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ABSTRACT 

 

The Central Region of the Cellular Prion Protein Attenuates the Intrinsic 

Toxicity of N-Terminus 

 

Graham P. Roseman 

 

 The misfolding of the cellular prion protein (PrPC) into the aggregate prone 

conformer (PrPSc) is at the heart of a class of neurodegenerative diseases called 

transmissible spongiform encephalopathies (TSEs). These diseases affect humans, 

bovine, sheep, and other mammals. PrPC is a well conserved mammalian protein and 

is highly expressed in the brain. PrPC is composed of two main domains consisting of 

the unstructured N-terminus and the structured C-terminus. The two main domains 

are connected by a short linker called the central region (CR). Previous studies have 

shown internal amino-proximal deletions spanning the CR generate a profound 

neurotoxicity in mice. The toxicity generated by these deletions have been shown to 

parallel bona fide prion diseases, and thus making them a good model system for 

studying prion diseases. The neurotoxicity elicited by CR deletion mutants is thought 

to originate from a misregulation of the extreme N-terminus of PrPC. However, these 

deletion mutants make two major changes that could potentially lead to the 

misregulation of the N-terminus. These include: 1) weakening of a protective metal-
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driven cis-interaction, and 2) deletion of the locus important in a regulatory cleavage 

event. This study used designed mutations to allow for one of these changes at a time 

while not altering the other. We find that neither blocking the metal-driven cis-

interaction nor cleavage generates toxicity. Conversely, we show that the WT PrPC CR 

sequence is necessary for regulating the toxicity. Moreover, we find that the WT PrPC 

CR sequence is necessary for PrPC homodimerization on the cell surface, which could 

be a protective mechanism from the deleterious effects of a misregulated extreme N-

terminus. Additionally, we found that pathological mutations in the CR causing a 

certain set of prion diseases in humans do not affect the metal-driven cis-interaction. 

Furthermore, these result suggests a difference in the origin of neurotoxicity between 

CR pathological mutations and C-terminal pathological mutations.  
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Recognizing a New Disease 
  

During the 1700’s in England and throughout Europe, wool was viewed as a 

highly valuable and economically desirable commodity, thus making shepherds an 

integral part of society [1]. However, in 1732, shepherds began getting concerned 

after observing a new illness occurring in their two to five-year-old sheep. Typically, 

symptoms were initially presented as subtle changes in behavior and temperament. 

Next, the affected sheep would begin to scratch themselves and rub against fence 

posts to alleviate a seemingly unrelievable itch (Figure 1).  

 

Figure 1: Sheep displaying sings of scrapie. The loss of wool due to profuse scratching is a characteristic 
sign that this sheep has scrapie [2]. 
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Eventually after approximately six months, the majority of the sheep’s wool 

would be scraped off. This became a defining trait of the disease, ultimately leading 

to naming the disease scrapie. As the disease progressed, the sheep developed 

uncoordinated movements and an altered gait. Approximately six months after 

symptom onset, the sheep would inevitably perish. Finally, in 1755, the British 

parliament began discussions regarding this emerging disease and the imminent 

economic impacts it would have on society [3]. This initiated the written history of 

scrapie, and ultimately a new class of diseases.  

 Scrapie began emerging in other European countries, eventually leading to 

discussions in Germany in 1959 with respect to how the government would handle 

this impending epidemic. The German veterinarian, J.G. Leopoldt, stated that once a 

shepherd recognized a sheep had scrapie, they must “…isolate such an animal from 

healthy stock immediately because it is infectious and can cause serious harm to the 

flock.” [1]. This statement significantly first described scrapie as an infectious disease.  

 During the middle of the 19th century, veterinarians throughout Europe began 

scientifically investigating scrapie with the hope of understanding the disease 

pathology, transmission, and the infectious pathogen. In 1898, from post-mortem 

analysis of scrapie infected brains, Besnoit and colleagues recognized 

neurodegeneration as a prominent neuropathological characteristic of the disease 

[4], which explained the neurological symptoms such as loss of coordination and gait 

abnormalities. Moreover, these observations implied that the disease may be 
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neurological in origin. Intriguingly, even though it was known that scrapie was 

transmitted from sheep to sheep, Besnoit and colleagues were unable to 

experimentally transmit scrapie from one sheep to another sheep via blood 

transfusion or direct brain inoculation [5]. However, in 1936, after noticing that 

epidemiological studies suggested naturally occurring scrapie has an incubation 

period of 18 months or longer, Cuillé and Chelle successfully transmitted scrapie to 

two healthy sheep [6]. Notably, they determined the incubation period is significantly 

longer than other transmissible diseases, which implied a novel property of the 

scrapie infection. 

 Right around the time of the Cuillé and Chelle transmission experiments in 

1935, a vaccine for the looping-ill virus was developed and administered to roughly 

18,000 sheep [7]. This resulted in a scrapie outbreak two years later in 1937. It was 

later determined that one of the batches of the vaccine was prepared from the brain, 

spinal cord, and spleen of scrapie infected sheep. Overall, the experiments conducted 

in the 1930s unambiguously defined the transmissible and infectious nature of 

scrapie.   

 

People Eating People: Kuru  

On the other side of the world, in the developing nation of Papua New Guinea, 

a new disease affecting the Fore people was initially observed by the westerner Ted 

Ubank in 1936 [8]. Subsequently, western travelers to Papua New Guinea observed 
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the Fore tribe practicing ritualistic endocannibalism on the deceased. They witnessed 

that the men would typically dine on the choice cuts from the deceased and the 

woman and children consumed the leftovers, which included the brain matter and 

spinal cord meat. Maybe it was just a coincidence that the population who feasted on 

the brain, being the woman and children, were the ones primarily acquiring the 

disease. Conversely, it is feasibly imaginable that the brain matter contained an 

infectious entity that was the driving force of this illness. 

In the early 1950s, scientist began to monitor the disease that natives were 

calling kuru, meaning trembling from fever or cold [9]. The physician Vincent Zigas 

arrived in Papua New Guinea in 1955, followed by Carleton Gajdusek two years later, 

to observe and study the etiology of kuru.  They recognized that kuru patients had 

very consistent symptoms starting with ataxia and followed by the occurrence of 

tremors and jerks [10]. Eventually the patients lost the ability to walk, became 

bedridden, and ultimately were unable to feed themselves. Intriguingly, kuru patients 

appeared to be conscious, but they could not express themselves. However, even 

though patients lacked the ability to verbally express themselves, their faces 

contained an inappropriate euphoria about their disease and they would compulsively 

laugh. This influenced the media to call the disease “laughing death” (Figure 2).  
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Figure 2: Children affected with Kuru. The boy on the left and the boy on the right are unable to stand 
on their own. They also have a euphoric glow to them, even though they will be dead within a year 
[11]. 

Unfortunately, kuru is always fatal approximately 12 months after symptom 

onset. Remarkably, even though the exact origin of the kuru etiology was unknown, 

the assumption that the practice of ritualistic endocannibalism triggered the disease 

was made. This would not be formally proven until the 1980s by Robert Klitzmann, 

who published a study that followed kuru patients who participated in only a few 

number of feasts of the disease ridden deceased [12].  Ultimately, when the practice 

of endocannibalism ceased by the Fore people, the rate of kuru declined.  

 Similar to scrapie, the ataxic symptoms and the occurrence of tremors in kuru 

patients suggested to researchers that kuru is neurological in origin. Intriguingly, the 

brain of kuru patients appeared macroscopically similar to a healthy brain [11]. This 
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led Zigas and Gajdusek to send brain slices to Igor Klatzo at the National Institutes of 

Health (NIH) to view under the microscope. Klatzo observed massive 

neurodegeneration and neurophagia in the brain slices [13]. Vacuolization and 

spongiform was apparent in the striatum, a region that facilitates voluntary 

movement, and in the cerebellum, which relays sensory information to regulate 

motor movements. A striking feature that Klatzo discovered was the presence of 

round and oval-shaped amyloid plaques with a diameter of 20-60 µm. These plaques 

were found in the granular layer of the cerebellum, basal ganglia, thalamus, and 

cerebral cortex. The neuropathology Igor Klatzo observed from kuru patients was 

reminiscent of Creutzfeldt-Jakob disease (CJD), which was described earlier by two 

German neurologists in the 1920s [14, 15]. The observed neuropathology puzzled Igor 

Klatzo. Therefore, he displayed the photos of the brain slices on in London in 1959 in 

hopes that someone would provide insight.  

During the same time the photos were in London, William Hadlow, an 

American veterinarian, was sent to England by the NIH to learn more about scrapie 

due to an outbreak in the US during the late 1940s and early 1950s. Upon observation 

of the photos of the brain slices, Hadlow recognized a similar spongiform 

neuropathology between kuru and scrapie infected brains (Figure 3). In addition to 

the neuropathology, Hadlow noted that the ataxic symptoms and symptom duration 

found in kuru patients was also analogous to scrapie. He published these observations 

in the Lancet in 1959 [16]. Additionally, he proposed that kuru researchers attempt 
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transmission experiments using kuru-infected brains transmitted to laboratory 

primates.  

 

Figure 3: Brain slices in different diseases. Compared to the healthy brain (A) [17], the Kuru (B) [18], 
CJD (C) [19], and Scrapie (D) [20] brain slices have white holes (pointed at with black arrows) which is 
the characteristic spongiform found in these diseases.  

 In 1963, the first chimpanzee, a two-year-old female named Georgette, was 

intracerebrally inoculated with brain homogenate derived from a kuru patient [21]. 

Twenty months after the intracerebral injection, the chimpanzee began displaying 

signs of apathy and lack of energy. Eventually ataxic symptoms emerged and 

Georgette was unable to sit up and had difficulty feeding. Four months after symptom 

onset, Georgette was anesthetized and sacrificed. Neuropathological analysis 

revealed similar changes to Georgette’s brain, such as spongiform in the cerebellum, 

when compared to kuru infected patients [22]. Overall, from the symptom and 

neuropathological similarities, Gajdusek concluded that kuru had been effectively 

transmitted [21].  
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Later in 1968, Clarence Gibbs successfully intracerebrally transmitted CJD-derived 

brain homogenate to a chimpanzee, which resulted in the chimpanzee displaying a 

similar disease progression and neuropathology as the CJD patient from which the 

material was derived from [23]. This led to the conclusion that the brain homogenate 

from the CJD patient contained a “transmissible agent” that initiated the disease in 

the chimpanzee. Ultimately, this conclusion suggested CJD, kuru, and scrapie were all 

transmissible, leading to a new class of diseases called transmissible spongiform 

encephalopathies (TSEs). Eventually, Gajdusek won the Nobel Prize in Physiology or 

Medicine in 1976 for his "discoveries concerning new mechanisms for the origin and 

dissemination of infectious diseases." [24]. Now, with two human diseases, kuru and 

CJD, being equated with scrapie, it led to researching the transmissibility of these 

diseases to other animals, with bovine in the United Kingdom having the spotlight.  

 

Cows Going Wild in the UK 

During the 1980s in the United Kingdom, a new disease was emerging in cattle. 

The disease typically afflicted dairy cows between the ages of two and eight years old. 

Symptoms first started with uncoordinated movement and weight loss. However, the 

defining symptom was a change in attitude and behavior, which manifested in 

aggressive cows. This led to colloquially calling the disease “Mad Cow Disease”. 

Neuropathological examination exhibited a clear resemblance to CJD, scrapie, and 

kuru infected brains [25]. Additionally, the deceased cows brains were ridden with 
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amyloid fibers [25], which at this point of time was considered an additional diagnostic 

for TSEs [26, 27]. Mad Cow Disease was officially termed Bovine Spongiform 

Encephalopathy (BSE) and added to the growing list of TSEs.  

After a large population cattle succumbed to the disease, the Ministry of 

Agriculture, Fisheries, and Food (MAFF) decided it was time to determine the source 

of the disease. After the investigation, MAFF determined the commonality between 

the dying cows was that their diet contained meat and bone meal (MBM) [28].  Meat 

and bone meal is produced from the carcass and other body parts of animals, 

including sheep and cattle, that were deemed unfit for human consumption. 

Unfortunately, there almost certainly was a TSE-infected carcass, either sheep, 

bovine, or even human [29], that contaminated batches of MBM, eventually being fed 

to an enormous population of cattle distributed throughout the UK in the late 1970s 

and early 1980s [30, 31]. Due to the long incubation period, the disease was primarily 

observed in dairy cows, and not in beef cattle, owing to the fact that beef cattle are 

typically slaughtered by age two.   

Once MAFF recognized contaminated MBM as a likely source of the BSE 

outbreak, the government banned these products from being fed to cattle in 1988. 

Eventually, in 1996, a ban was put in place to prevent feeding mammalian-derived 

MBM to any livestock, fish, or horses. Even with the implementation of these bans, 

many infected cow products were already in the human food supply. More 



  11 

importantly, it was unknown if BSE-infected beef could transmit the disease to 

humans.  

Between 1994 and 1996, 10 cases of CJD in the United Kingdom were reported 

to the CJD Surveillance Unit, with the first one being an 18-year-old named Stephen 

Churchill [32]. Once described as a happy and upbeat person, starting in October 

1994, Stephen began isolating himself. By November 1994, his parents began noticing 

that Stephen was becoming more forgetful than normal. This soon became 

increasingly severe and he began to deteriorate mentally and started losing weight. 

Eventually in January 1995, his concerned parents decided to check him in to a 

psychiatric hospital. Once there, he started exhibiting neurological symptoms 

consisting of myoclonus and dysarthria. Doctors clearly recognized he did not have 

psychiatric problems, but rather neurological symptoms. After additional neurological 

tests, doctors told Stephen’s parents that he had an incurable and progressive 

neurodegenerative disease. Finally on May 21st 1995, Stephen Churchill passed away 

from bronchopneumonia. The subsequent neuropathological evaluation revealed 

that his brain contained spongiform and astrocytosis. Doctors concluded the cause of 

death was CJD. This diagnosis was puzzling because CJD typically affected individuals 

in their 60s, but Stephen was under 30 years old. 

Shortly after Stephen’s death, more people under the age of 30 were dying of 

CJD (Figure 4). There was a clear neuropathology for all of these cases that resembled 

CJD; however, doctors also observed “florid” plaques around the spongiform in the 
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brain, particularly in the cerebellum, which is not common in classic CJD [33]. 

Additionally, the disease that affected Stephen Churchill and the others initially 

manifested itself with psychiatric symptoms, progressed more slowly than classic CJD, 

and affected younger people [34]. After serious deliberation, the United Kingdom’s 

Department of Health announced on March 20, 1996 that these deaths were linked 

to BSE. Thus, this new TSE was named variant CJD (vCJD), and was determined to be 

contracted by ingesting BSE-contaminated beef.  Now determining the identity of the 

toxic species became a very important question that scientists had to start answering. 

