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Review

Modulating the expression of long non-coding
RNAs for functional studies
S John Liu1,2,* & Daniel A Lim1,2,3,**

Abstract

Long non-coding RNAs (lncRNAs) have emerged as important regu-
lators of cell biology. The mechanisms by which lncRNAs function
are likely numerous, and most are poorly understood. Currently,
the mechanisms of functional lncRNAs include those that directly
involve the lncRNA transcript, the process of their own transcrip-
tion and splicing, and even underlying transcriptional regulatory
elements within the genomic DNA that encodes the lncRNA. As our
understanding of lncRNA biology evolves, so have the methods
that are utilized to elucidate their functions. In this review, we
survey a collection of different methods used to modulate lncRNA
expression levels for the assessment of biological function. From
RNA-targeted strategies, genetic deletions, to engineered gene
regulatory systems, the advantages and caveats of each method
will be discussed. Ultimately, the selection of tools will be guided
by which potential lncRNA mechanisms are being investigated,
and no single method alone will likely be sufficient to reveal the
function of any particular lncRNA.
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Introduction

After completion of the human genome project—which revealed that

only approximately 2% of our DNA code for proteins—the advent of

next-generation sequencing technologies enabled the surprising

discovery that a substantial proportion of our non-coding genome is

transcribed into RNA. Bioinformatic studies have annotated tens of

thousands of lncRNAs—transcripts > 200 nt in length that do not

appear to code for proteins—and such lncRNAs can be mapped to

every chromosome [1–7]. While certain lncRNAs are now known to

play key roles in critical cellular processes [1–4]—such as lncRNA

XIST in X chromosome inactivation [6–8]—the vast majority of

lncRNAs have not been demonstrated to have significant biological

functions. For this emerging field of research, an important next step

is to identify which lncRNAs regulate important aspects of cell and

molecular biology, and lncRNA loss-of-function and gain-of-function

approaches are a mainstay for such discovery.

Broadly, the methods used to manipulate the levels of an RNA

transcript involve either alterations at the level of the correspond-

ing genomic DNA (e.g., gene modification or local recruitment of

transcriptional regulators) or molecular strategies that directly

involve the RNA transcript (e.g., RNA knockdown or transfection

of RNA molecules). Importantly, not all functional lncRNA loci

exert their biological effects through the transcribed RNA molecule

itself. While some lncRNA loci do indeed function in trans, produc-

ing a lncRNA transcript that functions at locations genetically

unlinked and spatially distant from their site of production (e.g.,

NORAD, HOTAIR, [5,6]) (Fig 1A), other lncRNA loci regulate gene

expression in cis (Fig 1B), having transcriptional enhancer-like

function for genes on the same chromosome (e.g., Blustr, linc-p21

[7–9]). Both the process of lncRNA transcription as well as tran-

script splicing can regulate the expression of a protein coding gene

neighbor [7]. While the level of lncRNA expression may predict

biological function within a particular cell type [10,11], lncRNA

loci can even have enhancer-like function in the absence of tran-

scription [8]. Furthermore, for lncRNA loci known to function in

cis, its lncRNA transcripts can have additional biological functions

in trans [12]. Given the diversity of currently known lncRNA

mechanisms (and also those still yet to be discovered), the tools

used for functional studies should be carefully considered in the

context of how the lncRNA may function.

Elucidating lncRNA function is also complicated by the genomic

arrangement of lncRNAs. Many lncRNAs overlap with coding genes

(both in the sense and in the antisense directions) [13], making it

often difficult to genetically disrupt the lncRNA without affecting

local coding genes. As alluded to above, some lncRNA loci map to

known enhancers, which similarly complicates experimental

approaches and interpretations of results. Because there are rela-

tively few lncRNAs known to have important functions—even fewer

with described molecular mechanisms—and the relative lack of

evolutionary conservation [14,15], the function of lncRNA loci

cannot yet be predicted from primary sequences. Furthermore,

although the expression of lncRNAs is very cell type-specific
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[10,15,16], the specificity of expression does not always predict crit-

ical biological function [17]. For instance, despite being expressed

in a diverse range of cell types, some lncRNAs can exhibit exqui-

sitely cell type-specific function [18]. Therefore, loss- and gain-of-

function experiments are paramount to understanding the function

of lncRNAs.

