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Abstract

Optimization of Human Collaboration and

Visual Scene Understanding in Robotic Operations

by

Hong Cai

In this dissertation, we are interested in the optimization of mobile robotic operations

that involve visual sensing and recognition. First, we show how to properly incorporate

human collaboration into the robot’s field operation. More specifically, as human visual

performance is not perfect and depends on the visual input, we propose a Deep Con-

volutional Neural Network (DCNN)-based approach to predict human performance and

further show how the robot can utilize the prediction to optimally query a remote human

operator. We then consider a generic robotic operation, and incorporate the predicted

human performance into the co-optimization of the robot’s field sensing, motion plan-

ning, and communication, while considering the imperfect sensing quality, the realistic

communication conditions, and the limited onboard energy. We pose the co-optimization

as a Multiple-Choice Multidimensional Knapsack Problem, for which we propose a Lin-

ear Program-based efficient near-optimal solution, and mathematically characterize the

optimality gap.

In the second part, we focus on robotic visual scene understanding under poor sensing

conditions. We show that while the robot may have low confidence in classifying some

objects in the environment, its onboard DCNN classifier can still provide useful informa-

tion about these objects and assess if they belong to the same class. More specifically, we

show that the correlation coefficient of the DCNN feature vectors of two object images

carries robust information on their similarity, even though the individual sensing and
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classification quality may be low. We then build a Correlation-based Markov Random

Field to capture such similarity information for joint object labeling, which significantly

improves the robots classification accuracy, without additional training, and further show

how the robot can optimize its path and human query accordingly. This gives the robot

a new way to optimally decide which object sites to move close to for better sensing

and for which objects to ask for human help, which considerably improves the overall

classification.

Finally, we explicitly consider the cost of communication and focus on the interplay

of sensing, motion, and communication in the optimization of robotic operations. We

consider the case where the robot navigates from a start position to a destination and

needs to sense some sites in the field. The robot collects data when sensing each site and

needs to transmit all the collected data to a remote station by the end of its trip. Our

goal is to minimize the total motion and communication energy cost by co-optimizing the

robot’s path, its data transmission along the path, and its sensing decisions. We propose

a novel approach to solve this challenging problem by formulating a specially-designed

Markov Decision Process (MDP) and utilizing Monte Carlo Tree Search (MCTS) to

efficiently and optimally solve it. We theoretically prove the convergence of our approach,

characterize its convergence speed, and show key properties of the optimum solution.

In order to validate our proposed methodologies, we perform extensive evaluation

for each of the aforementioned parts, through realistic simulation studies and/or real-

world robotic experiments. Our results demonstrate the efficacy and performance of our

proposed approaches.
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Chapter 1

Introduction

Recent years have seen great advances in robotics, especially in the areas of vision and

learning. Thanks to these technological developments, robots are now capable of per-

forming a wide range of tasks, such as surveillance, search and rescue, and exploration of

new environments. However, due to the various challenges in realistic robotic operations,

the robot can still encounter uncertainties in its visual sensing and recognition in reality.

For instance, consider a visual sensing operation where the field mobile robot is tasked

with recognizing targets of interest in the environment. Due to the noisy and uncertain

sensing data (e.g., due to far sensing distance, poor lighting conditions, etc.), the robot

may not be able to recognize some of these targets.

In order to improve its visual recognition performance, the robot can send the visual

data (e.g., images) to a remote human operator to ask for help, since humans have supe-

rior visual capabilities. Human visual performance, however, is not perfect, as has been

heavily acknowledged in cognitive psychology [6]. In addition, human visual performance

can vary drastically depending on the sensory/image input, as we have established in our

work [7, 8]. As such, it is key to take the imperfect human visual performance into ac-

count in the robot’s decision-making. In order to do this, we need to predict human

visual performance given a visual input. This would then allow the robot to ask for hu-

man help only when the human can help. Given the prediction of human performance,
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the robot should then optimize its field actions accordingly, in terms of sensing, motion,

and query/communication. In other words, the robot should optimally decide for which

visual inputs it can query the remote human operator, for which locations it needs to

move closer to acquire higher-quality sensing data, and for which visual data it can rely

on its onboard vision system.

Another way for the robot to improve its visual recognition performance is to infer

object similarity in its field of view, even when the individual object sensing quality is

poor. In order to do this, the robot needs to robustly extract such object similarity

information from its Deep Convolutional Neural Network (DCNN) output, even when

the DCNN misclassifies the objects, and properly utilize this information for its field

sensing and decision-making.

In addition to the visual sensing and recognition aspect, there are other realistic fac-

tors that need to be considered in mobile robotic operations, such as the realistic wireless

communication channel and the robot’s limited onboard energy. It is important to take

theses factors into account, when optimizing the robot’s field actions, in terms of sens-

ing, motion, and communication. For instance, the quality of the wireless communication

channel varies spatially, due to the wireless fading effects. The robot needs to take this

into account and optimally select the locations where it should transmit its onboard sens-

ing data to a remote human operator (or a remote station), such that the transmission

quality is acceptable and the required transmission energy cost is not excessive.

In this dissertation, we will explore all these aspects through the following topics:

1. Prediction of Human Visual Performance: We show how to use a DCNN to accu-

rately predict the probability that a person can successfully perform a given visual

task. We then demonstrate how the robot can utilize such prediction information

to effectively collaborate with a human operator in visual recognition tasks, via
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several real-world robotic experiments.

2. Optimizing Human-Robot Collaboration with Human Performance Prediction: We

incorporate the human performance prediction into the optimization of the robot’s

field decisions, in terms of sensing, motion, and querying/communication, while

considering the robot’s sensing quality, the non-ideal communication link to the

human operator, and the robot’s limited onboard energy. In this part, we exten-

sively study the theoretical properties of such complex robotic decision optimization

problems and derive computationally efficient near-optimal solutions.

3. Exploiting Object Similarity for Robotic Visual Recognition: We show that even

when the robot’s onboard DCNN classifier cannot properly classify the objects in

the field, its output still contains useful similarity information about the objects

(e.g., what objects belong to the same class). We show how to robustly extract such

similarity information from the DCNN output and properly exploit it to improve

the classification accuracy. When the robot is given a number of queries and a

motion budget, we then show how we can utilize the extracted visual similarity

information to optimize the robot’s field actions, in terms of sensing, motion, and

querying. This allows the robot to derive more efficient actions and significantly

improve its visual classification accuracy.

4. Co-Optimization of Motion, Communication, and Sensing via Monte Carlo Tree

Search: In this part, we consider a more general sensing model and focus on the

comprehensive co-optimization of the robot’s sensing, motion, and communication,

in realistic wireless communication environments. In order to solve the resulting

highly-complex optimization problem, we propose a specially-formulated Markov

Decision Process (MDP) and utilize Monte Carlo tree search (MCTS) to efficiently

and optimally solve it.
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We next discuss in more detail each of the four aforementioned topics, where we place

our work in context by reviewing the relevant literature and summarize our contributions.

1.1 Prediction of Human Visual Performance

In Chapter 3, we consider robotic visual surveillance tasks, where the robot has a lim-

ited number of chances to ask a remote human operator for help with visual recognition.

In order for the robot to properly utilize the human queries, we propose a Deep Convo-

lutional Neural Network (DCNN)-based approach to predict human visual performance

for any given image, as human visual performance is not perfect and varies depending on

the quality of the visual input. This enables the robot to ask the right questions, only

querying the human operator with the images for which humans have a high chance of

successful visual recognition. Then, the robot will use the feedback from our predictor

to optimize its human collaboration and further sensing of the field.

Fig. 1.1 demonstrates a real example of this. A robot is given a visual perception task

that involves finding the human at each of the four shown sites, based on the onboard

camera inputs. The robot has a limited access to a remote human operator to ask for

help with this task. The figure shows the images taken by the robot after its initial

sensing of each site. Equipped with a state-of-the-art vision algorithm, the robot has no

problem recognizing the humans at Sites 1 and 4 itself. However, the robot’s vision fails

for Sites 2 and 3. On the other hand, the person at Site 3 can be easily detected by a

human, while it is also hard for humans to spot the person at Site 2 based on the current

sensory input. Thus, if the robot assumes that human is perfect and queries the human

operator with the second image, it is highly likely that the operator will fail to find the

human in the image. This real-world example thus shows that it is important for the

robot to predict human visual performance given the visual inputs, in order to optimally
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Figure 1.1: A robotic surveillance task on our campus that involves finding the person
in each of the 4 sites, based on imagery inputs. The robot has a limited access to a
remote operator to ask for help and needs help with Sites 2 and 3. However, human
performance is not perfect and thus the human cannot help with Site 2 if asked. If
the robot could predict human visual performance for a given sensory input, it could
optimally ask for help with Site 3 and move to Site 2 for more sensing.

determine its actions.

1.1.1 Related Work

There is a great body of work on different aspects of human-robot collaboration [9–13].

More related to this chapter are those papers that focus on robots asking human for help.

For instance, [14] shows how robots can recover from difficult states or failures by asking

for help. In [15–17], a robot learns from human demonstration and correction, while

a robot performs object detection and recognition with human inputs in [18–21]. In

computer vision, a number of work have focused on designing human-machine interfaces

that allow the vision algorithm to ask for human help when it encounters difficulties

[22–25]. In most of these papers on asking for help, however, human is assumed perfect

in task accomplishment. As can be seen in Fig. 1.1, however, human visual performance

is not perfect and depends on the sensory input.
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A number of studies have taken imperfect human performance into account for non-

robotic vision applications. In [22], for instance, authors propose a collaborative vision

task inspired by the 20-question game. [24] proposes a collaborative annotation system in

which human and machine collaboratively label the objects in images. In these papers,

however, it is assumed that human performance is task dependent but invariant to the

sensory inputs. In other words, for a specific visual task, the probability of human’s task

accomplishment is constant (less than 1), but independent of the input image. While a

good step towards considering imperfect human performance, human visual performance

can largely vary for a given visual task, depending on the sensory input, as shown in

Fig. 1.1.

A few studies have attempted to estimate human visual performance based on a

given input image. Johnson criteria is one of the first attempts along this line, where

human visual performance is predicted based on the number of line pairs of display

resolution occupied by the target on the screen [26]. In cognitive psychology, it is heavily

acknowledged that human visual system is not perfect [6, 27, 28], motivating work that

attempt to understand how different image features affect human performance [29]. The

goal of these studies, however, is not predicting human performance for a given image

but understanding a certain feature’s impact on human performance.

In [4, 5], the authors utilize machine learning to predict the probability that a driver

is able to detect a pedestrian at a glance, based on hand-crafted image features, such as

the size and position of the pedestrian in the image. In general, however, an image may

have several features that can make it hard or easy for humans to perform a visual task,

making identifying and hand-crafting all of them very challenging. Thus, an automated

method that can predict human visual performance for any given sensory input is needed

and currently lacking, which is the main motivation for this chapter. More specifically, as

compared to the existing approaches, our proposed prediction methodology is fundamen-
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tally different in that the relevant image features are selected in an automated manner

during training, by properly utilizing DCNNs, and then used for predicting human visual

performance.

1.1.2 Contributions

The main contributions of this chapter are summarized as follows:

1. We propose a DCNN-based approach that allows the robot to probabilistically

predict human visual performance for a given visual input, without a need for

hand-crafting any feature. We train our DCNN by gathering several human data

using Amazon Mechanical Turk (MTurk) [30]. We then test the proposed predictor

on a large validation set and show a considerable reduction in prediction error as

compared to the state-of-the-art.

2. We show how the robot can optimize its field decisions in terms of relying on itself,

asking for help, and further sensing, based on the output of the predictor.

3. We run a number of robotic surveillance experiments on our campus, which show-

case the effectiveness of our approach, indicating a considerable increase in the

success rate of human queries and the overall task. We further run a larger-scale

evaluation in a simulation environment, based on images taken on our campus and

with MTurk users acting as human operators.
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1.2 Optimizing Human-Robot Collaboration with Hu-

man Performance Prediction

In Chapter 4, given the predicted human performance, we are then interested in a

more comprehensive and in-depth study of incorporating the prediction into the optimiza-

tion of human-robot collaboration, while also considering various factors commonly-seen

in robotic operations, such as realistic wireless channel environments and limited onboard

energy. More specifically, we consider a realistic, general robotic operation scenario where

there is a pre-defined path, near which there are a number of sites containing targets to

be classified, as shown in Fig. 1.2. As the robot traverses this path and reaches a point

close to a site, it has to decide whether (and to what extent) it should incur motion

energy to deviate from the main path towards the site to sense it better, and whether

it should ask for human help with this site. The robot then returns to the pre-defined

path after a possible deviation. This scenario captures several realistic cases of robotic

missions. For example, a security surveillance drone can have a pre-defined patrol route,

but may need to deviate from the route to investigate suspicious locations off the route.

In another example, an indoor monitoring robot has to survey the offices down a hallway.

The pre-defined route is then set along the hallway. When the robot needs to gather more

sensing information about a room, it has to decide how far it should move into a room

and whether it should query a remote human operator for help with this particular room.

The main goal of this chapter is then to provide an optimization framework for a

generic and realistic problem of human-robot collaborative site inspection under resource

constraints. More specifically, in the considered setup of this chapter, the robot’s ob-

jective is to maximize its target classification performance at all the sites, under limited

onboard energy constraints (including both communication and motion), with a limited

access to a human operator to ask for help, and while considering the fact that human
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Figure 1.2: The robot travels along a pre-defined path to inspect sites nearby. For
each site, the robot decides how much it should deviate from the main path to move
closer to the site for better sensing. It also needs to decide whether to ask the remote
operator for help with target classification for this site. Human visual performance,
however, is not perfect, and can vary depending on the sensing quality.

visual performance is not perfect and varies depending on the sensory input. Thus, before

deciding when to query the human operator, the robot needs to predict human visual

performance over the sensory inputs. Furthermore, the robot has constraints in commu-

nication with the human operator. We consider two realistic communication constraints.

In our first case, the robot is given a limited number of chances to query the human

operator. This case realistically considers the impact of possible human work overload,

which needs to be prevented by limiting the number of queries. Another cause of com-

munication constraint is the quality of the wireless channel in the environment, when

communicating with the human operator. In other words, the quality of the link may

not be good enough to establish a reliable communication link all over the workspace,

due to path loss, shadowing, and multipath fading in realistic channel environments. In

our second case, the robot then needs to first predict the channel quality at unvisited

locations in the environment (e.g., using the probabilistic channel prediction framework

of [1]) and decide where to communicate with the human operator, given a limited energy

budget that can be used towards communication and motion.

Due to the communication restrictions and the imperfect human visual performance,

the robot cannot query the operator all the time. Instead, the robot should only ask
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for help when human assistance can bring reasonable performance improvements (i.e.,

the task is doable by humans with a high probability) and when the cost of querying

is reasonable. On the other hand, the robot may not have sufficient motion energy to

sense the targets to the extent that it can fully rely on its own classification performance.

Therefore, to achieve a good overall classification performance, it is necessary to co-

optimize the robot’s motion, sensing, and queries to the remote human operator, while

considering the impact of limited energy, the imperfect human performance, and the

realistic wireless channel environments.

1.2.1 Related Work

For visual inspection tasks, a number of papers propose human-machine interface

designs that allow the vision algorithm to query the human in order to improve its

performance [22–24,31,32]. In these papers, human visual performance is assumed either

perfect or independent of the difficulty/quality of the individual sensory/image input.

Human visual performance, however, is not perfect, as has been heavily acknowledged

in cognitive psychology [6]. In addition, human visual performance can vary drastically

depending on the sensory/image input, as we have established in our previous work [7,8].

Next, consider robotic field operation and decision making under resource constraints,

in terms of sensing [33–35], motion planning [2,36,37], and communication [38–40], which

have received considerable attention over the years. More recently, researchers have

become interested in communication-aware robotics, which considers realistic wireless

channel environments and addresses the co-optimization of motion, sensing, and com-

munication, under limited resources. For instance, Ghaffarkhah et al. study robotic

target tracking and coverage under wireless fading channels [41, 42]. Yan et al. study

the co-optimization of communication and motion in robotic operations [43]. Optimal
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control-based co-optimization methods have also been proposed in [44]. However, in

these work, human collaboration and the impact of imperfect human performance are

not considered.

1.2.2 Contributions

The main contributions of this chapter are summarized as follows:

1. We show how to co-optimize the robot’s motion, sensing, and human queries in

human-robot collaborative site inspections, for the realistic case that the human

visual performance is not perfect, and under limited energy resources and com-

munication constraints to the operator, while considering realistic wireless channel

environments that experience path loss, shadowing, and multipath fading. Given

probabilistic predictions of human performance and channel quality, we show how

to formulate the resulting co-optimization problems as Multiple-Choice Multidi-

mensional Knapsack Problems (MMKP) [45].

2. We then propose a Linear Program (LP)-based efficient near-optimal solution to the

NP-hard MMKP, and mathematically characterize the optimality gap, confirming

that it can be considerably small. We also mathematically characterize properties

of the optimal solution.

3. We comprehensively validate our proposed approach with real human visual per-

formance data that we acquired from extensive user studies on Amazon Mechanical

Turk (MTurk), real wireless channel data collected from downtown San Francisco,

and realistic motion and communication models. The numerical results show that

our proposed approach properly co-optimizes motion, sensing, and queries, and

significantly outperforms benchmark methodologies.
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1.3 Exploiting Object Similarity for Robotic Visual

Recognition

Consider a robotic operation where a robot is tasked with visual sensing and classi-

fication in an area, an example of which is shown in Fig. 1.3. The robot takes several

object images with its camera and uses a trained DCNN classifier to classify them to a

given set of classes. Due to factors such as poor sensing, low lighting and illumination,

and less-seen poses/views of the objects, however, the robot’s DCNN classifier may mis-

classify or have low classification confidence for some of the images. If the robot can

figure out which objects belong to the same class (even when misclassifying them), it can

then improve its overall classification accuracy of the scene.

In Chapter 5, we show that the object similarity information can be freely and ro-

bustly inferred from the output of a trained DCNN classifier, without requiring any

additional training. More specifically, we show that the Pearson correlation coefficient

of the feature vectors of two object images from the output of a trained DCNN classifier

carries reliable information on the similarity of the two corresponding objects (i.e., do

they belong to the same class?), even if the individual classification accuracy of each

object is not very high. This then allows us to design a Markov Random Field (MRF)-

based joint labeling framework, where the similarity information is utilized to reduce the

classification uncertainty. For instance, in Fig. 1.3, there are two images (2 and 3) of

the same class (person) but in different poses. The robot’s vision initially misclassifies

them to a truck and a car. However, if the robot can infer that they belong to the

same class (while it cannot properly classify them), then it can correctly classify both to

persons using our MRF joint labeling framework. We then show the implication of this

visual understanding and correlation modeling for the robot’s field decision-making by

co-optimizing its query, motion, and visual labeling.
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Figure 1.3: A robot is tasked with classifying objects on our campus. It may have low
confidence in some of its initial classifications. Given a limited human query budget
and a motion budget, the robot then needs to decide which object locations it should
visit to sense better, and which object images it should ask a remote human operator
to classify, in order to improve its overall classification performance. By using the
correlation coefficient of the feature vectors from a trained DCNN classifier, the robot
can robustly capture image similarities (e.g., objects 2 and 3 belong to the same class),
even when each object is individually misclassified, which has a significant implication
for its field decision-making and joint labeling, as we shall show in this chapter.

1.3.1 Related Work

In computer vision, machine learning and deep neural networks have significantly

advanced the state of the art, in areas such as detection [46], segmentation [47], and

DCNN architectural design [48–51]. While most research efforts have focused on making

the machine better at processing individual visual inputs, relationship among a number

of visual inputs can also be exploited to design better vision systems, as some recent

papers show. For instance, Galleguillos et al. [52] utilize object co-occurrence and spatial

context to design categorization algorithms. Torralba et al. [53] study place-object co-

recognition, where the semantic consistency between an object and the current place

is taken into account. In image segmentation, pixel-level relationship is utilized in the

classification of each pixel [47]. Spatial-temporal correlation has also been considered in

13



Introduction Chapter 1

video applications [54,55]. More related to our work are those that consider object/image

similarity. Several papers have proposed DCNN-based similarity metrics, which require

dedicated training to learn a similarity measure for a specific application (e.g., patch

matching, image retrieval, image error assessment) [56–60]. A few papers have explored

off-the-shelf DCNN features for applications such as clustering [61, 62]. As for visual

detection and classification, a few papers have utilized pairwise object/image similarity

to improve the recognition accuracy [63–65]. However, these methods use simple hand-

crafted features (e.g., color histogram), which will not work well in complex visual tasks

that can involve many object classes, different poses/views of the same object class,

and/or images degradations.

The robotics community has also started to exploit the robot’s understanding on the

relationship among visual inputs for robotic vision applications. For instance, for object

labeling, Koppula et al. [66] incorporate geometric context among objects, and Ali et

al. [67] utilize the co-occurrence relationship. Ruiz et al. [68] utilize semantic knowledge

to derive compatibilities among objects and rooms for joint recognition. However, these

methods require additional training in order to use the contextual relations. For instance,

extensive training is needed to utilize geometric relations for joint labeling in [66].

In some cases, the machine can obtain a few ground-truth labels via querying to

improve its performance. Most related to this work are those that optimize the query

selection based on an already-given correlation model (e.g., an MRF). In [69], Krause et

al. utilize information theoretic metrics (e.g., mutual information) to select queries most

beneficial to labeling the remaining un-queried instances. Recently, Wang et al. [70] use

Bayesian lower bounds to optimize the selection, which outperforms the earlier informa-

tion theoretic methods. Another related subject is active learning, which studies how

to select labeled samples to better train a learning algorithm (e.g., [54, 71, 72]). The

formulation of active learning, however, is different from our problem, as we do not con-
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sider retraining the vision algorithm during deployment in this work. In the context of

robotics, several papers have studied how to optimize the robot’s motion to acquire more

information and improve its visual sensing [73–75]. These existing papers, however, do

not take into account the correlation among the visual targets.

As discussed above, while several types of relationships between visual inputs have

been exploited in robotic vision, object similarity has not been exploited in robotics. It

is our hypothesis that the similarity between two visual inputs can be inferred robustly

from the output of a trained DCNN classifier, without any additional training. This

would then have a significant implication for the robot’s visual classification, and its field

decision-making in terms of visual sensing, path planning, and querying, as we shall show

in this chapter.

1.3.2 Contributions

The main contributions of this chapter are summarized as follows:

1. We probabilistically analyze the correlation coefficient between the features of two

images from a trained DCNN classifier in an extensive study based on 180, 000 im-

age pairs from 39 classes, for 3 commonly-used state-of-the-art DCNN architectures.

We show that the correlation coefficient can capture pairwise image similarity ro-

bustly, even when the images are subject to low illumination and low resolution, or

are misclassified. This similarity measure comes for free from the DCNN classifier,

requiring no additional training.

2. Based on the probabilistic characterization of this pairwise image similarity met-

ric, we build a correlation-based MRF (CoMRF) for joint labeling, which allows

the robot to better label the objects based on its inferred correlation structure.
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Given query and motion budgets, we propose a CoMRF-based query-motion co-

optimization approach to jointly plan the robot’s query and path. This allows the

robot to optimally decide which objects it should visit for better sensing, and for

which visual inputs it should ask for human help. As we shall see, by utilizing the

proposed framework, the robot can improve its visual performance significantly,

under the motion and query budgets. In other words, our proposed method signif-

icantly reduces the robot’s motion and query/communication burdens for labeling,

while achieving the same task quality.

3. By using 1) a large COCO-based test set [76], 2) the challenging large-scale drone

imagery dataset of VisDrone [77], and 3) the large indoor scene dataset of NYU-

v2 [78], we extensively evaluate our proposed approach on joint labeling, query

selection, and path planning, across a large variety of realistic scenarios. The

results show that our proposed approach significantly outperforms the state of the

art. We then run several real-world robotic experiments to further demonstrate the

efficacy of our proposed CoMRF-based query-motion co-optimization algorithm.

The results verify that our approach considerably outperforms the benchmark.

1.4 Co-Optimization of Motion, Communication, and

Sensing via Monte Carlo Tree Search

In the previous chapters, we focused on the components of human collaboration and

object similarity for enhancing the visual recognition performance of a mobile robot. In

Chapter 6, we more explicitly bring in path planning and communication, and adopt a

more general sensing model of the robot, in order to more comprehensively study the

co-optimization of the robot’s motion, communication, and sensing. More specifically,
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Figure 1.4: (Left) Example of the robotic task scenario considered in this chapter.
(Right) High-level description of the co-optimization problem.

we are interested in a general robotic task scenario that involves planning the robot’s

entire path, its data transmission along the path, as well as its sensing in the field.

As illustrated in Fig. 1.4, the robot navigates from the start position to a given final

position, and needs to sense a number of sites in the field. For each site, the robot must

move within a certain distance to sense it (e.g., to ensure an acceptable level of sensing

quality). When visiting each site, the robot collects new sensing data. The robot is

required to transmit all its collected data (and possibly some initial data) to the remote

station (or a remote human operator) by the end of the trip, while traversing the field. Its

transmission energy cost is subject to a spatially-varying wireless communication channel

that experiences fading. Our goal is to minimize the total motion and communication

energy cost of this robotic operation, by optimizing the robot’s sensing and path, as

well as its data transmission as it traverses the path. Fig. 1.4 (right) shows a high-level

description of our co-optimization problem. This setup captures a variety of real-world

robotic applications. For instance, an environment-monitoring robot needs to collect

sensing data from a few places. For each place, it must move close enough to sense it.

It needs to transmit all the collected data to a remote station, before getting to a given

destination and under resource constraints.

In order to minimize the total motion and communication energy consumption, the

co-optimization needs to take into account the locations of the sites, the distance that the
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robot should move within each site for sensing, the destination location, the spatially-

varying wireless channel, and the operation time budget, in order to plan the robot’s

entire path as well as its data transmission during the trip. This is a considerably

challenging problem, which no existing approach in the literature is capable of solving.

More specifically, it involves the combinatorial characteristics of path planning, the path

constraints imposed by the sensing requirements, the spatially-varying wireless channel

which cannot be modeled analytically, and the nonlinear transmission optimization. In

order to solve this co-optimization problem, we propose a novel approach utilizing Markov

Decision Process (MDP) and Monte Carlo Tree Search (MCTS), and show how it can

solve this problem efficiently while providing theoretical convergence guarantees.

1.4.1 Related Work

Recent years have seen considerable research interest in the co-design of motion and

communication in mobile robotics, where wireless communication models are explic-

itly taken into account in the optimization of mobile robotic operations [43, 44, 82–106].

While some of the earlier papers use over-simplified communication models, such as the

disk/path loss model, and/or assume perfect knowledge of the channel [82–86], which can

lead to poor performance in realistic wireless channel environments [88], researchers have

recently started to incorporate realistic wireless fading models into various aspects of the

co-optimization of motion and communication in mobile robotics, such as data relay-

ing [91–94], cooperative transmission [95–97], robot-assisted wireless coverage [98–102],

and data gathering [43,103–105].

More related to this chapter are studies on the co-optimization of motion, communi-

cation, and sensing for data transmission from a field robot to a remote station in realistic

channel environments and under resource constraints. Due to the complex spatial dy-
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namics of a wireless channel and the challenges imposed by sensing and path planning,

most existing work in this area optimize only a subset of the robot’s motion and trans-

mission actions while assuming that the rest are predefined, in order to bring tractability

to the problems. For instance, [106] optimizes the robot’s deviation from a predefined

main path for better sensing and communication, and the robot only transmits data at

the sensing spots (rather than throughout the entire path). In [43], the authors consider

a motion-communication co-optimization problem with site visits. They assume that the

robot has to visit the exact site locations and the route between two sites is a straight

line. On the other hand, Ali et al. have recently shown how to co-optimize the entire

path and the data transmission along the path, but without any sensing considerations

and by using a numerical algorithm derived from optimal control, thus lacking theoretical

convergence guarantees [44].

1.4.2 Contributions

The main contributions of this chapter are summarized as follows:

1. We study a complex robotic co-optimization problem, which involves sensing, data

transmission, and path planning, in a realistic wireless channel environment. We

propose a novel approach to solve this co-optimization problem by formulating a

specially-designed MDP and utilizing MCTS to efficiently and optimally solve it.

As we shall see, by considering the transmission optimization in the MDP terminal

reward evaluation and the motion actions in the state transitions, we can reduce

the complexity of this problem and iteratively optimize the sensing/motion and the

communication parts in different stages of MCTS, which enables us to efficiently

solve the original challenging co-optimization problem.

2. We mathematically characterize an upper bound on the probability that our pro-
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posed approach does not result in the optimum decision. This result shows that our

algorithm converges to the optimum as the number of iterations increases and pro-

vides a bound on the convergence speed. We further mathematically characterize

the properties of the optimum solution.

3. Using a realistic 2D wireless channel environment, we thoroughly validate the per-

formance of our proposed approach. We further compare our proposed approach

with a benchmark method that separately optimizes motion and communication,

and show that our approach significantly outperforms the benchmark. For instance,

based on an evaluation on 50 problem instances, the solution given by our proposed

approach uses 55% less total energy on average, as compared to the benchmark.

Finally, we compare with the most related state-of-the-art work on this area.
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Chapter 2

Preliminaries

In this chapter, we provide an overview on the communication energy model and the

realistic wireless channel prediction framework proposed in [1], as well as a brief overview

on the robot’s motion energy model. These models will be used throughout the rest of

this dissertation.

2.1 Communication Energy Model and Prediction in

Realistic Communication Environments [1]

Consider the case where the robot adopts the commonly-used MQAM modulation for

transmission. As shown in [107], the required transmission power can be well approxi-

mated by ΓT = (2r − 1)ln(5pBER)/(−1.5Υ), where r is the spectral efficiency (i.e., the

transmission rate divided by the bandwidth, in bits/s/Hz), pBER is the required Bit Error

Rate (BER), and Υ is the received Channel-to-Noise Ratio (CNR). During operation,

the robot needs to assess its transmission power along any given unvisited path for the

purpose of path planning. This, however, requires it to have a prediction of the channel

at unvisited locations over the space, based on a small number of prior or online channel

samples. Due to the real-world wireless propagation effects of path loss, shadowing, and

21



Preliminaries Chapter 2

multipath fading, the CNR is best modeled as a spatial stochastic process. Then, given

a small number of prior channel samples in the same environment and based on [1], the

CNR (in dB) at an unvisited location q, ΥdB(q), can be best modeled by a Gaussian

random variable, with its expectation and variance given by

E[ΥdB(q)] = Hqθ̂ch, dB + ΨT (q)Φ−1(Y −HQm θ̂),

Σ(q) = α̂2
ch, dB + σ̂2

ch, dB −ΨT (q)Φ−1Ψ(q),

(2.1)

where Y = [y1, ..., ym]T are the m priorly-collected CNR measurements (in dB), Qm =

[q1, ..., qm] are the measurement locations, θ̂ch, dB, α̂ch, dB, β̂ch, and σ̂ch, dB are the es-

timated channel parameters, Hq = [1 − 10log10(‖q − qb‖)], HQm = [HT
q1
, ..., HT

qm ]T ,

Ψ(q) = [α̂2
ch, dBexp(−‖q−q1‖/β̂ch), ..., α̂2

ch, dBexp(−‖q−qm‖/β̂ch)]T , and Φ = Ω+σ̂2
ch, dBIm

with [Ω]i,j = α̂2
ch, dBexp(−‖qi − qj‖/β̂ch), ∀i, j ∈ {1, ..., m} and Im denoting the identity

matrix.

This formulation allows the robot to predict the channel quality at any unvisited

locations, based on a small number of prior channel measurements in the same environ-

ment.1 See [1] for more details and the performance of this channel predictor in different

real environments.

