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1 | INTRODUCTION

While ecological speciation has been documented for almost
three decades across a wide variety of organisms on land (Case
& Willis, 2008; Feder et al., 1994; Jiggins, 2008; Martin et al.,
2013; Schluter, 2009; Seehausen et al., 2008; Sorenson, Sefc, &
Payne, 2003; Thorpe, Surget-Groba, & Johansson, 2010; Waser

Abstract

The fluid nature of the ocean, combined with planktonic dispersal of marine larvae,
lowers physical barriers to gene flow. However, divergence can still occur despite gene
flow if strong selection acts on populations occupying different ecological niches.
Here, we examined the population genomics of an ectoparasitic snail, Coralliophila
violacea (Kiener 1836), that specializes on Porites corals in the Indo-Pacific. Previous
genetic analyses revealed two sympatric lineages associated with different coral
hosts. In this study, we examined the mechanisms promoting and maintaining the
snails’ adaptation to their coral hosts. Genome-wide single nucleotide polymorphism
(SNP) data from type Il restriction site-associated DNA (2b-RAD) sequencing re-
vealed two differentiated clusters of C. violacea that were largely concordant with
coral host, consistent with previous genetic results. However, the presence of some
admixed genotypes indicates gene flow from one lineage to the other. Combined,
these results suggest that differentiation between host-associated lineages of C. vio-
lacea is occurring in the face of ongoing gene flow, requiring strong selection. Indeed,
2.7% of all SNP loci were outlier loci (73/2,718), indicative of divergence with gene

flow, driven by adaptation of each C. violacea lineage to their specific coral hosts.
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& Campbell, 2004) and in freshwater (Hatfield & Schluter, 1999;
Langerhans, Gifford, & Joseph, 2007; Puebla, 2009; Seehausen
et al., 2008; Seehausen & Wagner, 2014), ecological speciation
in the ocean was thought to be rare, and only recently has that
viewpoint begun to change (Bird, Fernandez-Silva, Skillings, &
Toonen, 2012; Bird, Holland, Bowen, & Toonen, 2011; Bowen,
Rocha, Toonen, Karl, & ToBo Laboratory, 2013; Foote & Morin,
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2015; Hurt, Silliman, Anker, & Knowlton, 2013; Ingram, 2010;
Litsios et al., 2012; Rocha, Robertson, Roman, & Bowen, 2005).
There are a number of reasons for this reassessment. First, ab-
solute physical barriers in the sea are exceedingly rare (Ludt &
Rocha, 2015; Rocha & Bowen, 2008; Rocha et al., 2005). As a
result, speciation must often proceed with varying levels of gene
flow and aided by divergent selection in different habitats or
hosts (Palumbi, 1994). Second, the strong interspecific interac-
tions that can promote ecological speciation in terrestrial spe-
cies (e.g., host-parasite, mutualisms) are also common in certain
marine ecosystems (Blackall, Wilson, & van Oppen, 2015; Stella,
Jones, & Pratchett, 2010). For example, reef-building corals have
tight ecological associations with a wide variety of invertebrate
taxa (Zann, 1987), including ~900 named species of sponges, co-
pepods, barnacles, crabs, shrimp, worms, bivalves, nudibranchs,
and snails (reviewed by Stella et al., 2010). This wide array of
symbiotic relationships creates tremendous potential for host
shifting and the development of host specificity that can lead to
sympatric speciation.

Evidence from traditional genetic markers (i.e., microsatel-
lites, RFLPs, allozymes, nuclear, mitochondrial, and ribosomal
genes) demonstrates the potential for ecological speciation in ma-
rine taxa exhibiting symbiotic relationships (Bowen et al., 2013;
Miglietta, Faucci, & Santini, 2011; Peijnenburg & Goetze, 2013;
Potkamp & Fransen, 2019), including amphipods on macroalgae
(Sotka, 2005), coral-dwelling barnacles (Tsang, Chan, Shih, Chu,
& Allen Chen, 2009), coral-eating nudibranchs (Faucci, Toonen, &
Hadfield, 2007; Fritts-Penniman, Gosliner, Mahardika, & Barber,
2020), parasitic snails (Gittenberger & Gittenberger, 2011;

Reijnen, Hoeksema, & Gittenberger, 2010), anemone-associated
shrimp (Hurt et al., 2013), anemone fish (Litsios et al., 2012), and
coral-dwelling gobies (Duchene, Klanten, Munday, Herler, & van
Herwerden, 2013; Munday, van Herwerden, & Dudgeon, 2004).

