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1 Beyond counts and averages: relating 

2 geodiversity to dimensions of biodiversity

3 Running title: Geodiversity across dimensions of biodiversity

4 Abstract

5 Aim

6 We may be able to buffer biodiversity against the effects of ongoing climate change by 

7 prioritizing the protection of habitat with diverse physical features (high geodiversity) associated 

8 with ecological and evolutionary mechanisms that maintain high biodiversity. Yet, the 

9 relationships between biodiversity and habitat vary with spatial and biological context. In this 

10 study we compare how well habitat geodiversity — spatial variation in abiotic processes and 

11 features — and climate explain biodiversity patterns of birds and trees. We also evaluate the 

12 consistency of biodiversity-geodiversity relationships across ecoregions.

13 Location

14 Contiguous United States

15 Time period

16 2007-2016

17 Taxa studied

18 Birds, trees

19 Methods

20 We quantified geodiversity with remotely-sensed data and generated biodiversity maps from the 

21 Forest Inventory and Analysis and Breeding Bird Survey datasets. We fit multivariate 

22 regressions to alpha-, beta-, and gamma-diversity, accounting for spatial autocorrelation among 
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23 Nature Conservancy ecoregions and relationships among taxonomic, phylogenetic, and 

24 functional biodiversity. We fit models including climate alone (temperature, precipitation), 

25 geodiversity alone (topography, soil, geology), and climate + geodiversity.

26 Results

27 A combination of geodiversity and climate predictor variables fit most forms of bird and tree 

28 biodiversity with less than 10% relative error. Models using geodiversity and climate performed 

29 better for local (alpha) and regional (gamma) diversity than turnover-based (beta) diversity. 

30 Among geodiversity predictors, variability of elevation fit biodiversity best; interestingly, 

31 topographically diverse places tended to have higher tree diversity but lower bird diversity.

32 Main conclusions

33 Although climatic predictors tended to have larger individual effects than geodiversity, adding 

34 geodiversity improved climate-only models of biodiversity. Geodiversity was correlated with 

35 biodiversity more consistently than climate across ecoregions, but models tended to have poor 

36 fit in ecoregions held out of the training dataset. Patterns of geodiversity could help prioritize 

37 conservation efforts within ecoregions. However, we need to understand the underlying 

38 mechanisms more fully before we can build models transferable across ecoregions.

39 Keywords

40 biodiversity, geodiversity, Breeding Bird Survey (BBS), Forest Inventory and Analysis (FIA), 

41 alpha-diversity, beta-diversity, gamma-diversity, conservation
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42 Introduction

43 In the face of an ongoing sixth mass extinction, society is challenged to minimize biodiversity 

44 loss through conservation efforts (Ceballos et al. 2015). While many conservation policies and 

45 strategies focus on conserving particular species (e.g., the United States Endangered Species 

46 Act, the International Union for Conservation of Nature Red List), there is growing interest in 

47 broadening conservation to include preserving parcels of Earth’s surface that promote diversity 

48 even as species shift their ranges in response to climate change (Beier & de Albuquerque 

49 2015). For example, The Nature Conservancy (TNC) prioritizes preserving areas with high 

50 geodiversity — variation in Earth’s abiotic processes and features — through their ‘Conserving 

51 Nature’s Stage’ (CNS) campaign (Beier & de Albuquerque 2015). Conserving nature’s stage 

52 requires a firm understanding of biodiversity-geodiversity relationships, yet we know little about 

53 how these relationships vary across space, among taxa, and across different dimensions of 

54 biodiversity (Zarnetske et al. 2019). Addressing this knowledge gap is key to advancing 

55 conservation prioritization. 

56 Geodiversity represents natural variation in geologic, geomorphic, and soil features (Gray 2004, 

57 2008) and can be measured in a variety of ways. Most studies focus on elements of topography 

58 (roughness, elevation, slope and aspect), geology (geologic diversity, landscape complexity), 

59 soils (pH, organic matter, nutrient availability), or hydrology (variation of hydrological features 

60 such as rivers, ponds and lakes; Hjort et al. 2012; Wang et al. 2013; Kaskela et al. 2017). Some 

61 geodiversity definitions include climate, using variables such as temperature, precipitation, 

62 evapotranspiration, water balance, and solar radiation, while others explicitly exclude climate 

63 from their definition (Gray 2004; Parks & Mulligan 2010; Tukiainen et al. 2017). A 

64 comprehensive definition of geodiversity includes all abiotic features and processes found within 

65 Earth’s atmosphere, lithosphere, hydrosphere, and cryosphere (Record et al. in press; 

66 Zarnetske et al. 2019).
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67 Abiotic variation may promote increased variety of available niches for organisms (Tews et al. 

68 2004), and high geodiversity is likely to indicate biodiversity hotspots (Lawler et al. 2015, but 

69 see Noss et al. 2014). However, little is known about how geodiversity of Earth’s surface 

70 compares to climate in explaining variation in biodiversity, whether relationships generalize 

71 across geographic locations, and what types of biodiversity have the closest relationship with 

72 geodiversity. Despite the potential importance of geodiversity for explaining patterns of 

73 biodiversity, models explaining patterns of biodiversity rarely include geodiversity (Bailey et al. 

74 2018). Furthermore, conservation frameworks, including CNS, typically advance the idea that 

75 conserving geodiversity will result in positive outcomes for biodiversity writ large (Beier & de 

76 Albuquerque 2015). This assumption must be tested empirically, especially given potential 

77 tradeoffs among orthogonal dimensions of biodiversity within and among taxa: conserving one 

78 aspect of biodiversity might have a neutral or even negative effect on other aspects. In this 

79 study, we use bird and tree occurrence data and remotely-sensed environmental data from 

80 across the United States to increase our understanding of biodiversity-geodiversity 

81 relationships. Geodiversity, in conjunction with climate, predicts patterns of species diversity of 

82 plants (Tukiainen et al. 2017; Bailey et al. 2018) and animals (Parks & Mulligan 2010; Alahuhta 

83 et al. 2018) across disparate biomes. Informed by these previously documented patterns, our 

84 Prediction 1 is that combining geodiversity and climate predictors will significantly improve the 

85 goodness-of-fit of models explaining biodiversity of birds and trees.

86 Recent work shows that the biodiversity-geodiversity relationship depends on spatial grain and 

87 extent (Bailey et al. 2017; Zarnetske et al. 2019). Nevertheless, most studies have focused on 

88 alpha-diversity (local diversity) measured within a plot. In contrast, most large-scale mapping 

89 studies characterizing diversity have equated diversity with gamma-diversity, or the size of the 

90 regional species pool (Currie & Paquin 1987; Jenkins et al. 2015). Only a few have accounted 

91 for the three levels of biodiversity: alpha-diversity, beta-diversity (turnover among plots) and 
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92 gamma-diversity (Meynard et al. 2011; Gossner et al. 2013). Beta-diversity represents 

93 compositional turnover among local communities, linking local diversity (alpha-diversity) to 

94 regional species pools (gamma-diversity). We expect that the relationship between geodiversity 

95 and beta- and gamma-diversity will be stronger than alpha-diversity, because high geodiversity 

96 often reflects high diversity of habitats within regions and therefore more unique local species 

97 assemblages (Stein et al. 2014). This leads to Prediction 2: Geodiversity will explain more 

98 variability in the beta and gamma levels of biodiversity than alpha-diversity.  

