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ABSTRACT

ThefCEl)model of le>tnin§-and-^emory ('6^ipoi^ts of Epbodic Learning [Granger 1982,
1988a, iWSbj provides s^rocess mod^f certSin aspects ol learifingMd memory in animab and
humans. The model consists of a set*of asynchronous and semi-independent functional operators
that collectively create and modify memory traces as a result of experience. The model conforms
to relevant results in the learning Uterature of psychology and neurobiology. There are two goab to
this work: one b to create a set of working learning systems that will improve their performance on
the basb of experience, and the other b to compare these, systems' performance with that of Uving
systems, as a step towards the eventual comparative characterization of different learning systems.

Parts of the model have been implemented in the CEL-0 program, which operates in a 'Maze-
World' simulated maze environment. The program exhibits simple explorato^ behavior that leads
to the acqubition of predictive and discriminatory schemata. A number of interesting theoretical
predictions have arben in part from observation of the operation ofthe program, Mme ofwhich are
currently being tested in neurobiological experiments. In particular, some neurobiological evidence
for the exbtence of multiple, seperable memory systems in humans and animab b interpret^ in
terms of the model, and some new experiments are suggested arbing from the model's pr^ictions.

1. Introduction to the problem

1.1 Characterization of learning processes

The amnesic patient identified by hb initiab 'H.M.' b apparently incapable of learningany new
information; since the operation that removed a part of the limbic system of hb brain, he has been
unable to leam to recognize new people or situations. For instance, he re-introduces himself to hb
doctor Brenda Milner every time she vbits him, even though she has vbit^ him many times a week
for many years! In contrast, hb pre-operation memories appear not to be impaired, nor b hb ability
to carry on a relatively normal conversation or other everyday functions.

However, H.M. can acquire certain categories of new abilities. For instance, he has been tested
on the 'mirror-writing' task of writing while seeing only a mirror image of what he writes. Every
time the experimenter came in the room, once a day for several weeks, H.M. had to be re-introduced
to both the experimenter and the experiment, and insbted that he had ofcourse never seen either
before, and that he didn't know how to do this (mirror-writing) task. Ylet bis performance on the
task improved steadily over the several-week period; in fact, be learned tbe task at about tbe same
rate that control subjects did. When confronted with examples of hb poor early triab compared
with hb much-improved recent triab, he b unable to explain how the differences arose, and doesn't
remember ever performing those experiments.

These and other results in humans and animab have led inescapably to tbe hypothesb that there
are multiple memory systems, i.e., separable biological systems that semi-independently establbh
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loDff-tenn memories from experience. As suggested by H.M.'s behavior, the^ two systems have
distinct characteristics; i.e., each is only capable of learning certain types of information.

However an accurate cbaracterization of precisely wbicb tasks are learnable by which m^ha-
nism has proven elusive; there currently exist a number of competing neuropsychological hypotheses
characterizing the different memory systems (see e.g., /Sguire 1980; Squire, Cohen and Nadel 198S;
Mithkin 1982J).

A long-term goal of the research described here b to attempt to characterize these different
learning systems in terms of the types of learning behavior they produce. Our current subgoal js to
create a system in which the behavior of learning and memory systems can be charactenz^. We
hope to be able to build two different systems out of similar functional components, each of which
has a particular set of learning abilities. We would then be able to show what differences m the
models gave rise to the differences in learning abilities.

Recent research on learning and memory m Al has focused primarily on advanced human
abilities (see e.g., [Schank 198S; Schank and Burslein 1981; Lebowitz 1982; Kolodner 198S; Carbonell
1982- Langlen 1981, 1982; Mitchell 1981]). We have adapted some ideas on MOPs (Schank 198S]
and the indexing of E-MOPs (Kolodner 198Sa, 198SbJ to the tasks we are inodeling. Our focus
b on much lower-level domains of learning and memory, especially 'subcognitive' tasks that lower
mammab (e.g., rats) can learn. Thb has enabled us to concentrate our modeb on the processes
underlying learning and memory, rather than on complex memory structures; our approach has been
to attempt to identify a candidate set of mechanbms sufficient to allow the acqubition, storage and
retrieval of simple epbodic information, and to compare our results against experimental data on
learning and memory processes in animab.

A key point here b that these 'subcognitive' learning and memory tasks, as far below 'higher'
human abilities asthey are, are nonetheless still difficult and elusive, and therefore eminently worthy
of being the focus of an Al learning mechanbm. These and relat^ tasks have been extensively
studied by cognitive psychologists and neurobiologists in their experimental approaches to learning
and memory; yet their theories of human and animal learning and memory have been insufficiently
precbe to allow for the construction of computer modeb for testing the theories. Still missmg
b a bridge between Al models of learning, and psychological and neurobiological experiments on
learning.

1.2 Introduction to CEL

The CEL model of learning and memory (Granger 1982, 198Sa, 19SSbJ provides a process model
of the acquisition and operation of certain aspects of learning and memory in animab and humans.
The model conforms to constraints provided by relevant results in psychology, neuropsycholoR-
and neurobiology: a number of behavioral data are explained in terms of the model, and certain
specific theoretical lesions and modulations of the model predict behavioral effects that correspond
to observed behaviors in similarly manipulated animab.

Parts of the model have been implemented m a computer program called CEL-0. CEL-0 takes
as input a sequence of experiential sensory events coded in terms of sensory modality ^d feature
sets. The program operates on the inputs, building a memory database of information denved
from the input streams. Sample domains that have been worked on include (1) n simple feeding
microworld in which the model learns to predict (via classical conditioning) which events reliably
and predictably lead up to its being fed; (2) a 'maze' microworld in which the model explores and
learns (operantly) to identify where 'interesting' and rewarding areas of the maze are, and to cre^e
a simple 'cognitive map' (Tolman 19S2, O'Keefe and Nadel 1979]of the maze environment; and (3)
a 'puzzle-solving' microworld in which the model begins with knowledge of the possible set of moves
in a puzzle (currently Towers of Hanoi), and learns to perform the task correctly.

In the maze microworld, CEL-0 interacts with MazeWorld, a simulated 'maze environment'
program, that receives CEL-0 input moves, and returns a value indicating CEL-O's new l^ation in
the maze; hence, each move of CEL-0 causes 'feedback' from the simulated maze, which m turn
triggers CEL-O's next move.

Some of CEL-O's unexpected behavior in the MazeWorld has triggered some new theoretical
ideas which are presented here. For instance, we have identified seven different categories of leaping,
i e., seven different ways that new memory traces can be created in CEL-0, each corresponding to
a different 'calling sequence' of operators, each of which in turn swms to correspond to a logical



class of training situations that might arise in the real world. These seven classes of learning will be
briefly discussed in a later section of this paper.

