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Abstract

Despite gradual progress over the past decades, the simulation of progressive damage in composite 

laminates remains a challenging task, in part due to inherent uncertainties of material properties. 

This paper combines three computational methods — finite element analysis (FEA), machine 

learning and Markov Chain Monte Carlo — to estimate the probability density of FEA input 

parameters while accounting for the variation of mechanical properties. First, 15,000 FEA 

simulations of open-hole tension tests are carried out with randomly varying input parameters by 

applying continuum damage mechanics material models. This synthetically-generated data is then 

used to train and validate a neural network consisting of five hidden layers and 32 nodes per layer 

to develop a highly efficient surrogate model. With this surrogate model and the incorporation of 

statistical test data from experiments, the application of Markov Chain Monte Carlo algorithms 

enables Bayesian parameter estimation to learn the probability density of input parameters for the 

simulation of progressive damage evolution in fibre reinforced composites. This methodology is 

validated against various open-hole tension test geometries enabling the determination of virtual 

design allowables.
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1. Introduction

Despite many superior properties of Fibre Reinforced Polymers (FRPs) such as high 

strength-to-weight ratio or damage resistance, these materials typically suffer from 

a wide range of variability in their mechanical properties. These variations mainly 

arise from manufacturing-induced defects and imperfections such as fibre misalignment, 

inhomogeneous fibre volume fraction and local wrinkling [1]. Even state-of-the-art 

automated manufacturing processes such as automated fibre placement or tape laying induce 

defects resulting in a wide range of mechanical properties in the final composite product 

[2,3].

It is important to acknowledge these variations in properties when designing FRP 

composites. Therefore, statistical material data is required beyond simple average values [4]. 

For the certification of FRP composites in structural aerospace applications, industry must 

rely on the building-block approach for which comprehensive and costly testing programs 

must be undertaken in order to guarantee safe and reliable use of FRP composite structures 

and to obtain statistically meaningful properties. Design allowables evaluate confidence 

intervals to account for uncertainties and to include safety factors [5]. Depending on the 

application, some structural design allowables require empirical determination at higher 

testing levels at the sub-component or component level of the building block as they may be 

dependent on design geometry and specific manufacturing processes [6].

Finite element (FE) simulations promise a significant reduction in cost and time to 

develop and deploy lightweight FRP materials by predicting their mechanical behaviour 

before manufacturing and physical testing. FE models enable the simulation of large-scale 

structures at higher levels of the building block. Progressive damage simulation of FRP 

composites by means of Finite Element Analysis (FEA) has matured over the past couple of 

decades [7]. Various damage modelling techniques are nowadays available as built-in tools 

in commercial FE software packages ranging from continuum damage mechanics-based 

material models [8–10] to discrete techniques such as the cohesive zone method [11,12] or 

X-FEM [13].

The particular focus of the current work is Continuum Damage Mechanics (CDM) which 

incorporates damage in a smeared manner through the progressive reduction of the local 

material stiffness while maintaining the continuity of the FE mesh. The first CDM-based 

simulations of FRP composites date back to early 1990’s [14,15]. Due to its ease of 

implementation and computational efficiency, CDM has become a popular framework for 

the prediction of damage progression. Examples of applications of CDM to FRPs are the 

simulation of axial crushing of braided tubes [16,17], the prediction of fibre-kinking [18] or 

the simulation of notched laminates under tension [19–21].

Reiner et al. Page 2

Compos Struct. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Irrespective of the preferred damage modelling technique, one key question is how to 

consider the inherent uncertainties and variabilities in mechanical properties of FRP 

composites [22]. One method to include uncertainty into FE modelling of FRP composites is 

to model the inputs as random variables with specific probability densities. As an example, 

normal or Weibull distributions are assumed for fibre diameters or strength values depending 

on the length scale of interest in [23–25]. Uncertainty can also be incorporated into FEA 

by considering spatial variability throughout the FE mesh [26]. For example, Bavel et al. 

[1] assume spatial distributions for fibre misalignment, fibre volume fraction and fibre 

strength to simulate FRP composites subjected to tensile loads. Although some of the 

chosen distributions can be well justified through experimental measurements and physical 

observation, most of the uncertainty models on FRP composites require a-priori knowledge 

of these distributions [27].

A more general approach to model uncertainty of the inputs is to take a Bayesian 

perspective, which considers parameters to be random variables without assigning a 

particular probability density to them. Bayesian parameter estimation aims to determine the 

unknown probability density function (pdf) for each input parameter, called the posterior 
density, henceforth called the posterior, based on the available statistical data (ideally 

from physical tests). The advantage of Bayesian approaches comes from their ability to 

characterise the entire posterior and, thus, to quantify the uncertainty in parameter estimates 

via credible intervals [28–30]. Markov Chain Monte Carlo (MCMC) is one of the most 

popular methods for Bayesian parameter estimation. In order to efficiently characterise 

posteriors, MCMC algorithms construct a Markov chain of parameter samples that will be 

distributed according to the posterior in the long-sample limit. A frequent bottleneck when 

using MCMC is the need for a large number of model evaluations. Thus, high-fidelity FEA 

models alone are not efficient enough to be used inside Bayesian methods when expecting 

a reasonable turnaround time or given a limited computational budget. Therefore, this paper 

develops FE-informed Machine Learning (ML) surrogate models for FRP composites on the 

basis of previous work by the authors [31–33]. These ML surrogates provide fast model 

evaluations, making it feasible to apply Bayesian parameter estimation for the simulation of 

progressive damage in FRP composites.

