Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Self-gravitating AMR algorithm specification

Permalink
https://escholarship.org/uc/item/2vd5967h

Authors

Martin, Daniel
Colella, Phillip

Publication Date
2003-08-08

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/2vd5q67b
https://escholarship.org
http://www.cdlib.org/

Self-Gravitating AMR Algorithm Specification

Dan Martin and Phil Colella
Applied Numerical Algorithms Group *

August 8, 2003

Contents
1 Equations 2
2 Algorithm 2
2.0.1 Variables. 2
2.1 Single-Level Advance 3
2.2 Synchronization 5
2.2.1 Reflux for conservation 6
2.2.2 Computation of ¢« 6
2.2.3 Source Term Correction 6
2.2.4 Average finer solution to coarser levels 7
3 Software Design 7

*This work supported by the NASA Earth and Space Sciences Computational Tech-
nologies Program and by the U.S. Department of Energy: Director, Office of Science,
Office of Advanced Scientific Computing Research under Contract DE-AC02-05CH11231.

1

1 Equations

We are solving the compressible flow equations with self-gravity:

ou

E + V B = SU (1)

ow 22 ow
ks dZ:O Adg—xd = Sy (2)
A¢ = 4mGp (3)

where the conserved variables are U = (p, pi, pe), the primitive variable
vector is W = (p, i, p), and G is the gravitational constant. The source terms
due to self-gravity are: Sy = (0, —pV ¢, —pi - Vo) and Sy = (0, =V, 0).

2 Algorithm

We use the basic AMR multilevel advance scheme outlined in [1] as imple-
mented in [3], which consists of recursive single-level advance steps followed
by a set of synchronization operations when two or more levels reach the
same solution time. The only substantive difference between the algorithm
presented here and that in [1] is due to the presence of the self-gravity source
term S.

2.0.1 Variables

We have two separate versions of ¢, the self-gravity potential. ¢®™P(t) is
computed using a multilevel elliptic solve:

LeomP o = AnGp for Llpgse < U < lppag, (4)

where L™ is a multilevel operator. ¢‘(t) is computed using a single-level
elliptic solve:

L'¢" = 4wGp* on O, (5)
where QF is the set of cells which have been refined to level ¢. The difference
between the two is denoted by d¢f = ¢omPf — ¢t

The single-level advance for level ¢ will advance the solution on that level
from time t* to t* + At‘. At the beginning of the level advance, we have

the conserved variables at the old time U*(#!), along with an old-time ap-
proximation to the self-gravity potential term (V¢)?*P| the level-operator
version of the potential ¢““P and the correction term d¢, which was com-
puted during a previous synchronization step. A pseudocode description of
the recursive algorithm for the single-level advance may be found in Figure
1.

procedure advance ()
ULt + At') = UL(t!) — AtDF* + At*STHP* on Qf
Solve LE¢NEWE = 47Gp(tf + AtY)
if ¢<V,,0z
SFyt = —Fjon ({ju¢t) d=0,..,D-1
end if
if ¢ >0
0Fj = - < Fj> on({ Ul ;,d=0,.,D—1

end if !

for ¢ =0, ...,n’,
advance({ + 1)

end for

synchronize({)

th=1t"+ At

nitep = nﬁtep + 1

if (1%, = 0 mod nyegriq) and (nf;t_e;) # 0 mod Nyegria)
regrid(¢)

end if

end advance

f_l

Figure 1: Pseudo-code description of the recursive single-level advance for
hyperbolic conservation laws with self-gravity.

2.1 Single-Level Advance

First, we compute the second-order upwinded hyperbolic fluxes F"/* in
the same way as in [3]. We then can compute the conservative updates

Ut + Ath):
U'(t' + At') = U (t") — AtD Fhaltt 1 A So* (6)
where

Sold,f — (O, phalf,f(vascomp)ﬁ(tﬁ)’ phalf,ﬂ,l—[half,f . (v¢comp)é(té)) (7)

1
halft §(pz(tf) + o't + AtY)) (8)
ghalfl — %(ﬁé(tz) + @t + AtY) 9)

Note that with the proper ordering of the update, this can be computed
explicitly. First, compute the update for p. Once p‘(t* + At*) has been
computed, (8) can be evaluated, and the source term for the momentum
update may be computed. Once the momentum update has been computed,
(9) may be evaluated, and the energy update may be computed.

Also, once the fluxes have been computed, the flux registers 0 F'y are
incremented appropriately, as in [3].

Finally, compute an updated value for ¢‘ by performing a single-level
elliptic solve using single-level operators:

Li¢*(t" + At") = 47Gp (10)

If £ > 0 then use quadratic coarse-fine interpolation boundary conditions
with a time-interpolated coarse-level ¢ with ¢ the time at which the solve is
being performed (t =t/ + At* in this case):

=1 — ¢
AtZ—l

t— (70— A

N ¢é—1(té—l)+

¢é—1(té—l_Até—l)_l_5¢Z—l)

(11)
Since ¢! is only necessary for computing coarse-fine boundary conditions with
finer levels (the source terms in the updates are computed using V¢<m?), ¢
need only be computed if a finer level exists.

Then, if a finer level exists, it is advanced nf,, times with At™ = LAz,
ref
Once any finer levels have been advanced to time t* + At‘, we perform the

synchronization step.