While encouraging, there are gaps in our knowledge that with the
expansion of genomic technologies, we are now in a position to
begin to fill. Detecting signatures of natural selection in popula-
tions where there is likely ongoing gene flow is now possible using
genome-wide data, lending insight into the mechanisms of ecolog-
ical speciation (Bernal, Gaither, Simison, & Rocha, 2017; Campbell,
Poelstra, & Yoder, 2018; Puebla, Bermingham, & McMillan, 2014;
Westram et al., 2018). To date, however, no studies examining the
genomic signatures of ecological divergence in marine host-para-
site systems have been conducted.

The ~6 million km? Coral Triangle region is home to over 500
species of reef-building corals (Veron et al., 2011) and thousands of
unique species of fishes and invertebrates (Barber & Boyce, 2006;
Briggs, 2003), making it the global center of marine biodiversity
(Cowman & Bellwood, 2011; Hoeksema, 2007). Most of the litera-
ture examining the evolution of this biodiversity hotspot has focused
on allopatric processes such as divergence across geological and
oceanographic features such as the Sunda Shelf or Halmahera Eddy
during Pleistocene low sea levels stands (for reviews, see Barber,
Cheng, Erdmann, Tenggardjaja, & Ambariyanto 2011; Carpenter et
al., 2011; Gaither & Rocha, 2013). Allopatric divergence is clearly an
important factor in the biodiversity of the Coral Triangle. However,
the extraordinary diversity in this region, combined with the preva-
lence of strong species-species interactions on coral reefs, makes it
likely that ecological speciation also contributes to the evolution of
biodiversity in this hotspot.

The marine snail, Coralliophila violacea (Figure 1), is an obligate
ectoparasite, living, feeding, and reproducing exclusively on corals
in Poritidae, a highly abundant and diverse coral family (Kitahara,
Cairns, Stolarski, Blair, & Miller, 2010), which is found in shallow
reefs across the tropical Indo-Pacific. The snails attach themselves
to their host, form feeding aggregations, and drain energy from

their host as it tries to repair damaged tissues (Oren, Brickner, &

FIGURE 1 Violet coral snails, (a)
Coralliophila violacea (Kiener, 1836), are
obligate ectoparasites of corals in the
family Poritidae. Their shells are usually
fouled with crustose coralline algae
because of their sedentary lifestyle,
making them difficult to spot on their
host corals. They are commonly found
living among the branches of species
such as (b) Porites cylindrica and can form
aggregations on massive coral species like
(c) P. lobata. (Photos by S.E. Simmonds)
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TABLE 1 Coralliophila violacea collection locations, latitude, longitude, coral host species, and number of samples collected

Coral host species

Location Country Province Latitude Longitude Porites lobata Porites cylindrica
1. Pemuteran Indonesia Bali -8.1400 114.6540 - 7
2. Nusa Penida Indonesia Bali -8.6750 115.5130 11 10
3. Pulau Mengyatan Indonesia East Nusa Tenggara -8.5570 119.6850 4 3
4. Lembeh Indonesia North Sulawesi 1.4790 125.2510
5. Bunaken Indonesia North Sulawesi 1.6120 124.7830 9
6. Dumaguete Philippines Negros Oriental 9.3320 123.3120 2
Total N 33 34

Loya, 1998). They are sequential hermaphrodites, a common trait
of parasitic mollusks (Heller, 1993), and breed with conspecifics on
their host coral colony. Two genetically distinct lineages of C. vio-
lacea occur sympatrically on reefs of the Coral Triangle, but each
lineage occupies one of two groups of Porites corals, suggesting
ecological divergence (Simmonds et al., 2018). A lack of evidence
of genetic structure within each lineage of C. violacea inside the
Coral Triangle precludes physical isolation as an explanation for
the observed divergence. Host specificity commonly results from
preferential larval settlement (Ritson-Williams, Shjegstad, & Paul,
2003, 2007, 2009). This genetic evidence combined with observa-
tions of adult preference for specific coral hosts (unpubl. data S.

Simmonds) strongly suggests ecological divergence driven by host
association.

To determine where diverging populations of C. violacea lie
on the continuum of the speciation process (i.e., host-associ-
ated lineages, sibling species or good species), it is important to
examine patterns of realized gene flow between the divergent
coral host-associated lineages. Effective contemporary gene
flow should result in linkage disequilibria between host-associ-
ated marker loci in populations utilizing different hosts. However,
if lower rates of gene flow (<1% per generation) are found, then
populations should be considered incipient species (Drés & Mallet,
2002; Malausa et al., 2007).