To study lncRNA function by loss-of-function or gain-of-function

methods, it is important to begin with a sound understanding of

transcript properties (e.g., its primary sequence, potential isoforms,

presence or lack of polyadenylation) as well as corresponding DNA

loci (e.g., accurate mapping of the TSS, genomic relationship to

protein coding genes and known enhancers). For the purposes of

this review, we will assume that these basic aspects of lncRNA

bioinformatics are known. Furthermore, we focus our discussion

on the experimental tools used to modulate lncRNA expression for

the purpose of demonstrating biological function. Experimental

approaches for investigating the molecular mechanism of lncRNAs

have been reviewed elsewhere [19–21]. Since genome-scale genetic

screens have been extremely powerful for the discovery of protein

coding gene networks as well as non-coding DNA elements [22–24],

and similar screens of lncRNA loci have recently proven useful

[18,25,26], we also discuss the suitability of different methods for

large-scale screening.

Direct targeting of lncRNA transcripts

Building off its success in the knockdown of protein coding genes,

RNAi has been frequently used to deplete lncRNAs [16,27–29].

Typically, after transfection of siRNAs or expression of shRNAs,

RNAi triggers the degradation of target RNA molecules through

direct complementarity, mediated by the RNA-induced silencing

complex (Fig 2A), and for mRNAs, protein translation can be

inhibited as well [30–32]. The efficiency of RNAi-mediated knock-

down is variable, depending in part on the subcellular localization

of the target RNA [33,34]. Although mammalian RNAi is thought

to predominantly occur in the cytoplasm, RNAi factors such as

Argonaute and Dicer have been found in the nuclei of cells as well

[35], which may explain how RNAi achieves knockdown of

nuclear enriched lncRNAs such as MALAT1 [36] and Pnky [16,37].

Knockdown efficiency also relates to the degree of secondary

structure of the target RNA molecule, with the extent of knock-

down anticorrelated with the amount of energy required to disrupt

the local secondary structure [38–40]. Therefore, consideration of

the location of stem loops and helices, which can be facilitated by

methods such as SHAPE and PARIS [41,42], may facilitate the use

of RNAi.

Given the compact size of the RNA effectors, RNAi experiments

have been successfully scaled up for high throughput and pooled

genetic screens for lncRNA function [29,43]. However, RNAi-based

screens have a significant risk of false positives caused by off-

target effects [39–41]. The specificity of both siRNAs and micro-

RNAs depends primarily on a 7- to 8-nt region called the “seed”

sequence, which must be taken into account when designing RNAi

experiments for lncRNAs, as mismatches of even one nucleotide in

this region along with unintended complementarity to other genes

can lead to inefficient knockdown of the lncRNA and/or extensive

off-target effects, respectively [44–49]. One way to counteract

potential off-target effects is to test multiple siRNA or shRNAs

against the same lncRNA target and assess for concordance of

phenotype. Whether or not the “pooling” of multiple siRNAs

decreases off-target effects is controversial [50]. It should also be

noted that ectopic expression of RNAi-resistant lncRNA transcripts

may not be a suitable rescue strategy, unless the lncRNA is thought

to act in trans, since these rescue transcripts are not likely

produced from their native loci and may not be produced at

normal levels.

An alternative to RNAi for the degradation of lncRNAs are

ASOs (Fig 2B). ASOs are 15–20-nt single-stranded DNA oligomers

Glossary

20-MOE 20-O-methoxyethylribose
Airn antisense Igf2r RNA non-coding
ASO antisense oligonucleotide
BAC bacterial artificial chromosome
Blustr bivalent locus upregulated by the splicing and

transcription of an RNA
BRD4 bromodomain containing 4
CAGE cap analysis gene expression
CCAT1 colon cancer-associated transcript 1
Cdkn1a cyclin-dependent kinase inhibitor 1A
CMV cytomegalovirus
CRISPRa clustered regularly interspaced short palindromic repeats

activation
CRISPR clustered regularly interspaced short palindromic repeats
CRISPRi clustered regularly interspaced short palindromic repeats

interference
dCas9 nuclease-dead Cas9
Evf2 embryonic ventral forebrain 2
FDA United States food and drug administration
Fendrr FOXF1 adjacent non-coding developmental regulatory

