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Abstract 

 

This thesis investigates novel remote sensing approaches to monitor and predict plant physiology 

and biochemistry in response to environmental stressors and seasonal changes. Divided into two 

chapters, each explores a distinct remote sensing technique and its application in understanding 

the connection between plant physiology and remote sensing. 

 

Chapter 1 introduces a novel nighttime low-cost photodiode method, which was tested during a 

drought response experiment of LED-induced canopy-level chlorophyll a fluorescence (LEDIF) 

in Polygala myrtifolia.  Far-red LEDIF (720 - 740 nm) was retrieved using low-cost photodiodes 

(LEDIFphotodiode) and a hyperspectral instrument (LEDIFhyperspectral). To link the LEDIF signal 

with physiological drought response, we tracked stomatal conductance (gsw) using a porometer as 

an indicator of plant water status, two leaf-level vegetation indices — photochemical reflectance 

index, PRI; normalized difference vegetation index, NDVI— to represent chlorophylls and 

xanthophyll pigment dynamics, respectively, and a pulse-amplitude modulation (PAM) device to 

measure photochemical and non-photochemical dynamics of photochemistry. Our results 

demonstrate a similar performance between the photodiode and hyperspectral retrievals of 

LEDIF (R2=0.77, P < 0.01). Furthermore, LEDIFphotodiode closely tracked drought responses with 

photochemical quenching (PQ, R2=0.69, P < 0.001), Fv/Fm (R2=0.59, P < 0.001), and leaf-level 

PRI (R2= 0.59, P<0.05). The results demonstrate the potential of this cost-effective method to 

accurately track changes in photosynthetic status and overall plant health, offering valuable 

insights into the relationships between the physiological mechanisms of photosynthesis and 

chlorophyll fluorescence. 



 iv 

 

Chapter 2 employs hyperspectral reflectance data to predict an array of chlorophyll and 

carotenoid pigment concentrations in Pinus palustris (Longleaf Pine) using a partial least squares 

regression modeling approach. This study took place in north-central Florida, at the Ordway 

Swisher Biological Station (OSBS), and more specifically, the National Ecological Observation 

Network (NEON) flux tower site within it. The research site is dominated by mature Longleaf 

Pines and low-lying perennial grasses. From six Longleaf Pine trees, branches were harvested, 

and needles were either 1) immediately stored for later pigment extraction and 2) made into 

needle mats to retrieve reflectance measurements with our hyperspectral spectroradiometer’s leaf 

clip. Needle mats were assembled by laying individual needles flat and continuously side by side 

until they were approximately 5-6 cm wide, and were held together by two pieces of tape, 

arranged at the top and bottom of the needles. Using a PLSR modeling approach, our prediction 

task for each PLSR model was to predict the average pigment content of a tree, using a 

hyperspectral reflectance measurement of a single needle mat (for each pigment/pool) per tree. 

Our results reveal the potential of hyperspectral remote sensing to estimate plant pigments 

accurately and efficiently; our PLSR models successfully predicted the concentrations with R² 

values > 50% for eight of the ten pigments/pools. We were able to best predict lutein and 

neoxanthin, as well as chlorophyll b and a (R2 = 0.91, RMSE = 0.01; R2 = 0.77, RMSE = 0.0; R2 

= 0.68, RMSE = 0.02;  R2 = 0.65, RMSE = 0.05, respectively). This research demonstrates the 

value of leaf-level remote sensing in advancing our understanding of the physiological status of 

evergreen species and their underlying pigments. 
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Collectively, these chapters showcase the power of remote sensing for monitoring and predicting 

plant responses to environmental stressors and seasonal changes. They offer valuable insights 

into the relationships between plant physiology and remote sensing, paving the way for improved 

strategies to assess plant health and resilience in the face of changing environmental conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vi 

Contents 

Abstract .......................................................................................................................................... iii 

1 Tracking the short-term drought response of canopy chlorophyll fluorescence with a low-

cost nighttime LED platform ......................................................................................................... 1 

1.1 Abstract .............................................................................................................................................. 1 

1.2 Introduction ....................................................................................................................................... 2 

1.3 Methods and materials ..................................................................................................................... 8 
1.3.1 Experimental setup .................................................................................................................................... 8 
1.3.2 Canopy-Level Measurements .................................................................................................................. 10 
1.3.3 Leaf-level Measurements ......................................................................................................................... 14 
1.3.4 Data Analysis ............................................................................................................................................ 17 

1.4 Results .............................................................................................................................................. 17 

1.5 Discussion ......................................................................................................................................... 21 
1.5.1 Physiological Responses ........................................................................................................................... 21 
1.5.2 Considerations and Conclusions ............................................................................................................. 25 

1.6 References ........................................................................................................................................ 26 

2 Hyperspectral Reflectance-Based Prediction of Pigment Concentrations in Pinus palustris 

(Longleaf Pine) Using Partial Least Squares Regression Modeling ......................................... 35 

2.1 Abstract ............................................................................................................................................ 35 

2.2 Introduction ..................................................................................................................................... 36 

2.3 Methods and materials ................................................................................................................... 40 
2.3.1 Field Site ................................................................................................................................................... 40 
2.3.2 Hyperspectral Measurements ................................................................................................................. 41 
2.3.3 Pigment collection .................................................................................................................................... 43 
2.3.4 Data Analysis ............................................................................................................................................ 44 

2.4 Results .............................................................................................................................................. 45 

2.5 Discussion ......................................................................................................................................... 53 

2.6 References ........................................................................................................................................ 57 

 

 



 1 

1 Tracking the short-term drought response of canopy chlorophyll 

fluorescence with a low-cost nighttime LED platform 

 

Logan E.G. Brissette, Chris Y.S. Wong, Erica Orcutt, Devin McHugh, and Troy S. Magney  

 

1.1 Abstract 

 

Chlorophyll fluorescence measured at the leaf scale through pulse amplitude modulation has 

provided invaluable insight into photosynthesis. At the canopy- and satellite-scale, solar-induced 

fluorescence (SIF) has revealed a method to estimate the photosynthetic activity of plants across 

spatiotemporal scales. However, retrieving the chlorophyll fluorescence signal remotely requires 

instruments with high spectral resolutions, making it difficult and often expensive to measure 

canopy-level steady-state chlorophyll fluorescence under natural sunlight. 

 

In light of this, we sought to build a novel low-cost photodiode system that retrieves far-red 

chlorophyll fluorescence emissions induced by a blue light emitting diode (LED) light-source, 

for two hours at night, above the canopy.  Our objective was to determine if our active remote 

sensing nighttime photodiode method could track changes in canopy-scale LED-induced 

chlorophyll fluorescence (LEDIF) during an imposed drought on a broadleaf evergreen shrub, 

Polygala myrtifolia.  Far-red LEDIF (720 - 740 nm) was retrieved using low-cost photodiodes 

(LEDIFphotodiode) and a hyperspectral instrument (LEDIFhyperspectral). To link the LEDIF signal 
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with physiological drought response, we tracked stomatal conductance (gsw) using a porometer as 

an indicator of plant water status, two leaf-level vegetation indices — photochemical reflectance 

index, PRI; normalized difference vegetation index, NDVI— to represent xanthophyll and 

chlorophyll pigment dynamics, respectively, and a pulse-amplitude modulation (PAM) device to 

measure photochemical and non-photochemical dynamics of photochemistry. Our results 

demonstrate a similar performance between the photodiode and hyperspectral retrievals of 

LEDIF (R2=0.77, P < 0.01). Furthermore, LEDIFphotodiode closely tracked drought responses with 

photochemical quenching (PQ, R2=0.69, P < 0.001), Fv/Fm (R2=0.59, P < 0.001), and leaf-level 

PRI (R2= 0.59, P<0.05).  Therefore, LEDIFphotodiode has the potential to be a meaningful indicator 

of photosynthetic activity, and thus, overall plant “health”. Moreover, because of its cost-

effective nature (hundreds versus thousands of dollars), this method may allow for more 

equitable, repeatable validation experiments to be performed in a variety of systems, further 

elucidating the relationships between the physiological mechanisms of photosynthesis and 

chlorophyll fluorescence.  

