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C L I M A T O L O G Y

Untangling impacts of global warming and  
Interdecadal Pacific Oscillation on long-term variability 
of North Pacific tropical cyclone track density
Jiuwei Zhao1,2,3,4*, Ruifen Zhan1*, Yuqing Wang2†, Shang-Ping Xie5, Qiong Wu3,4

How much the observed long-term variability of tropical cyclone (TC) activity is due to anthropogenic global 
warming (GW) or internal climate variability remains unclear, limiting the confidence in projected future change 
in TC activity. Here, the relative contributions of GW and the Interdecadal Pacific Oscillation (IPO) to the long-term 
variability of TC track density (TCTD) over the North Pacific (NP) are quantified on the basis of statistical analyses 
and climate model simulations. Results show that historical GW mainly reduced (increased) TCTD over the western 
(eastern) NP, while the positive (negative) IPO corresponds to a NP basin–wide increase (decrease) in TCTD ex-
cept in some coastal regions. The IPO has a much greater impact on TCTD over the western NP than GW, while the 
IPO and GW impacts are about equal over the eastern NP during 1960–2019. These findings have important impli-
cations for projecting future TC activity over the NP.

INTRODUCTION
Tropical cyclones (TCs) are among the most devastating weather 
systems and can cause large casualties and heavy property losses. 
The western North Pacific (WNP) features the largest number of 
TCs, while the eastern NP (ENP) has the most TCs per unit area of 
any basin worldwide (1). Given that TC tracks affect TC landfall 
location, it is of great importance to elucidate the underlying causes 
of the observed long-term variability in TC tracks over the NP. 
Anthropogenic global warming (GW) has been recognized to affect 
the observed long-term trends in TC tracks (2), but the effect re-
mains uncertain because it is difficult to estimate whether the 
anthropogenic effect exceeds the level expected from interdecadal 
climate variability because of the limited length of data records 
(3, 4). Some studies suggested that the observed trends in TC track 
density (TCTD; storms in unit grid box) over the WNP are likely 
due to internal climate variability (5, 6), such as the Interdecadal 
Pacific Oscillation (IPO) (7, 8). The IPO is the dominant mode of 
interdecadal variability over the Pacific with the sea surface tem-
perature (SST) pattern similar to that of the El Niño–Southern 
oscillation (9). For the ENP, although no significant trends in total 
number of TCs have been found (7, 9, 10), interdecadal variability 
in both TC tracks and landfalling TCs is evident on the Pacific coast 
of Mexico because of the IPO modulations (9, 11).

The majority of climate models projected an eastward shift of 
TCTD from the WNP to the central NP (12, 13), with decreased 
TCTD over the WNP (14, 15) and increased TCTD over the ENP 
(16, 17) in warming climate, while a few models suggested a pro-
nounced increase over the WNP (18) and decrease over the ENP 

(19). These uncertainties could be introduced by the stark differ-
ence in zonal SST pattern among the models (20–23) or could be 
related to a tangled interaction between GW and internal climate 
variability (22, 24, 25). Although the statistical relationship of 
TCTD with either SST warming trend or the IPO has been previ-
ously studied, the relative contributions of GW and the IPO to the 
long-term changes in TCTD remain to be quantified and the dy-
namical mechanisms remain to be poorly understood (6, 26). Here, 
we use the ensemble empirical mode decomposition (EEMD) 
method (27) to derive the GW and the IPO modes and examine 
their impacts on TCTD based on the historical TC best-track data 
and several commonly used global reanalysis datasets. This is fol-
lowed by a suite of climate model experiments. We quantify the rel-
ative contributions of GW and the IPO to the long-term variability 
of TCTD over the NP based on a linear regression model and 
high-resolution atmospheric general circulation model (HIRAM). 
Results show that the IPO contributes more to the long-term vari-
ability of TCTD than GW over the WNP, while they contribute 
about equally to that over the ENP. These findings help resolve the 
ongoing debate as to whether the long-term variability in TCTD is 
primarily due to GW or internal climate variability, with important 
implications for projections of future TC activity over the NP.

Effects of GW and the IPO on TCTD over the NP
The EEMD method (27) has been widely used to derive atmospheric or 
oceanic modes even if they are nonstationary and nonlinear (28–30). 
Usually, the last (here, the 10th) intrinsic mode function (IMF) 
of EEMD can present the GW trend, while the combination of the 
sixth to ninth IMF represents the interdecadal variability based on 
the monthly raw SST data [(29); an example is shown in fig. S1]. A 
statistically significant GW trend in SST over 45°S to 45°N and 0° to 
360° for the period 1960–2019, with significance above 95% confi-
dence levels based on the Mann-Kendall trend test, was derived 
from the 10th EEMD IMF (Fig. 1A), which is defined as the GW 
index in this study. The spatial SST increments exhibit an overall 
GW pattern with the most pronounced warming in the tropical 
Indian Ocean, the warm pool region over the WNP, and the tropical 
Atlantic (Fig. 1B). However, the warming rate is lower over the central 
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Pacific than over other tropical oceans, showing a “La Niña–like” 
SST pattern, consistent with recent findings (21, 31–33). The re-
gressed June to November averaged TCTD upon the normalized 
GW index during 1960–2019 shows decreasing trends over most of 
the WNP except for the coastal regions off East China but increas-
ing trends over the central NP and the ENP (Fig. 1C), indicating a 
robust decrease in TCTD averaged over the whole WNP and an 
increase over the ENP. Although this is consistent with most previous 
projections (16, 18), the La Niña–like SST pattern here is dis-
tinct from the El Niño–like SST pattern projected by most climate 
models (34). Results based on observational data analyses above are 
confirmed by a suite of numerical experiments (see Materials and 
Methods). The GW run generally reproduced the observed responses 
of TCTD to GW (Fig. 1D). The TCTD simulated in the GW run 
shows a significant decrease over the WNP and an increase over the 
ENP, despite some discrepancies such as an increase in the South 
China Sea and a decrease along Japan and Korea.

