk+1
j , sca

k+1
and , sa

k+1

j , ∀j ∈ CLN c .

23: end if

24: end for

25: end while
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time instant t over the time horizon N ∈ N, Algorithm 6 finds the optimal values of the

primal variables indicated by p?(·). Then, only the first element of p?(·) is implemented by

each agent. Lastly, t is incremented, and the same procedure is repeated.

Algorithm 7: RH-HDEVCS

1: while t 6 N do

2: Update EVs’ arrival/departure time, initial state of energy, and charging energy

demand, and EVAs’ and CA’s available capacities.

3: Run HDEVCS, Algorithm 6, to calculate p?(·).

4: Apply the first element of the optimal value of p?(·) for each agent.

5: Increment the time index t.

6: end while

6.3 Numerical Simulations and Discussion

In this section, the performance of HDEVCS is evaluated for two case studies, a small-scale

system and a large-scale system, which are called System1 and System2, respectively. To show

the effectiveness of the proposed EVCS, its performance is compared with uCC (defined in

Section 5.3.3) and semi-coordinated charging (sCC) methods, in which the EVs charge with

a constant power rating while they are plugged in.

Through all the simulations, the maximum power rating for EV chargers is 4 kW. The real

netload dataset of EVBs is collected from [Aus] provided for 300 residential customers, and

the wholesale electricity price is available from the California Independent System Operator-

CAISO [CAI]. All the simulations are executed by MATLAB on a PC with Intel® Core�

i7 − 4770 3.40 GHz CPU, 4 cores and 8 GB RAM, and the convex optimization problems

are solved by CVX [GB14]. To assess the performance of HDEVCS for LVM, the metrics

defined in Subsection 5.3.2 are used.
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6.3.1 System1: Small-Scale Case Study

System1 consists of 5 EVAs each of which is supplying 60 EVs. The simulations are executed

for two scenarios with different set of objective functions for EVAs and EVs. Based on the

National Household Travel Survey (NHTS) 2017 ([SMN17]), the required charging energy,

arrival time, and departure time of the EVs are generated as follows: the initial and des-

ignated EVs’ battery energies are normally distributed over [8, 10] kWh and [22, 25] kWh,

respectively; EVs’ arrival and departure times are normally distributed in [16:30, 20:30]

and [6:00, 9:30], respectively.

Scenario 1: In the first scenario, the purpose of CA is to minimize the peak load

demand in the system which is equivalent to LVM ([SHM11]), EVAs keep their aggregated

EV charging power less than the maximum available capacity, and EVs aim at reducing their

charging cost. Defining the aggregated netload demand of the j th EVA, j ∈ Na by:

panj (t) :=
∑
i∈Nvj

puci,j(t), (6.23)

LVM is obtained by minimizing:

Fca(pca) :=
(
E− pca −

∑
j∈Na

panj
)2

s.t. (5.4),

(6.24)

in which E is defined in Subsection 5.3.2. As we assume that EVAs’ purpose is only to keep

their aggregated EV charging demand less than the feeder capacity constraint (5.3a), Fa
j is

defined by:

Fa
j (p

a
j ) := Iaj (p

a
j )

s.t. (5.3), ∀j ∈ Na,
(6.25)

where Iaj is the indicator function which is defined as:

Iaj (p
a
j ) =


0, if (5.3) is satisfied

∞, otherwise.

(6.26)
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EV ev
i,j’s objective function is defined by:

Fev
i,j(p

ev
i,j) := ΠT .pevi,j

s.t. (5.2), ∀i ∈ Nv
j , ∀j ∈ Na.

(6.27)

The simulation results of HDEVCS compared with uCC and sCC are illustrated in

Fig. 6.2. LVM+CR-1 and LVM+CR-2 show the aggregated load profile (the aggregated

EV charging demand plus netload) when the weighting factor for (6.27) is 1 and 10, respec-

tively. By decreasing the weighting factor, the load profile becomes smoother at the cost of

a more expensive charging for the EV owners.
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Figure 6.2: Aggregated load profile for uCC, sCC and HDEVCS for two different CR weight-

ing factors, 1 and 10.

In Fig. 6.3, it is shown that EVCS is effective in limiting the aggregated load demand to

the capacity of the EVAs’ feeders. While sCC does not have any control on the aggregated

EV load (Fig. 6.3: left), HDEVCS will not let the capacity constraints (105 kW) be violated

(Fig. 6.3: right) even if the EV agents choose a high weighting factor to greedily reduce

their charging cost. These results highlight the importance of optimal coordination of EV

charging in supplying more load demand without expansion of the grid capacity.

Scenario 2: In the second scenario, it is assumed that CA’s purpose is still LVM (6.24),

while EVAs aim at reducing the aggregated charging cost, and EVs plan for reducing their
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Figure 6.3: EVAs’ feeder constraint violation by sCC (left) and feeder constraint satisfaction

by HDEVCS (right) for LVM+CR-2 mode.

battery degradation cost. Thus, we have:

Fa
j (p

a
j ) := ΠT .paj

s.t. (5.3), ∀j ∈ Na.
(6.28)

To define EVs’ optimization function, the battery degradation model is borrowed from

[MZL15] which is presented as:

Fev
i,j(p

ev
i,j) := γev1i,j pev

2

i,j + γev2i,j pevi,j + γev3i,j

s.t. (5.2), ∀i ∈ Nev
j , ∀j ∈ Na,

(6.29)

where γev1i,j , γev2i,j , and γev3i,j are the constant coefficients depending on the number, nominal

voltage value and price of the energy units of the battery cells.

The aggregated load profiles obtained by HDEVCS are compared with uCC and sCC in

Fig. 6.4. Similar to the first scenario, the simulations are carried out for two different weight-

ing factors of EVs’ objective function, i.e. 1 and 10, which are shown by LVM+CR+BDR-1

and LVM+CR+BDR-2, respectively. In both modes, the weighting factor of CR which is

EVAs’ objective function is equal to 10.

As it is illustrated, the aggregated load profile in both modes is flattened by HDEVCS

while the capacity constraints of EVAs’ are not exceeded (Fig. 6.5).

To compare the performance of HDEVCS in the first and second scenarios, the aggre-

gated CR and BDR for EVAs is shown in Fig. 6.6 and Fig. 6.7, respectively. Since the
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Figure 6.4: Aggregated load profile for uCC, sCC and HDEVCS for two different BDR

weighting factors, 1 and 10.
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Figure 6.5: EVAs’ feeder constraint satisfaction in LVM+CR+BDR-1 (left) and

LVM+CR+BDR-2 (right) modes by HDEVCS.

weighting factor of CR objective function in LVM+CR-2 is larger than the weighting factor

in LVM+CR-1, the least aggregated CR for all EVAs is achieved by LVM+CR-2 (Fig. 6.6).

As EVs start charging with the maximum power rating in uCC mode, their charging cost

is more than all other modes. Considering Fig. 6.7, the least battery degradation cost is

achieved by uCC, sCC, LVM+CR+BDR-1, and LVM+CR+BDR-1. The reason is that the

charging power profile in uCC and sCC is constant which according to (6.29) minimizes the

battery degradation cost. In LVM+CR+BDR-1 and LVM+CR+BDR-2 modes, BDR cost

is the objective function of EVs, therefore EVCS reduces BDR as well. However, battery

degradation cost is larger in LVM+CR-1 and LVM+CR-2 as EVs try to reduce their charg-
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ing cost only, and battery degradation reduction is not considered in the EVCS optimization

function.
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Figure 6.6: Aggregated EV charging cost of EVAs for different charging modes.