 

 1.2 Introduction 

  

The terrestrial biosphere acts as a crucial sink for current and future atmospheric CO2 through the 

process of photosynthesis (Turner et al. 2006; Beer et al. 2010; Ryu et al. 2019). Although 

photosynthesis can be more directly measured at the leaf-level, scaling estimates of 

photosynthesis to canopy- and ecosystem-level can be labor or model intensive, expensive, and 

requires specialized equipment (Baldocchi 2003; Ryu et al. 2019; Sun et al. 2019). Fortunately, 

remote sensing technologies have been developed to aid in large scale estimates of 
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photosynthesis, allowing us to better scale gross primary productivity (GPP) globally (Sun et al. 

2018 a; Xiao et al. 2019; Ryu et al. 2019).  Despite the promise of satellite-based estimates of 

GPP, global carbon cycle uncertainty remains high (Xiao et al. 2019; Zhang and Ye, 2021). This 

is because satellite-data remain difficult to interpret without a mechanistic understanding of 

when, why and to what extent reflected or re-emitted photons co-vary with changes in 

photosynthesis. To aid in this, having a network of remote sensing technologies at a variety of 

scales— satellites, airborne, tower, leaf— linked with plant physiological measurements, can 

provide invaluable insight into the temporal dynamics of plant function. 

  

Reflectance-based vegetation indices (VIs) have been used to estimate GPP ( Peng et al. 2011; 

Lin et al. 2019; Huang et al. 2019), but performance may be limited in certain scenarios (Xue 

and Su, 2017). One of the most well-known VIs is the normalized difference vegetation index — 

NDVI, which estimates vegetation ‘greenness’ and used to infer the health and productivity of 

the plants (Tucker 1979). However, NDVI may saturate in areas of dense vegetation (i.e., high 

leaf area index), such as croplands and forested areas (Baret and Guyot 1991; Huete et al. 1997; 

Sun et al. 2018 b). Furthermore, as NDVI is a metric of green plant biomass, it may be limited in 

assessing photosynthetic activity in ecosystems with little structural change, such as evergreen 

dominated ecosystems (Magney et al. 2019; Pierrat et al. 2022). As a result, physiologically 

sensitive VIs may provide an advantage for monitoring vegetation function; such as the 

photochemical reflectance index (PRI, Gamon et al. 1992). PRI changes rapidly under increasing 

incident light as excess energy builds due to saturating photochemistry, leading to de-

epoxidation of xanthophyll cycle pigments (a subgroup of carotenoids) —violaxanthin into the 

photoprotective antheraxanthin and zeaxanthin— to dissipate the excess energy (Demmig-
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Adams and Adams 1996; Gamon et al. 1997). Thus, PRI can track fluctuations in 

photoprotective carotenoid pigment activity, which can then be used as a proxy for daily or even 

seasonal changes in photosynthetic activity (Garbulsky et al. 2011; Magney et al. 2016; Pierrat et 

al. 2022), and as an early indicator of plant stress from environmental changes such as drought 

(Magney et al. 2016; Sarlikioti et al. 2010; Zhang et al. 2017).  

 

Vegetation indices have demonstrated that we can use remote sensing proxies to inform our 

understanding of changes in plant ‘greenness’ and pigments (Glenn et al. 2008); however, we 

can further probe photosynthetic activity by understanding and measuring the fate of photons 

upon reaching the leaf.  Inside the leaf, there are three dominant competing pathways in which 

absorbed light energy can be quenched by the plant. Absorbed light energy can be 1) used for 

photochemistry (aka photosynthesis), 2) emitted as fluorescence, or 3) dissipated as heat — non-

photochemical quenching (NPQ, Murchie and Lawson 2013; Porcar-Castell et al. 2014).  

As the three pathways are in competition—meaning that an increase in one may result in a 

decrease in the other pathways—measuring chlorophyll fluorescence can enable inference into 

the dynamics of photochemistry and NPQ (Maxwell and Johnson 2000; Baker 2008; Magney et. 

al 2017). 

  

Chlorophyll a fluorescence has been actively measured at the leaf-level through pulse amplitude 

modulation (PAM) fluorometry for decades (Baker and Oxborough, 2004). The natural 

progression of fluorescence research, then, has been to scale leaf-level PAM measurements to 

the canopy-level spectral fluorescence emissions (Mohammed et al. 2019; Porcar-Castell et al. 

2021). For over a decade now, solar-induced fluorescence (SIF), measured from 650-850 nm, 
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has been used to measure chlorophyll fluorescence passively through satellites (Frankenberg et 

al. 2011; Joiner et al. 2011). SIF is measured as a red-far-red glow in the Fraunhofer lines 

(Frankenberg et al. 2011; Joiner et al. 2011), but it has also been quantified using the oxygen 

bands (Meroni et al. 2009).  Further investigation of SIF has shown a linear relationship between 

SIF and GPP at the satellite-level (Sun et al. 2017, 2018 a). This is promising; however, there are 

considerations to making SIF measurements during the daytime.  To measure SIF under natural 

sunlight, expensive, highly sensitive spectrometers are necessary to resolve the Fraunhofer lines 

(Grossmann et al. 2018). Moreover, SIF is also highly dynamic and represents the state of a plant 

during the current environmental conditions such as water availability, temperature, vapor-

pressure deficit, or light intensity (Verma et al. 2017; Magney et al. 2019). Additionally, further 

investigation of the relationship between SIF and GPP is necessary at smaller spatial- and 

temporal-scales, and across all ecosystems (Porcar-Castell et al. 2021). Therefore, specifically 

investigating the relationship between leaf and canopy fluorescence with photosynthesis, 

especially under stress events like drought, may provide novel insight into the connection of 

physiology and remote sensing proxies. 

  

Detecting drought is becoming increasingly important, as droughts are becoming more frequent, 

widespread, and intense (Allen et al. 2010; Chiang et al. 2021).  The effects of drought on plants 

have been laboriously measured via changes in stomatal conductance (Wu et al. 2019), cavitation 

(Vilagrosa et al. 2003; Choat et al. 2012; Fichot et al. 2015), as well as through remote sensing 

proxies such as VIs (Wagle et al. 2014; Rousta et al. 2020).  SIF, with its inherent connection to 

the competing pathways of absorbed light, allows stress detection to happen before any visible 

signs in leaf coloration (Magney et al. 2020; Kimm et al. 2021). However, the nuances of how 
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SIF changes under drought stress have not been thoroughly studied. Flexas et al. (2002 a, b) 

showed that an increase in drought stress caused a series of physiological changes in the plant, 

including an increase in NPQ, a decrease in photochemical quenching, and a non-linear decrease 

in steady-state fluorescence emission; which could lead to a change in the relationship of SIF and 

carbon uptake.  Interestingly, when looking into the leaf level relationship between fluorescence 

and photosynthesis during a short-term drought, Helm et al. (2020) found that chlorophyll a 

fluorescence did not reflect a strong response to drought, yet the response was strongly observed 

in the stomata and rate of photosynthesis. A better understanding of how SIF changes in response 

to stress at the leaf- and canopy-level is essential for interpretation of SIF data to estimate carbon 

fluxes across various environments.  

 

Expanding on the fluorescence research and relationships established through PAM and SIF, 

light-emitting diodes (LEDs) have been employed at night to actively measure canopy-level 

chlorophyll a fluorescence. Romero et al. (2018) successfully used LEDs to measure and model 

canopy fluorescence and calculate reabsorption values in a controlled plant canopy environment. 

In a forest consisting of Scots Pine and lingonberry, a colored (blue, red, and green) LED system 

was installed above the canopies and illuminated the canopy for two hours (Atherton et al. 

2019).  In this study, using a field spectrometer at night with long integration times, they 

measured the quantum yield of fluorescence excited by the LED lights (red, green, and blue) and 

coined the new nocturnal method: LED-Induced chlorophyll a Fluorescence— LEDIF (Atherton 

et al. 2019). Romero et al. (2021) built an LEDIF system and implemented it in an agricultural 

environment.  They investigated how aerial net primary productivity varied with different water 

treatments and bean cultivars using passive (VIs, PAM, and SIF) and active (LEDIF) remote 
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sensing to discern changes in plant health. They found that chlorophyll a fluorescence, whether 

collected passively or actively, proffered insight into plant health before any visible cues. These 

studies are encouraging because of their ability to detect physiological changes and give warning 

signs of plant stress. However, a common theme across these research investigations is that 

measuring fluorescence at night was done using a spectrometer, which prohibits low-cost 

applications. Because these measurements were done at night, a lower cost spectrometer (several 

thousand dollars) can be used because spectral resolution is not an issue. 