Based on this channel prediction, the expected required transmission power at loca-

tion q is given by E[ΓT (q)] = (2r − 1)E [1/Υ(q)] /Z, where Υ(q) is the predicted CNR at

location q (in non-dB domain), E[1/Υ(q)] can be evaluated given the log-normal distri-

bution of Υ(q) (or Gaussian in dB), and Z = −1.5/ln(5pBER). Given a transmission time

duration, the robot can then predict the communication energy cost for transmitting

1It should be noted that the robot needs to predict the uplink channel for the purpose of its sensing-
path-communication co-optimization, as we shall see. Thus, the small number of prior channel mea-
surements can be collected by the remote station and transmitted back to the robot which will be in
charge of channel prediction over the space. Alternatively, if Time Division Duplex is used, the robot
can directly use a small number of downlink channel samples in order to predict the channel elsewhere.
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from any unvisited location to the remote station. This prediction is important for the

robot’s path planning, as we shall see.

2.2 Robot Motion Energy Model [2]

Based on experimental studies, a mobile robot’s motion power can be modeled by a

linear function of its speed for a number of platforms [2]: ΓM = κ1u + κ2 when 0 < u ≤

umax, and ΓM = 0 when u = 0, where u and umax are the robot’s speed and maximum

speed, respectively, and κ1 and κ2 are positive constants determined by the robot’s motor,

mechanical transmission system, and external load. Suppose that the robot travels at a

constant speed uconst. The motion energy cost for a travel distance of l is then given by

Em = (κ1 + κ2/uconst)l. This is the model we adopt in this disseration.
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Chapter 3

Prediction of Human Visual
Performance

In this chapter, we are interested in robotic surveillance tasks that involve visual

perception, where the robot has a limited access to a remote operator to ask for help

with its task. Since human visual performance is not perfect and varies depending on the

quality of the visual input, in order for the robot to optimally query the human operator

and plan its field actions, it needs to predict human visual performance for a given visual

input. We then propose a machine learning-based approach that allows the robot to

probabilistically predict human visual performance. First, we look at a simple setting

where the main source of visual uncertainty is the image noise, which brings interesting

insights about human visual performance, as well as about the optimum collaboration

with the human. Then, we consider a general case with any type of visual uncertainty and

utilize a Deep Convolutional Neural Network (DCNN) to probabilistically predict human

visual performance, without the need for hand-crafting any features. This DCNN-based

predictor enables the robot to select the right questions, only querying the operator with

the images for which humans have a high chance of success. The robot then utilizes this

Parts of this chapter have appeared in our papers [7], ©[2015] IEEE, and [8].
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prediction information to optimize its field decisions, in terms of when to rely on itself,

when to ask for human help, and when to further sense the field. Our several real-world

robotic experiments demonstrate that by using our proposed human performance pre-

dictor, the overall visual recognition performance significantly outperforms a benchmark

that assumes perfect human performance.

The rest of this chapter is organized as follows. In Sec. 3.1, we look at the case of

predicting human performance based on image noise and analyze the optimum robot

behavior. In Sec. 3.2, we present our proposed DCNN-based approach for predicting

human visual performance in a general setting. In Sec 3.3, we then show how we can

incorporate this prediction capability into the robot’s field decision-making for optimum

collaboration with the human operator. Finally, we validate our work with several ex-

perimental results. We describe the robot vision model in Sec. 3.4 and then present

several results from real-world robotic experiments to demonstrate the effectiveness of

our human prediction approach for human-robot collaborations in Sec. 3.5.

3.1 Assessing Human Visual Performance on Noisy

Images

Consider the case where the robot has discovered a target via visual sensing (e.g.,

taking an image) and needs to classify it based on a given set of target possibilities. For

example, Fig. 3.1 shows four possible targets shown to the robot. The robot’s sensing

in the field is in general subject to noise, low resolution, occlusion, and other uncertain-

ties, which will degrade its classification accuracy. Fig. 3.2 shows a sample case where

an image is corrupted by an additive Gaussian noise with a variance of 3. Based on

Amazon Mechanical Turk (MTurk) [30] studies, 74.4% of humans can still classify this
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Figure 3.1: Gray-scale images of lion, leopard, cat, and tiger used in our study.

Figure 3.2: A sample corrupted image (lion) with the noise variance of 3.

lion correctly (see Fig. 3.3). If the robot could accurately model all the uncertainties

and use the optimum classifier accordingly, it would outperform humans. However, this

is impossible due to the complexity of a real-life visual task. This is why the robot can

benefit tremendously from collaborating with the human by properly taking advantage

of human visual abilities. In this section, we study a case where the main source of

uncertainty in the robot’s visual sensing is a Gaussian-like noise

3.1.1 User Studies to Assess Human Performance

Consider the case where the robot takes an image in the field, which is corrupted by an

additive Gaussian noise with a known variance but an unknown mean, and then undergoes

a pixel value clamping process unknown to the robot. The original image is chosen from
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Figure 3.3: Performance of human and robot in classifying the noisy targets of Fig. 3.1.

the four images in the Fig. 3.1. Then, a total of 160 noisy images were generated with

different noise levels. We then conducted extensive user studies on Amazon MTurk,

where, for each noisy image, several human users were asked to classify the target in the

image to one of the four possibilities in Fig. 3.1. Overall, 8, 000 human responses were

collected, based on which the probability of human correct classification as a function

of the noise level was obtained, as shown in Fig. 3.3. The figure further compares the

human performance with that of the robot, and confirms that humans can achieve a

much higher correct classification probability. For instance, for Fig. 3.2, humans have

an estimated correct classification probability of 0.744, which is considerably higher than

that of the robot (0.5). However, as the figure also shows, human performance is not

perfect, and can degrade significantly as the noise level increases.

3.1.2 Optimizing Human-Robot Collaboration in a Target Clas-

sification Task

In this section, we consider a simple scenario of human-robot collaboration in a target

classification task, in order to bring a foundational understanding to the characteristics

of the optimal collaboration. Suppose that the robot has an initial sensing (in the form

of an acquired image) of N given sites. The robot is given a total motion energy budget
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as well as a total number of questions to ask the human (dictated by the frequency of

the availability of communication with the human). For each site, the robot has three

choices: 1) rely on its own classification (based on the initial sensing), 2) use a question

and present the image of the site to the human, or 3) spend motion energy to go to the

site and sense better.

Problem Setup

Consider the case where we have a total number of N sites. Each site contains one

of Nc a priori known targets (see Fig. 3.1 for an example with Nc = 4 targets). For

each site, the robot acquires an image which is then corrupted by an additive Gaussian

noise with an unknown mean but a known variance and pixel values of the image are

then truncated. The robot uses the minimum distance detector [7], which would have

been ideal for the case of a zero-mean additive Gaussian noise with a known variance.

The robot is allowed to query the human M times and has a total motion energy budget

of Emax. The probabilities of correct target classification of site i, for i ∈ {1, ..., N}, are

denoted by pr,i and ph,i for the robot and the human, respectively. These probabilities

are obtained from Fig. 3.3, based on the variance assessed by the robot. Let Ei denote

the motion energy cost to visit site i, which can be evaluated by the robot. If the robot

chooses to visit a site, the probability of correct classification increases to a high value of

p̃. The objective of the robot is then to decide which sites to present to the human, which

sites to visit and which sites to rely on its own classification based on its initial sensing, in

order to maximize the overall average probability of correct classification under resource

constraints. Let Pcorrect denote the average probability of correct classification of a site.
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We have

Pcorrect =
1

N
(
N∑
i=1

γh,iph,i +
N∑
i=1

γs,ip̃+
N∑
k=1

(1− γh,i)(1− γs,i)pr,i),

=
1

N
(
N∑
i=1

γh,i(ph,i − pr,i) +
N∑
i=1

γs,i(p̃− pr,i) +
N∑
i=1

pr,i),

where γh,i is 1 if the robot seeks human’s help for site i and is 0 otherwise. Similarly,

γs,i = 1 indicates that the robot will physically visit site i and γs,i = 0 denotes otherwise.

We then have the following optimization problem:

max.
γr,γs

γTh (ph − pr) + γTs (p̃1− pr)

s.t. γTs E ≤ Emax, 1Tγh ≤M,

γh, γs, γh + γs ∈ {0, 1}N ,

(3.1)

where ph = [ph,1, ..., ph,N ]T , pr = [pr,1, ..., pr,N ]T , γh = [γh,1, ..., γh,N ]T , γs = [γs,1, ..., γs,N ]T , E =

[E1, ..., EN ]T , and 1 is the vector with all 1s.

It can be seen that (ph,i−pr,i) and (p̃−pr,i) are important parameters as they represent

the performance gains by asking the human and visiting site i, respectively. Note that

we do not allow the robot to both query the human and make a visit for the same site.

This is because we already assume a high probability of correct classification when the

robot visits a site. Thus, allowing the robot to both visit and ask about the same site

will be a waste of resources in this case.

Properties of Optimal Collaboration

In this section, we discuss some properties of the optimization problem (3.1). We

first consider a special case where the exact solution can be derived and then show a few

properties of the general optimum solution.
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Figure 3.4: An example of the optimum decisions with 2,000 sites, 500 questions and
an energy budget of 25% of the total energy needed to visit all the sites.

If Emax = 0, problem (3.1) reduces to the case where the robot needs to decide between

asking the human and relying on its initial classification. It can then be easily confirmed

that γh,i has to be one for the M sites with the largest ph,i − pr,i in this case.

In general, optimization problem (3.1) is an integer program, which makes theoretical

analysis challenging. In order to better understand the optimum solution of problem

(3.1), Fig. 3.4 shows an example of the optimum decisions for the case of N = 2, 000

sites, with M = 500 allowed questions and an energy budget equal to 25% of the total

energy needed to visit all the sites. The optimum decision for each site is marked based

on solving problem (3.1). Interesting behavior emerges as can be seen. For instance, we

can observe that there are separations between different decisions. The clearest patterns

are two transition points that mark when the robot asks human for help, as shown with

the dashed vertical lines in Fig. 3.4. Basically, the figure suggests that the robot should

not query the human if the variance is smaller than a threshold or bigger than another

threshold, independent of the motion cost of a site. This makes sense as the robot itself
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will perform well for low variances and human does not perform well for high variances,

suggesting an optimum query range. Furthermore, it shows that the robot only visits

the sites where the energy cost is not too high and relies more on itself for the sites with

both high variance and energy cost.

3.2 Predicting Human Visual Performance Using Deep

Learning

In this part, we develop a deep learning-based algorithm to predict human visual

performance under general visual uncertainties, for a task that involves finding a human

in a site. More specifically, the robot is given the task of finding the person in a number

of sites based on its onboard camera input. In order to properly ask for help from

the remote operator for the sites for which it cannot find the person, the robot needs

to predict human visual performance. In this part, we show how to develop a DNN

pipeline in order to predict human visual performance in this task, given any general

visual sensing uncertainty. More specifically, given a visual input in the form of an image

with a person in it, the robot wants to predict the probability that humans can find

the person in the image. In order to equip the robot with this capability, we collect

several images with different levels of difficulty to train a Deep Convolutional Neural

Network (DCNN)-based human performance predictor, as we will show in this section.

This trained DCNN-based predictor then enables the robot to ask the right questions,

only querying the operator with the sensory inputs for which humans have a high chance

of success, as well as optimize its field decisions in terms of relying on itself, asking for

human help, and further sensing, which we will discuss in details in Sec. 3.3.

In this section, we describe the details of the training process, the machine learning
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algorithm, as well as the prediction performance.

3.2.1 Training Dataset

We have built a dataset of 3,000 total images, with each image containing a human.1

We have included images with different degrees of visual difficulty for proper training.

Sample challenging cases include images in cluttered environments, images where the

human is far away, and dark images. The images are mainly selected from the following

sources: NOAA Natural Hazards Image Database [108], the SUN dataset [109], and the

PASCAL VOC dataset [110]. All the images are resized to 256×256. For each acquired

image, we have manually darkened it to create a new data point that is also dark.

Human Data Collection

For each training image, we need to evaluate human visual performance. We do so

empirically by using MTurk. For each image, 50 MTurk workers are asked if they could

see a human in the image. The responses are then averaged for each image to empirically

assess the probability that a person can accomplish the given visual task.

Statistical Characteristics of the Dataset

Ideally, our dataset should be balanced in the number of difficult and easy images to

avoid biasing the learning process. However, we find more easy images in online datasets

than hard ones. For instance, based on the collected data from MTurk, the probability

of task accomplishment is above 0.95 for about 70% of the images and below 0.9 for

1Ideally each image should contain only one human to be consistent with the defined task. However,
due to the difficulty of finding images online that capture challenging scenarios, a small percentage of
the images contain more than one person in the image. The MTurk users are instructed to answer “yes”
if they could spot a person in the image. In such cases, the task can be thought of as finding the most
obvious person in the image.
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Figure 3.5: Flow diagram of training a convolutional neural network to predict human
performance probabilistically.

about 20% of the images. To avoid biasing the prediction, we utilize the commonly used

technique of oversampling [111] in machine learning to create a more balanced dataset.

As our extensive experimental results of Section 3.5 indicate, the number of hard images

in the initial set is still sufficient as our trained predictor can well differentiate between

the images that are easy and difficult for humans.

3.2.2 Using DCNN to Predict Human Performance

We train a convolutional neural network to predict human performance. The high-

level structure of the network is shown in Fig. 3.5. Our proposed network architecture

is a modified version of AlexNet [48], which is one of the state-of-the-art DCNNs. The

original AlexNet consists of 5 convolutional layers and 2 fully connected layers, followed

by an output layer. AlexNet is originally designed for object classification. In this

chapter, however, we are interested in a different task of probabilistically predicting

human performance in finding a person in an image, which is a regression task. We

thus replace the output layer of AlexNet with a regression layer, which then outputs the

human performance based on the output of the 7th layer of AlexNet.

By using the dataset of Section 3.2.1 as input images and the corresponding MTurk

responses as ground-truth labels, we train the resulting network as follows. The parame-

ters of the first 7 layers are initialized with the weights of the corresponding layers of an
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Image categories Normalized MSE

All 0.0199

Non-dark 0.0067

Dark 0.0330

Hard 0.0479

Hard Non-dark 0.0493

Hard Dark 0.0474

Table 3.1: Performance of our human predictor – NMSEs over different subsets of
images in the validation set.

AlexNet trained for human detection (classification from a set of {Human,No Human}).

The parameters of the output layer are initialized randomly. Mean Squared Error (MSE)

is used as the loss function that computes the update for network weights. The under-

lying motivation for this design is as follows. The parameters of the first 7 layers of the

AlexNet trained for human detection capture features useful for detecting human pres-

ence, which are also informative for predicting human performance in finding a person

in the image. But since our task is different, all the weights need to be updated during

the training based on the input from human performance. The training is performed

for 50,000 iterations with an initial base learning rate of 10−5, which is reduced by a

factor of 10 after every 10,000 iterations. Stochastic gradient descent is used to update

the network weights and the training batch size is 128. We employ the machine learning

library Caffe [112] to train and test our models.

3.2.3 Evaluation of the Proposed Human Performance Predic-

tor

We next evaluate the performance of our trained human predictor over the validation

set. The validation set is randomly selected out of the original image pool and thus has a

similar ratio of hard to easy images as the training pool. We first look at the Normalized

Mean Squared Error (NMSE) to evaluate the prediction quality, which is calculated as
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follows: 1
Nv

∑Nv

i=1(ph,i,val − p̂h,i,val)
2/p2

h,i,val, where ph,i,val and p̂h,i,val are the ground-truth

and predicted human performance of the ith validation image and Nv is the number of

image in the validation set.2 Table 3.1 shows a summary of NMSE over different subsets

of the validation set. The NMSE over all validation images is 0.0199. The NMSE over

all non-dark and dark3 validation images are 0.0067 and 0.033 respectively. It is also

of great importance to our robotic task to be able to predict images hard for humans.

Define hard images such that the empirical probability of a person finding the human

in the image, i.e., the ground-truth probability, is less than 0.9. The NMSEs over all

such hard images, hard non-dark images and hard dark images are also summarized in

Table 3.1. As can be seen, the NMSE values are fairly small, indicating a good training

performance. Fig. 3.6 shows four sample images with the true and predicted human

performance annotated (bottom-right) on each image. As can be seen, our predictor

can predict the performance well for these images. Fig. 3.7 further shows the empirical

Cumulative Distribution Function (CDF) of NMSE over the validation set. It can been

seen that the NMSEs of most images (more than 90%) are upper bounded by 0.05. We

note that the NMSE of the validation set and the training set is 0.0199 and 0.0112

respectively, indicating that the network did not over-fit the training data.

In the literature, there are two existing papers that have looked into the problem

of predicting the probability with which a person is able to see a human in an image.

The reported prediction Mean Absolute Error (MAE) is at least 0.22 in [5], while the

prediction Mean Squared Error (MSE) is 0.04 in [4]. The comparison between our pre-

dictor and those reported in [4, 5] is summarized in Table 3.2. As can be seen, our

approach can achieve a much better performance. This is mainly because our approach

2Although NMSE values are higher than the corresponding MSE ones since we are predicting a
positive value bounded by 1, we find NMSE a more truthful metric of the performance as it is normalized
by the true value.

3Non-dark images refer to those directly taken from the aforementioned datasets and dark images
refer to those that are manually darkened.
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True prob.: 1

Pred. prob.: 1

True prob.: 1

Pred. prob.: 1

True prob.: 0.87

Pred. prob.: 0.88

True prob.: 0.76

Pred. prob.: 0.79

Figure 3.6: Comparison of the true and predicted probability of successful human
performance for (top-left) an easy non-dark image, (top-right) a hard non-dark image,
(bottom-left) an easy dark image and (bottom-right) a hard dark image. Readers are
referred to the color pdf for better viewing.
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Figure 3.7: The CDF of NMSEs of validation images.

is fundamentally different from the past work in that [4, 5] choose a few hand-crafted

image features for prediction. In general, however, there exist many underlying features

that contribute to what makes an image difficult or easy for human visual system, which

are challenging to hand-craft. Thus, in our approach, the important features of an im-

age are automatically captured by the DCNN in Fig. 3.5, and utilized for performance

prediction.
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Human Predictors MSE MAE

Our Predictor 0.0067 0.0459

Predictor of Engel et al. 0.04 N/A

Predictor of Wakayama et al. N/A 0.22

Table 3.2: Comparison of the performance of our predictor with two existing pre-
dictors. N/A indicates that the evaluation is not available. The performance of our
predictor is evaluated over all non-dark validation images, which best match the char-
acteristics of the images used in [4, 5].

Remark 1: Table 3.2 shows what [4, 5] reported for their prediction performance.

Although we evaluate the performance of our predictor over our non-dark validation

images, which best resemble the images used in [4,5], we note that our dataset is not the

same as that of [4] or [5]. The performances of the three predictors are thus not fully

comparable since they are evaluated over different datasets.

Remark 2: As can be seen, the NMSE values in Table 3.1 are slightly larger over the

set of hard images. While we expect hard images to be more challenging for the predictor,

this can also be partly due to the dataset imbalance (discussed in Section 3.2.1). It can,

however, be seen that the NMSE values are still very small, indicating a good training

performance. Building a more balanced dataset by including more hard images, as part

of future work, can improve the prediction performance in more challenging settings.

3.3 Robot Decision Optimization

In this section, we formulate the human-robot collaborative perception problem as a

constrained optimization problem and discuss the optimum decisions such that robot’s

motion energy usage is minimized while task performance is guaranteed above a certain

level. We then propose how to equip the robot with the human performance predictor

in order to successfully execute the optimum decisions. In the rest of the chapter, we

focus on surveillance tasks for finding humans based on imagery inputs. We note that
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the proposed methodology is applicable to any visual perception task with any sensory

input.

3.3.1 Problem Formulation

Consider a case where there is a total of N sites with a human at each site. A field

robot is tasked with finding the human at each site.4 The robot has limited access to

a human operator to ask for help with the task, in the form of M maximum questions.

The robot can also spend motion energy and time to move closer to a site for better

sensing. The robot’s goal is to successfully perform the task while minimizing its total

energy usage (or equivalently operation time).

During the operation, the robot first performs initial sensing of the sites by taking a

picture of each site. Based on these sensory inputs, it then estimates its own probability

of task accomplishment, which is denoted by pr,i for site i, for i ∈ {1, ..., N}. If the

estimated probability is high enough for a site, then the robot can rely on itself. If not, it

has to decide if it should ask for help from a remote operator for this site or if it should

move to the site for further sensing. In order to properly make this decision, it needs to

assess the chance that the operator can perform the task successfully. Let ph,i denote the

probability that humans can successfully perform the task for site i, for i ∈ {1, ..., N}.

We then have the following optimization problem:

min.
γh,γr,γs

ETγs

s.t. γh ◦ ph + γr ◦ pr + γs � pTh1,

1Tγh ≤M, γh + γs + γr = 1, γh, γs, γr ∈ {0, 1}N ,

(3.2)

4We emphasize that the considered task in the rest of the chapter is to find the human at each site,
given there is a human at each site. In other words, the robot or human operators/MTurk users know
there should be a human at each site and the task is to find the human at each site.
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Algorithm 1: Decision Making Algorithm

Initialization: γr,i = 0, γh,i = 0, γs,i = 0, ∀i ∈ {1, ..., N}.
Step 1: ∀i ∈ {j : pr,j ≥ pTh, j ∈ {1, ..., N}}, set γr,i = 1;
Step 2: ∀i ∈ {j : γr,j = 0, ph,j ≥ pTh, j ∈ {1, ..., N}}, set γh,i with the M largest Ei to
1;

Step 3: ∀i ∈ {j : γr,j = γh,j = 0, j ∈ {1, ..., N}}, set γs,i = 1.

where E = [E1, ..., EN ]T is the motion energy cost vector to visit the sites, pTh is the

minimum acceptable probability of successful task accomplishment, ph = [ph,1, ..., ph,N ]T ,

pr = [pr,1, ..., pr,N ]T , γh = [γh,1, ..., γh,N ]T , γs = [γs,1, ..., γs,N ]T and γr = [γr,1, ..., γr,N ]T .

Moreover, γh,i = 1 if the robot seeks human’s help for site i and γh,i = 0 otherwise.

γs,i = 1 if the robot visits site i and γs,i = 0 otherwise. Furthermore, γr,i = 1 if the robot

relies on itself for site i and γr,i = 0 otherwise. 1 is the vector of all 1s, ◦ denotes the

Hadamard product and � indicates that the inequality is component-wise.

In order to mathematically characterize the optimum decisions, we assume that if the

robot moves to a site for further sensing, its probability of successful task accomplishment

is 1 in problem (3.2).5 The optimum solution of Algorithm 1 can then be easily confirmed

for problem (3.2).

3.3.2 Proposed Decision Optimization

Algorithm 1 lays out the decision optimization of the robot during the operation.

If the robot has a high confidence in finding the person at a site (pr ≥ pTh), then it

can simply rely on itself, eliminating the need for further sensing or asking for help. In

Section 3.4, we discuss how robot’s vision algorithm provides it with pr so it can assess

its own performance.

For sites that pr < pTh, the robot has to decide on which ones to visit and which

5In our experiments, we take the true probability of task accomplishment into account when a site is
visited.
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Figure 3.8: Flow diagram of robot’s decision making process.

ones to ask the operator. In order to make this decision, the robot needs to predict

the probability that the operator can accomplish the given perception task (ph). This

probability is estimated by our trained DCNN human visual performance predictor, as

extensively discussed in Sec. 3.2. Based on Algorithm 1, the robot then evaluates the

images of these sites with its human predictor. Let Nhard denote the number of sites

that the robot cannot rely on itself. Out of these sites, let Nhuman denote the number of

sites for which the robot predicts that the human can accomplish the task (ph ≥ pTh).

If M ≥ Nhuman, then the robot will pass all those sites to the operator. If M < Nhuman,

then the robot will choose the M sites that cost the most energy to visit and pass them

to the operator. It will then visit the remaining sites. Fig. 3.8 summarizes the robot’s

optimum decision-making.

3.3.3 Variability Among Human Operators and pTh

In general, we should choose pTh high such that the robot only asks the human about

those images for which almost all the probed people have correctly done the task. This

is in particular important as we consider cases where the human operator can only look

at the image at a glance and does not have time to investigate the details due to work

overload. Thus, the robot wants to only ask for help if it is fairly confident that the

human can be of help.

Choosing a high threshold also makes the prediction more immune to the variabil-
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ity among operators. As expected, there will be variability among different humans in

accomplishing a visual task. Furthermore, performance of the same person can vary

depending on factors such as fatigue and attention overload. The variability of perfor-

mance, however, is much less for easy images, as compared to hard images. This makes

sense as humans can typically perform an easy task even under fatigue and stress while

performing harder tasks requires more focus and energy. We thus choose pTh = 0.9 in

the next section on performance evaluation.

3.4 Robot Vision

For the given visual task of finding a human in an image, the robot uses the state-

of-the-art AlexNet [48], which also provides it with a confidence metric to assess its

probability of task accomplishment, denoted as pr. We train AlexNet to classify images

into two classes of {Human,Non-Human}, i.e., images that contain at least one human

and images that do not contain any. We fine-tune the AlexNet on our dataset (MS

COCO [76] plus manually-darkened images) with 230,000 training images from a model

pre-trained on the Imagenet data [113]. The accuracy of our model over the validation

set (80,000 images) is 0.85. The network gives its confidence in terms of a probability for

each class. We then take pr = prob{Human}.

3.5 Performance Evaluation

In this section, we start by evaluating the performance of the proposed approach

with 4 experiments on our campus. Additionally, we evaluate the performance at a

larger scale by simulating a case with 15 sites, based on real sensing data from our

campus and real human performance using MTurk. We further compare our approach
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with the best possible without human prediction, to which we refer as “benchmark”.

The benchmark optimizes the decisions without knowledge of human performance, as is

summarized below:

Initialization: γh,i = 0, γs,i = 0 and γr,i = 0, ∀i ∈ {1, ..., N};

Step 1: ∀i ∈ {j : pr,j ≥ pTh, j ∈ {1, ..., N}}, set γr,i = 1;

Step 2: ∀i ∈ {j : γr,j = 0, j ∈ {1, ..., N}}, set γh,i with the M highest pr,i to 1;

Step 3: ∀i ∈ {j : γr,j = γh,j = 0, j ∈ {1, ..., N}}, set γs,i = 1.

In summary, the robot orders the sites based on its own confidence (pr) from highest

to lowest. If the robot’s confidence is high enough, it will rely on itself. It then selects the

next M sites to query human operators, and visits the remaining sites. We note that in

several literature on human-robot collaboration, the human is assumed perfect. We can

also compare our approach to the case of perfect human. In this case, the robot should

choose M most expensive sites to query the operator from the sites that are difficult for

itself. However, this approach does worse than the aforementioned benchmark. We thus

compare our approach with the described benchmark in this section. When comparing

to any other approach, we note that the sites that the robot relies on itself will naturally

be the same, as expected, since this chapter is about how to optimize the decisions when

the robot cannot rely on itself.

3.5.1 Robotic Experiments

We perform a number of robotic experiments at different locations on our campus

to validate the proposed approach. In each experiment, the robot starts at the center

of a crossroad. Each crossroad direction is a site of interest, and there is a person at

each site. The robot is tasked with finding the person in each direction based on camera

inputs, and is given maximum of M = 1 question to ask remote operators for help with
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finding the person in that experiment. The robot can choose to move to a site for further

sensing. The goal of the robot is to find the person in each direction with a very high

probability, while minimizing its total energy usage.

The robot does an initial sensing of each direction by rotating, facing each direction,

and taking a color picture. The robot then inputs the pictures to its onboard human pre-

dictor and decision making algorithm (problem (3.2)). Based on the resulting optimum

decisions, the robot may select a site to ask for operator’s help and a number of sites

for further sensing according to the strategy described in Section 3.3.2. The robot is a

Pioneer 3-AT ground vehicle [114], equipped with a webcam for sensing and a laptop for

processing. Camera images are resized to 256×256 to be compatible with AlexNet. For

all the images, the readers are referred to the color pdf.

Campus Robotic Experiment 1

In this experiment, the robot starts at crossroad 1 with three sites in three different

directions. Fig. 3.9 shows the images that the robot takes during its initial sensing.

Table 3.3 shows robot’s performance (pr) as well as predicted human performance (p̂h),

as compared to the required threshold (0.9) for the three sites, with “1” indicating that

the threshold is satisfied and “0” denoting otherwise.6 As can be seen, the robot can

confidently rely on itself for Sites 2 and 3. However, it has a low confidence for Site

1, which is also hard for humans, as can be seen. Without our predictor, however, the

robot has no methodical way of making the right decision for this site. The table shows

robot’s decisions for both our approach and the benchmark. As can be seen, our human

predictor accurately predicts that Site 1 is too difficult for humans and thus does not

send this image to the operators. Instead, it chooses to move to this site to take the 4th

image, which is now easy for itself. The benchmark, on the other hand, would inquire the

6The threshold pTh = 0.9 is used throughout this section.
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Initial sensing

Exp. 1   Site 1

Initial sensing

Exp. 1   Site 2

Initial sensing

Exp. 1   Site 3

Initial sensing

Exp. 1   Site 3

After further sensing

Exp. 1   Site 1

Figure 3.9: Initial sensing images of 3 sites at crossroad 1 and the image taken after
moving to Site 1 for further sensing based on our approach. Readers are referred to
the color pdf for all the experimental results. The visual difficulty of the real-size
images is pretty consistent with that of the smaller versions when viewed in color.

Site pr ≥ pTh p̂h ≥ pTh Our Method Benchmark

1 0 0 Visit Ask

2 1 1 Self Self

3 1 1 Self Self

Ave. Prob. Success 0.96 0.69

Ave. Prob. Human Success N/A 0.07

Table 3.3: Performance summary at campus crossroad 1.

operator on the first image, for which MTurkers had 0.07 chance of spotting the human.

The table also shows the overall average probability of task accomplishment, which is 0.69

for the benchmark and 0.96 for our approach (39% higher than benchmark). Average

probability of success is averaged over all the sites, including the ones that the robot

relies on itself.

Campus Robotic Experiment 2

In this experiment, the robot starts at crossroad 2 with three sites in three different

directions. Fig. 3.10 shows the images taken by the robot during its initial sensing. Table

3.4 shows robot’s performance and predicted human performance. As can be seen, the

robot can confidently rely on itself for Site 3. However, it has a low confidence for Sites

1 and 2 in this case. Site 1, however, is also hard for humans, while Site 2 is easy for
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Initial sensing

Exp. 2   Site 1

Initial sensing

Exp. 2   Site 2

Initial sensing

Exp. 2   Site 3

After further sensing

Exp. 2   Site 1

Figure 3.10: Initial sensing images of 3 sites at crossroad 2 and the image taken after
moving to Site 1 for further sensing based on our approach.

Site pr ≥ pTh p̂h ≥ pTh Our Method Benchmark

1 0 0 Visit Ask

2 0 1 Ask Visit

3 1 1 Self Self

Ave. Prob. Success 1 0.71

Ave. Prob. Human Success 1 0.27

Table 3.4: Performance summary at campus crossroad 2.

humans, as can be seen.7 The table shows robot’s decisions for both our approach and

the benchmark. Our human predictor accurately predicts that Site 2 is easy for humans

while Site 1 is hard. The robot then chooses to move to Site 1 and send image of Site 2

to operators for help, while relying on itself for Site 3.

The benchmark instead queries the operator with Site 1 and moves to Site 2 for

further sensing, which results in wasting one question, not spotting the person in Site 1,

and moving to the wrong site for further sensing. This is due to the fact that pr of Site

1 is higher than Site 2. In other words, robot’s vision algorithm cannot properly predict

human’s performance. As a result, the average probability of human success is 0.27 in

the benchmark case while it is 1 in our case (3.7 times higher). The overall average

probability of success is 0.71 for the benchmark and 1 for our approach (41% higher than

benchmark) in this case.