Other examples of theoretical ideas that have arisen from working with the program in the
MazeWorld include: a mechanism for active 'exploratory behavior' during learning, a mechanism
for creating subgoals from goals during learning, acquisition of 'landmarks' during learning that serve
as useful index points, and a comparison of 'efficient' learned behavior vs. 'superstitious' learned
behavior, some of these are described in some detail in {Granger and McNultg 1984}.

Attempts to flnd detailed correspondences between the model and experimental data in neuro-
biology have sofar been fruitful. A number ofspecific predictions arising from work with the model
are in the disparate areas of selective attention, modulation of memory, and rapid forgetting and
learning deficits associated with certain limbic lesions ([Granger 198Sbj presents detailed analyses
of these three substantive areas of CEL's modeling efforts).

Thb paper will present first a description of GEL-O's behavior in the MazeWorld simulation,
and then a specific neurobiological prediction dealing with multiple memoiy systems; the pr^iction
is currently being tested ina neurobiological lab at the Center for the Neurobiology ofLearning and
Memory at Irvine.

2. Introduction to the model: The twelve CEL operators and their functions

The CEL model proposes a characterization of the constituent functional operators that com-
prbe learning processes, in the hope that these primitive operators may each have specific instanti
ations that can be identified in the neural substrate. The model identifies a set of twelve 'primitive'
memory operators which operate in parallel to collectively perform five classes of memory manip
ulation: reception, recording, retrieval, reconstruction and refinement. The model consbts of the
operation of these twelve operators on memory representations we term episodic schemata. De
tailed descriptions of the functions of these operators and theb (often nonintuitive) interactions are
provided in [Granger 1982, 198Sa, 198Sbj.

In brief, the twelve operators have the following functions:

• Reception operators:

DETECT• set of sensory input channels and any associated bard-wired preprocessing per-
fonned by those input channels, such as visual and auditory processing;

SELECT • 'tunable' input Biter to selectivelyattend to some inputs over others on the basis
of prior experience;

• Recording operators:

NOTICE • matches inputs against known desirable and undesirable states; triggers COL
LECT when a match occurs;

COLLECT • packages recent stream of inputs into a kernel episodic schema;
INDEX- creates new indices, and hooks into existing indices, for each new episodic

schema;

• Retrieval operators:

REMIND - matches inputs against indices for existing schemas; triggers ACTIVATE when
match occurs;

ACTIVATE - incorporates REMINDed schemas into current predicive schema,* triggers the
Reconstruction operators;

• Reconstruction operators:

ENACT • performs any efferent actions in current predictive schema; 'tunes' SELECTs
Slter to attend to predicted afferent events;

SYNTHESIZE - matches inputs against predicted events in current predictive schem^ triggers
ReSnement operators to modify schema in response to matches and mismatches;



• Refinement operators:

REINFORCE - incrementaily strengthens current scbema(ta) according to SYNTHESIZE's
judgment of its successful predictiveness (i.e., matches);

BRANCH • creates a branch in current scbema(ta) according to SYNTHESIZE's Judgment
of unsuccessful predictiveness (i.e., mismatches);

DETOUR • creates a non-pursuable branch in current schema according to NOTICEings of
undesirable events, predicted or not.

These operators act in parallel, asynchronously and semi-independently in the CEL model, and
complex interactions among them at run time enable these relatively straightforward operators to
give rise to a rich set of learning and memory behaviors.

3. A brief example of the operation of the cel-o program

3.1 Introduction to the CEL-O environment

The setting described here for CEL-O's operation is a relatively simple maze, that CEL-O moves
through by interacting with MazeWorld, a simulated 'maze environment' progr^. MazeWorld
receives CEL-O input moves, and returns a value indicating CEL-O's new location in the maze;
hence, each move of CEL-O causes 'feedback' from the simulated maze environment, which in turn
triggers CEL-O's next move. Following is a schematic view of the relatively simple MazeWorld maze
that we will use for the examples in this section; 'MO' is the entry point into the maze, and 'M4'
contains water, which will be used for a 'reward' under circumstances to be described later.

Ml M2

I
M3 *-* MS

©
The following sections describe a connected set of examples of CEL-O's operation in this maze.

The description will be in three phases:

Phase 1 ('Exploration' phase): CEL-O uses 'innate' (built-in) epbodic schemas to move through
the maze, establishing episodic traces corresponding to its 'routes' through the maze.

Phase 2 ('Effectiveness' phase): CEL-O has an added desired state (satisfy-thirst) that drives
its behavior; it searches for and finds a (not necessarily most efficient) route through the maze
to any location of water.

Phase 3 ('Efficiency' phase): CEL-O refines its already-effective routes through the maze to
reward locations. (This 'phase' b actually going on in pandlel with the other two).

In estrh phase, CEL-O's behavior can be described in terms of three Ibts: a sequence of CEL
operators, the corresponding sequence ofovert moves in the simulated environment (ifany), and the
corresponding additions or changes to long-term memory (if any).

In addition, Appendix A contains actual annotated run-time output of the CEL-O program
running a subset of the above maze (leaving off the Ml - M2 branch of the maze for simplicity).



3.2 CEL-o's exploratory behavior in MazeWorld

For the purposes of this example, CEL-0 will start at location MO in the maze, facing towards
M3. The internal representation is described in [Granger and McNulty 1984}; simply consists of
information about what views are in front of, to the right of, behind and to the left of the current
position of CEL-0 in the maze. Hence, the starting position has a view of M3 in front, walb to the
right and behind, and Ml to the left.

(Thb is an admittedly huge oversimplification ofa 'realbtic' maze situation, but it seems justi
fied for two important reasons: (1) selective attention to relevant features b the key thing that gets
slighted by thb oversimplification, and we have already done some analyses ofselective attention in
complex environments (see (Granger iQSShJ); and (2) there area number ofinteresting and complex
processing problems that arise even with thb simplification, and these problems would be difficult
to present without first simplifying away the selective attention problems for pedagogical reasons.)

Because of the extremely simplified inputs for thb example, DETECT and SELECT essentially
just attend to everything here; see [Granger 198SbJ ani the selective attention section in thb paper
for an explanation of how these operators become much more complex in the face of more complex
inputs.

Once SELECT has entered a representation into temporary memory, NOTICE attempts to
match it against desirable wd undesirable states, and REMIND attempts to match it against any
existing schemas that might be relevant to the situation. There are three built-in 'exploratory
schemas' in CEL-0, two of which get REMINDed by thb input. Each of the three schemas (ESl,
ES2 and ES3) is simply two events long, each corresponding to the 'impetus' to move in a particular
type of situation, essentially corresponding to the following sequences:

ESl: see front opening => go strmght
ES2: see obstruction ^ look around (360°)
ES3: see side opening turn towards opening

So at location MO, REMIND will find both ESl and ES3a, then ACTIVATE will have to choose
at most one of them to pursue; for this example let it choose ESl. (ACTIVATE in fact contains
a set of (currently six) 'preference metrics' th^ it uses to decide among proposed (REMINDed)
alternative schemas - [Granger and McNulty 1984] describe these in detail). ENACT and SYN
THESIZE then begin to reconstruct ESl. ENACT does so by performingany events in the schema,
amd SYNTHESIZE by comparing new inputs that result from successive ENACTed events agmnst
the 'predicted' inputs in the schema itself. SYNTHESIZE notes that the match between the event
and the more generalized representation in ESl is only a partial match, and because it's not an
exact match, cib BRANCH to create a new branch of the schema, and begins recording thb new
branch.

