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Abstract

As electronic data becomes widely available, the need for tools
that help people gain insight from data has arisen. A variety of
techniques from statistics, machine learning, and neural networks
have been applied to databases in the hopes of mining knowledge
from data. Multiple regression is one such method for modeling
the relationship between a set of explanatory variables and a
dependent variable by fitting a linear equation to observed data.
Here, we investigate and discuss some factors that influence
whether the resulting regression equation is a credible model of the
data.

Introduction

Multiple linear regression (e.g., Draper and Smith, 1981)
is a technique for finding a linear relationship between a set
of explanatory variables (x,) and a dependent variable (y): y
=b,+bx, +bx, + ... + bx. The coefficients, (b) provide
some indication of the explanatory variables effect on the
dependent variable. With the wide availability of personal
computers and the inclusion of regression routines in
commonly available statistics or spreadsheet software such
as Microsoft Excel®, there is an increased recognition of the
value of gaining insight from data. There are also free web
servers (e.g., Autofit http://www.lava.net/~seekjc) for fitting
data to linear models. As a consequence, multiple linear
regression is being applied to a wide array of problems
ranging from business to agriculture, The goal of this
application is to ‘convert data to information’. Such
information might help guide future decision-making. For
example, many lenders use a credit score to help determine
whether to make a loan. This score is a combination of many
factors such as income, debt, and past payment history
which positively or negatively affect the credit risk of a
borrower. In this paper, we show that multiple regression as
used in practice can produce models that are unacceptable to
experts and laypeople because factors that should positively
affect a decision may have negative coefficients and vice
versa. We introduce a constrained form of regression that
produces regression models that are more acceptable.

To illustrate the problem we are addressing, consider
forming a model of professional baseball players’ salaries as
a function of statistics describing the players’ performance.
An agent representing a player might use the model as part
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of an argument that the player is underpaid. A player could
use the model to determine how to improve certain aspects
of his game to increase his salary. We have created a model
of baseball players’ salaries in 1992 as a function of the
players' performance in 1991 using data on 270 players
collected by CNN/Sports Illustrated and The Society for
American Baseball Research. The model is listed below:

s=-180+10r+5hit+0.%0cbp+15hr+14rbi-0.8ave-18db-39¢tr
where s is the salary (in thousands), r is the number of runs
scored, h is the number of hits, obp is the on base
percentage (between 0 and 1000), rbi is the number of runs
batted in, ave is the batting average (between 0 and 1000),
ab is the number of doubles and tr is the number of triples.
Most people knowledgeable about baseball are confused by
the negative coefficients for ave, dab, and tr. It is unlikely
that someone familiar with the sport would consider this
insightful or advise anyone to act upon this model. If a
baseball player interested in maximizing his income were to
follow this equation literally, he would always stop at first
base when hitting, rather than trying for a double. In this
paper, we discuss why incorrect signs occur in multiple
lincar regression and present some alternative means of
inferring linear models from data that do not suffer from this
problem.

In multiple linear regression, the best equation fitting the
data is found by choosing the coefficients (b) so that the
sum of the squared error for the training data points is
minimized. The coefficients, b, can be found with matrix
manipulations, also known as a least squares approach
(Draper and Smith, 1981). Mullet (1976) discusses a variety
of reasons that multiple linear regression produces the
“wrong sign" for some coefficients:

Computational Error. Some computational procedures
for computing least squares have problems with
precision when the magnitudes of variables differ
drastically. To avoid this problem, we internally
convert variables to standard form (i.e., 0 mean, and
unit variance) for calculations and convert back to the
original form for displaying the cocfficients.

Coefficients that don’t significantly differ from zero.
In this case, the sign of the coefficient does not matter
because it is small enough so that it does not
significantly affect the equation. One recommended
way to avoid this problem is to eliminate these
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irrelevant variables.  Porward stepwise regression
methods (Draper and Smith, 1981) do not include a
variable in the model unless the variable significantly
improves the fit of the model to the data. We used
this method (with an alpha of 0.05) to model the
baseball data and obtained the following equation:
s=-114+16r+17rbi-59tr
Although this equation reduces the number of
violations, it still has the wrong sign for the variable
tr.
¢  Mulucollinearity.  When two or more cxplanatory
variables are not independent, the sign of the coefficient
of one of the variables may differ from the sign of that
coefficient if the variable were the only explanatory
variable. One approach to deal with this problem is
manually eliminating some of the variables from the
analysis.