7It is easy to spot the person in this image in the color pdf.
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Initial sensing

Exp. 3   Site 1

Initial sensing

Exp. 3   Site 2

Initial sensing

Exp. 3   Site 3

Initial sensing

Exp. 3   Site 4

After further sensing

Exp. 3   Site 1

Figure 3.11: Initial sensing images of 4 sites at crossroad 3 and the image taken after
moving to Site 1 for further sensing based on our approach.

Site pr ≥ pTh p̂h ≥ pTh Our Method Benchmark

1 0 0 Visit Ask

2 1 1 Self Self

3 1 1 Self Self

4 0 1 Ask Visit

Ave. Prob. Success 1 0.77

Ave. Prob. Human Success 1 0.12

Table 3.5: Performance summary at campus crossroad 3.

Campus Robotic Experiment 3

In this experiment, the robot starts at crossroad 3 with four sites in four different

directions. Fig. 3.11 shows the initial images. As can be seen, it is hard to spot the

person in Site 1, while the person in the three other sites can be easily detected. Table

3.5 shows robot’s performance and predicted human performance. The predictor flags

the first site as hard for humans. Then, our approach results in the robot asking about

Site 4, visiting Site 1, and relying on itself for the remaining two sites. The benchmark

moves to Site 4 instead and inquires operators on Site 1. The average probability of

human success is 0.12 in the benchmark case while it is 1 (8.3 times higher) in our case.

The overall average task accomplishment probability is 1 for our approach, 30% higher

than the benchmark (0.77) in this case.
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Initial sensing

Exp. 4   Site 1

Initial sensing

Exp. 4   Site 2

Initial sensing

Exp. 4   Site 2

Initial sensing

Exp. 4   Site 3

After further sensing

Exp. 4   Site 1

Figure 3.12: Initial sensing images of 3 sites at crossroad 4 and the image taken after
moving to Site 1 for further sensing based on our approach.

Campus Robotic Experiment 4

Next, we show a case where the benchmark gets lucky and has the same decisions

as our approach. In this experiment, the robot starts at crossroad 4 with three sites, as

shown in Fig. 3.12. Robot’s vision fails for Sites 1 and 3. As can be seen, it is hard

to see the person in the first image and easy to spot the person in the other two. Our

approach correctly predicts this and visits Site 1 while asking operators about Site 3.

The benchmark coincides with our approach in this case. However, in general, it will be

hard for the robot to ask for help without a proper human predictor.

Overall, our experimental campus results confirmed that the human predictor can

properly help the robot identify which images are hard/easy for humans, allowing for the

optimization of further sensing and human query. Unless all the sites are easy for the

robot or for the human, the robot cannot methodically optimize its decisions without

properly predicting human performance. In practice, there will be several hard cases

where the robot cannot rely on itself and the sensory input is still too hard for humans,

as we have shown. The proposed predictor and decision optimization approach can then

be a valuable tool for the robot to achieve its best performance with minimum resources.

47



Prediction of Human Visual Performance Chapter 3

Sites 1-5 Sites 6-10 Sites 11-15

Robot Perf. pr < pTh pr < pTh pr ≥ pTh

Human Perf. ph < pTh ph ≥ pTh ph ≥ pTh

Predicted Human Perf. p̂h < pTh p̂h ≥ pTh p̂h ≥ pTh

Table 3.6: Case of 15 sites and 5 allowed queries. The table shows robot and human
performance for each site, as well as the prediction of human performance.

3.5.2 Further Evaluation over 15 Sites

In order to demonstrate the performance at a larger scale, we next show simulation

results where a robot is tasked with finding humans in 15 sites with limited help from an

operator. More specifically, it is given a maximum of 5 queries to operators and can also

choose to visit a site after its initial sensing. All the sites have the same cost to visit.

The images taken by the robot after its initial sensing are real data taken around our

campus and have different levels of difficulty. The final evaluation of the performance is

done by passing the chosen images to MTurk users. Table 3.6 summarizes task difficulty

of the sites for both robot and human. Without loss of generality, we numerate the sites

from hard to easy based on true human performance from 50 MTurk users (ph). It can

be seen that sites 1-5 are hard for both the robot and the human, sites 6-10 are hard for

the robot but easy for human, and sites 11-15 are easy for both. The table further shows

that our predictor correctly identifies the sites that are hard/easy for humans. Table ??

then compares the decisions of our approach with the benchmark. As can be seen, the

two methods result in very different decisions in terms of which sites to visit or query

the human operator. The last column shows the average (averaged over queried sites)

probability that human operators accomplish the task when asked, based on passing

each image to 50 MTurk users. This probability is 0.98 for our approach and 0.58 for the

benchmark.

It can be seen that by using our approach, the images selected to query the operator

are those that the human operator can indeed be of help with. Without a proper predic-
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tion, however, the robot can send several hard images to the operator, instead of further

sensing, thus wasting questions and incurring large performance loss.

In this chapter, we developed a DCNN-based approach to predict human visual perfor-

mance and demonstrated its efficacy in several real-world experiments involving human-

robot visual collaboration. In the next chapter, we consider a more general optimization

of human-robot collaborations which involve various realistic factors commonly-seen in

robotic operations, such as imperfect sensing quality, realistic wireless communication

model, realistic robot motion power model, and resource constraints. We develop a

framework to co-optimize the robot’s field decisions under these realistic factors, while

taking into account the predicted human performance.
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Chapter 4

Optimizing Human-Robot
Collaboration with Human
Performance Prediction

In this chapter, we take a more comprehensive look into the optimization of the

robot’s field decisions, given the predicted human performance. More specifically, we

consider a realistic and general collaborative site inspection scenario where there is a

pre-defined path, near which there is a number of sites containing targets to be classified,

as shown in Fig. 4.1. As the robot traverses this path and reaches a point close to a site,

it has to decide whether (and to what extent) it should incur motion energy to deviate

from the main path towards the site to sense it better, and whether it should ask for

human help with this site. The robot then returns to the pre-defined path after a possible

deviation. The robot’s objective is then to maximize its target classification performance

at all the sites, under limited onboard energy constraints (including both communication

and motion), with a limited access to a human operator to ask for help, and while

considering the fact that human visual performance is not perfect and varies depending

on the sensory input. Furthermore, the robot has constraints in communication with

Parts of this chapter have appeared in our paper [106], ©[2019] IEEE.
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Figure 4.1: The robot travels along a pre-defined path to inspect sites nearby. For
each site, the robot decides how much it should deviate from the main path to move
closer to the site for better sensing. It also needs to decide whether to ask the remote
operator for help with target classification for this site. Human visual performance,
however, is not perfect, and can vary depending on the sensing quality.

the human operator. We consider two realistic communication constraints. In the first

case, the robot is given a limited number of chances to query the human operator. This

case realistically considers the impact of possible human work overload, which needs to

be prevented by limiting the number of queries. In the second case, the quality of the

robot’s wireless communication to the remote human varies spatially, due to path loss,

shadowing, and multipath fading in realistic channel environments. The robot then needs

to first predict the channel quality at unvisited locations in the environment and then

decide where to communicate with the human operator, given a limited energy budget

that can be used towards communication and motion.

The rest of the chapter is organized as follows. In Sec. 4.1 and 4.2, we show how

to co-optimize the robot’s motion, sensing, and queries to the operator, considering an

imperfect human visual performance, under communication constraints to the operator,

and given a limited energy budget. More specifically, in Sec. 4.1, the robot is given a

limited number of queries to the operator, while in Sec. 4.2, the quality of communication

link to the remote operator may not be perfect everywhere in the workspace. The robot

then has a limited energy budget that can be used towards communication and motion.
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4.1 Optimizing Human-Robot Collaboration under

Total Query Constraints

In this section, we consider the case that the robot has been given a limited number

of queries for human help during its operation. As discussed earlier, this represents many

realistic situations where the operator has to work with a number of robots and can thus

not be overloaded with too many queries. The robot then has to optimally choose the

sites for which humans have a high chance of accomplishing the visual task to query the

operator. Furthermore, it has to co-plan its trajectory for site inspection, by considering

its motion energy budget, its query budget, and human visual performance. In this

section, we show how the robot can optimally achieve this.

4.1.1 Problem Setup

Consider the case where a robot travels along a pre-defined main path and has a total

number of N sites to inspect, as shown in Fig. 4.1. In order to achieve a good target

classification performance, the robot has to decide how far it should deviate from the

pre-defined path to sense each site (it returns to the main path after each deviation),

and whether it should ask for human help for each site. The robot is allowed to query

the human M times during this operation and has a motion energy budget Emax for the

deviations, which is in addition to the motion energy required to travel the main path.

We assume that the distance of each site to the pre-defined path is known such that

motion energy costs can be estimated.

Let di ∈ [0, dmax,i] denote the deviation distance from the path to site i, ∀i ∈

{1, ..., N}, where dmax,i is the distance between the path and site i. Em,i(di) denotes

the motion energy cost of a deviation of di, which includes both moving to the site and
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returning to the main path. Based on the sensing quality after traveling di, the correct

classification probabilities of site i are pr,i(di) and ph,i(di) for the robot and the human,

respectively.1

In order to maximize the average correct classification probability of the sites, we

have the following optimization problem:

max.
γ̃,d

1

N

N∑
i=1

γiph,i(di) + (1− γi)pr,i(di)

s.t.
N∑
i=1

Em,i(di) ≤ Emax,
N∑
i=1

γi ≤M,

γ̃ ∈ {0, 1}N , x � 0,

(4.1)

where γ̃ = [γ1, ..., γN ]T , d = [d1, ..., dN ]T . γi = 1 indicates that the robot should query

the human for site i and γi = 0 denotes otherwise, and 0 is a vector of all 0s.

This optimization problem, however, is in general a non-convex Mixed Integer Non-

linear Program, solving which is computationally expensive [115]. We then show that

by discretizing the motion decision space, this problem can be formulated as a Multiple-

Choice Multidimensional Knapsack Problem (MMKP), which can be further closely ap-

proximated by solving a Linear Program (LP).

4.1.2 MMKP Formulation via Motion Space Discretization

In this section, we restrict the robot’s deviation to quantized steps, which limits the

robot’s motion decision to a finite set. Let Ωd,i = {di,j : j ∈ {1, ...Di}} denote the set of

possible motion steps for site i, where di,j represents a deviation distance corresponding

to the jth step and Di is the number of possible steps for site i. The overall decision set

1We discuss how the robot can estimate the human’s and its own visual classification performance as
a function of the sensing distance during operation in Sec. 4.1.7.
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for site i then becomes Ωd,i×{0, 1}, where {0, 1} is the decision set for whether the robot

should ask for human help for site i. This discretization then results in the following

Integer Linear Program (ILP):

max.
γ

1

N

N∑
i=1

Di∑
j=1

γh,i,jph,i,j + γr,i,jpr,i,j

s.t. (1)

Di∑
j=1

γh,i,j + γr,i,j = 1, ∀i ∈ {1, ..., N},

(2)
N∑
i=1

Di∑
j=1

(γr,i,j + γh,i,j)Em,i,j ≤ Emax,

(3)
N∑
i=1

Di∑
j=1

γh,i,j ≤M, (4) γ ∈ {0, 1}2×
∑N

i=1Di ,

(4.2)

where γ is the stacked vector containing all the optimization variables as defined by

Eq (4.3), with N denoting the number of sites and Di representing the number of

motion decisions of site i. More specifically, for site i, the set of decision variables is

{γr,i,1, γh,i,1, ..., γr,i,Di
, γh,i,Di

}, where γr,i,j = 1 if the robot deviates di,j from the path and

relies on itself for classification and γr,i,j = 0 denotes otherwise. Similarly, γh,i,j = 1 if the

robot deviates di,j and queries the human after the further sensing and γh,i,j = 0 denotes

otherwise. γ is then the stacked vector of all the decision variables for all the sites. Note

that due to constraint (3), for each site, only one variable will be equal to 1 and all the

others will be 0 in a feasible solution. After the discretization, we represent ph,i(di,j),

pr,i(di,j), and Em,i(di,j) by ph,i,j, pr,i,j, and Em,i,j for conciseness, which are non-negative
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constants.

γ =[γr,1,1, γh,1,1, ..., γr,1,D1 , γh,1,D1︸ ︷︷ ︸
variables for site 1

, ...,

γr,i,1, γh,i,1, ..., γr,i,Di
, γh,i,Di︸ ︷︷ ︸

variables for site i

, ...,

γr,N,1, γh,N,1, ..., γr,N,DN
, γh,N,DN︸ ︷︷ ︸

variables for site N

]T

(4.3)

The next proposition shows that problem (4.2) is an MMKP by comparing its struc-

ture and parameters to those of a standard MMKP formulation.2

Proposition 4.1 Problem (4.2) is an MMKP, where there are N classes (sites) and for

each class, there is a total number of 2 × Di items (decisions). Furthermore, there are

two resource constraints, which correspond to the motion energy budget and the query

budget.

Proof: This can be established by comparing problem (4.2) with problem (A.1).

In the following proposition, we characterize the approximation error due to solving

the discretized problem (4.2) instead of the original continuous problem (4.1).

Proposition 4.2 Denote the optimums of problems (4.1) and (4.2) as f ?Cont and f ?MMKP,

respectively. Then, we have f ?Cont − f ?MMKP ∈ [0, g̃], where g̃ = max{|ph,i,j+1 − ph,i,j|,

|ph,i,j+1 − pr,i,j|, |pr,i,j+1 − ph,i,j|, |pr,i,j+1 − pr,i,j|}, ∀i ∈ {1, ..., N} and j ∈ {1, ..., Di}.

Proof: Since an optimal solution to problem (4.2) is also feasible to problem (4.1),

we have f ?Cont ≥ f ?MMKP. Suppose that for each site i, the motion cost Em,i(di) is non-

decreasing in the deviation distance di. Denote an optimal solution to problem (4.1) by

γ̃? and d?. For each site i, to obtain a feasible solution to problem (4.2), we replace

2See Appendix A for an overview of MMKP.
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d?i with d?i,j = argmin|di,j − d?i |, where di,j ≤ d?i , di,j ∈ Ωd,i, and Ωd,i is the discretized

motion decision set for site i. Then, in the feasible solution to problem (4.2), for site i,

the decision is represented by a deviation distance of d?i,j and a human query indicator

γ?i . It can then be easily confirmed that the performance degradation is upper bounded

by g for each site and thus, we have f ?Cont − f ?MMKP ≤ g̃.

Based on Prop. 4.2, it can be seen that if a fine-grained discretization is used, the

difference between the optimums of problem (4.1) and problem (4.2) is negligible. How-

ever, a fine-grained discretization will introduce a large number of variables in the MMKP.

Since an MMKP is an NP-hard combinatorial problem, it is not computationally efficient

to solve a large-scale MMKP. Therefore, in the next section, we show how to efficiently

obtain a solution based on LP relaxation and further prove that the LP-based solution

is very close to the optimums of problems (4.1) and (4.2).

4.1.3 Near-Optimal LP-based Solution

In this section, we propose an approach to efficiently obtain a near-optimal solution

to problem (4.2) based on its LP relaxation.3

The LP relaxation is obtained by replacing the binary constraint γ ∈ {0, 1}2×
∑N

i=1Di

with a linear constraint 0 � γ � 1, where “�” denotes a component-wise comparison,

and 0 and 1 are vectors of all 0s and all 1s, respectively. We start this section by studying

some properties of any feasible solution to this LP relaxation of problem (4.2). Based

on these properties, we then characterize the number of fractional (non-binary) variables

in an optimal solution to the LP relaxation of problem (4.2). We further prove that by

properly rounding the LP optimal solution (to achieve a binary solution), we can achieve

a solution that is very close to the optimum of problem (4.2), as well as problem (4.1).

3Note that the LP relaxation of an ILP results in the same optimal solution as its Lagrangian
relaxation [116].

56



Optimizing Human-Robot Collaboration with Human Performance Prediction Chapter 4

To the best of our knowledge, this is the first proof characterizing the number of fractional

variables in an optimal solution to the LP relaxation of an MMKP when there is more

than one resource constraint.

Consider an initial feasible solution to the LP relaxation of problem (4.2). We first

describe a method to modify this solution to obtain another feasible solution. In other

words, the variables in the modified solution still satisfy all the constraints of the LP.

Suppose that in a feasible solution to the LP relaxation of problem (4.2), there is a

number of fractional variables: γh,i,j with (i, j) ∈ SH = {(i, j) : γh,i,j /∈ {0, 1}} and γr,k,m

with (k,m) ∈ SR = {(k,m) : γr,k,m /∈ {0, 1}}. We introduce some small changes to the

fractional variables:

γ̂h,i,j = γh,i,j + δαi,j and γ̂r,k,m = γr,k,m + δβk,m, (4.4)

where |δ| > 0 is a small number, and αi,j, βk,m ∈ R are numbers to be determined. The

symbol “̂” denotes the modified solution. The non-fractional variables stay the same.

Let α denote a stacked vector of αi,j with (i, j) ∈ ΩH and β denote a stacked vector

of βk,m with (k,m) ∈ ΩR. In addition to requiring the modified solution to satisfy the

optimization constraints of the LP, we also enforce that the modified solution uses the

same amount of resources as the initial solution. Then, α and β should satisfy the

following system of linear equations:

(1)
∑

(i,j)∈ΩH

αi,j +
∑

(i,m)∈ΩR

βi,m = 0, ∀i ∈ Ωf

(2)
∑

(i,j)∈ΩH

αi,j = 0,

(3)
∑

(i,j)∈ΩH

Ei,jαi,j +
∑

(k,m)∈ΩR

Ek,mβk,m = 0,

(4.5)
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where Ωf is the set of sites with fractional variables, line 1 corresponds to constraint (1)

in problem (4.2) that the decision variables of each site should add up to 1, lines 2 and

3 ensure that the number of queries used and the motion energy usage do not change

after modifying the initially-given feasible solution. It can be seen that if α and β satisfy

system (4.5), then constraints (1) - (3) of the LP relaxation of problem (4.2) are satisfied.

Additionally, |δ| > 0 can be made sufficiently small such that 0 � γ̂ � 1.

We can write system (4.5) in matrix form, A · [α, β]T = 0, where A has the following

form:



1D̃H,1
0D̃H,2

... 0D̃H,N
1D̃R,1

0D̃R,2
... 0D̃R,N

0D̃H,1
1D̃H,2

... 0D̃H,N
0D̃R,1

1D̃R,2
... 0D̃R,N

...
...

. . .
...

...
...

. . .
...

0D̃H,1
0D̃H,2

... 1D̃H,N
0D̃R,1

0D̃R,2
... 1D̃R,N

1D̃H,1
1D̃H,2

... 1D̃H,N
0D̃R,1

0D̃R,2
... 0D̃R,N

Em,H Em,R


(4.6)

where 1D̃H,i
and 0D̃H,i

are 1× D̃H,i row vectors of all 1s and all 0s, respectively, and 1D̃R,i

and 0D̃R,i
are 1× D̃R,i row vectors of all 1s and all 0s, respectively, ∀i ∈ {1, ..., N}. D̃H,i

and D̃R,i are the numbers of fractional decision variables of site i, associated with the

robot’s decisions of querying the human and relying on its own classification, respectively.

The entries of A to the left of the vertical dashed line correspond to α and those to the

right correspond to β. The entries above the horizontal dashed line correspond to line 1

in system (4.5). The two bottom rows correspond to lines 2 and 3, respectively, where

Em,H = [Em,i,j] ∈ R1×|ΩH | is a row vector containing the motion energy costs of γh,i,j with

(i, j) ∈ ΩH and Em,R = [Em,k,m] ∈ R1×|ΩR| is a row vector containing the motion energy

costs of γr,k,m with (k,m) ∈ ΩR.

If there exists a non-trivial solution to Eq. (4.5) and |δ| is sufficiently small, then we

58



Optimizing Human-Robot Collaboration with Human Performance Prediction Chapter 4

can obtain another feasible solution by modifying the initial feasible solution based on

Eq. (4.4). In order for Eq. (4.5) to have non-trivial solutions, matrix A needs to have

a non-zero null space. In the following lemma, we formally characterize the conditions

under which A has a non-zero null space.

Lemma 4.1 Consider a feasible solution to the LP relaxation of problem (4.2), and a

modification of it to achieve another feasible solution through Eq. (4.4) and (4.5). There

exist non-trivial solutions to system (4.5) (non-zero null space for matrix A in Eq. (4.6))

if any one of the following conditions hold:

1) the fractional variables are associated with more than 2 sites;

2) the fractional variables are associated with 2 sites and there are more than 2 frac-

tional variables associated with at least one of the two sites;

3) the fractional variables are associated with 1 site and there are more than 3 frac-

tional variables.

Proof: 1) It can be seen that there are n + 2 rows in A, where n is the number

of sites with fractional variables. Since the decision variables associated with each site

add up to 1, there must be at least two fractional variables associated with each of these

n sites. Thus, there are at least 2n columns in A. Then, when n > 2, system (4.5) is

under-determined, and therefore, A has a non-zero null space.

2) If the fractional variables are associated with exactly 2 sites and there are more

than 2 fractional variables with at least one of the sites, then there will be 4 rows and

more than 4 columns in A, resulting in a non-zero null space for A.

3) If the fractional variables are associated with 1 site and there are more than 3

fractional variables, then there will be 3 rows and more than 3 columns in A, resulting

in a non-zero null space for matrix A.
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It is easy to confirm that there always exists a sufficiently small |δ| such that γ̂h,i,j, γ̂r,i,j ∈

[0, 1], ∀i ∈ {1, ..., N} and j ∈ {1, ..., Di}. Then, the existence of non-trivial solutions to

system (4.5) and a sufficiently small |δ| ensure that the modified variables satisfy the

constraints of the LP. Denote the objective function values of the initial solution and the

modified solution (based on Eq. (4.4) and (4.5)) by fLP and f̂LP, respectively. Then, fLP

and f̂LP are related as follows:

f̂LP = fLP + δ∆, (4.7)

where ∆ =
∑

(i,j)∈ΩH
αi,jph,i,j +

∑
(k,m)∈ΩR

βk,mpr,k,m. By applying Lemma (4.1) and

analyzing δ∆, we then characterize the fractional variables in an optimal solution to the

LP relaxation of problem (4.2) in the following proposition.

Proposition 4.3 There exists an optimal solution, γ?LP, to the LP relaxation of prob-

lem (4.2) that satisfies the following:

1) γ?LP has at most four fractional (non-binary) variables;

2) The fractional variables are associated with at most two sites;

3) If the fractional variables are associated with two sites, then two fractional variables

are associated with each site; if the fractional variables are associated with only one site,

then there exists at most three fractional variables.

4) If γ?LP has no fractional variables, then the solution is also an optimal solution to

the MMKP problem (4.2).

Proof: 1) Suppose that we have an optimal solution to the LP relaxation of prob-

lem (4.2) with fractional variables. If this optimal solution does not satisfy any of the

conditions in Lemma 4.1, then there are at most four fractional variables. On the other

hand, if the optimal variables satisfy any of the conditions in Lemma 4.1, then the frac-

tional variables can be modified as described in Eq. (4.4), where α and β are obtained
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from a non-trivial solution to system (4.5). With a small |δ|, this modified solution sat-

isfies the constraints of the LP. Denote the objective function values of the optimal LP

solution and the modified feasible solution as f ?LP and f̂LP, respectively. We then have

f̂LP = f ?LP + δ∆ based on Eq. (4.7). We discuss two cases based on the value of ∆.

Case 1 (∆ = 0): If ∆ = 0, then f ?LP = f̂LP, regardless of the value of δ. This

indicates that there exist multiple optimal solutions to the LP and that if we modify

the initial optimal solution based on Eq. (4.4) and (4.5), we can obtain another solution

which is also optimal. We can then increase |δ| until at least one of the modified fractional

variables becomes 0 or 1, resulting in a strictly smaller number of fractional variables

in the solution. As long as the (modified) variables satisfy any one of the conditions in

Lemma 4.1, this process can be repeated to reduce the number of fractional variables while

maintaining the optimality of the solution. When we cannot perform this modification

procedure anymore, we arrive at an optimal solution that does not satisfy any of the

conditions in Lemma 4.1. Therefore, in this case, there exists an optimal solution γ?LP

with at most four fractional variables.

Case 2 (∆ 6= 0): If ∆ 6= 0, we can choose the sign of δ such that δ∆ > 0, resulting

in f̂LP > f ?LP. This contradicts the assumption that f ?LP is the optimum. Thus, in this

case, the optimal solution can not satisfy any of the conditions in Lemma 4.1, and γ?LP

have at most four fractional variables.

In summary, based on the analysis of the two cases above, there exists an optimal

solution to the LP which does not satisfy any of the conditions in Lemma 4.1, and thus,

has at most four fractional variables.

2) & 3) Based on part 1) of the proof, there exists an optimal LP solution that does

not satisfy any of the conditions in Lemma 4.1. Such an optimal solution then also

satisfies conditions (2) and (3) of this proposition.

4) As the LP relaxation of problem (4.2) has a larger feasible set, its optimum will be
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no worse than that of problem (4.2). If the optimal LP solution consists of only binary

variables, then it is also an optimal solution to problem (4.2).

Based on Prop. 4.3, the following theorem bounds the optimality gap between a

feasible solution to problem (4.2) obtained by rounding the fractional variables (to {0, 1})

in the optimal LP solution and the optimum of problem (4.2). Our derived bound is

general and independent of the rounding technique.

Theorem 4.1 Based on the optimal solution to the LP relaxation of problem (4.2), a

feasible solution can be constructed to problem (4.2), which is less than or equal to 2 ×

(pmax− pmin)/N from the optimum of problem (4.2), where pmax = max{ph,i(di), pr,i(di)},

pmin = min{ph,i(di), pr,i(di)}, ∀i ∈ {1, ..., N} and di ∈ [0, dmax,i].

Proof: If the optimal LP solution has no fractional variables, then it is also optimal

to problem (4.2). On the other hand, if it has fractional variables, Prop. 4.3 states that

it has at most four fractional variables associated with at most two sites. Then, for sites

with fractional variables, we round the fractional variables such that the overall query

and motion energy constraints are still satisfied, which provides a feasible solution to

problem (4.2). For the overall rounding of a site, the performance degradation is at most

pmax − pmin = max{ph,i(di), pr,i(di)} − min{ph,i(di), pr,i(di)} ≤ 1, where i ∈ {1, ..., N}

and di ∈ [0, dmax,i], independent of the rounding method. Denote the optimums of the

LP and the MMKP, and the objective function value of the LP-based solution obtained

by rounding as f ?LP, f ?MMKP and fLP-based. We then have f ?LP ≥ f ?MMKP ≥ fLP-based.

Since there are at most two sites in the optimal LP solution that require rounding, we

have f ?LP − fLP-based ≤ 2 × (pmax − pmin)/N , which further gives f ?MMKP − fLP-based ≤

2× (pmax − pmin)/N .

Theorem 4.1 provides a general bound that applies to any form of rounding the

fractional variables, while satisfying the resource constraints. Next, we present a specific
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method of rounding the fractional variables in Alg. 2 that optimizes the performance.

For the rest of this section, we refer to this feasible solution to problem (4.2) given by

Alg. 2 as the LP-based solution, which will be used in our numerical studies.

In Alg. 2, we denote γ?LP as the optimal solution to the LP relaxation of problem (4.2)

and γLP-based as the LP-based feasible solution to problem (4.2) obtained via the rounding

in Alg. 2. Similar to problem (4.2), subscripts “r, i, j” (“h, i, j”) indicate that the robot

will deviate di,j towards the site, and then rely on its own classification (query the oper-

ator). In the optimal LP solution γ?LP, Ωf is the set of sites with fractional variables, Mf

is the total number of queries allocated to the fractional variables:
∑

i∈Ωf

∑Di

j=1 γ
?
LP,h,i,j,

and Ei is the energy allocated to site i:
∑Di

j=1(γ?LP,r,i,j + γ?LP,h,i,j)Em,i,j.

Given the optimal LP solution, Alg. 2 optimizes the decisions over the sites with

fractional variables,4 such that the resulting solution contains only binary variables, and

the energy consumption per site is kept the same as in the LP solution. For instance, in

case 2, there is one site with fractional variables (|Ωf | = 1) in the LP solution (denoted

as site i). We then keep the same energy consumption of this site and solve for the

best binary decision for site i, as follows. If the total number of queries allocated to the

fractional variables is less than one (Mf < 1), then we cannot query site i. In that case,

we choose the position in site i with the best robot classification performance, subject to

the motion energy consumption of site i (Ei), and set the corresponding variable to one.

In this manner, the robot obtains an optimized binary decision for site i, using the same

or less resource as allocated by the LP solution to site i. On the other hand, if Mf ≥ 1,

we first look at the two positions with the highest probabilities of human performance

(ph,i,j?h) and robot performance (pr,i,j?r ), respectively, given the energy consumption of

this site. If ph,i,j?h ≥ pr,i,j?r , then the robot should move to position j?h and ask about the

4If a site has fractional variables, then all the variables of this site must be strictly less than 1 due to
constraint (1) of Eq. (4.2).
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Algorithm 2: LP-based Solution to the MMKP Problem (4.2)

CASE 1 (|Ωf | = 0): Set γLP-based = γ?LP.

CASE 2 (|Ωf | = 1): Suppose that site i has fractional variables.

Set j?r = argmax{pr,i,j : Em,i,j ≤ Ei}.
Set j?h = argmax{ph,i,j : Em,i,j ≤ Ei}.
if Mf < 1 then

Set γLP-based,r,i,j?r = 1.
else

If pr,i,j?r ≥ ph,i,j?h , set γLP-based,r,i,j?r = 1. Otherwise, set γLP-based,h,i,j?h
= 1.

end

Set the other variables associated with site i to 0. For the remaining sites, set the
variables in γLP-based equal to their corresponding ones in γ?LP.

CASE 3 (|Ωf | = 2): Suppose that sites i1 and i2 have fractional variables.
Set j?r = argmax{pr,i1,j : Em,i1,j ≤ Ei1}.
Set j?h = argmax{ph,i1,j : Em,i1,j ≤ Ei1}.
Set k?r = argmax{pr,i2,k : Em,i2,k ≤ Ei2}.
Set k?h = argmax{ph,i2,k : Em,i2,k ≤ Ei2}.
if Mf < 1 then

Set γLP-based,r,i1,j?r = 1 and γLP-based,r,i2,k?r = 1.

else if Mf ≥ 2 then
For site i1, set the variable corresponding to the larger element of {pr,i1,j?r ,
ph,i1,j?h} to 1. For site i2, set the variable corresponding to the larger element
of {pr,i2,k?r , ph,i2,k?h} to 1.

else

if ph,i1,j?h − pr,i1,j?r ≥ ph,i2,k?h − pr,i2,k?r ≥ 0 then
Set γLP-based,h,i1,j?h

= 1 and γLP-based,r,i2,k?r = 1.

else if ph,i2,k?h − pr,i2,k?r ≥ ph,i1,j?h − pr,i1,j?r ≥ 0 then
Set γLP-based,r,i1,j?r = 1 and γLP-based,h,i2,k?h

= 1.

else
For site i1, set the variable corresponding to the larger one of {pr,i1,j?r ,
ph,i1,j?h} to 1. For site i2, set the variable corresponding to the larger one
of {pr,i2,k?r , ph,i2,k?h} to 1.

end

end

Set the other variables associated with site i1 and i2 to 0. For the remaining sites,
set the variables in γLP-based equal to their corresponding ones in γ?LP.
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site. Otherwise, the robot should move to position j?r and rely on itself. Similarly, in

case 3, we solve for the best binary decisions for the sites with fractional variables, while

ensuring that the motion energy consumption per site does not increase and the query

budget is satisfied. Note that one cannot simply round the fractional variables to the

closest integers, as this may violate the given resource constraints.

Next, we characterize the optimal gap between the LP-based solution to problem (4.2)

and the optimum of the original continuous problem (4.1).

Corollary 4.1 The LP-based solution to problem (4.2) is less than or equal to 2×(pmax−

pmin)/N+ g̃ from the optimum of problem (4.1), where g is the approximation error bound

introduced in Prop. 4.2.