CEL-0 continues in this fashion, making the following moves through the maze: MO - M3 - M5
- M3 - MO - Ml - M2 - Ml - MO - M3 - M5 - M3 - M4 - M3 - MO - Ml - M2 - etc. An extensive
description and explanation of the operator sequences driving these moves can be found in [Granger
and McNulty 1984I-

Note that when M4 b arrived at, the fact that there is water there will cause a REMIND of
another innate (built-in) schema that essentially says when water b seen, drink it. However, thb
schema may not be reconstructively ENACTed unless ACTIVATE lets it be (or unless there are no
alternative schemas that get REMINDed); one of ACTIVATE's preference metricssays not to prefer
schemas that do not match any currently desirable state, as specified on the 'Desirable State Lbt'
(DSL).

3.3 Effective goal pursuit in CEL-0

The result of the 'exploration' phase is the creation of a number of schemas describing various
'routes' through the maze, indexed by their starting and ending positions (more detail on INDEX
b provided in [Granger 198Sbj ani [Granger and McNulty 1984J)-

In phase 2, we simply add a desired event to CEL-O's Desirable State Lbt (DSL) - thb is the lbt
that NOTICE matches incoming events against, and that ACTIVATE checks to see whether or not
to bother to ENACT a REMINDed schema. Hence, if we add 'drink water' to the DSL, CEL-0 will
now 'act thirsty', in the following three senses: (1) it will drink water if it sees any (via REMIND,
ACTIVATE and ENACT of the built-in schema that says when water is seen, drink it); (2) it will
tend to prefer sequences that lead to seeing water (via ACTIVATES preferencemetric for currentlyr
desirable states); and (3) it will store any sequences ofevents that lead to water (via NOTICE and



COLLECT). Hence, via all three of these mechanisms, CEL-O's memory will now contain schemas
that are 'effective' with respect to the achievement of its goal of finding and drinking water.

3.4 Active exploration by CEL-0: Sensitivity analysis

A schema that leads to M4 at the end of the exploration phase b: MO - M3 - M5 - M3 - M4.
Note that while effective, thb schema is not maximally etBcieat - it could simply go MO - M3 - M4.
The fact that it doesn't b simply an accident ofthe exploration phase (see Section 4.2below). CEL>0
has a process that causes schemas to be tested for their sensitivity to changes in the sequence; the
process makes multiple variations ofschemas by deleting various features or events from the event
sequence, and then tests the resulting variations for their effectiveness.

The process effectively establbhes a set of multiple internal 'hypotheses' as to which of the
features of the episode are the most critical and predictive. Hence, thb process amounts to a test of
the sensitivity of the new episode to changes in those feature. This process of testing episodes for
their sensitivity to changes b termed 'sensitivity analysb'. The following subsections briefly outline
the process.

3.4.1 Introduction to sensitivity nnnlysis

When the model senses an instance of an episode, say, a pursuit-type episode such as MO - M3
- M5 - M3 - M4, which results in some NOTICEd desirable state, that epbode b COLLECTed into
a long-term memory trace. The INDEX operator then begins to choose features of the events in
the epbode to use as indices, which will be used as recognition cues at retrio-al time, i.e., whenever
similar events happen subsequently. Depending on which features are chosen as indices, of course,
subsequent retrieval either will or will not tzie place based on the presence or absence of any
particular feature in the new input trace. Hence, the effective recognition of any new instance ofa
learned epbode b sensitive to the feature-indices that are created at INDEX time during recording
of the epbode.

During the establbhment of thesefeature indices on a new trace, the INDEX operator performs
a multi-step process which has the effect of creating multiple traces of the epbode, each with a
different feature or set of features deleted from the trace. The multiple versions of the epbode
that result from this processserve the purpose of enabling CEL-0 to test instances of the episode for
their sensitivity to changes in the constituents of the epbode; the long-term trace undergoes ongoing
modification and refinement depending on which versions oftheepbode turn out to accurately match
subsequent instances of the input stimuli.

Intuitively, what b happening b that the INDEX operator is hypothesizing a seriesof variations
of the instance of the epbode, implicitly predicting that theseversions might serveas useful predictors
of subsequent instances of the epbode. Those predictive hypotheses are tested each time the set
of variations of epbodes are retrieved and reconstructively compared to a new input instance (via
ENACT and SYNTHESIZE). In thb way, the sensitivity analysis process allows the model to learn
more than was contained in the single instance of the episode: it leams the ways in which that
epbodic instance might be sensitive to changes and variations. Furthermore, the process has the
effect ofrobustly reducing any dependance on the order ofpresentation of events, m^ing the model
eventually learn the same thingsabout the maze regardless of what order it happens to acquire them
in.

3.4.2 The five steps of sensitivity analysis

1. When a new long-term trace b written, INDEX'S first step b to search for any exbting feature
indict that match any features in the new trace. If so, then those indices are 'attached' to the
trace, i.e., each index now points to the new trace in addition to any other traces it may already
be pointing to.

2. For each sensory feature in the input, create a new index for that feature, that points to the
epbode.

3. For each feature-index pointing to the epbode, either found by step 1 or created by step 2,
begin creating variations of the episode by leaving out one or more of the features contained in
the initial copy. Each variation is written into memory as a 'near-mbs' copy of the epbode.

4. For each of the new episode-variations, search for an exbtmg index that has the new subset-
features of the variation; if found, attach it to the epbode.



5. For each feature-set index created, attempt to find others with subsets of the same features. For
each such index set found, create a new higher-level index (see [Granger 198SbJ), corresponding
to the shared features that points to each of the members of the index set.
The combined effect of these steps will be to create a growing set of indices pointing to the

episode, each of which will be triggered by a different set of feature cues at retrieval tirne. At the
same time, multiple copies of the epbode itself are being created, each a slight variation of the
others; i.e., no two are exactly alike. The indices will slowly become a hierarchical set, because
step 5 creates higher-level or 'second-order' indices, each of which points only to other indices (see
[Granger 198SbJ). For instance, 'template indices' are examples of higher indexes that contain only
event-sequence information, with specific sensory information deleted.

4. Some insights resulting from experience with cel-o

There are a number of difficulties that have arisen during the programming of CEL-O that
have the form of interesting theoretical problems that were not obvious until the implementation
difficulties arose. Some of these are discussed here, with the focus on the emergence of seven
categories of learning, based on seven different 'calling sequences' of GEL operators all of which are
capable of establishing or modifying a memory trace, i.e., learning.