The time series derived from the combination of the sixth to 
ninth IMF of EEMD based on the raw monthly IPO index (35) 
shows a clear interdecadal variability, in positive phase during 
1977–1997 and negative phase before 1977 and during 1997–2014 

(Fig. 1E). The composite SST between positive and negative IPO 
phases obtained from the sixth to ninth IMF is characterized by the 
tripole-SST pattern with positive SST anomalies (SSTAs) over the 
tropical Pacific and negative SSTAs over the subtropics in both 
hemispheres (Fig. 1F). During the positive IPO phase, the regressed 
positive anomalies of June to November averaged TCTD cover the 
whole NP except for the coastal regions off East Asia in the WNP 
and central America in the ENP (Fig. 1G), consistent with previous 
studies (8, 11). The TCTD simulated in the IPO run (Fig. 1H) 
exhibits an overall increase over the NP except for a large decrease 
in the coastal regions of the ENP and East Asia. The GW and IPO 
simulations generally confirm the overall features obtained from 
observational data analyses above, suggesting that our statistical 
methods can reasonably isolate the individual contributions of GW 
and the IPO to the long-term variability in TCTD over the NP.

To confirm the close relationship between the above two SST 
modes and TCTD over the NP, we also examine the coupled modes 
between June to November averaged SSTs (between 45°S and 45°N) 
and TCTD (unit: storms/5° × 5°) over the NP for the period 
1960–2019 based on the singular value decomposition (SVD) analysis 
(fig. S2). The first two SVD modes of SST (accounting for 43.2% and 
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Fig. 1. GW and IPO modes, and their effects on TCTD over the NP. The left panel shows the GW analysis, and the right panel is the analysis based on the IPO phases. 
(A) The GW time series derived from the 10th IMF of EEMD of monthly SST (°C) averaged over the globe (45°S to 45°N and 0° to 360°) for the period 1960–2019. (B) The 
trend increments in each grid point of the 10th IMF of global SST (°C). (C) Regressed SST (°C) and (C) TCTD upon the normalized GW time series in (A). (D) The TCTD differ-
ence between the GW and CTRL runs. (E) The IPO time series derived from the combination of the sixth to ninth IMF of EEMD of the monthly raw IPO index for the period 
1960–2019. (F) Composite of SST between positive and negative IPO phases. (G) Regressed TCTD upon the normalized IPO time series in (E). (H) Same as (D) but between 
the IPO and CTRL runs. The black dots in (C), (D), (G), and (H) show areas where the statistical significance is above 90% confidence level based on two-tailed Student’s 
t test.
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20.2% of the total covariance) show a La Niña–like warming pattern 
and a significant positive IPO pattern, respectively, consistent with 
the results from EEMD (Fig. 1, B and E). The first SVD mode of 
TCTD, which reflects the response to GW, shows a robust decrease 
over the WNP and an increase over the ENP. The second SVD 
mode, which is related to the positive IPO phase, shows positive 
anomalies over the whole NP except for the coastal regions off East 
Asia and the ENP. These are consistent with the results from the linear 
regressions (Fig. 1, C and F). The linear trends in both SST and TCTD 
and their interdecadal composites between positive and negative IPO 
phases (fig. S3) are generally in good agreement with those based on 
EEMD (Fig. 1) and SVD analyses (fig. S2). These results demonstrate 
that both La Niña–like GW and the IPO contributed to the long-
term variability of TCTD over the NP. Note that the long-term vari-
ability beyond the interannual time scale accounts for 51.5% of the 
total variance of TCTD over the WNP and 38.4% over the ENP.

Mechanisms for long-term variability in TCTD over the NP
To understand the mechanisms by which GW and the IPO affect 
TCTD over the NP, we examine the variations of the large-scale 

environments that control TCTD, including the low-level winds 
(LLW), 850-hPa relative vorticity (Vor), vertical zonal wind shear 
(VZWS) between 200 and 850 hPa, and steering flow (SF). TCTD 
depends primarily on its genesis location and subsequent move-
ments. In general, at low levels, westerly anomalies over the tropics 
with anomalous cyclonic shear Vor off the equator, an anomalous 
cyclonic circulation in the lower troposphere, and a weak VZWS 
are favorable for TC genesis and development, while the large-scale 
SF is essential for TC movement.

Figure 2 shows the long-term trends and the composite differ-
ences between the positive and negative IPO phases for June to 
November averaged LLW and Vor, VZWS, and SF based on the 
National Oceanic and Atmospheric Administration (NOAA) 20 
Century (20C) reanalysis. In response to GW, the LLW shows a sig-
nificant divergent trend over the central Pacific (Fig.  2A), with 
low-level easterly winds increasing over the tropical WNP and 
decreasing over the tropical ENP and a small anomalous cyclone 
over the coastal region off East Asia. Similarly, the Vor field shows 
significant negative anomalies over most of the WNP and positive 
anomalies over the ENP, with small positive anomalies over the 