In this paper, we consider an alternative approach to
address the “wrong sign” problem in multiple regression.
The goal is to produce linear models that are as accurate
predictors of the dependent variable as the least-squares
model but are more acceptable to people knowledgeable in
the domain. Following the methodology commonly used in
machine learning, we evaluate accuracy not by goodness of
fit to a collection of data but by the ability to generalize to
unseen data. Furthermore, we report on an experiment that
evaluates what types of linear models are more acceptable to
people in the baseball salary domain.

Constrained Regression

We hypothesize that a linear model is more acceptable to
people knowledgeable in a domain when the effect of each
variable in the regression equation in combination with the
other variables is the same as the effect of each variable in
isolation. That is, if in general, baseball salaries increase as
the number of doubles increases, we would like the sign of
the coefficient of this variable to be positive in the full linear
model. Here, we propose and evaluate three methods to
constrain regression to make this true. We call this constraint
the independent sign bias.

Independent Sign Regression (ISR) treats the problem of
fitting the linear model to the data as a constrained
optimization problem: i.e., find the regression coefficients
(b,) that minimize the squared error on the training data
subject to the constraint that all coefficients must have the
same sign as they would in isolation (simple regression).
There are many numerical algorithms for performing
constrained optimization, and Lawson and Hanson (1974)
present a comprehensive set for this case. The new
contribution in ISR is that the constraints (i.e., the sign of the
coefficient) are determined automatically by analysis of the
data. [Explanatory variables positively correlated with the
dependent variable have a positive sign, while those
negatively correlated have a negative sign.

We used ISR to create the following model of the

baseball salary data:
§=-207+15r+0.8hit+11hr+11rbi+0.33ave+5db
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In the next sections, we evaluate how well a constrained
form of regression fits the data and whether people prefer
regression equations with this constraint. Here, we note that
the signs agree with our intuition. However, it does
climinate some variables such as the on base percentage
(obp). This occurs because the best fit to the data subject to
the constraint that obp 2 0 is that obp = 0. This occurs
because obp 1s correlated with other variables such as ave (r
= 0.81).

Next, we consider how to modify forward stepwise
regression to constrain the sign of the variable. In forward
stepwise regression (Draper and Smith, 1981), we start with
an empty set of variables and then add the single variable
that improves the model's fit to the training data the most.
We continue this process of adding variables to those present
until we have either included all variables or the remaining
variables do not significantly improve the fit based on the
partial F-test (Draper and Smith, 1981). Independent sign
forward regression (ISFR) modifies this procedure by
adding the constraint that the entering variable must also not
result in sign violations (i.e.,, we add the variable that
improves model fit the most subject to the constraint of no
sign violations in the fitted equation). ISFR produces the
following equation on the baseball data:

s=-148+15r+15rbi

The previous two constrained forms of regression both
may eliminate variables. Here, we introduce a form of
regression we call Mean Coefficient Regression (MCR) that
does not eliminate variables but ensures that the signs agree
with the sign in isolation. MCR finds the regression
coefficients for each of the variables in isolation and then
simply uses those values (dividing by the number of
variables) for the multiple regression case. This is equivalent
to treating each variable as a predictor and then averaging
the results, The intercept is found automatically through the
conversion of coefficients from standard form to the original
scaling and minimizes the mean squared error of the linear
equation with those coefficients. If all of the explanatory
variables are uncorrected, MCR would produce the same
equation as multiple linear regression. MCR produces the
following equation on the baseball data:
s=-162+4r+2hit+1.1lobp+10hr+3rbi+l.2ave+9db+16tr

Accuracy and the Independent Sign Bias

In this section, we evaluate the five regression algorithms
on the several data sets. In each case, we report the squared
multiple correlation coefficient (R%), which is the percent of
the total variance explained by the regression equation, and
the descriptive mean squared error (MSE) of the regression
routines on the entire data set. Both of these statistics
measure how well the algorithms fit the data. Note that
multiple linear regression always has the best fit to the
training data, because it by definition minimizes squared
training error. The more constrained forms of regression are
limited in their ability to fit the data. We also report on the
predictive mean squared error, which measures the ability of
the regression algorithm to produce models that generalize



to unseen data. The predictive mean squared error is found
by 5-fold cross-validation: The entire data set is randomly
divided into five equal sized partitions. The data from four
of the partitions is used to form a linear model that is
evaluated on the fifth partition. This is repeated five tmes
with each partition used exactly once for evaluation, The
predictive MSE is almost always higher than the descriptive
MSE. However, the algorithm with the lowest descriptive
MSE does not necessarily have the lowest predictive MSE
because the less constrained algorithms can overfit the data.