Many fields across computational science, engineering and statistics develop and apply 

Bayesian methods [28,29,34,35]; however, few works in materials science have applied 

Bayesian parameter estimation. For example, Adeli et al. [36] calibrated a visco-plastic 

damage model to simulate metallic structures. Similarly, Joshi et al. [37] investigated 

the Bayesian estimation of hyperelastic properties, while Wu et al. [38] identified input 

parameters for a phase field damage model to simulate cement mortar materials.

This paper combines three computational methods — FEA, ML, and MCMC — to find 

the probability density of each FE input parameter to simulate the statistical response of 

FRP composites subjected to open-hole tensile tests. Easy-to-use and built-in features in 

commercial and open-source software are used in each computational method. The novelty 

and impact of the work lies in the unique combination of the three methods applied to 

FRP composites. Fig. 1 provides a graphical overview describing the interplay between 

the different methods. Section 2 outlines Bayesian parameter estimation and describes each 
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computational method. The results of the Bayesian estimation of input parameters are shown 

in Section 3 and are validated in Section 4. The discussion in Section 5 focuses on benefits 

and limitations of this study, and future work is concluded in Section 6.

2. Methodology

This section describes the underlying theories and computational methods to enable 

Bayesian parameter estimation for the simulation of progressive damage in FRP composites. 

In Section 2.1, we discuss Bayes’ rule that is at the core of learning the posterior of the 

parameters. Section 2.2 describes the statistical test data obtained from open-hole tensile 

tests of FRP composites. The three computational methods — FEA, ML, and MCMC — are 

presented in Sections 2.3–2.5, respectively.

2.1. Bayes’ rule

Given random input parameters θ = (θ1, θ2,…)T of a CDM-based FE model, Bayesian 

parameter estimation determines the posterior pdf p(θ|y) of the inputs conditioned on the 

data. In this work, the test data y is given by statistical results obtained from experimental 

open-hole tension tests on FRP composites. The posterior density can be calculated by 

Bayes’ rule [29,39] as

p(θ ∣ y) = p(θ)p(y ∣ θ)
p(y) (1)

where p(θ) is the prior density, henceforth called the prior, and p(y|θ) the likelihood 

function. Under the assumption that the data follow a normal distribution y ~  (μ, Σ), 

with mean μ and covariance Σ, the likelihood function becomes

p(y ∣ θ) = N((y − ℳ(θ)), Σ), (2)

where ℳ(θ) is the model evaluation (and later we will use ℳFEA(θ) and ℳML(θ) to 

distinguish between FEM and ML models). The probability of the test data p(y) can be 

treated as a normalising factor because it does not depend on θ.

2.2. Test data

The test data y is retrieved from the statistical test program on Open-Hole Tension (OHT) 

tests on IM7/8552 Carbon Fibre Reinforced Polymers (CFRPs) as part of the Composites 

Material Handbook CMH-17, see [6]. A standard OHT sample after testing is shown in Fig. 

2(a) alongside the corresponding stress–strain curve in Fig. 2(b). Typically, CFRPs show 

brittle failure with a linear elastic increase in stress before failing abruptly. Due to such 

brittle behaviour, only strength data SOHT is recorded.

As part of the comprehensive CMH-17 test program in [6], 30 samples of quasi-isotropic 

[45/0/ − 45/90]2s IM7/8552 laminates from seven batches were subjected to OHT tests at 

room temperature. Fig. 3 shows the spread of OHT strength values obtained from these 30 

tests. A normal distribution y ~  (417, 14.7) is fitted to this data with a mean of 417 

MPa and a standard deviation of 14.7 MPa (3.54% CoV). This data provides the statistical 

experimental results to evaluate Eq. (1).

Reiner et al. Page 4

Compos Struct. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.3. Finite element analysis

The quasi-isotropic [45/0/ − 45/90]2s CFRP laminate is modelled using the isotropic coupled 

damage-plasticity material model MAT81 in the commercial FE software LS-DYNA. As 

inputs, the model requires elastic laminate properties such as Young’s modulus E and 

Poisson’s ratio ν as well as damage properties such as yield stress σpeak and damage 

evolution parameters as a function of the effective plastic strain. Here, we consider linear 

softening where the post-peak response is characterised by the fracture energy Gf. This 

results in a representative stress–strain relation shown in Fig. 4. It is assumed that damage 

initiation at the damage initiation strain εi coincides with the onset of yielding in order 

to replicate brittle damage without the presence of plasticity. This assumption is motivated 

by the inherently brittle failure behaviour of FRPs. Therefore the four input parameters 

E, ν, εi and Gf are sufficient to define this laminate-based progressive damage model. 

This is similar to the manner in which the MAT81 material model in LS-DYNA was used 

in previous studies involving progressive damage simulation of quasi-isotropic composite 

laminates [10,31,32,41–44].