O
bs

er
va

tio
n

G
lo

ba
l w

ar
m

in
g

A

10°S

10°N

30°N

50°N

60°E 120°E 180° 120°W 60°W

LLW and Vor B

10°S

10°N

30°N

50°N

60°E 120°E 180° 120°W 60°W

VZWS and SF

S
im

ul
at

io
n

C

10°S

10°N

30°N

50°N

60°E 120°E 180° 120°W 60°W

LLW and Vor D

10°S

10°N

30°N

50°N

60°E 120°E 180° 120°W 60°W

VZWS and SF

O
bs

er
va

tio
n

In
te

rd
ec

ad
al

 P
ac

ifi
c 

O
sc

ill
at

io
n

E

10°S

10°N

30°N

50°N

60°E 120°E 180° 120°W 60°W

LLW and Vor F

10°S

10°N

30°N

50°N

60°E 120°E 180° 120°W 60°W

VZWS and SF

S
im

ul
at

io
n

G

10°S

10°N

30°N

50°N

60°E 120°E 180° 120°W 60°W

LLW and Vor

1 m/s

1 m/s

1 m/s

1 m/s
H

10°S

10°N

30°N

50°N

60°E 120°E 180° 120°W 60°W

VZWS and SF

1 m/s

1 m/s

1 m/s

1 m/s

−8.0

−6.0

−4.0

−2.0

−0.5

1.0

3.0

5.0

7.0

Fig. 2. Modulation of GW and the IPO to the large-scale environments that control TCTD. Trends (A to D) and composites (E to H) of (left) 850-hPa LLW (m s−1; vector) and 
850-hPa relative Vor (5 × 10−7 s−1; shaded) and (right) SF (m s−1; vector) and VZWS (m s−1; shaded) between 200 and 850 hPa from (A, B, E, and F) observations and (C, D, G, and H) 
model simulations. The top two rows represent the circulation anomalies affected by GW from both observation and simulation, and the lower two rows indicate that influ-
enced by the IPO. In observation, the long-term trends were calculated during 1960–2014 and the composite differences were calculated between the positive (1977–1997) 
and negative (1960–1976 and 1998–2014) IPO phases. In the simulations, the differences between the GW and CTRL runs (C and D) and between the IPO and CTRL runs 
(G and H) were conducted. The shaded and black vectors in (A) and (B) represent areas that are statistically significant above 90% confidence level based on two-sided 
Mann-Kendall trend test, while those in (C) to (H) show areas where the statistical significance is above 90% confidence level based on two-tailed Student’s t test.
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coastal region off East Asia, where relatively faster warming oc-
curred (Fig. 1B) with large maximum potential intensity (MPI) trends 
(fig. S6C). The VZWS exhibits an increasing trend over the WNP 
centered on the equator and decreasing trend over the ENP (Fig. 2B). 
Previous studies have shown that the VZWS over the equatorial 
Pacific plays a crucial role in affecting TC activity over the WNP 
(36, 37). These trends in LLW and VZWS generally suppress local 
TC genesis and reduce TCTD over the WNP but promote TC genesis/
intensification and increase TCTD in the coastal regions off East 
Asia and the ENP. Over the WNP, changes in large-scale SF (Fig. 2B) 
are westerly south of 25°N, reducing TCTD over South China. Over 
the ENP, the anomalous westerly SF strengthened TC activity along 
the coastal area of the ENP. In addition, the increasing trends in 
600-hPa relative humidity are also favorable for TC genesis over the 
ENP while unfavorable over the WNP (fig. S4). These are consistent 
with the effect of the La Niña–like SST warming (namely, GW) on 
TCTD in the NP (Fig. 1, B and C).

Figure 2 (E and F) shows the composite differences in LLW, Vor, 
VZWS, and SF between the positive (1977–1997) and negative 
(averaged on the two periods of 1960–1976 and 1998–2014) IPO 
phases. In the positive phase, the tropical Pacific is dominated by 
anomalous low-level westerlies associated with positive Vor anom-
alies and weakening VZWS over the tropical western and eastern 
Pacific. These large-scale anomalies are favorable for TC genesis 
and intensification over both the WNP and ENP. Note that the 
favorable environmental conditions in the positive IPO phase are 
mainly located over the open ocean far away from the coasts where 

more TCs formed on the basis of the SVD analysis (fig. S5). Once 
TCs form over the open ocean, they are likely to last longer com-
pared with those near coastal regions, thereby increasing TCTD. 
However, the composite differences in large-scale SF show an overall 
intensifying offshore flow south of 25°N over the WNP and weak-
ening SF along the coast of the ENP, suggesting that the positive 
IPO generally enhances TCTD over the open ocean and suppresses 
TC activity over the coastal regions of the NP.

We have examined the linear trend and IPO composites of genesis 
potential index (GPI) and MPI (fig. S6). The trend in GPI over the 
WNP and the ENP is generally consistent with that in TCTD. How-
ever, the IPO impact on GPI is not consistent with that on TCTD 
over most of the WNP, suggesting that the increased TCTD there is 
not caused by the trend in TC genesis. The MPI could partly explain 
the positive trend in TCTD over the northern WNP and higher 
TCTDs over the ENP in the positive IPO phase. We also examined 
the trend and composite fields in large-scale conditions based on 
the National Centers for Environmental Prediction/National 
Centers for Atmospheric Research reanalysis, and the overall 
patterns of these changes (fig. S7) are highly consistent with those 
reported here from the 20C reanalysis.

The GW run with the model (Fig. 2, C and D) reproduces the 
increase in low-level easterly and VZWS over the WNP and the 
central Pacific with a little eastward shift. However, the model fails 
to reproduce the negative trend in VZWS over the ENP. The posi-
tive IPO run (Fig. 2, G and H) reproduces anomalous low-level 
westerly and weakened VZWS over the tropical Pacific. These re-
sults are generally consistent with those obtained on the basis of the 
reanalysis data discussed above, although some model biases exist 
in the large-scale fields over the South China Sea and along the coast 
of the ENP.