When evaluating the five regression algorithms, we also
report on the number of sign violations where a sign
violation occurs if the sign of the coefficient in the equation
differs from the sign of the coefficient in the simple
regression case. In this work, the principle goal is not to
find regression routines that generalize better than multiple
linear regression, but to find routines that generalize equally
well and produce equations that people would be more
willing to use.

We ran each of the 5 regression approaches on six data
sets available from either the Statlib repository
(http://www.stat.cmu.edu) or the UCI archive of databases
(hip:f/www.ics.uci.edw/~mlearn). The databases Autompg,
Housing, and Pollution deal with automobile mileage,
housing costs, and mortality rates respectively. CS Dept is
available from the Computing Research Association
(http://www.cra.org) and involves computer science
department quality ratings. The Alzheimer’s database was
collected by UCI’s Institute of Brain Aging and Dementia
and involves predicting the level of dementia from the
results of tests that screen for dementia.

In all of these domains, a sign violation could cause
credibility problems. For example, in the CS Dept domain,
linear regression indicated that the more publications per
faculty member the lower the quality of the program, while
in isolation this variable has the opposite effect.

Table 1. Summary of five approaches to creating linear models on six data sets
Database Multiple Independent Mean Stepwise Independent
Linear Sign Coefficient Forward Sign Forward
Regression Regression Regression Regression Regression
| Alzheimer | |
R’ 0.750 0.743 0.420 ! 0.727
Descriptive MSE 0.124 10127 0287 ) | 0135
| Predictive MSE | 0.184 0.166 o297 ~0.166 i
Violations 7 0 0 0
Autompg I
R |0 S 0844 | 0500 | 084 | 0.844
| Descriptive MSE_ 9.3 947 9.55
| Predicive MSE |  10.6 0s  j. 308 107 1 10.6
Violations 4 0 0
| Baseball | 0
R 0478 | 0472 | | 0375 | 0476 0470 |
Descriptive MSE 8e+5 8.09e+5 9.57e+5 8.02e+5 8.11e+5
Predictive MSE 8.74e+45 8.55e+5 9.66e+5 8.37e+5 8.33e+5
Violations 3 0 0 1 0
 CSDept | L S
R B X 0858 0.414 0.844 0.844
Descripive MSE | 0135 | 0136 | 0559 0148 0.148
Predictive MSE 0244 0213 | 0605 | o024 024
Violations 1 0 0 0 0
| Housing | N
R | 070 | 0.698 0.696
| Descripive MSE | 219 256 . |..567 (. .219 | 257 i
| Predictive MSE 27.6 B 21.7
Violations 0 0
Pollution R
R’ B 0.768 0.728 0.224 0.719 0.719
| Descriptive MSE | 895 1.08e+3
Predictive MSE | 353e+3 | 16e+3 | 33es3 | 18243 | 17843 |
Violations 5 0
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In Table |, we show the results of the five regression
approaches on the six data sets. The best (lowest)
predictive  MSE 1s shown in bold to allow simple
comparison of the predictive ability. [t is typical in such a
simulation that no algorithm stands out as uniformly
superior on all problems. However, the results indicate that
independent sign regression is usually at least as accurate as
multiple linear regression. Due to the sign violations, one
might prefer to use independent sign regression. Mean
coefticient regression does not fit the data nor generalize as
well as the other regression algorithms. Independent sign
forward regression is usually at least as accurate as stepwise
forward regression.

Note that multiple linear regression has at least one sign
violation on every data set. This shows that correlated
variables frequently occur in naturally occurring databases
and that the techniques designed to correct for sign
violations may be applicable to a broad range of problems.
Although stepwise forward regression mitigates the problem
of sign violations, it does not eliminate it entirely.

In the next section, we report on the results of an
experiment in which subjects indicate their willingness to
use regression equations to make predictions. The goal of
the study is to determine whether subjects have a preference
for the independent sign bias: i.e., equations in which the
sign of each coefficient is the same as the sign in isolation.

Baseball Salary Experiment

In this experniment, subjects are asked to imagine that they
are an agent representing a baseball player. Subjects are
shown various linear equations and told that they “might be
used as a starting point to get a rough estimate of what a
player should be paid. " For each equation, they were asked
to indicate on a [-3,+3] scale “How willing would you be to
use this equation as a rough estimate of a baseball player's
salary?”" We are interested in exploring whether subjects
have a preference for regression equations without sign
violations.

We hypothesized that subjects would give higher ratings to
equations formed with Independent Sign Regression and
Mecan Coefficient Regression (o equations formed with
Multiple Linear Regression because such equations do not
contain  sign violations.  Note that Independent Sign
Regression does not necessarily use all of the variables, and
on the basebull data it typically uses 4-6 of the 8 variables.