  

Our nighttime LED system is unlike current self-built daytime SIF measuring systems, such as 

PhotoSpec (Grossman et al. 2018) and FluoSpec (Yang et al. 2015, 2018), which require 

thermally stable, high spectral resolution spectrometers (tens of thousands of dollars). To address 

this, we developed a simple, repeatable, easy to install, financially equitable alternative to 

measuring chlorophyll a fluorescence. We measured chlorophyll fluorescence at night using a 

blue LED light source, which offered the potential to measure a pure fluorescence signal using 

low-cost photodiodes (hundreds of dollars) in the far-red region.  Therefore, our objectives were 

1) to determine if we can track changes in canopy-level chlorophyll fluorescence with a new, 

nighttime, low-cost sensor during an imposed stress event and 2) investigate whether these 

changes are reflected at the leaf- and canopy-level. To accomplish this, we compared the 

temporal dynamics of LEDIF from our inexpensive photodiode system to that of a more 

expensive hyperspectral spectrometer. We investigated the relationship between the 

physiological and fluorescence parameters to contextualize and understand how our platform 

performed against more traditional methods.  An effective, labor-reducing, low-cost LEDIF 

platform will more readily allow for implementation into a variety of systems that will shed even 
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more light into the physiological mechanisms linking chlorophyll fluorescence and 

photosynthesis at the leaf-level.  

  

1.3 Methods and materials  

  

1.3.1 Experimental setup 

 

Sweet Pea Shrub (Polygala myrtifolia), an ornamental evergreen shrub species, was selected for 

this study. The plant was fully established at a local greenhouse in Davis, California, and was 

acquired mid-March 2021. We initiated a controlled drought and recovery experiment in early 

spring that began on April 5th, 2021, and lasted for 25 days. Our experiment consisted of three 

periods: pre-drought: April 5th - April 16th where the plant was well-watered,  drought: April 17th 

- April 23rd where the plant was completely unwatered, and post-drought: April 24th – April 29th 

where we began watering regularly again (Table 1.1).  

The experiment took place in a wood-built structure (Fig. 1.1), on an experimental plot located in 

northern Davis, California. Excessive shading by the structure was avoided by cutting large 

windows in the top panel of the structure. These windows did not interfere with the solar panels 

that powered the MONI-PAM, or with the ceiling mounted photodiode radiometers and lights. 

Five blue LED lights (three @ 5 Watts and two @ 15 Watts) were mounted ~20 cm above the 

canopy (FZWLE RGBW 5W LED Spot Lights; Pesken Lighting RGB+CW 15W Flood Lights). 

Measured PAR values at the top of the canopy ranged from 15-30 umol m-2 s-1, inducing a light 

level equivalent to minimal fluorescence (Fo) from PAM. The lights were positioned around the 

photodiode sensor, in a circular arrangement that enclosed but did not touch the sensor and 
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ensured that the top of the canopy was fully illuminated. Extraneous light from surrounding plots 

was blocked by a heavy-duty tarp placed around the housing structure and was secured to the 

ground on each side from dusk until dawn, each day. After at least 15 minutes of being 

completely shaded under the tarp, the LEDs were then switched on for 2 hours, nightly, starting 

no earlier than 2030h and no later than 2130h.  The LEDs provided the irradiance necessary to 

actively measure nighttime fluorescence in P. myrtifolia (Fig. 1.2a). 

 

 

Figure 1.1 : a) Conceptual figure showing the setup and layout for novel LEDIF drought experiment. b) 

View of built structure with mounted LED lights encircling the photodiode radiometer sensor (sensor 

outlined in red). c) View of setup with blue LEDs on, sensors connected (photodiode: above, MONI-

PAM: heads attached to leaves mid-canopy), and tarp excluding extraneous environmental lighting. 
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1.3.2 Canopy-Level Measurements 

  

1.3.2.1 Broadband photodiode radiometer 

  

A photodiode radiometer, measuring in the red/far-red regions (645 nm to 665 nm, 720 nm-740 

nm, respectively) with a FOV of 180°, was mounted ~20 cm from the top of the canopy (S2-131, 

Apogee Instruments, Inc, Logan, Utah, USA). This relatively inexpensive sensor (~$250/sensor) 

provided continuous spectral measurements throughout the duration of the experiment.  Data 

were logged every five minutes, throughout each day. Data collection started on April 10th, 2021 

and were stored on data loggers and downloaded regularly (AT-100 microCache Bluetooth 

Micro Logger, Apogee Instruments, Inc, Logan, Utah, USA) (Table 1.1). Ultimately these data 

were used to quantify steady-state chlorophyll a fluorescence emission, in the far-red region. 

Data collected in the red region (645 nm to 665 nm) were not used as this range was outside of 

the fluorescence emission that was excited by the blue LEDs (Fig. 1.2b). 

 



Table 1.1. shows the timing of when data were taken, each instrument was used, and what data were collected. Numbers reference dates in April, 

2021: i.e. “5” is the 5th of April, 2021. Blue text refers to canopy-level measurements and green text refers to leaf-level measurements. Shaded 

regions indicate watering period: green= pre-drought, brown= drought, purple= post-drought. 

1
1
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Far-red values were summarized (daily mean and standard deviation) across the active LED light 

period (Fig. 1.2a). One hour after the LED lights were turned off, these metrics were again 

summarized over a 1-hour period, to get the ‘dark period’ values. For example, in Figure 1.2a, 

the tarp was placed at 2021h, the blue LEDs were turned on at 2041h, and then were turned off at 

2241h. For the dark period measurements, the average over 2341h until 0041h was taken. In this 

study, steady-state fluorescence values were gathered from the far-red region (720 nm-740 nm) 

and will henceforth be referred to as LEDIFphotodiode (Fig. 1.2b).  LEDIFphotodiode have also been 

dark corrected; dark period values were subtracted from the LED light period values, for each 

day during the experiment, to get the dark corrected values used in all analysis and figures. 

 

 

 

Figure 1.2: a) Displays the LEDIFphotodiode canopy-level chlorophyll a fluorescence immediately before, 

during, and after the blue LED lights are turned on and off. A tarp is placed over the platform to prevent 

an extra light from entering the measurement area for at least 15 minutes prior to the LEDs being turned 

on. The blue LEDs are then switched on for a 2-hour period. An hour AFTER the blue LEDs are switched 
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off, the “dark-period” far-red region spectra are then taken, averaged over the following hour period. 

LEDIFphotodiode values are corrected using the averaged “dark-period” values. b) displays the chlorophyll a 

fluorescence emission spectrum collected from the hyperspectral spectrometer during the “blue LED on” 

period . The shaded region indicated the wavelengths being measured with the far-red photodiode sensor 

(720 nm-740 nm). 

  

1.3.2.2 Field hyperspectral spectroradiometer 

  

LED-induced steady-state canopy fluorescence (LEDIFhyperspectral) was measured using a 

hyperspectral spectroradiometer (HR-1024i, Spectra Vista Corporation, Poughkeepsie, New 

York, USA). The specifications on this spectroradiometer were a 25° FOV optic fiber and an 

integration time of 1s. Measurements were taken approximately every other day during the pre- 

and post-drought periods, while more frequent measurements were taken during the latter half of 

the induced drought period (Table 1.1). After the lights were activated, a period of 15 minutes 

was given before measurements started, allowing the plant to adjust to the new light source and 

avoid the Kautsky effect (Kautsky and Hirsch 1931; Lichtenthaler 1992) (Fig. 1.2a). Note that a 

tarp stayed over the structure while the nighttime sampling occurred to block any extraneous 

light from entering. A single canopy average was obtained by repeating a series of four scans 

taken every 90° around the plant, with the fiber head at an angle of 45° and ~15 cm above the top 

of the canopy, each day that measurements were made. 

  

These canopy fluorescence measurements were made to have a direct comparison of those 

collected from our new inexpensive photodiode sensor platform system. In order to make this 

comparison as appropriate as possible, fluorescence values collected from the hyperspectral 
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spectroradiometer were averaged over the same wavelengths to the broadband photodiode 

sensors (720 nm - 740 nm). Daily canopy averages of emitted radiance in this region were then 

averaged over the 4 scans (Fig. 1.2b). 