 

Figure 4: Time line of BSE epidemic as compared to vCJD cases from 1986 to 2010 [35]. The peak of 
the BSE epidemic was in 1992. In contrast, the peak of the vCJD cases was 1999. This clearly shows the 
incubation period from the time of ingesting the infected beef to the year of symptom onset.   
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The Discovery of a New Infectious Biological Agent  

In the 1960s, scientists began asking from what organism the toxin originated. 

Up until this time, infectious diseases, in accordance with Koch’s postulates, were 

understood to be contracted by parasites, bacterial infections, funguses, or viruses. 

Koch’s postulates states that the infectious microorganism must be able to be isolated 

from the sick and propagated in pure culture. This newly cultured microorganism 

should then be able to infect a new healthy organism with the same disease and 

subsequently be able to be reisolated. These were classically believed to be nucleic 

acid-containing microorganisms and upon infection would normally cause an immune 

response such as swelling, fever, or chills. Therefore, for these historical reasons, TSEs 

were then considered to be a “slow virus” [6, 36].  

However, the infectious agent in TSEs displayed some peculiarities that made 

it seem unique and distinct from classical nucleic acid containing pathogens. The first 

clue came from how the looping ill virus vaccine was prepared [7]. The scrapie-

infected looping ill virus vaccine was treated with 0.35% formalin, which would 

attenuate a virus or bacteria. However, the supposedly attenuated vaccine still 

resulted in sheep developing scrapie. Furthermore, in 1965, Iain Pattison treated 

infected scrapie brains with up to 20% formalin and still observed infectivity [37]. This 

led Pattison to propose that the infectious material may be protein in origin.  

The second clue that the toxic species was not a classic pathogen came from 

Gajdusek and Gibbs. They would filter infectious brain homogenate through a 0.22 
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µm filter for their transmission experiments. This treatment filters out bacteria and 

larger particles [38]. Nonetheless, the homogenate remained infectious. However, 

this did not rule out the pathogen to be a virus, which could be anywhere from 0.017 

to 0.3 µm and even larger [39]. 

 The major clues that the pathogen was not a virus, or nucleic acid in nature, 

came from the British scientist Tikvah Alper. Using high energy electron bombardment 

experiments, Alper revealed the infectious particle was about 10 times smaller than 

any known virus [40]. Furthermore, Alper then demonstrated that the infectivity of 

the pathogen is not reduced upon irradiation with UV light (254 nm) that breaks down 

DNA and essentially deactivates viruses [41]. In contrast, and most importantly, the 

infectivity was slightly reduced when irradiated with UV light (280 nm) that would 

inactivate proteins. Overall, it appeared that these TSEs might be caused by something 

other than a virus or bacteria. 

The results discussed above suggest that TSEs are most likely not caused by a 

nucleic acid containing pathogen. This led the biophysicist J.S. Griffiths to propose an 

interesting, but controversial, pathogenic mechanism as the basis for TSEs. Griffiths 

suggested a model based upon theoretically-driven arguments in which a misfolded 

form of a protein could potentially cause the normal folded form of a protein to 

convert into the misfolded form by template-driven misfolding (Griffiths 1967). This 

implied that the misfolded form can propagate and potentially lead to pathogenesis. 

This new type of model for disease pathogenesis led Griffiths to say “there is no 
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reason to fear that the existence of a protein agent would cause the whole theoretical 

structure of molecular biology to come tumbling down.” [42]. What Griffiths meant 

was that just because this infectious and transmissible disease could be theoretically 

initiated by a protein misfolding event, does not mean the central dogma of molecular 

biology is incorrect, but rather different paradigms of diseases are able to exist. What 

Griffiths did not know was that he was on to something that would challenge the way 

scientist and doctors thought of infectious diseases.  

 

The New Player on the Block  

In 1972, Stanley Prusiner, a young medical resident at the University of 

California San Francisco, received a patient whose symptoms were consistent with 

CJD. He began pouring through the literature and found CJD and TSEs in general a very 

peculiar set of diseases. He was quite skeptical of the “slow virus” hypothesis [36]. His 

curiosity and skepticism were the catalysts for him to embark on the journey of 

discovering the identity of the scrapie agent. Therefore, he teamed up with William 

Hadlow and Carl Eklund at the Rocky Mountain Laboratory with the goal of purifying 

out the toxic scrapie agent. In 1978 after doing a countless number of end point 

titrations and going through over 10,000 mice, Prusiner realized something had to 

change to increase throughput. Thus, he modified how they were doing end point 

titrations as well as switched from using mice to using Syrian Hamsters [43]. This latter 
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change was of significance because Syrian Hamsters succumbed to TSEs twice as fast 

as mice [44], which significantly increased throughput.  

Over the next couple of years, Prusiner and his team were able to purify 

samples that retained equivalent toxicity as crude brain homogenate [45], except the 

purified material was composed primarily of the scrapie agent. Furthermore, 

biochemical experiments demonstrated that the infectious species ranged in size 

from smaller than the smallest virus [46] to the size of a mitochondria or a bacterium 

[47]. Interestingly, all of the different sized particles were infectious. Consistent with 

previous studies, Prusiner found the particles were still infectious when exposed to 

nucleases, and in contrast lost infectivity when exposed to protein denaturants [48]. 

Furthermore, when the infectious particles were passed through different sized 

filters, Prusiner measured the size of the smallest toxic particle to be a mass of 50-100 

kDa [45], or 5 nm in size, which is 1/100 the size of the smallest known virus. If the 

infectious agent was nucleic acid in origin, the length of the sequence would be 

limited to about 50 nucleotides, which is far too small for any known virus. However, 

if it was a protein, it would contain roughly 250 amino acids, which is a reasonable 

size for a protein. Overall, this mountain of evidence kept leading Prusiner down the 

path of reasoning that the infectious particle must be composed of a protein and not 

nucleic acids. 

In 1982, Prusiner published a landmark paper in Science wherein he referred 

to the toxic particle as a protein and called it a ‘prion’ for it being a proteinaceous 
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particle [45]. In the highly pure and infectious material, Prusiner was able to find 

amyloid-like fibers that showed birefringence when stained with Congo red dye, 

indicative of a protein species [49]. Next, using classical peptide sequencing 

techniques, Prusiner, with the help of Leroy Hood and Charles Weissman, was able to 

identify the N-terminal peptide sequence of the prion protein [50]. Subsequently 

using DNA probes [51], they determined that the DNA coding for this peptide 

sequence was not only present in sick patients, but also in healthy tissues [52, 53] with 

high expression levels in the brain and heart.  

With it now deduced that the infectious particle is protein in nature, Prusiner 

used proteinase K, a powerful protease, and determined that there are two forms of 

the protein due to the differential susceptibility to proteolysis [51]. He denoted the 

one form the cellular prion protein (PrPC), which was found in healthy tissues and is 

fully degrade by proteinase K. In contrast, the second form of the same protein found 

in TSE infected brains is only partially degraded by proteinase K and is denoted as the 

scrapie form of the prion protein (PrPSc). Therefore, he concluded that there are two 

chemically identical proteins, but their three dimensional folds must be different to 

allow for PrPSc to be only partially degraded by proteinase K.  Overall, Prusiner was 

able to bring it back full circle to the hypothesis laid forward by J.S. Griffiths in the 

1960s, in which TSEs could be caused by a protein misfolding event. 

If the prion model is valid, in which a protein misfolding event is at the core of 

TSEs, the hypothesis had to be rigorously tested. When the normal host prion protein 
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expression level was modulated in transgenic mice, the animals with higher PrPC 

expression in the brain succumbed to the disease more rapidly [54]. Additionally, 

when PrPC knockout mice (PrP) [55] were challenged with PrPSc, the mice did not 

succumb to the disease, nor did they produce any detectable amounts of PrPSc [56-

58]. Furthermore, when PrP-/- mice containing a brain graft from a WT mouse were 

challenged with PrPSc, there was only PrPSc production in the brain graft, which spread 

throughout the brain of the PrP-/- mice [59]. Importantly, the PrP-/- mice containing 

the brain graft survived and there was no measurable toxicity [59]. Overall, these 

studies elucidated that the normal host prion protein is required for the neurotoxicity 

induced by PrPSc and the expression level of PrPC is correlated with disease 

progression.  

However, these results could correlate with the hypothesis laid out by Griffiths 

in 1967, where PrPSc would directly interact with PrPC to cause its misfolding. 

Conversely, infecting animals with PrPSc could cause PrPC to become misfolded by 

indirect interactions. To test this hypothesis, Prusiner developed transgenic mice to 

express both Syrian hamster PrPC (SHaPrPC) and mouse PrPC (MoPrPC) [54]. Using 

different antibodies that can selectively differentiate SHaPrPSc and MoPrPSc, it was 

determined that when the animals were exposed to hamster-derived PrPSc, the mouse 

selectively produced SHaPrPSc and not MoPrPSc. Conversely, when the mice were 

challenged with MoPrPSc, the mice produced only MoPrPSc. Overall, this study 

demonstrated multiple findings. First, PrPSc directly interacts with the infected hosts 
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PrPC. Secondly, these results implicate a species barrier between the origin of the PrPSc 

and the species of the infected animal. This means that the information encoded in 

the misfolded protein originates from its amino acid sequence, which in turn dictates 

the three-dimensional structure or the misfolded PrPSc. This will subsequently enable 

the protein to directly dock to the hosts PrPC with sequence specificity, and if the 

interaction is correct, it will induce misfolding of the host’s PrPC into PrPSc. Therefore, 

due to the amino acid sequence differences between SHaPrPC and MoPrPC, when a 

mouse expressing both proteins is challenged with mouse-derived PrPSc, MoPrPC will 

selectively dock to the MoPrPSc.  

From this logic, the misfolded forms originating from different species are 

considered to be a particular strain, and these different strains can have different 

three-dimensional structures. Additionally, it has been known since the late 1980s 

that familial mutations in the prion protein gene can elicit a predisposition to prion 

diseases [60, 61]. These human prion diseases include CJD, Gerstmann–Sträussler–

Scheinker syndrome (GSS), and Fatal Familial Insomnia (FFI). Even though these 

diseases all result in the misfolding of PrPC, they have different incubation periods, 

different symptoms and symptom durations, different affected brain regions, and 

different strains. The different strains can be differentiated by proteinase K digestion 

and followed by western blotting. For example, proteinase K digestion of PrPSc derived 

from patients with FFI results in a protease resistant fragment with an apparent 

molecular weight of 19 kDa [62]. In contrast, proteinase K digested PrPSc derived from 
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CJD patients containing the E200K mutation results in a protease resistant fragment 

with an apparent molecular weight of 21 kDa [62]. Furthermore, when a transgenic 

mouse expressing a chimeric mouse and human prion protein (Tg(MHu2M) mice) 

(Telling 1994) was inoculated with PrPSc derived from a patient with FFI, the mouse 

produced the 19 kDa protease resistant fragment [63]. Conversely, when the 

Tg(MHu2M) mice was inoculated with CJD patient derived PrPSc, the mice produced 

the 21 kDa protease resistant fragment. Additionally, the distribution of PrPSc in the 

brains of the infected Tg(MHu2M) was different depending on which strain was 

inoculated. Overall, these results demonstrate that the strain encodes the 

information of not only how the host’s PrPC is going to misfold, but also what brain 

region gets affected and what the symptoms will be. 

So what does the scientific community know at this point? It is known that 

TSEs affecting humans and other mammals are all caused by the misfolding of the 

hosts PrPC to generate the aggregation prone PrPSc conformer. We also know that 

these diseases are transmissible and infectious. However, there is a species barrier in 

which the amino acid sequence of the protein dictates its structure, which 

consequently determines how efficiently it can misfold the hosts PrPC. This is likely 

the reason why mad cow disease only killed around 200 people [64] when a large 

population consumed tainted beef. We also know that these diseases can be initiated 

by familial mutations in the host’s prion protein gene. Additionally, CJD can arise 
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spontaneously without the need for a pathological mutation, which accounts for 

around 85% of the diagnosed cases [65].  

From many years of research, the prion model of infection has been proposed 

(Figure 5). It is initiated by either ingesting PrPSc or having a spontaneous or familial 

mutation driven misfolding event of PrPC into an aggregated PrPSc seed. Once this 

PrPSc seed occurs, it subsequently docks to the hosts PrPC, causing it to become 

misfolded. Furthermore, the buildup of PrPSc results in larger aggregates, which 

eventually shears into smaller aggregates. In turn, these smaller aggregates spread 

throughout the brain, resulting in producing more PrPSc aggregates. Eventually, this 

leads to downstream events that generates astrocytosis and massive 

neurodegeneration. The region of this neurodegeneration will determine the 

symptoms. Ultimately, the extensive neurodegeneration will result in the patient or 

animal to succumb to death. 

 

Figure 5: Prion propagation mechanism. First there is a PrPSc seed by either spontaneous misfolding, 
by inoculation with PrPSc, or conversion of PrPC to PrPSc by familial mutation. This misfolded form will 
bind to endogenous PrPC and converting it to PrPSc. Eventually you accumulate PrPSc and toxicity occurs 
[66]. 
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Unfortunately, there is no cure for TSEs and the toxic mechanisms behind the 

neurotoxicity is not completely understood. To gain a better understanding of the 

neurotoxicity elicited by TSEs with the goal of developing therapeutics, it is critical to 

understand the biology of native PrPC. Additionally, it is important to decipher the 

native function and structure of PrPC to achieve a better understanding of how the 

system can fail during TSEs and elicit neurotoxicity.  

 

Biology of The Cellular Prion Protein  

The human prion protein gene (Prnp) is encoded on chromosome 20 [67]. PrPC 

is expressed throughout the body; however, it is highly enriched in the brain and 

neurons [68-70]. The protein is initially expressed as a 254 amino acid pro-protein. 

The 22 N-terminal amino acids contain a signal peptide sequence that allows for 

translocation to the endoplasmic reticulum. Subsequent to translocation, the 22 N-

terminal amino acids are removed by proteolysis. Additionally, the 23 C-terminal 

amino acids are removed after the addition of a glycophosphatidylinositol (GPI) 

anchor to yield a mature 208 amino acid protein, PrP(23-230). During transit through 

the Golgi apparatus, N-linked glycans are variably added to Asn180 and Asn197 to 

produce either an un-, mono-, or diglycosylated glycoprotein. Lastly, a disulfide bond 

is formed between Cys178 and Cys214, which helps maintains a rigid structure. Once 

the fully matured PrPC passes through the Golgi apparatus, PrPC is trafficked to the 
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cell surface. The GPI anchor on the C-terminus keeps PrPC membrane-associated, 

where it is found in cholesterol-rich microdomains called lipid rafts [71].  

Initial structural studies revealed that PrPC is primarily α-helical and PrPSc is 

predominantly composed of ß-sheets [72]. Later, using nuclear magnetic resonance 

(NMR), Kurt Wüthrich’s group revealed PrPC is composed of two major domains: an 

unstructured N-terminal domain (23-125) and a structured C-terminal domain (Figure 

6) [73-75]. Eventually, Wüthrich’s group used NMR to elucidate the high resolution 

three dimensional structure of the C-terminal domain of PrPC [75]. They determined 

the C-terminal domain of PrPC is composed of three α-helices, one short anti-parallel 

ß-sheet, and one disulfide bond (Figure 6).  