Relative importance of GW and the IPO
The TCTD over the WNP exhibits pronounced interdecadal vari-
ability (Fig. 3), switching from negative anomalies during 1960–1976 
to positive anomalies during 1977–1997 and changing back to nega-
tive anomalies during 1998–2014. This is in good agreement with 
IPO phase changes, suggesting that the IPO plays a more important 
role in the long-term variability of TCTD over the WNP than 
GW. In comparison, the TCTD change over the ENP is more com-
plicated. Although the TCTD anomalies switched from negative 

A
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C

Fig. 3. TCTD (unit: counts) anomalies in different IPO phases relative to the 
climatological TCTD (unit: counts), which is defined as the average during 
1960–2019. The TCTD anomalies in the negative IPO phase during 1960–1976 
(A), in the positive IPO phase during 1977–1997 (B), and in the recent negative IPO 
phase during 1998–2014 (C). The black dots represent areas where the statistical 
significance is above 90% confidence level based on two-tailed Student’s t test.

Table 1. The annual mean TC genesis frequency and TCTD in June to 
November from the best-track TC data and three numerical 
experiments over the WNP and ENP for the period 1990–2009. The 
TCTD is calculated over 100°E to 180°, EQ to 40°N. The boldface values are 
statistically significant at 90% confidence levels based on two-sided 
Student’s t test when comparing the time series of a sensitivity run and a 
CTRL run. The values with underscore are statistically significant at 90% 
confidence levels based on chi-square test. TCGF, TC genesis frequency. 

WNP ENP

TCGF TCTD TCGF TCTD

Observations 22.5 843 15.7 416

CTRL 24.9 751 16.3 337

GW 22.8 650 19.5 379

IPO 28.9 913 20.4 391
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during 1960–1976 to positive during 1977–1997, the negative and 
positive values coexisted during 1998–2014, suggesting that GW 
and the IPO might be equally important over the ENP because GW 
and the negative IPO have opposite effects on TCTD during 1998–
2014 (Fig. 1, C and F).

The relative importance of GW and the IPO for the long-term 
variability of TCTD is quantified using a linear regression model 
based on the GW and IPO indices derived from EEMD (Fig. 1, 
A and D). Results show that the GW and IPO modes together 
explain 55.4% and 60.8% of the long-term variance of TCTD (fig. S8) 
during 1960–2019 over the WNP and the ENP, respectively. Of the 
55.4% variance over the WNP, the GW contributed 35.9% (19.9% 
variance) and the IPO contributed 64.1% (35.5% variance), while of 
the 60.8% variance over the ENP, the GW and the IPO contributed 
57.2% (34.8% variance) and 42.7% (26% variance), respectively. The 
chi-square test shows that the difference in contribution between 
GW and IPO over the WNP is significant at 95% confidence level, 
while the difference over the ENP is insignificant, suggesting that 
the IPO contributes much more to the long-term variability of 

TCTD than GW over the WNP, while GW and the IPO contribute 
about equally over the ENP.

We also examined the TCTD in model experiments. TCTD in 
the GW run is lower averaged over the WNP and higher averaged 
over the ENP than in the control run while increasing in the positive 
IPO run over both the sub-basins (Table 1). Over the WNP, the TCTD 
anomalies are smaller in the GW than IPO run, suggesting a greater 
IPO effect (Table 1). Over the ENP, the difference is insignificant, 
suggesting that GW and the IPO are about equally important to the 
long-term variability of TCTD (Table 1). These are consistent with our 
results based on the TC best-track data and linear regression model.

Since the TCTD is closely related to the genesis locations and the 
subsequent TC motions, its variability can be decomposed into 
three terms: genesis, track, and nonlinear terms (see Materials and 
Methods) (15, 31); the relative contributions of GW and IPO to 
these three terms can be statistically estimated. Results show that 
the significant decreasing trend in TCTD over the WNP due to GW 
(Fig. 4A) is largely contributed by the TC genesis location (Fig. 4B), 
while the TC track and nonlinear terms contribute to both poleward 
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Fig. 4. Relative contributions of GW and IPO to TCTD by TC genesis, track, and nonlinear terms for the period 1960–2019. Trend increments in TCTD from 1960–2019 
(A) and contributions by genesis location (B), tracks (C), and nonlinear effects (D). Composite difference in TCTD between the positive (1977–1997) and the negative 
(1960–1976 and 1998–2014) IPO phases (E) and contributions by genesis location (F), tracks (G), and nonlinear effects (H). The black dots in (A) to (D) represent areas 
where the statistical significance is above 90% confidence level based on two-sided Mann-Kendall trend test, while others in (E) to (H) show areas where the statistical 
significance is above 90% confidence level based on two-tailed Student’s t test. The values in (A) and (E) are divided by a factor of 2 for sharing the same color bar. The 
contribution is also represented by the formulae shown in each subtitle.
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and westward shifts of TCTD (Fig. 4, C and D). Over the ENP, all 
the three terms contribute to the increasing trend of TCTD in re-
sponse to GW, with the largest contribution from the track term. 
Note that although the overall decreasing/increasing trend in TCTD 
is attributed to GW, the spatial pattern of TCTD is dominated by 
the anomalous atmospheric circulation induced by spatial varia-
tions in SST warming (fig. S2A). This may have implications for 
model projections of future TC activity. The IPO composite (Fig. 4) 
shows that both the track and nonlinear terms predominantly con-
tribute to the interdecadal variability in TCTD over the WNP 
(Fig. 4, G and H), while the genesis location and track terms con-
tribute to TCTD variability over the ENP (Fig. 4, F and H).

DISCUSSION
In summary, we have untangled impacts of GW and the IPO on the 
long-term variability in NP TCTD based on observational analyses 
and TC-permitting model experiments. We show here that the IPO 
has a much greater impact on the long-term variability in TCTD 
over the WNP than GW, while both GW and the IPO contribute 
about equally over the ENP. Our results provide an initial assessment 
on the relative contributions of GW and the IPO to the long-term 
variability in NP TCTD. It is an important benchmark to eval-
uate climate models in their ability to reproduce the historical TC 
variations, a crucial step to build creditability in model-based future 
projections. Note that these results are obtained on the basis of the 
historical record during 1960–2019, which could change as the GW 
signal becomes larger and accelerates in the coming decades.