RNA
H3K9me3 histone-3 lysine-9 trimethylation
hnRNP-K heterogeneous nuclear ribonucleoprotein K
Igfr2 insulin-like growth factor receptor 2
Indel insertions/deletions
KRAB Krüppel-associated box
LET low expression in tumor
LNA locked nucleic acid
lncRNA long non-coding RNA
MALAT1 metastasis-associated lung adenocarcinoma transcript 1
MECP2 methyl-CpG binding protein 2
MYC myelocytomatosis
nt nucleotides
PAM protospacer adjacent motif
PARIS psoralen analysis of RNA interactions and structures
Plscr4 phospholipid scramblase 4
Pnky Pinky
polyA polyadenylation
PVT1 plasmacytoma variant translocation 1
RNAi RNA interference
sgRNA single guide RNA
SHAPE selective 20-hydroxyl acylation and primer extension
shRNA short hairpin RNA
siRNA small interfering RNA
SPEN Spen family transcriptional repressor
TALEN transcription activator-like effector nuclease
TSS transcription start site
Ube3a-ATS ubiquitin protein ligase E3A antisense
VP64 tetrameric viral protein 16 transcription activator domain
XIST X-inactive-specific transcript
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that are typically chemically modified to increase the efficacy of

knockdown and decrease in vivo toxicity. In particular, the 20-
MOE and LNA gapmer modifications have been shown to

increase affinity toward target RNA transcripts and endow resis-

tance to nucleases [51–53], allowing these modified ASOs to have

half-lives between days to several weeks in vivo [54,55]. ASOs

hybridize with target RNA transcripts through complementarity

and induce RNaseH-mediated degradation of the target transcripts

[56]. Thus, in contrast to RNAi-based methods, ASO-mediated

knockdown is very efficient in the nucleus, making this approach

suitable for studying the function of both cis-acting and trans-

acting lncRNAs [9,57,58]. It remains unclear whether ASOs are

suitable for identifying lncRNA genes that function through the

act of transcription itself.

Through a process called gymnosis, ASOs can enter cells without

the aid of transfection reagents, and there are now a number of

ASOs used as pharmaceuticals to treat human disease [59,60].

While FDA-approved ASOs currently target protein coding tran-

scripts, ASOs that target specific lncRNAs also exhibit therapeutic

promise. For instance, when injected into the mouse brain ventricle,

ASOs can trigger knockdown of the Angelman’s syndrome associ-

ated lncRNA Ube3a-ATS, resulting in improvement of behavioral

deficits associated with this genetic disorder [61]. In a mouse model

of breast cancer, intravenous injection of Malat1 ASOs decreases
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Regulation of neighboring genes through the process of transcription

Functions across the same chromosome

A Examples of trans acting mechanisms
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Figure 1. Mechanisms of lncRNA function.
(A) trans-acting mechanisms of lncRNA function include distal lncRNA–protein interactions (examples include NORAD, HOTAIR), interchromosomal interactions (e.g., FIRRE),
and regulation of mRNA splicing (e.g., Pnky, MALAT1). (B) cis-acting mechanisms of lncRNA function. The lncRNA transcript functions along the same chromosome from which
it is transcribed (e.g., XIST). lncRNAs can also function in cis through the process of their own transcription (e.g., Blustr).
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tumor metastases as compared to scrambled ASO controls [11].

However, due to the structural modifications requiring direct chemi-

cal synthesis and their relatively high cost, ASOs are currently

suboptimal for high throughput or pooled screening and have not

been used for genome-scale screens of non-coding RNA function.

A more recently developed method that can directly degrade

lncRNAs is one that utilizes the Cas13 family of CRISPR ribonucle-

ases [62] (Fig 3C). When provided with sgRNAs complementary to

the target RNA, CRISPR-Cas13 can efficiently cleave the RNA target

[52–54]. Cas13 has been used to knockdown lncRNAs in mamma-

lian cells [52–54], and because the sgRNAs can be stably expressed

from viral vectors, Cas13-based methods may be suitable for

genome-scale screening for lncRNA transcript function.