  

1.3.3 Leaf-level Measurements  

  

1.3.3.1 Pulse amplitude modulated fluorescence 

  

At the leaf-level, active fluorescence measurements were taken using a MONITORING-PAM 

device (MONI-PAM, Heinz Walz GmbH, Effeltrich, Germany).  Two measuring head clips were 

attached to two randomly chosen leaves. Measuring light intensity was set at 1.5-22 μmol m-2s-1 

at 100 Hz modulating frequency. The saturation pulse used was 8500 μmol m-2s-1 for 0.6 s. 

  

A series of leaf-level metrics were calculated from data collected by the MONI-PAM. Initial 

parameters collected and descriptions are included in Table 1.2 (adapted from Baker 2008). The 

MONI-PAM took measurements continuously (24 hr/day) for the duration of the experiment, but 

logged data every half-hour. Nighttime values were values parsed from data collected between 

0000h and 0500h (i.e. Fm, Fo). Daytime values were parsed from data collected between 1100h to 

1600h (i.e. Fm’, Fs, Fo’).   Daily averages (across both measuring heads and day/night hours 

specified) were then taken to match other instrumentation for the best comparisons possible. It is 

important to note that due to unexpected wind events, a single day was removed from one of the 

measuring heads. 

 



 15 

Table 1.2. Chlorophyll fluorescence parameters, collected with the MONI-PAM fluorometer, their 

descriptions, and equations. 

 

 

1.3.3.2 Field hyperspectral spectroradiometer 

  

Leaf reflectance was measured at night using the same spectroradiometer as well as an 

attachment leaf clip (HR-1024i and LC-RP Pro, Spectra Vista Corporation, Poughkeepsie, New 

York, USA). The sampling frequency (# of days), and timing (waiting 15 minutes after light 

activation) of measurements remained the same as the canopy-level methodology (Table 1.1). 

Leaf sampling occurred immediately after the canopy-level spectral measurements, at night 

during the blue LED exposure time. To obtain a complete picture of what was happening 
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throughout the canopy, a series of 12 scans were taken: four random leaves in the top, followed 

by four in the middle, and finally four in the bottom third of the shrub.  A white panel 

calibration, taken on Spectralon disks that are built into the leaf clip, was taken before each 

“section” of the shrub.  

NDVI and PRI were computed for each leaf (n =12). Data were summarized to get the daily 

plant mean and standard deviation for each index. The following equations were used to 

calculated NDVI and PRI, where R represents reflectance in the respective waveband in the 

subscript:  

  

𝑁𝐷𝑉𝐼 =  
𝑅800 − 𝑅680

𝑅800 + 𝑅680
 

 

𝑃𝑅𝐼 =  
𝑅531 − 𝑅570

𝑅531 + 𝑅570
 

 

  

1.3.3.3 Porometer/Fluorometer 

 

We used a LI-600 porometer to monitor stomatal conductance (gsw) (LICOR Biosciences, 

Lincoln, Nebraska, USA). Default settings and auto-stabilization were used when taking 

measurements. Measurements were taken for 22 of the 25 days throughout the experiment (Table 

1.1) and all samples took place within +/- 1 hour of solar noon. The sampling structure mimicked 

that of the leaf-level field spectrometer measurements, where a series of 12 scans were taken: 

four random leaves in the top, followed by four in the middle, and finally four in the bottom third 

of the shrub. A daily plant average, across all 12 leaves, was then calculated. 
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1.3.4 Data Analysis 

  

Data handling, processing, and statistical analysis was conducted using R programming language 

(R Development Core Team, 2022). Linear regressions were run to compare the LEDIFphotodiode 

setup performed against more traditionally acquired fluorescence and photosynthetic 

performance metrics. All analysis used daily means for comparisons across multiple instrument 

types. 

  

1.4 Results 

 

A typical drought response was observed across all parameters during the 30-day experiment 

(Fig. 1.3). There was a noticeable 1–2-day lag in response to the start of drought and return of 

normal watering conditions.  At the canopy-level, both LED fluorescence metrics, LEDIFphotodiode 

and LEDIFhyperspectral, decreased markedly when drought was induced (Fig. 1.3a-b). At the leaf-

level, non-photochemical quenching (NPQ) increased whereas stomatal conductance (gsw), Fv/Fm, 

photochemical quenching (PQ), and Fo` decreased (Fig. 1.3c-g). In the short post-drought period, 

most metrics started to return to their baseline values as established in the pre-drought period. 

Notably, stomatal conductance (gsw) never returned to “pre-drought” values. Leaf-level NDVI 

had little to no change over the entire duration of the experiment and never dropped below 0.8 

(Fig. 1.3h). On the other hand, leaf-level PRI had a clear response to drought, mimicking the 

trends found in other leaf-level metrics. There was a dramatic decline in PRI ~1 day after the 

watering was ceased and a slight increase ~1 day after watering was reinitiated (Fig. 1.3i).
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Figure 1.3. Distinct periods throughout the study are indicated by distinct colors: green indicates pre-

drought, brown indicates drought, and purple indicates post-drought. Blue text refers to canopy-level 

measurements, green text refers to leaf-level measurements. Note that not all measurements have the 

same y-axis scale. (a) shows the continuous low-cost broadband photodiode sensor LEDIF data, and (b) 

shows the hyperspectral spectroradiometer LEDIF data. (c)-(f) shows time-series of leaf-level parameters 

collected from the MONI-PAM instrument. (g) shows the stomatal conductance at leaf level from the LI-

600 porometer. (h)-(i) shows time-series of calculated leaf-level vegetation indices (NDVI and PRI). For 

canopy-level: grey shaded regions indicate the standard deviation between the four scans taken on each 

sampling day. For leaf-level: grey shaded regions indicate the standard deviation between the twelve 

leaves scanned on each sampling day. 

  

Linear regressions were performed to see how LEDIFphotodiode values compared to the 

spectrometer measurements. At the canopy-level, LEDIFhyperspectral significantly correlated with 

LEDIFphotodiode (R2=0.77, P < 0.01) (Fig. 1.4a).  Further, canopy-level LEDIFphotodiode had a 

weaker relationship, with leaf-level steady-state fluorescence, (Fo`) measured with the MONI-

PAM (R2 =0.22, P < 0.05) (Fig. 1.4b). Other leaf-level PAM collected metrics also correlated 

with LEDIFphotodiode, with varying levels of significance and R2 values (Fig. 1.4c-e). Stomatal 

conductance also correlates with steady-state canopy fluorescence — (R2=0.35, P < 0.05)— 

(Fig. 1.4f). As for the vegetation indices, we did not find any significant trend between 

LEDIFphotodiode  and NDVI, but there was a positive trend (R2 =0.59, P < 0.05) between PRI and 

LEDIFphotodiode (Fig. 1.4g-h). Notably, most of the variance found in the regressions was found in 

the post-drought period data, except for gsw where the variance was primarily found in the pre-

drought period.  



 20 

 

 

  



 21 

Figure 1.4. Correlations between canopy-level LEDIFphotodiode and (a) LEDIFhyperspectral, leaf-level (b) Fo’, 

(c) PQ, (d) NPQ, (e) Fv/Fm, (f) stomatal conductance, (g) NDVI, & (h) PRI. Blue text refers to canopy-

level measurements, green text refers to leaf-level measurements. Shapes refer to watering periods: green 

circle = pre-drought, brown triangle = drought, purple square = post-drought. The correlation and line fits 

are for all data points collected throughout the experiment; the stars represent p-values:  * <0.05, ** 

<0.01, *** < 0.001.  

 

1.5 Discussion 

In this study, we were able to highlight changes in the drought response of canopy chlorophyll 

fluorescence in a broad-leaf evergreen shrub using a novel low-cost nighttime LED 

platform.  Over the course of a month, we sought to meet two main objectives 1) track changes 

in canopy-level chlorophyll fluorescence with a new, nighttime, low-cost sensor during an 

imposed stress event and 2) test whether these changes are reflected at the canopy- and leaf- 

level. By incorporating the work of using LEDs to induce low-light steady-state chlorophyll 

fluorescence (Atherton et al. 2019) and dovetailing the inexpensive broadband photodiode 

sensors into our novel platform, we successfully built a setup that competed with more 

traditional, expensive setups to chlorophyll fluorescence remote sensing devices at both the leaf- 

and canopy-level. 