The IPO is in transition from the negative to a positive phase 
since around 2014, while an accelerated GW rate is expected, in 
part, from reduced aerosol cooling as developing countries act to 
curtail air pollution. Our results suggest that the combined IPO-GW 
effects may end the inactive TC epoch over the WNP since 1998 
while increasing TC activity over the ENP in the coming decades. 
More frequent TC geneses are evident over both the WNP and ENP 
since 2015 (fig. S9). Moreover, the superposition of GW and the 
positive phase of IPO may lead to large increases in TCTD over 
both the WNP and ENP (Fig. 4, A and E) by enhancing the pole-
ward (Fig. 4, C and G) and westward shifts of the TCTD pattern 
(Fig. 4, D and H). Thus, our findings have important implications 
for projections of future TC activity over the NP.

MATERIALS AND METHODS
Definitions of GW and the IPO modes
We quantified TCTD in terms of the TC tracks in each 5° by 5° grid 
box. TCTD in a grid box is counted once if a named TC passed 
(appeared in) the box. Here, we only counted the TCTD without 
considering storm’s translational speed that has also been reported 
to be highly influenced by GW (38). The EEMD (26, 28, 29) method 
is used to derive the spatial pattern and temporal variation of 
SST. We decomposed the monthly SST in each grid point into 10 IMFs 
and chose the 10th IMF (residual) as the SST trend. We further used 
SVD to verify the GW and IPO modes. The SVD analysis, first in-
troduced in (39) and further improved in (40), was used to identify 
the coupled modes between the global SSTs and NP TCTD. The GW 
and the IPO time series from the EEMD were used to evaluate the 
relative importance of GW and the IPO to the long-term variability 
in TCTD.

Relative importance analysis
A linear regression model (41) was used to evaluate the relative im-
portance of GW and the IPO to the long-term variability in TCTD 
based on the two time series of GW and IPO from EEMD. This lin-
ear model with intercept can be written as

   TCT  i   =    0   +    1   ⋅  PC  i1   +    2   ⋅  PC  i2   +  e  i    (1)

In Eq. 1, the response of object i is modeled as a linear function 
of regressor values PC1i1 and PC2i2 from EEMD analysis with 
unknown coefficients 0, 1, and 2, and ei indicates the unexplained 
part. The total contribution of the GW and IPO to the long-term 
change in TCTD is explained by the regressors (PC1 and PC2) in 
the model

   R   2  =   Model _ SS ─ Total _ SS   =   
  i=1  t    ( ̂   TCT  i    −  ̂  TCT )   

2
 
  ───────────  

  i=1  t    ( TCT  i   −   ̄  TCT )   2 
    (2)

where   ̂   TCT  i    = =  ̂     0    +  ̂     1    ⋅  PC  i1   +  ̂     2    ⋅  PC  i2    in Eq. 2, TCT represents 
the TCTD, the overbar indicates the mean value of TCTD, and the 
angle bracket is for the value from the linear regression model. One 
way of looking at relative importance is to compare the relative por-
tion of variance

   R   2 ({ PC  k  }∣  S  k  (r ) ) =  R   2 ({ PC  k  }∪  S  k  (r ) ) −  R   2 ( S  k  (r ) )  (3)

Here, the order of the regressors is denoted by the tuple of indi-
ces r = (r1, r2) and let Sk(r) denote the set of regressors that entered 
the model before regressor PCk in the order r. The final averaging 
over ordering metric proposed by Lindeman, Merenda, and Gold 
(LMG) can be written as

   LMG( PC  k   ) =   1 ─ 2     j=0  1   
⎛
 ⎜ 

⎝
       S⊆{ PC  1  , PC  2  }\{ PC  k  }  

n(S)=j
        

seq({ PC  k  }∣ S)
  ─ 

 (    1  
j
    )  

   
⎞
 ⎟ 

⎠
     (4)

Relative contribution analysis
Another approach originally proposed in (15) and (42) was adopted 
to evaluate the relative contribution of TC genesis location and 
tracks in terms of local TCTD changes. The climatological mean 
TCTD in a specific 5° by 5° grid box can be written as follows

    ̄  T(A)   =  ∬ 
c
       ̄  g( A  0  )   ⋅   ̄  t(A,  A  0  )    dA  0    (5)

Here,    ̄  T   (A) is the TCTD in grid box A, g(A0) is the TC genesis 
frequency (TCGF) in grid box A0, and t(A, A0) stands for the prob-
ability for a TC formed in grid box A0 to travel into grid box A. The 
subscript C is the entire domain of the NP over which the integra-
tion is performed. For the period 1960–2019, the TCTD anomalies 
() relative to the climatological mean in grid box A are calculated as

  T(A ) =  ∬ 
c
     g( A  0   ) ⋅   ̄  t(A,  A  0  )    dA  0   +  ∬ 

c
     t( A  0   ) ⋅   ̄ ¯  g(A,  A  0  )    dA  0   +  

                           ∬ 
c
     g( A  0   ) ⋅ t(A,  A  0   )  dA  0    (6)

where the first term on the right-hand side (rhs) of Eq. 6 represents 
the contribution by changes in TC genesis locations to TCTD under 
the climatological mean TC tracks. The second term on the rhs 
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represents the contribution by changes in TC tracks under the 
climatological mean TC genesis locations. The last term represents 
the nonlinear contribution under the circumstance, with changes in 
both the TC genesis locations and tracks.