Fig. 5 shows the geometry and mesh of the FE model with the prescribed boundary 

conditions to simulate OHT tests of the quasi-isotropic [45/0/−45/90]2s IM7/8552 laminates. 

The size of the FE mesh as shown in Fig. 5 is 1 mm × 1 mm around the expected 

damage zone which is consistent with previously validated models [10,32]. One shell 

element through the thickness is sufficient to describe the laminate response. A prescribed 

displacement is imposed on one edge along the width of the OHT sample while the nodes at 

the opposite edge are fully constrained.

A single simulation with the described FE model in Fig. 5 takes around 2–3 min on 

eight CPUs. This is significantly faster than the physical test. However, considering that 

MCMC algorithms need a large number, often 1000s – 100,000s, of iterations (each 

requiring a model evaluation) to converge to the posterior density given in Eq. (1) [45], 

FE model evaluations ℳFEA become too expensive and time-consuming for this task. More 

computationally-efficient simulation techniques are required to determine the probability 

density of FE input parameters given OHT test data. Therefore, we develop FE-informed 

ML surrogate models to speed up the model evaluations.

2.4. Machine learning surrogate model

The likelihood function p(y|θ) relates the input data θ to the OHT strength y. The FEA 

model ℳFEA described in the previous section is able to relate these features through 

numerical solutions of the governing partial differential equations. This ensures that the 

results are physically meaningful. However, the FEA approach is not fast enough to enable 

the large number of model evaluations or sampling required for MCMC. This motivates the 

use of data-driven and ML methods ℳML such as surrogate models that are constructed on 

the basis of physically meaningful FEA results.

To train and validate ML surrogate models for FRP composites, a large FEA dataset of 

around 10,000 simulation results is required based on previous investigations of combining 

ML and FEA for compact tension and compact compression tests [31,32]. Note that this 
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required dataset is still large, but is significantly less than the 100,000s of evaluations 

demanded by MCMC. Moreover, the training dataset can be computed in parallel.

Assuming a fixed value of Poisson’s ratio ν = 0.32 (c.f., [31,32]), there are three input 

parameter parameters: E, εi and Gf. These parameters θ = (E, εi, Gf)T are varied within 

15,000 FE simulations to establish a relation between θ and the simulated OHT strength y 
by training of neural networks. Fig. 6 shows the assumed prior probability density functions 

for each of these parameters. The normal distribution of the laminate elastic modulus E ~ 

(62000, 1700) with a mean of 62,000 MPa and a standard deviation of 1700 MPa is known 

from statistical experiments of the CMH-17 test program [6]. The other two probability 

densities for εi and Gf are not known and therefore we assign them uniform distributions 

(uninformative priors) with a wide range to avoid biasing the results towards particular 

parameter values.

The chosen feed-forward neural network for ML depicted in Fig. 7 consists of five hidden 

layers and 32 nodes per layer. An ML code developed at the University of Washington, 

CompML (Composites Machine Learning), is utilised [46,47]. The CompML code is written 

in python and based on the Tensorflow and Keras libraries with several modules for data 

generation, training, prediction, and visualisation of data. The ML hyper-parameters for 

this work are listed in Table 1. The selection of the hyper-parameters as well as the 

neural network architecture is done via a grid search by varying all parameters such as 

the optimisation algorithm and the learning rate listed in Table 1.

We deploy the ML surrogate model ℳML to compute 15,000 input–output pairs (linking 

input parameters with open-hole strength SOHT), which requires about 0.6 s. With this 

increased efficiency, the surrogate model ℳML (θ) can be used for MCMC to estimate the 

posterior p(θ|y) according to Eq. (1). Specifically, we replace the FE model ℳFEA in Eq. 

(2) with the ML surrogate model ℳML to accelerate likelihood evaluations, and therefore, 

enable MCMC.

2.5. Markov chain Monte Carlo

Markov chain Monte Carlo algorithms are constructed to draw samples from the Bayesian 

posterior p(θ|y). In particular, the MCMC algorithm aims to solve Eq. (1) by considering 

the priors p(θ) of the input parameters θ = (E, εi, Gf)T shown in Fig. 6 and the test data y 
in Fig. 3. Note that our choice of prior assumes that the three parameters are independent. 

MCMC algorithms evaluate a stochastic process to generate a Markov chain of samples. 

In the limit of infinite samples, the samples in the Markov chain are distributed according 

to the posterior. The chosen MCMC algorithm in this work is the EMCEE Hammer [45] 

implementation of the affine invariant ensemble sampler (AIES) [48]. The AIES algorithm 

uses an ensemble of interacting random walks to effectively sample anisotropic posteriors. 

This fits the setting in this work where the values of the input parameters span several 

orders of magnitude. The EMCEE implementation of AIES can easily handle ML surrogate 

models for parameter estimation. The number of interacting random walks, referred to as the 

number of chains, is set to 30.

Reiner et al. Page 6

Compos Struct. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MCMC algorithms iteratively draw samples from a proposed probability density (which has 

to be specified) that are accepted or rejected according to their posterior probability [29]. 