 

1.5.1 Physiological Responses  

 

Stomatal conductance, gsw, which can be related to plant stress and water status (Buckley 2019) 

was measured throughout the experiment (Table 1.1). During the drought, we saw stomatal 
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conductance quickly decrease (Fig. 1.3g), signaling a closure of the stomata. Stomatal closure is 

a protective reaction of the plant in order to stop water loss (Buckley 2019). However, when the 

stomata close, the tradeoff is that there is also a cessation of incoming carbon (leaf gas exchange 

stops) and therefore a suspension photosynthesis (Ball, Woodrow, and Berry 1987).   Although 

changes in the stomata and changes in photochemistry are not always necessarily coordinated 

(Marrs et al. 2020), we did find evidence of some coordination in our data, where gsw was 

declining prior to PQ or NPQ decreasing and increasing, respectively (Fig 1.3g, e-f). This 

suggests that the stomata were responding quicker than the photochemical reactions, which has 

been observed at both the leaf- and canopy-level (Flexas et al. 2002; Marrs et al. 2020; Magney 

et al. 2020). Markedly, even after the drought ended, the stomatal activity did not recover to pre-

drought values. In a vineyard drought experiment, Tombesi et al. (2015) similarly found that 

even after resuming watering post-drought, that the stomata in the grape leaves did not reopen. 

The fact that stomatal conductance did not trend toward recovery, is notable in comparison to all 

other parameters measured, which increased post-drought (Fig. 1.3). Additionally, in a drought 

stress experiment of kidney bean plants where the drought lasted 7+ days, Miyashita et al. (2005) 

also found that stomatal conductance was unable to fully recover post-drought but where 

photochemistry recovered more than 75% of its pre-drought levels (Miyashita et al., 2005). 

Furthermore, after a prolonged drought period, stomatal conductance was the only parameter, 

when regressed against LEDIFphotodiode, where most of the variance was held in the pre-drought 

data versus the post-drought data (Fig. 1.4f).  

 

With reduced leaf-gas exchange, as suggested from our stomatal conductance measurements, we 

consequently saw a decrease in photosynthetic activity and altered energy balance, as shown 
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through our PAM parameters (Fig. 1.3c-f). As we know, there are three competing pathways in 

which absorbed photons can dissipate (Baker 2008). One way that plants cope with drought 

stress is by modulating their NPQ and PQ pathways. An increase in NPQ, as seen in our 

experiment, is a protective process in which excess light energy is dissipated as heat, which can 

also protect photosystem II from photo-oxidative damage (Baker 2008). Concurrently, PQ would 

be expected to decrease due to the lack of internal CO2 and overall saturation of photosynthesis 

by light causing the subsequent reduction in active PSII reaction centers (Maxwell and Johnson 

2000; Baker 2008). As expected, during the drought, we saw an increase in non-photochemical 

quenching, the subsequent decrease in photochemical quenching, as well as a decrease in Fv/Fm 

and Fo’ (Fig. 1.3f-c, respectively).  Additionally, our values of Fv/Fm— a sensitive indicator of 

plant photosynthetic performance (Maxwell and Johnson 2000)— decreased dramatically during 

the drought, which also tells us that there was a uptick in the efficiency of NPQ (Maxwell and 

Johnson 2000), further detailing the physiological stress that the plant was experiencing. 

 

Further investigation led us into using remotely sensed proxies of light absorption and 

photoprotective pigments (chlorophylls and carotenoids/xanthophylls) during our induced 

drought. PRI provides us insight into photoprotective pigments— carotenoids that dynamically 

convert to expel excess absorbed energy when the plant is under stress or photosynthesis is 

saturated, and can therefore provide us a proxy of photosynthetic efficiency (Gamon et al. 1992; 

Demmig-Adams and Adams 1996; Gamon et al. 1997). During the drought period, we observed 

a reduction in PRI that directly mimicked the physiological parameters that were directly 

measuring the photosynthetic efficiency and photochemical quenching (Fig 1.3i). Although 

Gamon et al. (1992) found that PRI did not perform as well in water-stressed sunflowers at the 
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canopy-level, our leaf-level PRI data did provide insight into photosynthetic activity compared to 

PAM parameters and spectral canopy measurements.  When PRI values were regressed against 

LEDIFphotodiode, we saw a relatively strong correlation, R2= 0.59, P<0.05 (Fig. 1.4h), with a sharp 

decrease in the drought period and inklings of recovery in the post-drought period, as would be 

expected (Magney et al. 2016; Wong et al. 2022). We also investigated the NDVI, which 

provides us insight into the “greenness” of the plant and its chlorophyll content.  NDVI did not 

prove insightful in detecting plant stress during the week-long imposed drought as there was 

little to no change in NDVI throughout the experiment (Fig. 1.3h), there was no visible change in 

greenness throughout the experiment.  This makes sense given the short duration of the 

experiment – there was likely no change in leaf structure or chlorophyll concentration, making 

NDVI invariant. 

 

When comparing the photodiode and hyperspectral LEDIF retrieval methods, our results 

demonstrated similar performance (Fig. 1.3 and 1.4; R2=0.77, P < 0.01). This shows promise for 

a low-cost method to track temporal changes in canopy fluorescence emission (Fig. 1.3a-b; Fig. 

1.4a). Not only this, but LEDIFphotodiode tracked similar patterns in drought response of 

photosynthetic status indicated by PAM fluorescence measurements (Fig. 1.4). In particular, 

LEDIFphotodiode correlated well with Fv/Fm (R2=0.59, P < 0.001) indicating that we were able to 

capture changes in photosynthetic capacity and fluctuations of NPQ. Furthermore, LEDIFphotodiode 

also correlated with PQ (R2=0.69, P < 0.001) indicating that we were also able to track the leaf-

level capacity of PSII at the canopy-level. With this, LEDIFphotodiode indeed seems to be a 

meaningful indicator of photosynthetic status, and thus, overall plant “health”. 
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1.5.2 Considerations and Conclusions 

  

While the results of this experiment demonstrate the potential for using nighttime LEDIFphotodiode 

measurements to track canopy-level chlorophyll fluorescence in a cost-effective way, some 

limitations should be considered. Although we were able to detect a fluorescence emission (Fig. 

1.2), instigated by the blue LEDs, the signal that was recorded was relatively small (Fig. 1.2a). 

This may limit its effectiveness in the method being implemented in larger canopies or if the 

platform is placed higher above the canopy. Future studies may need to use stronger (greater than 

15W) LEDs to overcome the weak signal. However, we caution that too strong of an LED may 

also lead to stomatal opening; ideally, increasing the signal to noise ratio while not inducing a 

photosynthetic response would be preferred. In addition, further research is needed to determine 

the effectiveness of this method in uncontrolled settings, such as croplands or forests in-situ, and 

at distances greater than 0.5 m from the top of the canopy. In a positive light, this methodology 

may serve as a way to validate SIF-yield data collected from tower-level measurements and 

species-specific responses within the field of view of a tower. 

  

Strong stress may also induce structural changes in the canopy (e.g., wilting). It is challenging to 

separate structural changes from physiological changes when using remote sensing methods to 

measure photosynthesis or, in our case, chlorophyll fluorescence. Even though a structural 

change was not observed in our study, understanding how to disentangle or account for structural 

changes when measuring canopy fluorescence could potentially improve the interpretation and 

generalizability of the results. One approach may be to normalize the far-red LEDIF by reflected 
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light in the LED light region (e.g., blue light). This could help account for variation in canopy 

structure to enhance the SIF signal (Magney et al., 2019; Pierrat et al. 2021).  

  

In summary, the successful implementation of our labor-reducing, low-cost canopy-based, 

nighttime LEDIF system in this study demonstrates its potential for use in future research and 

highlights the need for continued exploration of the capabilities and limitations of such remote 

sensing tools. The development of new and innovative tools to measure plant stress is crucial for 

advancing our understanding of plant physiological responses to environmental stressors, the 

connections between the physiological mechanisms linking chlorophyll fluorescence and 

photosynthesis at multiple scales, and for the development of effective strategies for mitigating 

the impacts of climate change in our natural ecosystems. 
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2 Hyperspectral Reflectance-Based Prediction of Pigment 

Concentrations in Pinus palustris (Longleaf Pine) Using Partial Least 

Squares Regression Modeling 

 

Logan E.G. Brissette, Chris Y.S. Wong, Sara Nelson, Barry Logan, and Troy S. Magney 

 

2.1 Abstract 

  

Photosynthesis is a critical process by which plants convert sunlight into chemical energy, 

relying on a variety of pigments to regulate light absorption, energy transfer and photoprotection. 