 

Figure 6: Schematic and structure of PrPC. (A) Linear schematic of PrPC and the different domains. (B) 
To the left is the electrostatic potential map of the C-terminus (amino acids 125-230) which shows a 
negatively charged patch in red. The middle and right figures are ribbon structures determined by NMR 
structure determination of the C-terminus which shows three α-helices and one antiparallel sheet. 
(PDB: 1XYX).  
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In contrast to the C-terminal domain, the N-terminal domain is completely 

unstructured. Nevertheless, it is rich in functionality and contains two major motifs. 

The first motif is the polybasic N-terminus (residues 23-31), which is rich in basic 

amino acids and is implicated in interacting with membrane receptors such as the 

AMPA receptor (AMPAR) [76]. The polybasic N-terminus is also capable of binding to 

PrPSc and aiding in the efficient template driven misfolding event [77]. Transgenic mice 

expressing a mutant PrPC in which the polybasic N-terminus is deleted (Tg(∆23-31)) 

show a reduced susceptibility to PrPSc infection in addition to a  drastic reduction in 

PrPSc production [77]. The second major motif in the unstructured N-terminus is the 

octarepeat (OR) domain (residues 59-90). The OR is composed of four repeats of eight 

amino acids (PHGGGWGQ) [78] that are able to bind up to four copper (Cu2+) ions or 

one zinc (Zn2+) ion at physiological concentrations and pH [78-82]. It has been 

previously shown that Cu2+ binding to the OR is pH and Cu2+ concentration dependent 

[78]. At neutral pH, the OR can bind to Cu2+ using two main binding modes (Figure 7). 

At low Cu2+ concentrations, Cu2+ will bind to one histidine residue contained in each 

repeat with a square planar geometry. This binding mode is called component 3 and 

has an affinity of 0.12 nM [83]. At higher Cu2+ concentrations, each repeat will bind 

one Cu2+ ion using the minimum binding motif of HGGGW [80]. This binding mode is 

called component 1 and has an affinity of 7-12 µM [83]. Therefore, depending on the 

Cu2+ concentration, the OR of PrPC can act as a Cu2+ buffer because it possesses the 

ability to coordinate between one and four Cu2+ ions. 



  25 

 

Figure 7: Different binding modes of Cu2 to the OR of PrPC [78]. A. At low Cu2+ conditions, the OR can 
bind to one Cu2+. At higher Cu2+ conditions, the OR can bind up to four Cu2+ ions using the minimum 
binding motif of HGGGW (B). 

The ability of PrPC to bind to metal ions has implicated metal binding as an 

integral part of PrPC function. It has been demonstrated that Cu2+ increases PrPC 

expression levels [84]. Additionally, early studies have shown that PrP-/- mice display 

a decreased neuronal membrane Cu2+ concentration [85]. Moreover, Pushie and 

colleagues determined that the distribution of Cu2+, Zn2+, and Fe2+ ions are all altered 

in PrP-/- mice when compared to wild-type mice or mice over expressing PrPC [86]. 

Evolutionarily, PrPC is related to the ZIP family of metal ion transporters [87]. In cell 

culture, Cu2+ [88, 89] and Zn2+ [90] stimulate PrPC endocytosis using low-density 

lipoprotein receptor-related protein 1 (LRP1) as a co-receptor [88, 89]. This metal-

driven endocytosis is reduced in familial mutations in the OR that drive prion diseases 

[90]. Additionally, Zn2+ binding to the OR aids in AMPAR uptake of Zn2+ ions [76, 91]. 

Overall, metal binding to PrPC is intimately tied to PrPC function.  
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It was once thought that the unstructured N-terminus and the structured C-

terminus act independently. However, recent NMR and electron paramagnetic 

resonance (EPR) experiments demonstrate that they do interact in a Cu2+ or Zn2+ 

dependent manner [92-97]. This interaction, termed the metal-driven cis-interaction, 

occurs when one Zn2+ [95] or Cu2+ [92, 94] ion binds to the OR (Figure 8). This drives 

an interaction between the metal-bound OR and a conserved negatively charged 

patch on the C-terminus [94, 98, 99].  

 

Figure 8: Models of the metal-driven cis-interaction. A model of PrPC binding to a Zn2+ ion (A) or Cu2+ 
ion (B) with OR histidine residues [92, 95]. The binding of these ions drives the interaction between the 
unstructured N-terminus and the structured C-terminus. 

The metal-driven cis-interaction is of relevance due to recent experiments 

demonstrating C-terminal-directed antibodies, whose epitope overlaps with where 

the metal-bound OR docks to the C-terminus when engaged in the metal-driven cis-

interaction [92], trigger neurotoxicity in animals and cell models [100]. The cellular 
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response elicited by C-terminal antibodies is similar to that found in natural prion 

diseases, such as generation of reactive oxygen species (ROS), stimulation of the 

unfolded protein response, and down-regulation of similar genes [101]. Additionally, 

antibodies targeting the N-terminus are able to block C-terminal antibody-induced 

neurotoxicity [100] as well as reduce PrPSc toxicity [101]. This suggest a model in which 

the N-terminus has an effector function with toxic potential that is regulated by the 

C-terminus via the cis-interaction. It is hypothesized that if the cis-interaction is 

blocked, toxicity is induced via the N-terminal toxicity model [102] (Figure 9). 

Interestingly, a number of familial mutations on the C-terminus change the charge 

from negative to neutral or negative to positive, and these mutations have been 

previously shown to weaken the metal-driven cis-interaction [94, 95, 98], which 

further supports the hypothesis that the toxic potential of the N-terminus is regulated 

by the C-terminus. 

 

Figure 9: N-terminal toxicity model. The N-terminus of WT PrPC (A) is regulated by the C-terminus 
under physiological conditions, presumably through the metal-driven cis-interaction and no toxicity 
occurs. However, when C-terminal monoclonal antibodies (mAb) bind to WT PrPC (B) or by deletion of 
residues 105-125 (∆CR PrPC), toxicity occurs. Additionally, it is hypothesized that the C-terminus of PrPSc 
(D) is unable to regulate the unstructured N-terminus. The N-terminal toxicity model is dependent on 
the presence of the polybasic N-terminus (red). 
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One of the most highly-conserved regions of the prion protein throughout species is 

the intervening segment between the N- and C-terminal domains called the central 

region (CR: residues 105-125) [103, 104]. Notably, the CR undergoes a regulatory 

cleavage event termed α-cleavage [105-107] to produce a membrane-bound C-

terminal fragment (C1) and a released N-terminal fragment (N1). The N1 fragment 

binds and agonizes Adgrg6, a G protein-coupled receptor (GPCR) that regulates 

myelination in Schwann cells [108]. Additionally, the C1 fragment has been shown to 

act as a dominant negative inhibitor of PrPSc formation because it can bind to PrPSc 

aggregates, but does not get converted into PrPSc [109]. There is an additional 

cleavage event that occurs in the OR called ß-cleavage. In contrast to α-cleavage, ß-

cleavage only occurs to a small degree in healthy tissues. However it is upregulated in 

prion diseases, perhaps for antioxidant purposes [110] and produced by an ROS 

mechanism [111].   

 

Central Region Deletion Mutants as a Model System for Prion Diseases  

Prion diseases are known to have a slow progression. Unfortunately, even with 

overexpression systems in mice, which are designed to speed up the disease 

progression [112], prion research can still be slow. Therefore, it is important to have 

suitable model system to accelerate the research process. This was aided by studies 

investigating deletion mutants within the unstructured N-terminus. When trying to 

discover which domains are important for function, researchers remove portions of 
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the protein to observe the resulting phenotype. In 1998, Doron Shmerling and 

coworkers generated the deletion mutant ∆F PrPC (∆32-134) that resulted in mice 

displaying ataxia and cerebellar lesions [113]. The phenotype is also reversible upon 

expression of one copy of WT PrPC. Eventually, these mice die two to three months 

after birth. The mice efficiently expressed ∆F PrPC on the cell surface, however there 

was no measurable PrPSc production. Therefore, this suggested that the 

neurodegeneration observed mimicked PrPSc, except death was accelerated because 

there was not a need for the slow buildup of PrPSc. 

 Further investigation into amino-terminal proximal deletions revealed that the 

shorter the deletion, the more rapidly the mice would perish. However, it was 

recognized that the deletion must encompass the CR of PrPC and still retain the 

polybasic N-terminus. Furthermore, deletion of residues 94-134 (∆CD PrPC) resulted 

in dramatic neurodegeneration and death in the mice between 20 and 30 days [114]. 

Additionally, ∆CD mice have a demyelinating polyneuropathy phenotype that is also 

seen in PrP-/- mice [115] and CJD patients [116, 117]. Remarkably, the shortest 

deletion of just the central region (∆105-125: ∆CR PrPC) resulted in the most drastic 

neurodegenerative phenotype in mice and neonatal fatality around one week after 

birth [118, 119].  

 Due to the drastic phenotype of ∆CR PrPC mice, it has been extensively 

investigated [94, 97, 118, 120-125]. In cell culture and transgenic mice, ∆CR PrPC is 

trafficked and post-translationally modified identical to WT PrPC [118]. Additionally, 
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∆CR PrPC displays spontaneous currents in whole cell patch clamp electrophysiological 

measurements in cell culture and primary neurons [121, 126]. Additionally, ∆CR PrPC 

expressing cells are show a decrease in cell viability when treated with cationic 

antibiotics [127]. Furthermore, ∆CR PrPC sensitizes cells to glutamate-induced 

excitotoxicity [121], which is also observed in bona fide prion infection [128]. Overall, 

these results suggest that ∆CR PrPC causes an unregulated flow of ions or charged 

species across the membrane, either by membrane destabilization [129], or by over-

activation of membrane ion channels.   

The spontaneous current phenotype found in ∆CR PrPC is also observed when 

WT PrPC expressing cells are treated with C-terminal antibodies [97]. This observation  

is reversed with co-administration of N-terminal antibodies [97]. This result parallels 

C-terminal antibody-induced toxicity [100]. Furthermore, deletion of the polybasic N-

terminus renders ∆CR PrPC and C-terminal antibody-induced neurodegeneration non-

toxic, suggesting the polybasic N-terminus has toxic potential. Moreover, it was 

shown that ∆CR PrPC has a weakened Cu2+-driven cis-interaction [97]. Overall, these 

results suggest that the CR, in addition to the C-terminus, of PrPC has a protective role 

over the intrinsic toxic potential of the N-terminus. Understanding how the CR 

regulates the toxic potential of the N-terminus is important to better understand the 

toxic mechanism of PrPSc.  
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Specific Aims  

It is known that PrPC deletions encompassing the CR cause extensive 

neurodegeneration paralleling PrPSc induced neurotoxicity. However, it is unknown 

what change is occurring in ∆CR PrPC that is driving the toxicity. It is observed that ∆CR 

PrPC displays a weakened Cu2+-driven cis-interaction [97]. Blocking this regulatory 

interaction would allow for the release of the toxic N-terminus from the regulatory C-

terminus. Moreover, according to the N-terminal toxicity model, this could lead to 

membrane destabilization or glutamate receptor over-activation [102], and thus 

neurotoxicity. Alternatively, the CR contains the regulatory α-cleavage site, thus ∆CR 

PrPC does not undergo α-cleavage to generate the biologically active N1 fragment. 

Furthermore, α-cleavage not only produces the biologically active N1 fragment, but it 

also gives a pathway to deactivate PrPC from regulating its binding partners [107]. 

This means that ∆CR PrPC has two major changes that could lead to toxicity: 1) 

weakening of the metal-driven cis-interaction, and 2) deletion of the locus for α-

cleavage. Therefore, the first specific aim of this dissertation is to determine if 

weakening the cis-interaction or blocking alpha cleavage or potentially something else 

is driving ∆CR PrPC induced toxicity. This was accomplished by designing PrPC 

constructs that allow for one of these changes (blocked metal-driven cis-interaction 

or blocked α-cleavage) at a time while simultaneously retaining the other. These 
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designed constructs were then assessed using NMR, in vitro and cellular cleavages 

assays, electrophysiology, and cell based viability assays.  

 a cis-interaction is general to all familial prion diseases, or if it is mutually 

exclusive to C-terminal familial mutations. 

 

In summary, the specific aims of this dissertation are: 

1. To determine if weakening the Cu2+-driven cis-interaction or blocking α-

cleavage or something else drives ∆CR PrPC induced toxicity. 

2. To determine if weakening of the Cu2+-driven cis-interaction of PrPC can be 

attributed to all familial mutations that drive prion diseases, or if it only occurs 

in C-terminal mutations. 
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Introduction  

Transmissible spongiform encephalopathies, also known as prion disorders, 

are a class of neurodegenerative diseases that occur due to misfolding of the mainly 

α-helical cellular prion protein (PrPC) into the ß-sheet rich PrP scrapie isoform (PrPSc) 

[1, 2]. Prion diseases include Creutzfeldt-Jakob disease (CJD) and Gerstmann–

Sträussler–Scheinker syndrome (GSS) in humans, Mad Cow disease in bovine. The 

neurotoxicity found in prion diseases is dependent on the host’s expression of PrPC 

[3]. PrPC is natively found as a glycosylphosphatidylinositol (GPI) anchored 

glycoprotein located on the extracellular side of the plasma membrane and associated 

with lipid rafts [4]. PrPC is expressed ubiquitously throughout the brain and enriched 

in neurons [5-7]. 

Mature PrPC is composed of 208 amino acids (mouse numbering: residues 23-

230), distributed over two major domains. The globular C-terminal domain (residues 

126-230) consists of three α-helices and one short anti-parallel ß-sheet, collectively 

stabilized by a disulfide bond [8]. The partially structured N-terminal domain (residues 

23-104) contains several functional segments. Among these are the octarepeat (OR) 

segment ((PHGG(G/S)WGQ)4; residues 59-90), that takes up copper and zinc at 

physiological concentrations [9-13] and the polybasic N-terminus (residues 23-31), 

both asserting regulatory control over certain transmembrane receptors. For 

example, Zn2+- and Cu2+-binding  to the OR modulates AMPA receptor (AMPAR) 

activity [14] and NMDA receptor activity [15], respectively.  More generally, 
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expression levels of PrPC in mice alters the anatomic distribution of Zn2+ and Cu2+ 

throughout the brain [16]. 