EVA
1

EVA2 EVA
3

EVA
4

EVA
5

0

50

100

150

B
at

te
ry

 D
eg

ra
da

ti
on

 C
os

t 
($

) uCC sCC LVM+CR-1 LVM+CR-2 LVM+CR+BDR-1 LVM+CR+BDR-2

Figure 6.7: Aggregated EV battery degradation cost of EVAs for different charging modes.

To further clarify the comparison of different simulated scenarios and the charging modes,

the results are summarized in Table 6.1 where the best result obtained for each metric is

shown in bold. As it is expected, LVM+CR-1 gives the lowest accumulated PTP, PTA,

and RMS since the weighting factors of LVM and CR are equal, while the least aggregated

charging cost is obtained by increasing the weight of CR in LVM+CR-2. As it was dis-

cussed earlier, the lowest accumulated BDR is achieved by uCC, sCC, LVM+CR+BDR-1,

and LVM+CR+BDR-1. The last column of the table shows the normalized accumulated

objective values obtained by each charging mode. The weighting factors of the normalized

values are equal to 1. Given that, LVM-CR-1 charging mode results in the best accumulated
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performance, and uCC charging mode leads to the worst performance.

Table 6.1: LVM, CR, and BDR Improvement Using HDEVCS.

EVCS Mode PTP(kW) PTA RMS(kW) ACC1($) BDC2($) NAP3

uCC 1257 0.21 419.0 1253 651 4.91

sCC 589 0.10 272.5 1062 652 3.34

LVM+CR-1 494 0.08 258.2 1041 699 3.20

LVM+CR-2 548 0.09 263.0 1008 712 3.28

LVM+CR+BDR-1 549 0.09 263.6 1015 652 3.21

LVM+CR+BDR-2 533 0.09 264.2 1040 651 3.22

1 aggregated charging cost.

2 aggregated battery degradation cost.

3 normalized accumulated performance.

PnP: As mentioned before, the advantage of RH-HDEVCS is PnP in terms of the agents’

objective function. That is, each agent may change its objective function in any RH iteration.

This is illustrated in Fig. 6.8 where an EV is plugged in at 21:00 when its battery energy

is 10 kWh, and it is unplugged at 6:30 when it is fully charged. The EV is charged in CR

mode until 23:30 when the EV owner switches the charging mode to sCC, i.e. charging with

constant power. The desired energy stored in the battery at departure time is 24 kWh.
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Figure 6.8: PnP using RH-HDEVCS: the EV agent switches from CR mode to sCC mode

at 23:30.
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6.3.2 System2: Large-Scale Case Study

System2 consists of 50 EVAs each of which is supplying 180 EVs. The simulations are exe-

cuted for two main scenarios with similar objective functions but different constraints. The

objective function in both scenarios includes LVM and CR. However, the feeder capacity

constraints are considered only in the first scenario (C/LVM+CR), while there is no feeder

constraint in the second scenario (UnC/LVM+CR). In C/LVM+CR, the maximum loading

capacity is 180 kW for the feeders supplying EVA6 and EVA11 and 175 kW for the other feed-

ers. The required charging energy, arrival time, and departure time of the EVs are generated

as follows: the initial and designated EVs’ battery energies are normally distributed over

[8, 10] kWh and [22, 25] kWh, respectively; for 50% of EVs, the arrival and departure times

are normally distributed in [16:30, 20:30] and [6:00, 9:30], respectively; for the rest of EVs,

the arrival and departure times are normally distributed in [6:00, 9:30] and [16:30, 20:30],

respectively.

The aggregated load profiles obtained by sCC, C/LVM+CR, and UnC/LVM+CR are

shown in Fig. 6.9. The load profiles of C/LVM+CR and UnC/LVM+CR coincide, and they

perfectly fill in the valley (in [9:00, 15:00]) and shave the peak loads (at 0:00, 7:00 and

18:30) which are seen in sCC load profile.
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Figure 6.9: Aggregated load profile for sCC, C/LVM+CR, and UnC/LVM+CR.

Although the load profiles of C/LVM+CR and UnC/LVM+CR are similar, their EVAs’

feeder load profiles are different. Comparing Fig. 6.10 with Fig. 6.11, several EVA feeders are
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overloaded in UnC/LVM+CR scenario while all the EVA feeder loads meet the constraints

in C/LVM+CR. This means that EVCS with feeder capacity constraints can accommodate

a large population of EVs without any grid feeder expansion requirement. The other dif-

ference between C/LVM+CR and UnC/LVM+CR is recognized by comparing the EVAs’

aggregated charging costs in Fig. 6.12 and Fig. 6.13. Although the difference is not consider-

able, UnC/LVM+CR has less charging cost owing to the fact that EVs have more flexibility

to shift their charging demand to the time periods with lower electricity price since there is

no constraint on the EVAs’ feeders.
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Figure 6.10: EVAs’ feeder constraint violation in UnC/LVM+CR.

6.3.3 Comparison with Hierarchical ADMM

As it is already discussed, HDEVCS reduces the communication overhead and the con-

vergence time compared to the methods in which the agents update their primal variable

sequentially in two different steps. In this subsection, HDEVCS is compared with the hi-

erarchical ADMM proposed in Chapter 5. The hierarchical ADMM consists of two layers

of the sharing problem. The first layer is executed between CA and EVAs, and the second

layer between each EVA and its EVs. Therefore, the ECI agents do not update their primal

variable at the same time. To show the advantage of the proposed HDEVCS designed based

on the exchange problem, we run LVM+CR-1 charging mode for both System1 and System2
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Figure 6.11: EVAs’ feeder constraint satisfaction in C/LVM+CR.
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Figure 6.12: Aggregated charging cost of EVA1-EVA25 by different charging modes.
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Figure 6.13: Aggregated charging cost of EVA26-EVA50 by different charging modes.
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Table 6.2: Comparison between HDEVCS and the hierarchical ADMM (Chapter 5).

Method Case Study Convergence Time (s) Iterations

HDEVCS
System1 178.72 64

System2 3331.5 1193

Hierarchical ADMM
System1 446.8 161

System2 8204.1 2938

by the hierarchical ADMM. The convergence time and the number of iterations are shown

in Table 6.2. For both methods, the penalty factors are similar (ρ = 1).

As it is shown, HDEVCS improves convergence time by 60% compared to the hierarchical

ADMM. The convergence time, however, for System2 will be still considerable (≈ 50 min) if

HDEVCS is embedded in RH as the netload dataset is collected every 30 min, meaning that

RH-HDEVCS should converge in less than 30 min. However, it is worthy to mention that the

computation times in Table 6.2 are obtained by a CPU with 4 cores, while RH-HDEVCS is

proposed to be implemented in a multi-agent framework. Also, chances are the convergence

time further improves using adaptive penalty term [XFG16, XLL17].