This study aims to predict eight chlorophyll and carotenoid pigments and their pools in Pinus 

palustris using leaf-level hyperspectral reflectance measurements and partial least squares 

regression (PLSR) modeling. This study took place in north-central Florida, at the Ordway 

Swisher Biological Station (OSBS), and more specifically, the National Ecological Observation 

Network (NEON) flux tower site within it. The research site is dominated by mature Longleaf 

Pines and low-lying perennial grasses. From six Longleaf Pine trees, branches were harvested, 

and needles were either 1) immediately stored for later pigment extraction and 2) made into 

needle mats to retrieve reflectance measurements with our hyperspectral spectroradiometer’s leaf 

clip. Needle mats were assembled by laying individual needles flat and continuously side by side 

until they were approximately 5-6 cm wide, and were held together by two pieces of tape, 

arranged at the top and bottom of the needles. Using a PLSR modeling approach, our prediction 

task for each PLSR model was to predict the average pigment content of a tree, using a 

hyperspectral reflectance measurement of a single needle mat (for each pigment/pool) per 
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tree.  Our PLSR models successfully predicted the concentrations with R² values > 50% for eight 

of the ten pigments/pools, supporting the potential of hyperspectral remote sensing to estimate 

pigment concentrations with relatively high accuracy. We were able to best predict lutein and 

neoxanthin, as well as chlorophyll b and a (R2 = 0.91, RMSE = 0.01; R2 = 0.77, RMSE = 0.0; R2 

= 0.68, RMSE = 0.02;  R2 = 0.65, RMSE = 0.05, respectively).Variable importance in projection 

scores revealed the green and red-edge spectral regions as consistently important for all 

pigments, further highlighting the importance of chlorophylls and carotenoids in their roles in 

responding to seasonal environmental changes via photoprotection and energy transfer 

efficiency. These findings demonstrate the value of leaf-level remote sensing in understanding 

the physiological status of evergreen species and their underlying pigments, as well as the 

potential of hyperspectral remote sensing to advance our knowledge of plant physiology at larger 

scales. 

 

2.2 Introduction 

  

 Photosynthesis, the process by which plants convert sunlight into chemical energy, relies on a 

myriad of specific pigments that not only capture light but also play crucial roles in regulating 

the efficiency of energy transfer and photoprotection (Demmig-Adams and Adams, 1996). In 

particular, chlorophyll and carotenoid pigments (such as violaxanthin, neoxanthin, 

antheraxanthin, lutein, chlorophyll a, chlorophyll b, alpha-carotene, and beta-carotene) are 

essential for optimal leaf function. For example, chlorophylls, particularly chlorophyll a and b, 

are primarily responsible for light absorption and energy transfer, as they constitute the backbone 

of the photosynthetic machinery (Palta 1990; Melkozernov and Blankenship 2006). Carotenoids, 
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including alpha-carotene, beta-carotene, lutein, and neoxanthin, serve various protective 

functions, such as preventing photooxidative damage, scavenging reactive oxygen species, and 

quenching harmful triplet-state chlorophylls (Dall’Osto et al. 2007; Cazonelli 2011, Jahns and 

Holzwarth 2012; Giossi et al. 2020). Xanthophyll cycle pigments —which can include 

violaxanthin, antheraxanthin, zeaxanthin— and lutein help to modulate photosynthetic processes 

by capturing specific wavelengths of light, dissipating excess energy, and maintaining the 

structural integrity of the photosynthetic machinery (Demmig-Adams and Adams 1996; Lu et al. 

2001; Demmig-Adams and Adams 2006; Jahns and Holzwarth 2012). Understanding the 

importance of each group of pigments in photosynthetic regulation is essential for advancing our 

knowledge of photosynthesis, carbon uptake, and plant ecology on the whole. 

 

Remote sensing of pigments at the leaf-level has significantly advanced our understanding of the 

roles and interactions of various pigments in photosynthesis and their responses to environmental 

changes (Gamon et al. 1990, 1992; Gitelson and Merzlyak 1996; Xue and Yang 2009). Leaf-

level remote sensing techniques often use spectroscopy, which measures the reflectance, 

transmittance, and absorbance properties of leaves across a wide range of wavelengths. 

Examining spectral connections to plant pigments provides insights into the concentration and 

dynamics of pigments, such as chlorophylls and carotenoids, and their relationship to 

photosynthesis and plant health (Blackburn 2007; Ustin et al. 2009). This approach has led to the 

development of vegetation indices, allowing deeper insights into plant physiological status 

(Tucker 1979; Gamon et al., 1990, 1992, 2016, Sims and Gamon 2002; Badgley et al. 2017). As 

an example, Gamon et al. (1992) developed the Photochemical Reflectance Index (PRI), a 

narrow-waveband spectral index, which tracks diurnal changes in photosynthetic efficiency by 
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capturing variations in the xanthophyll pigments involved in the xanthophyll cycle. This index 

has been extensively used to study the dynamic regulation of photosynthetic processes at the leaf 

level, providing insights into the role of pigments in photoprotection and energy dissipation 

(Garbulksy et al. 2011; Magney et al. 2016). Furthermore, other leaf-level studies, such as 

Gitelson, Gritz, and Merzlyak (2003), have demonstrated the use of remote sensing to estimate 

chlorophyll content, an essential parameter for understanding photosynthetic capacity and plant 

productivity. Moreover, leaf-level remote sensing has proven valuable in understanding plant 

responses to various environmental stressors, such as drought, temperature extremes, and 

nutrient limitations, by observing changes in pigment concentrations and photosynthetic activity 

(Xue and Yang 2009; Magney et al. 2016; Helm et al. 2020, Wong et al. 2020). 

 

Partial least squares regression (PLSR) has emerged as a powerful multivariate modeling 

approach for predicting leaf-traits, including pigment concentrations, based on remotely sensed 

spectral data (Serbin et al. 2012, 2014; Steidle Neto et al. 2016; Burnett et al. 2021, Mahajan et 

al. 2021). One of the key advantages of PLSR is its ability to handle collinear and noisy data 

(Wold et al. 2001), which are common features in the high-dimensional reflectance spectra 

obtained from remote sensing measurements (Serbin et al. 2012, 2014).  PLSR deals with 

collinearity and high dimensionality by reducing the large predictor matrix— that would come 

from hyperspectral reflectance data, identifying the most relevant latent components that 

encompass and explain the most significant variation in the data, and overall providing higher 

parameter stability than classical regression (Geladi and Kowalski 1986, Wolter et al. 2008; 

Serbin et al. 2014). 
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The PLSR modeling approach is particularly useful for predicting leaf traits because it 

incorporates information from the entire spectrum, rather than relying on single or narrow bands, 

as is often the case with traditional vegetation indices. This comprehensive utilization of spectral 

information allows PLSR models to capture subtle variations in leaf traits that might be 

overlooked by more simplistic approaches. Furthermore, by calculating variable importance in 

projection (VIP) scores, PLSR can be used to identify the most informative wavelengths for 

predicting leaf traits, providing insight into the relative importance of spectral bands in 

explaining the variation in the model inputs (He et al. 2015). This, in turn, enables us to gain 

further insights into the complex relationships between leaf-level remote sensing and plant 

physiology. 

 

The development of robust predictive models for estimating pigment concentrations at the needle 

scale is vital for progressing our ability to monitor and understand plant physiology at larger 

scales, such as canopy, landscape, and regional levels (Blackburn 2006; Porcar-Castell et al. 

2014, 2021; Schimel et al. 2019). This scaling-up process is of particular importance in the 

context of recent advancements in remote sensing technology, including new hyperspectral 

missions like the NASA Surface Biology and Geology (SBG) mission (Cawse-Nicholson et al. 

2023) and the Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) 

airborne mission (Thompson et al., 2019). These missions offer fine-scale spectral resolution and 

large spatial coverage, enabling researchers to capture detailed information on pigment dynamics 

across diverse ecosystems and environmental gradients. By elucidating the roles of different 

pigment groups, their interactions, and the mechanisms by which they regulate photosynthetic 



 40 

processes, we can enhance interpretability of remote sensing data and develop more effective 

methodologies for monitoring plant responses to environmental changes (Blackburn 2006). 