Recent studies find that the partially structured N-terminus and the globular 

C-terminal domains of PrPC directly interact [17, 18]. This cis-interdomain interaction 

is mediated by both Zn2+ [19] and Cu2+ [18, 20-22] binding to the OR domain as well as 

electrostatic interactions between the polybasic N-terminus and a negatively charged 

patch on the globular C-terminal domain [22-24]. These results are of interest due to 

recent literature describing neurotoxicity driven by antibodies, such as POM1, that 

target the C-terminal domain of PrPC [25], generating cellular responses similar to that 

elicited by administration of PrPSc such as generation of reactive oxygen species, 

activation of unfolded protein response, and downregulation of similar genes [26]. 

Specifically, the POM1 epitope is located to the PrPC C-terminal surface that stabilizes 

the metal ion-promoted, protective cis-interaction [17, 20].  Interestingly, the toxicity 

elicited by C-terminal antibodies [18] is blocked by the co-administration of N-

terminal antibodies [25], which suggests that the N-terminus of PrPC is a toxic effector 

domain regulated by the globular C-terminal domain. Remarkably, N-terminal 

antibodies are able to reduce PrPSc-induced toxicity in cerebral organotypic slices [26], 

further suggesting the toxic potential of the N-terminus of PrPC. 

The intervening linker connecting the two major domains is called the central 

region (CR) (residues 105-125) and is highly conserved among mammalian species [27, 

28]. Notably, in healthy tissues this region is a locus for proteolysis, termed α-cleavage 
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[29, 30] that generates a N-terminal fragment (N1) and a membrane bound C-terminal 

domain (C1), both having proposed biological functions [31, 32]. In addition to 

cleavage, the CR along with the polybasic N-terminus are high affinity docking sites 

for amyloid beta (Aß) oligomers [33, 34].  

Developing a mechanistic understanding of the toxicity elicited by the prion 

protein is of the upmost importance since cell surface expression of this species 

transmits toxic transmembrane signals in both prion and Alzheimer’s disease. Over 

the years, insight into the mechanisms come from deletions targeted to the CR. It was 

initially reported in transgenic mice that ∆32-134 PrPC (∆F PrPC) generates 

spontaneous neurodegeneration and death within 2-5 months which is reversed upon 

the coexpression of WT PrPC [35]. Later it was found that retaining more of the N-

terminus of PrPC (∆94-134) results in myelin degeneration and death within 20-30 

days [36]. Paradoxically, the shortest studied deletion encompassing just the short CR, 

∆105-125 (∆CR PrPC), leads to the most severe neurodegenerative phenotype, with 

consequent fatality about one week after birth [37, 38].  

Due to its profound neurotoxicity, ∆CR PrPC has been the focus of numerous 

recent investigations [18, 22, 37, 39-45]. ∆CR PrPC is trafficked and localized to the 

extracellular membrane similar to WT PrPC [40]. In cell culture, whole cell 

electrophysiological patch clamp experiments find that ∆CR PrPC induces large inward 

spontaneous currents [41, 45] which correlate with a decrease in cellular viability in a 

drug-based cellular assay (DBCA) [46]. Both spontaneous currents and drug-induced 



  47 

toxicities can be blocked by the concurrent overexpression of WT PrPC or by deletion 

of the polybasic N-terminus in ∆CR PrPC [47]. Interestingly, these currents are also 

induced in WT PrPC expressing cells with C-terminal antibodies [18], paralleling the C-

terminal antibody experiments previously described. Additionally, C-terminal 

antibody and ∆CR PrPC induced currents can be blocked by co-administration of N-

terminal antibodies or N-terminal ligands (e.g. Cu2+) [18, 48]. These results point 

towards the CR at playing a central role in regulating the toxic N-terminus – a role that 

may unify the disparate PrPC dependent modes of neurotoxicity. 

Despite the focus on ∆CR PrPC neurodegeneration, the mechanism by which 

the CR regulates the toxic N-terminus is unknown. It has been thought previously that 

the CR is simply a passive linker between the metal binding N-terminus and the 

globular domain. Opposing this view is the observation that the CR sequence is highly 

conserved and, as noted above, its deletion causes neonatal fatality in transgenic mice 

and spontaneous currents in cell culture. Two possible explanations can be envisioned 

to explain the role of the CR: (1) this region is necessary to facilitate the metal-driven 

cis-interaction; and (2) it is required because it is the locus for α-cleavage. In the 

absence of either or both of these functions of the CR, PrPC may acquire toxic 

activities. The aim of this study was to use protein design, NMR, electrophysiology, 

cleavage assays, cellular crosslinking, and cell survival studies to fully investigate the 

role of the CR in PrPC structure and toxicity of ∆CR PrPC. Our results demonstrate that 

the CR is not a passive linker between the N- and C-terminal domains. Instead, we find 
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that the CR facilitates PrPC-PrPC dimerization or in some other fashion provides 

conformational control over the proteins toxic N-terminal segment, thereby serving 

as a regulator of PrPC-mediated neurotoxicity.  

 

Materials and Methods 

Plasmids 

pcDNA3.1(+) Hygro plasmids (Invitrogen) encoding WT and ΔCR PrPC used for 

mammalian cell transfections have been described previously [41, 43, 49]. pJ414 

vector (DNA2.0) encoding WT PrPC used for recombinant protein expression has been 

previously described [20]. To generate the vectors for G5, G5α1, G5α23, and His to Ala 

PrPC (both for the PCDNA 3.1 (+) Hyrgo plasmid and pj414 vector), Gibson cloning was 

used [50]. Briefly, primers were purchased from Invitrogen to linearize the plasmid 

while deleting out the selected area to be replaced using Phusion® High-Fidelity PCR 

Master Mix (New England Biolabs®). Linearization reactions were run on a 1% agarose 

gel and linearized DNA was extracted with GeneJET Gel Extraction Kit (Thermo Fisher 

Scientific). Gibson reactions were run using Gibson Assembly® Master Mix (New 

England Biolabs®) and transformed into E. coli (DH5α(DE3) Invitrogen). Colonies were 

grown and pure DNA was extracted using Qiagen Mini prep kits. Constructs were then 

verified by DNA sequencing. Plasmids used in mammalian cell culture were further 

grown and purified using GenElute™ HP Endotoxin-Free Plasmid Maxiprep Kit (Sigma-

Aldrich®). Point mutations were introduced using PCR-based site-directed 
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mutagenesis with mutagenic primers (Invitrogen) and Phusion® High-Fidelity PCR 

Master Mix (New England Biolabs®). Constructs were verified by DNA sequencing. 

 

Cell Lines 

HEK 293T cells (ATCC® CRL-3216™, Lot # 62729596) were maintained in high 

glucose DMEM supplemented with 10% fetal bovine serum (Life Technologies) and 

GlutaMAX (Gibco). PrPC knockout (PrPKO) N2a cells have been described previously 

[51]. PrPKO N2a cells were maintained in low glucose DMEM supplemented with 

nonessential amino acids (Corning), 10% heat-inactivated fetal bovine serum (Life 

Technologies), GlutaMAX, and MycoZap™ Plus-CL (Lonza). HEK 293T and PrPKO N2a 

cell lines used in this study were mycoplasma free and were maintained at 37 oC in a 

5% carbon dioxide incubator. 

HEK 293T cells and PrPKO N2a cells used for western blotting were transiently 

transfected using LipoD293™ In Vitro DNA Transfection Reagent (SignaGEN® 

Laboratories) with PrPC encoding pcDNA3.1(+)Hygro plasmids in 6-well plates. Fifteen 

to eighteen hours after cells were transfected, the media was changed and cells were 

allowed to recover for 24 hours. PrPKO N2a cells used for electrophysiology were 

transiently transfected using Lipofectamine 2000 with pEGFP-N1 (Clontech).  
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Cell preparation and Western Blotting 

Whole cell lysates were prepared by washing cells 2x with PBS. Cells were then 

lysed with lysis buffer (50 mM tris(hydroxymethyl)aminomethane (Tris) (pH 8), 150 

mM sodium chloride (NaCl), 1 mM ethylenediaminetetraacetic acid (EDTA), 1% Triton 

X-100, 10% Glycerol, supplemented with Halt™ Protease Inhibitor Cocktail (Thermo 

Fisher Scientific)) and quantified using Pierce™ BCA Protein Assay Kit (Thermo Fisher 

Scientific). To remove N-linked glycans, cell lysates were treated with recombinant 

PNGase F (New England Biolabs®) under denaturing conditions according to the 

manufacturers protocol. Completed PNGaseF reactions were boiled in SDS-PAGE 

buffer and run on a 4–20% Mini-PROTEAN® TGX™ Precast Protein Gels (Bio-Rad) along 

with Precision Plus Protein™ WesternC™ Blotting Standards (Bio-Rad). SDS-PAGE gels 

were subsequently washed with water three times totaling 15 minutes and 

transferred to a nitrocellulose membrane using Trans-Blot® Turbo™ Transfer System 

(Bio-Rad). Membranes were blocked using 5% bovine serum albumin in TBS-T. PrPC 

constructs were probed with PrPC Antibody (M-20) (Santa Cruz Biotechnology, sc-

7694, goat origin) who’s epitope matches near the C-terminus of PrPC. The PrPC 

antibody was then detected with HRP Rabbit Anti-Goat IgG (Abcam: ab6741) and the 

ladder was detected with Precision Protein™ StrepTactin-HRP Conjugate (Bio-Rad). 

Blots were exposed to Pierce™ ECL Western Blotting Substrate (Thermo Fisher 

Scientific) and images were taken using ChemiDoc™ XRS+ System (Bio-Rad) and 

analyzed using Image Lab™ Software (Bio-Rad).  
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Cell surface PrPC was analyzed by treating transfected cells with 0.1 units 

Phosphatidylinositol-Specific Phospholipase C Protein (PIPLC) (Life Technologies) in 

200 µL phosphate buffered saline (PBS) (+,+) rocking gently for two hours at 4 oC. 

Supernatants containing released PrPC were collected were spun at 300 x g for five 

minutes at 4 oC to pellet any cells that were dislodged from the plate. Supernatants 

were then transferred to a separate tube and glycerol was added to a final 

concentration of 5%. SDS-PAGE samples were prepared by adding non-reducing SDS-

PAGE sample buffer and boiling for five minutes. SDS-PAGE gels and western blots 

were run as described above. 

 

Protein Expression 

Recombinant PrP constructs encoding the various mouse PrPC(23-230) 

constructs in the pJ414 vector (DNA 2.0) were transformed into and expressed using 

E. coli (BL21 (DE3) Invitrogen) [20]. Bacteria was grown in M9 minimal media 

supplemented with 15NH4Cl (1 g/L) (Cambridge Isotopes) for 1H-15N HSQC 

experiments or in LB media (Research Product International). Cells were grown at 

37°C until reaching an optical density (OD) of 1-1.2, at which point expression was 

induced with 1 mM isopropyl-1-thio-D-galactopyranoside (IPTG). PrPC constructs 

were purified as previously described [19]. Briefly, proteins were extracted from 

inclusion bodies with extraction buffer (8 M guanidium chloride (GdnHCl), 100 mM 

Tris, 100 mM Sodium Acetate (pH 8)) at room temperature and were purified by Ni2+-
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immobilized metal-ion chromatography (IMAC). Proteins were eluted from the IMAC 

column using elution butter (5 M GdnHCl, 100 mM Tris, 100 mM Sodium Acetate (ph 

4.5)) and were brought to pH 8 with 6 M potassium hydroxide (KOH) and left at 4°C 

for 2 days to oxidize the native disulfide bond. Proteins were then desalted into 50 

mM potassium acetate buffer (pH 4.5) and purified by reverse-phase HPLC on a C4 

column (Grace). Pure protein was lyophilized and stored at -20 oC until needed. The 

purity and identity of all constructs were verified by analytical HPLC and mass 

spectrometry (ESI-MS). Disulfide oxidation was confirmed by reaction with N-

ethylmaleimide and subsequent ESI-MS analysis. 

 

NMR 

Lyophilized uniformly 15N-labeled PrPC constructs were first suspended in 

water until fully solubilized and concentrations were checked using the absorbance at 

280 nm (A280) with the proper extinction coefficient. NMR samples were made to 300 

µM in 10 mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer with 10% D2O and 

the pH was adjusted to 6.1 with 600 mM hydrochloric acid. Apo samples were loaded 

into a Shigemi NMR tube (Wilmad Glass, BMS-005B) and a 1H- 15N HSQC spectrum as 

collected at 37 oC on an 800-MHz spectrometer (Bruker, Billerica, MA) at the 

University of California, Santa Cruz NMR Facility (Santa Cruz, CA). The sample was then 

removed from the tube and one equivalent of Cu2+ from a 10 mM copper chloride 

solution in water (determined accurately by flame atomic absorption) was added and 
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the pH was adjusted to 6.1 if necessary. The sample was loaded back into the Shigemi 

NMR tube and the sample height was adjusted to match the sample height of the apo 

sample and another 1H- 15N HSQC spectrum was collected. NMR spectra were 

analyzed with NMRPipe [52] and Sparky. Structural analysis was performed with 

Chimera [53]. Protein assignments were achieved using previously determined values 

[20]. 

 

ADAM8 Cleavage Assay 

ADAM8, ADAM10, and ADAM17 were purchased from R&D systems. ADAM8 

was activated according to the manufactures protocol. Activated ADAM8 was then 

diluted into ADAM8 dilution buffer (20 mM Tris, 5 mM calcium chloride (CaCl2), and 

25mM potassium chloride (KCl) (pH 7.4), aliquoted, flash frozen in liquid nitrogen, and 

stored at -80 oC until needed. ADAM10 and ADAM17 were diluted into ADAM10 assay 

buffer (25mM Tris, 2.5 µM zinc chloride, and 0.005% Brij-35 (pH 7.4)), aliquoted, flash 

frozen in liquid nitrogen, and stored at -80 oC until needed.  

Working stocks of purified PrPC were prepared to 40 µM in ADAM8 dilution buffer (for 

ADAM8 assay) or ADAM10 assay buffer (ADAM10 or ADAM17 assay). Cleavage assays 

were previously described by McDonald et. al. Briefly, assays were set up by mixing 

15 µL PrPC and 15 µL ADAM protease and reacted overnight at 37 oC. Reactions were 

quenched by the addition of 5 µL 1% formic acid and stored on ice or at 4 oC until 

needed. 30 µL of the supernatant were pipetted into autosampler vials and loaded 
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into an LTQ LC/MS autosampler (Thermo Fisher Scientific). 20 µL of cleavage products 

was drawn from the vial and separated with a C4 HPLC column (Higgins Analytical) 

using a 60-min gradient of water/acetonitrile mobile phases. The A280 was 

continuously recorded by a photodiode array, whereas mass spectra were 

continuously taken using an LTQ mass spectrometer (Thermo Fisher Scientific). The C4 

column was flushed with 95% acetonitrile to remove any residually bound protein and 

then re-equilibrated with 95% water between each sample run. 

The LC/MS spectra from each sample run were first analyzed by MS Bioworks. The 

mass spectrum ladder for each peak separated by the C4 column was deconvoluted 

using Bioworks to reveal the parent mass of the cleavage product (data not shown). 