Genome modification-based strategies

Genetic deletion of endogenous genes through homologous recombi-

nation is an established loss-of-function technique [63] (Fig 2E), and

one that has been greatly accelerated by CRISPR/Cas9-mediated gene

editing [64–66]. Two of the earliest studied mammalian lncRNAs,

XIST and H19, have been deleted through replacement of the entire

lncRNA locus with a drug selection cassette, revealing their roles in

dosage compensation and imprinting, respectively [67,68]. More

recently, 18 different lncRNAs were knocked out in mice through

replacement of the lncRNA gene body with a lacZ reporter cassette

[69]. Furthermore, conditional knockout strategies have enabled

lineage-specific deletion of lncRNAs, which revealed a surprising role

of XIST in hematopoietic malignancies [70]. Caveats of genetic dele-

tion approaches include the potential introduction of strong promot-

ers, which can affect nearby transcription [71]; residual loxP sites,

which can trigger embryonic methylation of targeted genes [72]; and

the unintentional removal or disruption of local DNA regulatory

elements such as transcription factor binding sites, enhancers, and

CpG islands [73]. Of note, these issues with genetic deletion are not

unique to the study of lncRNAs (i.e., many genes that encode proteins

also contain DNA regulatory elements [74,75]). Limiting the size of

the genetic deletion can mitigate such concerns and provide addi-

tional insights into lncRNA mechanism. For instance, deletion of the

A-repeat region of XIST demonstrated that these lncRNA sequences

mediate X chromosome inactivation by interacting with the transcrip-

tional repressor SPEN, in addition to Lamin B receptor, leading to the

recruitment of the inactive X to the nuclear lamina [76–80]. Single

exon deletions have also been performed on lncRNAs [7] (Fig 2F).

However, the implementation of such size-limited genetic deletions

assumes some a priori knowledge of how the lncRNA functions.

Another point of consideration in deletion experiments in vivo is the

genetic background in which the deletion is performed, which can

contribute to the penetration of subtle lncRNA phenotypes [76–78].

Premature termination of lncRNA transcription through knock-in

of polyA sites is also an effective loss-of-function strategy that may

reduce the risk of disrupting known or potential DNA regulatory
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G CRISPRi mediated knockdown of lncRNA expression
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Figure 2. Methods of lncRNA loss of function.
(A) RNAi mediated by RISC cleavage of lncRNA. (B) ASO-mediated recruitment of RNAse H to target lncRNA transcript for degradation. (C) Cas13-based direct RNA cleavage of
target lncRNA. (D) Insertion of polyA transcription termination signals into lncRNA gene locus. (E) Gene body deletion of lncRNA. (F) Genetic deletion of exon 1. (G) CRISPRi-
mediated knockdown of lncRNA expression.
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elements [79,80] (Fig 2D). For instance, insertion of a triple polyA

transcription stop site into exon 1 of the neural lncRNA Evf2 results in

a truncated transcript while sparing known local cis regulatory regions

[81]. Similarly, the mesoderm-specific lncRNA Fendrr was targeted by

insertion of a polyA termination cassette into exon 1 of the lncRNA

gene, resulting in embryonic lethality [82]. While usually effective,

the insertion of polyA sites does not always result in complete lncRNA

knockdown. For instance, for lncRNA Dlx1as, despite the presence of

multiple polyA sites after exon 1, levels of Dlx1as remain at ~40%,

perhaps due to transcriptional read-through [83].

One important advantage of polyA site insertion is that because

it inhibits transcriptional elongation, mechanisms that involve the

process of transcription itself can sometimes be distinguished from

those that depend upon the intact, full-length lncRNA transcript.