Proof: Based on Prop. 4.2 and Theorem 4.1, we have f ?Cont − f ?MMKP ≤ g̃ and

f ?MMKP−fLP-based ≤ 2× (pmax−pmin)/N . Thus, f ?Cont−fLP-based ≤ 2× (pmax−pmin)/N+ g̃

Although the LP relaxation-based solution does not always provide the exact optimal

solution to problem (4.2), it offers a very close approximation. For instance, as Theo-

rem 4.1 shows, the gap between the MMKP optimum and the LP-based feasible solution

is very small, especially when N is large. Furthermore, unlike the NP-hard MMKP prob-

lem (4.2), solving the LP is computationally efficient. By choosing a fine-grained motion

discretization, we can then get a near-optimal efficient solution to the original difficult

continuous problem (4.1).

Remark 4.1 (Optimality gap for general MMKPs) Our analysis can be extended to a

general MMKP. More specifically, based on a similar analysis to that of Lemma 4.1

and Prop. 4.3, it can be confirmed that in an optimal solution to the LP relaxation of

a general MMKP with NR resource constraints, there exist at most 2 × NR fractional
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variables and the fractional variables are associated with at most NR classes. Based on

similar arguments to those in Theorem 4.1, the optimality gap between the NR-resource

MMKP, whose objective function is the average reward from each class, and its LP-based

solution is upper bounded by NR×(pmax−pmin)/N , where pmax and pmin are the maximum

and minimum rewards associated with a variable, respectively. We skip the proof due to

the space limitation.

4.1.4 Properties of the Optimal Solution

Next, we study some properties of the optimal decisions.

Proposition 4.4 In an optimal solution to problem (4.2), if γ?h,i1,j1 = 1 and γ?r,i2,j2 = 1,

where i1, i2 ∈ {1, ..., N}, j1 ∈ {1, ..., Di1}, j2 ∈ {1, ..., Di2}, and max{di1,j1 , di2,j2} <

min{dmax,i1 , dmax,i2}, then ph,i1,j1 − pr,i1,j1 ≥ ph,i2,j2 − pr,i2,j2.

Proof: Suppose that in an optimal solution, γ?h,i1,j1 = 1, γ?r,i2,j2 = 1, and ph,i1,j1 −

pr,i1,j1 < ph,i2,j2−pr,i2,j2 . By letting γh,i1,j1 = 0, γr,i1,j1 = 1, γh,i2,j2 = 1, and γr,i2,j2 = 0, we

obtain a strictly better solution using the same amount of motion energy and the same

number of queries, which is a contradiction.

This proposition says that if we have two sites i1 and i2, for which the robot will ask

the human and rely on its own classification, respectively, then there should be a greater

benefit from asking for human help for the first site.

Proposition 4.5 In an optimal solution to problem (4.2), if γ?r,i1,j1 = 1 and γ?r,i2,j2 = 1,

where i1, i2 ∈ {1, ..., N}, j1 ∈ {1, ..., Di1}, j2 ∈ {1, ..., Di2}, and max{di1,j1 , di2,j2} <

min{dmax,i1 , dmax,i2}, then pr,i1,j1 − pr,i1,j2 ≥ pr,i2,j1 − pr,i2,j2.

Proof: Suppose that in an optimal solution, γ?r,i1,j1 = 1, γ?r,i2,j2 = 1, and pr,i1,j1 −

pr,i1,j2 < pr,i2,j1−pr,i2,j2 . Then by letting γr,i1,j1 = 0, γr,i1,j2 = 1, γr,i2,j1 = 1, and γr,i2,j2 = 0,
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Figure 4.2: Computation time of solving problem (4.2) and obtaining its LP-based
solution for 10 sites w.r.t. the number of motion decisions for each site. The compu-
tation time is plotted in log scale.

we obtain a strictly better solution using the same amount of motion energy and the same

number of queries, which is a contradiction.

Proposition 4.6 In an optimal solution to problem (4.2), if γ?h,i1,j1 = 1 and γ?h,i2,j2 = 1,

where i1, i2 ∈ {1, ..., N}, j1 ∈ {1, ..., Di1}, j2 ∈ {1, ..., Di2}, and max{di1,j1 , di2,j2} <

min{dmax,i1 , dmax,i2}, then ph,i1,j1 − ph,i1,j2 ≥ ph,i2,j1 − ph,i2,j2.

Proof: The proof is similar to the proof of Prop. 4.5.

Props. 4.5 and 4.6 state that if we have two sites i1 and i2, at which the robot deviates

two different distances, d1 and d2, respectively, then the performance gain by moving from

d2 to d1 at site i1 should be greater than that at site i2.

4.1.5 Computation Time

In this section, we numerically compare the computational efficiency of solving the

MMKP of problem (4.2) and obtaining its LP-based solution. In this comparison, there

are 10 sites, 5 given queries, and the motion energy budget is 50% of what is needed to

reach all the sites. The computations are performed on Matlab with an i7 CPU running

at 3.4 GHz and the reported computation time is averaged over 500 problem instances.
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Fig. 4.2 shows the computations of solving problem (4.2) and obtaining its LP-based

solution w.r.t. the number of discretized motion steps per site. It can be seen that

the LP-based solution is considerably more efficient. For instance, when a fine-grained

discretization of 100 motion decisions per site is used, it takes an average of 268.23 s

(or 4.47 min) to compute the MMKP solution. This makes it impractical to directly

solve problem (4.2) in a robotics field operation. On the other hand, it takes an average

of 0.0304 s to obtain the LP-based solution, making it a more favorable approach to

efficiently compute a near-optimal solution in real-life applications where there can be

many decision variables.

4.1.6 Online Replanning to Cope with Operation Changes

As can be seen from Theorem 4.1 and Sec. 4.1.5, our proposed approach provides a

computationally fast near-optimal solution to problem (4.2). Such computational effi-

ciency enables the robot to quickly replan its actions to cope with possible changes in

the operation. For instance, depending on the cognitive load of the human operator,

the number of allowed queries may increase or decrease. During the operation, the set of

sites which the robot is responsible for inspection may change as well, which also requires

an efficient online replanning scheme. Given the updated command, the robot can then

quickly recompute its future actions accordingly.

4.1.7 Simulation Results with Real Human Data

We numerically demonstrate the performance of our proposed collaboration frame-

work for target classification under motion energy and query constraints, using real hu-

man responses. In order to plan its motion and queries, the robot needs to predict the

human’s and its own classification performance for the visual data collected at previously-
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unvisited sensing locations (e.g., at a location that is dmax,i−di,j away from site i). In this

part, we assume that image noise is the main source of uncertainty for the target classi-

fication tasks and utilize an approach that predicts human and robot performance based

on the noise variance.5 More specifically, we use the Amazon MTurk studies discussed in

Sec. 3.1, where we collected 8,000 human visual responses over noisy images. The robot

then uses Fig. 3.3 to assess human (as well as its own) visual performance during the

operation, by utilizing a sensing-distance-dependent model for the image noise variance.

In the simulations, there are 10 sites, and the distance between each site and the path

is 10 m. The noise variance is modeled as a quadratic function of the sensing distance:

vn = ãid
2 + b̃i, where ãi and b̃i are parameters of the sensing model for site i [41]. We

assume that the sites have three levels of sensing difficulty: easy, medium, and hard,

encoded in ãi, which is then randomly assigned to the sites. Thus, given a sensing

distance, the robot can easily assess the human’s and its own performance as described

in Sec. 3.1. The motion model parameters are: κ1 = 7.4, κ2 = 0.29, and the robot

travels with a constant speed of 1 m/s. The motion parameters are based on real power

measurements of a Pioneer 3DX robot [2]. The motion energy budget is taken as a

percentage of the total energy required to visit all the site locations.

We consider a benchmark methodology where the collaboration is not fully optimized.

More specifically, in the benchmark, the robot assumes a perfect human performance

(which is a common assumption), but is aware of its own performance (blue dashed

curve in Fig. 3.3). The robot then solves problem (4.2) with ph,i,j = 1, ∀i = {1, ..., N},

j ∈ {1, ..., Di}.
5In practice, the human performance can be affected by a variety of factors, beyond distance, such

as image brightness, contrast, resolution, and occlusion. In Sec. 3.2, we have discussed a more compre-
hensive prediction approach based on a Deep Convolutional Neural Network (DCNN) which can handle
any type of uncertainties. As part of future work, one can also incorporate our DCNN-based prediction
framework in this path optimization problem by starting with a distance-based prediction and adapting
it as the robot gets closer to the sites, by using the more comprehensive DCNN-based prediction.
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Next, we compare our proposed approach with the benchmark, by showing the re-

source savings from using our proposed approach, as compared to the benchmark. More

specifically, given any combination of the motion budget and the query budget, we obtain

the average correct classification probabilities of our proposed approach and the bench-

mark, by solving their respective optimization problems, and averaging over 100 problem

instances with uniformly random sensing difficulty assignments over the sites. Based on

these results, we can then see that to achieve the same average performance, our proposed

approach would require smaller resource budgets, as compared to the benchmark.

More specifically, Table 4.1 shows the motion energy saving, enabled by our proposed

approach, when the robot is given 6 allowed queries. It can be seen that our proposed

approach requires considerably smaller energy budgets than the benchmark to achieve

the same performance. For instance, when achieving an average correct classification

probability of 0.75, our proposed approach requires a 39.39% smaller motion energy bud-

get. In the table, “Inf” indicates that the benchmark method simply cannot achieve the

performance no matter how much motion energy is given. Thus, our proposed approach

is able to more efficiently utilize the given energy budget.

Table 4.2 summarizes the saving of queries by using our proposed approach, when

the robot is given a motion energy budget of 50% of what is needed to reach all the site

locations. It can be seen that our approach requires considerably less communication

to the operator. For instance, to achieve an average classification accuracy of 0.85, our

approach needs 55.62% fewer queries. This result shows that our proposed approach can

reduce the overall burden on human operators who have to operate under fatigue and

work overload.
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Ave. Correct Classification Prob. Percentage Energy Saving

0.70 100%

0.75 39.39%

0.80 34.29%

0.85 35.29%

0.90 or higher Inf

Table 4.1: Motion energy saving by our proposed approach as compared to the bench-
mark. In this example, the robot is given 6 allowed queries.

Ave. Correct Classification Prob. Percentage Query Saving

0.80 46.15%

0.85 55.62%

0.90 or higher Inf

Table 4.2: Saving of queries by our proposed approach as compared to the benchmark.
In this example, the motion energy budget is 50% of what is needed to visit all the
site locations.

4.2 Optimizing Human-Robot Collaboration under

Total Energy Constraints

In the previous section, we considered the case where the communication bottleneck

was human work overload, which limited the number of queries the robot could present

to the remote operator. In this section, we consider another source of communication

bottleneck, the cost of wireless transmission. More specifically, if the robot is operating

in the areas where the communication link quality is not good everywhere, and/or if

the robot has energy constraints on the communication side, then that can limit the

number of successful queries to the human operator. In this section, we explicitly model

and analyze this case, by considering the true energy cost of wireless transmissions in

realistic communication environments that can experience path loss, shadowing, and

multipath fading. We further show how the robot can actively take the communication

link quality into account when optimizing its collaboration with the operator. More

specifically, we show that the resulting human-robot collaborative site survey problem,
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under both motion and communication energy constraints, can be posed as a Multiple

Choice Knapsack Problem (MCKP) problem. We then derive an efficient near-optimal

solution and mathematically characterize several properties of the optimal collaborative

solution.

4.2.1 Problem Setup

Consider the setup of Fig. 4.1, where we have a total of N sites. In this section, we

consider the case where, instead of a direct limitation on the total number of queries, the

robot has a constraint on its total energy consumption, including both communication

and motion energy costs. We further consider realistic communication environments, as

modeled in the previous part.

Sending a query to the human operator and moving closer to a site for better sensing

will incur communication and motion energy costs, respectively. The robot is then given

a total energy budget Emax, which can be used towards communication or motion for site

visiting. For the ith site, i ∈ {1, ..., N}, di is the deviation distance from the path. We

denote the communication energy cost after deviating di towards site i by Ec,i(di) (i.e., the

cost of communicating to the operator from a location that is di off the main path towards

site i), while Em,i(di) denotes the motion energy cost of deviating a distance of di. The

probabilities of correct target classification of the ith site, based on the sensing performed

after deviating di towards site i, are denoted by pr,i(di) and ph,i(di) for the robot and the

human, respectively. In order to maximize the average correct classification probability,

the robot needs to decide how far it should deviate from the main path to sense each

site, and whether it should ask for help for each site by communicating to the operator

after deviating di from the main path, subject to a total energy budget. In addition to

predicting the human and robot correct classification probabilities, as we discussed in
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Sec. 4.1, the robot further probabilistically predicts its communication energy cost, using

the formulation of Sec. 2.1, which is needed for a proper optimization.

Similar to in Sec. 4.1, it is possible to formulate this optimization problem as an ILP

by discretizing the continuous motion decision space, as follows:

max.
γ

1

N

N∑
i=1

Di∑
j=1

γh,i,jph,i,j + γr,i,jpr,i,j

s.t.

Di∑
j=1

γh,i,j + γr,i,j = 1, ∀i ∈ {1, ..., N},

N∑
i=1

Di∑
j=1

γh,i,jEc,i,j + (γr,i,j + γh,i,j)Em,i,j ≤ Emax,

γ ∈ {0, 1}2×
∑N

i=1Di ,

(4.8)

where N is the number of sites and Di is the number of motion decisions of site i. For

site i, the set of decision variables is {γr,i,1, γh,i,1, ..., γr,i,Di
, γh,i,Di

}, where γr,i,j = 1 if the

robot deviates di,j from the path and relies on itself for classification, while γr,i,j = 0

denotes otherwise. Similarly, γh,i,j = 1 if the robot deviates di,j from the path and

queries the human after further sensing, and γh,i,j = 0 denotes otherwise. γ is then the

stacked vector of all the decision variables for all the sites, as given by Eq. (4.3). ph,i,j,

pr,i,j, Ec,i,j, and Em,i,j are nonnegative constants representing the probability of human

correct classification, the probability of robot correct classification, the communication

energy cost of querying the operator, and the motion energy cost, respectively, after

deviating di,j for site i.

As can be seen, the energy-constrained collaborative human-robot site surveillance

problem (4.8) is an MCKP, a special form of MMKP, when there is only one type of

resource constraint. Due to the prevalence of MCKP problems in computer science, there

exists a rich body of literature for mathematically characterizing MCKPs, which we tap
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into next for deriving an efficient near-optimal solution to our collaborative problem.

4.2.2 Near-Optimal LP-based Solution

As MCKP is NP-hard and computationally expensive, we show how to utilize an LP

relaxation to obtain an efficient near-optimal solution to the MCKP problem (4.8).

Similar to Sec. 4.1.3, the LP relaxation is obtained by replacing the binary constraint

γ ∈ {0, 1}2×
∑N

i=1Di in problem (4.8) with a linear constraint 0 � γ � 1. The following

proposition describes the number of fractional variables in an optimal solution to the LP,

which then allows us to relate the LP optimal solution to problem (4.8).

Proposition 4.7 An optimal solution γ? to the LP relaxation of the MCKP problem (4.8)

satisfies the following:

1) γ? has at most two fractional variables;

2) If γ? has two fractional variables, then they must be associated with the same site;

3) If γ? has no fractional variables, then the solution is also an optimal solution to

the MCKP problem (4.8).

Proof: The proof is similar to that of Prop. 4.3. Alternatively, see the proof

of Prop. 2 in [117], which is a different approach based on explicitly constructing the

optimal LP solution.6

As a consequence of Prop. 4.7, we have the following theorem regarding the optimality

gap between the optimum of the MCKP and an LP-based feasible solution.

Theorem 4.2 Based on the optimal solution to the LP relaxation, a feasible solution can

be constructed to problem (4.8), which is less than or equal to (pmax−pmin)/N from the op-

6Note that we can not use the proof of [117] for the MMKP case of Sec. 4.1 as it was developed
specifically for the case of one resource constraint (MCKP).
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Algorithm 3: LP-based Solution to the MCKP Problem (4.8)

CASE 1 (|Ωf | = 0): Set γLP-based = γ?LP.

CASE 2 (|Ωf | = 1): Suppose that site i has fractional variables.

Set j?r = argmax{pr,i,j : Em,i,j ≤ Ei}.
Set j?h = argmax{ph,i,j : Em,i,j + Ec,i,j ≤ Ei}.
if pr,i,j?r ≥ ph,i,j?h then

Set γLP-based,r,i,j?r = 1.
else

Set γLP-based,h,i,j?h
= 1.

end

Set the other variables associated with site i to 0. For the remaining sites, set the
variables in γLP-based equal to the corresponding ones in γ?LP.

timum of problem (4.8), where pmax = max{ph,i(di), pr,i(di)}, pmin = min{ph,i(di), pr,i(di)},

∀i ∈ {1, ..., N} and di ∈ [0, dmax,i].

Proof: The proof is similar to the proof of Theorem 4.1.

Alg. 3 next describes our method of rounding the fractional variables in the optimal

LP solution, which is similar to Alg. 2 in that while solving for the best binary decisions,

Alg. 3 keeps the energy consumption per site the same as in the LP solution. We refer

to the feasible solution to problem (4.8), provided by Alg. 3, as the LP-based solution for

the rest of this section. Similar to Alg. 2, we denote γ?LP as the optimal solution to the LP

relaxation of problem (4.8) and γLP-based as the LP-based solution to problem (4.8) given

by Alg. 3. In the LP optimal solution γ?LP, Ωf is the set of sites with fractional variables

and Ei is the energy allocated to site i in the LP optimal solution:
∑Di

j=1 γ
?
LP,h,i,jEc,i,j +

(γ?LP,r,i,j + γ?LP,h,i,j)Em,i,j.

4.2.3 Properties of the Optimal Solution

Next, we study some properties of the optimal decisions.

Proposition 4.8 In an optimal solution to problem (4.8), if γ?r,i1,j1 = 1 and γ?r,i2,j2 =
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1, where i1, i2 = 1, ..., N , j1 ∈ {1, ..., Di1}, j2 ∈ {1, ..., Di2}, and max{di1,j1 , di2,j2} <

min{dmax,i1 , dmax,i2}, then pr,i1,j1 − pr,i1,j2 ≥ pr,i2,j1 − pr,i2,j2.

Proof: The proof is through contradiction, similar to the proof of Prop. 4.5.

This proposition says that if we have two sites i1 and i2 for which the robot relies

on its own decision after deviating two different distances towards the sites, d1 and d2

respectively, then the performance gain by moving from d2 to d1 at site i1 should be

greater than that at site i2.

Proposition 4.9 Consider a simplified scenario where

1) The distance between the pre-defined path and each site is the same: dmax,i =

dmax, ∀i ∈ {1, ..., N}, where dm > 0 is a constant;

2) pr,i(.) is the same for all the sites. Similarly, ph,i(.) is the same for all the sites;

3) The required communication energy is constant in the vicinity of a site (does not

change along the route to a site): Ec,i = Ec,i,1 = ... = Ec,i,Di
, ∀i = 1, ..., N ;

4) In the route to a site, human and/or robot performance strictly increases as the

sensing distance decreases.

Then, in an optimal solution to problem (4.8), if γ?h,i1,j1 = 1 and γ?r,i2,j2 = 1, where

i1, i2 = 1, ..., N , j1 ∈ {1, ..., Di1}, j2 ∈ {1, ..., Di2}, and max{di1,j1 , di2,j2} < min{dmax,i1 , dmax,i2},

then EC,i1−Em,δ < Ec,i2, where Em,δ is the motion energy required to move one step closer

to a site.

Proof: Suppose that in an optimal solution, γ?h,i1,j1 = 1, γ?r,i2,j2 = 1, and Ec,i1−Em,δ ≥

Ec,i2 . Then by letting γh,i1,j1 = 0, γr,i1,j2 = 1, γh,i2,j1 = 1, and γr,i2,j2 = 0, we would obtain

the same objective function value with an energy saving of Ec,i1 −Ec,i2 ≥ Em,δ. The robot

may then utilize this energy to move one step closer towards any site, resulting in a

strictly better solution, which is a contradiction.
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Consider the case that the discretized motion step is small and thus, the energy cost

for moving one step is negligible. Prop. 4.9 then says that, under the conditions in

Prop. 4.9, the robot will select the sites with the best communication qualities to query

the human operator, as expected.

The following proposition characterizes the optimal solution to the LP relaxation of

problem (4.8), where we suppress the subscripts “h” and “r” in the variables as the result

does not distinguish between the two cases. More specifically, given a decision variable

γi,k for site i, where k ∈ {1, ..., 2 × Di}, it can either represent γh,i,j or γr,i,j, where

j ∈ {1, ..., Di}. We denote the corresponding human/robot performance and the energy

cost of γi,k by pi,k and Ei,k, respectively.

Proposition 4.10 For site i, if pi,j1 ≤ pi,j2 ≤ pi,j3, Ei,j1 ≤ Ei,j2 ≤ Ei,j3 and

pi,j2 <
Ei,j2 − Ei,j1
Ei,j3 − Ei,j1

pi,j3 +
Ei,j3 − Ei,j2
Ei,j3 − Ei,j1

pi,j1 , (4.9)

then in an optimal solution to the LP relaxation of problem (4.8), γ?i,j2 = 0, where i ∈

{1, ..., N} and j1, j2, j3 ∈ {1, ..., 2×Di}.

Proof: Suppose that in an optimal solution, γ?i,j2 = δ > 0. It can be confirmed that

if Eq. (4.9) holds, then by letting γi,j2 = 0, γi,j1 = γ?i,j1 + δ(Ei,j3 − Ei,j2)/(Ei,j3 − Ei,j1), and

γi,j3 = γ?i,j3 + δ(Ei,j2 − Ei,j1)/(Ei,j3 − Ei,j1), we can further improve the current optimal

solution, which is a contradiction.

Prop. 4.10 describes the LP-dominance property of the LP relaxation of problem (4.8)

[117]. It says that for a site, if a decision’s performance is worse than that of a certain

linear combination of two other decisions, then this decision will not be selected in the

optimal LP solution.
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Figure 4.3: The robot travels along a pre-defined main path to inspect sites near the
path. Along the path, the robot’s communication quality to the remote operator is
subject to a space-varying wireless channel power from downtown San Francisco [3].

4.2.4 Online replanning of Communication and Motion Energy

In our proposed energy-aware collaborative planning, the robot uses its prediction

of the communication energy cost for the purpose of planning, which is based on a

small number of prior or online channel measurements in the same environment. As

the robot spends more time in its workspace during the mission, it can collect more

measurements to fine-tune the channel learning (i.e., to better predict communication

energy costs). Furthermore, as the robot communicates its sensing data of a site after a

site inspection, it will incur the true communication cost at that spot, which may differ

from the predicted one. As such, the robot can benefit from replanning its collaborative

path planning and decision making, as it obtains more channel samples and updates

the cost of communication during the operation. For instance, the robot can re-solve

problem (4.8), with the updated available energy resource, after each site visit. While re-

solving the MCKP problem (4.8) in an online manner can be computationally expensive,

especially when the problem size is large, obtaining the near-optimal LP-based solution

to problem (4.8) is fast and efficient, allowing for online replanning, which can be key in
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such realistic stochastic settings.

4.2.5 Performance with Real Human Data and Real Wireless

Channel Data

In this section, we evaluate our proposed approach using real human data, as de-

scribed in Sec. 3.1 and also used in the evaluation part of Sec. 4.1. We further use real

wireless channel measurements, which were collected along a street in downtown San

Francisco [3].7 This real data then presents the channel along the main path of the

robot, as illustrated in Fig. 4.3. We assume that within the vicinity of a site, the wire-

less channel is approximately stationary and can be characterized by the same Gaussian

random variable. Thus, the expected communication energy required to send a query

near a site is constant.8 There is a total of 10 sites. We assume that the sites are 10

m off the main street (main path) and 20 m apart. The robot then uses 5% a priori

channel measurements to predict the channel quality in this workspace, by using the

framework of Sec. 2.1. For the communication system, 64-QAM modulation is used and

the transmission time of each query is 2 s, with a target BER of 10−6. The receiver noise

power is −100 dBm. For the motion model, we have κ1 = 7.4, κ2 = 0.29, and the robot

travels with a constant speed of 1 m/s. The robot adopts a distance-dependent noise

variance model: vn = ãid
2 + b̃i, where ãi and b̃i are positive constants [41]. We assume

that the sites have three levels of sensing difficulty: easy, medium, and hard, encoded in

ãi, which is randomly assigned to the sites. The robot then uses the proposed approach

of Sec. 4.2.1 to co-plan its human collaboration and site inspection. Furthermore, after

7Channel data is courtesy of W. M. Smith [3].
8We make this assumption since this real channel data from downtown San Francisco is only available

along a street. As such, we assume the channel remains the same when deviating towards a site. In the
next part, we show the performance in a realistic 2D wireless environment where the channel changes
along a route to a site as well.

79



Optimizing Human-Robot Collaboration with Human Performance Prediction Chapter 4

visiting each site, it learns the true channel value and the corresponding true incurred

communication energy cost, and can replan its future actions over the remaining sites,

using the updated true remaining energy, as discussed in Sec. 4.2.4. Note that after

measuring the channel at a site that was planned to be queried, the robot may find that

the true required communication energy plus the motion energy to return to the main

path will exceed its remaining budget. In this case, it will give up communication for

this site and rely on its own classification instead. It then uses the remaining energy to

continue replanning for the remaining sites.

Remark 4.2 (Mission failure without replanning) Suppose that the robot does not replan.

When the robot communicates to the remote operator at a location with a worse-than-

predicted channel quality, it will need to spend more energy than planned to guarantee

the required end-to-end communication quality. Since the robot does not replan, it could

exhaust the energy budget (E) and may not be able to arrive at the final destination even-

tually. Such cases are then considered mission failures. In other words, the no-replanning

approach does not always provide a feasible solution, highlighting the importance of re-

planning.

Similar to Sec. 4.1.7, we compare our proposed approach with a benchmark methodol-

ogy where the collaboration is not fully optimized. In this benchmark, the robot assumes

that human performance is perfect. The benchmark robot then solves problem (4.8) with

ph,i,j = 1, ∀i = {1, ..., N}, j ∈ {1, ..., Di}.

Fig. 4.4 shows the average correct classification probability of our proposed LP-based

solution (Alg. 3) with channel prediction and online replanning (red solid), and compares

it to the benchmark with replanning (blue dashed). The performance is averaged over

100 problem instances for each given energy budget. In each instance, the 5% a priori

channel measurements are randomly and uniformly chosen over the space, and each site
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is randomly and uniformly assigned one of the three sensing difficulty levels. The energy

budget is represented as a percentage of what is needed to reach and query all the

sites. The figure further shows the performance of solving the MCKP of problem (4.8)

with perfect channel knowledge (green dashed), which provides a performance upper

bound. As the figure shows, the gap between the upper bound and our approach is

considerably small, even though our approach learns the channel with a small number

of channel measurements (as opposed to assuming it known), and is based on solving

the LP relaxation. It can also be seen that our proposed approach outperforms the

benchmark significantly. For instance, given an energy budget of 0.8, the performance

upper bound is 0.938, the performance of our proposed LP-based solution with replanning

is 0.930, and the performance of the benchmark (with replanning) is 0.785. Note that

if the robot does not replan, it may not accomplish the entire mission, as discussed in

Remark 4.2. For instance, for the case of our proposed LP-based approach, the robot

fails the operation 12.1% of the time if it does not replan, while it will fail 16.0% of the

time for the benchmark case without replanning.

Table 4.3 summarizes the energy saving, enabled by our proposed approach, as com-

pared to the benchmark. For instance, our proposed approach can achieve an average

correct classification probability of 0.75, but requires 58.46% less energy consumption as

compared to the benchmark. “Inf” indicates that the benchmark simply cannot achieve

the specified performance no matter how much energy is given.

Fig. 4.5 shows a sample result using our proposed LP-based solution with online

replanning. The discretized motion step is 1 m. The base station is located on the far left

of the x-axis. The first and second rows show the real and the predicted channel powers

along the main path, respectively. The third row then indicates the sensing difficulty

associated with each site, with 0 and 2 being the easiest and the hardest, respectively.

The fourth row shows the robot’s optimal deviation distance at each site. The fifth row

81



Optimizing Human-Robot Collaboration with Human Performance Prediction Chapter 4

0 0.2 0.4 0.6 0.8 1
Energy Budget (% of total required to visit all the sites)

0.5

0.6

0.7

0.8

0.9

1

A
ve

. C
or

re
ct

 C
la

ss
ifi

ca
tio

n 
P

ro
b.

LP-based solution with online replanning (proposed)
Benchmark with online replanning
Solution to MCKP with perfect channel knowledge

Figure 4.4: The solid red curve shows the performance of our proposed LP-based
solution, where the robot has a limited total combined motion and communication
energy budget. The dashed blue curve shows the performance of the benchmark. The
dashed green curve shows the upper bound performance of solving problem (4.8) with
perfect channel knowledge.

Ave. Correct Classification Prob. Percentage Energy Saving

0.60 27.78%

0.65 37.21%

0.70 46.67%

0.75 58.46%

0.80 64.80%

0.85 or higher Inf

Table 4.3: Energy saving of our proposed approach as compared to the benchmark,
for the case where the robot has a limited total motion and communication energy
budget.

indicates whether the robot should ask for human help at each site, with 1 indicating a

query.

It can be seen that the robot queries the human operator at sites 5 and 6,9 where

the channel qualities are the best among all the sites. The channel power at sites 4 and

9 are also good. However, the robot does not query the human operator with these two

sites. This is because the sensing difficulty is high for these two sites and the robot

needs to move close to the sites for sensing, after which the robot’s own performance is

already good and the improvement obtained from asking the human will be small. In

9The sites are indexed from 1 to 10 with the leftmost being site 1.
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Figure 4.5: The performance of our proposed energy-aware collaborative human-robot
site inspection – First row: real channel power along the main path (from downtown
San Francisco). Second row: predicted channel power based on 5% prior channel
measurements. Third row: the height of the bars indicates the sensing difficulty level,
with 0 being the easiest and 2 being the hardest. Fourth row: the height of the bars
indicates how much the robot deviates from the path to sense the site. Fifth row: it
shows whether the robot queries the human, with 1 indicating a query. The sites are
indexed from 1 to 10 with the leftmost being site 1. The energy budget is 30% of
what is needed to both reach the site locations and query the human for all the sites.

other words, the robot predicts that the performance gain obtained from querying the

human is better for sites 5 and 6 (as compared to sites 4 and 9), and the channel quality

is also better at sites 5 and 6. For sites 2, 7, and 10, it can be seen that the robot does not

deviate much from the main path for further sensing as it is easy to sense these sites. For

sites with a medium sensing difficulty, the robot moves some distance towards the site

locations for better sensing (sites 3, 5, 6, and 8). Among these sites, the robot deviates

less at sites 5 and 6 where it queries the human. For sites that are hard to sense, the

robot needs to move very close to the site locations for a reasonably good sensing quality

(site 1, 4, and 9). The average correct classification probability is 0.798 in this case.
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4.2.6 Simulation with Realistic 2D Wireless Channel

In this section, we demonstrate our proposed approach in a realistic simulated 2D

wireless environment [118], where the channel parameters (obtained from real wireless

measurements [1]) are θ̂ch = [−41.34, 3.86], α̂ch,dB = 3.20, β̂ch = 3.09 m, and ρ̂ch,dB = 1.64.

The sensing model, motion parameters, and communication system parameters are the

same as in Sec. 4.2.5. The robot predicts the channel in this workspace based on 0.25%

a priori channel samples (randomly located over the workspace), by using the framework

of Sec. 2.1. During the operation, the robot utilizes the LP-based approach, with online

replanning when optimizing its motion and queries.