C)

Coral Triangle

%

FIGURE 2 Collection locations for Coralliophila violacea from coral host species Porites lobata and P. cylindrica. 1. Pemuteran, 2. Nusa
Penida, 3. Pulau Mengyatan, 4. Lembeh, 5. Bunaken, 6. Dumaguete. Map made with vector and raster map data available at naturalear

thdata.com
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Genomic tests of selection are key to distinguishing between
these possibilities. If divergence among C. violacea lineages re-
sults purely from neutral processes, genetic drift and migration
should have approximately equal effects on all parts of the ge-
nome (Nielsen, 2005), and frequencies of neutral loci should
show similar levels of differentiation (Via, 2009). However, if di-
vergent selection is driving diversification of C. violacea lineages,
there should be clear signatures of divergent selection (Feder et
al., 1994; Nosil, Funk, & Ortiz-Barrientos, 2009), because natu-
ral selection affects non-neutral parts of the genome, as well as
linked loci, to a greater extent (Smith & Haigh, 1974). As such, fre-
quencies of loci under selection (outlier loci) or linked loci should
either be unusually high or unusually low, in host-associated pop-
ulations, depending on the type of selection occurring (Beaumont
& Nichols, 1996).

In this study, we use genome-wide single nucleotide polymor-
phisms (SNPs) to investigate the possibility of ecological divergence
with gene flow in populations of a corallivorous gastropod, C. vio-
lacea, from the Coral Triangle. Specifically, we (a) test for reduced
gene flow between sympatric lineages of host-associated snails, (b)
identify outlier loci under putative selection between hosts, and (c)
annotate possible functions of linked genes that might be necessary

for adaptation to hosts.

2 | MATERIALS AND METHODS
2.1 | Sample collection

We collected snails on snorkel during 2011-2013 from six sympatric
populations of two lineages of C. violacea representing unique para-
site-host groups (Table 1, Figure 2, Appendix S1). We chose snails
from the most abundant Porites species from each group (P. lobata, P.
cylindrica, Dana, 1846, Figure 1) to maximize the number of samples
and reduce potentially confounding effects of differences among
hosts within the same group. To further reduce confounding ef-
fects resulting from taxonomic complexity within P. lobata (Forsman,
Barshis, Hunter, & Toonen, 2009; Prada et al., 2014), we used coral
host species identifications from Simmonds et al. (2018) that were

confirmed through RAD-seq data.

2.2 | Creation of RAD libraries

We extracted genomic DNA from 20 mg of foot tissue from 67
individual C. violacea (34 from P. cylindrica and 33 from P. lobata;
Table 1) using a DNeasy® Blood and Tissue Kit (QIAGEN), follow-
ing manufacturer's instructions, save for elution of DNA with mo-
lecular grade H,O rather than AE buffer. We estimated initial DNA
concentrations using a NanoDrop” 2000 Spectrophotometer
(Thermo Scientific”) and visualized DNA quality on a 1% agarose
gel stained with SYBR® Safe DNA Gel Stain (Invitrogen”). We
used only high-quality DNA with a bright high molecular weight

band and minimal smearing. We dried DNA extractions using a
SpeedVac  (Thermo Scientific’) on medium heat and reconsti-
tuted using molecular grade H,O to a final uniform 250 ng/ul DNA
concentration.

We created reduced representation libraries to survey SNP
variation following published protocols (Wang, Meyer, McKay,
& Matz, 2012) as updated by Dr. Eli Meyer (http://people.orego
nstate.edu/~meyere/docs/Preparing2bRAD.pdf). Alfl restriction
enzyme digest reduced representation (1/16th) libraries were la-
beled with individual barcodes and subjected to 18-20 PCR am-
plification cycles. The number of PCR cycles varied based on the
optimal number determined in the test-scale PCR to find the mini-
mum number of cycles to produce a visible product at 166 bp. We
electrophoresed products on a 2% agarose gel in 1 x TBE buffer
and ran at 150 V for 90 min, visualized target bands (165 bp) with
SYBR® Safe DNA Gel Stain (Invitrogenw), and excised them from
the gel. Then, we purified the excised bands using a QlAquick® Gel
Extraction Kit (QIAGEN). A final cleaning step used Agencourt®
AMPure® XP beads (Beckman Coulter). QB3 Genomics at the
University of California, Berkeley performed quality checks
(gPCR, BioAnalyzer) and sequencing, multiplexing 10-20 snails
per lane in 5 lanes of a 50 bp Single-End run on an lllumina HiSeq

2000 sequencer.