The distribution of the set of accepted samples converges to the posterior as the number 

of samples increases. In practice, the total number of samples to draw and those that are 

discarded to account for initialisation (termed burn-in length [29,35]) must be determined 

by the user. In [45,48], the integrated autocorrelation time (IACT), an approximation of 

how quickly samples in a Markov chain decorrelate, is introduced as a metric for MCMC 

convergence. In this work, the IACT is computed every 100 iterations of the AIES algorithm 

and the algorithm is stopped when the total number of samples is greater than 100 times 

the computed steady state IACT. Here, the steady state IACT is found by checking whether 

the computed IACT is within 1% of the previous value. In our simulation, the steady state 

IACT is 88, and thus, AIES is stopped after 8,800 iterations. Lastly, the burn-in length is 

chosen to be 200, and therefore the first 200 iterations of AIES are discarded to ensure that 

the remaining set of samples does not reflect algorithm initialisation. Overall, this yields 

258,000 samples from the posterior, and required that many evaluations of the ML surrogate 

model.

3. Results

We first perform a global sensitivity analysis of the 15,000 FE results (linking input 

parameters with open-hole strength SOHT) to quantify the identifiability of the input 

parameters. We follow the global sensitivity analysis proposed by Li et al. [49], which 

yields sensitivity indices that rank the importance of system inputs. Due to the assumption 

that the three input parameters are independent, we obtain a single sensitivity index for each 

input parameter listed in Table 2. A high sensitivity index (sensitivity indices are between 

0% and 100%) means that this parameter has a strong influence on the predicted SOHT and 

is therefore more likely to be practically identifiable from measurements of SOHT [30,50]. 

Table 2 shows that the damage initiation strain εi with a sensitivity index of 93% is likely 

identifiable with the given FEA data while the laminate modulus E and the fracture energy 

Gf with sensitivity indices of 1% and 5%, respectively, are likely unidentifiable.

The results of the interacting random walks in MCMC for each input parameter θ = (E, εi, 

Gf)T are shown in Fig. 8. It can be seen that the MCMC algorithm draws samples across 

the specified range for the parameters associated with the laminate modulus E and fracture 

energy Gf assuming a normal and uniform prior, respectively. In contrast, the MCMC 

algorithm only explores a fraction of the uniform prior εi V(0.6, 3.0) for the input parameter 

associated with the damage initiation strain εi. As mentioned in Section 2.5, we consider 

the MCMC algorithm converged when the IACT is within 1% of the previously calculated 

value.

Based on the 258,000 samples generated by MCMC, Fig. 9 compares the priors p(θ) and 

the obtained posteriors p(θ|y) of each input parameter from evaluations of the ML surrogate 

model ℳML (θ) given the experimental test data y in Fig. 3. The normal prior of the laminate 

modulus E is based on experimental measurements [6]. Fig. 9(a) shows that this normal 

prior is carried through the three computational methods FEA, ML and MCMC resulting in 

an identical normally distributed posterior. The posterior for the damage initiation strain εi 
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in Fig. 9(b) shows a clear trend with the majority of strain values obtained from MCMC 

samples ranging between 0.6% and 1.2%. This is vastly different from the uniform prior 

εi V(0.6, 3.0) and highlights the significance of this parameter for simulating the open-hole 

strength tests of FRP composites. The MCMC results with respect to the posterior of the 

laminate fracture energy Gf in Fig. 9(c) do not place high probabilities on specific values of 

Gf. While slightly more samples are drawn with energy values in the range 60–80 kJ/m2, the 

resulting posterior resembles the uniform prior. More details about these findings and their 

correlation to the sensitivity indices shown in Table 2 are discussed in Section 5.

We randomly select 4000 parameter vectors θi from the MCMC samples and evaluate the 

trained ML surrogate model ℳML at each of the samples. Fig. 10 shows a comparison 

between the underlying experimental data y and the calculated OHT strength values given 

the posteriors of input parameters in Fig. 9. The good match between experiments and 

MCMC results indicate that the Bayesian estimation of input parameters was successful 

and that the resulting simulations can replicate the experimental distribution of open-hole 

strength data. However, it is important to validate these findings against experimental 

measurements in different test configurations. In Section 4 we apply the posteriors shown in 

Fig. 9 to FE simulations of OHT tests with different geometries compared to the one shown 

in Fig. 5.

Fig. 11 illustrates the correlation among the three parameters (E, εi and Gf) of the 

posterior samples. The two-dimensional histograms highlight the shape and intensity of 

each correlation. To further quantify these correlations, we calculate Pearson’s Correlation 

Coefficient (PCC), a measure of correlation between two random variables X and Y , defined 

as

ρX, Y ≔ σXY

σXσY
. (3)

Here, the covariance between X and Y  is denoted by σXY  and σX and σY  denote the standard 

deviation of X and Y , respectively. Values of PCC that satisfy ρX, Y ≈ ± 1 indicate strong 

correlation between variables X and Y  whereas ρX, Y ≈ 0 indicates no correlation at all. 