99 The relationship between geodiversity and biodiversity may also vary with the dimensions of 

100 biodiversity (taxonomic, functional and phylogenetic diversity). Targeting functional and 

101 phylogenetic diversity is especially important for conserving unique ecological function (Steudel 

102 et al. 2016) and evolutionary history (Davis et al. 2018) in the face of the current biodiversity 

103 crisis. Because phylogenetic (Winter et al. 2012) and functional (Lamanna et al. 2014) 

104 biodiversity are explicitly linked to different ecological and evolutionary mechanisms, they may 

105 provide deeper insight into ecological and evolutionary processes that underlie regional 

106 variation in diversity.  However, few studies of geodiversity have investigated these multiple 

107 dimensions of biodiversity (Meynard et al. 2011); most studies have considered only taxonomic 

108 diversity (e.g., Safi et al. 2011; Stevens & Gavilanez 2015). Because each dimension of 

109 biodiversity represents a unique mechanistic connection with the environment, we predict 

110 (Prediction 3) that the different dimensions of biodiversity will have different relationships with 

111 geodiversity.

112 Relationships between dimensions of biodiversity and geodiversity vary across geographic and 

113 environmental space. In some areas and environmental contexts, one form of geodiversity 

114 might be a more reliable predictor of biodiversity than elsewhere. For example, topographic 

115 complexity generates a diversity of climatic conditions at small to intermediate spatial scales 

116 ranging from meters (Bennie et al. 2008) to tens of kilometres (Badgley et al. 2017), which may 

Page 5 of 114 Global Ecology and Biogeography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

6

117 buffer species against local extinctions as climate warms (Dobrowski 2011; Lenoir et al. 2013). 

118 Such buffering is, however, conditional on climatic context: if an entire landscape is far outside 

119 of the physiological range of tolerance for some taxonomic or functional groups, geodiversity is 

120 likely to be unimportant for maintaining local biodiversity. For example, along the central 

121 California coast, land and ocean surface temperatures contrast strongly and there is high 

122 heterogeneity in topography and associated cloud and fog patterns. Such conditions support 

123 relatively high local richness of tree species (Barbour et al. 2007). Inland, in contrast, the 

124 average climate of the Coast Range is more arid and fog is absent (Ackerly et al. 2010), so only 

125 the coolest facets of the landscape support any level of tree cover. In this context, topographic 

126 heterogeneity is still associated with higher tree diversity, but the relationship is likely to be 

127 weaker. For these reasons, we predict (Prediction 4) that the influence of different geodiversity 

128 predictors on biodiversity will vary across ecoregions. In particular, mountainous ecoregions 

129 with more mesic climates will have more positive relationships between topographic diversity 

130 and biodiversity than more arid mountain ranges.

131 In this study, we use bird and tree occurrence data and remotely-sensed environmental data 

132 from across the United States to increase our understanding of biodiversity-geodiversity 

133 relationships. We make the following predictions:

134 (1) Geodiversity will significantly increase the explanatory power of models explaining 

135 biodiversity of birds and trees.

136 (2) Geodiversity will explain more variability in beta- and gamma-diversity than alpha-

137 diversity.

138 (3) The different dimensions of biodiversity will have different relationships with geodiversity.

139 (4) The influence of different geodiversity predictors on biodiversity will vary across 

140 ecoregions.
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141 Methods

142 We used multivariate linear mixed models with spatial random effects to determine which 

143 geodiversity predictors explain the most variation across the levels and dimensions of bird and 

144 tree biodiversity in the contiguous U.S. We used biodiversity and geodiversity data collected 

145 from 2007-2016. 

146 Breeding Bird Survey (BBS)

147 The North American Breeding Bird Survey (BBS, https://www.pwrc.usgs.gov/bbs/) is an annual 

148 survey of breeding birds across the U.S. and Canada begun in 1966. Volunteer observers report 

149 species and counts of birds seen or heard during 3-minute observations at 50 stops spaced 

150 every ~800 m along routes ~39.4 km in length (Sauer et al. 2013). There are ~3480 active 

151 routes in the contiguous U.S. with continuous yearly stop-level data. We excluded any routes 

152 with an ambiguous midpoint coordinate (discontinuous transects), leaving 3089 routes. We 

153 included only the surveys conducted under the standard protocol, discarding repeat surveys and 

154 any observations recorded by trainees.

155 Forest Inventory and Analysis (FIA)

156 The U.S. Department of Agriculture Forest Service’s Forest Inventory and Analysis program 

157 (FIA) surveys the composition and status of forests throughout the United States, with data 

158 collected annually (Bechtold et al. 2005). Each FIA plot consists of four 7.2-m fixed radius 

159 subplots. Plots are spaced roughly on a 5-km grid across forested land. Each plot is surveyed 

160 approximately every 5 years (Bechtold et al. 2005). Each tree is identified to species. We 

161 obtained the most recent survey from all forested, non-plantation FIA plots in the contiguous 

162 United States (119,177 plots). Some plots in the Pacific Northwest Region included a larger 
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163 “macroplot” around the central subplots; we excluded any trees outside the subplot boundary. 

164 The year of the most recent survey varied between 2012 and 2016. 

165 Phylogenetic and Trait Data

166 We obtained phylogenetic trees and compiled trait information for all bird and tree species in the 

167 BBS and FIA databases, respectively, and used them to calculate the distance-based 

168 phylogenetic and functional diversity indices described below. See Appendix 1 for additional 

169 details.

170 Calculation of Biodiversity Metrics

171 For both tree and bird communities, we calculated biodiversity metrics based on species 

172 presence at the site level (here defined as a single FIA plot or BBS route). For trees in FIA, we 

173 used the most recent survey as a single time point for each site, as there is little turnover in 

174 species composition between surveys and the probability of imperfect detection is low. To 

175 minimize the effects of imperfect bird detection in the BBS survey, we pooled observations from 

176 all stops in each route and pooled all surveys from 2007-2016. See Appendix 2 for additional 

177 details. 

178 We calculated alpha-, beta-, and gamma-diversity (referred to as levels of biodiversity) within a 

179 circle of 50 km radius around each site, originating at the centre of the FIA plot or midpoint of 

180 the BBS route. We defined any BBS route whose midpoint fell within the 50-km circle around 

181 the focal route midpoint to be a neighbour route (see Appendix 2). We took (1) the median 

182 diversity of all sites in the radius, including the focal site (alpha), (2) the median pairwise 

183 diversity of all pairs of sites in the radius, including the focal sites (beta), and (3) the aggregated 

184 diversity of all sites in the radius (gamma). Each diversity level has three dimensions: 

185 taxonomic, phylogenetic, and functional (Table S1). For taxonomic diversity, alpha-diversity and 
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186 gamma-diversity were represented by species richness and beta-diversity by pairwise Sørensen 

187 dissimilarity. The Sørensen dissimilarity index represents the degree to which pairs of 

188 communities differ from one another in their species composition, independent of their species 

189 richness, and encompasses both species turnover and nestedness components of beta-

190 diversity. This contrasts with beta-diversity indices based on multiplicative or additive partitions 

191 of alpha- and gamma-diversity (Anderson et al. 2011). To quantify phylogenetic diversity, we 

192 calculated mean pairwise phylogenetic distance (MPD) of each community with the R package 

193 picante (Kembel et al. 2018). We randomized the phylogenetic distance matrix 999 times and 

194 calculated the z-score of the observed phylogenetic distances relative to the distribution of 

195 phylogenetic distances of the randomized matrices to remove dependence on richness. 

196 Similarly, we calculated a distance-based metric of functional diversity by finding the Gower 

197 distance between the trait values for all possible species pairs, and then calculating the mean 

198 pairwise distance among all pairs of species in each community and its z-score. Because the 

199 BBS surveys poorly estimate abundances of some species, we calculated incidence-based 

200 biodiversity metrics for both birds and trees so that metrics are comparable between the two 

201 taxa. 

202 Geodiversity Data Sources and Processing

203 We obtained and processed remotely-sensed data for the contiguous United States to generate 

204 geodiversity and climate data layers. Remotely-sensed geodiversity variables are particularly 

205 valuable in disentangling the independent effects of climate and geodiversity. Many biodiversity 

206 analyses use climatic data products that interpolate weather station data using elevation, e.g. 