6.4 Conclusion

In this chapter, a trilayer multi-agent framework for the optimal EV charging coordination

was proposed to reduce the load variance and charging cost without violating the feeders’

capacity constraints. By exploiting the configuration of the charging network and the math-

ematical properties of the EVCS problem, a novel hierarchical distributed method has been

developed based on the exchange problem for the optimal charging coordination problem

which is solved by ADMM. Owing to the properties of the derived hierarchical exchange

problem, the second primal-update step of ADMM is eliminated, therefore all the agents

update their primal variable in parallel, which results in the reduction of convergence time

and iteration numbers. In addition, embedding the proposed method in the receding hori-

zon feedback control gives flexibility to the agents to change their objective function in any
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receding horizon iteration. To evaluate the performance of HDEVCS, it has been applied

to two case studies, a small-scale and a large-scale system. The results have revealed that

HDEVCS can reduce the peak load demand as well as EV charging and battery degradation

costs significantly, while the grid feeders’ capacity constraints are not violated. This means

that the grid can accommodate a large population of EVs without investment in the grid

capacity expansion.
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CHAPTER 7

Distributed EV Charging Scheduling in Distribution

Networks

As it is discussed in Subsection 1.3.3, EVMS can be considered as an integrated load manage-

ment module in DMS. In this case, the model of the distribution grid (introduced in Section

2.4) is considered in optimal load scheduling. If only DSO handles the EVCS problem, the

size of the optimization problem including the grid model and EV charging variables will be

significantly large. Therefore in this chapter, a distributed method is proposed to make the

charging coordination problem scalable and alleviate its computation burden for DSO. In the

proposed method, DSO solves the voltage regulation problem with the consideration of the

power flow model in the grid, while EVAs solve their local problem including EV charging

cost reduction and the corresponding constraints. To ensure that the aggregated active and

reactive loads of EVAs meet the DSO’s requirement, EVCS is formulated as the consensus

problem which is solved efficiently in an iterative procedure between DSO and EVAs by

ADMM. To show the effectiveness of the proposed distributed consensus EVCS (DCEVCS),

it is applied to the IEEE-13 bus system, and the results are discussed for different scenarios.

7.1 Model Description

A residential distribution grid including a set of EVAs through which EVBs are supplied

is assumed. Na denotes the set of grid EVAs, which its cardinality is shown by N a. In

addition, the set of EVBs which are supplied through the j th EVA and its cardinality are

shown by Nv
j and N v

j , respectively. EV Bi,j denotes the ith EVB supplied by the j th EVA.

The electricity consumption model of the EVB, which is equipped with a solar panel and an
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EV charger is displayed in Fig. 7.1.
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Figure 7.1: Building model with EV charger and solar panel.

Accordingly, the load model of EV Bi,j is written as:

pevbi,j (t) = puci,j(t) + pevi,j(t), (7.1)

where pevbi,j (t) ∈ R. The set of feasible trajectories of EV Bi,j is defined as:

Pevbi,j = Pevi,j, (7.2)

in which Pevi,j is already defined in Section 2.2.

According to the model defined for EVBs, the aggregated active and reactive powers of

the j th EVA are obtained by:

P a
j (t) = pbsj (t) + paucj (t) +

∑
i∈Nrj

(pevi,j(t)) (7.3a)

Qa
j (t) = qbsj (t) + qaucj (t), (7.3b)

in which paucj (t) =
∑
i∈Nvj

puci,j(t) and qaucj (t) =
∑
i∈Nvj

quci,j(t) are, respectively, the aggregated un-

controllable active and reactive powers. pbsj (t) and qbsj (t) ∈ R are already defined in Section

2.1. If the j th EVA does not have BES, pbsj (t) and qbsj (t) will be neglected in (7.3). In that

case, the j th EVA does not contribute to the reactive power, and the consensus variable,

which will be discussed in the following sections, includes only the active power. In addition,

we introduce:

pacj (t) =
∑
i∈Nvj

pevi,j(t), j ∈ Na, (7.4)

as the aggregated controllable load of the j th EVA.
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7.2 Problem Formulation

The distribution grid includes DSO and EVAs agents, where the goal of DSO is to regulate

the nodal voltages while meeting the power flow constraints, and EVAs target LVM on their

supplying feeder as well as electricity cost reduction for their customers. Accordingly, the

objective function of EVCS is threefold which is written as follows:

Vevcs := min
V,I,P,Q

∑
j∈Nb/1

‖vj − vref‖22 +
∑
j∈Na

((
Ω
p

j − pbsj − pacj
)2

+
(
Ω
q

j − qbsj
)2

+
∑
i∈Nvj

ΠT .pevi,j

)
s.t. Pevbi,j , Pbsj , and (7.3) ∀i ∈ Nv

j , j ∈ Na, (2.15)− (2.16), (7.5)

where the first RHS expression is the voltage regulation function, the second and third

expressions minimize the active and reactive power variances, respectively, and the last

expression minimizes the customers’ charging cost. Ω
p

j and Ω
q

j are, respectively, the average

active and reactive powers of the j th EVA which can be calculated similar to (5.26). The

grid power flow model (2.15) − (2.16) is considered as the DSO’s local constraint, and the

rest are the EVAs’ local constraints.

The optimal load coordination (7.5) is a non-convex problem due to the equality con-

straint (2.15d). For a large-scale distribution grid with significant number of EVAs and EVs,

solving (7.5) centrally is not computationally efficient for DSO. Therefore in the following

section, a multi-agent method is proposed by the consensus ADMM to solve (7.5) using the

distributed optimization.

7.3 Scalable EV Load Coordination

In this section, ADMM is used to solve the optimization problem (7.5) in a distributed

manner such that DSO and EVAs communicate iteratively. However, (2.15d) should be

relaxed as it is a non-convex constraint, otherwise ADMM is not applicable. According to

[GLT15], (2.15d) can be relaxed to a convex second-order cone as:

Vj(t)Ijj′(t) ≥ P 2
jj′(t) +Q2

jj′(t), (7.6)
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where j and j′ ∈ Nb. The sufficient conditions to make the relaxation tight are [Low14a,

Low14b]: (i) the grid should be radial; (ii) bus voltages should be very close to the nominal

value; and (iii) the active and reactive powers injected to the buses should not be too large.

As it was discussed earlier, most of the distribution grids are radial (1st condition); the

voltage regulation keeps the nodal voltages close to the nominal value (2nd condition); also,

as we do not have large distributed energy resources here, there is not a considerable power

injection in the grid nodes (3rd condition).

Replacing (2.15d) by (7.6) in (7.5), the EVCS optimization problem will be the consensus

problem [BPE11, Chapter 7.1], if it is written as follows:

Vrlc := min
P,Q

∑
j∈Nb/1

‖vj − vref‖22 +
∑
j∈Na

((
Ω
p

j − pbsj − pacj
)2

+
(
Ω
q

j − qbsj
)2

+
∑
i∈Nvj

ΠT .pevi,j

)

s.t.


Pj = Pa

j

Qj = Qa
j

∀j ∈ Na, (7.7)

where only the consensus constraint matching the DSO’s desired active and reactive powers

with EVAs’ is shown. Now, we can rewrite 7.5 in the form of a distributed structure using

ADMM, called DCEVCS, to be solved iteratively between DSO and EVAs as follows:

(Pak+1

j ,Qak+1

j ) := argmin
Paj ,Q

a
j

((
Ω
p

j − pbsj − pacj
)2

+
(
Ω
q

j − qbsj
)2

+
∑
i∈Nvj

ΠT .pevi,j

+ρ
2

∥∥Pa
j −Pk

j + vkj
∥∥2
2

+ ρ
2

∥∥Qa
j −Qk

j + ukj
∥∥2
2

)
s.t. Pevbi,j , Pbsj , and (7.3), ∀i ∈ Nv

j , j ∈ Na (7.8)

(Pk+1
j ,Qk+1

j ) := argmin
P,Q,V,I

( ∑
j∈Nb/1

‖vj − vref‖22

+ρ
2

∑
j∈Na

∥∥∥Pak+1

j −Pj + vkj

∥∥∥2
2

+ ρ
2

∑
j∈Na

∥∥∥Qak+1

j −Qj + ukj

∥∥∥2
2

)
s.t. (2.15a)− (2.15c), (2.16) and (7.6) (7.9)


vk+1
j = vkj + Pak+1

j −Pk+1
j

uk+1
j = ukj + Qak+1

j −Qk+1
j

∀j ∈ Na, (7.10)
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where k is the ADMM iteration index, ρ is the penalty factor, and vj and uj are the dual

variables relating to the consensus constraints on active and reactive powers of the j th

EVA, respectively. At each iteration k, EVAs solve (7.8) in parallel and send the pair of

(Pak+1

j ,Qak+1

j ) to DSO. Then, DSO solves (7.9) to regulate the voltage and satisfy the power

flow constraints. Afterward, it updates the dual variables (7.10) and sends the pairs of

(Pk+1
j ,Qk+1

j ) and (vk+1
j ,uk+1

j ) to EVAs. This procedure, which is called DCEVCS and shown

in Algorithm 8, is repeated until the stopping criteria are satisfied [BPE11, Chapter 7.1].