Taking advantage of the ability to make this mechanistic distinction,

by using progressively downstream polyA insertions and promoter

repositioning, Latos and colleagues were able to show that the

lncRNA Airn represses its neighboring gene Igfr2 through transcrip-

tion over the Igf2r promoter [84]. Similarly, the lncRNA Upperhand

was shown to regulate its divergently transcribed coding neighbor

gene Hand2 by the process of its transcription through a cardiac

lineage super-enhancer. While polyA cassette insertion into exon 2

of Upperhand resulted in diminished Hand2 expression, insertion of

the tdTomato coding sequence into the same exon 2—thereby

disrupting the primary sequence of Upperhand, did not affect Hand2

expression [85]. By comparing polyA insertion mutants with exon 1

deletion of lncRNAs, Engreitz and colleagues were also able to

demonstrate that certain lncRNAs regulate the expression of neigh-

boring genes through processes that involve transcriptional initia-

tion and elongation as well as RNA splicing [7]. Interestingly, the

transcription of certain coding genes was also found to positively

regulate the levels of coding gene neighbors. However, the relative

challenge of introducing polyA cassettes through current gene

targeting methods may limit its scalability in genome-scale screens.

Engineered CRISPR methods of decreasing
lncRNA expression

The development of the CRISPR/Cas9 system for mammalian

genome editing has greatly facilitated the interrogation of gene func-

tion, especially at large scale [22,86,87]. However, Cas9-mediated
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Figure 3. Methods of lncRNA gain of function.
(A) Expression of lncRNA from a BAC transgene. (B) Direct transfection or injection of mature lncRNA transcripts. (C) Genetic knock-in of strong promoter element upstream of
lncRNA loci to activate lncRNA expression. (D) CRISPRa-mediated upregulation of lncRNA expression. (E) CRISPR display mediating ectopic localization of lncRNAs through a
dCas9/lncrna-sgRNA chimera.
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mutagenesis through the generation of double-strand breaks and

non-homologous end joining is often not suitable for the study of

lncRNAs, since by definition they do not produce proteins and

therefore may have biological functions that are less likely to be

perturbed by small indels that produce frameshift mutations. Double

Cas9 excision of DNA sequences that flank lncRNAs are more likely

to inactivate lncRNA gene function and has been used to delete up

to hundreds of human lncRNAs, revealing the function of previously

uncharacterized lncRNA loci [26,88,89].

Engineered Cas9 variants, in particular dCas9 fused to transcrip-

tional activators or repressors, are highly effective for modulating

the expression of lncRNAs without alterations to the underlying

genomic DNA sequence [90–96]. The CRISPRi system (Fig 2G), in

which dCas9 is fused with the KRAB repressor domain (dCas9-

KRAB), silences transcription through steric blockade of RNA poly-

merase elongation and local deposition of H3K9me3, which is a

characteristic heterochromatin mark [90,91,97]. With a precise and

relatively narrow window of activity between �50 and +300 bp rela-

tive to the TSS of the target gene, CRISPRi can site-specifically knock

down lncRNA expression while minimizing disruption to the activ-

ity of cis regulatory regions or neighboring genes [92], making it

broadly useful for lncRNAs [10,18], whose gene structures are often

antisense, overlapping, or divergent to other nearby genes [13].

Empirical determination of sgRNA mismatch tolerance for CRISPRi

and CRISPR/Cas9 has demonstrated exquisite sensitivity in the

12 nt most proximal to the PAM (i.e., seed region), with one

mismatch in this region decreasing activity of CRISPRi by up to

100% [92]. Despite evidence of widespread binding of sgRNA/Cas9

complexes throughout the genome, it is thought that activity,

whether nuclease or transcriptional modulation, requires more than

transient interaction to have measurable effects on gene expression

[91,98,99]. Iterations of the engineered CRISPR/Cas9 system, such

as addition of the repressor domain of the transcriptional regulator

MECP2 to dCas9-KRAB [96], may be useful for lncRNA knockdown.

Furthermore, more accurate mapping of lncRNA TSSs from CAGE

analysis [100] and optimizations to the design of sgRNA sequences

[101] have augmented the CRISPRi toolbox for the study of

lncRNAs, making large-scale screening more readily accessible. For

instance, in a pooled screening approach to discover lncRNA func-

tion in seven different human cell lines, of over 16,000 lncRNA loci

targeted, 499 exhibit cell growth-modifying phenotypes, and most of

these lncRNA loci were previously unknown to have function [18].