For a better illustration, we show an example result with 4 sites in Fig. 4.6. In terms

of the sensing difficulty, site 1 is the easiest, site 2 and 4 have a medium sensing difficulty,

and site 3 is the hardest to sense. The channel power (in dBm) is plotted on a 2D map

with brighter colors (higher values) indicating better channel qualities. The horizontal

grey curve represents the pre-defined main path and the orange triangles are the points

where the robot deviates from the main path to perform further sensing. The house icons

indicate the respective site locations. For each site, the yellow dashed line indicates the

extent of the deviation and the presence of a human icon indicates that the robot will

query the human operator. For each site, the terminal point of the yellow dashed line

shows the location where the robot conducts further sensing and communicates to the

remote operator (if the robot decides to query the operator).

It can be seen that for site 1, the robot queries the human operator and stays on the

main path. This is because site 1 is easy to sense and the required communication energy

is very small for site 1, as the channel quality is very good in this region, which can be

seen on the channel power map. In other words, there is no need for further sensing as

both the human performance and the channel quality are already good for this site. For
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Figure 4.6: Planning result in a 2D wireless environment. Brighter colors (higher
values) on the channel map indicate better channel qualities. In this wireless envi-
ronment, the channel power ranges from −5.40 dBm to −123.06 dBm. For a better
visualization, we assign a light yellow color to locations with a channel power greater
than −80 dBm and a dark blue color to locations with a channel power less than
−100 dBm. The horizontal grey curve represents the pre-defined main path and the
orange triangles are the points where the robot deviates from the main path to per-
form further sensing. The house icons indicate the site locations. For each site, the
yellow dashed line indicates the extent of the deviation, and the presence of a human
icon indicates that the robot will query the human operator. Readers are referred to
the color PDF for optimal viewing.

site 2, the robot deviates some distance and queries the human operator after sensing.

In particular, the robot moves to a good channel quality region when communicating

to the human, as indicated by the brighter color near the terminal point of the yellow

dashed line for site 2. On the other hand, although site 4 also has a medium sensing

difficulty, the robot moves much closer to the site location for sensing and does not query

the human operator. This is because the channel quality near site 4 is very poor and

thus, the robot has to rely on itself for classification by moving close to the site. Site 3

has a high level of sensing difficulty and the robot thus has to reach the site location for

sensing. Although the channel quality near site 3 is good, there is no incentive for the

robot to query the human operator as its own performance is already good after sensing

at the site location. The average correct classification probability is 0.850 in this case.
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In this chapter, we considered human-robot collaborative site inspection and target

classification, where the human visual performance is not perfect, depending on the

sensing quality, and the robot has constraints when communicating with the human

operator. In the next chapter, we study another way to improve the robot’s visual

recognition performance in challenging visual task scenarios, by showing that the output

of the onboard DCNN classifier contains robust information on object similarity even if

the sensing/classification quality is poor. We then show how to properly exploit such

information for path planning and joint labeling.
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Chapter 5

Exploiting Object Similarity for
Robotic Visual Recognition

In this chapter, we are interested in enhancing the performance of robotic visual

classification by exploiting the underlying visual information contained in the output

of the robot’s onboard Deep Convolutional Neural Network (DCNN) classifier. More

specifically, consider the case where robot’s initial sensing and scene classification is poor.

If the robot can figure out the similarity between the objects in the scene (i.e., which

objects belong to the same class), it can then exploit it to improve its classification. But

how can the robot infer object similarity, given its poor initial sensing and classification?

In this chapter, we show that even when the DCNN classifier cannot properly classify the

objects in the field (e.g., due to poor sensing, low illumination, less-seen poses/views),

its output can still carry useful information about object similarity. More specifically,

we show that the Pearson correlation coefficient of the feature vectors of two object

images from the output of a trained DCNN classifier carries key, reliable information

on the similarity of the two corresponding objects, in terms of whether they belong to

the same class or not. This then allows us to design a Markov Random Field (MRF)-

Parts of this chapter have appeared in our paper [119], ©[2020] IEEE.
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Figure 5.1: A robot is tasked with classifying objects on our campus. It may have low
confidence in some of its initial classifications. Given a limited human query budget
and a motion budget, the robot then needs to decide which object locations it should
visit to sense better, and which object images it should ask a remote human operator
to classify, in order to improve its overall classification performance. By using the
correlation coefficient of the feature vectors from a trained DCNN classifier, the robot
can robustly capture image similarities (e.g., objects 2 and 3 belong to the same class),
which has a significant implication for its field decision-making and joint labeling, as
we show in this chapter. Readers are referred to the color pdf to better view the
images in this chapter.

based joint labeling framework, where the similarity information is utilized to reduce the

classification uncertainty. For instance, in Fig. 5.1, there are two images (2 and 3) of the

same class (person) but in different poses. The robot’s vision initially misclassifies them

to a truck and a car. However, if the robot is aware that they belong to the same class

(while it cannot properly classify them), then it can correctly classify both to persons

using our MRF joint labeling framework. This has significant implications for the robot’s

field decision-making, such as path planning and human query, as well. Given a number

of allowed queries to ask for human help and a motion budget, we finally show how the

robot can optimize its motion and human query decisions in order to improve its sensing

and scene understanding, by utilizing the inferred visual similarity information.

The rest of the chapter is organized as follows. In Sec. 5.1, we introduce our object

88



Exploiting Object Similarity for Robotic Visual Recognition Chapter 5

similarity metric and confirm its reliability based on extensive studies. We further propose

a Correlation-based Markov Random Field (CoMRF) for joint labeling, based on our

inferred object similarity. In Sec. 5.2, we develop our query-motion co-optimization

algorithm using our CoMRF. In Sec. 5.3, 5.4, and 5.5, we evaluate our proposed approach

for joint labeling, query selection, and path planning, on a large COCO-based test set,

a large-scale drone imagery dataset, and a large indoor scene dataset, respectively. In

Sec. 5.6, we further demonstrate the efficacy of our proposed algorithm with several

robotic experiments. We finally discuss a few more aspects of our methodology in Sec. 5.7.

5.1 Correlation-based Markov Random Field

In this section, we first establish that the correlation coefficient between two feature

vectors, from a DCNN-based classifier, provides a reliable metric for characterizing the

probability that the two images belong to the same class. We then show how to build

a correlation-based Markov Random Field (CoMRF) for joint object labeling, which

captures and utilizes our proposed pairwise probabilistic object similarity metric.

5.1.1 Image Similarity and Feature Correlation

Consider a pair of images, each containing an object of interest. The images have

passed through a trained DCNN classifier, which automatically provides a feature vector

for each image. In contrast to hand-crafted features, this automated feature vector

contains robust information on the essence of an object, which allows for capturing image

similarity reliably, without additional training, as we show in this section.

To test our hypothesis about this image similarity metric, we construct a large im-

age classification dataset, which contains 39 object classes, including a variety of daily

objects (e.g., person, car). There are 76, 505 images in total, collected from the COCO
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dataset [76] and ImageNet [120]. Most of the images are obtained from the COCO de-

tection dataset by extracting object image patches based on the provided bounding box

annotations, in order to better represent what the robot would see in real-world classifi-

cation tasks (e.g., images that can be small, have occlusion/clutter, and have non-ideal

lighting/contrast). We divide this dataset into 38, 555 training images, 19, 350 validation

images, and 18, 600 test images.1 Utilizing this dataset, we have trained DCNN classi-

fiers using the following three commonly-used state-of-the-art architectures: AlexNet [48],

MobileNet-v2 [50], and ResNet-18 [51], with their respective accuracies over the valida-

tion set as follows: 0.800, 0.873, and 0.873. We refer to these as the base classifiers in

the chapter. By utilizing these three different network architectures, we will establish the

generalizability of our metric to different networks. Each trained DCNN classifier then

automatically provides a feature vector for an input image from the layer prior to the

final output layer. For instance, in the case of AlexNet, this feature vector is provided by

the activations on the 7th layer, which is a fully-connected layer prior to the final output

layer. The test set is reserved for evaluating our proposed methodology in Sec. 5.3.

Remark 5.1 We note that we could have used an existing trained classifier to test our

image similarity metric. However, we chose to train a classifier in order to train on

classes more relevant to the types of objects that an unmanned vehicle may see on a

campus (e.g., people, bikes, cars). The unmanned vehicle will then use this classifier for

our real-world experimental tests in Sec. 5.6. We thus emphasize that the aforementioned

training is simply to train a classifier and our proposed image similarity metric is freely

available from any DCNN classifier.

During the training of a DCNN classifier, the network learns relevant features to feed

to the output layer, which is a linear operator. As such, the DCNN is trained to derive

1Detailed descriptions of this dataset can be found in Appendix B.1.
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(c) pairs with at least one misclassification

Figure 5.2: (a) In each CDF-PDF figure pair of a DCNN classifier (e.g., the two
leftmost figures of AlexNet), the left figure shows the CDFs of the feature correlation
of same-class (blue solid) and different-class (red dashed) pairs, and the right figure
shows the PDFs of the feature correlation of same-class and different-class pairs. (b)
CDFs and PDFs of the feature correlation after degrading the images by low resolution
and low illumination. (c) CDFs and PDFs of the feature correlation with at least one
misclassification in each image pair.

features to linearly separate images of different classes. Motivated by this generic design

of DCNN classifiers, we utilize the Pearson linear correlation coefficient to measure the

similarity between a pair of images. More specifically, given a feature vector for each

image in a pair of images, we compute the Pearson linear correlation coefficient of the

feature vectors of the two images. We refer to this metric as the feature correlation. We

next empirically analyze its distribution. Fig. 5.2 (a) shows the Cumulative Distribution

Functions (CDFs) and Probability Density Functions (PDFs) of the feature correlation

of 180, 000 random image pairs from the validation set, based on the features provided

by the trained AlexNet, MobileNet-v2, and ResNet-18, respectively. More specifically,

in each CDF-PDF pair (e.g., the two leftmost figures of AlexNet in Fig. 5.2 (a)), the
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blue solid curve of the left figure shows the CDF of the feature correlation of a pair of

object images, given these two objects belong to the same class, which we denote as a

same-class pair. The red dashed curve then shows the CDF of the feature correlation of

a pair of objects belonging to different classes, which we denote as a different-class pair.

It can be seen that, for each DCNN classifier, there is a considerable difference between

these two distributions. For a different-class pair, the feature correlation is more likely

to be small, while for a same-class pair, there is a higher chance of a high correlation.

Similarly, the PDF curves show that the distributions of the correlation coefficient are

well separated for same-class and different-class pairs. This further motivates utilizing

feature correlation to deduce whether two objects belong to the same class. To do so, we

need a threshold, above which to declare two objects in the same class and below which

to declare otherwise. We choose a threshold such that the probability of false correlation

(different-class declared as same-class) is very small. For instance, for AlexNet, we can

see that the probability of a different-class pair having a correlation above 0.3 is less than

0.010, while 47.3% of the same-class pairs have a correlation above 0.3. We then use 0.3

as our threshold for AlexNet in our experiments. Similarly, we select thresholds for the

MobileNet-v2 and ResNet-18 classifiers such that the probability of false correlation is

very small, while a large percentage of same-class pairs still have a correlation above

the threshold. This allows us to capture many of the same-class objects, while ensuring

a very small probability of mistaking a different-class pair for a same-class pair. The

respective thresholds for the three DCNN classifiers are summarized in Table 5.1, along

with the probability of false correlation and the probability of same-class pairs having a

correlation above the threshold. When two images have a high feature correlation, there

is a high probability that they belong to the same class. Therefore, when designing our

CoMRF in Sec. 5.1.2, every two images with a feature correlation above the threshold

are connected by an edge and are more likely to have the same label in the joint labeling
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Base Correlation Prob. above threshold
classifier threshold different-class same-class
AlexNet 0.3 0.009 0.473

MobileNet-v2 0.4 0.009 0.720
ResNet-18 0.4 0.009 0.693

Table 5.1: Correlation thresholds for the three DCNN classifiers. The third and
fourth columns show the probability of false correlation (different-class declared as
same-class) and the probability of a same-class pair having a correlation above the
threshold, respectively.

process.

Robustness to Visual Differences: As two instances of the same object class can be

very different visually, it is important that our image similarity metric declares many

of such instances to be in the same class. We extensively study our dataset from this

angle, in order to ensure that it contains a variety of poses/views for each object class.

The PDF/CDF plots of Fig. 5.2 (a), for instance, are obtained from a general dataset

(the validation part of our constructed dataset) with visually-diverse instances of each

object class. Fig. 5.3 shows 10 random samples of bicycle for instance. Using the AlexNet

classifier and based on the threshold of 0.3, a link is drawn between two objects if their

feature correlation is above 0.3. As can be seen, despite the drastic visual differences, the

resulting graph is dense (55.56% of all possible pairwise links are captured), indicating

that the feature correlation robustly captures same-class objects.

Robustness to Image Degradation: In practice, robot sensing may suffer from various

degradations, such as low resolution and low illumination. As our approach relies on the

feature correlation of image pairs, it is important to understand its robustness to image

degradation. In other words, the difference between the feature correlation distributions

of same-class and different-class pairs should still be large enough. To evaluate this, we

have corrupted the validation set images by randomly reducing resolution and illumina-

tion. Fig. 5.2 (b) shows the CDF/PDF of the feature correlation for the corrupted image
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Figure 5.3: Robustness of our metric to visual variations – visualization of the
feature correlation among 10 random bicycle images. Two images are connected if
their AlexNet-based feature correlation is above the threshold. The number of edges
in this graph is 55.56% of that of a 10-node complete graph, indicating that many of
the pairs are correctly declared as same-class despite drastic visual differences.

dataset and the three network architectures. As can be seen, although the difference

between the two distributions has become smaller, they are still robustly different.

Robustness to Misclassification: The feature correlation can identify same-class ob-

jects, even when the classifier misclassifies them. This is important as when there are

misclassified images, the feature correlation should still robustly capture the similarity,

which can then be utilized to correct the misclassifications. The initial image pool used

to plot Fig. 5.2 (a) includes several image pairs with at least one misclassified image. In

order to more explicitly show the robustness of the feature correlation to misclassification,

Fig. 5.2 (c) shows the feature correlation distributions of same-class and different-class

pairs when at least one of the images in a pair is misclassified. It can be seen that,

for each DCNN classifier, using the corresponding threshold, the feature correlation still

captures many same-class pairs with a small false correlation probability (less than 0.018

for all three DCNN classifiers) in this challenging setting. Fig. 5.1 shows an example of

this where, using the AlexNet classifier, the two human images (2 and 3) are initially

misclassified as a truck and a car. Utilizing the feature correlation, the robot can infer

that they are highly likely to be in the same class, which allows it to jointly label them
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correctly, using the method we propose in Sec. 5.1.2.2

5.1.2 Correlation-based Markov Random Field (CoMRF)

So far, we have established that feature correlation provides a reliable metric for

image similarity. We next show how it can be used for joint labeling. Suppose that we

have N images, each containing an object-of-interest (defined as an object belonging to

the set of classes with which the classifier was trained). We next construct our CoMRF

based on the pairwise feature correlations.3

In our MRF, each object image is represented by a node and two nodes are connected

by an edge if their pairwise feature correlation is above a certain threshold sT (e.g., the

threshold for the AlexNet classifier is 0.3, as discussed in Sec. 5.1.1). The overall potential

function of the CoMRF is then given as follows:

P (x1, ..., xN) =
N∏
i=1

φi(xi)
∏

(i,j)∈L̃

ψ(xi, xj), (5.1)

where xi ∈ {1, ..., Nc} is the label variable of the ith image with Nc denoting the total

number of object classes, φi(xi) is the node potential function, L̃ = {(i, j)|s̃i,j ≥ s̃Th} is

the set of pairs with feature correlation s̃i,j above s̃Th, and ψ(xi, xj) is the edge potential

function.

Node Potential: For each node i, φi(xi) = pXi
(xi), where pXi

(xi) is the probability

distribution over the classes from the classifier’s output and xi ∈ {1, ..., Nc} is the label

variable.

Edge Potential: Given that there is an edge between nodes i and j, we denote the

2Even when the robot’s initial classifications are correct, it may have low confidence on some of the
images. In such cases, the robot can still benefit tremendously from our similarity metric, which can
be utilized to reduce the uncertainty in the robot’s classification decisions using our CoMRF method of
Sec. 5.1.2.

3Readers are referred to the MRF literature for more details on the terminology (e.g., [121,122]).
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probability that these two nodes have the same label as psame = p(xi = xj|s̃i,j ≥ s̃Th),

where s̃i,j is the feature correlation between nodes i and j. If xi = xj, we assume

that it is equally probable for nodes i and j to belong to any one of the Nc classes.

Similarly, if xi 6= xj, then we assume that it is equally probable for nodes i and j to

take any pairwise combination of the Nc classes. The edge potential function is then

constructed as follows: ψ(xi, xj) = psame/Nc, if xi = xj = k, ∀k ∈ {1, ..., Nc}, and

ψ(xi, xj) = (1− psame)/(N
2
c −Nc), if xi 6= xj, ∀xi, xj ∈ {1, ..., Nc}.

In a specific joint labeling task instance, given that the objects present belong to

Np ≤ Nc classes (subset out of the total Nc classes seen in training) and the threshold is

s̃Th, psame can be written as follows using the Bayes rule:

psame = p(xi = xj|s̃i,j ≥ s̃Th)

=
p(s̃i,j ≥ s̃Th|xi = xj)p(xi = xj)

p(s̃i,j ≥ s̃Th|xi = xj)p(xi = xj) + p(s̃i,j ≥ s̃Th|xi 6= xj)p(xi 6= xj)
,

where p(xi = xj) = Np/N
2
p and p(xi 6= xj) = Np(Np − 1)/N2

p are the prior probabilities

that two nodes belong to the same class and different classes, respectively.

Since this is dependent on Np, which the robot does not know during the operation, we

average psame over the distribution of Np. For instance, in practice, we do not expect Np to

be larger than 10 in a task instance. Thus, we assume that Np is uniform over {1, ..., 10},

and numerically evaluate E[psame] to be 0.928, 0.904, and 0.878 for AlexNet, MobileNet-

v2, and ResNet-18, respectively. For the rest of the chapter, for each DCNN classifier,

we then set psame = E[psame] in our CoMRF implementation. In order to compute the

posterior distribution of the nodes, we use Loopy Belief Propagation (LBP), which is an

approximate inference algorithm [121]. The final estimated label for a node is then given

by x̂i = argmax p̃Xi
(xi), where p̃Xi

is the posterior marginal distribution of node i over
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the Nc classes, after running LBP on CoMRF.4

5.2 Optimization of Querying and Path Planning

Consider the case where the robot is tasked with object classification in an area. The

robot does an initial classification based on visual sensing and the state-of-the-art DCNN

classifier. However, its classification confidence may not be high for several objects. The

robot is given a query budget to ask for human help and/or a motion budget to move to

some of the object locations to sense better. In this section, we propose our methodology

for co-optimizing query selection and path planning, based on our proposed CoMRF.

More specifically, when the robot visits a site to better sense an object, or queries the

human, it can obtain the correct label of the corresponding object with a high probability.

Given these new labels, the robot can perform conditional inference over CoMRF and

update all the remaining labels utilizing our similarity metric. Thus, the robot’s site

sensing and human query directly affect its joint labeling.

Ideally, the robot should select a subset of nodes to query and/or visit such that the

posterior joint uncertainty of all the nodes on the MRF is minimized. However, the com-

putational complexity of finding the optimum to this problem is very high, and existing

methods either resort to greedy schemes or are limited to chain-structure graphs [69,124].

Therefore, we instead consider a neighborhood uncertainty measure that can still capture

the feature correlation and object similarity. More specifically, for each node, we propose

an uncertainty measure that takes into account both its individual uncertainty and the

uncertainty of its neighboring nodes in CoMRF. This is because as the correct label is

applied to a node, not only is its own uncertainty eliminated, but the uncertainty of the

neighbors will also be reduced. This measure then provides a way to quantify the amount

4We use the publicly available MRF library [123] for our implementation.
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Algorithm 4: Proposed query selection and path planning co-optimization
(CoMRF-Opt)

max.
γh,γs,z,u

(γh + γs) · [r̃, 0]T

s.t. (1)
∑

j∈{Ã(i)∪i}

γh,j + γs,j ≤ 1, ∀i ∈ {1, ..., N},

(2)
N+1∑
i=1

N+1∑
j=1

zi,j d̃i,j ≤ Emax,

(3)
N+1∑
j=1

zi,j =
N+1∑
j=1

zj,i = γs,i, ∀i ∈ {1, ..., N + 1},

(4) ũi − ũj + 1 ≤ N · (1− zi,j), ∀i, j ∈ {2, ..., N + 1},
(5) 1Tγ ≤M, (6) γ + η � 1,

(7) γh,N+1 = 0, γs,N+1 = 1,

(8) γh, γs ∈ {0, 1}N+1, z ∈ {0, 1}(N+1)2 , ũ ∈ [2, N + 1]N

of (neighborhood) uncertainty reduction, should a node be given the correct label. Our

uncertainty measure is then as follows, for each node i,

r̃i = (1− ci) + gw
∑
j∈Ã(i)

(1− cj), ∀i ∈ {1, ..., N}, (5.2)

where ci = max p̃Xi
(xi), with p̃Xi

being the posterior marginal distribution of node i (after

LBP), xi ∈ {1, ..., Nc} is the label variable. 1 − ci is then a measure of the individual

uncertainty of node i. The second term measures the uncertainty of the neighboring

nodes of node i, where Ã(i) denotes the neighbor set of node i. gw ≥ 0 weighs the

respective importance of the individual and neighborhood uncertainties.5

Given this uncertainty measure, we next formulate our query selection and path

planning co-optimization, which selects the nodes that maximize uncertainty reduction

5We set w = 5 in our implementation, based on running AlexNet on the validation set. The weight
gw = 5 is then used for all three DCNN classifiers for all the experiments in Sec. 5.3, 5.4, and 5.6
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and avoids choosing highly-correlated nodes, under limited query and motion budgets.6

We assume that the robot has to return to its initial position after completing the close-

up sensings, forming a tour. The optimization formulation is described in Alg. 4, where

N is the total number of objects that the robot has initially sensed, γh = [γh,1, ..., γh,N+1]

denotes the binary decisions of querying the nodes, γs = [γs,1, ..., γs,N+1] denotes the

binary decisions of visiting the nodes, γh,N+1 and γs,N+1 are augmented variables for the

robot’s initial position, r̃ = [r̃1, ..., r̃N ] is the uncertainty vector from Eq. (5.2), Emax is

the motion budget in terms of total traveled distance, and M is the query budget. γh,i=1

indicates that the robot will query object i (with 0 denoting otherwise). γs,i = 1 indicates

that the robot will visit object i (with 0 denoting otherwise).

In Constraint (1), we impose that for each node i, at most one node can be selected

from the set of node i and its neighbors, which prevents the simultaneous selection of

highly-correlated nodes. Constraints (2)-(4) are related to the robot’s tour planning.

Constraint (2) limits the total traveled distance by Emax, where d̃i,j is the distance be-

tween objects i and j, and zi,j ∈ {0, 1} indicates whether to include edge (i, j) in the

tour. Constraint (3) restricts that an object location can only be entered and exited

once if it is in the tour (γs,i = 1). Constraint (4) is the Miller-Tucker-Zemlin (MTZ)

constraint that eliminates sub-tours [125]. Constraint (5) limits the number of queries

by M . Constraint (6) prohibits the robot from both querying an object and visiting it.

Constraint (7) ensures that the initial robot position is part of the tour. The last set of

constraints enforce that all the decision variables (γh, γs, and z) are binary, and that the

MTZ variables are in [2, N + 1].

In the solution of Alg. 4, it is possible that not all the given query and motion

budgets are utilized, since we enforce Constraint (1) to avoid selecting highly-similar

6In this optimization formulation, the robot is assumed to obtain the correct label if it visits an object.
In the experiments of Sec. 5.6.3, the reported performance is based on the actual obtained images after
the visits.
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nodes. Suppose that Ωact is the set of nodes queried or visited in this solution. If there

are any unused queries and/or motion budget, the robot then re-runs a slightly-modified

version of Alg. 4, where w = 0, Constraint (1) is removed, and the nodes in Ωact are

enforced to be queried or visited. In this way, the robot prioritizes the selection of the

most important nodes in CoMRF, while ensuring that all the resources are properly

utilized. For the rest of the chapter, we refer to our proposed query selection and path

planning approach as CoMRF-Opt.7

5.3 Performance Evaluation on Large COCO-based

Test Set

In this section, we evaluate our proposed CoMRF-based co-optimization approach

on joint labeling, query selection, and path planning on the large COCO-based test set

described in Sec. 5.1.1. We first assume no query or motion budgets for the robot,

and evaluate our proposed joint labeling method. We then allow several queries for the

robot (no motion) and evaluate our query selection method. Lastly, we incorporate the

element of motion and evaluate our query-motion co-optimization approach by simulating

the motion.

5.3.1 Joint Labeling

In this part, we assume zero query and motion budgets for the robot, and analyze

the joint labeling performance. We compare with the state-of-the-art methods of Cao

et al. [64] and Hayder et al. [65], which are similarity-based approaches that use hand-

crafted image features to deduce image similarity for joint labeling. We further compare

7The optimization in Alg. 4 is a Mixed Integer Linear Program (MILP) and we use Matlab’s MILP
solver in Secs. 5.3, 5.4, 5.5, and 5.6.
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Base
classifier

Independent
(base classifier output)

Cao et al.
[64]

Hayder et al.
[65]

CoMRF
(proposed)

AlexNet 0.437 0.438 0.543 0.673

MobileNet-v2 0.708 0.422 0.587 0.900

ResNet-18 0.724 0.422 0.604 0.881

average 0.623 0.427 0.578 0.818

Table 5.2: Performance comparison of joint labeling methods (case of no query or
motion). It can be seen that our proposed joint labeling method improves the base
classifier by 0.195, on average, in terms of classification accuracy. On the other hand,
Cao et al. and Hayder et al. perform similar or worse as compared to the initial
classification.

with the benchmark of directly using the base classifier’s output, to which we refer as

“independent”.8

For each test case, we randomly draw Np classes from the total Nc = 39 classes.

For each selected class, we then sample NI images. In this section, we use Np = 2 and

NI = 50, and report the average classification accuracy over 100 random test cases. To

make the classification task more challenging, the images are randomly sampled from the

set of images whose AlexNet initial classification confidence is below 0.9.

Table 5.2 compares the performance of the independent approach, Cao et al., Hayder

et al., and our proposed CoMRF-based joint labeling. We can see that our approach

considerably outperforms the independent approach when using any of the DCNN clas-

sifiers, with an average improvement of 0.195 in terms of classification accuracy. On the

other hand, Cao et al. and Hayder et al. provide only slight improvement in the case of

AlexNet, and underperform, as compared to the base classifier, in the cases of the other

two DCNNs. This is because their hand-crafted features cannot properly capture object

similarity, especially when there is a large number of classes with a wide variety of poses

and views for each class.

8More details of these methods can be found in Appendix B.2.
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5.3.2 Query Selection

We next evaluate our proposed query selection approach (using Alg. 4 with a zero

motion budget). In this evaluation, we compare with Wang et al. [70], which is a state-of-

the-art Bayesian approach. Since this approach is for selecting queries on a given MRF

and not on image similarity, we use our CoMRF, but then apply their query strategy

instead of our proposed Alg. 4. We also include a benchmark that greedily selects the

nodes with the highest individual uncertainties (from the base classifier), without utilizing

any correlation, to which we refer as “independent”.9

The test cases used in this part are the same as in Sec. 5.3.1, and the reported classi-

fication accuracy is averaged over the 100 test cases. Fig. 5.4 compares the performance

of our CoMRF-Opt (red solid) with the independent approach (blue dashed) and Wang

et al. (green dashed), when using the three base classifiers, respectively. As can be seen,

our proposed approach considerably outperforms both of them. For instance, when us-

ing AlexNet as the base classifier, given a budget of 40 queries, CoMRF-Opt achieves a

classification accuracy of 0.957, as compared to 0.878 of Wang et al. and 0.704 of the

independent approach. As for the other two DCNNs, although CoMRF already achieves

a high initial classification accuracy of ∼ 0.900, CoMRF-Opt is still able to further im-

prove it to ∼ 0.990 with 20 queries, significantly outperforming Wang et al. and the

independent approach. Furthermore, our proposed approach enables significant resource

savings. For instance, for the case of AlexNet, in order to achieve an average classification

accuracy of 0.900, our proposed method requires 25 queries, while Wang et al. and the

independent benchmark require 50 and 80 queries, respectively, as shown in Fig. 5.4 (a).

This is equivalent to respective reductions of 50% and 68.75% in terms of communication

resources.

9More details of these methods can be found in Appendix B.2.
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Figure 5.4: Joint labeling and query selection performance (no motion) on the CO-
CO-based test set. The query budget is given as a fraction of the total number of
nodes.

Since Cao et al. and Hayder et al. only perform comparable to or worse than the

base classifier, and Wang et al. only provides near-linear improvement w.r.t. the number

of given queries, we will not include them for comparison in the rest of the chapter.

5.3.3 Query Selection and Path Planning

In this section, we take motion into account and evaluate our CoMRF-based query-

motion co-optimization approach on our COCO-based test set by running the robot in a

simulated motion environment. More specifically, for each test case, we randomly draw

Np = 2 classes from the total Nc = 39 classes and for each selected class, we randomly

sample NI = 10 images from the set of images whose AlexNet initial classification confi-

dence is below 0.9. These 20 images/objects are then randomly placed in a 10 m× 10 m

simulation environment. In each test case, given a query budget and a motion budget,

the robot needs to decide for which object images it should query the remote human

operator and which object locations it should visit to sense better. We give the robot

a query budget equal to 5% of the total number of nodes and a motion budget ranging

from 0 m to 20 m. We compare our proposed CoMRF-Opt (Alg. 4) with the indepen-

dent approach that does not take into account any correlation.10 We report the average

10For the independent approach, the path planning part is conducted by running a modified version
of Alg. 4, where r in the objective function is replaced by a vector of the individual uncertainties, given
by the base classifier, and Constraint (1) is removed.
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Figure 5.5: Query selection and path planning performance on the COCO-based test
set. The robot is given a query budget equal to 5% of the total number of nodes and
the motion budget ranges from 0 m to 20 m.

classification accuracy over 100 random test cases.

Fig. 5.5 shows the classification performance of CoMRF-Opt (red solid) and that of

the independent approach (blue dashed), for the cases of the three DCNN base classifiers,

respectively. It can be seen that CoMRF-Opt significantly outperforms the independent

approach for any given motion budget and for all three DCNNs. For instance, in the

case of MobileNet-v2, given a motion budget of 10 m, CoMRF-Opt achieves a classi-

fication accuracy of 0.945, which is considerably higher than that of the independent

benchmark (0.826). For a larger query budget, our proposed approach has a similar per-

formance improvement over the benchmark. For instance, given a query budget of 15%

and a motion budget of 10 m, CoMRF-Opt has a classification accuracy of 0.978 and

the benchmark’s accuracy is 0.880, when using MobileNet-v2. As the amount of given

resources increases considerably, however, both approaches’ performance will approach 1

eventually, as expected.

Overall, these results confirm that our proposed feature correlation metric robustly

captures image similarity and our CoMRF-based approach improves classification perfor-

mance considerably. For the joint labeling task, the accuracy of our proposed approach

is significantly higher than those of the state of the art. By comparing with Wang et

al., we can see that our proposed CoMRF-based query strategy outperforms one of the

best existing approaches. By including motion in the experiments, we further validate
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our proposed CoMRF-based query-motion co-optimization methodology.

5.4 Performance Evaluation on a Large-Scale Drone

Imagery Dataset

In this section, we evaluate the performance of our proposed CoMRF-based joint la-

beling and query-motion co-optimization methodology on a large drone imagery dataset.