By analysing Fig. 11 and the corresponding PCC values, we observe that the damage 

initiation strain εi and fracture energy Gf are correlated with a PCC value ρεi, Gf = − 0.69. In 

contrast, modulus E and damage initiation strain εi are weakly correlated with a PCC value 

ρE, εi = − 0.35 while Gf and E are not significantly correlated (ρGf, E = − 0.05).

4. Validation

In each of the two validation cases presented below, 4000 random MCMC samples are 

drawn to cover the estimated parameter vector θ = (E, εi, Gf)T for the three input parameters 

shown in Fig. 9. The FE model described in Section 2.3 applies these input parameters to 

evaluate the distribution of the resulting open-hole strength values for different specimen 

geometries. Recall that the FE mesh consists of 1 mm × 1 mm elements with one shell 

element through the thickness. Fig. 12 summarises the differences in OHT specimen 
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geometries of two validation cases compared to the specimen dimensions used for the 

Bayesian parameter estimations shown in Fig. 5.

4.1. Case I - change in geometry

The first validation example involves a slight change to the sample geometry shown in Fig. 

12. While the underlying experimental data used to infer Bayesian parameter estimates was 

obtained from 36 mm wide OHT test samples with a 6 mm hole diameter, this case evaluates 

open-hole strength in 38.1 mm wide test samples with hole diameters of 6.35 mm. Note that 

the width-to-hole ratio remains the same.

Fig. 13 compares the two probability density functions obtained from experiments reported 

in [51] and 4000 FEA simulations. The experimental data is generated by 19 samples from 

three different manufacturing batches [51] using the same IM7/8552 CFRP laminates with 

areal density of 190 g/m2 as described in Section 2. The good qualitative match between 

simulation and experiments shown in Fig. 13 is confirmed by comparing quantitative data to 

the mean and coefficient of variation of the open-hole strength values. Table 3 highlights that 

both quantitative measures can be accurately simulated with differences of less than 1%.

4.2. Case II - size effects

The second validation case investigates the size effects in scaled OHT tests. Green et al. [40] 

studied three different OHT geometries, here referred to as small, medium and large. The 

dimensions of each configuration are listed in Table 4 and illustrated in Fig. 12.

When comparing the simulation results to experimental findings in this section, it is 

important to note two differences from the previous validation case in Section 4.1 and 

the underlying experimental data for the Bayesian parameter estimation in Sections 2 and 

3. First, the experimental data obtained from Green et al. [40] refers to quasi-isotropic 

IM7/8552 CFRP laminates with areal density of 134 g/m2 instead of previously considered 

laminates with areal density of 190 g/m2. Second, the width-to-hole ratio in the OHT 

samples shown in Table 4 and Fig. 12 is five compared to previously investigated samples 

with a width-to-hole ratio of six.

Fig. 14 shows the results of the open-hole strength simulations for the small, medium and 

large test specimens considering 4000 random MCMC samples obtained from the Bayesian 

estimation in Section 3. It can be seen that the simulations of the medium and large-scale 

test samples in Fig. 14(b) and (c) follow a normal distribution with mean open-hole strength 

values of 398 MPa and 347 MPa, respectively. While the simulation results of the small 

OHT test samples align with a Poisson-like distribution, a best-fit normal distribution with 

mean OHT strength of 434 MPa is considered in Fig. 14(a) to enable a direct comparison to 

experimentally measured data.

Table 5 compares these simulation results to experimental measurements. The mean values 

and coefficient of variation for the experimental data are calculated based on six tested 

specimens for each geometric configuration (small, medium and large) [40]. Note that 

the simulations are trained on a slightly different material system with higher areal 

density which can alter the simulation of ultimate OHT strength values. Nonetheless, the 
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comparison in Table 5 shows that Bayesian-based FEA simulations can estimate the mean 

OHT strength values and coefficients of variations with reasonable accuracy. It is interesting 

to observe that the simulations consistently result in strength predictions that are around 

7%–9% lower than experimental values.

Based on the data-rich FEA evaluations of open-hole strength values shown in Fig. 14, it is 

possible to create meaningful boxplot graphs and to calculate virtual design allowables. Fig. 

15 shows the corresponding results for the small, medium and large OHT test cases. The 

boxplots visualise the mean value in solid orange lines and the surrounding box indicates the 

25th and 75th percentile of the open-hole strength data obtained from the Bayesian-based 

FEA simulations. Compared to the experimental data from Green et al. [40] shown in Table 

5, the simulated 75th percentile of open-hole strength simulations aligns with the mean value 

obtained from experiments. For the design and certification of composites, design allowables 

play a central role. Typical measures are the A- and B-Basis allowables which means that at 

least 99% or 90% of the test data yield strength values equal to or higher than this tolerance 

with 95% confidence, respectively. Fig. 15 shows these design allowables for each OHT 

test case with simulated A-Basis allowables of 378 MPa, 364 MPa and 315 MPa for the 

small, medium and large test geometry, respectively. Similarly, the B-Basis allowables are 

397 MPa, 379 MPa and 328 MPa.

5. Discussion

This paper combines science-based simulation (FEA in Section 2.3) with data-driven 

surrogate modelling (ML in Section 2.4) and probabilistic parameter estimation (MCMC 

in Section 2.5). Thereby, each computational technique uses readily available built-in tools 

in commercial and open-source software. The novelty of the presented work lies at the 

intersection of these three fields through the development of a complete workflow to 

incorporate uncertainty into efficient FE simulation of progressive damage in composite 

laminates. In the following, various aspects are discussed about benefits, limitations and 

resulting future research avenues.