Furthermore, with the relatively large scale of this screen that was

facilitated by the robustness of CRISPRi, machine learning could be

applied to the data, revealing genomic features that predict essential

lncRNA function [18].

With CRISPRi, because site-specific gene repressors are recruited

to the genomic DNA, it is possible that cis regulatory elements such

as enhancers—embedded within or near the TSS of lncRNA genes—

are also affected. CRISPRi is indeed capable of silencing transcrip-

tional enhancers, enabling the identification and characterization of

cis regulatory regions [23,97]. However, the narrow window of

activity of CRISPRi complexes, their minimal off-target effects, and

restriction of sgRNAs to the TSS of lncRNAs all reduce the potential

of unintentional perturbation of enhancers [92,101]. Furthermore,

in the study of protein coding genes, the concordance of results from

CRISPRi- and Cas9 nuclease-mediated screens suggests that

CRISPRi-mediated results do not generally arise from the

unintentional modulation of cis regulatory regions [101,102]. In any

case, as best practice, multiple sgRNAs targeting the same lncRNA

should be tested for validation studies, and orthogonal loss-of-func-

tion experiments (e.g., ASO-mediated transcript knockdown or

insertion of polyA termination sites) can also be performed to help

decipher the function(s) of the lncRNA locus and its transcriptional

product.

lncRNA gain-of-function strategies

The function of lncRNAs can also be discovered by their overexpres-

sion. For instance, viral vectors that produce specific lncRNAs have

been used to overexpress lncRNA-LET and Plscr4, demonstrating

that increased levels of these lncRNAs can affect hypoxia signaling

and cardiac hypertrophy, respectively [103,104]. Of note, many

“standard” expression vectors contain sequence elements that target

the RNA transcript to ribosomes and enhance translational effi-

ciency, and the inclusion of these sequences may confer lncRNAs

with functions that they do not have under physiological conditions.

Furthermore, ectopic expression may not target the lncRNA prod-

ucts to their physiological subcellular locations, such as nuclear

paraspeckles, chromatin, nuclear lamina, or cytoplasm. Direct injec-

tion or transfection of in vitro-transcribed lncRNAs has also been

performed to demonstrate lncRNA function (Fig 3B), and these

methods may also be useful for the study of lncRNAs that are

presumed to function in trans [105]. However, neither the expres-

sion of lncRNAs from vectors/plasmids nor the introduction of

in vitro-transcribed lncRNAs preserves information encoded within

and surrounding the lncRNA locus and therefore cannot be used to

investigate potential cis-acting mechanisms.

lncRNAs can also be expressed from the local genomic context.

One method employs BAC transgenes that contain the lncRNA locus,

and these experiments are especially useful for establishing trans-

acting lncRNA mechanisms in vivo (Fig 3A). For instance, a BAC

transgene containing the intact lncRNA Fendrr gene can rescue

certain phenotypes of Fendrr-null mice [82]. Knock-in strategies can

also activate transcription of lncRNAs at their endogenous loci (Fig

3C). For instance, overexpression of the colorectal cancer-associated

lncRNA CCAT1 has been achieved through TALEN-mediated knock-

in of a CMV promoter upstream of CCAT1, resulting in 15- to 30-fold

increase in CCAT1 expression and, as a consequence, increased MYC

expression and tumorigenesis in a colorectal cancer cell line [106].

Programmable transcriptional activation using engineered

CRISPR/Cas9 systems has also enabled gain-of-function studies for

lncRNAs (Fig 3D). By localizing gene activation domains such as

VP64 just upstream of the TSS of lncRNAs (or any other gene tran-

scribed by RNA polymerase II) [91,93,95], lncRNA genes can be

specifically overexpressed [94]. These CRISPRa approaches have

been used for genome-wide screens to identify lncRNAs that play

roles in drug resistance in cancer cells [107,108].

Another compelling gain-of-function strategy has been termed

CRISPR display (Fig 3E). CRISPR display employs an engineered

dCas9 that interacts with modified sgRNA-lncRNA chimeras, allow-

ing site-specific delivery of lncRNA transcripts of up to several kilo-

bases (or smaller lncRNA domains) to ectopic regions of the

genome [109]. In addition to testing a subset of different trans

lncRNA mechanisms, CRISPR display can distinguish the function of
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the transcript from the act of transcription for potential cis

mechanisms.