In Algorithm 8, Err includes the primal and residual errors, and Th is the acceptable error

threshold.

Algorithm 8: DCEVCS.

1 Initialization: Set initial values for P0, Pa0 , Q0, Qa0 , pbs
0
, qbs

0
, pev

0
, v0, and u0.

2 k ← 0.

3 while Err < Th do

4 for j = 1 : N a do

5 Calculate (Pa
j ,Q

a
j ) by (7.8).

6 Send (Pa
j ,Q

a
j ) to DSO.

7 end

8 Calculate (Pj,Qj), ∀j ∈ Na by (7.9).

9 Update (vj,uj), ∀j ∈ Na by (7.10).

10 Broadcast (Pj,Qj) and (vj,uj) to EVAs.

11 Update Err.

12 k ← k + 1.

13 end

7.4 Numerical Simulations and Discussion

In this section, the developed DCEVCS is applied to the modified IEEE-13 bus system shown

in Fig. 7.2, which is represented as a single-phase balanced distribution grid with six EVAs.
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The aggregators are located at bus# 634, 646, 675, 680, 652 and 611, which are supplying

104, 112, 88, 110, 96, and 108 EVBs, respectively.
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Figure 7.2: IEEE-13 bus system with the proposed DCEVCS communication network and

the exchanged data between DSO and EVAs.

Although EV charging in sCC mode results in unacceptable voltage drop and feeder

overloading (Fig. 7.3), we will show through different scenarios that DCEVCS mitigates these

issues effectively. The netload dataset of EVBs is collected from [Aus], and the day-ahead

wholesale electricity price is available from the California Independent System Operator-

CAISO [CAI]. The simulation parameters are summarized in Table 7.1. The simulated

scenarios are executed by MATLAB on a PC with Intel® Core� i7 − 4770 3.40 GHz CPU,

4 cores and 8 GB RAM, and the convex optimization problems are solved by CVX [GB14].

Table 7.1: EV, BESS and DCEVCS simulation parameters.

Parameter Value Parameter Value Parameter Value

pev, pev 4, −4 [kW] C(t0)
ev {8, 9, 10} [kWh] C(tf )

ev {23, 24, 25} [kWh]

Cbs 11 [kWh] Cbs 100 [kWh] sbs 100 [kVA]

(α, η+, η−) (0.99, 0.95, 095) (v,v) (0.96, 1.02) [p.u.] vref 1.0 [p.u.]

N 48 (ρp, ρq) (0.1, 0.1) – –

To verify the effectiveness of DCEVCS in mitigating the negative effects of the EV charg-

ing load on the distribution grid, four scenarios defined as follows are simulated.

102



12:00 16:00 20:00 00:00 4:00 8:00 12:00
Time

0.94

0.96

0.98

1

1.02

V
ol

ta
ge

 (
p.

u.
)

12:00 16:00 20:00 00:00 4:00 8:00 12:00
Time

0

0.5

1

1.5

2

2.5

M
V

A

Figure 7.3: Significant voltage drop (left) and feeder overloading (right) in the grid due to

EV charging in sCC mode

.

Scenario1: EV charging load is controlled using DCEVCS, but EV chargers do not have

V2G capability.

Scenario2: EV charging load is controlled using DCEVCS, and EV chargers have V2G ca-

pability.

Scenario3: EV charging load is not controlled, but EVAs have BESS to mitigate EV charging

load’s effects on the feeder loading condition.

Scenario4: EV charging load is controlled using DCEVCS without V2G capability, and EVAs

have BESS.

As it was shown, one of the major effects of EV charging load is on the nodal volt-

age profiles. DCEVCS can keep the nodal voltages within the acceptable range through

controlling either EV charging load or BESS as shown in Fig. 7.4. As it is expected, the

deployment of both EV charging and BESS control, i.e. Scenario4, results in better nodal

voltages. Scenario2 is slightly better than Scenario1 owing to the EV participation in V2G.

However, the difference is not considerable as the price of selling energy to the grid by the

EV owners is equal to the price of buying energy, and EV owners can only benefit from V2G

if they sell energy. That is, if EV owners do not benefit due to the spinning reserve capacity

which they provide for the grid [KT05], participation in V2G is not attractive. The total
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percentage of the voltage deviations from the reference value (1 p.u.) are, respectively, 0.98,

0.94, 0.34, and 0.56 for Scenario1 to Scenario4. Showing the minimum and maximum voltage

in Scenariox by (vmin,vmax)x, the results are (0.975, 1.021)1, (0.979, 1.021)2, (0.977, 1.014)3,

and (0.981, 1.01)4. The reason for a smoother voltage profile in Scenario3 comparing with

Scenario1 and Scenario2 is that the charging cost reduction is excluded from the optimization

problem (7.5), therefore there is more flexibility to shift the EV charging load.

12:00 16:00 20:00 00:00 4:00 8:00 12:00
Time

0.97

0.98

0.99

1

1.01

1.02

V
ol

ta
ge

 (
p.

u.
)

EVC only

12:00 16:00 20:00 00:00 4:00 8:00 12:00
Time

0.97

0.98

0.99

1

1.01

1.02

V
ol

ta
ge

 (
p.

u.
)

EVC+V2G

12:00 16:00 20:00 00:00 4:00 8:00 12:00
Time

0.97

0.98

0.99

1

1.01

1.02

V
ol

ta
ge

 (
p.

u.
)

BES only

12:00 16:00 20:00 00:00 4:00 8:00 12:00
Time

0.97

0.98

0.99

1

1.01

1.02

V
ol

ta
ge

 (
p.

u.
)

EVC+BES

Figure 7.4: Voltage profiles of the grid buses for Scenario1 (top-left), Scenario2 (top-right),

Scenario3 (bottom-left), and Scenario4 (bottom-right)

.

According to the objective function of DCEVCS, EVAs are interested in minimizing the

load variance on their feeders. Considering the results shown in Fig. 7.5, the loading stress

on the grid lines in Scenario3 is significant. Specifically, the main feeder of the distribution

grid where the HV/MV transformer is installed has the peak load of 2.2396 MVA, while the

peak load of the HV/MV transformer is 1.152, 1.159, and 1.1622 in Scenario1, Scenario2, and

Scenario4, respectively. These results verify the necessity of EVCS for the accommodation of
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transportation Electrification in the power grids. Without EV charging control, the power

grid feeders will be overloaded even if BESS is deployed in the grid, which necessitates the

grid capacity expansion.
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Figure 7.5: Loading profile of the grid lines for Scenario1 (top-left), Scenario2 (top-right),

Scenario3 (bottom-left), and Scenario4 (bottom-right).

To make it more clear how DCEVCS minimizes the load variance on the feeders supplying

EVAs, the results obtained for PTP, PTA, and RMS defined in (5.31), (5.32), and (5.33),

respectively, are shown in Fig. 7.6 to Fig. 7.8. Scenario4 achieves better results owing to the

flexibility provided by EV charging and BESS control, and Scenario3 shows the worse results

as EVs do not participate in EVCS.