2.3 | RAD-seq data processing

To prepare raw sequence data for SNP identification, we truncated
all raw sequence reads to the insert size (36 bp), filtered for qual-
ity (PHRED scores >20), and discarded empty constructs. We then
processed the resulting data using custom scripts written by Misha
Matz, available on the 2bRAD GitHub site (https://github.com/
z0on/2bRAD_denovo). First, we counted unique tag sequences
(minimum sequencing depth 5x) and the number of sequences in
reverse-complement orientation and then merged these tags into
one table. Then, we clustered all sequences in CD-HIT (Fu, Niu,
Zhu, Wu, & Li, 2012) using a 91% similarity threshold. Next, we
defined the most abundant sequence in the cluster as a reference
sequence and then filtered a locus-annotated table from the previ-
ous two steps, excluding reads below 5x depth and those exhibit-
ing strand bias. Lastly, we flipped the orientation of the resulting
clustered sequences to match the most abundant tag in a cluster.

To call genotypes (as population-wide RAD-tag haplotypes), we
used GATK (McKenna et al., 2010) and applied mild allele filters (10x
total depth, allele bias cutoff 10, and strand bias cutoff 10), with the
additional requirement that alleles appear in at least two individuals.
We then applied locus filters allowing a maximum of 50% hetero-
zygotes at a locus, no more than two alleles, genotyped in 30% of
samples and polymorphic. Finally, we removed loci with the frac-
tion of heterozygotes >75% (potential lumped paralogs) and miss-
ing >70% of genotypes. The final set of SNPs was then thinned to
one per tag (that with the highest minor allele frequency) for F; and
STRUCTURE analysis to remove linked loci.
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2.4 | Individual sample filtering steps

To maximize the quality of the final dataset, we further filtered
out individuals (N = 11) with low genotyping rates, indicating low
DNA quality, by taking the log,, of the number of sites genotyped
per individual, and removing any individuals that were outside one
standard deviation (SD) of the mean. We used VCFtools (Danecek
et al., 2011) to estimate inbreeding coefficients and removed in-
dividuals (N = 5) with inbreeding coefficients outside the normal
range (+2 SD of mean F) indicating possible low coverage sequenc-
ing or lumped paralogs (https://github.com/z0on/2bRAD_de-
novo). The remaining 51 individuals were used in analyses of
population genetic structure. The final data file was in VCF format
and converted to other formats using PGDSpider v2.0.8.0 (Lischer
& Excoffier, 2012).

2.5 | Genetic structure

To test whether the patterns observed in a mitochondrial locus
were present in loci genome-wide, we inferred the population ge-
netic structure of the full RAD-seq dataset (2,718 loci), outlier loci
only (73 loci), and neutral loci only (2,645 loci), from 51 individu-
als using two methods. First, we ran the Bayesian model-based
clustering method STRUCTURE (Pritchard, Stephens, & Donnelly,
2000) using a burn-in period of 20,000 followed by 50,000
MCMC replicates for K = 1-12, and 10 runs for each K. We used
the admixture model, with allele frequencies correlated among
populations. The results from STRUCTURE were then analyzed
in CLUMPAK v1.1 (Kopelman, Mayzel, Jakobsson, Rosenberg, &
Mayrose, 2015) to select for the best K and graphically display
the results.

2.6 | Outlier analyses

To test for evidence of natural selection in relation to coral host,
we compared SNPs between lineages of snails on different hosts,
pooled across six localities, with two datasets: (a) including all in-
dividuals and (b) excluding migrants and admixed individuals that
we identified using STRUCTURE. First, we performed an outlier
loci analysis using BayeScan v2.1 (Foll & Gaggiotti, 2008) with a
prior of 10, a sample size of 5,000, and 100,000 iterations, using
a burn-in of 50,000, and 20 pilot runs of 5,000 each. To explore
the impact of misleading data, we employed a 10% false discovery
rate.

To further explore outlier loci, we used a second method to de-
tect loci under selection (FDIST2) as implemented in ARLEQUIN
(Excoffier & Lischer, 2010). We ran 100 demes per group and 50
groups for 50,000 simulations. This model compares a simulated
neutral distribution of F¢; to the observed distribution and identifies
outliers. Loci with significant F¢; p values (<0.01) were considered to
be under selection (Excoffier & Lischer, 2010).