Reconciling lessons learned from perturbation of lncRNA
expression levels

Given the diversity of currently known lncRNA functions and

fundamental differences in the methods used to produce lncRNA

gain or loss of function, it is perhaps not surprising that our

understanding of lncRNA biology has evolved over time. For

instance, lincRNA-p21 was initially described as a lncRNA that

regulates the p53 transcriptional response through a global trans-

acting mechanism by interacting with hnRNP-K to localize at p53

target genes [27]. However, those phenotypes relied on RNAi-

mediated knockdown of lincRNA-p21, which may have led to the

overestimation of trans-acting potential of the lncRNA. Subse-

quent experiments using allele-specific deletion and ASO-mediated

degradation of lincRNA-p21 demonstrated that this lncRNA posi-

tively regulates its neighboring gene, Cdkn1a (p21), with the

lncRNA transcript being required for this cis regulatory function

[9]. Later, genetic deletion experiments demonstrated that the

lincRNA-p21 locus contains enhancers that regulate the expression

of the neighboring gene Cdkn1a—even in tissues that do not

express lincRNA-p21—and these findings were further validated in

luciferase enhancer reporter assays [8].

Another notable example of the mechanistic dichotomies that

can exist within a lncRNA locus is the cancer-related PVT1, which is

~55 kb away from MYC. PVT1 was previously shown to be a trans-

acting lncRNA that stabilizes the MYC protein, promoting oncogene-

sis [110]. Consistent with its known tumor-promoting properties,

CRISPRa-mediated activation of PVT1 conferred drug resistance to

leukemia cells, as shown through pooled genetic screens [107,108].

Unexpectedly, CRISPRi-mediated repression of PVT1 also enhanced

the proliferation of leukemia and breast cancer cells [18]. Cho and

colleagues subsequently showed that the promoter of PVT1 acts as a

DNA boundary element that competitively binds with distal enhan-

cers of MYC [111]. When the PVT1 promoter region is repressed by

CRISPRi, these distal MYC enhancers interact with the MYC

promoter, activating MYC transcription through a BRD4-dependent

manner. While PVT1 lncRNA transcript levels are repressed after

CRISPRi, the pro-proliferation phenotype is dominated by the cis

regulatory mechanism.

The tale of PVT1 is not to discount the utility of site-specific gene

regulatory methods for screens (both small- and genome-scale) to

discover lncRNA function. Rather, these methods allow the triaging

of functional lncRNA loci, which then motivates further genetic

dissection using orthologous techniques discussed here and else-

where to elucidate their molecular functions [21,73]. As illustrated

by these and other well-characterized lncRNAs, the dissection of

lncRNA mechanism(s) will likely involve multiple methods to

modulate its expression level, and careful interpretation of results in

the context of how each experimental approach functions at the

molecular-genetic level.

Conclusion

The tens of thousands of long non-coding RNAs in the human

genome represent a heterogenous class of genes that can function

in a range of different ways. While they all share the property of

not encoding proteins, they differ in how they regulate the genome

and interact with the cellular machinery. It is now evident that

lncRNAs can have cis or trans-acting function, and in some cases,

they can have both. Furthermore, enhancers and other DNA regu-

latory elements embedded within lncRNA loci can function inde-

pendently of the lncRNA transcript. Our continued understanding

of these genes will require a toolbox of different methods to modu-

late their expression and test their functions. To more fully under-

stand lncRNA function, it will also be necessary to integrate

additional experimental methods that build from our growing

understanding of each lncRNA mechanism, such as lncRNA–

protein binding assays, RNA structure interrogation, and higher

order chromatin organization mapping. Nonetheless, the methods

described in this review can also be applied to the study of lncRNA

mechanisms, for instance through loss-of-function screening of

putative lncRNA interacting proteins. The selection of tools will be

guided by the unique characteristics and underlying mechanisms

of each specific lncRNA. The development and use of these tools

can also facilitate the study of protein coding genes and other non-

coding elements of the genome.
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