4.1 Seven ways to establish a memory trace in GEL

The twelve GEL operators do not call each other serially; hence, although COLLECT is the
primary way for episodic traces to beestablished in permament memoiy, there are four distinct calling
sequences that may result in the creation of a new trace, each of which constitutes a category of
learning in GEL; in turn, these four categories have between them a number ofdifferent subcategories,
for a total of seven. These are listed here, followed by a set of brief descriptions and examples of
each subcategory.

Goal-based establishment:

1. pursuit of desirable result (Pursuit-based ieaming)
2. avoidance of undesirable result (Avoidance-based learning)

Expectation-based establishment:
1. match between expectation and environment (Success-driven learning)
2. mismatch between expectation and environment (Failure-driven learning)

Exploration-based establishment:
1. analysis of relevance of schema features (Sensitivity analysis)

Coincidence-based establishment:

1. schema activatedsimultaneously withnewly-created schema (Append-driven learning)
2. two schemas concurrently activated (Splice-driven learning)

4.1.1 Goal-based trace establishment

When the NOTICE operator finds that an incoming event matches something on either the
Desirable or Undesirable state list (DSL or USL) (see [Granger 198SbJ), NOTICE triggers the COL
LECT and INDEX operator to make a record of the sequence of events that led up to the desirable
or undesirable event.

Case one: Pursuit-based learning

In the desirable case, the INDEX operator simply indexes the sequence ofevents by SELECTed
features (see [Granger 198Sb]).



Case two: Avoidance-based learning

Id the undesirable case, INDEX calls the DETOUR operator to attempt to create a linkpointing
to potential alternatives to the undesirable result, so that that path won't be pursued in the future.
4.1.2Expectation-based trace establishmen(

While a schema is being reconstructively ENACTed after having been triggered (REMINDed
and ACTIVATEd) by some cue, the SYNTHESIZE operator is constantly matching incoming real-
world events against events in the schema (i.e., it is checking the Khema's implicit expectations).
Both matches and mismatches can cause new things to be written into memory.

Case three: success-driven learning

If SYNTHESIZE finds a match, then it calls REINFORCE to add 'strength' to the links pointing
to the successfully predictive schema.

Case four: failure-driven learning

If a mismatch b found, BRANCH b called to create a new link between the index and the
new sequence of events (whatever just actually happened), thereby effectively reducing the relative
strength of the link from the index to the previously-expected result.

4.1.3Exploration-based trace establishment

Apparent exploratory behavior by GEL arises from the operation of the 'sensitivity analysb'
procedure described above (and described in more depth in [Granger lOSSbf), combined with the
existence of thesetof simple 'exploratory schemata'. Recall that sensitivity anaJysb causes a number
of variations of each schema to be created, each of which will be tested and either strengthened or
weakened according to its success or failure. These will operate on the ^hemas collected during
CEL-O's 'wandering' through the maze, to refine the model's representation of pathways through
the maze, eliminate some i^undancies, and identify some 'landmarks' that make useful indices to
the set of pathways (see [Granger and McNultg 1984f\.

As it collects sequences of paths through pieces of the maze, sensitivity analysb refines them
by testing the rele\'ance of their consituent events.

Case five: Sensitivity analysis.

For instance, if an initial route through the maze is the sequence MO - M3 - M5 - M3 - M4,
a diminution of the route yields M3 - M5 - M3 - M4, which will work when the starting point is
M3. Further diminution causes the eventual creation of the route M3 - M4, which b actually an
improvement over the original in terms of efficiency, since it can get to the presumably desirable
state M4 without bothering to go through M5 and doubling back through M3. Note that in light of
this new schema, the initial five-step route can be viewed as 'superstitious" behavior; i.e., the model
b acting as though it 'thinks' that just because it went through M5 to get to M4 the first time,
it must do so on subsequent triab. It is crucial to note that efficiency is not always best; in fact,
mammab can be trained to repeat long sequences of otherwise 'superstitious' behavior, as long m
that behavior b rewarded, while any variations go unrewarded (see e.g., [Hilgard and Bower 1970/].

4.1.4 Coincidence-based trace establishment

There are two cases of 'coincidence' that can arise in the model; either an exbting schema gets
REMINDed during the COLLECTion of a new schema, or a schema gets REMINDed during the
ENACTing of another schema that has been previously REMINDed and ACTIVATExl.

Case six: Append-driven learning

If the model b COLLECTing a new schema that leads to, say, an undesirable result, such as an
unpleasant taste, that NOTICEd taste may simultaneously cause a REMIND of, say an innate 'gag
reflex' schema (i.e., it says to spit out after sensing a bad taste). In such a case, the INDEX (and
DETOUR) operators create index links to both the sequence of events leading up to the bad taste,
so that it might be avoided in the future, and to the sequence of events REMINDed by the event,
so that thb sequence might be substituted for the undesirable sequence the next time it happens;
this b an instance of an 'active avoidance' situation.

Case seven: Splice-driven learning

If the model b currently ENACTing an active schema, e.g., running a maze toward a food
reward, and during thb, another schema gets REMINDed (e.g., a light flash that b known to lead
to some different reward!, then both schemas are indexed together by the same initiating feature,
giving that feature addea predictive power.
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4.2 Note: Design decisions affecting CEL-O's performance

It should be noted here that a number of design decisions in CEL-0 (including the specifics of
the ACTIVATE preference metrics, the details of the built-in exploratory schemas, and the details
of the functions of theoperators, notably SYNTHESIZE, REMIND and ACTIVATE) will affect the
path it will take through the maze, and in many cases will affect whether or not the correct learning
will take place at all. We have been experimenting with versions of CEL-0 to see which changes cause
which behaviors, but we intend to continue to compare the resulting behaviors against the learning
literature wherever possible (see esp [Rescorla and Warner 107Sj), and to suggest new experiments
(and their predicted outcomes) when the literature doesn't provide the necessary data on some
specific point about how a rat, for instance, should run the maze. Section 5 of thb paper makes
some briefremarks about our useofsome results in animal learning as a 'requirements specification'
for CEL-O's performance; [Granger and McNuUy 1984] contains more discussion of this.

5. The neurobiology of multiple memory systems

5.1 The constellation of deficits in the amnesic syndrome

The patient H.M., like most other amnesics, exhibits a whole constellation of relat^ deficits.
The key deficit is the inability to consciously store new information, as described earlier in thb
paper. Two of the other major components of the overall amnesic syndrome are:

• Retrograde amnesia: H.M not only b incapable ofconsciously storing new information since hb
operation; he abo has lost some of the memories that happened to him immediately preceding
the operation, up to about two years before the operation, while memories older than that
remain unimpaired. This striking finding [Squire 1980} us used as evidence that memory con
solidation takes time (perhaps up to two years) before it becomes a permanent part ofmemory;
hence, perhaps memories that were still being consolidated at the time of the operation were
dbrupted, and never got firmly established as permanent memories.