 

Despite previous research predicting leaf traits through spectrometry, indices, and various 

modeling techniques (Serbin et al. 2012, 2014, Huang et al. 2015; Steidle Neto et al. 2016; 

Mahajan et al. 2021, Wong et al. 2023), predicting a whole suite of pigments’ content through 

hyperspectral measurements for an evergreen species has yet to be thoroughly investigated at the 

leaf-level. Therefore, in this study we aim to use hyperspectral reflectance (400 nm to 2400 nm) 

measurements taken on needle mats to predict eight pigments and two pigment pools 

(violaxanthin, neoxanthin, antheraxanthin, lutein, chlorophyll a, chlorophyll b, α-carotene, β-

carotene, V+A+Z, and chlorophyll a + chlorophyll b) in Pinus palustris, Longleaf Pine, by using 

a PLSR modeling approach. 

 

2.3 Methods and materials  

  

2.3.1 Field Site 

  

Fieldwork took place in north-central Florida, at the Ordway Swisher Biological Station (OSBS) 

in Putnam County, about 20 miles east of Gainesville. The OSBS is managed and cared for by 

the University of Florida as a biological site and the National Ecological Observation Network 

(NEON) southeastern domain 03. The north central Floridian climate is characterized as humid 

subtropical, with mild winters, hot and humid summers, and most of the precipitation occurring 

in the months June through September. As a biological field station, OSBS is a patchwork of 
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vegetative plots at varying life stages and undergoing a variety of management treatments, but 

generally, OSBS dominated by hardwoods (turkey oak) and conifers (Longleaf Pine - Pinus 

palustris and Loblolly Pine- Pinus taeda).  

  

Sampling occurred within the flux tower footprint of a site established by NEON in 2014. This 

research site is dominated by mature Longleaf Pines and low-lying perennial grasses. Six trees 

were chosen, flagged, and labeled (PIPA 1:6) within 50 meters of the tower and were repeatedly 

sampled over three visits in 2021-2022: June & October 2021 and January 2022. 

  

2.3.2 Hyperspectral Measurements  

 

Pine branches were harvested in the early morning, with the stem placed in water and re-cut, 

prior to being processed. From the harvested branches, individual needles were separated from 

the needle bunches. Following the methodology of the continuous needle mat configuration by 

Rajewicz et al. (2019) needles were laid flat and adjacent to each other, limiting the space 

between needles without overlapping them, to make a leaf mat that was capable of scanning with 

our field spectrometer leaf clip.  The needles were held together by two pieces of tape, arranged 

at the top and bottom of the mat (Fig. 2.1). Healthy, mature needles were chosen randomly from 

their originating branch. A typical mat was 5 cm - 6 cm wide and 10 cm - 15 cm long between 

the two pieces of tape. 

 

Once the mat was created, our hyperspectral spectroradiometer with a leaf clip assembly 

attachment was used to measure reflectance spectra from 400 nm to 2,400 nm (SVC HR-1024i, 
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LC-RP Pro, Spectra Vista Corporation, Poughkeepsie, New York, USA). The leaf clip assembly 

attachment had an internal, regulated light source, built-in Spectralon white calibration disks, and 

UB black disk (<5% reflectance) (LC-RP Pro, Spectra Vista Corporation, Poughkeepsie, New 

York, USA). The specifications on this spectroradiometer were a 25° FOV optic fiber and an 

integration time of 1s. We chose to use the low-lamp-light intensity setting (2.8 Watts) on the 

leaf-clip. White panel calibrations (taken on Spectralon disks that were built into the leaf clip), 

were taken between every individual mat (every five scans). Spectral regions were filtered out 

from 920 nm to 1,040 nm due to instrumental-specific hot pixels. 

 

For every mat, five scans were taken across the mat, so that a different part of the leaf mat was 

incorporated each time (Fig. 2.1). The sampling structure was as follows: five trees were 

sampled per visit, each tree had one branch harvested per visit. Each branch had three mats 

made, where five scans of each mat were taken.  Therefore, fifteen scans were taken of each tree 

per site visit. In total there were 255 samples taken, as one flagged tree was unlocatable during 

our June 2021 visit.  
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Figure 2.1: shows a constructed needle mat held together with tape. Illustrated circles represent the 

configuration of where scans would be taken with the leaf-clip. 

 

2.3.3 Pigment collection 

  

Needle pigment composition was measured to relate to spectral measurements. Simultaneous to 

the spectral measurements being collected, needles from the same branch were collected, 

wrapped in foil, and immediately flash-frozen in liquid nitrogen until they were transported back 

to the lab where they were held in a -80 ℃ freezer until they were extracted.  Pigments were 

extracted in acetone and analyzed by HPLC as described in Bowling et al. (2018). Pigments 
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extracted included: violaxanthin, neoxanthin, antheraxanthin, lutein, zeaxanthin, chlorophyll b, 

chlorophyll a, alpha-carotene, and beta-carotene. Pools focused on for data analysis where 

chlorophyll a + chlorophyll b, and violaxanthin + antheraxanthin + zeaxanthin.  Pigment 

information was summarized per tree and referenced back to the corresponding tree’s spectral 

information.  Needle pigment contents are expressed as moles per fresh mass (µmol per gram). 

  

2.3.4 Data Analysis 

  

Spectral and pigment data were analyzed using a partial least-squares regression (PLSR) 

modeling approach (Wold et al. 1984, 2001; Geladi and Kowalski 1986; Serbin et al. 2012, 

2014) to predict leaf pigment pools from hyperspectral reflectance measurements.  PLSR 

modeling is a robust method for applied ecological remote sensing research. (Smith et al., 2002; 

Wolter et al., 2008; Askari et al., 2019; Mahajan et al., 2021). Most importantly, though, PLSR 

provides ecologists the opportunity to turn a massive amount of remotely sensed data into 

interpretable results. In our case, in this study, it provides the opportunity to investigate the 

relationship between spectral bands and pigment/pools within leaves. 

 

Data handling, processing, and statistical analysis was conducted using R open-source statistical 

environment (R Development Core Team, 2022), utilizing the PLS package (Mevik and Wehrens 

2007). Initial pigment data handling and preparation for analysis was done in Microsoft Excel 

(Microsoft Corporation, 2021). The prediction task for the PLSR model was to predict the 

average pigment content of a tree, using a hyperspectral reflectance measurement of a single 

needle mat (for each of the 8 pigment types and 2 pigment pools) per tree. For each individual 



 45 

needle mat there were five hyperspectral spectral measurements taken and three mats made per 

tree, giving us fifteen hyperspectral measurements total per tree. Each of these spectral 

measurements were related to their respective single averaged tree pigment value. We did not 

build separate models for individual visits to the site (June, October, and January) but 

individualized models were run for each of the 8 pigments and 2 pigment pools. For example, for 

a single pigment “lutein” there were seventeen trees sampled across our three field excursions. 

For each of the seventeen trees, there were fifteen hyperspectral measurements taken, giving us 

255 samples. Our spectral-pigment data (n= 255) was split for model calibration (70%; n= 178), 

and validation (30%; n= 77), ensuring that the sets were representative of the full range of 

spectral values (Fig. 2). PLSR models were calibrated following the recommendations of Burnett 

et al. (2021); the optimal number of components included in each model was based on the 

firstMin method with a maximum number of components equaling 20. The predictive extent of 

the models was evaluated by the root mean square error (RMSE) and coefficient of 

determination (R2) and variable importance in projection (VIP) (Wold et al. 2001, He et al. 2015; 

Burnett et al. 2021).  

  

2.4 Results 

 

The reflectance of the needle leaf mats varied only by 10-25% across the full spectrum, and was 

comparable for both the validation and calibration samples (Fig. 2.2). There was slightly less 

variation in the red-edge and NIR region in the validation dataset compared to the calibration 
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dataset (Fig. 2.2). 

 

Figure 2.2. Shows the spectral reflectance: mean, minimum/maximum and 95% confidence interval (CI) 

from needle leaf mats. a) shows the spectral reflectance values for the calibration dataset, n = 178. b) 

shows the spectral reflectance values for the validation dataset, n = 77. 