We also hypothesized that subjects would give higher
ratings to equations found with Independent Sign Forward
Regression than Stepwise Forward Regression because they
also did not contain sign violations,

Subjects. The subjects were 47 male and female under-
graduates attending the Unmiversity of California, Irvine who
indicated that they were somewhat or very familiar with
baschall. The subjects participated in this experiment to
receive extra credit in an artificial intelligence course. We
did not enroll subjects with little or no familiarity with
baseball in the study.

Stimuli.  The stimuli consisted of 15 linear equations that
were displayed to the user in a web browser. Figure |
contains an example of the type of sumuli used. Three
equations were generated by each of five different
regression routines:

Multiple Linear Regression
Independent Sign Regression

Mean Coefficient Regression
Stepwise Forward Regression
Independent Sign Forward Regression

Three different equations for each algorithm were formed on
different random subsets of the baseball data resulting in
different coefficients. The coefficients of the equations
were rounded to two significant digits. The stimuli were
presented in random order for each subject.

) Baseball Salary E stimation Survey - Miciosoft Internet Explorer

|| Fle Edt Vew Favortes JTools Heb

thousands of dollars)?

How willing would you be to use this equation as a rough estimate of a baseball player's salary (in

Notatall -3 ¢ .2 C

Isalary = D.B8Bave + D.87cbp + 3.2runs + 1.8hits + B8.5dbls + 12trpls + 9.8hrs + 3.5rbi + 5.0 ﬂ

g € 8¢ 10 2 30C
Record Rating

Very Willing

Rating."
<

Part 2: Select a number from -3 to +3 to indicate how willing would you be to use this equation as a
rough estimate of a player's salary if you were an agent representing the player. Then select "Record

|

2]

T T @ Tntemet

Figure 1. An example of the stimuli used in the experiment.
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Procedures. Each subject was shown a single equation at a
time, in random order, and asked to indicate on a scale from
-3 to +3 how willing they would be to use the equation as a
rough estimate of a player's salary by clicking on a radio
button. Next they clicked on “Record rating"” and were
shown another equation. The radio button was reset to 0
before displaying the next equation. This continucd until
the subject rated all 15 equations.

Results. The average rating of all subjects for each type of
equation is shown in Table 2.

Table 2. Average Subjects Ratings for Linear Equations.

Regression Algorithm Mean
Rating
Multiple Linear Regression -0.816
Independent Sign Regression 0.603
Mean Coefficient Regression 0.851
Stepwise Forward Regression -1.09
Independent Sign Forward Regression -0.113

We analyzed the results of the experiment as follows.
For each subject, we found the mean rating of the three
equations generated by each of the five algorithms. An
analysis of variance showed that the algorithm had a
significant effect on the rating F(4,184) = 22.11, p <.0001.
A Tukey-Kramer test at the .05 level was used to evaluate
the three hypotheses. The critical difference is 0.706 so all
three differences are significant:

o Subjects gave significantly higher ratings to equations
found by independent sign regression than equations
found by multiple linear regression.

* Subjects gave significantly higher ratings to equations
found by mean coefficient regression than equations
found by multiple linear regression.

o Subjects gave significantly higher ratings to equations
found by independent sign forward regression than
equations found by stepwise forward regression.

Discussion. The results support the notions that subjects
have a preference for linear models that conform to the
independent sign bias, i.e., those in which the sign of the
coefficients of each explanatory variable agrees with the
effect that the explanatory variable has in isolation.

The independent sign regression routine introduced in this
paper automatically determines the sign of the coefficient of
explanatory variables, produces models that have similar
predictive accuracy as those produced by multiple linear
regression, and produces linear models that subjects would
be more willing to use. A possible disadvantage of the
independent sign regression routine is that it may eliminate
some variables from the linear equation. This may be a
benefit in some cases (e.g., if it was expensive to collect
some variables) or if simplicity is a consideration. However,
the results of the experiment in this paper suggest that
ignoring many explanatory variables may reduce the
willingness of subjects to use a linear model. Although this
is not a focus of this study, it appears that both independent
sign forward regression and stepwise forward regression
received relatively low rankings by subjects.
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If one is interested in eliminating variables, the
simulations showed that independent sign forward
regression  produces  equations  with  similar  predictive
accuracy (o stepwise forward regression and the experiment
showed that users preferred equations created by
independent sign forward regression.