Considering Fig. 7.9 where the active (solid line) and reactive (dashed line) powers of

BESS in Scenario3 and Scenario4 are shown, it reveals that the reactive power of BESS

plays a key role in the voltage regulation. According to the EV charging model in Section

2.2, reactive power compensation is not provided by EVs. Therefore, the voltage profiles
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Figure 7.6: PTP of the EVAs’ power profile obtained from the defined scenarios.
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Figure 7.7: PTA of the EVAs’ power profile obtained from the defined scenarios.
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Figure 7.8: RMS of the EVAs’ power profile obtained from the defined scenarios.

obtained in Scenario3 and Scenario4 are better than the others.

The main incentive for the EV owners to participate in DCEVCS is the charging cost

reduction. Scenario3 is excluded from CR results as the optimization function provides
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Figure 7.9: Active and reactive powers (left) and energy (right) of BESS for Scenario3 (top)

and Scenario4 (bottom).

only voltage regulation and feeder load variance minimization. Considering the results in

Fig. 7.10, Scenario1, Scenario2, and Scenario4 lead to 18.1%, 22.1%, and 17.9% aggregated

charging cost reduction comparing with sCC mode where there is no control on EV charging

load. As discussed in [KT05], it is expected that the charging cost reduction improves by

compensating the EV owners for providing the spinning reserve capacity.

7.5 Conclusion

In this chapter, the scalability issues in optimal EV charging coordination to mitigate the

negative effects of EV charging load on the distribution grid has been addressed. Using the

relaxed power flow model, the EV charging coordination problem has been written in the form

of the consensus problem, so that it is solved by ADMM in a distributed manner between DSO

and EV load aggregators. The consensus variables are the aggregated active and reactive
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Figure 7.10: EVAs’ aggregated electricity cost.

loads of EVAs, which should converge to an equilibrium point satisfying both DSO and EVAs.

Using real data and numerical simulations, the performance of the proposed DCEVCS has

been validated for different scenarios including V2G and BESS control. The results have

revealed the efficacy of DCEVCS in voltage regulation, feeder congestion mitigation, and

electricity cost reduction. It has been also shown that the EV owners are not interested

in participation in V2G if they are only paid based on the energy they inject in the grid,

not the provided energy capacity. One more important result is that BESS integration in

the grid without EVCS can not optimize the grid capacity utilization, and EVCS should be

integrated in DMS.
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CHAPTER 8

Hierarchical Distributed EV and Heat Pump Load

Coordination in Distribution Grids

In this chapter, a hierarchical and fully distributed framework is proposed to control EV and

HP loads in the residential distribution grids. The framework consists of three layers of enti-

ties which are DSO, the residential load aggregators (RLAs), and the residential consumers

(ReCs). The purpose of the proposed residential load coordination (RLC) is to minimize

the energy loss in the grid, improve the bus voltage profiles, flatten the aggregated load of

RLAs, and reduce ReCs’ electricity cost. To decrease the computational burden of RLC,

the distributed optimization methods, specifically ADMM, is used to solve the coordination

problem in a distributed manner between DSO and RLAs, similar to DCEVCS developed in

Chapter 7. As the distributed RLC (DRLC) is not computationally efficient for RLAs, and

it requires ReCs to share their private information with RLAs, the mathematical properties

of DRLC is further exploited, and a hierarchical DRLC (HDRLC) is proposed in the form

of the sharing problem which is solved efficiently in a distributed manner among the grid

entities. To validate the performance of HDRLC, it is applied to the IEEE-13 bus system,

and the results are discussed for different scenarios.

8.1 Model Description

A residential distribution grid including a set of RLAs through which ReCs are supplied

is assumed. Nra denotes the set of grid RLAs, which its cardinality is shown by N ra. In

addition, the set of ReCs which are supplied through the j th RLA and its cardinality are

shown by Nr
j and N r

j , respectively. ReCi,j denotes the ith ReC supplied by the j th RLA.

109



In this section, the electricity consumption model of ReC, which is equipped with a solar

panel, an EV charger, and an HP, is introduced.

According to Fig. 8.1 showing an ReC, we can write:

preci,j (t) = puci,j(t) + pevi,j(t) + phpi,j(t), (8.1)

where preci,j (t) ∈ R is the total electric power of ReCi,j. The set of feasible trajectories of

ReCi,j is defined as:

Preci,j = Pevi,j ∪ Phpi,j , (8.2)

in which Pevi,j and Phpi,j are already defined in Sections 2.2 and 2.3, respectively.

According to the model defined for ReCs, the active and reactive powers of the j th bus,

where the j th RLA is located, are obtained by:

P ra
j (t) = pbsj (t) + paucj (t) +

∑
i∈Nrj

(pevi,j(t) + phpi,j(t)) (8.3a)

Qra
j (t) = qbsj (t) + qaucj (t), (8.3b)

in which paucj (t) =
∑
i∈Nrj

puci,j(t) and qaucj (t) =
∑
i∈Nrj

quci,j(t) are the aggregated uncontrollable active

and reactive powers. pbsj (t) and qbsj (t) ∈ R are already defined in Section 2.1.

In addition, we introduce pci,j(t) =
(
pevi,j(t) + phpi,j(t)

)
as the total controllable load of the

ith ReC supplied by the j th RLA. Therefore, we can introduce:

pacj (t) =
∑
i∈Nrj

pci,j(t), j ∈ Nra, (8.4)

as the aggregated controllable load of the j th RLA, which is also called the sharing problem

constraint and used in Subsection 8.3.2.

V2G
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Figure 8.1: ReC model including solar panel, EV charger, and HP.
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8.2 Problem Formulation

The distribution grid has a hierarchical trilayer structure including DSO, RLAs, and ReCs.

The goal of DSO can be the grid loss minimization or voltage profile improvement while

meeting the power flow constraints, RLAs may target load variance minimization on their

supplying feeder or only keep their aggregated load less than the feeder capacity, and ReCs

aim at electricity cost reduction. Accordingly, the objective function of RLC is threefold

which is written as follows:

Vrlc := min
V,I,P,Q

Fd(P) +
∑
j∈Nra

Fra
j (Pra

j ) +
∑
j∈Nra

∑
i∈Nrj

Frec
i,j (pci,j)

s.t. Preci,j , Pbsj , and (8.3) ∀i ∈ Nr
j , j ∈ Nra, (2.15)− (2.16), (8.5)

where Fd, Fra, and Frec are the DSO’s, RLAs’, and ReCs’ optimization objectives, respec-

tively. The grid constraints (2.15)− (2.16) are considered as the DSO’s local constraint, the

j th RLA’s local constraints are indicated by Pbsj , and the local constraints for ReCi,j are

included by Preci,j .

The optimal load coordination (8.5) is relaxed by the similar approach discussed in Sec-

tion 7.3. For a large-scale distribution grid with significant number of RLAs and ReCs,

solving (8.5) centrally is not computationally efficient for DSO. Therefore in the following

subsections, a scalable and fully distributed framework is derived to solve (8.5) using the

distributed optimization methods.