Count
100 200 300 400 500
1

0
L

FIGURE 3 Histogram of variation in F¢; between lineages of
Coralliophila violacea on two different coral hosts (Porites lobata
and P. cylindrica) across all SNPs, excluding migrants and admixed
individuals. F¢; calculated using FDIST in ARLEQUIN. Red line
indicates the mean F¢; value (0.075)

2.7 | Candidate gene identification and annotation

To annotate the putative functions of genes linked to outlier loci, we
aligned sequences containing SNP outlier loci to nucleotide collec-
tions (nr/nt) available on the NCBI website, in Blast2GO 5 Basic ver-
sion (October 7, 2019) using the BLASTn algorithm (Altschul et al.,
1997) with a taxonomic filter for Mollusca (taxid:6447). We adjusted
parameters (expected threshold 10, word size 7, no low complexity
filter, no mask for look-up table only) to accommodate short read se-
quences. We only examined hits with a high query coverage (>80%).
Then, we identified and annotated any associated genes using NCBI
and GeneCards®.

3 | RESULTS

After removing empty constructs and filtering for quality, we ob-
tained an average of 5,710,091 unique sequence reads per individual
ata minimum 5x depth. In total, we sequenced and genotyped 17,676
high-quality RAD-seq loci with 225x coverage, in 67 snails collected
from two different coral host species, at six locations. After filter-
ing for 30% maximum missing data per locus, this total decreased to
5,999 loci and then to 2,718 SNPs following thinning to one SNP per
loci to remove any physically linked SNPs for STRUCTURE and Fq;
analyses. Next, we removed 16 individuals that had either low DNA
quality (missing data = +1SD from the mean) or potential contamina-
tion issues (inbreeding coefficient 2 +2SD from the mean), leaving
51 individuals.

3.1 | Genetic structure

Tests of genetic differentiation between sympatric snail lineages
on different coral hosts revealed moderate but significant structure
(mean F¢; = 0.047, weighted F¢; = 0.090 (Weir & Cockerham, 1984)),
between host-associated lineages of snails (Figure 3). CLUMPAK
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Location

Porites lobata

Porites cylindrica

Coral host

FIGURE 4 Bar plot of Bayesian assignment probability from STRUCTURE for K = 2 using 2,718 loci from 51 Coralliophila violacea. Each
vertical bar corresponds to an individual. The proportion of each bar represents an individual's assignment probability to cluster one (green)
or two (gold), shown grouped by coral host and then by location as numbered in Table 1, Figure 2

analysis of the STRUCTURE results indicated K = 2 as the best K
value (Appendix S2). At K = 2, the majority (88%) of all snails grouped
by their coral host (Figure 4). Grouping by host was stronger in
snails collected from P. lobata (97%) than from P. cylindrica (79%).
Neutral loci (2,645) and outlier loci only (73) showed similar patterns
of population structure in STRUCTURE to the full dataset of SNPs
(Appendix S3).

3.2 | Migration and admixture

Inferring the ancestry of individuals in STRUCTURE, using host
as a prior, revealed strong differences among C. violacea living
on different coral hosts (P. lobata and P. cylindrica, Figure 4), de-
spite some migration and admixing between sympatric lineages.
Moreover, migration rates were strongly asymmetric between
snails living on these two hosts. In total, 19% (5 of 26 samples)
of the snails collected from P. cylindrica had P. lobata genetic an-
cestry, while no snails (0 of 25 samples) with P. cylindrica ancestry
were ever found on P. lobata (Appendix S4 and S5). Admixed in-
dividuals were only found at locations where migration was also
observed (Dumaguete and Pulau Mengyatan; Appendix S5). After
excluding migrants and admixed individuals, the mean F¢; across
all loci increased from 0.047 to 0.075 and the weighted F; from
0.090 to 0.150.

3.3 | Host-specific directional selection

Because STRUCTURE identified 9/51 individuals that were either
migrants from one coral host to the other, or of admixed ances-
try (Appendix S5), we used two different datasets for detecting
host-specific selection: (a) all individuals in the filtered dataset
and (b) excluding migrants and admixed individuals. We then
searched for loci under selection using two methods. The first in-
volved a Bayesian model, BayeScan (Foll & Gaggiotti, 2008). Using
the default false discovery rate (FDR) of 10%, we identified six
loci as outliers (pairwise Fo; = 0.241-0.354, mean F¢; = 0.305,
Figure 5a, Table 2) in the dataset with all snails. Three of these
outlier loci (tag21753, tag39884, tag52997) had log,, (PO)> 1 giv-
ing substantial-to-strong support as candidate loci, based on crite-

ria from (Jeffreys, 1961). After excluding all admixed and migrant

individuals, the number of outlier loci only increased to eight (pair-
wise Fgr = 0.419-0.543, mean F¢; = 0.480, Figure 5b, Table 2).
Four of these outlier loci (tag21753, tag28478, tag39884, and
tag25141) had log,, (PO)> 1 giving substantial-to-strong support
as candidate loci, based on criteria from (Jeffreys, 1961). All outlier
loci had positive alpha values, indicating they are under directional
selection between snails on different coral hosts.