The masses of the observed peaks were cross-referenced against the predicted 

masses of hydrolysis of all possible peptide bonds of the particular PrPC construct 

being assayed to determine which cleavage product was produced. For all cleavage 

fragments enzymatically produced, observed masses were within 1 atomic mass unit 

of the mass of a predicted cleavage fragment. 

 

Cell Viability Assay using WST-1 

The cell viability assay conducted was described previously [42] and adapted 

for this study. 96-well plates for were seeded with 1 x 104 cells in 100 µL high glucose 

DMEM and grown overnight. Wells were transfected with 50 ng of PrPC DNA using 

LipoD293™ In Vitro DNA Transfection Reagent (SignaGEN® Laboratories). Media was 
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changed 18 hours later and replaced with either DMEM or DMEM supplemented with 

G418 (Life Technologies) and cells were allowed to grow for 48 hours. After this time 

10 µL of Cell Proliferation Reagent WST-1 (Roche) was added to each well and allowed 

to incubate at 37 oC for 1-2 hours. After this time, the A450 was measured for each well 

using a Perkin-Elmer EnVision plate reader. Background subtractions were made by 

subtracting the A450 of well with just DMEM and 10 µL WST-1 reagent from the A450 of 

the sample wells. Viability was measured by dividing the A450 value of the G418 treated 

cells by the A450 of the untreated cells.  

 

Electrophysiology 

Recordings were made from PrPKO N2a cells 24–48 hours after transfection. 

Transfected cells were recognized by green fluorescence resulting from co-

transfection with pEGFP-N1. Whole-cell patch clamp recordings were collected using 

standard techniques. Pipettes were pulled from borosilicate glass and polished to an 

open resistance of 2–5 megaohms. Experiments were conducted at room 

temperature with the following solutions: internal, 140 mM cesium-glucuronate, 5 

mM cesium chloride, 4 mM magnesium-ATP, 1 mM disodium-GTP, 10 mM ethylene 

glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA), and 10 mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (pH 7.4 with cesium 

hydroxide); external, 150 mM NaCl, 4 mM KCl, 2 mM CaCl2, 2 mM magnesium chloride 

(MgCl2), 10 mM glucose, and 10 mM HEPES (pH 7.4 with NaOH). Current signals were 
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collected from a Multiclamp 700B amplifier (Molecular Devices, Sunnyvale, CA), 

digitized with a Digidata 1440 interface (Molecular Devices), and saved to disc for 

analysis with pCLAMP™ 10 software. 

 

 

Results 

Blocking cis-interaction does not elicit toxicity 

   Deletion of the CR leads to a weakening of the Cu2+-driven cis-interaction [18] 

as well as elimination of α-cleavage [30]. Either of these two major changes could lead 

to the spontaneous neurotoxicity. To investigate whether neurotoxicity is due to a 

weakened Cu2+-driven cis-interaction, His to Ala PrPC was designed in which all of the 

histidine’s within the OR were mutated to alanine’s (Figure 1B). By deleting out the 

OR histidine’s, the OR cannot bind Cu2+, in turn eliminating the primary driving force 

for the cis-interaction [17].  
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Figure 8: Schematic of PrPC. A. Linear schematic of PrPC. B. Sequences used in this study. CR mutations 
were made to modulate α-cleavage. In the CR mutation panel, the residues highlighted in red are where 
α-cleavage occurs between (α1-α3). Residues highlighted in orange are the P3’-P2’ or P3-P2 relative to 
the cleavage site. In the OR mutation panel, the residues highlighted in red are the histidine residues 
that Cu2+ bind to (WT PrPC) or what those histidine residues were mutated to in His to Ala PrPC. C. Two 
regulatory process of PrPC. PrPC can undergo α-cleavage to generate a released N1 fragment and the 
membrane C1 fragment. Additionally, the binding of Cu2+ to the OR drives a domain-domain cis-
interaction between the Cu2+-bound OR and the globular C-terminal domain. The CR is shown in red. 
The OR is shown in green. The polybasic N-terminus is shown in orange. 

To ensure His to Ala PrPC undergoes α-cleavage to a similar extent as WT PrPC, 

both constructs were transfected into either HEK293T cells or PrP knock out (PrPKO) 

N2a cells (Figure 2A-B). Whole cell lysates were treated with PNGaseF to remove N-

linked glycans and analyzed by western blot. Both WT and His to Ala PrPC displayed 

two main bands, one corresponding to full-length protein (FL) and the other 

corresponding to the C-terminal fragment generated by α-cleavage (C1). Quantitating 

the intensity of the C1 band revealed that His to Ala PrPC (48 ± 6.7% and 27 ± 8.8% C1 

band in HEK293T and PrPKO N2a cells, respectively) was cleaved to a similar extent as 

WT PrPC (37 ± 8.1% and 32 ± 0.6% C1 band in HEK293T and PrPKO N2a cells, 

respectively). 
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Figure 9: Mutating the OR histidine's to alanine's (His to Ala PrPC) retains cleavage in cells and does 
not drive spontaneous currents. Western blots of PNGaseF treated lysates of HEK293T cells (A) or N2a 
cells (B) transfected with either WT or His to Ala PrPC. Uncleaved full length band is denoted by FL and 
the C-terminal side of α-cleavage is denoted by C1. The bar graph below each blot show the 
quantitation by densitometric analysis of %C1 band relative to the sum of FL and C1 bands. Error bars 
represent ± S.D. from at least three independent experiments. In both cell lines, α-cleavage of His to 
Ala PrPC is comparable to WT PrPC. C. Representative current recordings of either His to Ala or ∆CR PrPC 
transfected PrPKO N2a cells show that His to Ala PrPC does not have spontaneous currents. 

 Whole cell patch clamp experiments were conducted on PrPKO N2a cells held 

at -70 mV to test if inward currents were generated by blocking the metal-driven cis-

interaction (Figure 2C). ∆CR PrPC transfected cells displayed strong inward 

spontaneous currents which is in agreement with a previous study [41]. In contrast, 

His to Ala PrPC transfected cells did not show large inward currents. This demonstrates 

that eliminating Cu2+ binding to the OR is not sufficient enough to produce ∆CR PrPC-

like currents. It can then be inferred that there must be other factors leading to the 
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currents generated by ∆CR PrPC than loss of the cis-interaction facilitated by histidine 

residues in the OR. This is in agreement with previous studies showing deletion of the 

OR (∆CR/∆59-90) has  no effect on the magnitude of the currents generated relative 

to ∆CR PrPC [18, 43]. 

 

Blocking cleavage with flexible linker generates currents 

 ∆CR PrPC lacks the stretch of 21 highly conserved amino acids that encompass 

the α-cleavage sites (Figure1). A previous in vitro study showed that there are multiple 

α-cleavage sites within the CR (α1-α3, Figure 1B). Proteolysis within this segment 

separates the N-terminal domain, resulting in a putative loss of intrinsic PrPC function 

[30, 54]. To address the possibility that the toxicity of ∆CR PrPC is due to misregulation 

from loss of α-cleavage, the WT PrPC CR was replaced with a flexible glycine-serine-

rich linker (G5 PrPC, Figure 1). This glycine-serine rich linker was chosen for its 

solubility and high degree of flexibility to allow for the Cu2+-driven cis-interaction in 

addition to its resistance to proteolysis [55]. 

To investigate if G5 PrPC retains the Cu2+-driven cis-interaction, paramagnetic 

relaxation enhancement NMR was employed [20]. With the intrinsic paramagnetism 

of Cu2+, resulting from its d9 electron configuration, there is an increase in the 

relaxation rate of the NMR active nuclei when Cu2+ is in close proximity. This causes a 

broadening and a decrease in the intensity of the resonance lines which is inversely 

proportional to the distance of Cu2+ to the backbone amide bond. Uniformly 15N-
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labeled protein was prepared and 1H-15N HSQC spectra were collected in the absence 

and presence of 1 eq. of Cu2+. The intensity of the resonance cross peaks with 1 eq. of 

Cu2+ (I) was divided by the intensity of the resonances in the absence of Cu2+ (Io) to 

generate intensity ratios (I/Io) for each backbone NH. I/Io vs. residue plots were made 

for both WT PrPC and G5 PrPC comprising amino acids 126-230 (Figure 3A). Residues 

considered strongly affected by the addition of Cu2+ (those that are affected by 

greater than 1σ) are shown in blue on the surface representations of the PrPC C-

terminal domain (PDB: 1XYX) below each intensity ratio plot. The residues affected 

localize to three main patches: the C-terminal end of the loop going into helix 1 (Patch 

1), the N-terminal end of helix 2 (Patch 2), and the N-terminal half of helix 3 (Patch 3). 

Both WT and G5 PrPC show similar residue-specific patterns demonstrating that G5 

PrPC retains the Cu2+-driven cis-interaction.   
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Figure 10: Mutating the CR to a flexible GS linker retains the copper-driven cis-interaction, blocks 
alpha cleavage, and generates spontaneous currents. A. I/Io vs. residues plot of WT or G5 PrPC 
constructs titrated with 1eq. of Cu2+ at pH 6.1 and 37 oC. The average (X̄) and standard deviation (σ) of 
only similar residues of each construct were taken. Below each plot is the surface representation of the 
C-terminus of PrPC (PDB: 1XYX). Residues in blue are the residues where the I/Io values are affected by 
greater than one standard deviation. Both WT and G5 PrPC constructs have similar residues affected to 
a similar degree, thus the cis-interaction is retained. B. Schematic diagram of PrPC showing the possible 
cleavage products that can be produced from in vitro cleavage assays. C. LC/MS traces of in vitro 
cleavage assays using recombinant WT or G5 PrPC constructs reacted with ADAM8 overnight at 37 oC. 
Reactions were loaded onto a C8 column and were eluted using a gradient of water and acetonitrile. 
When analyzed using the LC/MS, WT PrPC produces α- and ß-cleavage where G5 PrPC produces only ß-
cleavage.  
D. Representative current recordings of either WT or G5 PrPC transfected PrPKO N2A cells. The data 
shows that G5 PrPC has spontaneous currents, which are characteristic of toxicity. E. Western blots of 
PNGaseF treated lysates of HEK293T or PrPKO N2a cells transfected with DNA coding for either WT, 
∆CR, or G5 PrPC. Uncleaved full length protein is denoted by FL and the C-terminal side of α-cleavage is 
denoted by C1. In HEK293T cells, WT PrPC produces only α-cleavage, where ∆CR and G5 PrPC did not 
undergo any cleavage events. In PrPKO N2a cells, WT PrPC underwent α-cleavage, where ∆CR and G5 
PrPC were not cleaved at all. 

 To investigate if G5 PrPC can undergo α-cleavage, HEK293T or PrPKON2a cells 

were transfected with WT, G5, or ∆CR PrPC. PNGaseF treated lysates were analyzed 

by western blot (Figure 3E). Results show that G5 and ∆CR PrPC did not undergo α-

cleavage. Cleavage assays using ADAM8 protease, the protease responsible for α-

cleavage in skeletal muscle [30, 56], were undertaken with recombinant PrPC to test 
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if G5 PrPC can be cleaved in vitro (Figure 3C). Results showed that G5 PrPC underwent 

ß-cleavage in the OR region, which agrees with a previous study [30]. In contrast, G5 

PrPC is not susceptible to α-cleavage in ADAM8 assays, supporting the primary design 

goal for this construct.   

 Electrophysiology measurements were then performed to test if blocking α-

cleavage induces currents as seen with ∆CR PrPC (Figure 2D). PrPKO N2a cells were 

transfected with WT PrPC did not display inward currents. Conversely, G5 PrPC 

transfected cells produced large inward currents. These results suggest that blocking 

α-cleavage by introduction of the G5 linker may be responsible for inducing inward 

currents similar to ∆CR PrPC. 

 

Reintroduction of α-cleavage in G5 PrPC generates currents 

If the currents generated by G5 PrPC are due to blockage of α-cleavage, then 

inward currents should be eliminated upon reintroduction of cleavage into the G5 

linker. G5α1 PrPC was designed by reintroducing α1-cleavage in the G5 linker (Figure 

1B). ADAM8 cleavage assays (Figure 4D) and PNGaseF treated cell lysates (Figure 4A-

B) show that G5α1 PrPC
 regains α-cleavage (38 ± 5.6% and 31 ± 6.6% C1 band in 

HEK293T and PrPKO N2a cells, respectively). Due to the close proximity of α2 and α3 in 

the linear sequence, G5α23 PrPC was designed which simultaneously adds back both 

cleavage sites (Figure 1B). In contrast to G5α1 PrPC, G5α23 PrPC
 exhibited no α-cleavage 
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in vitro and in cells (Figure 4A-B, D). These results show that with the cell lines used, 

PrPC undergoes α-cleavage at the α1-cleavage sites. 

 
Figure 11: Addition of α-cleavage (α1 or α23) site back into G5 PrPC still generates spontaneous 
currents. Western blots of PNGaseF treated lysates of HEK293T cells (A) or PrPKO N2a cells (B) 
transfected for either G5α1 or G5α23 PrPC constructs. The bar graph below each blot show the 
quantitation by densitometric analysis of %C1 band relative to the sum of FL and C1 bands. Error bars 
represent ± S.D. from at least three independent experiments. In HEK293T cells, G5α1 PrPC regains α-
cleavage where G5α23 PrPC does not. However, in PrPKO N2a cells, both constructs have α- and ß- 
cleavage. C. I/Io vs. residues plot of recombinant G5α1 PrPC with 1eq. of Cu2+ at pH 6.1 and 37 oC. The 
average (X) and standard (σ) deviation were taken. Below the plot is the surface representation of the 
C-terminus of PrPC (PDB: 1XYX). Residues in blue are the residues where the I/Io values are affected by 
greater than one standard deviation. G5α1 PrPC has similar residues affected to a similar degree as WT 
PrPC, thus the cis-interaction is retained. D. LC/MS traces of in vitro cleavage assays using recombinant 
G5, G5α1, or G5α23 PrPC constructs were reacted with ADAM8 overnight at 37 oC. Reactions were 
quenched with formic acid to a final concentration of 3% and then 10 µg of PrPC was loaded onto a C8 
column. Cleavage products were eluted using a gradient of water and acetonitrile. When analyzed 
using LC/MS. G5α1 PrPC produces α- and ß-cleavage where G5 and G5α23 produces only ß-cleavage. E. 
Representative current recordings of either G5, G5α1, or G5α23 PrPC transfected PrPKO N2a cells. The bar 
graph next to the current recording is the quantitation of the time the currents are greater than 200pA. 
Error bars represent ± S.E.M from at least three different independent experiments. The data shows 
that even though α-cleavage is regained in G5α1 PrPC, spontaneous currents are still generated. 
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 Electrophysiology experiments were then conducted to test if adding back 

susceptibility to α-cleavage reduces the generated inward currents (Figure 4E). Both 

G5α1 and G5α23 PrPC transfected PrPKO N2a cells still exhibit large inward current. 