5.1. Need for machine learning surrogate model

The laminate-based FE simulation of progressive damage in Section 2.3 enables real-time or 

even faster-than-real-time evaluations of physical mechanical tests. Here, one simulation of 

an open-hole tension test only takes 2–3 min on a conventional computer with eight CPUs.

As outlined in Section 2.5, the MCMC algorithm required the evaluation of 258,000 

simulations. A direct coupling of MCMC with FEA would result in a computation time 

of approximately one year. The parallelisation of MCMC evaluations could speed up such 

direct coupling. While it is possible to paralellise the affine invariant ensemble sampler 

presented in Section 2.5, such parallelisations are nontrivial and would require access 

to high performance computing systems for FEA models. Most MCMC algorithms are 

generally not parallelisable as they rely on a single random walk through the parameter 

space. Section 5.5 discusses possible future extensions of the presented algorithms, 

including the potential for parallelisable MCMC.
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The inefficient direct coupling of MCMC with FEA motivates the inclusion of data-driven 

surrogate modelling in form of ML outlined in Section 2.4. In this work, 15,000 FE 

simulations train and validate a feed-forward neural network consisting of five hidden layers 

and 32 nodes per layer. Evaluating the ML surrogate model ℳML 258,000 times requires 

only 10 s. The MCMC algorithm including this efficient ML surrogate model completed in 

1 h and 28 minutes on a conventional laptop (MacBook Pro with a 2.6 GHz Intel Core i7 

processor).

5.2. Validation examples

It is challenging to find suitable experimental studies in the literature with sufficient test 

repetition and batch variation for the validation of the Bayesian-based simulation results. 

At best, studies present the mean value and standard deviation of open-hole tests with a 

limited number of test repetition. The Bayesian calibration here is based on 30 samples of 

IM7/8552 laminates made from seven batches [6] which promises a statistically meaningful 

representation of uncertainty and hence a valid calibration process.

Similarly, validation case I in Section 4.1 considers 19 samples from three manufacturing 

batches of the same material system. Despite the good match between experiments and 

Bayesian-based FEA simulations presented in Fig. 13 and Table 3 with differences of less 

than 1%, it should be noted that the OHT specimen geometries shown in Fig. 12(a) share a 

width-to-hole ratio of 6 and have similar hole diameters of 6 mm and 6.35 mm, respectively.

Therefore, a second validation case in Section 4.2 is investigated including three different 

OHT test geometries shown in Fig. 12(b). Table 5 and Fig. 15 show that the mean 

OHT strength between simulations and experiments differ by 7%–9%. The reason for 

this larger discrepancy is the slightly different material system with areal density of 134 

g/m2 compared to the laminates with areal density of 190 /m2 used for the Bayesian-based 

calibration. This can be seen best when comparing the validation cases in Fig. 12 where 

the medium OHT geometry from case II resembles the geometries from case I with the 

only difference being the width-to-hole ratio of 6 and 5 for validation cases I and II, 

respectively. The mean open-hole strength values from experiments are 406.8 MPa (see 

Table 3) and 433 MPa (see Table 5) for cases I and II, respectively. This is a difference 

of about 6%–7%. Considering that a higher width-to-hole ratio increases the OHT strength 

according to theoretical estimates [52], experimental studies [53,54] and simulations [10], 

the measured OHT strength of 433 MPa in case II can be expected to increase at a 

width-to-hole ratio of six to equal the OHT geometry from validation case I. Therefore, 

the discrepancy between simulations and experiments of 7%–9% in validation case II stems 

from the differences in material response due to different areal densities. Hence, validation 

case II further demonstrates the accuracy of the Bayesian-based calibration results where 

mean OHT strength values are expected to be around 6%–10% lower than experimental data 

due to the difference in areal densities.

5.3. Posterior probability density function of input parameters

One of the novelties of the presented study is the generation of probability densities for 

input parameters instead of finding fixed deterministic values (e.g., a mean, mode, or 
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most probable point). The posteriors of the three input parameters for the laminate-based 

simulation of progressive damage in composites shown in Fig. 9 take vastly different shapes 

and ranges.

Experimental results suggest that the laminate modulus E follows a normal distribution, 

see Section 2.4 and [6]. This led us to define the prior as a normal distribution, and the 

resulting posterior remained normal, see Fig. 9(a). The unchanged posterior confirms the 

results obtained from the sensitivity analysis shown in Table 2 where we found that the 

laminate modulus E is likely unidentifiable with a low sensitivity index of 1%. Since the 

test data y shown Fig. 3 only contains open-hole strength values, it can be expected that the 

laminate modulus E is not influential. If statistical data of entire stress–strain curves from 

open-hole tests were considered, the laminate modulus E would be more influential, and 

therefore identifiable, as it governs the slope of the stress–strain curve.