In the second method, FDIST2, we used the infinite is-
land model of migration to identify 51 outlier loci (pairwise
Fer=0.177-0.729, mean F¢; = 0.492, Figure 5c) in the dataset with
all snails. After removing migrants and admixed individuals, the
number of outliers increased to 65 with higher Fq; values (pair-
wise Fg; = 0.320-0.925, mean Fy; = 0.620, Figure 5d) indicating
directional selection, resulting in a combined total of 73 outlier
loci across the two methods and datasets. Of these 73, a total
of 43 outlier loci were shared between the two datasets; 8 were
unique to the all-individual dataset, and 22 were unique to the
dataset that excluded migrants and admixed individuals (Table 2).
Three outlier loci (tag28478, tag21753, and tag39884) were com-
mon among all datasets and methods (Table 2).

3.4 | Mapping and annotation of outlier loci

The majority (78%) of putative outlier loci did not align to any
other mollusk sequences currently available in the NCBI database
(11/2019, Table 2). Sixteen outlier loci DNA sequences aligned with
a variety of mollusks including four gastropods (Aplysia californica,
Littorina saxatilis, Lottia gigantea, and Pomacea canalicutata), three
bivalves (Mizuhopecten yessoensis, Crassostrea gigas, and C. virginica),
and two cephalopods (Octopus bimaculoides and O. vulgaris) (Table 2).
Of these loci, 7 mapped to hypothetical or uncharacterized proteins.
The remaining 9 loci mapped to gene regions with predicted func-
tions. The annotated genes had various associated gene ontology
terms including lipid metabolism, metal-ion binding, methyltrans-
ferase activity, immune response, chromatin binding, DNA bind-
ing, and serine/threonine-protein kinase. The top two hits (lowest
e-values) were a neurotransmitter gene (tag15079, SLC6A7 gene)
that plays a role in gastropod feeding behavior (Miller, 2019), and a
hormone receptor gene (tag28347, HR96 gene) involved in the regu-
lation of xenobiotic detoxification (Lindblom & Dodd, 2006; Richter
& Fidler, 2014). At tag28347, there were two alleles that occurred
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FIGURE 5 (a)-(b). Results from BayeScan analysis of full RAD-seq dataset (2,718 loci) from Coralliophila violacea. Filled gray dots are Fer
outlier loci. (a) All individuals, 6 outlier loci identified FDR = 0.10, (b) excluding migrants and admixed individuals, 8 outlier loci identified
FDR = 0.10. (c)-(d). Results from FDIST2 analysis implemented in ARELQUIN using the hierarchical island model of migration. Full RAD-seq
dataset (2,718 loci) from Coralliophila violacea. Filled black dots are F; outlier loci above the 99% quantile (red line). (c) All individuals, 51

outliers, (d) excluding migrants and admixed individuals, 65 outliers

in almost equal frequency (43%, 57%) in the P. lobata-associated
lineage of snails but were nearly fixed (97%) for one allele in the P.
cylindrica-associated lineage of snails. Another gene of interest
(tag13930, DRPR gene) codes for receptors involved in larval loco-
motory behavior (Freeman, Delrow, Kim, Johnson, & Doe, 2003).

4 | DISCUSSION
Genome-wide SNP data from six sympatric populations of C. vio-
lacea revealed two clearly differentiated clusters that were largely
concordant with coral host, consistent with results from mito-
chondrial DNA (Simmonds et al., 2018). As with insects (Jean &
Jean-Christophe, 2010; Simon et al., 2015), this genome-wide dif-
ferentiation supports the conclusion of ecological divergence based
on host association and adds to a small but growing literature on
ecological divergence in marine environments (Fritts-Penniman et
al., 2020 ; Potkamp & Fransen, 2019; Titus, Blischak, & Daly, 2019).
While SNP data reveal significant divergence between host-spe-
cific lineages of C. violacea, divergence was substantially lower in ge-
nome-wide SNPs compared to mtDNA (F¢; = 0.047 vs. & = 0.561).