8.3 Scalable Residential Load Coordination

In this section, DRLC method using the consensus ADMM is proposed to solve RLC prob-

lem. However, as each RLA has to solve the load scheduling problem for all the ReCs which

it supplies, DRLC is not scalable and fully distributed, and ReCs have to share their pri-

vate information with their RLA. Therefore, HDRLC method is proposed where the RLAs’

optimization problem is rewritten as the sharing problem in a fully distributed and scalable

manner which is solved by ADMM.
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8.3.1 Distributed Residential Load Coordination

In this subsection, ADMM is used to solve the optimization problem (8.5) in a distributed

manner through an iterative procedure between DSO and RLAs. Similar to the discussion

in 7.3, (2.15d) should be replaced by (7.6) in (8.5) to write the RLC optimization problem

in the form of the consensus problem [BPE11, Chapter 7.1] as follows:

Vrlc := min
P,Q

Fd(P) +
∑
j∈Nra

(
Fra
j (Pra

j ) +
∑
i∈Nrj

Frec
i,j (pci,j)

)

s.t.


Pj = Pra

j

Qj = Qra
j

∀j ∈ Nra, (8.6)

where only the consensus constraint between DSO and RLAs is shown. Therefore, 8.5 can

be solved efficiently by ADMM in an iterative procedure between DSO and RLAs as follows:

(Prak+1

j ,Qrak+1

j ) := argmin
Praj ,Qra

j

(
Fra
j (Pra

j ) +
∑
i∈Nrj

Frec
i,j (pci,j)

+ρ
2

∥∥Pra
j −Pk

j + vkj
∥∥2
2

+ ρ
2

∥∥Qra
j −Qk

j + ukj
∥∥2
2

)
s.t. Preci,j , Pbsj , and (8.3), ∀i ∈ Nr

j , j ∈ Nra (8.7)

(Pk+1
j ,Qk+1

j ) := argmin
P,Q,V,I

(
Fd(P)

+ρ
2

∑
j∈Nra

∥∥∥Prak+1

j −Pj + vkj

∥∥∥2
2

+ ρ
2

∑
j∈Nra

∥∥∥Qrak+1

j −Qj + ukj

∥∥∥2
2

)
s.t. (2.15a)− (2.15c), (2.16) and (7.6) (8.8)


vk+1
j = vkj + Prak+1

j −Pk+1
j

uk+1
j = ukj + Qrak+1

j −Qk+1
j

∀j ∈ Nra, (8.9)

where k is the iteration index, ρ is the penalty factors, and vj and uj are the dual variables

relating to the consensus constraints on active and reactive powers of the j th RLA, respec-

tively. RLAs solve (8.7) in parallel and send the pair of (Prak+1

j ,Qrak+1

j ) to DSO. DSO solves

(8.8)-(8.9) and sends the pairs of (Pk+1
j ,Qk+1

j ) and (vk+1
j ,uk+1

j ) to RLAs. This procedure is

repeated until the stopping criteria are satisfied [BPE11, Chapter 7.1].
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8.3.2 Hierarchical Distributed Residential Load Coordination

Considering the first step of ADMM (8.7), each RLA has to solve the optimal load coordina-

tion problem for all the ReCs which it is supplying. If the number of ReCs is considerable,

the computational burden for RLAs will be substantial. Also, ReCs have to share their

sensitive information such as the arrival/departure time, required charging energy, maxi-

mum/minimum desired room temperature, etc. with RLAs. By exploiting the mathematical

formulation, the sharing problem form is derived for (8.7) [BPE11, Chapter 7.3], which is

solved efficiently by ADMM in a distributed manner between each RLA and its ReCs. For

details on the sharing problem and how it is derived, refer to Subsections 5.2.3 and 5.2.4.

To make it clear how (8.7) is the sharing problem, the objective functions of RLAs and

ReCs are shown as the functions of the sharing variables, i.e. pacj and pci,j. Using (8.3) and

(8.4), (8.7) is rewritten as:

min
(
Fra
j (pacj ) +

∑
i∈Nrj

Frec
j,i (pci,j)

+ρ
2

∥∥∥∥∥ ∑i∈Nrj pcj,i + pucj + pbsj −Pk
j + vkj

∥∥∥∥∥
2

2

+ ρ
2

∥∥qucj + qbsj −Qk
j + ukj

∥∥2
2

)
s.t. Preci,j , Pbsj , (8.3), and (8.4) ∀i ∈ Nr

j , j ∈ Nra, (8.10)

in which the aggregation of the first and third expressions is a function of pcj which is also

called the shared objective, the second part of the objective is a function of pcj,i, the first

constraint (Pcj,i) is local for ReCj,i, RLAj’s local constraints are Pbsj and (8.3), and (8.4) is

the shared constraint. Therefore, (8.10) is the sharing problem that involves the entities

adjusting their variable to minimize their individual as well as the shared objectives. The

sharing problem (8.10) is solved by ADMM in a distributed manner as follows:

pc
l+1

i,j := argmin
pci,j

(
Frec
i,j (pci,j) +

ρj
2

∥∥∥pci,j − pc
l

i,j + pc
l

j − pac
l

j + λλλlj

∥∥∥2
2

)
s.t. Preci,j , ∀i ∈ Nr

j (8.11)
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pac
l+1

j := argmin
pbsj ,q

bs
j ,p

ac
j

(
Fra
j (N r

j .p
ac
j ) +

ρ

2

∥∥N r
j .p

ac
j + pucj + pbsj −Pk

j + vkj
∥∥2
2

+ρ
2

∥∥qucj + qbsj −Qk
j + ukj

∥∥2
2

+ (
N rj .ρj

2
)
∥∥∥pacj − pc

l+1

j − λλλlj
∥∥∥2
2

)
s.t. Pbsj and (8.3) (8.12)

λλλl+1
j = λλλlj + pc

l+1

j − pac
l+1

j . (8.13)

where l is the iteration index, ρj is the penalty factor, λλλj is the dual variable, and pc
l

j is

defined as:

pc
l

j =
1

N r
j

∑
i∈Nrj

pc
l

i,j. (8.14)

ReCs solve (8.11) in parallel, and RLAs solve (8.12) and update the dual variable by (8.13).

It is worthwhile to note that the size of the optimization problem solved by RLAs (8.12)

does not depend on the number of ReCs which they supply. To decrease the communication

overhead, we define ΛΛΛl+1
j = λλλl+1

j + pc
l+1

j − pac
l+1

j . Thus, at each sharing problem iteration

after the third step (8.13), the j th RLA broadcasts ΛΛΛl+1
j to all ReCi,j, ∀i ∈ Nr

j . For more

details, we refer the reader to Subsection 5.2.4.

The whole procedure of the proposed HDRLC is shown in Algorithm 9, and the commu-

nication links among the entities are shown in Fig. 8.2. The iterative procedure between DSO

and RLAs (8.7)-(8.9) is called ADMM 1, and the sharing problem between each RLA and

its ReCs (8.11)-(8.13) is called ADMM 2. Err1 and Err2 are the primal and dual residuals,

respectively, for ADMM 1 and ADMM 2, and Th1 and Th2 are the feasibility tolerances for

the primal and dual residuals in ADMM 1 and ADMM 2, respectively. For more details about

residual calculation and stopping criteria, we refer the reader to [BPE11, Chapter 3.3].

8.4 Numerical Simulations and Discussion

In this section, the performance of HDRLC is evaluated for the modified IEEE-13 bus sys-

tem. The single-phase balanced IEEE-13 bus system is considered with six RLAs which are

located at bus# 634, 646, 675, 680, 652 and 611. The performance of HDRLC for different
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Algorithm 9: HDRLC.

1 Initialization: Set initial values for P0, pac
0
, pbs

0
, qbs

0
, pev

0
, php

0
, v0, u0, and λλλ0.

2 k ← 0.

3 l← 0.

4 while Err1 < Th1 do

5 for j = 1 : N ra do

6 while Err2 < Th2 do

7 for i = 1 : N r
j do

8 calculate pc
l+1

i,j by (8.11) & send to RLAj.