We use the publicly-available VisDrone dataset [77],11 which is a challenging large-scale

dataset with images captured by drone-mounted cameras that cover various cities, en-

vironments, object classes, and object densities. As images taken by drones have very

different views as compared to images taken on the ground (e.g., COCO images), evaluat-

ing performance on the VisDrone dataset will further verify the robustness and generaliz-

ability of our proposed feature correlation-based similarity metric and the CoMRF-based

co-optimization approach. While using the VisDrone data, we consider a subset of their

object classes (7 out of 10) that overlaps with the classes of our training set described

in Sec. 5.1.1, which includes person, pedestrian, car, bus, truck, motorcycle, and bicycle.

The two classes of person and pedestrian are treated as one class in our evaluation. The

object image patches are obtained based on the provided bounding box annotations.

In the following parts of this section, we first evaluate the performance of joint labeling

and query selection by assuming a zero motion budget. We then allow a non-zero motion

budget and evaluate our proposed query-motion co-optimization approach in a simulation

environment.

11The dataset is publicly available from http://aiskyeye.com/.
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5.4.1 Joint Labeling and Query Selection

In the joint labeling and query selection evaluation, we consider two realistic drone

visual sensing scenarios. In the first scenario, in each test case, the images are taken from

the same flight. This captures a real-world scenario where the drone utilizes not only

the correlation among objects within the same image, but also that among objects from

different images taken during the same flight, in order to improve its onboard DCNN

classifier’s accuracy. We refer to this scenario as the same-flight scenario. Secondly, we

consider a scenario where in each test case, the images are randomly drawn from the

entire dataset. This captures another practical scenario where there are multiple drones

performing visual tasks in different environments, while there is a central agent (e.g., a

leader drone or a ground robot) that receives images from these drones and performs joint

labeling. We refer to this scenario as the multi-flight scenario. In both scenarios, each

test case contains at least 100 objects from images from either the same flight or multiple

random flights, and we report the average classification accuracy over 100 random test

cases for each scenario. Note that, unlike in the previous section, the number of classes

present (Np) and the number of images per class (NI) are not controlled here. In other

words, there can be any number of at least 2 object classes present and the number of

images for each class can take any value in each test case.

Fig. 5.6 shows the performance of our proposed joint labeling and query selection

approach, as compared to the benchmark, in the same-flight scenario. It can be seen

that our proposed approach significantly outperforms the benchmark in terms of classifi-

cation accuracy, when using any of the three DCNN base classifiers. For instance, when

using AlexNet, given a query budget equal to 30% of the number of nodes, CoMRF-Opt

achieves an accuracy of 0.854, which is 0.424 higher than that of the base classifier (0.430).

Similar large improvements can be seen for the cases of MobileNet-v2 and ResNet-18.
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Figure 5.6: Joint labeling and query selection performance (no motion) on the Vis-
Drone dataset, for the same-flight scenario. The query budget is given as a fraction
of the total number of nodes.
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Figure 5.7: Joint labeling and query selection performance (no motion) on the Vis-
Drone dataset, for the multi-flight scenario. The query budget is given as a fraction
of the total number of nodes.

Fig. 5.7 compares our proposed CoMRF-based approach with the independent bench-

mark, in the multi-flight scenario. Similarly, it can be seen that our proposed approach

significantly outperforms the independent approach, for all three DCNNs. For instance,

in the case of AlexNet, given a query budget equal to 30% of the number of nodes,

CoMRF-Opt achieves an accuracy of 0.792, while the benchmark has an accuracy of

0.447, which is 0.345 lower. It can also be observed that the performance improvement

provided by CoMRF-Opt is slightly less in the multi-flight scenario, as compared to that

in the same-flight scenario, since there could be less correlation across images taken from

different flights, as expected.

Next, we study how the classification performance varies w.r.t. the number of classes

present (Np) in a test case, in order to understand the effect of Np on our proposed

approach. More specifically, based on the 100 same-flight test cases, we calculate the
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Np Ave. NI
AlexNet MobileNet-v2 ResNet-18

Ind. CoMRF-Opt Ind. CoMRF-Opt Ind. CoMRF-Opt

≤ 3 41 0.593 0.862 0.804 0.916 0.777 0.909

4 27 0.602 0.844 0.815 0.917 0.796 0.909

5 22 0.585 0.846 0.797 0.921 0.770 0.918

6 18 0.617 0.798 0.799 0.887 0.787 0.862

Table 5.3: Average classification performance given different number of classes present
(Np) in a test case. The first column shows the number of classes present in a test case.
The second column shows the average number of objects per class in a test case for
different Np values. The remaining columns show the average classification accuracy
of the benchmark of making independent decisions and our proposed CoMRF-based
approach, given different Np values, for the base classifiers of AlexNet, MobileNet-v2,
and ResNet-18, respectively.

average classification accuracy for each Np, where the accuracy is averaged over the test

cases with the same Np and the query budget ranging from 0 to 1. The results are shown

in Table 5.3. The first column shows the different Np values, where Np = 2 and Np = 3

are grouped together to allow for at least 10 cases for averaging. The second column

shows the average number of objects per class (NI) in a test case, for each Np. The

remaining entries show the average classification accuracies of the benchmark of making

independent decisions and our CoMRF-based approach. It can be seen that for each

base classifier, the benchmark performs similarly across different Np values, which is as

expected as it classifies each object image individually and is thus not affected by Np.

As for our approach, for each base classifier, we can see that the average classification

accuracy is also similar across different Np values. The accuracy is slightly lower when

Np = 6, as the average NI (number of objects per class) is smaller in this case, which

means that there is less underlying correlation to be exploited. However, as we can see,

our CoMRF-based approach still significantly outperforms the benchmark in this case.

These results verify that our proposed approach performs consistently across different Np

values.
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Figure 5.8: Query selection and path planning performance on the VisDrone dataset.
The robot is given a query budget equal to 5% of the total number of nodes and the
motion budget ranges from 0 m to 20 m.

5.4.2 Query Selection and Path Planning

In this part, we provide a non-zero motion budget to the robot and evaluate our

proposed query-motion co-optimization approach. In each test case, an image (with 15

to 25 objects) is randomly drawn from the VisDrone dataset and the objects in this image

are randomly placed in a 10 m× 10 m simulation environment. By running our proposed

algorithm in this setting, we capture a realistic scenario where a drone has acquired an

image of the field, and needs to plan its next motion steps to better view the objects

and/or select some of the object images to query the remote human operator. We average

the performance over 100 random test cases.

Fig. 5.8 shows the performance of our proposed CoMRF-Opt query-motion co-optimization

and that of the independent approach, for the three DCNN base classifiers, respectively.

It can be seen that overall, CoMRF-Opt significantly outperforms the independent ap-

proach. For instance, when using ResNet-18, given a motion budget of 10 m, CoMRF-Opt

achieves a classification accuracy of 0.921, as compared to an accuracy of 0.707 by the

independent benchmark.

Overall, these results confirm the efficacy of our proposed CoMRF-based joint label-

ing and query-motion co-optimization approach, showing that CoMRF-Opt can achieve

significantly higher classification accuracies as compared to the benchmark of making

independent decisions. Furthermore, the visually-challenging VisDrone-based evaluation
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also demonstrates the robustness and generalizability of our proposed feature correlation

and co-optimization approach.

5.5 Performance Evaluation on a Large Indoor Scene

Dataset

We further evaluate the performance of our proposed CoMRF-based joint labeling

and co-optimization methodology on the popular indoor scene dataset of NYU-v2 [78].12

This large indoor dataset contains a variety of scenes (e.g., kitchens, offices) and a large

number of various objects. As indoor objects can be challenging to recognize, e.g., due to

occlusion and clutter, this evaluation will further verify the robustness of our proposed

approach. In the evaluation, we consider a set of 19 object classes that are present in

both the NYU-v2 dataset and our training set in Sec. 5.1.1. The object image patches

are obtained based on the provided annotations.

In the evaluation, we use the objects of the same scene for each test case, which

captures a real-world situation where a robot enters a scene and needs to recognize

the objects in the scene. We randomly select 100 test cases (i.e., 100 scenes) from the

dataset, each contains at least 10 objects. The reported performance is averaged over

the 100 test cases. Next, we present the evaluation on joint labeling, query selection, and

query-motion co-optimization for our proposed approach.

5.5.1 Joint Labeling and Query Selection

Fig. 5.9 shows the performance of our proposed joint labeling and query selection

approach, as compared to the benchmark of making independent decisions. It can be seen

12The dataset is publicly available from https://cs.nyu.edu/~silberman/datasets/nyu_depth_

v2.html.
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Figure 5.9: Joint labeling and query selection performance (no motion) on the
NYU-v2 dataset. The query budget is given as a fraction of the total number of
nodes.
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Figure 5.10: Query selection and path planning performance on the NYU-v2 dataset.
The robot is given a query budget equal to 5% of the total number of nodes and the
motion budget ranges from 0 m to 20 m.

that our proposed approach significantly outperforms the independent approach, when

using any of the three DCNN base classifiers. For instance, given a query budget equal to

30% of the number of nodes, CoMRF-Opt achieves an accuracy of 0.815, 0.911, and 0.922,

considerably outperforming the benchmark by 0.225, 0.170, and 0.214, respectively, when

using the base classifiers of AlexNet, MobileNet-v2, and ResNet-18.

5.5.2 Query Selection and Path Planning

In this part, the robot is given a non-zero motion budget. In each test case, the objects

from the same scene are randomly placed in a 10 m× 10 m simulation environment. Our

evaluation in this section captures a real-world scenario where a robot is tasked with

recognizing the objects in an indoor scene, and needs to plan its motion steps to better

view the objects and/or select some of the object images to query the remote human
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operator.

Fig. 5.10 shows the performance of our proposed CoMRF-Opt query-motion co-

optimization approach and that of the independent one, for the three DCNN base clas-

sifiers. It can be seen that CoMRF-Opt significantly outperforms the independent ap-

proach. For instance, when using AlexNet, given a motion budget of 10 m, CoMRF-Opt

achieves a classification accuracy of 0.853, as compared to an accuracy of 0.572 by the

independent benchmark.

Overall, these results further confirm the efficacy and robustness of our proposed

CoMRF-based joint labeling and query-motion co-optimization approach for indoor scenes,

showing that it can achieve a significantly higher classification accuracy as compared to

making independent decisions.

5.6 Robotic Experiments

In this section, we evaluate our proposed query selection and path planning approach

(CoMRF-Opt) with several robotic experiments on our campus. We also compare its

performance with the benchmark of making independent decisions. We have conducted

a total of six experiments. In the first three experiments, we evaluate the query selection

part, where the robot takes several images around it and is allowed to ask for human

help under a query budget (zero motion budget). In the remaining three experiments, we

provide the robot with a motion budget, adding path planning into the robot’s decision-

making. The real-world robotic experiments are conducted with the robot running the

AlexNet classifier onboard.
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5.6.1 Experiment Overview

In the experiments, we use a Pioneer 3-AT robot, equipped with a ZED camera (with

depth sensing) and a laptop. Fig. 5.11 shows the robot’s steps during an experiment.

The robot first takes several images of its surroundings. For each image, the robot

extracts Regions-Of-Interest (ROIs), each of which potentially contains an object-of-

interest.13 These potential objects are then fed into a background rejector, which is a

binary classifier that determines whether an image contains an object-of-interest (e.g., one

of the 39 object classes vs. a background wall).14 Once the background image patches

are rejected, the robot passes the object image patches, each containing an object-of-

interest, to its onboard DCNN classifier (described in Sec. 5.1.1), which provides the

classification output and feature vector for each object image. The robot then constructs

the CoMRF for these objects, and optimizes (in real time) the queries and motion using

Alg. 4. Given the optimized decisions, the robot performs the corresponding queries

and/or further sensing, after which it obtains the labels for the queried/visited nodes

and updates the remaining nodes on the CoMRF, using LBP as discussed in Sec. 5.1.2.

5.6.2 Query Selection

In the first three experiments, the robot is tasked with object classification on our

campus, and is allowed to query a remote human operator for help. We assume that

when the robot queries about an object, it receives the correct label.

13The ROI extraction algorithm utilizes the depth and the saliency map of [126]. This algorithm is
designed to find coarse ROIs, each of which may contain an object-of-interest, rather than providing
tight bounding boxes.

14Details of the ROI extraction algorithm and the background rejection classifier can be found in
Appendices B.3 and B.4.
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Figure 5.11: The diagram shows the robot’s steps in an experiment using our pro-
posed approach. The dashed line between the two “CoMRF” blocks indicates that
they are the same MRF, based on the initial classification and feature extraction.
The top CoMRF is then further updated with the image labels obtained from visit or
query.

Experiment 1

Fig. 5.12 shows the images taken by the robot in this experiment on our campus.

The CoMRF is constructed based on the extracted features and the chosen correlation

threshold discussed in Sec. 5.1. In this CoMRF, there is an edge between images 2 and 3,

and an edge between images 5 and 6, as can be seen.15

The robot then performs joint labeling and query selection using this CoMRF, and

we compare its performance with the independent approach. Fig. 5.13 shows the two

methods’ accuracies with respect to the number of queries. Initially, the classifier mis-

labels all six images. Although the AlexNet classifier has a good accuracy of 0.800 over

the validation set, its performance degrades in real-world scenarios due to low resolution

and non-ideal lighting. When there are no allowed queries, CoMRF improves the initial

classification by correctly labeling images 2 and 3 to persons (using feature correlation

15As discussed in Sec. 5.1.1, the robot may not capture exhaustively all the pairwise same-class objects
as we set the threshold high to make the probability of false correlation very small. But as these
experiments indicate, what it captures can lead to significant performance improvements for free, by
utilizing our proposed similarity metric.
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Figure 5.12: Object images obtained by the robot in Exp. 1 on our campus. A line
between two images indicates that there is an edge between them in the corresponding
CoMRF. See the color pdf to better view all the experiment images.
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Figure 5.13: Performance (classification accuracy) of CoMRF and the independent
approach w.r.t. the number of allowed queries in Exp. 1 (shown in Fig. 5.12).

and joint labeling). Given some queries, we can see that CoMRF-Opt outperforms the

independent benchmark significantly. For instance, when given 4 queries, CoMRF-Opt

chooses images 1, 3, 4, and 6, and achieves a 1.000 accuracy. On the other hand, the inde-

pendent approach chooses both nodes 2 and 3 among the 4 queries, which is unnecessary

as they are highly similar, and achieves a 0.667 accuracy.
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Figure 5.14: Object images obtained by the robot in Exp. 2 on our campus. A line
between two images indicates that there is an edge between them in the corresponding
CoMRF.
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Figure 5.15: Performance (classification accuracy) of CoMRF and the independent
approach w.r.t. the number of allowed queries in Exp. 2 (shown in Fig. 5.14).

Experiment 2

Fig. 5.14 shows the images taken by the robot in this campus experiment. In this

CoMRF, there is an edge between images 1 and 2, an edge between images 3 and 4, and

an edge between images 4 and 7, as can be seen. In particular, the three bicycle images

(3, 4, and 7) form a connected component in the graph.

When there are no queries, CoMRF improves the initial classification by correctly

labeling node 3 as a bicycle. Initially, nodes 3 and 4 are mislabeled as a potted plant and

a bench, respectively, which are the most likely candidates from the classifier for these
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two nodes, while bicycle is the second most likely for both nodes. After the similarity

between nodes 3 and 4 has been captured in CoMRF, the probability of belonging to the

bicycle class increases for both nodes, and for node 3, bicycle becomes the most probable

class.

When the robot is given several queries, CoMRF-Opt outperforms the indepen-

dent approach significantly. For instance, when given 4 queries, CoMRF-Opt chooses

nodes 2, 4, 5, and 6, and achieves a 1.000 accuracy. The independent approach, on the

other hand, chooses both nodes 1 and 2 among the 4 queries, which are highly correlated,

only achieving a 0.571 accuracy.

Experiment 3

Fig. 5.16 shows the images taken by the robot in this campus experiment. In this

CoMRF, the persons’ images form a connected component, with images 1, 2, and 4 fully

interconnected and image 5 connected to image 4. There is also an edge between the

bicycle images 6 and 7.

Initially, the based classifier of AlexNet correctly recognizes images 1 and 4, but mis-

classifies the rest. By applying CoMRF, the robot is then able to classify image 2 as a

person, thus improving the classification accuracy without using any queries. When the

robot is given a few chances to query, CoMRF-Opt outperforms the independent approach

significantly. For instance, when given 3 queries, CoMRF-Opt chooses nodes 3, 5, and 7,

and achieves a 100% classification accuracy. On the other hand, the independent ap-

proach chooses nodes 4, 6, and 7, among which nodes 6 and 7 are highly correlated, and

only achieves a 0.571 accuracy.
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Figure 5.16: Object images obtained by the robot in Exp. 3 on our campus. A line
between two images indicates that there is an edge between them in the corresponding
CoMRF.
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Figure 5.17: Performance (classification accuracy) of CoMRF and the independent
approach w.r.t. the number of allowed queries in Exp. 3 (shown in Fig. 5.16).

5.6.3 Query Selection and Path Planning

In this part, we present robotic experiments where the robot is given a non-zero

motion budget. When the robot visits an object, it moves towards the object and takes

a close-up image. For an object visited by the robot, the label is given by the actual
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DCNN classification output based on the close-up image obtained during the visit.16 The

object locations are estimated based on the depth information.

Experiment 4

Fig. 5.18 shows the objects captured by the robot in this experiment, all of which

are misclassified initially by the base classifier. As can be seen, CoMRF puts an edge

between images 1 and 2. Fig. 5.19 shows the object locations and the robot’s initial po-

sition. The green dashed line indicates an edge between objects 1 and 2 in the CoMRF.

In this experiment, the robot is given no queries and is allowed a total travel distance

of 8 m. Fig. 5.19 (a) and (b) show the results of the independent benchmark and our

approach, respectively. The independent approach does not take advantage of the feature

correlation and chooses to visit the standalone node 3. On the other hand, our proposed

CoMRF-based path planning approach of Sec. 5.2 is aware of the correlation and chooses

to visit node 2. After node 2 is better sensed and correctly labeled as a person, CoMRF

propagates this information to node 1 and then also correctly classifies node 1. There-

fore, under the same motion budget, CoMRF-Opt correctly classifies one more node as

compared to the benchmark and improves the accuracy by 100% over the benchmark.

Experiment 5

Fig. 5.20 shows the object images captured by the robot in this experiment. In the

CoMRF, there is an edge between images 1 and 2, and an edge between images 3 and 4.

Fig. 5.21 shows the object locations and the robot’s initial position. In this case, the robot

is given 1 query and is allowed a total travel distance of 16 m. Fig. 5.21 (a) shows the

result of the independent approach. As can be seen, the robot visits nodes 3 and 5, and

16For the independent approach, we assume that the robot obtains the correct label of the visited
node when calculating its performance.
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Figure 5.18: Object images obtained by the robot in Exp. 4 on our campus. A line
between two images indicates that there is an edge between them in the corresponding
CoMRF.

Figure 5.19: Blue circles indicate the object locations and the red square indicates the
robot’s initial position in Exp. 4 of Fig. 5.18. The green dashed line indicates an edge
in the CoMRF. (a)-(b) show the respective path planning results of the independent
approach and CoMRF-Opt, where the solid black line indicates the sensing tour.

queries node 4. However, since nodes 3 and 4 are highly correlated, it is unnecessary to

obtain labels for both of them. On the other hand, as shown in Fig. 5.21 (b), CoMRF-Opt

queries node 1, and visits nodes 4 and 5, which are not highly correlated. Furthermore,

due to their influence on their neighboring nodes, CoMRF correctly labels the remaining

nodes after the querying and sensing. In this case, the independent approach only obtains

a classification accuracy of 0.600, while CoMRF-Opt provides fully correct classifications,

significantly improving the accuracy of the benchmark by 0.400.
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Figure 5.20: Object images obtained by the robot in Exp. 5 on our campus. A line
between two images indicates that there is an edge between them in the corresponding
CoMRF.

Figure 5.21: Blue circles indicate the object locations and the red square indicates the
robot’s initial position in Exp. 5 of Fig. 5.20. The green dashed line indicates an edge
in the CoMRF. (a)-(b) show the respective path planning results of the independent
approach and CoMRF-Opt, where the solid black line indicates the sensing tour and
the purple diamond indicates the queried object.

Experiment 6

Fig. 5.22 shows the object images captured by the robot in Exp. 6. In the CoMRF,

there is an edge between images 1 and 5, and an edge between images 3 and 4. Fig. 5.23

shows the object locations and the robot’s initial position. In this case, the robot is given

1 query and is allowed a total travel distance of 11 m. Fig. 5.23 (a) and (b) shows the

result of the independent approach and CoMRF-Opt, respectively. Initially, the robot

correctly recognizes images 3 and 4 as benches. By using our proposed approach, the

robot visits node 2 and queries node 1, after which it is able to propagate the newly-
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Figure 5.22: Object images obtained by the robot in Exp. 6 on our campus. A line
between two images indicates that there is an edge between them in the corresponding
CoMRF.

Figure 5.23: Blue circles indicate the object locations and the red square indicates the
robot’s initial position in Exp. 6 of Fig. 5.22. The green dashed line indicates an edge
in the CoMRF. (a)-(b) show the respective path planning results of the independent
approach and CoMRF-Opt, where the solid black line indicates the sensing tour and
the purple diamond indicates the queried object.

acquired information to node 5 and correctly classifies all the images. On the other hand,

the independent approach correctly classifies node 2 and 5 via query/visit, but cannot

rectify its initial misclassification of node 1. In this case, the independent approach

obtains a final classification accuracy of 0.800, while CoMRF-Opt has a perfect accuracy,

considerably outperforming the benchmark by 0.200.
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Figure 5.24: Performance (classification accuracy) of CoMRF and the independent
approach w.r.t. the number of allowed queries, when jointly classifying all the exper-
imental images (shown in Figs. 5.12, 5.14, 5.16, 5.18, 5.20, and 5.22).

5.6.4 Joint Classification of Objects from Multiple Scenes

In this part, we consider a joint classification scenario where the robot is required to

classify the object images that it has acquired during earlier visits of several scenes. This

setting captures the case where the robot is not required to produce the classification

results on the spot and thus allows the robot to discover a richer correlation structure

from a larger image pool. In this evaluation, all the 34 object images obtained from

our experiments are jointly classified. Although some of the people appear more than

once in this pool, they appear in very different conditions, e.g., clothing, poses, views,

lighting, contrast, and scenes. As such, two images of the same person taken at differ-

ent times/locations cannot be trivially declared to be connected in the graph and their

similarity has to be determined by their corresponding DCNN features.

Fig. 5.24 shows the respective classification accuracies of our proposed approach and

the independent benchmark in this case. It can be seen that by taking into account

the similarity information of all the images, CoMRF is able to greatly improve the clas-

sification accuracy without using any queries, from 0.112 to 0.765. By using only 14

queries, CoMRF-Opt achieves a 100% accuracy, while the independent approach requires

33 queries to correctly classify all the images.
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Overall, our robotic experiments confirm that the correlation coefficient of two feature

vectors, from a DCNN classifier, provides key information on object similarity, and that

our proposed CoMRF-based query-motion co-optimization considerably improves the

robot’s classification accuracy, as compared to the benchmark of making independent

decisions.

5.7 Discussion

In this section, we discuss a few more aspects related to our proposed methodology.

5.7.1 CoMRF on Other DCNNs

We have shown extensive evaluation of our proposed CoMRF-based approach us-

ing the AlexNet, MobileNet-v2, and ResNet-18 DCNN architectures. These are the

commonly-used state-of-the-art architectures which are typically suitable for mobile com-

puting (e.g., service robots, drones).

There are even deeper architectures that can be used for classification, at the cost of

higher computation and memory requirements. Our proposed correlation-based image

similarity and joint labeling are also applicable to such larger and deeper networks, such

as Inception-v3 [49] and ResNet-101 [51]. To illustrate this, we have trained these two

networks using the training set of Sec. 5.1.1. As shown in Fig. 5.25, for these two

DCNNs, there is a large separation between the distributions of the feature correlation

of different-class and same-class pairs. We then run the same joint labeling evaluation,

as in Table 5.2 of Sec. 5.3, using these deeper base classifiers. By using Inception-v3, our

proposed approach achieves a classification accuracy of 0.937, as compared to the base

classifier’s accuracy of 0.814, and by using ResNet-101, our approach achieves a high

accuracy of 0.959, as compared to the initial accuracy of 0.818. This demonstrates that
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Figure 5.25: Each figure shows the CDFs of the feature correlation of same-class (blue
solid) and different-class (red dashed) pairs, based on the Inception-v3 and ResNet-101
classifiers, respectively.

our proposed CoMRF is also able to provide a large accuracy improvement with deeper

DCNN classifiers.

Furthermore, the performance improvement provided by our proposed query/motion

optimization approach also applies to these deeper DCNNs. For instance, when we

run the same-flight query selection evaluation on the VisDrone dataset (as described in

Sec. 5.4.1), using these two deeper classifiers, with a query budget equal to 10% of the

number of objects, our proposed CoMRF-Opt improves the accuracy of the independent

benchmark from 0.636 to 0.793 in the case of Inception-v3 and from 0.689 to 0.844 in

the case of ResNet-101.

5.7.2 Computation Time

In this part, we discuss the computation efficiency of CoMRF-Opt. The timing ex-

periments were run in Matlab on a 3.40 GHz Intel Core i7 PC. The reported times are

averaged over 100 problem instances. For a test case with 100 object images/nodes, our

proposed query selection algorithm (zero motion budget) only takes an average of 0.012 s

to produce a solution. As for the query-motion co-optimization (non-zero query and

motion), it takes an average of 0.101 s, 1.363 s, 20.217 s, and 101.585 s to solve a problem

with 10, 20, 30, and 40 object images, respectively.

In the path planning part of our algorithm, the number of binary variables increases
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quadratically with respect to the number of objects, as the robot needs to decide whether

to include an edge between every pair of object locations in its trip (see variable zi,j in

Alg. 4). However, in a practical mobile robotic visual sensing scenario, it is not very

likely that the robot would need to solve the optimization problem with a very large

number of sensing locations. For instance, some of the objects may be near each other

and can thus share one sensing location. As such, the robot can group nearby objects

and solve the planning problem with fewer locations, when the total number of objects

in the scene is large.

5.7.3 Detection Networks

In this chapter, we did not use end-to-end detection architectures (e.g., Faster-

RCNN [46]). This is because such detection networks tend to miss a lot of objects,

especially in practical robotic settings where the visual recognition can be difficult due

to non-ideal lighting, low resolution, small object size, and uncommon viewpoints, as

we have observed in the early stage of this study. In fact, on the COCO detection

leaderboard, the best method has an average recall of 0.727 for medium-sized objects,

indicating that it can miss many objects. In addition, the commonly-used Faster-RCNN

with ResNet-101 pipeline only has an average recall of 0.553.17 Using such detection mod-

els makes it difficult for the robot to improve its recognition performance, as it would

not even discover several objects in the first place. Thus, in our robotic experiments, we

utilize a saliency and depth-based method to discover potential objects near the robot,

independent of the recognition difficulty for the onboard DCNN. This ROI extraction

method works effectively for our campus experiments even though there are many visu-

17Recall is the fraction of the number of correctly identified/classified objects of a certain class
over the total number of objects of that class, in an image. More details can be found at http:

//cocodataset.org/#detection-eval. The average recall of other detection models can be found at
http://cocodataset.org/#detection-leaderboard.
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ally hard-to-detect objects. Its performance, however, may degrade when there is a lot

of visual clutter and/or the target objects are not salient, which may result in inaccurate

localization or missing objects. Therefore, as part of future work, one could develop a lo-

calization/detection model that can discover visually-challenging targets across different

scenarios, and integrate our CoMRF-based approach with it.

In this chapter, we showed how the robot can extract robust object similarity infor-

mation from the output of its DCNN classifier, despite poor initial sensing, and exploit

it for joint labeling, path planning and human query selection. In the next chapter, we

focus on the communication cost in realistic channel environments and show how the

robot can properly co-optimize it sensing, communication and motion planning under

resource constraints.
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Chapter 6

Co-Optimization of Motion,
Communication, and Sensing via
Monte Carlo Tree Search

In this chapter, we more explicitly consider the elements of path planning and com-

munication, and adopt a more general robotic sensing model, in order to focus on the

co-optimization of path planning, communication, and sensing in mobile robotic opera-

tions, in realistic wireless communication environments. Fig. 6.1 illustrates the general

task scenario considered in this chapter. More specifically, the robot navigates from the

start position to a given final position, and needs to sense a number of sites in the field.

For each site, the robot must move within a certain distance in order to sense it. When

visiting each site, the robot collects new sensing data. The robot is required to trans-

mit all its collected data (and possibly some initial data) to the remote station by the

end of the trip, while traversing the field. Its transmission energy cost is subject to a

spatially-varying wireless communication channel that experiences fading. Our goal is

to minimize the total motion and communication energy cost of this robotic operation,

by co-optimizing the robot’s sensing and path, as well as its data transmission as it

traverses the path. This is a considerably challenging problem as it involves the com-

binatorial characteristics of path planning, the path constraints imposed by the sensing
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Figure 6.1: (Left) Example of the robotic task scenario considered in this chapter.
(Right) High-level description of the co-optimization problem.

requirements, the spatially-varying wireless channel which cannot be modeled analyti-

cally, and the nonlinear transmission optimization. In order to solve this co-optimization

problem, we propose a novel approach utilizing Markov Decision Process (MDP) and

Monte Carlo Tree Search (MCTS), and show how it can solve this problem efficiently

while providing theoretical convergence guarantees.

The rest of this chapter is organized as follows. Sec. 6.1 provides a primer on MDP

and MCTS. In Sec. 6.2, we formulate the co-optimization problem and in Sec. 6.3, we

discuss how to transform the co-optimization into an MDP and utilize MCTS to solve

it. In Sec. 6.4, we prove the convergence and show the theoretical properties of our

proposed approach. In Sec. 6.5, we validate our approach in a realistic 2D wireless

channel environment.

6.1 Preliminaries

In this section, we provide overviews of Markov Decision Process [127] and Monte

Carlo Tree Search [128].
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6.1.1 Markov Decision Process

A Markov Decision Process (MDP) is a mathematical framework for modeling a

discrete-time sequential decision-making process. Suppose that a decision-making agent

is in some state. The goal of MDP is to find the optimum action to take in this state.

An MDP is defined by four components.

State: There is a finite set of states S, where each s ∈ S represents a state that the

decision-making agent can be in. When the agent reaches a terminal state, it finishes the

decision-making process.

Action: There is a finite set of actions ΩA, where each a ∈ ΩA is a feasible action

that the agent can take. The action set can be state dependent, i.e., for each state s, the

set of feasible actions ΩA, s is different.

Transition: ζ(s, a, s′) is the probability that by taking action a in state s, the agent

moves to state s′. The MDP is deterministic if there is no randomness in the state

transitions.

Reward: w(s, a, s′) is the immediate reward that the agent receives after transition-

ing from s to s′, due to action a. There can be a terminal reward wT (sT ) when the agent

reaches a terminal state sT .

In this chapter, we are interested in finite-horizon, deterministic, undiscounted MDPs,

where the core problem is to find a decision policy π : S → ΩA that maximizes the

cumulative reward of a state s, which is given by

Xs =
T−1∑
t=ts

w(st, π(st), st+1) + wT (sT ), (6.1)

where ts is the time instance when agent is in state s and T is the time step that the

agent reaches a terminal state.

Given an initial state s1, the optimization for deriving the optimum decision policy
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can be written as follows:

max.
π(s)

T−1∑
t=1

w(st, π(st), st+1) + wT (sT ), (6.2)

where we maximize the cumulative reward of s1, over the space of all possible decision

policies.

There exist standard methods, such as value iteration and policy iteration, which

can solve for the optimum decision for every state. However, they do not scale for large

MDPs.

6.1.2 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a popular algorithm that can be used to efficiently

solve finite-horizon, large-scale MDPs. In this overview, we assume that the MDP is

finite-horizon, deterministic, and undiscounted, which is the most relevant form for the

problem-of-interest in this paper.