207 Worldclim v.1 (Hijmans et al. 2005). Using elevation to derive temperature values makes it 

208 difficult to evaluate independent contributions from climate and topography (Körner 2007). 

209 Remotely-sensed temperature represents the temperature of the land surface, in contrast with 

210 weather stations that measure air temperature several meters above ground level (Bechtel 
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211 2015). In areas with very sparse coverage of meteorological stations and/or complex 

212 topography, the error introduced by interpolating between ground stations may be large. In 

213 many regions, especially grasslands, shrublands, and croplands, surface temperature shows 

214 large systematic deviations from air temperature (Mildrexler et al. 2011). What is more, studies 

215 have shown that surface temperature may be more ecologically relevant than air temperature 

216 (Pau et al. 2013; Still et al. 2014). The thermodynamic temperature of an organism, which drives 

217 its respiration rate and vapor pressure deficit, is more closely related to the surface temperature 

218 than the surrounding air temperature. Remotely-sensed data products provide spatially 

219 continuous, independent, and direct measures of climate and geodiversity for use in biodiversity 

220 models. 

221 We generated predictors from the following remotely-sensed data products: elevation from 

222 SRTM (Farr et al. 2007), land surface temperature from MODIS MOD11A2 (Wan et al. 2015), 

223 precipitation from CHIRPS (Funk et al. 2015), and gross primary productivity (GPP) dynamic 

224 habitat index from MODIS (Hobi et al. 2017). We generated additional predictors from non-

225 remotely-sensed products including soil type category from SoilGrids (Hengl et al. 2017), which 

226 uses remotely-sensed data to interpolate ground-based measurements, and geologic age 

227 category from USGS International Surface Geology. We included GPP because spatial 

228 variability in GPP integrates many geodiversity variables known to influence biodiversity via 

229 resource availability (Austin & Smith 1989; Alahuhta et al. 2018). GPP spatial variability is 

230 moderately correlated with mean annual precipitation but largely orthogonal to the other 

231 geodiversity variables we chose (Figure 1), indicating that it may capture additional spatial 

232 variation not accounted for by the other three geodiversity variables. See Appendix 3 for 

233 additional details.

234 We coarsened all environmental data layers by calculating the means within 25 km2 pixels to 

235 equal the coarsest resolution of any layer, then we aggregated all geodiversity and biodiversity 
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236 variables within a 50-km radius around the centre of each FIA plot and the midpoint of each 

237 BBS route. The 50-km scale of aggregation averages over a wide range of microhabitats and 

238 microclimates, capturing the geodiversity-biodiversity relationship at a coarse spatial grain; it is 

239 possible that a smaller grain of analysis would reveal different patterns (Zarnetske et al. 2019). 

240 For continuous predictors, we calculated the mean of all pixels partially or wholly in the 50-km 

241 radius, and we used the mean terrain ruggedness index (TRI; Wilson et al. 2007) of the 3×3 

242 pixel neighbourhood around all pixels to represent spatial variability. For discrete predictors, we 

243 used Shannon entropy of all pixels in the radius to represent spatial variability. Shannon entropy 

244 has been shown to monotonically increase with increasing number of landscape patch types, to 

245 behave consistently in both real and simulated landscapes, and to correlate positively with many 

246 other measures of landscape heterogeneity (Peng et al. 2010). Importantly, while many past 

247 studies have used variables extracted from spatially continuous layers at points to characterize 

248 environmental variation, we explicitly consider spatial variation in the regions around the points 

249 where biodiversity was measured. Defining geodiversity in terms of this variation is critical for 

250 fully explaining biodiversity because a single point value cannot capture the diversity of niche 

251 space that may determine biodiversity (Lawler et al. 2015).

252 Finally, we spatially grouped geodiversity and biodiversity observations using TNC’s terrestrial 

253 ecoregions (Olson & Dinerstein 2002) to account for spatial autocorrelation in response 

254 variables. We selected this classification scheme over alternatives because the regions are 

255 defined based on biodiversity analyses conducted across many taxa, and because the number 

256 of ecoregions in the contiguous USA (63 after excluding 6 border regions with insufficient data) 

257 is high enough to adequately account for spatial autocorrelation in biodiversity responses within 

258 the study area without overfitting.
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259 Selection of Predictor Variables

260 We selected six predictor variables for our models: two climate variables to describe the climate 

261 norms inside the radius (mean annual temperature and mean annual precipitation), and four 

262 predictors to describe geodiversity or environmental heterogeneity (mean TRI of elevation and 

263 GPP, Shannon diversities of geological age category and soil type). Together, the six variables 

264 encompass most of the variation in geodiversity and climate among locations in the contiguous 

265 United States and are only modestly correlated with one another (Figure 1), meeting model 

266 assumptions. Based on our a priori hypothesis that geodiversity is related to biodiversity, we 

267 included one predictor to represent each of the unique geodiversity data sources available to us 

268 (elevation, soil type, and geological age category). In addition, we selected GPP diversity to 

269 represent other aspects of geodiversity not captured by the first three variables. Our choice of 

270 mean annual temperature and mean annual precipitation to represent long-run climate norms is 

271 reasonable because the two variables have no relationship to one another at our scale of 

272 observation (Figure 1).

273 Final Data Processing

274 First, we excluded any site within 50 km of the Canada or Mexico borders because the 50-km 

275 radius around those sites contained areas without biodiversity measurements. We logit-

276 transformed the taxonomic beta-diversity variable, which is a raw dissimilarity metric varying 

277 between 0 and 1 in the model. No bird sites had a taxonomic beta-diversity of exactly 0 or 1, but 

278 ~16% of tree sites had taxonomic beta-diversity of exactly 0 or 1, which is outside the domain of 

279 the logit function. Thus, we replaced zeroes with 0.001 and ones with 0.999. We took a spatially 

280 stratified random sample of tree sites where each sampled site was a minimum of 20 km from 

281 any other site, to minimize spatial autocorrelation not captured by our model. This process left 
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282 ~3000 sites, so that sample sizes were comparable between the datasets used to fit each 

283 model. 

284 Model Fitting

285 We fit spatial multivariate mixed models with the following fixed predictors: (1) all six predictor 

286 variables as fixed effects, (2) only the four geodiversity predictors as fixed effects, (3) only the 

287 two climate predictors as fixed effects, and (4) no fixed effects (null model with only spatial 

288 random effects). We fit multivariate models for each diversity level (alpha, beta, and gamma) 

289 and each taxon (birds, trees), totalling 24 models (4 predictor sets × 3 diversity levels × 2 taxa = 

290 24). Each model had three response variables corresponding to the three dimensions of 

291 biodiversity (taxonomic, phylogenetic, and functional). We used the null model z-scores to 

292 represent phylogenetic and functional biodiversity in all the models.

293 We fit a random intercept and slope for each predictor in each TNC ecoregion. We excluded 

294 ecoregions with <5 sites, because random effects estimated with <5 data points are not robust. 

295 The excluded ecoregions were primarily in Canada or Mexico and only have a small area inside 

296 the contiguous United States that is at least 50 km from a land border. After excluding these 

297 ecoregions, 63 ecoregions remained. We estimated random slopes and intercepts for each 

298 ecoregion with a multilevel conditional autoregressive (CAR) structure to model the spatial 

299 variability in the biodiversity-geodiversity relationship among ecoregions (Besag & Kooperberg 

300 1995). We specified the neighbourhood structure with an adjacency matrix identifying all pairs of 

301 regions that share a border. The ecoregion random effects in the model were therefore spatially 

302 structured, accounting for spatial autocorrelation in the biodiversity values of neighbouring 

303 regions. We chose to model spatial dependence using discrete regions because of better out-of-

304 sample prediction performance than simultaneous autoregressive models (Kress, unpublished).
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305 We fit the models in a hierarchical Bayesian framework using the R package brms (Bürkner 

306 2017). We modelled error in response variables as normally distributed. Finally, we 

307 standardized both predictor and response variables before fitting the models so that we could 

308 compare effect sizes across predictors and responses. The standard deviation of each 

309 coefficient represents the among-region variability of each predictor-response relationship.