Quantification of the data (measured by the percentage of time the currents 

exceeded 200 pA) revealed that G5, G5α1, and G5α23 PrPC generated the same time-

averaged currents. This result demonstrates that the large inward currents, which are 

highly correlated with toxicity in animals, still persists even when PrPC retains 

susceptibility to α-cleavage. 

Cleavage of the N-terminus, without replenishment of cell surface PrPC, must 

decrease the magnitude of the currents generated since it removes the polybasic 

extreme N-terminus responsible for current activity [43]. If cell surface G5α1 PrPC was 

cleaved with an efficiency of 20-40%, then the currents should show a concomitant 

decrease of approximately the same amount, which is not observed in our analysis. 

However, when quantitating the percentage of time the currents are significant, a 

threshold current value was chosen. Therefore, it is possible that G5α1 PrPC exhibits a 

weaker current magnitude than G5 PrPC, but it spends the same amount of time over 

the threshold current value as G5 and G5α23 PrPC. Our results are nevertheless 

significant since they demonstrate that the full length G5α1 PrPC remaining on the cell 

surface still generates potent currents similar to ∆CR PrPC. Additionally, WT PrPC on 

the cell surface is mostly full length, but it contains the CR. Thus there is something 
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intrinsically encoded into the WT CR sequence that is able to attenuate the toxicity of 

the N-terminus. 

 

 

The CR sequence facilitates dimerization 

 Results thus far show that the inward currents measured in the 

electrophysiology experiments are not a result of a weakened Cu2+-promoted cis-

interaction or from blocking α-cleavage. This suggests that there is something 

inherent to the sequence of the CR that regulates the toxic N-terminus thereby muting 

inherent PrPC toxicity. In addition to conservation of this segment, the CR is notable 

for its high content of hydrophobic and small aliphatic amino acids. It was previously 

demonstrated that a peptide consisting of residues 105-125 readily forms fibrils that 

are toxic to cells if they express membrane anchored WT PrPC [57]. Given that 

PrP(105-125) binds to PrPC suggests that the CR of proximal PrPC monomers may 

facilitate inter-PrPC interactions. In support of this, a previous study using cross-

linkable unnatural amino acids in recombinant protein demonstrated that 

dimerization is facilitated by the CR [58]. Dimerization has also been studied in cell 

culture using bioluminescent complementation [59], native PAGE and cysteine 

crosslinking [60].  

It was previously reported that ∆HD (∆114-133) PrPC, a deletion similar to that 

in ∆CR PrPC, has a reduced dimerization propensity in N2a cells using native PAGE [60]. 
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This group was also able to trap the dimer by adding a cysteine flanking the CR 

(S131C). We therefore used this latter strategy to study if ∆CR or G5 PrPC would exhibit 

reduced dimerization. If the CR facilitates dimerization, then deleting it away (∆CR 

PrPC) or mutating it (G5 PrPC) should result with reduced dimerization. This hypothesis 

was tested using S131C mutants of WT, ∆CR, G5, G5α1, and His to Ala PrPC constructs.  

The experimental protocol is schematized in Figure 5A. Briefly, if a cysteine on 

one PrPC monomer is in close proximity and in the correct orientation to another 

cysteine, a disulfide can form. HEK293T cells were transfected with WT S131C PrPC 

and then treated with phosphoinositide phospholipase C (PIPLC) to release PrPC from 

the cell surface. Samples were then boiled in SDS buffer free of reducing agents and 

analyzed by western blot (Figure 5B). Blots were quantified by the percentage dimer 

band relative to total PrPC in each lane (Figure 5C). In HEK293T cells, WT S131C PrPC 

displayed an intense band corresponding to approximately 67 ± 4.6% dimer. However, 

the measured dimer band could be due to membrane crowding coupled to non-

specific collisions between two PrPC monomer’s N-termini. To control for this 

possibility, a cysteine was added to the N-terminus (S36C) (Figure 5A). PIPLC-treated 

WT S36C PrPC transfected cells analyzed by western blotting (Figure 5B) showed a very 

small band migrating as a dimer, and an extremely prominent monomer band. 

Therefore, the dimerization seen is specific for the CR.  
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Figure 12: ∆CR and G5 PrPC have a reduced dimer band in cell surface cysteine crosslinking 
experiments at position S131C. A. Schematic of the reaction occurring in the experiment. If two PrPC 
molecules come close enough together in the right orientation, then disulfide formation will occur. 
Two separate positions were mutated (S36C and S131C). S36C was used to test if crosslinking only 
occurs due to cell surface crowding and S131C was used to test the specific interaction surface between 
two cell surface PrPC molecules. B. Western blot of HEK293T cells transfected with one of the constructs 
either labeled at S36C or S131C. Samples were prepared by incubating cells with 0.1 U of PIPLC in PBS 

(+,+) for 2 hours rocking at 4 oC to remove only cell surface PrPC. Samples were then boiled with SDS-
PAGE gel loading buffer that did not contain reducing agent and loaded on to a SDS-PAGE gel. This 
allowed for the separation of a monomer and dimer band. When the constructs were labeled at S36C, 
there was little to no dimer band detectable. C. Quantitation of western blots for % Dimer band of 
samples labeled at S131C relative to the sum of monomer and dimer bands using densitometric 
analysis. Error bars represent ± S.D. for at least two different independent experiments. Asterisks 
denote significant differences when compared to WT S131C PrPC (**P < 0.05). Results show that ∆CR, 
G5, and G5α1 PrPC constructs have a reduced dimer band in HEK293T cells, where only ∆CR and G5 PrPC 
have reduced dimer bands in PrPKO N2a cells. 
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Next, ∆CR, G5, G5α1, and His to Ala PrPC (both S36C and S131C) constructs were 

tested (Figure 5B). For all constructs, similar to WT PrPC, there was essentially no 

measurable dimer band for the S36C PrPC mutants, however, dimer bands of varying 

intensity were observed for the S131C mutants. Compared to WT PrPC, ∆CR S131C 

and G5 S131C PrPC had a significantly reduced dimer bands of 39 ± 7.8% and 18 ± 

6.6%, respectively. G5α1 S131C PrPC resulted in a slightly reduced, but still significant, 

dimer band of 56 ± 3.7% when compared to WT PrPC. Conversely, His to Ala S131C 

PrPC had a slightly increased, but still significant, dimer band of 79 ± 6.4% percent 

relative to WT S131C PrPC. These experiments were then repeated in PrPKO N2a cells 

(Figure 5C). Results were consistent with HEK293T cells, except that G5α1 S131C and 

His to Ala S131C PrPC both had a comparable dimer band with WT PrPC. Overall, the 

mutations to the CR led to the largest decrease in the measured dimer band. These 

suggest that the CR facilitates dimerization, an interaction that may play a role in 

regulation of the otherwise toxic N-terminal domain.   

 

Addition of a cysteine in CR partially rescues toxicity 

The addition of a cysteine just outside the CR (S131C) forces two PrPC 

molecules to crosslink, as measured by western blot analysis (shown above). WT 

S131C PrPC has a significantly larger dimer band when compared to ∆CR S131C and 

G5 S131C PrPC constructs. However, there is still a dimer band for both ∆CR S131C and 

G5 S131C. This shows that the two constructs may still interact with an orientation 
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that allows for disulfide bond to formation, thereby forcing an irreversible dimer, 

albeit at a reduced level with respect to WT PrPC.  

The question then arises whether or not forcing dimerization in ∆CR S131C or 

G5 S131C PrPC constructs rescues the cellular toxicity of these variants. To test this, a 

drug-based cellular assay (DBCA) was utilized [46]. Previously it was shown that ∆CR 

PrPC expressing HEK293 cells have a lower cell viability when the media is 

supplemented with G418 for 48 hours. This is proposed to occur due to ∆CR PrPC 

increasing drug influx by biasing cationic-selective membrane channels or by PrPC 

directly forming cationic permeable pores through its N-terminus [61]. 

Therefore, transient transfections of PrPC constructs in to HEK293T cells were 

performed and cell viability was assessed using WST-1. First, the non-cysteine 

constructs were tested (Figure 6A). Consistent with previous results, ∆CR PrPC had a 

significant decrease in cell viability when compared to WT PrPC.  As expected, the 

other constructs with mutations in the CR (G5, G5α1, and G5α23 PrPC) also decreased in 

cell viability when compared to WT PrPC. This is significant for G5α1
 PrPC because it is 

still undergoing cleavage in the cells, yet has a similar level of reduced cell viability as 

seen with ∆CR and G5 PrPC. 
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Figure 13: Addition of a cysteine at position 131 partially regains cell viability. A) HEK293T cells 
transfected with the indicated PrPC construct were treated with 400 µg/mL G418 for 48 hours. Cell 
Viability was assessed by WST-1 reduction as described in the method section. Error bars represent ± 
S.E.M for at least three independent experiments. Asterisks denote significantly different when 
compared to WT (**P < 0.05). All mutants, except His to Ala PrPC have a reduced cell viability relative 
to WT. B. Cysteine (S131C) constructs were tested with the non-cysteine construct to test if the 
reduction in cell viability could be increased. Asterisks denotes significantly different when compared 
to the particular PrPC mutant without the added cysteine (**P < 0.05).  ∆CR, G5, and G5α1 PrPC 

constructs were able to be partially rescued by the addition of a cysteine. 

To determine if the addition of a cysteine at position 131 can rescue the 

reduction in cell viability of PrPC constructs with mutated CR, HEK293T cells were 

transfected with the cysteine-containing PrPC constructs along with the non-cysteine 

containing constructs of ∆CR, G5, and G5α1 PrPC (Figure 6B). For each cysteine-

containing PrPC construct, there was a partial, but still significant, increase in cell 

viability when compared to the non-cysteine PrPC construct. This result demonstrates 

that forcing two PrPC molecules together by the CR can decrease the toxicity elicited 

by the N-terminus. 
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Discussion 

The molecular basis for the toxicity produced by elimination of the CR of PrPC 

has remained unclear. Indeed, findings over the last two decades show, paradoxically, 

that the shorter the deletion, the more toxic the response [62, 63]. Here, we used 

protein design, NMR and electrophysiology to address this fundamental issue. 

Replacement of the CR region with a flexible linker of equivalent length recapitulates 

ΔCR PrPC toxicity, as measured by spontaneous electrophysiological currents and 

toxicity induced by a DBCA. Reintroduction of consensus α-cleavage sites fails to 

dampen the observed currents. In addition, while it is now established that the WT CR 

segment supports the protective, metal ion-promoted cis N-terminal—C-terminal 

interaction, elimination of this interaction by replacement of OR His residues alone 

does not generate spontaneous currents or toxicity in the DBCA. Together, these 

results demonstrate that the spontaneous toxicity induced by deletion of the CR is not 

due exclusively to altering the length of the CR, blocking α-cleavage, or preventing the 

metal-driven cis-interaction. Rather, our results suggest that specific features of the 

CR sequence restrain the toxic activity of the PrPC molecule, either by affecting the 

protein’s interaction with itself or with other cell-surface molecules, or by altering the 

orientation of the N-terminal domain. Based on our recent structural and 

physiological studies of PrPC, we propose three hypotheses, to explain how this might 

occur (Figure 7).  
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Figure 14: N-terminal toxicity model. WT PrPC’s CR sequence regulates the toxic effects of the extreme 
N-terminus. We hypothesize this can occur by three different mechanisms. First, the CR facilitates 
dimerization, which would move the extreme N-terminus away from causing toxicity. Second, Cu2+ 
binding allows the CR to reposition and hold the N-terminus away from generating toxicity. Third, the 
CR binds to a co-receptor which helps regulate the toxic potential of the N-terminus. When the CR is 
substituted with the G5 linker, or deleted in ∆CR PrPC, the regulatory sequence of the CR is deleted and 
the N-terminus goes unregulated to cause toxic signaling. N-terminal toxicity can also possibly occur 
with C-terminal antibodies and CR pathological mutations causing GSS, such as P101L. 

One hypothesis for the role of the CR is that it facilitates dimerization of PrPC 

(Figure 7). Cellular cysteine crosslinking experiments show that WT PrPC exhibits 

significantly greater dimerization than ∆CR and G5 PrPC. This result demonstrates that 

a reduction in dimerization correlates with spontaneous currents and cell viability. 

Furthermore, enhancement of dimerization by introduction of the cysteine residues 

partially suppresses G418 induced toxicity relative to the non-cysteine versions of G5, 

∆CR, and G5α1 PrPC. A full restoration was likely not observed due to a large proportion 

of the constructs remaining in the monomeric form. Due to the incorporation of the 

non-native cysteine, we cannot be certain that the disulfide-stabilized dimer is 

physiological; however, our data suggests that the WT CR sequence enhances the 
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efficiency of two PrPC molecules orienting correctly to allow for this disulfide bond to 

form. This agrees with a previous study that showed dimerization occurs at a specific 

interface [58].  

 How can dimerization regulate the toxic N-terminus? It is possible that 

homodimerization orients the otherwise toxic effector N-terminus in a way that 

prevents its misregulation. A previous study showed that C-terminal antibodies block 

dimerization as measured by bioluminescent complementation [59]. If the N-terminus 

is regulated by a PrPC homodimer, then an antibody blocking dimerization would thus 

dislodge the N-terminus to elicit toxicity. This may explain why binding of C-terminal 

antibodies to WT PrPC generates spontaneous currents [18]. Dimerization may also 

provide a mechanism by which overexpression of WT PrPC rescues the toxicity of ∆CR 

PrPC expressing cells. Specifically, an overabundance of WT PrPC would force ∆CR PrPC 

into a dimer, with cellular surface expression either in cis (same cell) [46] or in trans 

(adjacent cells) [44], thus regulating ∆CR PrPC’s toxic N-terminus. 

Our data are also consistent with a model in which the CR of PrPC forces the 

N-terminus to orient away from the membrane when engaged in the metal-driven cis-

interaction (Figure 7). This orientation, which would depend on specific sequence 

characteristics of the CR, would be absent in ∆CR and G5 PrPC, thus liberating the N-

terminus to generate a toxic signal. This proposal agrees with a molecular model 

generated using restraints from NMR and mass spectrometry crosslinking 

experiments [22]. 
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A third plausible model posits that the CR docks to an unknown co-membrane 

receptor (Figure 7). This model is consistent with data describing PrPC as a regulator 

of both ionotropic [14, 64] and metabotropic [65, 66] glutamatergic receptors. 

Additionally, ∆CR PrPC expressing cells are sensitive to glutamate induced 

excitotoxicity [45]. However, ∆CR PrPC induced currents occur in both mammalian and 

insect cells [41], which possess very different complements of membrane receptors, 

suggesting that spontaneous currents originate from intrinsic PrPC properties, and not 

by misregulation of a membrane co-receptor. 

Our findings may provide insight into the distinct phenotypes of inherited 

prion disease. Familial prion diseases are caused by mutations in two main regions. 