9 end

10 Update pc
l+1

j = 1
N rj

∑
i∈Nrj

pc
l+1

i,j .

11 Calculate pac
l+1

j , pbs
l+1

j and qbs
l+1

j by (8.12).

12 Update λλλl+1
j by (8.13).

13 Update & broadcast ΛΛΛl+1
j to ∀i ∈ Nr

j .

14 Update Err2.

15 end

16 Send (Pra
j ,Q

ra
j ) to DSO.

17 l← l + 1.

18 end

19 Calculate (Pj,Qj), ∀j ∈ Nra by (8.8).

20 Update (vj,uj), ∀j ∈ Nra by (8.9).

21 Broadcast (Pj,Qj) and (vj,uj) to RLAj, ∀j ∈ Nra.

22 Update Err1.

23 k ← k + 1.

24 end
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Figure 8.2: IEEE-13 bus system with the communication layers of HDRLC.

RLAs’ objective functions are compared with the case where EVs and HPs are not controlled,

in which EVs start charging with the maximum power rating (i.e. pevi,j) as soon as they are

plugged in, and HPs keep the zone temperature at a specific desired level. The netload

dataset of ReCs is collected from [Aus], and the wholesale electricity price is available from

the California Independent System Operator-CAISO [CAI]. More details about the simula-

tion parameters are found in Table 8.1. All the simulations are executed by MATLAB on a

PC with Intel® Core� i7 − 4770 3.40 GHz CPU, 4 cores and 8 GB RAM, and the convex

optimization problems are solved by CVX [GB14].

Table 8.1: EV, HP, BESS and HDRLC simulation parameters.

Parameter Value Parameter Value Parameter Value

pev, pev 4, −4 [kW] Cbs 55 [kWh] C(t0)
ev {8, 9, 10} [kWh]

Cbs 11 [kWh] C(tf )
ev {23, 24, 25} [kWh] sbs 50 [kVA]

Tz {17, 18, 19} oC (v,v) (0.95, 1.05) [p.u.] T
z {23, 24, 25} oC

vref 1.0 [p.u.] Tdes {21, 22} oC N 48

(α, η+, η−) (0.99, 0.95, 095) (ρp, ρq) (0.1, 0.1) ρj 1

In order to compare the performance of HDRLC on the grid operation, four different
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scenarios are simulated. For all scenarios except Scenario4, the DSO’s objective function is

the grid loss reduction, however, RLAs’ and ReCs’ objectives are defined as listed below.

Scenario1: RLAs’ objective function is to keep their feeder load less than the capacity con-

straint [KCG19], and ReCs’ objective function is the cost reduction by EV and HP

control.

Scenario2: RLAs’ objective function is to flatten their total aggregated power [KCG19], and

ReCs’ objective function is the cost reduction by EV and HP control.

Scenario3: RLAs’ objective function is to keep their feeder load less than the capacity con-

straint, and ReCs’ objective function is the cost reduction by only EV charging control.

Scenario4: There is no control on the loads, i.e. EVs are charge with the maximum charger’s

power rating, and HPs keep the zone temperature at a specific desired level.

Regarding DSO’s objective function, the results obtained from the defined scenarios are

shown in Table 8.2. Comparing the results, the loss decreases significantly in Scenario1 and

Scenario2, where ReCs respond to RLAs’ commands by controlling both EV and HP loads.

Considering Line(650, 632) which is the HV/MV transformer, the energy loss is reduced 76%,

78% and 40% in the first three scenarios, respectively, in comparison with Scenario4.

The obtained voltage profiles for the simulated scenarios are shown in Fig. 8.3. As it

is expected, the best voltage profiles are achieved in Scenario1, followed by Scenario2, and

Scenario3, respectively. Obviously, not participating in HDRLC (Scenario4) leads to the

voltage reduction below the minimum allowable constraint (0.95 pu). For better clarifi-

cation, showing the minimum and maximum voltage by (vmin,vmax)x, in which x is the

scenario number, the obtained results are (0.99, 1.016)1, (0.981, 1.011)2, (0.977, 1.016)3, and

(0.924, 1.019)4, where the deviation of voltage from the reference value (vref ) in Scenario1 is

less than the others. It should be noted how HP load results in the voltage drop when ReCs

selfishly want to keep their zone temperature at a specific level and respond to DSO’s and

RLA’s request by only EV load control.
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Table 8.2: Loss reduction by the proposed HDRLC.

Line

(650,632)

(632,633)

(633,634)

(632,645)

(645,646)

(632,671)

(671,675)

(671,684)

(684,611)

(671,680)

(684,652)
k
W

h

Scenario1 292 3.1 8.3 121 2.1 2.6 11.9 15.6 1.9 5.4 6.0

Scenario2 272 3.4 8.8 100 1.6 2.2 8.8 14.3 1.8 3.9 6.1

Scenario3 733 6.9 20.9 300 6.3 8.4 16.9 43.3 6.6 11.5 21.9

Scenario4 1214 22.7 30.5 426 24.7 12.2 17.1 66.3 10.6 15.1 37.1

k
V

a
rh

Scenario1 945 4.9 8.5 367 0.4 2.6 6.7 15.9 5.7 5.5 2.3

Scenario2 892 5.4 9.0 304 0.3 2.3 4.9 14.6 5.6 3.9 2.3

Scenario3 2366 11.1 21.4 909 1.1 8.6 9.5 44.4 19.9 11.6 8.4

Scenario4 4065 36.4 31.3 1154 4.5 12.5 9.5 67.9 32.1 15.3 14.2
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Figure 8.3: Voltage profiles of the grid buses for Scenario1 (top-left), Scenario2 (top-right),

Scenario3 (bottom-left), and Scenario4 (bottom-right).
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Comparing the loading profiles of the grid lines in Fig. 8.4 reveals that in Scenario3 and

Scenario4 the lines’ peak power increases considerably, specially on Line(650, 632) where the

peak power is 1.72 MVA and 3.45 MVA, while it is 1.15 MVA and 1.14 MVA in Scenario1

and Scenario2, respectively. Consequently, the last two scenarios overload the HV/MV trans-

former and may lead to Blackout in the distribution grid.
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Figure 8.4: Loading profile of the grid lines for Scenario1 (top-left), Scenario2 (top-right),

Scenario3 (bottom-left), and Scenario4 (bottom-right).

To more effectively compare the results obtained for the loading profile of the lines which

directly supply RLAs, PTP, PTA, and RMS defined by (5.31), (5.32), and (5.33) are cal-

culated and shown in Fig. 8.5, Fig. 8.6, Fig. 8.7, respectively. Considering RLAs’ objective

function which is to flatten the loading profile of the supplying feeder, Scenario2 outperforms

the others, and it is followed by Scenario1 and Scenario3. The figures clarify that Scenario4

has significantly high values for all three criteria as there is no control on the loads.

It is also worthwhile to look at the charging/discharging of BESS, shown in Fig. 8.8,
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Figure 8.5: PTP of the RLAs’ power profile obtained from the defined scenarios.
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Figure 8.6: PTA of the RLAs’ power profile obtained from the defined scenarios.
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Figure 8.7: RMS of the RLAs’ power profile obtained from the defined scenarios.

for the defined scenarios. In Scenario1 and Scenario3 where RLAs’ objective is an indicator

function, and so they just try to match DSO’s desired active and reactive loads with ReCs,

the active and reactive power profiles of BESS are fairly similar. Also, in these two scenarios,
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BESS mostly contributes to the reactive power compensation over the time period 16 : 00−

8 : 00. However in Scenario2, as the RLAs not only try to match DSO’s request with ReCs’,

but also have their own objective function which is power profile flattening, BESS charges

and discharges more frequently.
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Figure 8.8: Active (solid line) and reactive (dashed line) powers (left) and energy (right) of

BESS for Scenario1 (top), Scenario2 (middle), and Scenario3 (bottom).