• Rapid Forgetting: H.M. b able to carry on conversations, and perform other tasks of long
duration, as long as the task isn't interrupted; when interrupted for more than a few minutes,
he completely forgets where he was, and starts over again 'from scratch', e.g., he might then
have the exact same conversation all over again without realizing he's just done it.

5.2 Of rats and men

Thereare recently-discovered situations in which rats in a maze exhibit forms of learning previ
ously only attributed to primates and humans. 'Learning-set learning' refers to very rapid (usually
just a single trial) learning of new situations that are similar to previously-learned ones, i.e., the
animal seems to form a 'template' that it can use to expidite the learning of subsequent situations.
The rats' learning-set learning (LSL) system ^parently b entirely separable from its more standard,
slower 'associative learning' (AL) system - there are specific drugs and lesions that have been used
to entirely eliminate abilities associated with the LSI system without affecting the performance of
the AL system, and vice versa. Thb constitutes evidence that rats have multiple memory systems.

Furthermore, recent experimentation [Staubli and Lynch 1988} has shown that r^s can be
given amnesic symptoms strikingly similar to those in humans, by making corresponding lesions
to the hippocampus and another limbic structure, the thalamus. In particular, rats are trained to
select one of two odors for a water reward. Thb initially requires 50-100 tri^ before a minimal
criterion of leammg b met (i.e., associative learning (AL)). Over successive pairs ofodors, the rats'
behavior changes such that they come to learn the correct odor in subsequent odor-pairs in only 3-4
trials (learning-set learning (LSL)). Two forms of learning are thought to be involved: (1) abstract
'template-driven' (LSL-type) information about the task (e.g., the fact that it contains a 'correct'
and an 'incorrect' olfactory cue), and (2) specific memory (AL-type) as to which particular odor
was correct for a given pair.

One specific type of lesion (lesions of the connection between the dorsomedial nucleus (DMN)
of the thalamus and the frontal cortical system) eliminates the animab' ability to go from the many-
trial (AL) mode to the; subsequent rapid-learning (LSL) mode over successive pairs of odors. Thb



suggests that the rats are learning the specific memories for correct odors, but are (ailing to learn
the template information about the existence of correct and incorrect odors in each pair.

Disconnection or lesions of the hippocampus, on the other hand, produces an apparent inverse
of thb result, with a time-dependency as well; the rats acquire the rapid learning mode (i.e., they
appear to learn the abstract correct-incorrect information), but for any given pair of odors they
cannot recall the right specific odor (i.e., cannot perform the task) if delays of more than about
5 minutes are interposed between trials (i.e., a deficit similar to rapid forgetting). Hence it seems
that these rats are acquiring the abstract memory, but are failing to create a long-term trace of the
specific memory.

5.3 Interpretation of the data

What ability, i.e., what specific knowledge or process, is available to the rat the LSL situation,
but not in the AL situation, to enable template-driven learning? The problem for CEL (or for any
other model of learning and memory) in attempting to provide a consistent account of these results,
is that apparently the templates are learned but the specific memories leading to those templates are
lost We do not have a complete solution, but we have come up with a set of opposing hypotheses,
either of which could potentially explain the data. These opposing hypotheses have been used to
design an experiment that is currently being run to help further clarify the the question, and to
narrow down the set of possible consistent models of these two learning systems.

In the language of the CEL model, there are two classes of possible explanations: (1) the
hippocampal (AL) losses are due to a 'storage-side' failure to either COLLECT or INDEX the
specific information, or else (2) these losses are due to a 'retrieval-side' f^lure to correctly use the
specific odor memory to find the water reward; i.e., perhaps REMIND finds both the template
memory and the specific-odor memory, but ACTIVATE is not correctly using the specific-odor
memory to instantiate the template memory in order to find the reward.

The articulation of these two opposing possibilities has suggested an experiment to try to test
whether the specific odor was in fact present in memory at all. The memory seems not to show
up in the odor-choice situation, but if explanation (2) above is correct, then the memory may be
there but just not being used correctly in that situation. It turns out that there is a relatively
simple experimental methodology for testing for 'raw memories' like thb. Detaib are provided in
[Granjer 198Sbj, but briefiy, the experiment allows us to see whether a rat has any memory of a
particular event (such as a specific odor) or no memory of that event. That b, the rat's behavior
in the presence of some previously-seen event can be reliably dbtingubhed from its behavior in the
presence of an unrecognized event; hence, we should be able to tell whether or not the specific odor
b in memor>' or not. Thb experiment, described in [Granger 198SbJ, is currently being run at the
Center for the Neurobiology of Learning and Memory at Irvine.

If it turns out that the memory shows up in thb experiment, then we may hypothesize that
the deficit b on the retrieval side, that is, the memorj- b present, but it cannot be correctly used
to perform the choice behavior. In CEL terms, it is possible that ACTIVATE cannot instantiate
the memory' into the template that can use it to find the water reward. If, on the other hand, the
rats exhibit no recognition of the specific odors, we will hypothesize that the deficit may indeed be
a storage-side deficit, and we will have to attempt to alter the model to account for the loss of a
spcific memory after the creation of a template from it.

Either way, the CEL model will have aided in suggesting a key experiment that can deicde
the question of whether the rapid-forgetting phenomenon b a storage-side or a retrieval-side deficit.
This brings us a step closer to an understanding of the nature of the multiple (LSL and AL) learning
and memory systems.

6. Conclusions: Artificial and natural learning mechanisms

There exbt many theoretical questions in learning and memory that rely on the consbtent
interpretation of an almost bewildering array of interrelated experimental results. The field of
multiple memory systems is one particularly exciting current example of thb; a battle over the
characteristics of these systems b currently raging among memory researchers in the neurosciences
[Squire 1980; Squire, Cohen and Nadel 1982; Mithkin 1982; Tulving 1984J.

The search for consistent interpretations of these data can be aided by artificial modeb of
learning and memory, and, reciprocally, the development of consbtent models can be furthered by
the experimental testing of the modeb' predictions agunst natural learning systems. While it b
not necessary for an artificial learning system to precisely account for all av^able psychological
data on learning, it has happened time and again in AI that sincere attempts to provide consbtent
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interpretations of problematic psychological results have resulted in both better psychological theory
and richer and more productive computer systems.

There are certain specific processing problems that any learning system, natural or artificial,
must have a way of solving. We are trying to characterize some of those processing problems in
specific learning situations, in hopes of identifying the similarities among, and differences between,
different instances of learning systems. The CEL model has so far been helpful in identifying and
clarifying some of the possible theoretical interpretations of results in the area of multiple memory
systems. We hope that by continuing to iterate the loop from theoretical suggestion to experimental
result and back, we can further refine and narrow down the range ofpossible interpretations ofmul
tiple learning and memory systems, so that the study of artificial and natural learning mechanisms
can productively use each others' results.
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Apendix A

CZL-0 Runtime Output

The following if the ectuel output of CEL-O'f HAZEVORLD behavior. Three
'entitiea are functioning aimulteneoufly here. CEL-0, of course, is the
'program embodiment of the CEL Theory. The SUPERVISOR if the entity
'responsible for supervising CEL-O's activity in the maze. This is analogous
'to an experimenter supervising a rat as it negotiates a real-world
'maze. MAZEWORLD provides the interface to CEL-0 as it negotiates it's
'imaginary maze which is composed of four sections: M0-M1-M2 (M3 has the
- I

M3

'food). Each entity relates its activities after the individual heading.
'Author comments have been added for clarity. These are delineated
'by tildes ('"). To conserve space in this document, some parts of the
'output have been shortened and verbally summarized.