310 Model Validation

311 To assess model predictive performance, we performed spatially blocked leave-one-location-out 

312 cross-validation (Roberts et al. 2017). We refit each of the models 63 times, each time holding 

313 out all data points from one of the 63 ecoregions. We found the root mean squared error 

314 (RMSE) of the predicted values of the withheld data from each fold to get a cross-validation 

315 RMSE for each model.  We also calculated the RMSE of the models fit to all the data. We 

316 divided all RMSE values by the range of the observed data to yield relative values that can be 

317 compared among models. We also calculated RMSEs using resubstitution evaluation, in which 

318 no data points were held out in model fitting. This procedure assesses the goodness-of-fit of 

319 models across the entire contiguous U.S. but does not fully correct for spatial autocorrelation.

320 We calculated the Bayesian R-squared (Gelman et al. 2018) for each model to quantify the 

321 proportion of variation in the response explained by fixed and spatial random effects combined. 

322 Finally, we calculated the widely applicable information criterion (WAIC; Watanabe 2010) for 

323 each model.
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324 Results

325 Description of geodiversity and biodiversity variables

326 Correlations among geodiversity predictor variables were relatively low (Figure 1a). The 

327 pairwise correlation between elevation diversity and geologic age diversity was relatively high (r 

328 = 0.52), indicating that geodiversity measured as topographic variability is correlated with 

329 geodiversity measured as the variety of geologic substrate ages. Notably, the correlation 

330 between elevation diversity and mean annual temperature was low (r = -0.20). In both birds 

331 (Figure 1b) and trees (Figure 1c), taxonomic and phylogenetic diversity were positively 

332 correlated with one another at all levels; this relationship was strongest for birds. However, local 

333 (alpha) and regional (gamma) functional diversity tended to correlate negatively with other forms 

334 of biodiversity in both birds and trees.  

335 Geodiversity variables (Figure 2) had unique patterns and spatial grains of variability. Climate 

336 variables varied at broad scales, while geologic and topographic variables varied at scales 

337 corresponding to major land features such as mountain ranges (Figure 2). Biogeographic 

338 patterns were disparate across dimensions of biodiversity for birds (Figure 3) and trees (Figure 

339 4). Bird diversity patterns were spatially idiosyncratic (Figure 3), while tree diversity showed a 

340 strong longitudinal pattern, with taxonomic diversity highest in the east and functional and 

341 phylogenetic diversity highest in the west (Figure 4). 

342 Effects of climate and geodiversity across taxa and components of biodiversity

343 Among geodiversity variables, elevation variability tended to be the strongest predictor of 

344 biodiversity (Figure 5). Elevation variability was associated with increased bird taxonomic beta-

345 diversity but with decreased bird phylogenetic and functional diversity at all levels. Interestingly, 

346 it had a positive effect across all levels and dimensions of tree biodiversity; it was the only 
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347 predictor with such a consistently positive relationship. Higher mean annual temperature was 

348 associated with lower taxonomic diversity but higher phylogenetic and functional diversity in 

349 birds. In contrast, for trees, precipitation was a much more important climate driver than 

350 temperature (Figure 5). The effect size for temperature was not distinguishable from zero for 

351 most levels and dimensions of tree diversity. For birds, taxonomic alpha-diversity (local 

352 richness) was highest in colder and wetter areas, but most other levels and dimensions of 

353 biodiversity showed the opposite pattern. For trees, taxonomic and functional diversity were 

354 higher in wetter areas, but phylogenetic diversity was higher in drier areas.  

355 The effects of geologic age variability and soil type variability tended to be relatively weak, 

356 although for birds, soil type variability positively affected taxonomic diversity, and for trees, 

357 geologic age variability positively affected taxonomic diversity. Spatial variability in GPP had a 

358 positive relationship with bird taxonomic and functional diversity and a positive relationship with 

359 tree turnover and regional diversity across the three dimensions of biodiversity.  

360 Overall model performance

361 The spatially blocked cross-validation showed that the models with climate or geodiversity 

362 predictors performed no better than the null model when predicting all biodiversity values from 

363 an entire ecoregion held out during model fitting (Figure 6). However, cross-validation prediction 

364 error for models including climate tended to be higher than for models including geodiversity. 

365 Model evaluation using the full dataset without holding out any locations showed that models 

366 including the six fixed predictors were the best fit for biodiversity of trees and birds, as shown by 

367 the RMSEs, WAIC values, and Bayesian R-squared values (Figure S1;  Table S2). Geodiversity 

368 explained a consistent proportion of variation in most forms of bird biodiversity. For trees, the 

369 explanatory power of geodiversity depended on the level of biodiversity considered: geodiversity 

370 explained local (alpha) and regional (gamma) biodiversity better than turnover (beta). 
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371 Spatially varying biodiversity-geodiversity relationships

372 The strength of biodiversity-climate relationships varied more across ecoregions than the 

373 strength of biodiversity-geodiversity relationships (Figure S2). Interestingly, the relationship 

374 between mean annual precipitation and tree taxonomic and functional biodiversity tended to be 

375 more strongly positive in drier western ecoregions where precipitation is limiting (Figure S10). 

376 Phylogenetic diversity showed an opposite spatial pattern: drier areas in the west had higher 

377 tree phylogenetic diversity. In those ecoregions, we observed high phylogenetic diversity at sites 

378 dominated by gymnosperms (Pinus and Juniperus spp.) with a few associated angiosperm 

379 species, notably Cercocarpus ledifolius and Populus tremuloides. These dry sites, which tended 

380 to have low to intermediate taxonomic and functional diversity, may be driving the negative 

381 relationship between precipitation and phylogenetic diversity in the western USA. Notably, the 

382 relationship between elevation variability and biodiversity was relatively consistent across 

383 ecoregions, being generally positive for trees, positive for bird taxonomic diversity, and negative 

384 for bird functional and phylogenetic diversity. Other geodiversity-biodiversity relationships varied 

385 idiosyncratically across space (Figures S2-S14).

386 Discussion

387 The magnitude and direction of the relationships between environmental variability and 

388 biodiversity were intriguingly context-dependent, varying between birds and trees, by diversity 

389 level (alpha, beta, and gamma), by diversity dimension (taxonomic, phylogenetic, and 

390 functional), and by ecoregion. Below we explore potential reasons for this context-dependence 

391 as they relate to the predictions we made initially.  
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392 Effects of climate and geodiversity across components of biodiversity

393 A combination of geodiversity and climate predictors predicted biodiversity within 10% relative 

394 error for most forms of biodiversity for both birds and trees (Figure S1). However, these more 

395 complex models performed worse than the null models in spatially blocked cross-validation, 

396 when predicting biodiversity values in ecoregions not used to fit the model (Figure 6). The poor 

397 performance of models outside the training dataset may indicate that similarity among 

398 neighboring communities of birds and trees explains the majority of variation in biodiversity, with 

399 deterministic effects of geodiversity and climate playing a smaller role. Alternatively this 

400 suggests that a large proportion of the relationship between geodiversity and bird and tree 

401 biodiversity is spatially context-dependent, providing only weak support for our prediction that 

402 geodiversity and climate together explain variation in biodiversity among ecoregions (Prediction 

403 1). The high level of spatial autocorrelation and high variability in relationships among 

404 ecoregions prevented the statistical models from identifying spatially transferable relationships 

405 between geodiversity and biodiversity. Nevertheless, geodiversity variables performed relatively 

406 better than climate variables at out-of-sample prediction (Figure 6), suggesting a potential use of 

407 geodiversity to identify biodiversity hotspots at local to regional scales. The poor performance of 

408 the models relative to null models reveals the difficulty of disentangling environmental drivers of 

409 biodiversity from biogeographical and historical contingency and caution against relying heavily 

410 on geodiversity or climate to predict biodiversity in regions far from where models are fit.