This result may partially be a function of the smaller effective pop-
ulation size of the mitochondrial genome (Palumbi, Cipriano, & Hare,
2001). However, lower divergence values also suggest intermediate
levels of gene flow between distinct host-associated lineages (Nm>10),
values that are similar to other cases of sympatric host-associated di-
vergence (e.g., Gouin et al., 2017; Peccoud, Ollivier, Plantegenest, &
Simon, 2009; Smadja et al., 2012). Divergence with gene flow is further
supported by the presence of admixed genotypes and unidirectional
gene flow from one host lineage to the other. Moreover, considerable
detection of outlier loci under directional selection (2.7% of all SNP
loci; 73/2,718) strongly suggests that selection by coral host is likely
contributing to the partitioning of C. violacea lineages.

4.1 | Divergence with gene flow

In parasitic species such as C. violacea, divergence with gene flow
likely occurs through two mechanisms of premating isolation (Nosil,
Vines, & Funk, 2005). The first is host preference for egg laying and/
orrecruitment to their host (either individual or species). Divergence

occurs when mating takes place solely on that host, eventually
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leading to speciation (Funk, Filchak, & Feder, 2002; Hawthorne &
Via, 2001). Second is host adaptation, where selection acts against
immigrants from another host via immigrant inviability (Nosil, 2007,
Nosil et al., 2005; Porter & Benkman, 2017). Our study suggests
that both mechanisms may be occurring in C. violacea. All migrants
were individuals that genetically sorted to the lineage associated
with P. lobata but were instead living on P. cylindrica. Additionally,
only admixed individuals were observed on P. lobata. This pattern
suggests that gene flow and admixture between host-associated
lineages are unidirectional—from lobata to cylindrica. Such unidirec-
tional gene flow could result from two possible scenarios, either
the failure of larvae to recruit, or the failure of recruited larvae to
survive.

Larval recruitment processes could promote asymmetrical gene
flow if the lineage associated with P. cylindrica strongly prefers P.
cylindrica as a host over P. lobata or does not respond to chemical
settlement cues from P. lobata, preventing the recruitment of P.
cylindrica-associated larvae to P. lobata. In addition, larvae from P.
lobata would need to be less selective in their recruitment, occa-
sionally landing on P. cylindrica rather than P. lobata. Such a mecha-
nism makes sense, given that there are twice as many coral species
(N = 8) in the clade of Porites to which P. lobata belongs, than in that
to which P. cylindrica belongs.

An alternative, but not mutually exclusive explanation is that
asymmetry in gene flow and admixture could result from postset-
tlement processes. For example, if larvae from P. cylindrica-associ-
ated individuals settle on P. lobata, but are less likely to survive and
reproduce, this could lead to immigrant inviability (Ingley & Johnson,
2016; Nosil et al., 2005; Richards & Ortiz-Barrientos, 2016) and
asymmetry in admixture. Under such a scenario, genes beneficial to
snails living on P. cylindrica would likely be less helpful on P. lobata
and we should see some indication of a selective sweep in the de-
rived lineage with respect to the standing genetic variation of the
ancestral lineage (Przeworski, Coop, & Wall, 2005). Indeed, results
showed some outlier loci (e.g., HR96, detoxification gene) that were
in equal proportions in P. lobata (43%, 57%) but were at near fixa-
tion in P. cylindrica (97%), indicating a soft sweep on standing genetic
variation at that locus.

Regardless of whether the limited misalignment of snails and
coral hosts results from pre- or postrecruitment processes, the fact
that the vast majority of snails sort by host coral in the face of hy-
bridization and gene flow indicates that natural selection must be
relatively strong to counteract gene flow of Nm>10 (Funk, Egan, &
Nosil, 2011). Moreover, the high fidelity of the snails occupying P.
cylindrica and lower fidelity of snails occupying P. lobata, combined
with selective sweeps in P. cylindrica, suggest that snails parasitizing
P. lobata are the ancestral lineage. This conjecture is consistent with
the observation that specialist species often evolve from general-
ist ancestors (Nosil, 2002), likely because specialization constrains
further evolution by reducing genetic variation (Moran, 1988). If it
is generally true that specialists evolve from generalists (Kawecki,
1996, 1998), then host specialization could be an important mech-
anism of divergence within the Coral Triangle (Briggs, 2005) as

increased diversity should raise niche partitioning, leading to more
opportunities for host specialization (Janz, Nylin, & Wahlberg, 2006).

4.2 | Candidate genes involved in adaptation to host

Outlier loci can provide insights into the targets of natural selec-
tion (Storz, 2005) and are a useful starting point for determining how
selection may be acting on lineages diverging on different hosts.
Our analysis revealed 73 putative gene regions with F; values sig-
nificantly higher than neutral expectations, suggesting that they are
likely under selection and could be involved in adaptation to coral
hosts, or linked to such genes via hitchhiking (Via, 2012).