 

All eight individual pigments and two pigment pools were well-predicted by our hyperspectral 

reflectance informed PLSR models, with eight of the ten pigments reporting coefficient of 

determination values > 50% as well as RMSE values for eight pigments <0.02 (Fig. 2.3, Table 

2.1). PLSR predictions using hyperspectral reflectance best predicted pigments lutein (Fig. 2.3g; 

R2 = 0.91, RMSE = 0.01), followed by neoxanthin (Fig. 2.3h; R2 = 0.77, RMSE = 0.00). The 

PLSR models for chlorophyll b (Fig. 2.3f), chlorophyll a (Fig. 2.3e), VAZ (Fig. 2.3i), Chl a 

+  Chl b (Fig. 2.3d),  α-carotene (Fig. 2.3a), and β-carotene (Fig. 2.3c) displayed moderate 

predictive performance with R2 values between 0.58 and 0.68 while the PSLR models for 

Antheraxanthin and Violaxanthin showed the lowest coefficients of determination (Fig. 2.3b R2 

= 0.43;  Fig. 2.3j R2 = 0.45, respectively). 
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Table 2.1. Summary of results from the hyperspectral reflectance informed PLSR models (calibration and 

validation) predicting the eight pigments and two pigment pools. All values (calibration and validation) 

were found to be significant, with p-values that were all smaller than 10-12.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 2.3. Validation results for the chlorophyll and carotenoid pigment/pools predicted from PLSR models using hyperspectral reflectance; from 

top-left and alphabetically; α-carotene, antheraxanthin, β-carotene, chlorophyll a + chlorophyll b (Chl a + Chl b), chlorophyll a, chlorophyll b, 

lutein, neoxanthin, violaxanthin + antheraxanthin + zeaxanthin (VAZ), and Violaxanthin. Each pigment has a distinct color depicted in the 

legend.  The coefficient of determination (R2) line is color-coded with its respective pigment, the shaded gray region is the 95% CI, R2 and root 
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mean square error (RMSE) values reported in the top left quadrant of each graph. The solid black line indicates the 1:1 line for observed versus 

predicted pigment content. All values were found to be significant, with p-values that were all smaller than 10-12. 
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The variable importance in projection (VIP) metric was calculated to identify the bands within 

the spectrum that carried the most weight in the individual model calibrations (Fig. 2.4). 

Generally, the VIP values displayed consistent patterns across all pigments over the entire 

spectrum; the regions of most importance were in the green, red-edge, and NIR regions (Fig. 

2.4). More specifically, wavelengths in the NIR region (around 1400 nm) were important across 

all pigment/pool predictions, but were more heavily weighted for both α- and β-carotene as well 

as the pigment pool of V+A+Z and antheraxanthin (Fig. 2.4). The red-edge spectral region was 

most important for all pigment predictions; it was most influential for the chlorophyll a + 

chlorophyll b pool, followed up by chlorophyll b individually. Unlike the green, red-edge and 

NIR regions which were important for pigment prediction across the board, the blue region was 

selectively important for α-carotene, antheraxanthin, β-carotene, and chlorophyll a with VIP 

values of greater than 1.5. The regression coefficients for all pigments across the whole spectrum 

are reported in Figure 2.5 

 



 

 

Figure 2.4 Variable importance projection (VIP) results for all pigments/pools across the full spectrum (400 nm - 2400 nm). Visible spectrum 

regions of blue, green, and red are shaded in their respective wavelengths. The optimal number of components (# comp) included in each PLSR 

model, individualized for each pigment, is noted in the paragraph.
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Figure 2.5. Regression coefficient results for all pigments/pools across the full spectrum (400 nm - 2400 nm). Visible spectrum regions of blue, 

green, and red are shaded in their respective wavelengths. The optimal number of components (# comp) included in each PLSR model, 

individualized for each pigment, is noted in the graph.
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2.5 Discussion 

 

Overall, we successfully utilized PLSR modeling to predict the concentrations of eight individual 

pigments and two pigment pools in Pinus palustris using hyperspectral reflectance 

measurements at the leaf level. Our results highlight the value of needle mat methodology and 

leaf-level remote sensing for understanding the physiological status of evergreen species and 

their underlying pigments. We were best able to predict lutein, neoxanthin and both chlorophylls 

(Fig. 2.4g-h, d-e, respectively). However, the generally strong predictive performance of the 

PLSR models, with R² values > 50% for eight of the ten pigments/pools, underscores the 

potential of hyperspectral remote sensing to estimate pigment concentrations with relatively high 

accuracy (Table 2.1; Fig 2.3). 

 

As expected, and supported by the VIP scores from our PLSR models, the spectral regions of 

green and red-edge were consistently important for all pigments (Fig. 4). These regions are 

known for their connection to chlorophyll and carotenoid pigments (Wong and Gamon 2015; 

Gamon et al. 2016; Wong et al 2020). For instance, Seyednasrollah et al. (2020) emphasizes the 

sensitivity of chlorophyll and carotenoids in evergreen conifer canopies to seasonal variations, 

illustrating how these changes directly relate to photochemical processes. Seyednasrollah et al. 

(2020) discovered that seasonal shifts in canopy color correspond with alterations in the quantum 

efficiency of PSII photochemistry (Fv/Fm), the Photochemical Reflectance Index (PRI), and 

consequently changes in leaf pigment pools—particularly chlorophyll and carotenoids, as well as 

their ratio (chl:car). Furthermore, when exploring the relationship between spectral components, 
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carotenoid content, and gross primary production, Cheng et al. (2020) determined that the main 

spectral feature centered around 530 nm was crucial for deducing the seasonal cycle of 

reflectance-based indices and light use efficiency, corresponding to changes in carotenoid 

content. Our study encompassed measurements taken across a season (summer, autumn, and 

winter), thereby incorporating the small, temporal variations in leaf pigment content (Fig. 2.6). 

This might explain why our PLSR models identified the green, red-edge regions as consistently 

important. Through addressing the seasonality of these pigments, we can offer a more robust 

understanding of the connections between spectral measurements, pigment content, 

photochemical processes, and the environmental factors that influence these changes. 

 

 



 

 

Figure 2.6. Shows the seasonal dynamics of the eight pigments and two pigment pools. Note the varying y-axis for each pigment; from top-left and 

alphabetically; α-carotene, antheraxanthin, β-carotene, chlorophyll a + chlorophyll b (Chl a + Chl b), chlorophyll a, chlorophyll b, lutein, 

neoxanthin, violaxanthin + antheraxanthin + zeaxanthin (VAZ), and Violaxanthin. Each pigment has a distinct color depicted in the legend that is 

the same as other figures throughout the paper.
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Additionally, the regions around 1200 nm and 1400 nm, which are known regions for water 

absorption (Curran 1989; Gao 1996; Serbin et al. 2014) were also important for all parameters, 

although the VIP values tended to be higher for the 1400 nm region (Fig. 2.4). Water plays a 

crucial role in the photosynthetic process by providing protons and electrons for the light 

reactions, and its content in leaves can affect pigment concentrations and energy transfer 

(Kramer, Evanson, and Edwards 2004; Sharma et al. 2020). Therefore, these regions provide 

valuable information on plant water status and its relationship with pigment dynamics. Similarly, 

the spectral regions of 1820 nm and 1900 nm, which are important absorption regions for lignin, 

starch, and cellulose (Curran 1989; Kokaly et al. 2009), were also found to be important for most 

pigments (Fig. 2.4). Changes in the absorption properties of these regions can indicate variations 

in leaf structural properties that may influence pigment concentrations and photosynthetic 

processes. The importance of these spectral regions in predicting pigment concentrations 

emphasizes the value of hyperspectral remote sensing for understanding plant physiology. By 

capturing the unique absorption features of different pigments, hyperspectral data enables 

researchers to estimate pigment concentrations and gain insights into the complex relationships 

between pigments, photosynthesis, and plant health. 

 

The strong predictive performance of the PLSR models demonstrated here indicates that 

hyperspectral remote sensing can be a valuable tool for monitoring pigment concentrations in 

evergreen species such as Pinus palustris. These findings are particularly relevant in the context 

of recent advancements in remote sensing technology (such as the hyperspectral missions NASA 

SBG and AVIRIS-NG). Thus, enabling researchers to capture fine-scale information on pigment 
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dynamics across diverse ecosystems and environmental gradients, these missions hold great 

promise for improving our understanding of relating remote sensing measurements to plant 

physiology. 
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