411 Temperature and precipitation means had the strongest effects on diversity, across taxa and 

412 across the levels and dimensions of biodiversity. However, adding geodiversity predictors 

413 significantly increased explanatory power when evaluating models trained on the full dataset 

414 (Figure S1), although neither climate nor geodiversity predictors increased prediction accuracy 

415 in spatially blocked cross-validation (Figure 6). Among geodiversity predictors, topographic 

416 variability had the largest effect on biodiversity. Interestingly, topographic variability had a 
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417 positive relationship with tree diversity across levels, but was associated with lower bird 

418 diversity. This may be because breeding bird diversity is driven by highly mobile migratory bird 

419 species seeking out high-productivity regions for breeding sites (Anderson & Shugart 1974; 

420 Cody 1981). The diversity of niche opportunities available to trees may depend on the 

421 microhabitats created by topographic variation. Niche diversity for birds may be driven more by 

422 the diversity of food sources, which could be reduced in more topographically rugged regions. In 

423 contrast with topographic variability, geologic age and soil type diversity tended to have little or 

424 no effect on biodiversity in the regions and taxa we studied. 

425 We found that geodiversity has significant effects on all diversity levels. Gamma-diversity, which 

426 integrates the alpha and beta levels, is best predicted by a combination of geodiversity and 

427 climate. This finding contrasts with Prediction 2, that geodiversity’s effect would be strongest on 

428 turnover (beta) and regional diversity (gamma). For trees in particular, geodiversity combined 

429 with climate predicted beta-diversity less well than alpha- and gamma-diversity. This result may 

430 be due to incomplete sampling of the local community by single FIA plots. If trees have patchy 

431 distributions at local scales, the small-sized FIA plots may overestimate beta-diversity because 

432 some species that are present throughout the region will be absent from a random subset of 

433 plots within the focal region (Figure 4). Therefore, local sampling might obscure the true pattern 

434 of turnover among plots, but not the regional diversity, which integrates over many plots. We 

435 show that familiar maps of biodiversity, which are commonly created using species range maps 

436 (Currie & Paquin 1987; Brown & Lomolino 1998; Jenkins et al. 2015), represent gamma-

437 diversity patterns, but not necessarily other forms of biodiversity. Our results show that these 

438 different levels of biodiversity (Figures 3 and 4) exhibit different relationships with environmental 

439 gradients. Our maps promote a more nuanced view of biodiversity and emphasize that each 

440 level and dimension has a different relationship with spatial variability in the environment. 
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441 Although we found generally similar responses across biodiversity dimensions, differences may 

442 indicate ecologically or evolutionarily meaningful relationships. In general, we found similar 

443 responses across biodiversity dimensions because they tend to correlate positively with one 

444 another (Figure 1). This finding partially contradicts Prediction 3 that patterns would differ across 

445 dimensions. However, in support of Prediction 3, some environmental drivers had opposite 

446 effects on different dimensions of biodiversity (Jarzyna & Jetz 2016). This result parallels 

447 contrasting patterns across biodiversity dimensions previously documented in mammals (Davies 

448 & Buckley 2011). For example, areas with greater topographic variability tended to have higher 

449 bird taxonomic diversity but lower phylogenetic and functional diversity. Birds’ taxonomic 

450 diversity might not have the same signal as phylogenetic or functional diversity because both 

451 the functional guilds and the phylogenetic lineages of birds differ greatly from one another in 

452 species richness (De Graaf et al. 1985). For example, there are many functionally similar and 

453 closely related species within the guild of small insectivorous songbirds. An increase of species 

454 richness in the insectivore guild would result in increased taxonomic diversity without influencing 

455 the other dimensions of diversity. The high numbers of bird species harboured by geodiverse 

456 regions likely reflects increased taxonomic diversity within speciose guilds. 

457 The discrepancy in relationships we observed among the dimensions of biodiversity we 

458 examined mirror that of a previous study examining biodiversity change over time. Increases in 

459 taxonomic diversity without corresponding changes in phylogenetic or functional diversity may 

460 indicate biotic homogenization of assemblages; 40 years of BBS surveys show a homogenizing 

461 trend over time (Jarzyna & Jetz 2017). While our study does not address change over time, the 

462 discrepancy between taxonomic and functional/phylogenetic diversity patterns with topographic 

463 variability and with temperature is notable. Jarzyna and Jetz also observed that the greatest 

464 temporal changes in diversity occurred at higher elevations and latitudes, ascribing this pattern 

465 to climate change. We documented a positive association between temperature and beta-
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466 diversity for all dimensions, but we found lower phylogenetic and functional diversity in 

467 topographically diverse regions (Figure 5). This result echoes the temporal pattern documented 

468 by Jarzyna and Jetz, suggesting that bird communities at high elevations and in cold regions 

469 may be relatively homogeneous and thus relatively more vulnerable to changing climate. In the 

470 case of breeding birds in the United States, topographically diverse regions may in fact be the 

471 most sensitive to environmental change. 

472 Phylogenetic and functional diversity have similar patterns with respect to most predictor 

473 variables. This finding makes sense given that many, though not all, traits are phylogenetically 

474 conserved (Devictor et al. 2010), such that phylogenetic diversity roughly approximates 

475 functional diversity (Winter et al. 2012). However, tree phylogenetic diversity increases with 

476 decreasing precipitation, while functional diversity and taxonomic diversity decrease. This 

477 suggests that the angiosperm and gymnosperm species that contribute to high phylogenetic 

478 diversity in low-precipitation regions may have convergently evolved suites of adaptations to dry 

479 environments (Méndez-Alonzo et al. 2012), resulting in low functional diversity at those sites. 

480 Spatially varying biodiversity-geodiversity relationships

481 The relationship between geodiversity variables and biodiversity variables varied in direction 

482 and magnitude across the ecoregions of the United States. For example, elevational variability 

483 had a greater effect on tree biodiversity in the central and eastern United States, providing 

484 support for Prediction 4. In the west, climatic factors and a smaller regional species pool set 

485 upper bounds on richness, so the opportunity for increased richness with increased geodiversity 

486 is reduced relative to the east (Figure S11). In contrast, the effect of elevational variability on 

487 bird taxonomic diversity was more likely to be non-zero in regions of high topographic relief, 

488 such as the Appalachian ecoregion and the northern Rocky Mountains (Figure S5). For trees, 

489 the effect of precipitation on biodiversity was more likely to be significant in the drier central and 
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490 western United States (Figure S10), where water tends to be limiting. This suggests that in 

491 regions where climatic factors strongly control species diversity, the influence of geodiversity on 

492 biodiversity is weaker. However, this result may depend on spatial extent of the study region; a 

493 similar model fit only for trees in the Pacific Northwest region shows a strong positive correlation 

494 between elevational variability and tree alpha- and gamma-diversity (Record et al. in press). 

495 The form of the geodiversity-biodiversity relationship and the particular variables that are the 

496 best predictors of biodiversity may not be transferable across ecoregions.  This may present a 

497 conundrum for organisms that are migrating to track climate conditions and may encounter 

498 novel geological features. The Nature Conservancy documented a similar pattern: when they 

499 initially developed the Conserving Nature’s Stage framework, they identified geological variables 

500 as the best predictors of biodiversity in the Northeast U.S. (Anderson & Ferree 2010). Those 

501 variables did not predict biodiversity well when they extended the approach to the Southeast 

502 (Anderson et al. 2014), where geologically homogeneous regions of the Coastal Plain host high 

503 biodiversity. 