There is no a priori information on the types of genes involved
in the adaptation of mollusks to different hosts and, due to a lack of
genomic resources for C. violacea, only 9 of 73 outlier loci mapped
to gene regions with predicted functions. However, a useful compar-
ison can be found in ectoparasitic phloem-feeding insects adapting
to different host plants (Oren et al., 1998). Genes under selection
in these insect-plant interactions include genes involved in sensing
hosts, that protect insects against plant defenses and facilitate feed-
ing, and that code for digestive and detoxifying enzymes to neutral-
ize plant toxins (e.g., metal-ion binding, Simon et al., 2015).

Experimental evidence suggests genes with metal-ion binding
functions are repeatedly under selection in stick insects adapting to
different host plants (Soria-Carrasco et al., 2014). Indeed, four of the
C. violacea candidate genes we identified in outlier tests are involved
in metal-ion binding (KTM2D, KLH1, PRDM8, and HR96). Very little is
known about how corals and their algal symbionts chemically defend
themselves against or react to parasites and predators. Symbiodinium
species do produce toxins—Zooxanthellatoxins—(Gordon & Leggat,
2010), but it is unknown whether these toxins are upregulated in
response to parasites or predators.

Additional evidence for detoxification playing a role in host di-
vergence comes from HR96, a nuclear hormone receptor involved
in xenobiotic detoxification (Richter & Fidler, 2014). Interestingly,
HR96 was nearly fixed for one allele in C. violacea from P. cylindrica
(97%) but was at 50% in C. violacea from P. lobata, which indicates
a selective sweep at that locus. This result, combined with the four
metal-ion binding gene regions, suggests that there may be import-
ant differences in host-associated detoxification processes in the
different C. violacea lineages. If adaptation to host-specific toxins
drives host specificity, mismatches between snail metabolic abilities
and coral hosts could explain the strong asymmetry in snails being
found on an atypical coral host.

While the above results suggest a putative detoxification role
for some outlier loci, two other genes with predicted functions, a
neurotransmitter (SLC6A7) important for gastropod feeding behav-
ior (Miller, 2019) and a transmembrane receptor (DRPR) involved in
larval locomotory behavior, indicate a possible role of behavior in
adaptation (Freeman et al., 2003). Notably, this is only the first ge-
nomic exploration of C. violacea and a broader survey of genomic

diversity would be needed to pin down areas of the genome that
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are crucial for adaptations to coral hosts. Future work would benefit
from a fully annotated genome of C. violacea that would allow us to
examine the genomic architecture of divergence with gene flow and
quantitative trait loci. In turn, this would allow us to better pinpoint
regions of the genome under selection, and the specific functions of

genes involved in adapting to different hosts.

4.3 | Ecological divergence in the sea

John Briggs originally proposed the idea of sympatric speciation as
an important diversification mechanism within the Coral Triangle
(i.e., “Center of Origin” hypothesis), as well as in the export of spe-
cies formed under intense competition within the region (Briggs,
1999, 2005). To support his hypothesis, he pointed to multiple cases
of sympatric sibling species with distributions centered on the Coral
Triangle, where the older of the two species has a wide range, while
the younger has a much more restricted range limited to the Coral
Triangle (Briggs, 1999). Our study provides the first genomic evidence
to support his assertion that ecological divergence with gene flow
could be generating biodiversity in the Coral Triangle. In addition,
spatial patterning of C. violacea sympatric host lineages also matches
the pattern Briggs described, with the ancestral P. lobata host lineage
having a broad geographic distribution, and the derived P. cylindrica
host lineage restricted to the Coral Triangle (Simmonds et al., 2018).

As the global epicenter of marine biodiversity, there is a large
and diverse literature on the processes shaping the Coral Triangle
(Barber, Erdmann, & Palumbi, 2006; Bowen et al., 2013; Carpenter
et al.,, 2011; Gaither et al., 2011; Hoeksema, 2007; Kochzius &
Nuryanto, 2008; Tornabene, Valdez, Erdmann, & Pezold, 2015).
While there is ongoing debate (Evans, McKenna, Simpson, Tournois,
& Genner, 2016; Huang, Goldberg, Chou, & Roy, 2018; Di Martino,
Jackson, Taylor, & Johnson, 2018; Matias & Riginos, 2018), there is
clearly a multiplicity of processes driving diversification in this re-
gion (Barber & Meyer, 2015). Given the results of this study, it is
important to expand our thinking beyond models that focus solely
on allopatry to advance our understanding of marine speciation and
origins of the Coral Triangle biodiversity hotspot.
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