The significant peak in the posterior for the damage initiation strain εi in Fig. 9(b) is 

expected as OHT tests are known to be strength-driven with brittle failure behaviour as 

indicated in the stress–strain curve shown in Fig. 2(b). This also explains the posterior 

of the laminate fracture energy Gf in Fig. 9(c) without any clear trend indicating that the 

consideration of this input parameter is less significant compared to the input for damage 

initiation strains εi. These findings again align well with the results obtained from the 

sensitivity analysis shown in Table 2. The significant peak in the posterior of the damage 

initiation strain εi correlates with its high sensitivity index of 93%. Similarly, the low 

sensitivity index of 5% for the fracture energy Gf explains its almost unchanged posterior 

results compared to the prior uniform pdf. An interesting future study should involve 

statistically meaningful mechanical tests that lead to a more progressive type of damage 

evolution such as compact tension tests [41] to investigate whether the posteriors of the input 

parameters are sensitive to the underlying mechanical tests.

5.4. Virtual design allowables

As mentioned in Section 1, design allowables play an important role during the design 

and certification of composites. The determination of such allowables requires large and 

costly test programs at the coupon level with limited use at higher levels of the building 

block at the sub-component or the component level [6]. The large data obtained from 4000 

Bayesian-based FE simulations allows calculating meaningful virtual design allowables as 

seen in Fig. 15.

Moreover, these FE simulations can be used to virtually move up the building block to 

investigate large-scale components while accounting for inherent material uncertainties 

of composites. Instead of empirical estimations at the structural level, the Bayesian 

approach presented here promises to seemingly transition from coupon-level studies to more 

application-relevant test cases without neglecting the typical range mechanical properties in 

composites.
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5.5. Increasing complexity in models and methods

As mentioned before, each computational method uses built-in tools readily available 

in commercial and open-source software. Future work will investigate the potential of 

including more sophisticated models and methods.

The presented laminate-based FEA model yields fast simulation results with a minimal 

number of input parameters as shown in the bi-linear stress–strain curve in Fig. 4. More 

sophisticated continuum damage models with multi-linear softening curves [31,32] can 

increase simulation accuracy, however, it also increases the number of input parameters to 

be calibrated [20]. One major drawback of the laminate-based FEA model is that it neglects 

delamination as an explicit failure mode. Here, this can be justified by fibre-dominant 

failure mechanisms of dispersed quasi-isotropic [45/0/ − 45/90]2s CFRP laminates subjected 

to in-plane loads [41]. Other loading scenarios (such as low-velocity impact [42,44]) or 

stacking sequences (such as blocked [454/04/−454/904]s laminates [55]) may trigger an 

extended amount of delamination. More sophisticated continuum-discrete FEA models can 

incorporate such interlaminar failure modes at the cost of increased computation time and 

increased number of input parameters. Since the presented combination of FEA, ML and 

MCMC relies on large datasets and hence efficient evaluations of models, the computational 

cost is an important factor. When considering more costly FEA models, the number of ML 

training/validation data has to be reduced.

While the ML approach identified in this study connects inputs (i.e. selected features) to a 

single output (OHT strength), it is possible to train such models for any desired outcome. 

For example, previously, for compact compression tests, the authors trained recurrent neural 

networks [31], capable of predicting the entire load–displacement curve with high accuracy. 

Building upon the results in this study, such an approach can be implemented for predicting 

additional parameters other than a single strength value. In addition, by implementing other 

ML algorithms such as Gaussian Process Regression, the number of required FE simulations 

for training may be significantly reduced from the 15,000 used in this study [56,57]. This 

can further increase the efficiency of the current approach.

One major drawback of MCMC algorithms is their high demand for likelihood evaluations 

to find posteriors. The direct coupling ℳFEA of FEA with MCMC failed due to the lack of 

parallelisation as discussed in Section 5.1. The EMCEE Hammer [45] implementation of 

the MCMC algorithm used in this work contains a modified version that allows, in theory, 

to parallelise the evaluation of the sampling algorithm. Furthermore, alternative methods 

to MCMC, such as randomise-then-optimise [58] and variational inference [59] have been 

used to provide approximate solutions to Eq. (1) for high-dimensional PDE models. In 

addition to the need for many model evaluations, correlations between model parameters can 

increase the number of iterations needed for convergence [29]. While the standard approach 

is to increase the number of MCMC iterations, which is more than feasible when using 

an ML surrogate ℳML as in this work, other MCMC algorithms that exploit the geometry 

of the likelihood function, such as Hamiltonian Monte Carlo [60], can reduce the number 

of required iterations. Besides choosing an alternative MCMC sampler, known correlations 

between parameters can be accounted for by selecting a prior that assumes dependent 
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parameters. One example of such a prior is a multivariate Gaussian distribution where the 

covariance matrix can be chosen to reflect known correlation between parameters.