504 Conclusions and future directions

505 Our study found that topographic variability was related to biodiversity independently from, and 

506 in different ways than, climatic means. This result suggests that using remotely-sensed 

507 temperature data, rather than values interpolated between weather stations using local 

508 elevation, may improve our ability to distinguish between the effects of climate and of 

509 topographic variability (Pau et al. 2013; Still et al. 2014). Remotely-sensed temperature has 

510 broader spatial coverage than interpolated temperature and is not inherently dependent on 

511 elevation. Therefore, it would be valuable to confirm whether remotely-sensed temperature is 

512 biologically relevant across a range of taxa (Heft-Neal et al. 2017). 
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513 With the increasing intensity of global change threatening biodiversity and ecological integrity, it 

514 is vital to conserve nature’s stage and create refugia for organisms moving to track their optimal 

515 climatic conditions. While past ecological research and the results of this study show that 

516 climate explains much of the spatial variation in biodiversity of trees and birds, geodiversity is 

517 related to biodiversity independently of climate. To disentangle the effects of climatic and 

518 topographic drivers, spatially continuous remotely-sensed data are necessary. Biodiversity-

519 geodiversity relationships depend on taxonomic group, spatial location, the level and dimension 

520 of biodiversity considered, and the grain of analysis (Zarnetske et al. 2019): there is no single 

521 relationship valid for all conditions. To date, biodiversity-geodiversity relationships have primarily 

522 been characterized in a few well-studied taxa (Meynard et al. 2011; Hjort et al. 2012; Wang et 

523 al. 2013; but see Kaskela et al. 2017; Tukiainen et al. 2017); our study of birds and trees only 

524 hints at potential mechanisms underlying differences in relationships among taxonomic groups. 

525 Future work across a wider range of taxa would allow us to identify the mechanisms behind the 

526 differences. Although we need to understand the underlying mechanisms more fully before we 

527 can build models that are transferable across ecoregions, globally available geodiversity 

528 predictors can inform conservation practitioners working at a local scale to conserve different 

529 dimensions of biodiversity in the face of climate change.
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723 Figures

724

725 Figure 1. Heat maps showing correlations between pairs of environmental predictor variables 

726 including geodiversity and climate (a), bird biodiversity variables (b), and tree biodiversity 

727 variables (c). Pearson correlation coefficients are shown, along with colours showing the 
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728 magnitude of the correlation coefficients. TD = taxonomic diversity; PD = phylogenetic diversity; 

729 FD = functional diversity.

730

731

732 Figure 2: Maps of climate and geodiversity predictor variables across the contiguous United 

733 States, centred on BBS route midpoints and FIA plots (fuzzed locations shown).
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734

735 Figure 3: Maps of bird biodiversity at BBS routes, across 3 levels and 3 dimensions of 

736 biodiversity. For taxonomic diversity, richness is plotted for alpha- and gamma-diversity, and 

737 pairwise dissimilarity score is plotted for beta-diversity. For phylogenetic and functional diversity, 

738 z-scores are plotted for all levels. Midpoints of each route are shown on the map.

739
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740

741

742 Figure 4: Maps of tree biodiversity at FIA plots, across 3 levels and 3 dimensions of biodiversity. 

743 The same biodiversity metrics are shown as in Figure 3. Fuzzed locations of each FIA plot are 

744 shown on the map.

745

746
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747

748 Figure 5: Scaled coefficients of fixed effects for birds and trees. Error bars show 95% credible 

749 interval around parameter estimate. Parameters with credible intervals that do not overlap zero 

750 are shown in red. Within each model, predictors are scaled so that coefficients can be 

751 compared across variables within the model. Predictors representing mean climate are shaded 

752 in grey; the other predictors represent geodiversity.
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753

754 Figure 6: Model performance for bird biodiversity and tree biodiversity, assessed with spatially 

755 blocked leave-one-location-out cross-validation. This figure shows the root mean squared errors 

756 from the space-only or null models (red), models with climate predictors (green), models with 

757 geodiversity predictors (blue), and full models (purple) for each taxon and each response 

758 variable. Individual models were fit holding out all data points from one ecoregion, then the 

759 holdout data points were predicted and root mean squared error calculated across all 

760 ecoregions.  The raw errors are divided by the range of the observed data to produce a relative 

761 value comparable among models. A lower value represents better performance of the model. 

762 Error bars are 95% credible intervals. Because each cross-validation fold excludes an entire 
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763 region, the null model including only the spatial random effect tends to predict the held out 

764 values as well or better than the models including climate and geodiversity predictors. However, 

765 models including geodiversity predictors tend to perform as well or better than the models 

766 including climate predictors, especially for phylogenetic and functional diversity. 
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Appendix 1: Assembly of functional traits and phylogenies for 

birds and trees

Birds: functional traits We obtained species mean trait values from the following two sources: 

the Amniote Life History Database (Myhrvold et al. 2016) and EltonTraits (Wilman et al. 2014).  

These databases provide measured or taxonomically imputed values for morphological and life-

history traits, and foraging traits that define a species' resource niche, respectively. We used the 

following traits: proportion of the diet consisting of invertebrates, birds/mammals, 

reptiles/amphibians, fish, scavenged meat, fruit, nectar, and seeds; proportion of foraging time 

spent in the water below and above the surf line, on the ground, in the understory, at mid-height, 

in the canopy, and in the air; pelagic status; time to maturity of females and males; clutch size; 

number of clutches per year; average adult body mass; average and maximum longevity; mass 

at birth; egg mass; time of incubation; age at fledging. We also used the nocturnal status trait 

from EltonTraits to exclude nocturnal species, which are poorly detected by BBS protocol, from 

our analysis. Four traits (egg mass, mass at birth, male time to maturity, and average longevity) 

were correlated with other traits with Pearson’s r > 0.7. Using a Mantel test implemented in the 

R package vegan (Oksanen et al. 2016), we compared the Gower pairwise distance matrix 

calculated from the full trait dataset with the matrix calculated from the reduced dataset without 

the four traits. The two matrices were highly correlated with one another (Mantel correlation 

statistic r = 0.979), indicating that the Gower distances among species are relatively insensitive 

to the inclusion of the correlated traits.

Birds: phylogeny We obtained a recent phylogeny of all bird species (Jetz et al. 2012). The 

phylogeny consists of a posterior distribution of 10000 trees. We randomly chose 1000 trees 

from this posterior distribution and generated a consensus tree with branch lengths using the R 
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package phytools (Revell 2012). We used the branch lengths from this consensus tree to 

calculate the distance-based phylogenetic diversity indices described below.

We resolved any discrepancy in scientific names among BBS, the functional trait datasets, and 

the bird phylogeny by using the most recent taxonomy for each species found on Avibase 

(http://avibase.bsc-eoc.org/). We excluded all individuals not identifiable to the species level 

(excluding 0.17% of individuals) and all individuals listed as hybrids of two species (excluding 

0.0003% of individuals). We assigned all taxa below the species level (subspecies or races) to 

the parent species (affecting 1.4% of individuals) and all species that were so recently split from 

another species in the dataset that they did not appear in the phylogeny or trait dataset 

(affecting 0.17% of individuals). After excluding the nocturnal species and unknown individuals 

and coarsening the subspecies to the species level, there were 605 unique species in the 

dataset.

Trees: functional traits We obtained all available trait data for all species in our survey dataset 

from the TRY database (http://try-db.org) (Kattge et al. 2011), and supplemented these traits 

with data compiled by Jens Stevens (unpublished). We restricted our analysis to continuous 

traits that have a documented link to species performance and niche and that have at least one 

available observation for the majority of species in our dataset. These criteria applied to the 

following traits: specific leaf area, leaf C content per area, leaf N content per area, leaf N 

content per dry mass, leaf P content per dry mass, leaf C:N ratio, leaf N:P ratio, leaf lifespan, 

photosynthetic rate per leaf area, photosynthetic rate per leaf dry mass, leaf thickness, litter 

decomposition rate, plant lifespan, plant shade tolerance category, rooting depth, seed dry 

mass, proportion vessel area per unit stem cross-sectional area, specific stem density, and 

stomatal conductance per leaf area. We used phylogenetic imputation implemented in the R 

package Rphylopars (Goolsby et al. 2017) to impute missing values. For the final analysis, we 

used the following six traits that had a value for almost all species to minimize the number of 
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imputed traits: bark thickness, specific leaf area, specific stem density, seed dry mass, rooting 

depth, and plant lifespan.