[DSKLOG started: 9-12-84 11:35 AM]

*(MAZE}
Initializing CEL's memory
**********

MAZEWORLD:

CEL-0 at MO facing NORTH 'CEL-0 is being placed at the start of the maze.
CEL-O's view is: ((FORWARD (WALL)} (RIGHT (Ml)) (RACK (WALL)) (LEFT (WALL)))

'There is an opening to CEL-O's right.

(ES4)

'Innate exploratory schemata are initialized.

"CEL-0 perceives the opening to the right.

'A remind of one of the innate schemata.

'Only one REMIND, thus one choice.

CEL-Q:

DETECTed: (VIEW (FORWARD (WALL))
(RIGHT (Ml))
(BACK (WALL))
(LEFT (WALL)))

REMINDed of: (ES4)
Keeping (ES4) on 'predictability'
Choosing a schema from this group:
(ES4) chosen as non-looping
ACTIVATing ES4
Enter reconstruction mode using:

'Of course, that one REMIND is activated.
(VIEW (FORWARD (*VAR* W))

(RIGHT (*OPENING* X))
(BACK (*VAR* Y))
(LEFT (*VAR* Z)))

(TURN (DIRECTION (RIGHT))
(ACTOR (ME)))

(MOVE (DIRECTION (FORWARD))
(ACTOR (ME)))

RC match on: (VIEW (FORWARD (WALL))
(RIGHT (Ml))
(BACK (WALL))
(LEFT (WALL)))

ENACTing: (TURN (DIRECTION (RIGHT))
(ACTOR (ME)))

sssasssss*

MAZEWORLD:

CEL-0 at MO facing NORTH
CEL-O's view is: ((FORWARD (WALL)) (RIGHT (Ml)) (BACK (WALL)) (LEFT (WALL)))
CEL-O's action number 1 is (TURN (DIRECTION (RIGHT))

(ACTOR (ME)))

'The instantiated first event is matched

'against the general 'opening to right'
'event of the predicted schema.

The predicted schema requires an
'efferent action on the part of CEL-0.



CIL-0:
DOTCTtd: (TDO (DIUCTIOI (RIGHT))

(ACTOR (ME)))
Mo RXMIIOt on Chit event
A ecbeBe ie ective, RZMIMDed of: ES4
Keeping (ES4) on 'predictebility'
Cbooiing e ecbemt froa tbie group: (ES4)
(ES4) cboeen ae non-looping
Continue RC vitb SS4 since already active
RC matcb on: (TDRM (DIRECTION (RIGHT))

(ACTOR (ME)))

HAZEWORLD:

CEL-0 at MO facing EAST
CEL-O's view is:

~CEL-0 is perceiving it's efferent act.

"Efferent acts are treated tbe

"tbe saae as afferents, tlut is,
"REMINDS can occur and SYNTHESIS
"takes place.

"Tbe efferent SMtcbes tbe next

"event in tbe predicted scbema.

~CEL-0 bas turned to tbe right.
((FORWARD (Ml)) (RIGHT (WALL)) (BACK (WALL)) (LEFT (WALL)))

"CEL-0 is now facing the opening.

CEL-0:

DETECTed: (VIEW (FORWARD (Ml))
(RIGHT (WALL))
(BACK (WALL))
(LEFT (WALL)))

REMINDed of: (ES2)
A schei&a is active, REMINDed of: ES4
Keeping (ES2 ES4) on 'predictability'
Choosing a schema from this group: (ES4)
(ES4) chosen as non-looping
Continue RC with ES4 since already active
ENACTing: (MOVE (DIRECTION (FORWARD))

(ACTOR (ME)))
**********

MAZEWORLD:

CEL-0 at MO facing EAST
CEL-O's view is: ((FORWARD (Ml)) (RIGHT (WALL)) (BACK (WALL)) (LEFT (WALL)))
CEL-O's action number 2 is (MOVE (DIRECTION (FORWARD))

(ACTOR (ME)))

"CEL-O bas perceived the new environment.

"The innate scbema for an opening forward.

"Both have tbe same predictive success.

"Preference is given to tbe
"currently ACTIVE scbema.

CEL-0:

DETECTed: (MOVE (DIRECTION (FORWARD))
(ACTOR (ME)))

REMINDed of: (ESll)
A scbema is active, REMINDed of: ES4
Keeping (ESII ES4) on 'predictability'
Choosing a scbema from this group: (ES4 ESll)
(ES4 ESll) chosen.as non-looping
Continue RC with ES4 since already active
RC matcb on: (MOVE (DIRECTION (FORWARD))

(ACTOR (ME)))
Successful match on ES4: (VIEW (FORWARD (*VAR* W))

(RIGHT (•OPENING* I))
(BACK (*VAR* Y))
(LEFT (•VAR* Z)))

(TORN (DIRECTION (RIGHT))
(ACTOR (ME)))

(MOVE (DIRECTION (FORWARD))
(ACTOR (ME)))

"This last predicted
"event is matched.

"The prediction was
"a success. All of the
"predicted elements
"were observed.

Inexact match - REINFORCE by 1
COLLECT triggered
INDEX triggered
INDEX triggered
INDEX triggered
INDEX triggered
INDEX triggered
INDEX triggered
Terminate reconatruction of ES4

"Memory will now reflect tbe previous success
"(predictive value) of this scbema.
"COLLECTing and INDEXing the specific events which have
"accumulated in short-term—memory. There will now be a
"specific, instantiated schema in memory corresponding to
"the more general, innate schema which was active. The amount
of INDEX activity indicates the sensitivity analys^is which

"is being performed. (Compressed from now on.)