6. Conclusion

This paper presents a multi-disciplinary computational approach to estimate input 

parameters for the finite element simulation of progressive damage in composite laminates 

accounting for inherent uncertainties. The input parameters are modelled as random 

variables and Bayes’ rule is applied to learn their probability densities from given 

statistical test data of the outputs. Finite element informed neural networks provide highly 

efficient surrogate models to execute Markov Chain Monte Carlo algorithms for the 

Bayesian estimation of model parameters. We investigate open-hole tension tests of quasi-

isotropic IM7/8552 carbon fibre reinforced polymers. The numerical results show that the 

combination of finite element analysis, machine learning, and Markov Chain Monte Carlo 

can find physically meaningful probability densities for each model input parameter. The 

results are successfully validated against a range of experimental test data alongside the 

virtual calculation of design allowables. Future work should include the consideration of 

mechanical tests other than open-hole tensions tests, for example compact tension tests, to 

determine a general set of probabilistic input parameters for the finite element simulation of 

progressive damage in composites and the incorporation of uncertainties.
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Fig. 1. 
Graphical overview describing the combination of three computational methods—FEA, 

ML, and MCMC—to account for uncertainties in progressive damage analyses of FRP 

composites.
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Fig. 2. 
Example of (a) failed test sample [40] and (b) typical stress–strain curve obtained from 

open-hole tension tests of fibre reinforced laminates.
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Fig. 3. 
Strength evaluation of Open-Hole Tension (OHT) tests of quasi-isotropic [45/0/ − 45/90]2s 

IM7/8552 carbon fibre reinforced polymers [6] with 6 mm hole diameter.
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Fig. 4. 
Illustration of required input parameters consisting of elastic modulus E, damage initiation 

strain εi and fracture energy Gf for the finite element simulation of progressive laminate-

based damage.
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Fig. 5. 
Finite element mesh, dimensions and boundary conditions used to simulate quasi-isotropic 

[45/0/ − 45/90]2s IM7/8552 carbon fibre reinforced polymer laminates subjected to open-

hole tension tests.
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Fig. 6. 
Prior probability density functions (pdf) for each input parameter to apply Bayes’ rule in Eq. 

(1). All parameters are assumed to be independent.
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Fig. 7. 
Illustration of feed-forward neural network consisting of five hidden layers and 32 nodes 

per layer to create efficient machine learning surrogate model linking input parameters with 

open-hole strength SOHT.
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Fig. 8. 
Results of interacting random walks through the parameter space θ = (E, εi, Gf)T in Markov 

Chain Monte Carlo (MCMC).
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Fig. 9. 
Comparison between prior and posterior for each input parameter obtained from Bayes’ rule 

in Eq. (1).
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Fig. 10. 
Comparison between 4000 random MCMC samples generated by the machine learning 

surrogate model and the underlying normally distributed experimental data used for 

Bayesian parameter estimation.
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Fig. 11. 
The two-dimensional histograms illustrate the shape and intensity of the correlation among 

input parameters of the posterior samples. We include the Pearson’s Correlation Coefficient 

(PCC) ρX,Y from Eq. (3) in the figure captions.
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Fig. 12. 
Illustration of different open-hole tension test geometries for the validation cases of FE 

simulations using Bayesian-based parameters.
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Fig. 13. 
Comparison between experimental [51] and simulated open-hole strength values SOHT in 

quasi-isotropic [45/0/ − 45/90]2s IM7/8552 carbon fibre reinforced polymers with 6.35 mm 

hole diameter.
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Fig. 14. 
Distribution of simulated strength SOHT in open-hole tension tests with small, medium and 

large test specimens.
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Fig. 15. 
Statistical analysis and virtual design allowables from Bayesian-based finite element 

simulation of size effects in open-hole tension tests. Orange solid lines indicate mean values 

and the surrounding box indicates the 25th and 75th percentile of the open-hole strength 

data.
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Table 1

Hyper parameters for training of feed-forward neural network depicted in Figure 7.

ML hyper parameter for training Value

Training datapoints 10,500

Validation datapoints 4,500

Activation function ReLU

Hidden layers 5

Nodes per layer 32

Optimiser (Adam) learning rate 0.0005

Regulariser (L2) weight 0.001

Training epochs 1,000

Batch size 200
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Table 2

Results of sensitivity analysis to rank identifiability of the FE input parameters.

E ɛi Gf

Sensitivity Index 1% 93% 5%

Compos Struct. Author manuscript; available in PMC 2024 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Reiner et al. Page 35

Table 3

Quantitative comparison between experiments [51] and Bayesian-based finite element simulations of open-

hole tension tests.

Experiments [51] Simulations Difference (%)

Mean Open-hole strength (MPa) 406.8 403.4 0.8

Coefficient of variation (%) 3.98 3.53 0.4
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Table 4

Dimensions of open-hole tension (OHT) specimens [40] in mm considered for validation case II.

Hole diameter D Gauge width W Gauge length L

Small/Medium/Large 3.2/6.4/12.7 16/32/64 64/128/254
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Table 5

Quantitative comparison between experiments [40] and Bayesian-based finite element analysis for the 

simulation of size effects in open-hole tension tests.

Mean Open-hole strength (MPa) Coefficient of variation (%)

OHT test case Experiments [40] Simulations Experiments [40] Simulations

Small 478 434 (−9%) 3.09 7.25

Medium 433 398 (−8%) 2.03 3.66

Large 374 347 (−7%) 1.01 4.05
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