Trees: phylogeny We obtained a phylogeny of all trees in the FIA survey area (Potter & 

Woodall 2012; Potter & Koch 2014). For this phylogeny, only a single tree was available rather 

than a distribution of trees, so all phylogenetic diversity metrics that we calculated for FIA trees 

are based on this single tree assuming that it represents a consensus tree. Any discrepancies in 

species names between the FIA, functional trait, and phylogenetic data sources were resolved 

using the most recent taxonomy listed by IUCN (iucnredlist.org).
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Appendix 2: Additional details on Breeding Bird Survey data 

processing

Dealing with imperfect detection in the Breeding Bird Survey

Imperfect bird detection is a known issue in estimating bird diversity from point count surveys 

(Link & Sauer 1998; Jarzyna & Jetz 2016). Because of this, when calculating biodiversity of 

Breeding Bird Survey (BBS) routes, we pooled observations from all stops in each route and 

pooled all surveys from 2007-2016. This yielded a single incidence value for each species at 

each route, with a species considered present if detected at any stop during the 10-year period. 

This method prioritizes minimizing false negatives due to imperfect detection, but may result in 

increased false positives because transient species are considered present. It is impossible to 

simultaneously minimize Type I and Type II errors when determining whether species are 

present or absent. An alternative approach would be to model detection probability for each 

species at each site explicitly (e.g. Dorazio & Royle 2005). Because our primary concern is 

relative differences in richness and diversity among sites rather than absolute diversity (Kéry & 

Royle 2008), generating species-specific estimates of occupancy and detection probability 

would be unlikely to qualitatively change our inference.

Determination of Breeding Bird Survey route neighbourhoods

Criterion used to determine neighbour status. Breeding Bird Survey routes are not points, 

but linear features. We obtained maps of the BBS routes and identified all routes for which we 

could unambiguously locate the midpoint of the route. This excludes any routes that are in 

multiple segments, routes that include loops, or routes that trace back on themselves, resulting 

in 3089 routes. 
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We identified all pairs of neighbouring routes as those whose midpoints were 50 km or less from 

one another. This method ensures that for almost all routes, at least 50% of the length of the 

neighbouring route was within the circle for which the environmental covariates were defined. If 

50% of the neighbouring route is within the circle, the average environmental conditions of the 

circle should adequately represent the environmental conditions of the route. The following 

confusion matrix illustrates the point. 8520 of 8677 pairwise comparisons in our analysis both 

have midpoints that are within 50 km of one another and at least half of the neighbouring route 

within the 50-km circle around the focal route. 

 

Half of route not within 50 

km

Half of route within 50 

km Total

Midpoint not within 50 

km — 181 181

Midpoint within 50 km 157 8520 8677

Total 157 8701 8858

As a result, the neighbourhood criterion is relatively insensitive to whether the midpoint or 50% 

criterion is chosen; 98.1% of pairwise comparisons are not affected by which criterion is chosen.

Number of neighbours for each route. Using the midpoint criterion to determine 

neighbourhoods, the number of neighbours for each BBS route varied between 0 and 15 (see 

table below). The 237 routes without neighbours did not have a beta-diversity value. These 

routes were not included in the beta-diversity regression models. The relatively low number of 

neighbours for some routes is a result of the relatively wide spacing of BBS routes, not the 

specific method we used to determine neighbour status.

Number of neighbours 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of routes 237 581 675 526 398 287 144 101 61 36 23 8 3 6 2 1
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Appendix 3: Compilation and processing of geodiversity data

All data were obtained for the contiguous U.S. or globally and processed using GDAL 

(GDAL/OGR Contributors 2018) and R (R Core Team, 2017) including the rgdal (Bivand et al. 

2018), gdalutils (Mattiuzzi 2018), rts (Naimi 2018), RCurl (Lang & CRAN Team 2018), and 

raster (Hijmans et al. 2017) packages.

Elevation data were obtained from the NASA Shuttle Radar Topography Mission (SRTM; Farr et 

al. 2007) at 1 arcsecond (~30 m) resolution via USGS (https://e4ftl01.cr.usgs.gov/). From these 

data slope, aspect, and topographic position index (TPI) were calculated for a 3 × 3 pixel kernel 

around each central pixel. For each radius (see the section headed “Biodiversity Data Sources 

and Processing” in the main text), pixels were extracted and we calculated the mean, standard 

deviation, maximum, and minimum values.

Temperature variables were derived from land surface temperature (LST) data from the 

MODerate Imaging Spectrometer (MODIS; Wan et al. 2015) on board the Terra satellite (10:30 

am descending node). We used the MOD11A2 product, which is LST averaged over an 8-day 

period at 1 km pixel resolution. These data were aggregated to monthly climatologies for 2001-

2016.  

Average monthly precipitation totals (mm) were calculated from the Climate Hazards group 

Infrared Precipitation with Stations (CHIRPS) monthly data from 2001-2015 (Funk et al. 2015). 

CHIRPS is a 0.05° resolution gridded rainfall product that combines satellite imagery and in situ 

station data, and has been shown to improve species distribution models in areas with sparse 

meteorological stations (Deblauwe et al. 2016). Monthly data were aggregated to monthly 

climatologies by averaging each month across the time period of 2001-2015.

The two main climate datasets - LST and precipitation - were aggregated into 19 bioclimatic 

variables (“bioclim variables”) as described in (Hijmans et al. 2005). Because LST and 

precipitation were available at different resolutions, and many of the bioclim variables require 
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both, all 19 bioclim variables were calculated at both resolutions. LST was averaged to match 

the CHIRPS precipitation resolution and CHIRPS precipitation was simply re-gridded to the LST 

resolution. The bioclimatic variable calculation transformed the monthly climatologies into 

annual climatologies for each location. For each bioclimatic variable, we calculated the mean, 

standard deviation, minimum, and maximum values within each radius, as for the topographic 

indices.

Geologic and soil information included two polygon-based maps which we rasterized: geologic 

age (92 possible values) provided by USGS International Surface Geology (originally hosted by 

worldgrids.org; although the original page is no longer active, for an archived version of the 

page, see http://85.214.253.67/dkwk-

stable/doku.php?id=wiki:geological_and_parent_materials_maps) and soil type (36 possible 

values) provided by the Harmonized World Soil Database (Fischer et al. 2008) and interpolated 

to a 250 m gridded product (Hengl et al. 2017). In contrast to the other geodiversity data layers, 

these products were not remotely sensed. We were concerned with the diversity of geological 

types within each radius, not the substrate and soil types themselves, so we calculated richness 

(number of types) and diversity (Shannon entropy) of substrate and soil types for each radius.

Gross primary productivity (GPP) was calculated as an indicator of cumulative vegetation 

productivity over the course of a year using the Moderate Resolution Imaging 

Spectroradiometer (MODIS) data (for details see Hobi et al. 2017). For this analysis the GPP 

MODIS Collection 5 product having a repeat period of 8 days and a spatial resolution of 1000 m 

was averaged for the time period of 2003-2014 (data freely available from the Dynamic Habitat 

Index project of the SILVIS lab: http://silvis.forest.wisc.edu/data/DHIs). Though GPP is not often 

considered a component of geodiversity, we chose to classify GPP as a geodiversity variable 

because it integrates across a number of biotic and abiotic variables.
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Supplementary Information: Tables and Figures
Beyond counts and averages: relating geodiversity to dimensions of biodiversity. Quentin D. Read, Phoebe L.
Zarnetske, Sydne Record, Kyla M. Dahlin, Andrew O. Finley, John M. Grady, Martina L. Hobi, Sparkle
L. Malone, Jennifer K. Costanza, Adam M. Wilson, Andrew M. Latimer, Keith D. Gaddis, Stephanie Pau,
Scott V. Ollinger

Supplementary Tables

Table S1: Overview of biodiversity metrics by level and by dimension.