We proposed mean coefficient regression as a means of
eliminating sign violations while using all explanatory
variables. Although it received the highest average ranking
by subjects in our experiments, it does not fit the data nor
generalize as well as the other regression routines, We
suspect that our subjects are sensitive to the sign and perhaps
order of magnitude of the coefficients, but there’s no reason
to believe they'd be able to determine whether two similar
equations with slightly different coefficients are a better fit
to the data. The inferior accuracy of mean coefficient
regression is a result of correlations between the explanatory
variables. These same correlations result in multiple linear
regression getting the “wrong sign” on the coefficients. It
remains an open question whether a linear model can be
found that has similar accuracy to multiple linear regression,
gets the signs right, and uses all of the variables when there
are correlations among the explanatory variables. Because
there is a relationship between averaging multiple linear
models and mean coefficient regression, it is possible that
some of the methods for correcting for correlations in linear
models (e.g., in Leblanc and Tibshirani, 1993; Merz and
Pazzani, in press) may be useful in this case.

Related Work

The purpose of the independent sign bias is to produce
linear models that are as accurate as those produced by
multiple linear regression, yet are more acceptable to users
because they do not violate the users' understanding of the
effect that each explanatory variable has on the dependent
variable. If knowledge-discovery in database systems is to
produce insightful models that are deployed in practice, it is
important that users be willing to accept the models. One
implication of this bias is that as additional explanatory
variables are added to a model, the magnitude of the effect
of the other variables may be changed but not the direction
of the effect (cf. Kelley, 1971).

Credit scoring is one important application that may
benefit from the global sign bias. In this application, the risk
that a borrower may not pay back a loan is assessed as a
function of a number of factors such as income, debt,
payment history, etc. If a potential borrower is turned down
for a loan, it is necessary to explain why. It is important to
get the signs of the coefficients right on the models so that
the explanation makes sense to the lender and the borrower.

Here, we have introduced constrained regression routines
that produced linear models conforming to the independent
sign bias. Monotone regression (Lawson and Hanson, 1974)
is a related type of constrained regression in which the user
indicates the sign constraint on the variables. In contrast, in
independent sign regression, the sign is determined
automatically.

Having the wrong sign in the regression equation results
from having correlated explanatory variables. One way to
deal with this is to introduce additional variables to represent



the interaction between two explanatory variables. The
focus of such work has been to produce models that improve
the tit of the data to the model and not to improve the
comprehensibility or acceptance of the learned models.

In training artificial neural networks, weight decay
(Krogh,. & Hertz, 1995) Sill, & Abu-Mostafa,, 1997) have
been proposed as techniques for constraining models.
However, the focus has been on improving generalization
ability and not improving the user acceptance of the learned
models.

Causal Models (Spirtes, Glymour, and Scheines, 1993)
and Belief Networks (Pearl, 1988) also explicitly represent
the dependencies among variables. The resulting models are
more complex than linear models. In this work, we have
adopted a fixed representation (lincar equations) and
addressed what constraints can be imposed upon this
representation Lo Improve user acceptance.

In previous work (Pazzani, Mani & Shankle, 1997), we
addressed a related problem of rule learning algorithms
including counterintuitive tests in rules by having an expert
provide “monotonicity constraints.” For nominal variables,
a monotonicity constraint is expert knowledge that indicates
that a particular value makes class membership more likely.
For numeric variables, a monotonicity constraint indicates
whether increasing or decreasing the value of the variable
makes class membership more likely. By showing
neurologists rules learned with and without these constraints,
we showed that monotonicity constraints biased the rule
learning system to produce rules that were more acceptable
to experiments.

Pazzam (1998) extended the work on monotonicity
constraints by introducing the globally predictive test bias.
In this bias, every test in a rule must be independently
predictive of the predicted outcome of the rule. Such a bias
eliminated the need for a user to specify monotonicity
constraints but provided the same advantages. The globally
predictive test bias in rule learners is analogous to the
independent sign bias in linear models in that the effect of a
variable in combination with other variables is constrained
to be the same as the effect of that variable in isolation.
Here we have shown that such a constraint improves the
willingness of people to use linear models without harming
the predictive power of the models.

Conclusions

People are not computers and cannot easily find a linear
equation that best fits a data set with 10 variables and 500
examples. However, we argue that people have certain
constraints on the qualitative properties of the linear
equations. We have shown that one factor that influences
the willingness of subjects to use linear models is the
independent sign bias. By creating regression routines that
conform to this bias, we constrain the computer to produce
results that are more acceptable to people.

New regression routines were produced that implement
the independent sign bias. Experiments and simulations
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showed that independent sign regression produces linear
equations that are approximately as accurate as multiple
linear regression and that are more acceptable to users.
Independent sign forward regression is similarly preferable
to forward stepwise regression.
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