The first region is near the conserved negatively charged patch on the C-terminus (e.g. 

D177N and E199K) [19], mutations in which typically cause CJD or fatal familial 

insomnia [67]. The second region encompasses the  CR (e.g. P101L and A116V), 

mutations in which typically cause GSS. Both CJD mutations (D177N and E199K), as 

well as GSS mutations (P101L and A116V) have a near 100% penetrance [68]. Several 

lines of evidence show, however, that there are substantial phenotypic differences 

between the two sets of disease-causing mutations. These include differences in 

plaque conformation [27, 69-71], generation of spontaneous currents and G418 

induced toxicity, [43], and metal-driven cis-interaction [19, 22]. These observations 

suggest that mutations in the two regions act via different pathological mechanisms. 

Given that only CR mutations cause spontaneous currents, G418 induced toxicity, and 
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a WT PrPC-like cis-interaction, it is possible that the toxic mechanisms of CR GSS 

causing mutations originate from an N-terminal toxicity model, similar to ∆CR PrPC, 

G5 PrPC and C-terminal antibodies (Figure 7). This can be due to reduction in 

dimerization or modulation of the conformational landscape of the CR. Conversely, C-

terminal CJD causing mutations may produce toxicity by other mechanisms, for 

example by enhancing aggregation of the protein or otherwise altering its biochemical 

properties. 

In summary, our results demonstrate that the CR is not a passive linker 

connecting the N- and C-terminal domains. Instead, specific features of the sequence 

are absolutely crucial for blocking toxicity generated by the otherwise unregulated N-

terminus. We propose that the CR either facilitates homodimerization of PrPC or 

serves to conformationally restrict the N-terminus from driving toxicity. Further 

elucidation of these regulatory contacts will be important for advancing concepts of 

prion toxicity. 
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CHAPTER 3 

Central Region Pathological Mutations Do Not  

Affect the Copper-Driven cis-Interaction 
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Introduction 

Prion diseases are a class of neurodegenerative disorders called transmissible 

spongiform encephalopathies (TSE). These diseases are caused by the misfolding of 

the cellular prion protein (PrPC) into the toxic and aggregation prone conformer (PrPSc) 

[1, 2]. The misfolded PrPSc seed will subsequently dock to additional PrPC and drive a 

template-directed misfolding event to produce more PrPSc. Postmortem analyses of 

brains affected by prion diseases show massive neurodegeneration and spongiform 

in addition to different types amyloid deposits, depending on the disease. These 

disorders occur in humans and include the diseases Creutzfeldt-Jakob Disease (CJD), 

Gerstmann–Sträussler–Scheinker syndrome (GSS), and Kuru [3]. CJD can be caused by 

the spontaneous misfolding of PrPC as well as by pathological mutations in the protein, 

but GSS is only caused by pathological mutations. In contrast, Kuru affected the South 

Fore people in Papua New Guinea and was spread by ritualistic cannibalism. These 

diseases also affect animals such as Scrapie in sheep and Bovine Spongiform 

Encephalopathies in cattle.  

Despite understanding the propagation mechanism of prion diseases, the 

exact biological function of PrPC is unknown or whether the disease state is due to a 

loss of function, a gain of function, or exacerbation of PrPC native function. PrPC is 

composed of an unstructured N-terminus and a globular C-terminal domain. These 

domains are connected by a highly-conserved central region. The C-terminal domain 

is composed of three α-helices, one short anti-parallel ß-sheet, and a highly conserved 
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negatively-charged surface patch. Posttranslational modifications of the C-terminal 

domain include formation of a disulfide bond between helices two and three, two 

glycosylation sites, and a glycosylphosphatidylinositol (GPI) anchor at the C-terminal 

end of PrPC that anchors the protein to the outer leaflet of neurons. The unstructured 

N-terminus includes a polybasic extreme N-terminus and the octarepeat (OR) domain. 

The OR binds to metal ions, specifically having an affinity for Cu2+ and Zn2+ at 

physiologically relevant concentrations [4]. In particular, Cu2+ binds to the OR, 

depending on the metal ion concentration and pH. Due the metal binding properties, 

PrPC’s function has been proposed to be metal-ion dependent. These functions 

include, but are not limited to, neuroprotective function, ion-channel regulation, and 

metal ion localization.  

 Most structural analysis of PrPC has been done on either the isolated C-

terminal or N-terminal domain, because it was believed that they do not interact. 

However, recent evidence shows that they do interact, and the interaction is 

facilitated by one equivalent of Cu2+ or Zn2+ binding to the OR [5-8]. Upon the OR 

binding to one equivalent of either Zn2+ or Cu2+, the N-terminus becomes slightly 

structured and docks to a highly-conserved negatively charged patch on the C-

terminus. This docking event is called the metal-driven cis-interaction.  

This interaction is of interest due to observed toxicity generated by antibodies 

that bind to the C-terminus of PrPC [9]. The epitope of these toxic C-terminal 

antibodies overlaps with the surface where the cis-interaction occurs. Furthermore, 
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the toxicity generated by C-terminal antibodies is similar to that observed for prion 

diseases [10] without the need for protein misfolding. C-terminal antibody-induced 

toxicity is blocked by the addition of antibodies directed to the N-terminus of PrPC as 

well as by the deletion of the extreme N-terminus. Overall, this leads to a model in 

which the polybasic extreme N-terminus has an inherent toxic or effector function 

and the globular C-terminus regulates it by allowing for the metal-driven cis-

interaction [7]. When the N-terminus is then released, by antibodies or various 

mutations, the N-terminus can cause toxicity, which is called the N-terminal toxicity 

model.   

 It was recognized that mutations on the C-terminus that cause genetic prion 

diseases affect the conserved negatively-charged patch, which is known to be 

important for the metal-driven cis-interaction [8]. It was shown that these 

pathological mutations alter the Zn2+ and Cu2+-driven cis-interaction [8, 11]. 

Interestingly, these mutations typically cause CJD. Another region where there is a 

high density of pathological mutations is the central region of PrPC. These mutations 

typically cause GSS. One of these mutations, P101L, was shown to have a slightly 

weakened Zn2+-driven interaction. We hypothesized that the C-terminal and central 

region pathological mutations have a similar weakening of the metal-driven cis-

interaction.  

This study uses NMR to test if central region pathological mutations have a 

weakened Cu2+-driven cis-interaction. The results of this study show, both 
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qualitatively and quantitatively, that there is no difference in the Cu2+-driven cis-

interaction between WT PrPC and the central region pathological mutants tested. 

These results suggest that there is a possible difference in toxicity between central 

region pathological mutations, which cause GSS, and C-terminal pathological 

mutations, which cause CJD. 

 

Materials and Methods 

Protein Expression 

Recombinant PrP constructs encoding mouse WT PrPC (23-230) and the 

various central region pathological mutants constructs in the pJ414 vector (DNA 2.0) 

were transformed into and expressed using E. coli (BL21 (DE3) Invitrogen) [5].  

Bacteria were grown in M9 minimal media supplemented with 15NH4Cl (1 g/L) 

(Cambridge Isotopes) for 1H-15N HSQC experiments or in LB media (Research Product 

International). Cells were grown at 37°C until reaching an optical density (OD) of 1-

1.2, at which point expression was induced with 1 mM isopropyl-1-thio-D-

galactopyranoside (IPTG). PrPC constructs were purified as previously described [8]. 

Briefly, proteins were extracted from inclusion bodies with extraction buffer (8 M 

guanidium chloride (GdnHCl), 100 mM Tris, 100 mM Sodium Acetate (pH 8)) at room 

temperature and were purified by Ni2+-immobilized metal-ion chromatography 

(IMAC). Proteins were eluted from the IMAC column using elution butter (5 M GdnHCl, 

100 mM Tris, 100 mM Sodium Acetate (pH 4.5)) and were brought to pH 8 with 6 M 
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potassium hydroxide (KOH) and left at 4°C for 2 days to oxidize the native disulfide 

bond. Proteins were then desalted into 50 mM potassium acetate buffer (pH 4.5) and 

purified by reverse-phase HPLC on a C4 column (Grace). Pure protein was lyophilized 

and stored at -20 oC until needed. The purity and identity of all constructs were 

verified by analytical HPLC and mass spectrometry (ESI-MS).  

 

NMR 

Lyophilized uniformly 15N-labeled PrPC constructs were first suspended in 

water until fully solubilized and concentrations were checked using absorbance at 280 

nm (A280) with the proper extinction coefficient. NMR samples were made to 300 µM 

in 10 mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer with 10% D2O and the 

pH was adjusted to 6.1 with 600 mM hydrochloric acid. Apo samples were loaded into 

a Shigemi NMR tube (Wilmad Glass, BMS-005B) and a 1H- 15N HSQC spectrum as 

collected at 37 oC on an 800-MHz spectrometer (Bruker, Billerica, MA) at the 

University of California, Santa Cruz NMR Facility (Santa Cruz, CA). The sample was then 

removed from the tube and one equivalent of Cu2+ from a 10 mM copper chloride 

solution in water (determined accurately by flame atomic absorption) was added and 

the pH was adjusted to 6.1 if necessary. The sample was loaded back into the Shigemi 

NMR tube and the sample height was adjusted to match the sample height of the apo 

sample and another 1H- 15N HSQC spectrum was collected. NMR spectra were 

analyzed with NMRPipe [12] and Sparky. Structural analysis was performed with 
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Chimera [13]. Protein assignments were achieved using previously determined values 

[5]. Kernel density estimation were performed in MATLAB. To eliminate the effects of 

differential nonspecific broadening across mutants, the data was adjusted so that the 

center of the unaffected peak for each PrP construct were aligned to 1. 

 

Results 

Multiple disease-causing mutations occur around the central region of PrPC, 

which include: P101L, P104L, P104T, G113V, A116V, and G130V (Figure 1). In 

particular, P101L, G113V, and to a weaker extent A116V PrPC, display spontaneous 

currents in  cellular electrophysiological measurements and G418 induced toxicity in 

cells [14]. It has been previously shown that C-terminal pathological mutations affect 

both the Zn2+ [8] and Cu2+-driven cis-interaction [7, 15]. One central region 

pathological mutation, P101L PrPC, was shown to have a slightly weakened Zn2+-driven 

cis-interaction. Therefore, we hypothesize that these central region pathological 

mutations might weaken the Cu2+-driven cis-interaction, thus freeing up the N-

terminus to cause toxicity, according to the N-terminal toxicity model [16]. 

Alternatively, these mutations may not affect the Cu2+-driven cis-interaction, implying 

an alternative mechanism of toxicity. 
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Figure 15: Central region disease causing mutations. Some of these mutations generate spontaneous 
currents in electrophysiological measurements as well G418 induced toxicity. 

To investigate if the central region pathological mutations have a weakened 

Cu2+-driven cis-interaction, paramagnetic relaxation enhancement NMR was 

employed [5] as described in chapter 2 of this dissertation. Uniformly 15N-labeled 

protein was prepared for each construct and 1H-15N HSQC spectra were collected in 

the absence and presence of 1 eq. of Cu2+. The intensity of the resonance with 1 eq. 

of Cu2+ (I) was divided by the intensity of the resonance in the absence of Cu2+ (Io) to 

generate intensity ratios (I/Io). I/Io vs. residue plots were made for all the pathological 

mutations (Figure 2). At initial investigation, all of the bar graphs appear similar and 

implies a similar Cu2+-driven cis-interaction for each pathological mutation as 

compared to WT PrPC. 
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Figure 16: Normalized NMR intensity plots of CR pathological mutations. I/Io vs. residues plot of WT, 
P101L, P104L, P104T, G113V, and A116V PrPC constructs titrated with 1 eq. of Cu2+ at pH 6.1 and 37 oC. 
The averages (x̅) and standard deviation (σ) of only similar residues of each construct were taken. The 
plots show little difference between central region pathological mutations relative to WT PrPC in Cu2+ 
titration.   

The I/Io were then transformed into kernel density distributions [7] (Figure 3). 

This was done to gain an unbiased measure of the relative number of C-terminal 

residues affected by the Cu2+-driven cis-interaction. To do this, the I/Io values were 

normalized so the residues unaffected have an adjusted I/Io equal to about 1 as 

described in the methods section. The kernel density function was then used on the 

adjusted I/Io values for each construct to generate kernel density estimation plots 

(Figure 3). The plots show adjusted I/Io vs. probability of having that I/Io value. Two 

main populations arose, one centered at about one corresponding to the residues not 

affected and the other centered around 0.2 corresponding to residues affected. 

Overall the overlaid kernel density estimations appear similar for WT PrPC when 
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compared to the central region pathological mutations. This is in good agreement 

with the visual inspection of the raw I/Io values. 

 

Figure 17: Kernel density distributions of CR pathological mutations. The distributions show little 
difference between the number of affected residues between central region pathological mutations 
relative to WT PrPC. Kernel density distributions of the I/Io values for each protein were generated by 
calculated by applying a gaussian-weighted sliding window. I/Io values were initially adjusted by first 
generating a kernel density distribution for each construct and the ‘Not Affected’ peak was set to about 
1. 

To define which residues are significantly affected, the average (x)̅ and 

standard deviation (σ) of the raw I/Io values of each construct were taken (Figure 2). 

Residues considered strongly affected by the addition of Cu2+ are those residues 

affected by greater than one standard deviation (1σ). For each construct, the residues 

affected by greater than 1σ are the same and they are highlighted in blue on the 
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surface representation of the PrPC C-terminal domain (PDB: 1XYX) (Figure 4). The 

affected residues are localized to three main patches (Figure 2 and 4): the C-terminal 

end of the loop going into helix 1 (Patch 1), the N-terminal end of helix 2 (Patch 2), 

and the N-terminal half of helix 3 (Patch 3). These results qualitatively demonstrate 

that the central region pathological mutations do not affect the Cu2+-driven cis-

interaction. 

 

Figure 18: Cu2+ affects the same C-terminal residues for CR pathological mutations and WT PrPC. A. 
Surface representation (top) and ribbon diagram (bottom) of the C-terminus of PrPC (PDB: 1XYX). 
Residues in blue are the residues where the I/Io values are affected by greater than 1σ by the addition 
of 1 eq. of Cu2+. The residues affected by 1σ for the central region mutations and WT PrPC are the same. 
B. Table of residues affected by 1σ classified by patch. Patch 1 is the loop going into helix 1. Patch 2 in 
the N-terminal side of helix 2. Patch 3 is the N-terminal end of helix 3. Asterisks denote residues 
affected near particular patch. 

To be quantitate the cis-interaction, the average I/Io of each patch was taken. 

This is similar to the quantitative method done previously [8], in which the average 

I/Io of each helix was taken and compared for different constructs. Due to the 

localization of Patch 1 residing on the loop going into helix 1, the average of each 
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patch plus one residue on each side was taken and plotted as a bar graph (Figure 5). 