Model description, experimental design, and TC  
detection algorithm
The HIRAM (www.gfdl.noaa.gov/hiram-quickstart/), which has been 
demonstrated to have high skills in simulating TC variability in-
cluding climate trends, interannual and interdecadal variabilities, 
and seasonal prediction in main TC basins and has been widely 
used in TC projections (43–45), developed at the Geophysical Fluid 
Dynamics Laboratory was used in this study. The dynamical core of 
HIRAM is discretized by the finite-volume method on a cubed-
sphere grid topology with the horizontal resolution of roughly 
50 km (varying from 43.5 to 61.6 km) and 32 vertical levels [details 
can be found in (46, 47)], which can be used to explicitly extract 
TC-like vortex. We conducted one control and two sensitivity 
numerical experiments using HIRAM. The control (CTRL) run was 
forced by the observed monthly SST from 1990 to 2009. The GW 
run was identical to the CTRL run except that the linear trend incre-
ments of SSTs from 1960 to 2014 between 45°S to 45°N and 0° to 
360° were added to the monthly SSTs used in the CTRL run. The 
IPO run was identical to the CTRL run except that the SSTAs (45°S 
to 45°N and 0° to 360°) between the positive and negative IPO 
phases were added to the monthly SSTs used in the CTRL run.

The model was integrated year by year for the period 1990–2009 
with 6-hourly output of sea level pressure, 850-hPa Vor, tempera-
ture anomaly averaged between 500 and 300 hPa representing the 
TC warm core, and the 10-m winds. A well-known TC detection 
algorithm (www.gfdl.noaa.gov/tstorms/) was used to detect TCs in 
the simulations.

Our analyses only focused on the domain south of 40°N over the 
NP because the model has large bias in simulating TC tracks north 
of 40°N (fig. S10). The simulated TCGF and TCTD over the WNP 
and ENP in the CTRL run are generally close to those obtained 
from the best-track data. We also notice that the model underesti-
mates the observed TCTD by about 11% over the WNP and 19% 
over the ENP (Table 1), respectively, which might be due to shorter 
tracks in the model simulation. Because we focused on the relative 
changes among the three experiments, the above model bias does 
not affect our overall conclusions.

Statistics
The statistical significance was checked on the basis of four methods: 
the two-sided Mann-Kendall trend tests, the two-tailed Student’s 
t tests, the two-sided bootstrap resampling, and the chi-square test. 
The Mann-Kendall trend test was adopted in testing if trends of 
SST, TCTD, or atmospheric fields are statistically significant. The 
Student’s t test was used in testing whether the two samples (com-
posites) are significantly different from each other. The degree of 
freedom of the Student’s t test is 53 for the composites of TC tracks 
and 20C reanalysis and 38 for the differences in model experiments. 
The bootstrap test was used to evaluate the robustness of relative 
importance analysis. For the above three test methods, it was treated 
as significance at 90% confidence level if the difference was above 
5th or 95th percentiles. The chi-square test is used to check the sig-
nificance of contribution between GW and IPO over each basin 
with the degree of freedom 1.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/41/eaba6813/DC1

REFERENCES AND NOTES
 1. F.-F. Jin, J. Boucharel, I.-I. Lin, Eastern Pacific tropical cyclones intensified by El Niño 

delivery of subsurface ocean heat. Nature 516, 82–85 (2014).
 2. W. Mei, S.-P. Xie, Intensification of landfalling typhoons over the northwest Pacific since 

the late 1970s. Nat. Geosci. 9, 753–757 (2016).
 3. J. C. L. Chan, Comment on “Changes in tropical cyclone number, duration, and intensity 

in a warming environment”. Science 311, 1713 (2006).
 4. M. J. Burn, S. E. Palmer, Atlantic hurricane activity during the last millennium. Sci. Rep. 5, 

12838 (2015).
 5. C.-H. Ho, J.-J. Baik, J.-H. Kim, D.-Y. Gong, C.-H. Sui, Interdecadal changes in summertime 

typhoon tracks. J. Climate 17, 1767–1776 (2004).
 6. K. S. Liu, J. C. L. Chan, Interdecadal variability of Western North Pacific tropical cyclone 

tracks. J. Climate 21, 4464–4476 (2008).
 7. P. J. Webster, G. J. Holland, J. A. Curry, H.-R. Chang, Changes in tropical cyclone number, 

duration, and intensity in a warming environment. Science 309, 1844–1846 (2005).
 8. J. Zhao, R. Zhan, Y. Wang, H. Xu, Contribution of the Interdecadal Pacific Oscillation 

to the recent abrupt decrease in tropical cyclone genesis frequency over the western 
North Pacific since 1998. J. Climate 31, 8211–8224 (2018).

 9. M. Pazos, B. Mendoza, Landfalling tropical cyclones along the Eastern Pacific coast 
between the sixteenth and twentieth centuries. J. Climate 26, 4219–4230 (2013).

 10. K. J. E. Walsh, J. L. McBride, P. J. Klotzbach, S. Balachandran, S. J. Camargo, G. Holland, 
T. R. Knutson, J. P. Kossin, T.-c. Lee, A. Sobel, M. Sugi, Tropical cyclones and climate 
change. Wiley Interdiscip. Rev. Clim. Change. 7, 65–89 (2016).

 11. W. Li, L. Li, Y. Deng, Impact of the Interdecadal Pacific Oscillation on tropical cyclone 
activity in the North Atlantic and Eastern North Pacific. Sci. Rep. 5, 12358 (2015).

 12. T. Li, M. Kwon, M. Zhao, J.-S. Kug, J.-J. Luo, W. Yu, Global warming shifts Pacific cyclone 
locations. Geophys. Res. Lett. 37, L21804 (2010).

 13. J. Nakamura, S. J. Camargo, A. H. Sobel, N. Henderson, K. A. Emanuel, A. Kumar, 
T. E. LaRow, H. Murakami, M. J. Roberts, E. Scoccimarro, P. L. Vidale, H. Wang, 
M. F. Wehner, M. Zhao, Western North Pacific tropical cyclone model tracks in present 
and future climates. J. Geophys. Res. Atmospheres. 122, 9721–9744 (2017).