As discussed in Sec. 6.1.1, the goal of the MDP is to find a policy π(s) that maximizes

the cumulative reward. Denote the optimum cumulative reward of s as X?
s . The optimum

policy can then be recursively written as:

π?(s) = argmaxa∈ΩA, s
w(s, a, s′) +X?

s′ . (6.3)

In theory, traditional methods such as value/policy iteration can be used to solve for

the optimum policy. However, since they require iteratively computing the cumulative re-

wards for all the states, they quickly become computationally intractable for MDPs with

a large state space. On the other hand, MCTS is an online algorithm that computes

the optimum action for the current state and avoids computation over all the states.
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More specifically, it constructs a tree to trace the future states that could be reached

from the current state via one or several actions and biases the computation (i.e., Monte

Carlo simulations) towards states that are more likely to produce large cumulative re-

wards. Meanwhile, it also methodically explores states with a small number of Monte

Carlo samples. In this way, MCTS not only continuously refines the cumulative reward

estimates of the promising states, but also reduces the chance of missing a good state

due to inaccurate Monte Carlo estimation caused by insufficient sampling. By adopting

a proper sampling rule that balances such exploitation and exploration, the expectation

of the cumulative reward estimate of a state converges to the optimum efficiently and the

probability of failing to choose the optimum action also converges to zero rapidly. These

properties make it computationally favorable to apply MCTS to large MDPs for online

decision-making.

Next, we briefly explain how MCTS works.1 It starts with a tree containing only the

root node τ1 that represents the initial state s1. It then iteratively grows the tree, where

each tree node uniquely represents one of the MDP states and each edge represents a

state transition.2 For each state s included in the tree, MCTS maintains a visit count,

ns, and an estimate of the optimum cumulative reward after ns visits, X̄s, ns .
3 In each

MCTS iteration, there are four main stages as described below.

Selection: In each iteration, MCTS performs a tree traversal from the root node τ1.

During the traversal, at each node (i.e., a state of the MDP), MCTS selects an action

according to some selection policy, which leads to the next node (more on this later). It

continues this traversal until the selected action leads to a state snext that does not have

1When describing the MCTS process, we use “node” to refer to a tree node in the search tree and use
“state” for a state of the corresponding MDP. We refer the readers to [128] for a comprehensive survey
of MCTS.

2We assume that there is a one-to-one mapping from tree nodes to states. This is true in the problem
studied in this chapter, since we use the robot’s path history as the state. It should, however, be noted
that not all the states of the MDP are represented in the tree.

3X̄s, ns
is set to 0 initially when there is no visit to state s yet (i.e., ns = 0).
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a corresponding node in the current tree. Denote the last traversed node in the current

tree as τlast.

Expansion: We add a new node τnext representing snext to the tree, as a child node

of τlast.

Simulation: Starting from snext, random feasible actions are taken in the MDP until

this process reaches a terminal state.

Back Up: Upon reaching a terminal state, we have obtained all the rewards in this

particular decision process. As such, we can calculate the cumulative reward for any state

s in the tree traversal of the current iteration: Xs, ns+1 =
∑T−1

t=ts
w(st, at, st+1) +wT (sT ),

where ts is the time step when this tree traversal is in state s, T is the time when

the process reaches the terminal state in this iteration, and ns records the number of

previous iterations where s was part of the traversal. Then, for each s in the current

traversal, we update the estimate of the optimum cumulative reward as follows: X̄s, ns+1 =

(nsX̄s, ns +Xs, ns+1)/(ns + 1), where X̄s, ns is the average value of the cumulative rewards

of s seen in the past ns iterations where s was part of the traversal and X̄s, ns+1 is the

updated average cumulative reward. We also increment the visit count ns by 1.

These four steps are repeated until the number of MCTS iterations reach a predefined

computation budget, after which the decision policy for the initial state s1 is: aπ =

argmaxa∈As1
w(s1, a, s

′)+ X̄s′, ns′
. The agent takes an action according to this decision

policy and transitions to the next state s2. In order to determine the action to take in s2,

the agent then performs a new batch of MCTS iterations, with s2 being the new initial

state. This online planning process ends when the agent arrives in a terminal state.

In order to ensure efficient convergence, it is necessary to choose a proper selection

policy while traversing down the tree in the first MCTS step. A common choice is based
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on the Upper Confidence Bound (UCB) [129]:

a† = argmaxa∈As
w(s, a, s′) + X̄s′, ns′

+
√

2ln(ns)/ns′ , (6.4)

where action a† leads the traversal to the next tree level.4

It can be seen from Eq. 6.4 that the first two terms bias MCTS to select an action that

is estimated to produce a large cumulative reward, while the third term allows MCTS to

explore an action that leads to a less-visited state, reducing the chance of missing a state

with a large cumulative reward due to insufficient sampling. As we shall see, using such

a tree traversal strategy will result in an efficient convergence for our co-optimization

problem.

6.2 Co-Optimization Problem Formulation

Consider the scenario where a robot has to travel from a start position, qs, to a given

destination, qf , in a wireless channel environment, as shown in Fig. 6.1. During the trip,

the robot needs to sense V sites in the field. In order to sense a site j, the robot must

be within a sensing range ∆̃j of it at some point during the trip, in order to collect

Ξj bits of sensing data from this site. It also carries Ξ0 bits of initial data when starting

the operation. The robot is required to transmit all the collected data (and the initial

data) to the remote station by the end of the trip, while minimizing its total motion and

communication energy usage.

In the optimization formulation, we consider a discretized 2D workspace consisting

of regular grids. The robot’s path is defined by a sequence of waypoints, each being the

4Note that the third term in Eq. 6.4 can be infinity when ns′ = 0. When there is only one such s′,
the policy chooses the action that leads to this s′. When there are multiple such next states, then it is
common to simply choose one of the corresponding actions randomly. When ns = 1 and ns′ = 0, the
third term is also taken as infinity.
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center of its corresponding grid. Two consecutive waypoints belong to two neighboring

grid locations in the environment and determine a step in the path. Let Q = [q1, .., qK ]

denote a path from the start position q1 = qs to the final position qK = qf . Let q̃1, ..., q̃V

denote the locations of the V sites to be sensed.5 The robot’s path is subject to a total

operation time budget: T (Q) ≤ T , where T (Q) is the total time needed to traverse the

path Q and T is the time budget. Let R = [r1, ..., rK ] denote the respective spectral

efficiencies to be used at the corresponding waypoints [q1, ..., qK ].6 The communication

bandwidthB is constant during the operation and we denote Ξ̃j = Ξj/B, ∀j ∈ {0, ..., V }.

The transmission time duration for each waypoint is tc. The robot uses a constant speed

uconst when moving. The motion energy cost of traversing the path Q is Em(Q) and the

communication energy cost is denoted by Ec(Q, R; Υ), where Υ is the predicted channel

over the space and Υ(q) is the predicted channel at location q, based on the channel

prediction framework of Sec. 2.1. The co-optimization problem can then be formulated

as follows:

min.
Q,R

Em(Q) + Ec(Q, R; Υ)

s.t. (1) mini∈{1, ...,K}‖qi − q̃j‖ ≤ ∆̃j, ∀j ∈ {1, ..., V },

(2) T (Q) ≤ T, (3) q1 = qs, qK = qf ,

(4)
K∑
i=1

ritc =
V∑
j=0

Ξ̃j,

(5)

kj∑
i=1

ritc ≤
j−1∑
z=0

Ξ̃z, ∀j ∈ {1, ..., V },

(6) 0 ≤ ri ≤ rmax, ∀i ∈ {1, ..., K},

(6.5)

5The order of visit for the sites is dictated by their order on the shortest path from the start position
to the destination through these sites. This is the optimum order as long as no two sites are too close
to each other.

6It should be noted that we do not consider quantization of the rates in our formulation. Our work can
be easily extended to include this, by using the corresponding literature in the area of communications.
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where the objective function is the total motion and communication energy cost, with the

path and the spectral efficiencies to be optimized. Constraints (1)-(3) are related to the

motion. Constraint (1) ensures that the robot moves within the sensing range for each

site at some point in the path. Constraint (2) ensures that the total travel time does not

exceed the time budget. Constraint (3) ensures that the path is from the start position to

the destination. The remaining constraints are related to the transmission. Constraint (4)

enforces the robot to transmit all the data by the end of the trip. Constraint (5) ensures a

valid transmission plan, i.e., the data are transmitted only after they have been collected.

In this constraint, kj = min{i ∈ {1, ..., K} | ‖qi − q̃j‖ ≤ ∆̃j}, ∀j ∈ {1, ..., V }, which is

the index of the first waypoint within the sensing range for site j. In other words, Dj

are available after the robot has moved to qkj . Constraint (6) provides the feasible range

for the spectral efficiencies. It should be noted that the robot minimizes the expectation

of its communication energy cost in the objective since the predicted channel over the

space is a multivariate random variable.

Due to the combinatorial nature of path planning and the coupling between motion

and communication, problem (6.5) is a nonlinear, nonconvex, and combinatorial opti-

mization problem, which is challenging to solve. Let’s consider a simplified version first,

where the robot’s path, Q = [q1, ..., qK ], is already given and we only need to optimize the

spectral efficiencies. Based on the channel prediction model of Sec. 2.1, this sub-problem
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can be written as follows:

min.
R

K∑
i=1

(2ri − 1)

Z
E
[

1

Υ(qi)

]
· tc,

s.t. (1)
K∑
i=1

ritc =
V∑
j=0

Ξ̃j,

(2)

kj∑
i=1

ritc ≤
j−1∑
z=0

Ξ̃z, ∀j ∈ {1, ..., V },

(3) 0 ≤ ri ≤ rmax, ∀i ∈ {1, ..., K},

(6.6)

where the objective function is the communication energy cost and the communication-

related constraints are the same as in problem (6.5). Since the entire path Q is given,

E[1/Υ(qi)] can be evaluated based on the predicted channel at location qi. It can be seen

that this is a convex optimization problem which can be solved very efficiently, as the

objective function is convex and the constraints are linear [116].

This is an important observation that motivates our proposed approach to solve

the co-optimization problem. If we can design an algorithm where the sensing/motion

part and the transmission part are computed iteratively in different steps, then we can

potentially make the problem tractable, as the decision space is considerably simpler

when we only consider sensing/motion and the convex transmission sub-problem can be

solved efficiently. In the next section, we show how we can indeed achieve this by properly

formulating an MDP for the co-optimization problem (6.5) and utilizing MCTS to solve

it.
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6.3 Solving the Co-Optimization Problem via Monte

Carlo Tree Search

The co-optimization problem (6.5) can be seen as a sequential decision-making prob-

lem, where at each step, the robot decides on a motion action and a transmission action

such that its total energy cost is minimized. Markov Decision Process (MDP) thus pro-

vides a suitable framework for modeling this problem. In order to formulate a proper

MDP (i.e., satisfying the Markov property), a state should not only include the robot’s

current waypoint, but also its past waypoints. This creates an exponentially large state

space, making it infeasible to use traditional methods such as value/policy iteration. By

utilizing Monte Carlo Tree Search (MCTS), on the other hand, we can efficiently handle

the large state space. However, the coupled sensing-motion-transmission action space

still presents a challenge since we cannot determine the optimum spectral efficiencies

when the path is not fully determined, given the complex communication constraints of

problem (6.5).

In order to resolve this issue, we propose a specially-designed MDP where we do not

need to consider the transmission actions in the state transitions. More specifically, we

only consider the motion actions in the state transitions, while the spectral efficiencies

are optimized when evaluating the terminal reward in a terminal state. This allows

us to iteratively optimize over the sensing/motion and the communication parts in two

different stages of our proposed MCTS, and get around the challenge of determining the

optimal spectral efficiencies without a complete path.

We next describe in details how we formulate this MDP.
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6.3.1 Co-Optimization as a Markov Decision Process

The optimization problem (6.5) can be written as a deterministic, finite-horizon, and

undiscounted MDP as follows:

State: Let Q′ = [q1, ..., qk] denote a partial path, where q1 = qs and qk may not

have reached qf . The partial path contains the first part of a complete path from qs to

qf . For instance, a partial path of [q1, q2, q3] indicates that the robot starts at q1 = qs

and will move to q2 and q3 sequentially, with the remaining path not yet determined. A

partial path Q′ then represents a state in this MDP. A state is a terminal state if the

corresponding partial path has reached the destination, i.e., qk = qf .

Action: Given a state in this MDP with Q′ = [q1, ..., qk], an action is represented

by a next location that the robot can move to. The feasible set of actions is the set

of those neighboring locations of qk, after moving to which the robot can still reach the

destination while satisfying the motion constraints on the entire path, i.e., constraints (1)-

(3) of problem (6.5).

Transition: Given a feasible action, the next state is obtained by appending this

location to the current partial path. For instance, given a current state of [q1] and an

action of q2, the next state is given by [q1, q2]. There is no randomness in moving from

one location to another.

Reward: We take the reward to be zero for any state transition. The terminal

reward is then taken as: wT (Q) = −(Em(Q) + minR∈ΩC
Ec(Q, R; Υ)), where Q is the

complete path from qs to qf associated with the terminal state and ΩC is the feasible set

of spectral efficiencies as defined by constraints (1)-(3) in problem (6.6). The first term

(in parentheses) is the motion energy cost of traversing Q and the second term is the

communication energy cost given by solving problem (6.6), which is taken as infinity if

problem (6.6) is infeasible given Q. −wT (Q) is then the minimum total energy cost given
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that the robot would use the full path Q.

It can be seen that we have moved the transmission optimization into the terminal

reward computation and only the motion part is considered in the MDP actions. Next,

we show that by solving this MDP, we also obtain the optimum solution to the original

optimization problem (6.5).

Proposition 6.1 By solving the MDP of Sec. 6.3.1 with the initial state s1 = [qs], we

obtain the optimum solution to the original co-optimization problem (6.5).

Proof: As the MDP is undiscounted and there is no reward for any intermediate

step, the cumulative reward of s1 is given by wT (Q). By maximizing the cumulative

reward of s1, we have the following optimization problem:

maximize
q2, ..., qK

wT (Q) = −(Em(Q) + minR∈ΩC
Ec(Q, R; Υ)), (6.7)

where we optimize over the actions q2, ..., qK , which also need to be feasible, i.e., the

complete path Q = [q1, ..., qK ] needs to satisfy constraints (1)-(3) of problem (6.5).

Since the MDP maximizes the negative value of the total energy cost, and the motion

actions and spectral efficiencies already need to satisfy their respective constraints in

the original problem (6.5), it can be easily seen that the optimum path Q? and the

optimum spectral efficiencies R?, obtained from solving the MDP, are also optimal for

problem (6.5).

6.3.2 Solution via Monte Carlo Tree Search

The MDP formulation of Sec. 6.3.1 facilitates applying MCTS. First, in order to solve

problem (6.5), we do not need to derive the optimum decisions for all the MDP states,

as many of them are sub-optimal and thus irrelevant to the original optimization prob-

lem. Instead, MCTS provides a methodical framework to bias the computation towards
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promising states. Secondly, MCTS is well suited for the structure of the MDP. In each

iteration, it only needs to perform the transmission optimization at the end of the simula-

tion stage, when the simulation reaches a terminal state and the path becomes complete.

This avoids the difficulty of determining the optimal spectral efficiencies without a com-

plete path. Lastly, the convex optimization-based terminal reward evaluation (using

problem (6.6)) allows for fast Monte Carlo simulations.

Next, we describe in details how to utilize MCTS to solve this MDP.

Selection Policy

As discussed in Sec. 6.1.2, we keep track of the average cumulative reward X̄s, ns and

a visit count ns for each state s during the MCTS iterations. These quantities are used

in the UCB-based selection policy for selecting the next state to move to during the tree

traversal stage:

s† = argmaxs′∈Cs
X̄s′, ns′

+
√

2ln(ns)/ns′ , (6.8)

where s† is the next state to move to and Cs is the set of next states reachable from s via

a feasible action. Note that we select from the next states instead of the actions, since

there is no intermediate reward and the transition is deterministic.

Expansion and Simulation

When adding a new node to the tree, the expansion part follows from the standard

MCTS. In the simulation stage, a random feasible action (i.e., a random next waypoint) is

taken until the path reaches the destination. More specifically, given a state with partial

path Q′ = [q1, ..., qk], the set of feasible next locations is the set of the neighboring

locations of qk, after moving to which the robot can visit the unsensed sites and reach

the final position within the remaining time budget (i.e., satisfying constraints (1)-(3) of

problem (6.5)). Denote the next site to sense as q̃j′ . We can obtain a random feasible

next location by sampling from the set: Ωnext = {qk+1 | ‖q̃j′ − qk+1‖T +
∑V

j=j′+1 ‖q̃j −
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q̃j−1‖T + ‖qf − q̃V ‖T ≤ T − T (Q′) − ‖qk+1 − qk‖T and qk+1 ∈ Ωqk}, where ‖qi − qj‖T

is the minimum time needed to move from qi to qj (on the grids) and Ωqk is the set of

neighboring locations of qk. It can be seen that any location from Ωnext allows the robot

to visit the exact location of each unsensed site and then reach the destination within

the remaining time, i.e., any location from this set is a feasible next location.7

Reward Evaluation and Back Up

The simulation ends when it encounters a terminal state, i.e., the partial path reaches

the destination. In order to facilitate the convergence of MCTS, we need to transform

the terminal reward wT (Q) into [0, 1] (see Eq. 6.7 for the details of wT (Q)) [129]. To

do this, we utilize a simple baseline strategy where the robot moves along straight lines,

sequentially from the start position to each exact site location and finally to the destina-

tion. We denote the negative total energy cost of this straight-path baseline as wsp. We

then take w̃T (Q) = max(0, 1−wT (Q)/wsp) as the transformed reward, which is in [0, 1].

w̃T (Q) indicates the percentage total energy cost reduction over this baseline and is zero

if the total cost resulted from Q is larger than that of the baseline.

The transformed reward w̃T (Q) is then backed up. For each state s that is part of

the current tree traversal, its average cumulative reward is updated as follows:

X̄s, ns+1 = (w̃T (Q) + nsX̄s, ns)/(ns + 1) (6.9)

and the visit count ns is incremented by 1. In addition to this standard MCTS back-up

procedure, for each s, we also record the maximum cumulative reward seen so far, as

7Note that this set does not contain all the possible feasible next locations, as there may exist a
feasible next location that requires the robot to not visit the exact locations of the unsensed sites in
order to reach the destination within the remaining time. However, finding such a feasible next location
requires solving an optimization problem similar to the shortest-path traveling salesman problem with
neighborhoods [130], which is computationally expensive for the simulation stage. On the other hand,
sampling a point from Ωnext is quick, and as we shall see in Sec. 6.5, allows us to efficiently obtain
near-optimal solutions to the complex co-optimization problem (6.5).
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follows:

X̂s, ns+1 = max{X̂s, ns , w̃T (Q)}, (6.10)

where X̂s, ns = 0 initially when ns = 0.

Solution Extraction

Given the initial state s1, we perform NI MCTS iterations (NI dictated by the com-

putation budget). As there is no randomness in the rewards of this MDP, X̂s, ns records

the best solution (i.e., the minimum total energy cost) seen so far given that the robot

would traverse the partial path Q′s. Therefore, instead of using X̄s, ns as in standard

MCTS, we use X̂s, ns to decide the next location that the robot should move to:

sπ = argmaxs′∈Cs1
X̂s′, ns′

, (6.11)

where the last waypoint in the partial path of sπ is the next location for the robot to

move to and Cs1 is the set of next states reachable from s1 via a feasible action.

We then set sπ as the new initial state and perform another NI iterations, after which

we select the best next state. This process ends when we reach a terminal state, where we

obtain the best complete path, Q?, and we can solve for the optimum spectral efficiencies,

R?. Q? and R? are then the solution to problem (6.5) given by our proposed approach.

6.4 Theoretical Analysis

In this section, we mathematically prove the convergence of our proposed approach

and characterize its convergence speed. Furthermore, we mathematically characterize

properties of the optimum solution.
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6.4.1 Convergence

The first result shows the convergence of the expected average cumulative reward of

a state.8 It should be noted that X?
s is the optimum cumulative reward of state s in the

following theorem, as defined in Sec. 6.1.2.

Theorem 6.1 When MCTS with the UCB selection policy is applied to the MDP of

Sec. 6.3.1, for any state s, the bias of X̄s, ns is O(ln(ns)/ns), i.e., ‖E[X̄s, ns ] − X?
s‖ =

O(ln(ns)/ns). Moreover, X?
s = maxs′∈CsX

?
s′, where Cs is the set of next states reachable

from state s via a feasible action, which corresponds to the set of child nodes of the node

of state s in the tree.

Proof: Note that the immediate reward is zero for any state transition. The results

then follow directly from Theorem 2 and Theorem 6 of [129].

Theorem 6.1 shows that the bias of the average cumulative reward of a state s is

O(ln(ns)/ns). Moreover, the expected average cumulative reward converges to the op-

timum cumulative reward of the optimum next state. By the optimum next state of a

state s, we mean the next state s? which has the maximum optimum cumulative reward,

i.e., s? = argmaxs′∈Cs
X?
s′ .

In Theorem 6.1, X?
s is characterized in a recursive manner. The next theorem then

explicitly derives what the optimum cumulative reward is for each state.

Theorem 6.2 When MCTS with the UCB selection policy is applied to the MDP of

Sec. 6.3.1, for state s, X?
s = maxs′∈Ls w̃T (Qs′), where Ls is the set of terminal states with

s being their common ancestor in the tree and Qs′ is the complete path associated with

the terminal state s′.

8The expectation is taken over the randomness in the simulation stage of MCTS, as well as over
the random selection when multiple next states have an infinitely-large second term in Eq. (6.8) due to
ns′ = 0.
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Proof: This can be shown by induction. First, the statement is true for a (sub)tree

with only one node representing a terminal state. Then, consider a non-terminal state s

in the tree. Assume that for each immediate next state s′ ∈ Cs, X?
s′ = maxs′′∈Ls′

w̃T (Qs′′).

Based on Theorem 6.1, we then have X?
s = maxs′∈CsX

?
s′ = maxs′∈Cs maxs′′∈Ls′

w̃T (Qs′′) =

maxs′′∈Ls w̃T (Qs′′), which completes the proof.

It can be seen from Theorem 6.2 that X?
s is equal to the maximum terminal reward

over all the terminal states that are reachable from state s via a sequence of feasible

actions, which is indeed the optimum cumulative reward of s in this MDP.

As discussed in Sec. 6.3.2, unlike the standard MCTS, we use X̂s, ns to decide the

next waypoint for the robot to move to, as shown in Eq. 6.11. In the next results, we

prove convergence properties for this decision policy. First, we show that the bias of the

maximum cumulative reward converges to zero and is no greater than that of the average

cumulative reward.

Theorem 6.3 When MCTS with the UCB selection policy is applied to the MDP of

Sec. 6.3.1, for any state s, ‖E[X̂s, ns ]−X?
s‖ ≤ ‖E[X̄s, ns ]−X?

s‖ = O(ln(ns)/ns).

Proof: It is always true that X̂s, ns ≥ X̄s, ns . Thus, E[X̂s, ns ] ≥ E[X̄s, ns ]. In

addition, X̄s, ns ≤ X̂s, ns ≤ X?
s . Therefore, we have ‖E[X̂s, ns ]−X?

s‖ ≤ ‖E[X̄s, ns ]−X?
s‖ =

O(ln(ns)/ns).

Next, we study the probability of failing to move to the optimum next state, by using

the decision policy of Eq. 6.11. We derive an upper bound on this probability. This

bound shows that this probability converges to zero and characterizes its convergence

speed. We first present two results from [129], which will be be used in our proof.

Theorem 6.4 (Theorem 3 of [129]) There exists some positive constant ρ such that for

state s and any of its immediate next states s′ ∈ Cs, ns′ ≥ ρln(ns).
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Theorem 6.5 (Theorem 4 of [129]) For state s, the following bounds hold for any given

δ > 0, provided that ns is sufficiently large: P(X̄s, ns ≤ E[X̄s, ns ]− 9
√

2nsln(2/δ)/ns) ≤ δ

and P(X̄s, ns ≥ E[X̄s, ns ] + 9
√

2nsln(2/δ)/ns) ≤ δ.

Theorem 6.4 shows that the number of visits for a state is lower-bounded by a function

of the number of visits of its parent node. This is because whenever a state is less

visited, the selection policy of Eq. 6.8 will encourage the tree traversal to visit this state.

Theorem 6.5 shows how the average cumulative reward of a state concentrates to its

expectation probabilistically, as the number of visit increases.

Now we are ready to prove the convergence of the failure probability and characterize

its convergence speed.

Theorem 6.6 For any state s, by using the maximum cumulative reward-based decision

policy of Eq. 6.11, the probability of failing to reach the optimum next state, P(sπ 6= s?),

satisfies the following inequality, provided that ns is sufficiently large:

P(sπ 6= s?) ≤ ρ̃/ln(ns), (6.12)

where s? is the optimum next state (i.e., s? = argmaxs′∈Cs
X?
s′), sπ is the next state given

by the decision policy of Eq. 6.11, and ρ̃ is a positive constant.

Proof: First, it can be easily confirmed that the following inequality holds:

P(sπ 6= s?) ≤
∑

s′∈Cs\{s?}

P(X̂s′, ns′
≥ X̂s?, ns?

). (6.13)

Assume that X?
s? > X?

s′ , ∀s′ ∈ Cs\{s?}, i.e., there exists only one optimum next

state. Since X?
s? − E[X̄s?, ns?

] = O(ln(ns?)/ns?), as shown in Theorem 6.1, there exists a

sufficiently large N1 such that when ns? ≥ N1, E[X̄s?, ns?
]−X?

s′ ≥ hs′ , for all s′ ∈ Cs\{s?},

where hs′ = (X?
s? −X?

s′)/2.
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Given ns? ≥ N1, if X̂s′, ns′
≤ X?

s′ and X̂s?, ns?
> E[X̄s?, ns?

]−hs′ , then X̂s′, ns′
< X̂s?, ns?

,

which leads to

P(X̂s′, ns′
≥X̂s?, ns?

)≤P(X̂s′, ns′
>X?

s′)+P(X̂s?, ns?
≤E[X̄s?, ns?

]−hs′),

where it can be easily seen that P(X̂s′, ns′
> X?

s′) = 0. Furthermore, since X̄s?, ns?
≤

X̂s?, ns?
, we have

P(X̂s?, ns?
≤ E[X̄s?, ns?

]− hs′) ≤ P(X̄s?, ns?
≤ E[X̄s?, ns?

]− hs′).

By setting δ = 1/ns? for state s? by using the result of Theorem 6.5, we have

P(X̄s?, ns?
≤ E[X̄s?, ns?

]− 9
√

2ln(2ns?)/ns?) ≤ 1/ns? ,

where 9
√

2ln(2ns?)/ns? converges to zero as ns? goes to infinity. As such, there exists

a sufficiently large N2 such that when ns? ≥ N2, we have 9
√

2ln(2ns?)/ns? ≤ hs′ , ∀s′ ∈

Cs\{s?}. Therefore, given ns? ≥ N2, we have the following for each s′ ∈ Cs\{s?}:

P(X̄s?, ns?
≤ E[X̄s?, ns?

]− hs′)

≤P(X̄s?, ns?
≤E[X̄s?, ns?

]− 9
√

2ln(2ns?)/ns?)≤ 1

ns?
≤ 1

ρln(ns)
,

where the last inequality is based on Theorem 6.4.

Based on Eq. 6.13, we then have P(sπ 6= s?)≤ ρ̃/ln(ns), where ρ̃ is a constant that

depends on ρ and the size of Cs. Moreover, in order to have ns? ≥ max{N1, N2}, we need

ns ≥ max{eN1/ρ, eN2/ρ}, based on Theorem 6.4. Therefore, given ns sufficiently large,

the inequality of Eq. 6.12 holds.

As we can see in the above theorem, for a state s, the failure probability is upper-
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bounded by a function of ns, which is O(1/ln(ns)). In other words, the failure probability

converges to zero at least as fast as ρ̃/ln(ns), as ns increases.

6.4.2 Properties of the Optimum Solution

In this part, we characterize properties of the optimum spectral efficiencies. First, we

define two waypoints qi1 and qi2 to be in the same segment of the path if they satisfy one

of the following three conditions:

(1) kj−1 < i1, i2 ≤ kj, for some j ∈ {2, ..., V },

(2) i1, i2 ≤ k1, (3) i1, i2 > kV ,

(6.14)

where kj = min{i ∈ {1, ..., K} | ‖qi− q̃j‖ ≤ ∆̃j}, ∀j ∈ {1, ..., V }. In other words, if two

waypoints belong to the same segment of the path, then the robot does not collect new

data when traveling between these two points.

We now characterize the optimum transmission spectral efficiencies for problem (6.5).

Note that in the following theorem, Υ(q) is the random variable describing the predicted

channel at location q, as defined in Sec. 2.1.

Theorem 6.7 Consider problem (6.5). Given a complete path Q, the optimum trans-

mission spectral efficiencies satisfy the following properties:

(1) r?i ≥ r?j , if E[1/Υ(qi)] ≤ E[1/Υ(qj)] and qi, qj belong to the same segment of the

path;

(2) r?i = 0, if E[1/Υ(qi)] is above a certain threshold;

(3) r?i = rmax, if E[1/Υ(qi)] is below a certain threshold.

Proof: Given a complete path Q, problem (6.5) then reduces to problem (6.6).

Assume Ξ0 > 0 and the robot does not need to use the maximum spectral efficiency all

the time. There exists some strictly-feasible solution to problem (6.6), indicating that
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Slater’s condition holds [116]. As problem (6.6) is convex and Slater’s condition holds, the

Karush-Kuhn-Tucker (KKT) conditions are sufficient and necessary for optimality [116].

The Lagrangian is then as follows, where ξ � 0, ν � 0, η � 0, and λ are the dual

variables:

L(R, ξ, ν, η, λ)=
K∑
i=1

(2ri − 1)

Z
E
[

1

Υ(qi)

]
+ξi(ri−rmax)−νiri

+
V∑
j=1

ηj(

kj∑
i=1

ri −
1

tc

j−1∑
z=0

Ξ̃z)−λ(
K∑
i=0

ri −
1

tc

V∑
j=0

Ξ̃j).

(6.15)

For the KKT conditions, in addition to primal and dual feasibility, we have the

gradient condition and complementary slackness as follows, with the optimum variables

marked by ?. ∀i ∈ {1, ..., K}, we have

∇r?i
L =

2r
?
i ln(2)

Z
E
[

1

Υ(qi)

]
+ ξ?i − ν?i +

∑
j∈Vi

η?j − λ? = 0,

ξ?i (r
?
i − rmax) = 0, ν?i r

?
i = 0,

(6.16)

where Vi = {j | j ∈ {1, ..., V } and kj ≥ i}. We also have the following additional

complementary slackness conditions due to constraint (2) of problem (6.6):

η?j (

kj∑
i=1

r?i −
1

tc

j−1∑
z=0

Ξ̃z) = 0, ∀j ∈ {1, ..., V }. (6.17)

Denote η̃i =
∑

j∈Vi η
?
j from the KKT conditions. Then, the optimum spectral effi-

ciencies can be derived as follows:

149



Co-Optimization of Motion, Communication, and Sensing via Monte Carlo Tree Search Chapter 6

r?i =



0, if E [1/Υ(qi)]≥ (λ?−η̃i)Z
ln(2)

,

rmax, if E [1/Υ(qi)]≤ (λ?−η̃i)Z
2rmax ln(2)

,

log2

(
(λ?−η̃i)Z

ln(2)E[1/Υ(qi)]

)
, otherwise.

(6.18)

As η̃i is the same for any two waypoints in the same segment of the path, it can be

confirmed that the three properties stated in this theorem hold based on Eq. 6.18.