MiZlVOKLO:

CEL-0 At Ml facing E4ST
CEL-O'a view is; ((FORHARD (M2)) (RIGHT (M3)) (BACK (MO)) (LEFT (WALL)))

CEL-0:

DETECTed: (VIEW (FORWARD (M2))
(RIGHT (M3))
(BACK (MO))
(LEFT (WALL)))

REMINDed of: (ESIO ES4 ES2)
Keeping (ES4) on 'predictability' 'The previous predictive success gave
Choosing a schesa from this group: (ES4) '£84 the edge over the others.
(ES4) chosen as non-looping
ACTIVATing ES4
Enter reconstruction mode using: (VIEW (FORWARD (*VAR* W))

(RIGHT (^OPENING* X))
(BACK (*VAR* Y))
(LEFT (*VAR* Z)))

(TURK (DIRECTION (RIGHT))
(ACTOR (ME)))

(MOVE (DIRECTION (FORWARD))
(ACTOR (ME)))

RC match on: (VIEW (FORWARD (M2))
(RIGHT (M3))
(BACK (MO))
(LEFT (WALL)))

ENACTing: (TURN (DIRECTION (RIGHT))
(ACTOR (ME)))

MAZEWORLD:

CEL-0 at Ml facing EAST
CEL-O's view is: ((FORWARD (M2)) (RIGHT (M3)) (BACK (MO)) (LEFT (WALL)))
CEL-O'b action number 3 is (TURN (DIRECTION (RIGHT))

(ACTOR (ME)))

CEL-0:

DETECTed: (TURN (DIRECTION (RIGHT))
(ACTOR (ME)))

REMINDed of: (ES16)
A schesu is active, REMINDed of: ES4
Keeping (ES4) on 'predictability'
Choosing a schema from this group: (ES4)
(ES4) chosen as non-looping
Continue RC with ES4 since already active
RC match on: (TURN (DIRECTION (RIGHT))

(ACTOR (ME)))

MAZEWORLD:

CEL-0 at Ml facing SOUTH
CEL-O's view is: ((FORWARD (M3)) (RIGHT (MO)) (BACK (WALL)) (LEFT (M2)))

CEL-0:

DETECTed: (VIEW (FORWARD (M3))
(RIGHT (MO))
(BACK (WALL))
(LEFT (M2)))

REMINDed of: (ES4 ES2 ES6)
A schema is active, REMINDed of: ES4
Keeping (ES4) on 'predictability'
Choosing a schema from this group: (ES4)
(ES4) chosen as non-looping
Continue RC with BS4 since already active
ENACTing: (INIVE (DIRECTION (FORWARD))

(ACTOR (ME)))



**********

MAZKHOKLO:

CKL-0 at Ml facing SOUTB
CZL-O'i viev la: ((FORVASD (M3}) (RIGHT (MO)) (BACK (HALL)) (LETT (M2)))
CEL-O'a action numbar 4 ia (MOVE (DIRECTIOI) (FORWARD))

(ACTOR (ME)))

Cel—0:

DETECTed: (MOVE (DIRECTIOI (FORWARD))
(ACTOR (ME)))

REMIMDed of: (ES19)
A ichema ia active, REMIMDed of: ES4
Keeping (ES4) on 'predictability'
Choosing a achema from thia group: (ES4)
(ES4) choaen aa non-looping
Continue RC with ES4 aince already active
RC match on: (MOVE (DIRECTIOM (FORWARD))

(ACTOR (ME)))
Succeaaful match on ES4: (VIEW (FORWARD (*VAR* W))

(RIGHT (*OPENING* X))
(BACK (*VAR* Y))
(LEFT (*VAR* Z)))

(TURK (DIRECTION (RIGHT))
(ACTOR (ME)))

(MOVE (DIRECTION (FORWARD))
(ACTOR (ME)))

Inexact match - REINFORCE by 1
COLLECT triggered
INDEX triggered
Terminate reconatruction of ES4

~More strength ia added to that achema
~to indicate atill another success.

Suamuirizing: CEL—0 continues in a similar manner throughout the rest of the
"maze until it haa perused all of the portions of the maze.

SUPERVISOR:

Exploration completed
CEL-0 used 9 moves to explore the maze
Nov CEL-0 vill do it again, vith a goal (i.e. hungry)

MAZEWORLD:

CEL-0 at MO facing NORTH "SUPERVISOR haa picked CEL-0 up and replaced it at
CEL-O'a view ia: ((FORWARD (WALL)) (RIGHT (Ml)) (BACK (WALL)) (LEFT (WALL)))

"the start of the maze. Thia time it starts hungry
"(i.e. satisfying hunger ia a desirable goal) and
~vith the knowledge of the maze it accumulated

***** "during exploration.
CEL-0:

DETECTed: (VIEW (FORWARD (WALL))
(RIGHT (Ml))
(BACK (WALL))
(LEFT (WALL)))

REMIMDed of: (BS4 ES14) "ES14 ia a achema created dring exploration.
Keeping (ES4) on 'predictability'
Choosing a achema from thia group: (ES4)
(ES4) choaen as non-looping
ACTIVATing BS4
Enter reconatruction mode using: (VIEW (FORWARD (*VAR* W))

(RIGHT (*OPENING* X))
(BACK (*VAR* Y))
(LEFT (*VAR* Z)))

(TURN (DIRECTION (RIGHT))
(ACTOR (ME)))

(MOVE (DIRECTION (FORWARD))
(ACTOR (ME)))

CEL-0 has nov seen all of the maze.



EC utch on: (VIEV (FOSHAED (KALL)}
(EIGHT (Ml))
(BACK (HALL))
(LEFT (HALL)})

EHAaing: (TUEB (DIEECTION (EIGHT))
(ACTOE (ME)))

MAZEVOELD:

CEL-0 at MO facing HOETH
CEL-O'f view ia: ((FOEWAED (WALL)) (EIGHT (Ml)) (BACK (WALL)) (LEFT (WALL)))
CEL-O'a action nuaber 1 is (TUEM (DIEECTION (EIGHT))

(ACTOE (ME)))

CEL-0:

DETECTed: (TURN (DIRECTION (RIGHT))
(ACTOR (ME)))

REMINDed of: (ES64)
A schema is active, REMINDed of: ES4
Keeping (ES4) on 'predictability'
Choosing a schema from this group: (ES4)
(ES4) chosen as non-looping
Continue EC with ES4 since already active
EC match on: (TURN (DIRECTION (RIGHT))

(ACTOR (ME)))

MAZEWORLD:

CEL-0 at MO facing EAST
CEL-O's view is: ((FORWARD (Ml)) (RIGHT (WALL)) (BACK (WALL)) (LEFT (WALL)))

CEL-0:

DETECTed: (VIEW (FORWARD (Ml))
(RIGHT (WALL))
(BACK (WALL))
(LEFT (WALL)))

REMINDed of: (ES2 ES32)
A schema is active, REMINDed of: ES4
ES32 has a desirable outcome "The result of seeing food previously.
Enter reconstruction mode using: (VIEW (FORWARD (Ml)) "This overrides the

(RIGHT (WALL)) "superior predictive
(BACK (WALL)) "value of ES4.
(LEFT (WALL)))

(MOVE (DIEECTION (FORWARD))
(ACTOE (ME)))

(VIEW (FORWARD (M2))
(EIGHT (M3))
(BACK (MO))
(LEFT (WALL)))

(TURN (DIEECTION (RIGHT))
(ACTOR (ME)))

(VIEW (FORWARD (M3))
(RIGHT (MO))
(BACK (WALL))
(LEFT (M2)))