Finally, as the objective of ReCs is the cost reduction, the corresponding results obtained
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from the scenarios are compared. Since ReCs control both EV and HP loads in the first two

scenarios, obviously their electricity cost is considerably less than when they only participate

in HDRLC by controlling the EV charging demand. This is shown in Fig. 8.9, where the

aggregated ReCs’ electricity cost is shown. Comparing to Scenario4, the total aggregated

cost reduction is 69.5%, 68.8%, and 19.2% in the first three scenarios, respectively.
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Figure 8.9: RLAs’ aggregated electricity cost.

8.5 Conclusion

In this chapter, a fully distributed and hierarchical framework has been proposed for optimal

EV and HP load coordination in the residential grids with the consideration of distribution

grid model including voltage and feeder loading constraints. The proposed framework con-

sists of two iterative layers, the first of which is executed between DSO and RLAs, and the

second one is carried out between each RLA and the consumers which it supplies. The pro-

posed framework, HDRLC, reduces the computation burden of RLAs comparing to the other

methods introduced in the literature and DCEVCS developed in Chapter 7 since the load

coordination is distributed between ReCs and RLA. Moreover, the size of the optimization

problem solved by RLAs does not depend on the number of ReCs which they supply. To

evaluate the performance of HDRLC, it was applied to the IEEE-13 bus system and various

scenarios were simulated. The results have revealed that when ReCs participate in HDRLC

with controlling both EV and HP loads in response to RLAs’ and DSO’s commands, the
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distribution grid experiences considerable voltage profile improvement and energy loss re-

duction. This also leads to less loading stress on the grid lines meaning that the grid can

operate safely in the presence of large EV and HP populations without any requirement for

investment in the grid expansion.
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CHAPTER 9

Conclusion & Future Work

To have a sustainable and clean energy infrastructure, two objectives have been followed by

the governments and utilities: integration of renewable energy resources in the generation

system, and electrification on the energy consumption side. Renewable resources of energy,

e.g. solar energy, are inherently intermittent and non-dispatchable. To address this issue,

the energy storage deployment is unavoidable, which its efficient utilization requires accurate

modeling of the energy resource availability and optimal coordination and operation. On

the consumer side, the electrification in two sectors, transportation and building, is the

trend. The reliance of the transportation system on the fossil fuels and the percentage of

the energy consumed for heating and cooling in the buildings reveal the capacity of these

sectors to reduce the greenhouse gas emission and improve the energy efficiency.

To facilitate the integration of solar energy and EVs in the power grids, a new method

based on non-parametric kernel density estimation has been proposed which can accurately

model the stochastic behavior of solar generation profile, netload demand, aggregated EV

load, and individual EV charging demand, namely arrival time, required energy, and depar-

ture time. The method has been used to design an optimal coordination algorithm for BESS

control which is able to reduce the charging cost of EVs and provide load leveling.

To validate the performance of BESS for the EV charging system, a mobile BESS has

been prototyped. The operation of the setup has been verified by its integration in a real EV

charging system in the City of Santa Monica. Through numerous experiments, it has been

shown that the mobile BESS not only reduces the charging cost and peak load demand, but

also provides the emergency power to the charging system if no electricity is available from

the grid.
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As the large penetration of EVs in the distribution system can push the grid toward

its capacity boundaries and lower the power quality, four frameworks have been developed

in this dissertation. The features of the proposed frameworks are their scalability and cus-

tomers’ privacy-preserving. Two developed frameworks can be utilized in the distribution

management system as the separate network applications, and the others can be integrated

with the distribution management system.

The first proposed EV management framework is designed based on a trilayer hierarchical

structure where the grid entities solve their problem locally and sequentially. In this method

called hierarchical ADMM, the EVCS problem is formulated as the sharing problem. The

simulation results show 25% charging cost reduction and ≈ 30% peak-to-average decrease in

the aggregated load profile comparing to the uncontrolled EV charging load. By exploiting

the mathematical properties of the trilayer EV charging problem, a new hierarchical method

called HDEVCS has been developed where all the entities solve their problem simultaneously,

therefore it shows faster convergence and lower communication overhead (≈ 98%) comparing

to the hierarchical ADMM. Using real data, the numerical simulation results show ≈ 16.5%

charging cost reduction and 35% peak-to-average decrease in the aggregated load profile for

a very large-scale system

In the last two proposed EVMS methods as the DMS integrated applications, the power

flow model of the grid including the nodal voltage constraints are also included directly

in the EV load coordination problem. In these methods, the system operator negotiates

with the load aggregators on the load demand to regulate the voltage and decrease the

energy loss, and each load aggregator negotiates with its customers to keep the total load

demand less than the grid feeder capacity, minimize its load profile variance, and reduce

the charging cost. The numerical simulation results using real data show the efficacy of

the proposed EVMS methods in reducing the EV charging cost, avoiding feeder overloading

conditions, improving the voltage profiles, and decreasing the energy loss in the grid. Using

comprehensive numerical simulations, improving the voltage profile from 45% up to 93% and

reducing the peak load from 50% up to 66% have been verified. The developed methods

also reveal the capability of EVMS in accommodating the large EV penetration without any
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investment on the grid capacity expansion. Last but not least, the designed frameworks

preserve the privacy of the EV owners and other involved entities as they are not required

to share their sensitive information with others.

The contributions of this dissertation, however, can be further developed as follows:

• The stochastic optimal BESS control proposed in Chapter 4 can be manipulated to

formulate a chance-constraint problem. Comparing to the MCS-based method used in

this dissertation, chance-constraint optimization has less computation burden without

compromising the accuracy. It is also interesting to consider the individual EV charging

control as well as the optimal BESS sizing by including the battery degradation cost

in the optimization problem.

• Recently, several methods have been proposed to accelerate the convergence rate of

ADMM. Implementing those methods in the proposed EVMS frameworks in Chapter

5- Chapter 8 is recommended as a possible future work so that the agents reach the

equilibrium point faster. This helps include the proposed framework in a real-time

control system.

• Package loss, network congestion, and latency are very common in the communication

networks. To make the proposed frameworks in Chapter 5- Chapter 8 practical, it is

suggested to investigate the communication loss and delay effects on the convergence

of the proposed algorithms and the optimality of their results.

• In Chapter 5- Chapter 8, the agents negotiate the power demand only. It is interesting

that the pricing models based on the agents’ criteria are developed, and the price ne-

gotiation is also included in the proposed frameworks [ANK19]. This will be especially

important if the EV owners are expected to participate in V2G.

• The dynamic electricity price, which is used as an input parameter in this disserta-

tion, is designed according to the customers’ load demand by the distribution system

operator. That is, the total load profile of the grid is analyzed by the system opera-

tor to design an effective dynamic price which motivates the customers to shift their
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loads from peak-load hours to the off-peak time. Accordingly, EV load management

results can affect the dynamic price design, which is not investigated in this research.

It is practical that a mechanism for electricity price determination considering EV load

demand is integrated with the developed load management system.

• As it is shown, the participation of the EV owners in V2G is not significant by current

electricity price. As V2G can provide spinning reserve for the grid, the price mechanism

based on only the power that V2G can contribute to the grid is not compelling enough

for the EV owners [KT05]. Therefore, it is required that the stay duration of EVs is

considered in designing the compensation for the EV owners for their participation in

V2G.
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