¢'(t) = 1(¢(t),

2.2 Synchronization

There are four parts to the synchronization in this algorithm. First, a flux-
correction step is performed to maintain conservation. The gravitational po-
tential term ¢ is computed using a multilevel elliptic solve. Then, a correction
to the source term is computed to make the update second-order accurate in
time. Finally, finer-level solutions are averaged down to the covered regions
of coarser levels. A pseudocode description of the synchronization step may
be found in Figure 2.

procedure synchronize (¢)
Ut (t" + Ath) == U (t" + At) — At Dr(§F 1)
if (é = ébase)
Solve L™ g™ = 4xGp for € > lpase
for ¢ = lpase, Uinax
5¢€ — ¢comp o (bZ
compute (V@)->NVEW
8(V)" = (Vo)VPW! — (VoL
compute §5°
U':=U + 568"
end for
end if
U'(t" + At") = Average(U'(t* + At"), nl, ;) on Cnfef(QZH)

end synchronize

Figure 2: Pseudo-code description of the sychronization portion of the algo-
rithm for hyperbolic conservation laws with self-gravity. Note that much of
the synchronization computation is only carried out if (¢ = p4sc), Where lpse
is the coarsest level which has reached the synchronization time.

Note that synchronization is a multilevel operation which is performed for
all levels which have reached the time t*¥"¢. In practice, this is accomplished
by checking to see if the current level ¢ has been advanced to the same time
as the next coarser level ¢ — 1. If this is the case, we drop down to the next
coarser level. The coarsest level which has reached ¢¥¢ is denoted as fp,qe.

2.2.1 Reflux for conservation

As in [3], a refluxing operation is performed to ensure conservation at coarse-
fine interfaces:
U'=U — AtDR(6F;) (12)

2.2.2 Computation of ¢p«"?

We also compute ¢ using multilevel operators:
LemPeomP(439n€) = AxGp for € > lpgse (13)

If lyuse > 0, then we use the coarse-fine boundary condition (11) for £ = fp,q.
and t = t%V"°,

We use the composite and level-operator solutions for ¢ to compute d¢,
which is a correction to a level-operator-computed ¢ to account for the effects
of finer levels:

5¢Z = (bcomp,é(tsync) — ¢£(tsync) for £ > lygse (14>

Also, we then compute the gradients used in the flux computation using
the composite solution:

(T geomp e (pome) — {AUF —C(Geompgeomp (¢5Une)) in uncovered regi.ons
AvF=C((Geomp geomp (¢syne))) on covered regions
(15)
where G°™? is the face-centered composite gradient operator, (..) is the ap-
propriate averaging/coarsening operator from level £+1 to level £, and Avt—¢

is the face-to-cell averaging operator.

2.2.3 Source Term Correction

To make the scheme second-order in time, we then compute a correction to
the source-term treatment so the final update uses the midpoint rule. We
first compute the difference between the old-time and new-time V¢ and use
this to compute a source-term correction:

S(Vo): = (VopomP)e(th) — (VoomP)e(th — AtY) for € > by (16)
(SSZ — (O, phalf,fé(v¢)£’ phalf,fﬁhalf,f(s(v(by) (17>

Finally, we apply the correction:
(4t ¢ (4t o, A
Ut +AL) =U(t" +At") + 755[] for ¢ > lpase (18)

2.2.4 Average finer solution to coarser levels

At this point, the composite solution has been updated, so we then average
the finer-level solution onto covered regions of coarser levels.

3 Software Design

The self-gravity code will be implemented using the AMRGodunov code frame-
work [3]. The only real structural difference between the AMRPolytropicGas
example and the self-gravity code example is the addition of the self-gravity
terms, and the use of the AMRSolver and LevelSolver elliptic solver classes
from Chombo [2] to manage the elliptic solves required to compute the various
forms of the gravitational potential used in this algorithm. A basic diagram
of the class relationships between the Chombo and SelfGravity classes is
depicted in Figure 3.

References

[1] M. J. Berger and P. Colella. Local adaptive mesh refinement for shock
hydrodynamics. J. Comput. Phys., 82(1):64-84, May 1989.

[2] P. Colella, D. T. Graves, T. J. Ligocki, D. F. Martin, D. Modiano, D. B.
Serafini, and B. Van Straalen. Chombo Software Package for AMR Ap-
plications - Design Document. unpublished, 2000.

[3] P. Colella, D. T. Graves, T. J. Ligocki, and B. Van Straalen. AMR
Godunov unsplit algorithm and implementation. unpublished, 2002.

AMRLevel SdfGrav

m_patchGodunov: class PatchGodunov
m_levelGodunov: class |level Godunov

m_levelSolver: class Level Solver
m_amrSolver: class AMRSolver

m_UOld

m_UNew

m_phiOld : ¢lass | evel Data<FArayBox>
m_phiNew

m_phiComp

m_gradPhi

advance()
postTimeStep()
tagCells()

regrid()
postRegrid()
initialGrid()
initialData()
postlnitialize()
computeDt()
computel nitial Dt()

level Godunov

m_patcher: class PiecewiselinearFilpatch
m_patchGodunov: class PatchGodunov*

step()
getMaxWaveSpeed()

PatchSelfGrav

LevelSolver

m_bc: class PhysIBC*

level Solve()

AMRSolver

solveAMR()

setCurrentTime()
setCurrentBox()
updateState()
getMaxWaveSpeed()

Figure 3: Software configuration diagram for the self-gravity code showing
basic relationships between AMRGodunov classes and Chombo classes for
the Self-Gravity example