Similar to the residues being affected by greater than 1σ, all central region 

pathological mutants were within error of the patch averages for WT PrPC. For Patch 

2, there seems to be a small decrease in patch average for P104L and P104T PrPC, 

however, this is within error when compared to WT PrPC. Overall, this analysis shows 

that the regions where Cu2+ affects is the same for all of the central region pathological 

mutations as compared to WT PrPC. 

 

Figure 19: Average I/Io values for each defined patch is the same for CR pathological mutations and 
WT PrPC. Bar graphs of the average I/Io values for each patch are shown. Error bars denote the standard 
error of the mean (S.E.M). For each patch there is no statistical difference in average I/Io values for the 
central region pathological mutations when compared to WT PrPC. For Patch 2, it P104L and P104T 
have a slightly lower than everything, however, it is not statistically significant. 

 
Discussion 

Due to the rich literature pertaining to PrPC binding to metal ions in the OR 

domain, specifically Zn2+ and Cu2+, PrPC’s function is suggested to be related to its 

metal binding properties. These functions include, but are not limited to, 

neuroprotective effects as a result of oxidative stress [17], ion channel regulation [18-
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20], and metal ion distribution [21]. Structurally, when one Zn2+ or Cu2+ binds to the 

OR of PrPC, a cis-interaction occurs between N- and C-terminus [5-8]. Due to results 

showing C-terminal pathological mutations weaken the Zn2+ and Cu2+-driven cis-

interaction [7, 8], we hypothesized that pathological mutations around the central 

region also weaken it. To test this hypothesis, paramagnetic relaxation enhancement 

NMR was used to measure the cis-interaction, both qualitatively and quantitatively. 

In contrast to C-terminal pathological mutations, this study finds that central region 

pathological mutations do not affect the Cu2+-driven cis-interaction. 

  The importance of the metal-driven cis-interaction has been suggested by 

numerous studies. First, C-terminal pathological mutations in PrPC have been shown 

to have a weakened Zn2+ and Cu2+-driven cis-interaction [7, 8]. Second, ∆CR PrPC, a 

designed deletion mutant that causes neonatal fatality in mice, was shown to have a 

weakened metal-driven cis-interaction [11]. Third, the interface between the metal-

bound OR and the C-terminus overlap with the interface of toxic C-terminal antibodies 

and the C-terminus of PrPC [5, 9]. Furthermore, the toxic effects of ∆CR PrPC and C-

terminal antibodies are dependent on the presence of the polybasic-extreme N-

terminus of PrPC [22].  

The N-terminal toxicity model was then developed in which the C-terminus 

regulates the N-terminus by facilitating the cis-interaction, and when the cis-

interaction is blocked, the N-terminus generates toxicity [11]. Spontaneous currents 

in electrophysiological recordings [22] as well as G418 induced toxicity in cell culture 
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[23, 24] have both been employed to test if a construct elicits N-terminal toxicity.  It 

is found that central region pathological mutations (P101L, G113V, A116V, and 

G130V) generate these signatures for N-terminal toxicity [14, 22]. In contrast, the C-

terminal pathological mutation, D177N, which can cause CJD or FFI [3], did not display 

spontaneous currents or G418 induced toxicity. Central region pathological mutations 

do not weaken the Cu2+-driven cis-interaction, whereas C-terminal pathological 

mutations do [7, 8]. These results begin to suggest that central region pathological 

mutants drive a toxicity that is more consistent with the N-terminal toxicity model, 

where C-terminal pathological mutations have a different mode of toxicity that 

correlates with a weakening of the metal-driven cis-interaction [8].  

What is puzzling is the fact that the GSS causing central region mutations, 

P101L and A116V, and the CJD causing C-terminal mutations, D177N and E199K, are 

all almost 100% penetrant [25]. However, both diseases, GSS and CJD, have different 

disease onset, symptoms, symptom duration before death, and types of plaques 

formed [26-28].  Perhaps central region mutations affect the way PrPC can regulate its 

own N-terminus, thus driving N-terminal toxicity,  and C-terminal mutations affect the 

metal-driven cis-interaction and cause toxicity through another route. Ultimately, 

both sets of mutations can lead to a misregulation of PrPC, either loss or gain or 

exacerbation of function, which leads into aggregation and the disease state. Further 

investigation into the structural and functional differences between central region 
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and C-terminal pathological mutations will give better insight into PrPC’s function and 

the diseased state.  

 

 

References 

1. Prusiner, S.B., Prions. Proc Natl Acad Sci U S A, 1998. 95(23): p. 13363-83. 

2. Prusiner, S.B., The prion diseases. Brain Pathol, 1998. 8(3): p. 499-513. 

3. Aguzzi, A., F. Baumann, and J. Bremer, The prion's elusive reason for being. 
Annu Rev Neurosci, 2008. 31: p. 439-77. 

4. Millhauser, G.L., Copper and the prion protein: methods, structures, function, 
and disease. Annu Rev Phys Chem, 2007. 58: p. 299-320. 

5. Evans, E.G., et al., Interaction between Prion Protein's Copper-Bound 
Octarepeat Domain and a Charged C-Terminal Pocket Suggests a Mechanism 
for N-Terminal Regulation. Structure, 2016. 24(7): p. 1057-67. 

6. Evans, E.G.B. and G.L. Millhauser, Copper- and Zinc-Promoted Interdomain 
Structure in the Prion Protein: A Mechanism for Autoinhibition of the 
Neurotoxic N-Terminus. Prog Mol Biol Transl Sci, 2017. 150: p. 35-56. 

7. McDonald, A.J., et al., Altered Domain Structure of the Prion Protein Caused by 
Cu(2+) Binding and Functionally Relevant Mutations: Analysis by Cross-Linking, 
MS/MS, and NMR. Structure, 2019. 27(6): p. 907-922 e5. 

8. Spevacek, A.R., et al., Zinc drives a tertiary fold in the prion protein with familial 
disease mutation sites at the interface. Structure, 2013. 21(2): p. 236-46. 

9. Sonati, T., et al., The toxicity of antiprion antibodies is mediated by the flexible 
tail of the prion protein. Nature, 2013. 501(7465): p. 102-6. 

10. Herrmann, U.S., et al., Prion infections and anti-PrP antibodies trigger 
converging neurotoxic pathways. PLoS Pathog, 2015. 11(2): p. e1004662. 

11. Wu, B., et al., The N-terminus of the prion protein is a toxic effector regulated 
by the C-terminus. Elife, 2017. 6. 



  97 

12. Delaglio, F., et al., NMRPipe: a multidimensional spectral processing system 
based on UNIX pipes. J Biomol NMR, 1995. 6(3): p. 277-93. 

13. Pettersen, E.F., et al., UCSF Chimera--a visualization system for exploratory 
research and analysis. J Comput Chem, 2004. 25(13): p. 1605-12. 

14. Solomon, I.H., E. Biasini, and D.A. Harris, Ion channels induced by the prion 
protein: mediators of neurotoxicity. Prion, 2012. 6(1): p. 40-5. 

15. Markham, K.A., et al., Molecular Features of the Zn(2+) Binding Site in the Prion 
Protein Probed by (113)Cd NMR. Biophys J, 2019. 116(4): p. 610-620. 

16. McDonald, A.J., B. Wu, and D.A. Harris, An inter-domain regulatory mechanism 
controls toxic activities of PrP(C). Prion, 2017. 11(6): p. 388-397. 

17. Mitteregger, G., et al., The role of the octarepeat region in neuroprotective 
function of the cellular prion protein. Brain Pathol, 2007. 17(2): p. 174-83. 

18. Huang, S., et al., Differential modulation of NMDA and AMPA receptors by 
cellular prion protein and copper ions. Mol Brain, 2018. 11(1): p. 62. 

19. Stys, P.K., H. You, and G.W. Zamponi, Copper-dependent regulation of NMDA 
receptors by cellular prion protein: implications for neurodegenerative 
disorders. J Physiol, 2012. 590(6): p. 1357-68. 

20. Watt, N.T., et al., Prion protein facilitates uptake of zinc into neuronal cells. Nat 
Commun, 2012. 3: p. 1134. 

21. Pushie, M.J., et al., Prion protein expression level alters regional copper, iron 
and zinc content in the mouse brain. Metallomics, 2011. 3(2): p. 206-14. 

22. Solomon, I.H., et al., An N-terminal polybasic domain and cell surface 
localization are required for mutant prion protein toxicity. J Biol Chem, 2011. 
286(16): p. 14724-36. 

23. Massignan, T., E. Biasini, and D.A. Harris, A Drug-Based Cellular Assay (DBCA) 
for studying cytotoxic and cytoprotective activities of the prion protein: A 
practical guide. Methods, 2011. 53(3): p. 214-9. 

24. Massignan, T., et al., A novel, drug-based, cellular assay for the activity of 
neurotoxic mutants of the prion protein. J Biol Chem, 2010. 285(10): p. 7752-
65. 



  98 

25. Minikel, E.V., et al., Quantifying prion disease penetrance using large 
population control cohorts. Sci Transl Med, 2016. 8(322): p. 322ra9. 

26. Collins, S., C.A. McLean, and C.L. Masters, Gerstmann-Straussler-Scheinker 
syndrome,fatal familial insomnia, and kuru: a review of these less common 
human transmissible spongiform encephalopathies. J Clin Neurosci, 2001. 8(5): 
p. 387-97. 

27. Hsiao, K., et al., Linkage of a prion protein missense variant to Gerstmann-
Straussler syndrome. Nature, 1989. 338(6213): p. 342-5. 

28. Masters, C.L., D.C. Gajdusek, and C.J. Gibbs, Jr., Creutzfeldt-Jakob disease virus 
isolations from the Gerstmann-Straussler syndrome with an analysis of the 
various forms of amyloid plaque deposition in the virus-induced spongiform 
encephalopathies. Brain, 1981. 104(3): p. 559-88. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  99 

 
 
 
 
 

 

CHAPTER 4 

Conclusions 
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The prion field has been extensively researched over the past 350 years. 

Numerous findings, three of which have led to Nobel Prizes, have helped move 

forward the field by increasing the understanding of this class of diseases. However, 

there are still questions regarding the mechanistic and structural origin for the 

observed neurotoxicity in TSEs. The primary objective of this thesis is to try to 

understand how the Central Region (CR) of PrPC regulates the toxic potential of the N-

terminus. We initially hypothesized the CR’s regulatory role over the N-terminus was 

to either facilitate the metal-driven cis-interaction or by containing the locus for α-

cleavage. However, by using specific protein design, biochemistry, and cell-based 

assays, we discovered that neither of hypotheses is the basis for the regulation over 

the toxic potential of the N-terminus. Moreover, we found that the CR facilitates the 

dimerization potential of PrPC. This suggests that dimerization is a mechanism that 

regulates the intrinsic toxic potential of the N-terminus. Structurally, it is conceivable 

that dimerization may position the N-terminus away from the membrane. Blocking 

dimerization with ∆CR PrPC or G5 PrPC could plausibly free up the N-terminus, allowing 

for membrane destabilization and cause the unregulated entry of ions into the cell. 

Alternatively, dimerization could prevent the N-terminus from over-activating 

cognate ion channels, such as the AMPAR or NMDAR. 

 Do these results mean that the metal-driven cis-interaction and α-cleavage is 

not important for normal PrPC structure and function? The metal-driven cis-

interaction occurs when PrPC binds to one Zn2+ or Cu2+ ion. Therefore, if PrPC’s 
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regulation over the AMPAR and NMDAR is Zn2+ and Cu2+ dependent, respectively, then 

it can be suggested that the metal-driven cis-interaction is engaged during these 

regulatory roles. As for α-cleavage, it naturally occurs in healthy tissues in everyone’s 

brain. This cleavage event in the brain generates the N1 fragment which regulates 

myelination in Schwann cells, which occurs in the peripheral nervous system. 

Selective deletion of PrPC in the brain and not in the periphery of mice causes a 

demyelinating polyneuropathy, indicating that α-cleavage occurring in the central 

nervous system produces the biologically active N1 fragment that migrates to 

Schwann cells in the peripheral nervous system and regulates their myelination.   In 

normal physiology, α-cleavage, and presumably the metal-driven cis-interaction, 

occur and seem to regulate PrPC biology in some fashion. 

 Familial prion diseases are caused by point mutations within the PrPC gene that 

results in a predisposition for misfolding and ultimately prion diseases. These 

pathological mutations typically occur in two main regions of PrPC: 1) the structured 

C-terminus, and 2) the CR. Using NMR, it was previously demonstrated that a number 

of these familial mutations contained in the C-terminus weaken the metal-driven cis-

interaction. Intriguingly, it was observed that these particular mutations produce a 

charge change from either negative to positive or negative to neutral, and typically 

cause CJD or FFI. In contrast to the charge reversal pathological mutations in the 

structured C-terminal domain, disease producing mutations in the CR do not affect 
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the charge of the amino acid and typically cause GSS. We have found that familial 

mutations in the CR do not have a weakened Cu2+-driven cis-interaction. Therefore, it 

is plausible that the origin of PrPC misregulation in GSS generating mutations is 

different  than C-terminal mutations that drive. The observation we made could help 

enlighten the differences in the types of symptoms, symptom onset, symptom 

duration, and the region where neurodegeneration occurs in the brain between GSS 

and CJD.  

Ultimately, all familial prion diseases lead to the misfolding and template-

driven PrPSc propagation and subsequently death. Understanding the molecular 

underpinnings and the series of events that can lead to these diseases is extremely 

important for pursing new avenues of therapeutic intervention. Unfortunately, a cure 

or an effective treatment for these diseases does not currently exist. However, our 

results imply that there are different changes occurring between these two classes of 

prion diseases. Familial CJD mutations elicit an alteration to the metal-driven cis-

interaction, where GSS mutations in the CR does not generate this change. 

Furthermore, gross manipulation of the CR by mutating it to a flexible glycine-serine-

rich linker does not affect the metal-driven cis-interaction, but does still generate 

toxicity. Moreover, addition of an α-cleavage site within this glycine-serine rich linker 

does allow for α-cleavage; however, toxicity still persists. What we do observe is that 

the glycine-serine-rich linker, as well as ∆CR PrPC, both have a reduction in 
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dimerization potential on the cell membrane. These results permit us to suggest that 

the CR may regulate the toxic potential of the N-terminus by allowing for dimerization 

and that the negatively-charged patch on the C-terminus facilitates the metal-driven 

cis-interaction. 

Overall, the results I present in this dissertation begin to give a molecular-

based inference into the differences between the origin of PrPC misregulation in CJD 

and FFI when compared to GSS. More specifically, CJD and FFI mutations can lead to 

a weakened metal-driven cis-interaction and thus misregulation of the toxic N-

terminus. In contrast, GSS mutations could lead to a reduction in dimerization 

potential of PrPC, thus leading to a misregulated N-terminus. The results presented in 

this dissertation now make it possible to begin asking more specific and directed 

questions about the origin of neurotoxicity in the different prion diseases. 
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