 14. H. Murakami, B. Wang, A. Kitoh, Future change of Western North Pacific typhoons: 
Projections by a 20-km-mesh global atmospheric model. J. Climate 24, 1154–1169 (2011).

 15. S. Yokoi, Y. N. Takayabu, H. Murakami, Attribution of projected future changes in tropical 
cyclone passage frequency over the Western North Pacific. J. Climate 26, 4096–4111 
(2013).

 16. T. R. Knutson, J. J. Sirutis, M. Zhao, R. E. Tuleya, M. Bender, G. A. Vecchi, G. Villarini, 
D. Chavas, Global projections of intense tropical cyclone activity for the late twenty-first 
century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J. Climate 28, 
7203–7224 (2015).

 17. L. Zhang, K. B. Karnauskas, J. P. Donnelly, K. Emanuel, Response of the North Pacific 
tropical cyclone climatology to global warming: Application of dynamical downscaling 
to CMIP5 Models. J. Climate 30, 1233–1243 (2017).

 18. C. Zhang, Y. Wang, Projected future changes of tropical cyclone activity over the Western 
North and South Pacific in a 20-km-mesh regional climate model. J. Climate 30, 
5923–5941 (2017).

 19. K. Oouchi, J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, A. Noda, Tropical cyclone 
climatology in a global-warming climate as simulated in a 20 km-mesh global 
atmospheric model: Frequency and wind intensity analyses. J. Meteorol. Soc. Jpn. Ser II. 
84, 259–276 (2006).

 20. L. Bengtsson, K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J.-J. Luo, T. Yamagata, 
How may tropical cyclones change in a warmer climate? Tellus A Dyn. Meteorol. Oceanogr. 
59, 539–561 (2007).

 21. T. Kohyama, D. L. Hartmann, D. S. Battisti, La Niña–like mean-state response to global 
warming and potential oceanic roles. J. Climate 30, 4207–4225 (2017).

 22. R. Seager, M. Cane, N. Henderson, D.-E. Lee, R. Abernathey, H. Zhang, Strengthening 
tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse 
gases. Nat. Clim. Chang. 9, 517–522 (2019).

 23. E.-S. Chung, A. Timmermann, B. J. Soden, K.-J. Ha, L. Shi, V. O. John, Reconciling opposing 
Walker circulation trends in observations and model projections. Nat. Clim. Chang. 9, 
405–412 (2019).

 24. S.-P. Xie, Y. Kosaka, What caused the global surface warming hiatus of 1998–2013? 
Curr. Clim. Change Rep. 3, 128–140 (2017).

 25. S.-L. Yao, J.-J. Luo, G. Huang, P. Wang, Distinct global warming rates tied to multiple 
ocean surface temperature changes. Nat. Clim. Chang. 7, 486–491 (2017).

 26. J. C. L. Chan, K. S. Liu, Global Warming and Western North Pacific typhoon activity 
from an observational perspective. J. Climate 17, 4590–4602 (2004).

http://www.gfdl.noaa.gov/hiram-quickstart/
http://www.gfdl.noaa.gov/tstorms/
http://advances.sciencemag.org/cgi/content/full/6/41/eaba6813/DC1
http://advances.sciencemag.org/cgi/content/full/6/41/eaba6813/DC1


Zhao et al., Sci. Adv. 2020; 6 : eaba6813     9 October 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

8 of 8

 27. Z. Wu, N. E. Huang, Ensemble Empirical mode decomposition: A noise-associated data 
analysis method. Adv. Adapt. Data Anal. 01, 1–41 (2009).

 28. C. Qian, C. Fu, Z. Wu, Z. Yan, On the secular change of spring onset at Stockholm. 
Geophys. Res. Lett. 36, L12706 (2009).

 29. C. Qian, On trend estimation and significance testing for non-Gaussian and serially 
dependent data: Quantifying the urbanization effect on trends in hot extremes 
in the megacity of Shanghai. Climate Dynam. 47, 329–344 (2016).

 30. C. Qian, Z. Wu, C. Fu, D. Wang, On changing El Niño: A view from time-varying annual 
cycle, interannual variability, and mean state. J. Climate 24, 6486–6500 (2011).

 31. T. Lian, Uncertainty in detecting trend: A new criterion and its applications to global SST. 
Climate Dynam. 49, 2881–2893 (2017).

 32. T. Lian, D. Chen, J. Ying, P. Huang, Y. Tang, Tropical Pacific trends under global warming: 
El Niño-like or La Niña-like? Natl. Sci. Rev. 5, 810–812 (2018).

 33. J.-J. Luo, G. Wang, D. Dommenget, May common model biases reduce CMIP5’s ability 
to simulate the recent Pacific La Niña-like cooling? Climate Dynam. 50, 1335–1351 (2018).

 34. S. Xie, Ocean warming pattern effect on global and regional climate change. AGU Adv. 1, 
e2019AV000130 (2020).

 35. B. J. Henley, J. Gergis, D. J. Karoly, S. Power, J. Kennedy, C. K. Folland, A tripole index 
for the Interdecadal Pacific Oscillation. Climate Dynam. 45, 3077–3090 (2015).

 36. H.-M. Kim, M.-I. Lee, P. J. Webster, D. Kim, J. H. Yoo, A physical basis for the probabilistic 
prediction of the accumulated tropical cyclone kinetic energy in the western North 
Pacific. J. Climate 26, 7981–7991 (2013).

 37. R. Zhan, Y. Wang, CFSv2-based statistical prediction for seasonal Accumulated Cyclone 
Energy (ACE) over the Western North Pacific. J. Climate 29, 525–541 (2016).