Theorem 6.7 shows that within the same segment of the path, the optimum spectral

efficiency should be higher (lower) where the channel quality is better (worse). The

channel quality is measured by E[1/Υ(qi)], which is lower (higher) for a better (worse)

channel. Moreover, when the channel quality is better than a certain threshold, the robot

should take the maximum spectral efficiency and when the channel quality is worse than

a certain threshold, there should be no transmission.

Consider a data intensive case, where the remaining onboard data to be transmitted

is non-zero all throughout the path, up to the last segment, with no restriction on the

last segment. Then, property (1) of Theorem 6.7 holds for any two waypoints in the path

and the optimum spectral efficiencies can be solved using bisection, as we show next.

Corollary 6.1 When the remaining data is consistently non-zero before the robot senses

the last site, the optimum spectral efficiencies also satisfy: r?i ≥ r?j , if E[1/Υ(qi)] ≤

E[1/Υ(qj)], for any two waypoints in the path. Moreover, the optimum spectral efficien-

cies can be solved using bisection.

Proof: When the remaining data is always non-zero before the robot visits the last

site, we have η?j = 0, ∀j ∈ {1, ..., V } based on the complementary slackness conditions

of Eq. 6.17. The optimum spectral efficiencies are then as follows:
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r?i =



0, if E [1/Υ(qi)]≥ λ?Z
ln(2)

,

rmax, if E [1/Υ(qi)]≤ λ?Z
2rmax ln(2)

,

log2

(
λ?Z

ln(2)E[1/Υ(qi)]

)
, otherwise.

(6.19)

It can then be easily confirmed that the property stated in this corollary is true.

Next, we show how to obtain the optimum spectral efficiencies via bisection. Based on

Eq. 6.19, we have r?i = max(0, min(rmax, log2

(
λ?Z

ln(2)E[1/Υ(qi)]

)
)), ∀i ∈ {1, ..., K}. Due to

constraint (4) of problem (6.5),
∑K

i=0 r
?
i − 1

tc

∑V
j=0 D̃j = 0 needs to hold. Therefore, λ?

is the solution to the following equation:

K∑
i=0

max(0, min(rmax, log2

(
λ?Z

ln(2)E[1/Υ(qi)]

)
))− 1

tc

V∑
j=0

Ξ̃j = 0,

where λ? can be solved via bisection. Given λ?, we can then calculate the optimum

spectral efficiencies from Eq. 6.19.

Next, we consider a special case where the robot does not need to sense any sites.

This captures several real-world robotic motion and communication scenarios. The cor-

responding co-optimization problem can be formulated as follows:

min.
Q,R

Em(Q) + Ec(Q, R; Υ)

s.t. (1) T (Q) ≤ T, (2) q1 = qs, qK = qf ,

(3)
K∑
i=1

ritc = Ξ̃0, (4) 0≤ri≤rmax, ∀i∈{1, ..., K},

(6.20)

where the robot only needs to navigate from the start position to the destination and

transmit the Ξ0 initial data.

The next corollary characterizes the optimum transmission spectral efficiencies in this

151



Co-Optimization of Motion, Communication, and Sensing via Monte Carlo Tree Search Chapter 6

special case.

Corollary 6.2 Consider the special case shown in problem (6.20). Given a complete path

Q, the optimum transmission spectral efficiencies satisfy all the properties in Theorem 6.7

and Corollary 6.1, and can be solved using bisection.

Proof: This can be proved by analyzing the KKT conditions, similar to the proof

of Corollary 6.1.

6.5 Simulation Experiments

In this section, we solve the co-optimization problem (6.5) in a realistic 2D wireless

channel environment using our proposed approach. We first consider a scenario that in-

volves sensing, communication, and motion, and present the solution obtained by using

our proposed co-optimization approach. We further extensively compare it with a bench-

mark method that separately optimizes motion and communication. More specifically,

the benchmark first computes the shortest path that satisfies the motion constraints of

problem (6.5) and subsequently, given the path, optimizes the transmission along this

path.9 Finally, we consider the special case of problem (6.20) with no sensing and further

compare our approach with the best related state-of-the-art method.

6.5.1 Co-Optimizing Sensing, Communication, and Motion

We validate our proposed approach using a realistic simulated 2D wireless channel

environment [118], where the channel parameters (obtained from real wireless measure-

ments [1]) are: θ̂ch, dB = [−41.34, 3.86], α̂ch, dB = 3.20, β̂ch = 3.09 m, and σ̂ch, dB = 1.64.

9Obtaining the shortest path that satisfies the motion constraints in problem (6.5) requires solving a
traveling salesman problem with neighborhoods, and with the start and final positions directly connected
in the tour. Given such a tour, we then remove the edge between the start and final positions in order to
obtain the path from the start position to the final one. We utilize a self-organizing map-based algorithm
to compute such a path [130].
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Figure 6.2: Paths from solving problem (6.5) with three sites to sense, by using our
proposed approach (yellow) and the benchmark (green). The yellow dots and solid
curve represent the waypoints and the path, respectively, as given by our proposed
approach. The green crosses and dashed curve represent the waypoints and the path
given by the benchmark method. The circle and square indicate the start and final
positions, respectively. The white triangles indicate the site locations and the white
circles indicate the sensing ranges for the sites. The colormap indicates the true
channel power over this environment, where brighter (darker) colors indicate higher
(lower) channel qualities. See the color pdf for optimal viewing.

The robot predicts the channel with 1% prior channel measurements from random loca-

tions in this environment, based on the prediction framework of Sec. 2.1. The required

BER is 10−6. The communication bandwidth is 20 MHz. The receiver noise power is

−100 dBm. The maximum spectral efficiency is 6 bits/s/Hz. The motion parameters

are: κ1 = 7.4 and κ2 = 0.29, based on real power measurements of a robot [2]. The

robot uses a constant speed of 1 m/s. The workspace is 50 m × 50 m with a grid size of

2 m × 2 m. We use the eight-neighbor setting: the robot can move to one of the eight

neighboring grids that is within the workspace from its current grid in one step.

In this experiment, the robot’s starting position is [48, 2] and the final position is

[2, 48]. The three sites are located at [46, 16], [44, 30], and [24, 48], respectively, and the

sensing ranges for them are 6 m, 4 m, and 10 m, respectively. The robot has an initial
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Figure 6.3: The optimal transmission spectral efficiencies from solving problem (6.5)
with three sites to sense, by using our proposed approach. The first and second rows
show the actual and the predicted channel powers at the waypoints, respectively. The
third row shows the optimum spectral efficiencies for the waypoints.

Methods Ec Em Ec + Em
Benchmark method 27,008 J 576 J 27,585 J

Proposed approach 9,142 J 818 J 9,960 J

Overall energy saving 55%

Table 6.1: Average energy costs by using our proposed approach and the benchmark
method, over 50 random problem instances. The second, third, and fourth columns
show the communication, motion, and total energy costs (in Joules), respectively. The
last row shows the total energy saving by using our proposed approach, as compared
to the benchmark.

data load of 60 bits/Hz and needs to transmit 30 bits/Hz additional data after sensing

each site. The robot has a total time budget of 110 s. Fig. 6.2 shows the resulted path

(yellow solid curve) by using our proposed approach. It can be seen that the robot detours

towards areas with better channel qualities as needed (indicated by the black arrows in

Fig. 6.2). Even on the path from site 2 to site 3, where the channel quality is generally

poor, the robot is still able to detour a bit to exploit a slightly better channel (see the

color pdf). Fig. 6.3 then shows the spectral efficiencies along the path using our proposed
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approach. It can be seen that the robot adopts a higher (lower) spectral efficiency when

the channel quality is better (worse). As the remaining data to be transmitted is never

zero before the last site, this confirms the theoretical result of Corollary 6.1. On the other

hand, since the benchmark separately optimizes the path and the transmission, its path

(green dashed curve in Fig. 6.2) is unaware of the channel. This makes the robot traverse

in areas with poor channel qualities, resulting in a large total energy cost of 10, 910 Joules.

In contrast, the total energy cost by using our proposed approach is 4, 757 Joules, which

is 56% lower. It takes our approach 47.59 s to solve the co-optimization in this case (on

a 3.40 GHz i7 PC).

Next, we more extensively compare the performance of our proposed approach with

the benchmark, over 50 problem instances. In these problem instances, the number of

sites ranges from 1 to 4. In each problem instance, we use a different realization of the

channel, and the site locations, sensing ranges, and the amount of data to be transmitted

are randomized. Table 6.1 shows the energy costs (in Joules) by using our proposed

approach and the benchmark, respectively, averaged over the 50 problem instances. It

can be seen that overall, our proposed approach significantly reduces the total energy

cost by 55%, as compared to the benchmark. This is because our approach is able to

properly co-optimize sensing/motion and communication. For instance, our approach

significantly reduces the communication cost by having the robot detour to areas with a

better channel quality as needed, at the expense of a slightly higher motion cost.

6.5.2 Special Case of Co-Optimization without Sensing

We now consider the special case of problem (6.20), where there is no sensing. The

2D environment, the motion and communication parameters, and the number of MCTS

iterations for each step are the same as in Sec. 6.5.1. In this experiment, the robot starts
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Figure 6.4: The resulting path when using our proposed approach to solve prob-
lem (6.5) for the case of no sensing. The yellow curve shows the path and the yellow
dots indicate the waypoints. The circle and square indicate the starting and final
positions, respectively. The colormap indicates the true channel power over this envi-
ronment, where brighter (darker) colors indicate higher (lower) channel qualities. See
the color pdf for optimal viewing.

from the initial position [24, 36] and plans a path to the destination [48, 20], with an

operation time budget of 55 s. The robot needs to transmit a total of 80 bits/Hz initial

data to the remote station by the end of the trip.

Fig. 6.4 shows the resulting path by using our proposed approach. It can be seen that

the robot detours into a region with a better channel quality, before finally reaching the

destination. Fig. 6.5 shows the optimum spectral efficiencies along this path given by our

proposed approach, which are higher (lower) for waypoints with a better (worse) channel

quality. This confirms the theoretical results of Corollary 6.2. In this experiment, the

total energy cost by using our proposed approach is 1, 642 Joules, while the benchmark

costs 10, 721 Joules, which is over 6× as much as that of our proposed approach. It takes

our approach 16.73 s to compute the solution in this case.

While for the general case with sensing, there is no existing approach that can co-

optimize motion, communication, and sensing, for the case of no sensing, the work of [44]
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Figure 6.5: The optimum transmission spectral efficiencies from solving problem (6.5)
when there is no sensing, by using our proposed approach. The first and second rows
show the actual and the predicted channel powers at the waypoints, respectively. The
third row shows the optimum spectral efficiencies for the waypoints.

co-optimizes motion and communication using a different approach. As compared to our

proposed approach, [44] does not guarantee convergence to the optimum solution, has

a higher total energy cost, and requires more computation time. For instance, in this

experiment, the total energy cost by using [44] is 3, 140 Joules, which is almost 2× as

much as that of our approach. Their algorithm takes 43.92 s to compute the solution,

which is over 2.5× slower than ours.

Overall, these results demonstrate that our proposed approach is capable of co-

optimizing sensing, communication, and motion for the complex optimization prob-

lem (6.5). Furthermore, our approach considerably outperforms the benchmark, which

separately optimizes motion and communication.
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Chapter 7

Conclusions and Future Work

In this dissertation, we studied how to properly incorporate human collaboration and the

robot’s visual understanding into the optimization of mobile robotic operations, in order

to improve the robot’s visual recognition performance in challenging task scenarios. We

first explicitly considered the aspect of human collaboration in mobile robotic operations.

In order for the robot to properly ask the remote human operator for help with visual

tasks, we developed a Deep Convolutional Neural Network (DCNN)-based approach to

accurately predict human visual performance and showed how to incorporate such human

prediction into the optimization of the robot’s field decision-making, in terms of sensing,

motion, and querying/communication.

Next, we showed how the robot can infer and exploit object similarity, despite poor

sensing, to improve its scene understanding. More specifically, while the initial classi-

fication performance may be poor for the robot’s DCNN classifier, we showed that the

DCNN’s output still contains useful and reliable information about the similarity among

the objects, which we showed how to capture. We then constructed a Markov Random

Field (MRF), based on our inferred object similarities, and incorporated it into the opti-

mization of the robot’s sensing, motion, and querying, which reduced the robot’s sensing

burden and allowed it to significantly improve its visual performance.

Finally, we more explicitly took into account motion and communication in order to
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focus more on the co-optimization of the robot’s motion, communication, and sensing

in realistic wireless channel environments. We formulated a comprehensive optimization

of the robot’s field operation that involved planning its full path, its sensing, as well

as its data transmission along the path. In order to solve this complex optimization,

we proposed a specially-formulated Markov Decision Process (MDP) and utilized Monte

Carlo Tree Search (MCTS) to optimally and efficiently solve it.

We next summarize the results of each chapter and suggest possible future extensions.

7.1 Prediction of Human Visual Performance

In Chapter 3, we proposed a machine-learning based approach that allows the robot

to probabilistically predict human visual performance for any sensory input. Equipped

with this tool, we then showed how the robot can optimize its field decisions, in terms of

asking for help, further sensing, and relying on itself. We tested the proposed approach on

our campus with a number of robotic surveillance experiments and showed a considerable

improvement in the performance. Moreover, we ran a larger-scale evaluation, with real

data/human feedback, in a simulation environment to further showcase the effectiveness

of the approach.

While we focused on robotic surveillance tasks based on imagery inputs, the method-

ology can be extended to other collaborative tasks/sensory inputs. The predictor can

also be finetuned to the performance of a particular human operator for a longer-term

partnership, or to the time of the day, among other factors, as part of future work.
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7.2 Optimization of Human-Robot Collaboration with

Human Performance Prediction

In Chapter 4, given the predicted human performance, we studied a general scenario

of human-robot collaborative site inspection and target classification. More specifically,

we considered the realistic case where the human visual performance is not perfect, de-

pending on the sensing quality, and the robot has constraints in communication with the

human operator. Furthermore, the robot has a limited onboard motion and communica-

tion energy budget and has to operate in realistic channel environments that experience

path loss, shadowing, and multipath fading. We then showed how to co-optimize motion,

sensing, and queries in human-robot collaborative site inspections, under limited motion

and communication resources, constraints in communication with the operator, and im-

perfect human visual performance. We considered two types of realistic communication

constraints: 1) the robot is given a limited number of chances to query the human op-

erator, and 2) the wireless channel quality is not good enough all over the workspace to

result in a reliable communication link, necessitating the robot to optimally choose the

proper locations for communication with the operator.

Given a probabilistic human performance characterization and a probabilistic pre-

diction of channel quality in realistic environments, we formulated the resulting co-

optimization as Multi-Dimensional Multiple-Choice Knapsack Problems (MMKPs). We

then proposed a Linear Program (LP)-based efficient near-optimal solution to the NP-

hard MMKP, and mathematically characterized the optimality gap, showing that it can

be considerably small. We also mathematically characterized several properties of the

optimal solution. Finally, we validated the proposed approach comprehensively with

extensive real human data, as well as with real wireless channel data from downtown

San Francisco. The numerical results show that our proposed approach properly co-
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optimizes motion, sensing, and human queries, and can significantly outperform bench-

mark methodologies in terms of task performance and resource savings.

7.3 Exploiting Object Similarity for Robotic Visual

Recognition

In Chapter 5, we showed how the output of a DCNN classifier carries robust infor-

mation on object similarity, even when each object is individually misclassified. More

specifically, we introduced a training-free object similarity measure, based on the corre-

lation of the feature vectors of the output of a DCNN classifier, to improve robotic visual

classification under limited resources. We first probabilistically analyzed the correlation

coefficient of the feature vectors of a pair of images from the output of an already-trained

DCNN classifier, showing that it provides robust information on their similarity, without

requiring any additional training (This validation was based on using a large dataset).

Based on this analysis, we built a correlation-based Markov Random Field (CoMRF) for

joint object labeling. Given a query budget and a motion budget, we then proposed a

query-motion co-optimization framework to jointly optimize the robot’s query, path, and

visual labeling, based on our CoMRF. By using a large COCO-based test set, a large-scale

drone imagery dataset, and a large indoor scene dataset, our extensive evaluations showed

that our proposed object similarity metric and the resulting CoMRF-based joint labeling

and co-optimization methodology significantly improves the overall classification perfor-

mance. Our several real-world robotic experiments on our campus further showcased

the superior performance of our proposed CoMRF-based query-motion co-optimization

approach.

As part of future work, it is possible to combine the proposed object similarity metric
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with other types of visual scene understanding and correlation information (e.g., geo-

metric relationship, object co-occurrence), in order to further enhance the robot’s visual

recognition performance.

7.4 Co-Optimization of Motion, Communication, and

Sensing via Monte Carlo Tree Search

In Chapter 6, we adopted a higher-level sensing model for the robot and studied a

comprehensive co-optimization of a robot’s sensing, communication, and motion in a

realistic wireless channel environment. More specifically, we considered a comprehensive

scenario where the robot navigates from a start position to a destination. During the

trip, it needs to sense some sites, by moving close enough near each site. The robot

collects data when sensing each site and needs to transmit all collected data to a remote

station or human operator by the end of its trip, under time/energy constraints. Our

goal is to minimize the total motion and communication energy cost by co-optimizing

the robot’s path, its data transmission along the path, and its sensing decisions.

In order to solve this complex optimization problem, we proposed a novel approach

where we transformed the co-optimization problem into a specially-designed Markov De-

cision Process and utilized Monte Carlo Tree Search (MCTS) to solve it. More specifically,

we showed that by iteratively optimizing the sensing/motion and the communication

parts in different stages of MCTS, we can equivalently solve the original challenging co-

optimization problem very efficiently. We then mathematically proved the convergence

of our proposed approach, and characterized its convergence speed as well as other key

properties of the optimum solution. Finally, we demonstrated the efficacy of our proposed

approach in a realistic 2D wireless channel environment via extensive simulations.
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A.1 Multiple-Choice Multidimensional Knapsack Prob-

lems

In this section, we briefly introduce the Multiple-Choice Multidimensional Knapsack

Problem (MMKP) [45], which is a complex variant of the standard Knapsack Problem

(KP).1 In the subsequent sections, we then show how our resource-constrained human-

robot collaborative site inspection problem can be posed as an MMKP.

In an MMKP, we are given NC classes of items, where each class contains Ji items,

∀i ∈ {1, ..., NC}. It is assumed that there exist NR types of resources and the respective

budgets are given by Eb = [Eb,1, ..., Eb,NR
]. In each class i, the jth item is characterized by

a non-negative reward pi,j > 0 and a non-negative weight vector Gi,j = [g1
i,j, ..., g

NR
i,j ] � 0.

The weight gri,j denotes the needed resources from the rth resource if the jth item in class i

is selected, for r ∈ {1, ..., R}. The objective of the MMKP is then to pick exactly one

item from each class such that the total reward is maximized, while satisfying all the NR

1See [131] for a comprehensive overview of Knapsack problems.
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resource constraints. The standard MMKP can be formally stated as:

max.
z

NC∑
i=1

Ji∑
j=1

pi,jzi,j

s.t.

Ji∑
j=1

zi,j = 1, ∀i ∈ {1, ..., NC},

NC∑
i=1

Ji∑
j=1

gki,jzi,j ≤ Eb,k, ∀k ∈ {1, ..., NR},

zi,j ∈ {0, 1}, ∀i ∈ {1, ..., NC} and j ∈ {1, ..., Ji},

(A.1)

where z = [z1,1, ..., z1,J1 , ..., zi,j, ..., zNC ,1, ..., zNC ,JNC
], for i ∈ {1, ..., NC} and j ∈ {1, ..., Ji},

zi,j = 1 indicates that item j of class i is selected and zi,j = 0 indicates otherwise. z is

then the stacked vector with all the decision variables for all the sites. When there is only

one resource constraint (NR = 1), this special case is referred to as the Multiple-Choice

Knapsack Problem (MCKP) [117]. MMKP is then the more general case where choosing

an item can cost a number of different resources.

MMKPs have found many uses in practical applications related to resource manage-

ment, e.g., adaptive multimedia systems [132] and cellular network management [133], as

well as in robotic applications [134–138]. However, they are typically solved either by us-

ing integer program solvers, which can be computationally expensive for large problems,

or by heuristics that have no theoretical optimality guarantees.
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B.1 Constructed Image Classification Dataset

In this dataset, there is a total of 39 object classes consisting of a variety of commonly-

seen objects, and a total of 76, 505 images, which are collected from COCO detection

dataset [76] and ImageNet [120]. Most of the images are obtained from the COCO detec-

tion dataset by extracting object image patches based on the bounding box annotations,

in order to better represent what the robot would see in real-world visual tasks. The

complete list of object classes, and the numbers of images in the training, validation, and

test sets are given in Table B.1.

B.2 Descriptions of Existing Methods Included in

the Performance Comparions

We provide detailed descriptions for the existing methods included in the performance

comparisons in Sec. 5.3.

Joing Labeling

Independent: This is a benchmark method that directly uses the trained DCNN base

classifier’s output, without considering any correlation.
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Object class Training Validation Test
person 1000 500 500
bicycle 1000 500 500

car 1000 500 500
motorcycle 905 400 300

airplane 1000 500 500
bus 1000 500 300

train 1000 500 500
truck 1000 500 500
boat 1000 500 500

bench 1000 500 500
bird 1000 500 500
cat 1000 500 500
dog 1000 500 500

horse 1000 500 500
sheep 1000 500 500
cow 1000 500 500

elephant 1000 500 500
zebra 1000 500 500
giraffe 1000 500 500

backpack 950 500 400
umbrella 700 450 300
suitcase 1000 500 300
bottle 1000 500 500
cup 1000 500 500

banana 1000 500 500
apple 1000 500 500

sandwich 1000 500 500
orange 1000 500 500
broccoli 1000 500 500
carrot 1000 500 500
pizza 1000 500 500
donut 1000 500 500
cake 1000 500 500
chair 1000 500 500

potted plant 1000 500 500
laptop 1000 500 500
book 1000 500 500
clock 1000 500 500

teddy bear 1000 500 500
total 38555 19350 18600

Table B.1: List of object classes in our dataset, along with the numbers of images in
the training/validation/test sets.

Cao et al. [64]: This method learns image similarity using hand-crafted features (e.g.,

SIFT) via a Bayesian approach, after which a propagation algorithm jointly labels all the
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nodes. Since their algorithm requires an initial set of correct labels, we provide it with

20% of the ground-truth labels in the comparison of Table 5.2.

Hayder et al. [65]: This method uses a Conditional Random Field (CRF) to jointly

label nodes, where the edge potential is given by a similarity measure learned from data

using hand-crafted features (e.g., Local Binary Pattern) and the node potential is based

on the classifier output. To compare this method on our test set, we train their similarity

measure on our dataset for the edge potential of their CRF and use our DCNN base

classifier’s output for the node potential.

Query Selection

Independent: This is a benchmark method that selects the nodes greedily based on

their respective individual uncertainty (based on the base classifier’s output).

Wang et al. [70]: Given an undirected probabilistic graphical model (e.g., MRF),

this approach selects the nodes to query such that a lower bound of the expected label

estimation error of the remaining nodes is minimized.

B.3 Region-Of-Interest (ROI) Extraction Algorithm

In the robotic experiments of Sec. 5.6, we used a simple saliency and depth-based

algorithm to find coarse ROIs from the captured images, each of which may contain an

object-of-interest. The algorithm is summarized in Alg. 5.

B.4 Background Rejection Classifier

Given an image patch from the ROI extraction algorithm, in order to determine

whether this image patch does contain an object-of-interest (e.g., an object that belongs

to one of the 39 classes vs. a background wall), we train a binary classifier using the
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Algorithm 5: Region-of-interest extraction

INPUT: Image I and its depth map ID with Nw and Nh being its width and height (in number
of pixels), an upper bound for depth values dmax.

STEP 1: Compute a saliency map IS for I, using the method of [126].

STEP 2: Let Pd = {(i, j) | ID(i, j) ∈ (0, dmax)}, which is the set of pixel indices with valid depth
values.

STEP 3: Let Ps = {(i, j) |Si,j ≥ Sth, (i, j) ∈ Pd}, where Sth is a saliency threshold. In our
implementation, we set it to be the 75th percentile of the saliency values of the pixels in Pd.

STEP 4: Let IROI be a ROI indicator map for I. We set IROI(i, j) = 1 if(i, j) ∈ Ps and 0
otherwise. IROI is then dilated with a 10× 10 kernel.

STEP 5: Find all the connected components (of positive-valued pixels) in IROI . A tight
bounding box is drawn around each connected component, and then expanded by increasing its
height and width in proportion to the dimensions of the enclosed connected component. The
box’s height and width are then further expanded by 60 pixels.

STEP 6: Among all the boxes, two boxes are merged under any of the following two conditions:
1) the ratio between their intersected area over the union of their areas is above 0.2, or 2) the
ratio between their intersected area over the minimum of their areas is above 0.9. The boxes
after the merging are the final ROIs.

AlexNet architecture.

We build the training set for this binary classifier as follows. For objects-of-interest,

we use all the training images from our large image classification dataset. For background

image patches, we randomly sample image patches that do not overlap with any objects-

of-interest from the COCO dataset. A validation set is built similarly. The trained

binary classifier has an accuracy of 0.950 on the validation set for distinguishing between

object-of-interest images and background images.
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[87] M. Lindhé and K. H. Johansson, Using robot mobility to exploit multipath fading,
IEEE Wireless Communications 16 (2009), no. 1 30–37.

[88] A. Ghaffarkhah and Y. Mostofi, Channel learning and communication-aware
motion planning in mobile networks, in Proceedings of the American Control
Conference, 2010.

[89] C. Wietfeld, K. Daniel, K. P. Valavanis, and G. J. Vachtsevanos, Cognitive
networking for UAV swarms, Handbook of Unmanned Aerial Vehicles (2014)
749–780.

[90] S. Gil, S. Kumar, D. Katabi, and D. Rus, Adaptive communication in multi-robot
systems using directionality of signal strength, The International Journal of
Robotics Research 34 (2015), no. 7 946–968.

[91] Y. Yan and Y. Mostofi, Robotic router formation in realistic communication
environments, IEEE Transactions on Robotics (2012).

[92] J. Fink, A. Ribeiro, and V. Kumar, Robust control of mobility and
communications in autonomous robot teams, IEEE Access (2013).

[93] Y. Wu, B. Zhang, X. Yi, and Y. Tang, Communication-motion planning for
wireless relay-assisted multi-robot system, IEEE Wireless Communications Letters
5 (2016), no. 6 568–571.

[94] A. Zhou et al., Robotic millimeter-wave wireless networks, IEEE/ACM
Transactions on Networking (2020).

177



[95] A. Muralidharan and Y. Mostofi, Energy optimal distributed beamforming using
unmanned vehicles, IEEE Transactions on Control of Network Systems 5 (2017),
no. 4 1529–1540.

[96] D. S. Kalogerias and A. P. Petropulu, Spatially controlled relay beamforming,
IEEE Transactions on Signal Processing 66 (2018), no. 24 6418–6433.

[97] G. Sun et al., Improving performance of distributed collaborative beamforming in
mobile wireless sensor networks: A multi-objective optimization method, IEEE
Internet of Things Journal (2020).

[98] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, Efficient deployment of
multiple unmanned aerial vehicles for optimal wireless coverage, IEEE
Communications Letters 20 (2016), no. 8 1647–1650.

[99] H. Wu, X. Tao, N. Zhang, and X. Shen, Cooperative UAV cluster-assisted
terrestrial cellular networks for ubiquitous coverage, IEEE Journal on Selected
Areas in Communications 36 (2018), no. 9 2045–2058.

[100] L. Zhu et al., 3-D beamforming for flexible coverage in millimeter-wave UAV
communications, IEEE Wireless Communications Letters 8 (2019), no. 3 837–840.

[101] A. Muralidharan and Y. Mostofi, Path planning for minimizing the expected cost
until success, IEEE Transactions on Robotics 35 (2019), no. 2 466–481.

[102] A. Muralidharan and Y. Mostofi, Statistics of the distance traveled until successful
connectivity for unmanned vehicles, Autonomous Robots 44 (2020), no. 1 25–42.

[103] G. A. Hollinger et al., Underwater data collection using robotic sensor networks,
IEEE Journal on Selected Areas in Communications 30 (2012), no. 5 899–911.

[104] J. U. Khan and H.-S. Cho, A distributed data-gathering protocol using AUV in
underwater sensor networks, Sensors 15 (2015), no. 8 19331–19350.

[105] S. Wang, M. Xia, and Y.-C. Wu, Backscatter data collection with unmanned
ground vehicle: Mobility management and power allocation, IEEE Transactions
on Wireless Communications 18 (2019), no. 4 2314–2328.

[106] H. Cai and Y. Mostofi, Human–robot collaborative site inspection under resource
constraints, IEEE Transactions on Robotics (2019).

[107] A. Goldsmith, Wireless communications. Cambridge university press, 2005.

[108] “NOAA Natural Hazards Image Database.”
http://www.ngdc.noaa.gov/hazardimages/.

178

http://www.ngdc.noaa.gov/hazardimages/


[109] J. Xiao, J. Hays, K. Ehinger, A. Oliva, A. Torralba, et. al., Sun database:
Large-scale scene recognition from abbey to zoo, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 3485–3492, 2010.

[110] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, The
PASCAL visual object classes (VOC) challenge, International Journal of
Computer Vision 88 (2010), no. 2 303–338.

[111] N. V. Chawla, Data mining for imbalanced datasets: An overview, in Data Mining
and Knowledge Discovery Handbook, pp. 853–867. 2005.

[112] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, Caffe: Convolutional architecture for fast feature
embedding, arXiv preprint arXiv:1408.5093 (2014).

[113] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et. al., Imagenet large scale visual
recognition challenge, International Journal of Computer Vision 115 (2015), no. 3
211–252.

[114] “Pioneer 3-AT Robot.”
http://www.mobilerobots.com/ResearchRobots/P3AT.aspx.

[115] S. Burer and A. N. Letchford, Non-convex mixed-integer nonlinear programming:
A survey, Surveys in Operations Research and Management Science 17 (2012),
no. 2 97–106.

[116] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press,
2009.

[117] D. Pisinger, A minimal algorithm for the multiple-choice knapsack problem,
European Journal of Operational Research 83 (1995), no. 2 394–410.

[118] A. Gonzalez-Ruiz, A. Ghaffarkhah, and Y. Mostofi, A comprehensive overview
and characterization of wireless channels for networked robotic and control
systems, Journal of Robotics (2011).

[119] H. Cai and Y. Mostofi, Exploiting object similarity for robotic visual recognition,
IEEE Transactions on Robotics (2020).

[120] “ImageNet.” http://image-net.org/explore.

[121] C. Bishop, Pattern recognition and machine learning. Springer, 2006.

[122] D. Koller and N. Friedman, Probabilistic graphical models: Principles and
techniques. MIT Press, 2009.

179

http://www.mobilerobots.com/ResearchRobots/P3AT.aspx
http://image-net.org/explore


[123] “UGM: A Matlab toolbox for probabilistic undirected graphical models.”
http://www.cs.ubc.ca/~schmidtm/Software/UGM.html.

[124] A. Krause and C. Guestrin, Optimal value of information in graphical models,
Journal of Artificial Intelligence Research 35 (2009) 557–591.

[125] G. Gutin and A. P. Punnen, The Traveling Salesman Problem and its variations,
vol. 12. Springer Science & Business Media, 2006.

[126] H. Jiang, J. Wang, Z. Yuan, Y. Wu, N. Zheng, and S. Li, Salient object detection:
A discriminative regional feature integration approach, in IEEE Conference on
Computer Vision and Pattern Recognition, 2013.

[127] M. L. Puterman, Markov decision processes: Discrete stochastic dynamic
programming. John Wiley & Sons, 1994.

[128] C. Browne et al., A survey of Monte Carlo tree search methods, IEEE
Transactions on Computational Intelligence and AI in Games (2012).
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