(MOVE (DIRECTION (FORWARD))
(ACTOE (ME)))

(VIEW (FORWARD (FOOD))
(RIGHT (WALL))
(BACK (Ml))
(LEFT (WALL)))

RC match on: (VIEW (FORWARD (Ml))
(EIGHT (WALL))
(BACK (WALL))
(LEFT (WALL)))

ENACTing: (MOVE (DIEECTION (FORWARD))
(ACTOE (ME)))



lyLZEHORLS:

CEL-0 at MO facing EAST
CEL-O'a view ia: ((FORHARD (Ml)) (RIGHT (HALL)) (BACl (HALL)) (LEFT (HALL)))
CEL-O's action number 2 ia (MOVE (DIRECTIOH (FORHARD))

(ACrrOR (ME)))

CEL-0:

DETECTed: (MOVE (DIRECTIOH (FORHARD))
(ACTOR (ME)))

REMIHDed of: (ES67)
A acheaa ia active, REMIHDed of: ES32
ES32 haa a deairable outcome

RC match on: (MOVE (DIRECTION (FORHARD))
(ACTOR (ME)))

MAZEHORLD:

CEL-0 at Ml facing EAST
CEL-O'a view ia: ((FORHARD (M2)) (RIGHT (M3)) (BACK (MO)) (LEFT (HALL)))

CEL-0:

DETECTed: (VIEH (FORWARD (M2))
(RIGHT (M3))
(BACK (MO))
(LEFT (HALL)))

REMIHDed of: (ESIO ES4 ES2 ES66)
A achema ia active, REMIHDed of: ES32
ES32 has a desirable outcome
RC match on: (VIEH (FORHARD (M2))

(RIGHT (M3))
(BACK (MO))
(LEFT (HALL)))

ENACTing: (TDRH (DIRECTION (RIGHT))
(ACTOR (ME)))

MAZEHORLD:

CEL-0 at Ml facing EAST
CEL-O^a view ia: ((FORWARD (M2)) (RIGHT (M3)) (BACK (MO)) (LEFT (HALL)))
CEL-0 a action number 3 ia (TURK (DIRECTIOH (RIGHT))

(ACTOR (ME)))
mtwww

CEL-0:

DETECTed: (TURN (DIRECTION (RIGHT))
(ACTOR (ME)))

REMIHDed of: (ES64)
A achaa ia active, REMIHDed of: ES32
ES32 haa a deairable outcome
RC match on: (TDRH (DIRECTIOH (RIGHT))

(ACTOR (ME)))

MAZEHORLD:

CEL-0 at Ml facing SOUTH
CE^'a view ia: ((FORWARD (M3)) (RIGHT (MO)) (BACK (HALL)) (LEFT (M2)))

CEL-O:

DETECTed: (VIEW (FORHARD (M3))
(RIGHT (MO))
(BACK (HALL))
(LEFT (M2)))

REMIHDed of: (BS40 ES4 ES2 ES6)
A achema ia active, REMIHDed of: ES32
ES32 haa a deairable outcome
RC match on: (VIEW (FORHARD (M3))

(RIGHT (MO))
(BACK (HALL))
(LEFT (M2)))

EHACTing: (MOVE (DIRECTIOH (FORWARD))
(ACTOR (ME)))



lUZEHORLO:

CEL-0 «t Ml facing SOUTH
CEL-O'a view ia: ((FOEHARD (M3)) (RIGHT (MO)) (BACK (HALL)) (LEFT (M2)))
CEL-O'a action niabcr 4 ia (MOVE (DIRECTIOH (FOEHARD))

(ACTOR (ME)))

CEL-O:

DETECTed: (MOVE (DIRECTION (FORWARD))
(ACTOR (ME)))

REMIMDed of: (ES67)
A achema ia active, REMINDed of: ES32
ES32 has a desirable outcome

RC match on: (MOVE (DIRECTION (FORWARD))
(ACTOR (ME)))

HAZEWORLD:

CEL-O at M3 facing SOUTH
C^'a view is: ((FORWARD (FOOD)) (RIGHT (WALL)) (BACK (Ml)) (LEFT (WALL)))

CEL-O:

DETECTed: (VIEW (FORWARD (FOOD)) "CEL-O has found the food.
(RIGHT (WALL))
(BACK (Ml))
(LEFT (WALL)))

NOTICE triggered on the last event
COLLECT triggered
INDEX triggered
REMINDed of: (ES79 ESIO ES2 ES12)
A achema ia active, REMINDed of: ES32
ES32 has a desirable outcome
RC match on: (VIEW (FORWARD (FOOD))

(RIGHT (WALL))
(BACK (Ml))
(LEFT (WALL)))

Successful match on ES32: (VIEW (FORWARD (Ml))
(RIGHT (WALL))
(BACK (WALL))
(LEFT (WALL)))

(MOVE (DIRECTION (FORWARD))
(ACTOR (ME)))

(VIEW (FORWARD (M2))
(RIGHT (M3))
(BACK (MO))
(LEFT (WALL)))

(TURN (DIRECTION (RIGHT))
(ACTOR (ME)))

(VIEW (FORWARD (M3))
(RIGHT (MO))
(BACK (WALL))
(LEFT (M2)))

(MOVE (DIRECTION (FORWARD))
(ACTOR (ME)))

(VIEW (FORWARD (FOOD))
(RIGHT (WALL))
(BACK (Ml))
(LEFT (WALL)))



laeucc Batch - EEI5?0RCE by 1 The etrength of ES32 is incresssd to
COLLECT "reflect it's predictive success.
IHDEX triggered
Termiuste reconstructioa of ES32

HAZEWOKLD:

CEL-0 St M3 facing SOUTB
CEL-O's viev is: ((fORWAU) (FOOD)) (RIGHT (HALL)) (RACK (Ml)) (LEFT (WALL)))

CEL-0:

DETECTed: (VIEW (FORWARD (FOOD))
(RIGHT (WALL))
(BACK (Ml))
(LEFT (WALL)))

NOTICE triggered on the last event
COLLECT triggered
INDE2 triggered
REMINDed of: (ES103 ESIO ES2 ES12)
ES12 has a desirable outcome This time CEL-0 is hungry.
Enter reconstruction mode using: (VIEW (FORWARD (FOOD))

(RIGHT (*VAR* X))
(LEFT (*VAR* Y))
(BACK (*VAR* Z)))

(TASTE (OBJECT (FOOD))
(ACTOR (ME)))

RC match on: (VIEW (FORWARD (FOOD))
(RIGHT (WALL))
(BACK (Ml))
(LEFT (WALL)))

ENACTing: (TASTE (OBJECT (FOOD))
(ACTOR (ME)))

**********

SUPERVISOR:

CEL has successfully negotiated the maze
It took CEL-0 4 moves to find the food
NIL

♦(LOGOUT)

[DSKLOG finished: 9-12-84 11:42 AM]