 38. J. P. Kossin, A global slowdown of tropical-cyclone translation speed. Nature 558, 
104–107 (2018).

 39. J. T. Prohaska, A technique for analyzing the linear relationships between two 
meteorological fields. Mon. Weather Rev. 104, 1345–1353 (1976).

 40. C. S. Bretherton, C. Smith, J. M. Wallace, An intercomparison of methods for finding 
coupled patterns in climate data. J. Climate 5, 541–560 (1992).

 41. U. Grömping, Relative importance for linear regression in R: The package relaimpo. 
J. Stat. Softw. 17, 1–27 (2006).

 42. H. Murakami, B. Wang, T. Li, A. Kitoh, Projected increase in tropical cyclones near Hawaii. 
Nat. Clim. Chang. 3, 749–754 (2013).

 43. S. J. Camargo, M. K. Tippett, A. H. Sobel, G. A. Vecchi, M. Zhao, Testing the performance 
of tropical cyclone genesis indices in future climates using the HiRAM Model. J. Climate 
27, 9171–9196 (2014).

 44. L. M. Harris, S.-J. Lin, C. Tu, High-resolution climate simulations using GFDL HiRAM 
with a stretched global grid. J. Climate 29, 4293–4314 (2016).

 45. H. Murakami, G. A. Vecchi, G. Villarini, T. L. Delworth, R. Gudgel, S. Underwood, X. Yang, 
W. Zhang, S.-J. Lin, Seasonal forecasts of major hurricanes and landfalling tropical cyclones 
using a high-resolution GFDL coupled climate model. J. Climate 29, 7977–7989 (2016).

 46. W. M. Putman, S.-J. Lin, Finite-volume transport on various cubed-sphere grids. 
J. Comput. Phys. 227, 55–78 (2007).

 47. M. Zhao, I. M. Held, S.-J. Lin, G. A. Vecchi, Simulations of global hurricane climatology, 
interannual variability, and response to global warming using a 50-km resolution GCM. 
J. Climate 22, 6653–6678 (2009).

 48. B. Huang, V. F. Banzon, E. Freeman, J. Lawrimore, W. Liu, T. C. Peterson, T. M. Smith, 
P. W. Thorne, S. D. Woodruff, H.-M. Zhang, Extended reconstructed sea surface 
temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate 28, 
911–930 (2015).

 49. G. P. Compo, J. S. Whitaker, P. D. Sardeshmukh, N. Matsui, R. J. Allan, X. Yin, B. E. Gleason, 
R. S. Vose, G. Rutledge, P. Bessemoulin, S. Brönnimann, M. Brunet, R. I. Crouthamel, 
A. N. Grant, P. Y. Groisman, P. D. Jones, M. C. Kruk, A. C. Kruger, G. J. Marshall, M. Maugeri, 
H. Y. Mok, Ø. Nordli, T. F. Ross, R. M. Trigo, X. L. Wang, S. D. Woodruff, S. J. Worley, The 
twentieth century reanalysis project. Q. J. Roy. Meteorol. Soc. 137, 1–28 (2011).

 50. E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, 
G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, 
C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, D. Joseph, The NCEP/NCAR 
40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–472 (1996).

Acknowledgments: We thank L. Tao and L. Chen for providing the computing resources on 
National Supercomputing Center–Tianhe (NSCC-TJ) server. Funding: This work is supported,  
in part, by the National Natural Science Foundation of China (grants 41875114, 41775060,  
and 41875057) and, in part, by the Korea Meteorological Administration Research and 
Development Program under grant KMIPA 2018-03212. Author contributions: J.Z. and R.Z. 
contributed equally in this work, by conceiving parts of this study, conducting the data 
analyses and model experiments, and drafting the initial manuscript. Y.W. conceived the 
development of this study. Y.W. and S.-P.X. contributed to the improvement of the manuscript. 
Q.W. conceived parts of this study. All authors read and approved the manuscript. Competing 
interests: The authors declare that they have no competing interests. Data and materials 
availability: The 1960–2019 June-November (JJASON) best-track TC dataset, including 
6-hourly records of TC locations and maximum sustained near-surface wind speed, was 
obtained from the International Best Track Archive for Climate Stewardship (IBTrACS;  
www.ncdc.noaa.gov/ibtracs/index.php?name=ibtracs-data). Here, we mainly used the TC genesis 
and track locations to describe TC activity; the intensity is only used to define TC genesis for a 
TC reaching 35 knots for the first time in this work. The 1960–2019 Extended Reconstructed  
SST version 4 (ERSST.V4) (48) data were obtained from the NOAA. The 1960 to 2014 NOAA 20C 
(https://psl.noaa.gov/data/gridded/data.20thC_ReanV2c.html) (49) data (version 2) were used 
to carry out the trend and composite analyses. The National Centers for Environmental 
Prediction/National Centers for Atmospheric Research reanalysis I (NCEP/NCAR-I; www.esrl.
noaa.gov/psd/data/gridded/data.ncep.reanalysis.html) (50) data from 1960 to 2019 were used 
to confirm the results from the NOAA 20C dataset. All data needed to evaluate the conclusions 
in the paper are present in the paper and/or the Supplementary Materials. Additional model 
data and codes related to this paper may be requested from the authors.

Submitted 23 December 2019
Accepted 21 August 2020
Published 9 October 2020
10.1126/sciadv.aba6813

Citation: J. Zhao, R. Zhan, Y. Wang, S.-P. Xie, Q. Wu, Untangling impacts of global warming and 
Interdecadal Pacific Oscillation on long-term variability of North Pacific tropical cyclone track 
density. Sci. Adv. 6, eaba6813 (2020).

http://www.ncdc.noaa.gov/ibtracs/index.php?name=ibtracs-data
https://psl.noaa.gov/data/gridded/data.20thC_ReanV2c.html
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html