Diversity dimension
Taxonomic Phylogenetic Functional

D
iv

er
si

ty
le

ve
l

Alpha
(local)

Mean richness of local com-
munities within a 50-km
radius around the focal
plot

Mean pairwise phyloge-
netic distance score of local
communities in the radius,
relative to null expectation

Mean pairwise functional
distance score of local com-
munities in the radius, rel-
ative to null expectation

Beta
(turnover)

Mean pairwise dissimi-
larity of local communi-
ties in the radius, logit-
transformed

Mean pairwise phyloge-
netic distance among com-
munities in the radius, rel-
ative to null expectation

Mean pairwise functional
distance among communi-
ties in the radius, relative
to null expectation

Gamma
(regional)

Richness of all communi-
ties in the radius, pooled
to a single community

Mean pairwise phyloge-
netic distance of all com-
munities in the radius,
pooled to a single commu-
nity, relative to null expec-
tation

Mean pairwise functional
distance of all communities
in the radius, pooled to a
single community, relative
to null expectation

1
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Table S2: This table shows model fit statistics for each response variable for each model. The RMSE is the
root mean squared error of the model fit with all the data. The CV RMSE is the root mean squared error
of the holdout data points in spatially blocked cross-validation. Both RMSEs are divided by the range of
the data to produce a relative RMSE value that is comparable among models. Lower RMSE values indicate
better model performance. The R2 is calculated using the method of Gelman et al.. For all fit statistics,
mean value as well as upper and lower bounds of 95% credible intervals are shown.

## Warning: package 'knitr' was built under R version 3.6.1

taxon biodiversity
level

biodiversity
dimension

model RMSE CV RMSE R2

birds alpha taxonomic space only 0.13 [0.13,0.14] 0.16 [0.15,0.18] 0.5 [0.48,0.52]
birds alpha taxonomic space + climate 0.12 [0.11,0.12] 0.21 [0.19,0.24] 0.62 [0.6,0.63]
birds alpha taxonomic space + geodiversity 0.11 [0.11,0.12] 0.21 [0.18,0.25] 0.63 [0.61,0.64]
birds alpha taxonomic space + climate +

geodiversity
0.11 [0.1,0.11] 0.23 [0.19,0.26] 0.68 [0.67,0.69]

birds alpha phylogenetic space only 0.15 [0.15,0.16] 0.23 [0.21,0.25] 0.67 [0.66,0.68]
birds alpha phylogenetic space + climate 0.13 [0.13,0.13] 0.32 [0.27,0.37] 0.76 [0.75,0.77]
birds alpha phylogenetic space + geodiversity 0.13 [0.13,0.14] 0.26 [0.23,0.3] 0.75 [0.74,0.76]
birds alpha phylogenetic space + climate +

geodiversity
0.12 [0.12,0.12] 0.32 [0.27,0.38] 0.8 [0.79,0.81]

birds alpha functional space only 0.15 [0.15,0.15] 0.2 [0.19,0.22] 0.62 [0.61,0.64]
birds alpha functional space + climate 0.13 [0.12,0.13] 0.33 [0.28,0.39] 0.73 [0.72,0.74]
birds alpha functional space + geodiversity 0.13 [0.12,0.13] 0.25 [0.22,0.29] 0.72 [0.71,0.73]
birds alpha functional space + climate +

geodiversity
0.11 [0.11,0.12] 0.32 [0.27,0.37] 0.78 [0.77,0.79]

birds beta taxonomic space only 0.12 [0.12,0.13] 0.14 [0.13,0.15] 0.64 [0.62,0.65]
birds beta taxonomic space + climate 0.12 [0.11,0.12] 0.17 [0.16,0.19] 0.67 [0.66,0.69]
birds beta taxonomic space + geodiversity 0.11 [0.11,0.12] 0.16 [0.15,0.18] 0.68 [0.67,0.7]
birds beta taxonomic space + climate +

geodiversity
0.11 [0.11,0.11] 0.19 [0.17,0.22] 0.71 [0.7,0.73]

birds beta phylogenetic space only 0.15 [0.14,0.15] 0.22 [0.2,0.25] 0.69 [0.68,0.7]
birds beta phylogenetic space + climate 0.12 [0.12,0.13] 0.33 [0.28,0.39] 0.78 [0.77,0.79]
birds beta phylogenetic space + geodiversity 0.13 [0.12,0.13] 0.24 [0.21,0.28] 0.77 [0.76,0.78]
birds beta phylogenetic space + climate +

geodiversity
0.11 [0.11,0.11] 0.33 [0.28,0.39] 0.83 [0.82,0.83]

birds beta functional space only 0.14 [0.14,0.15] 0.2 [0.19,0.22] 0.64 [0.62,0.65]
birds beta functional space + climate 0.12 [0.12,0.13] 0.33 [0.28,0.38] 0.74 [0.73,0.75]
birds beta functional space + geodiversity 0.12 [0.12,0.13] 0.22 [0.2,0.25] 0.73 [0.72,0.74]
birds beta functional space + climate +

geodiversity
0.11 [0.11,0.11] 0.31 [0.26,0.37] 0.79 [0.78,0.8]

birds gamma taxonomic space only 0.14 [0.13,0.14] 0.17 [0.16,0.18] 0.46 [0.43,0.48]
birds gamma taxonomic space + climate 0.12 [0.12,0.13] 0.21 [0.19,0.24] 0.55 [0.53,0.57]
birds gamma taxonomic space + geodiversity 0.12 [0.12,0.12] 0.21 [0.18,0.25] 0.58 [0.57,0.6]
birds gamma taxonomic space + climate +

geodiversity
0.12 [0.11,0.12] 0.2 [0.18,0.24] 0.62 [0.6,0.63]

birds gamma phylogenetic space only 0.17 [0.16,0.17] 0.24 [0.22,0.26] 0.65 [0.64,0.66]
birds gamma phylogenetic space + climate 0.15 [0.14,0.15] 0.35 [0.3,0.41] 0.73 [0.72,0.74]
birds gamma phylogenetic space + geodiversity 0.14 [0.14,0.15] 0.27 [0.23,0.3] 0.74 [0.73,0.75]
birds gamma phylogenetic space + climate +

geodiversity
0.13 [0.13,0.13] 0.37 [0.31,0.44] 0.79 [0.78,0.8]

2
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(continued)
taxon biodiversity

level
biodiversity
dimension

model RMSE CV RMSE R2

birds gamma functional space only 0.15 [0.15,0.16] 0.2 [0.18,0.22] 0.57 [0.55,0.59]
birds gamma functional space + climate 0.13 [0.13,0.13] 0.35 [0.3,0.41] 0.68 [0.67,0.69]
birds gamma functional space + geodiversity 0.13 [0.13,0.13] 0.25 [0.22,0.28] 0.69 [0.68,0.7]
birds gamma functional space + climate +

geodiversity
0.12 [0.11,0.12] 0.35 [0.29,0.41] 0.75 [0.74,0.76]

trees alpha taxonomic space only 0.12 [0.12,0.13] 0.18 [0.16,0.2] 0.89 [0.88,0.89]
trees alpha taxonomic space + climate 0.09 [0.09,0.1] 0.36 [0.3,0.43] 0.94 [0.93,0.94]
trees alpha taxonomic space + geodiversity 0.1 [0.1,0.1] 0.37 [0.3,0.46] 0.93 [0.92,0.93]
trees alpha taxonomic space + climate +

geodiversity
0.09 [0.08,0.09] 0.35 [0.28,0.41] 0.95 [0.94,0.95]

trees alpha phylogenetic space only 0.2 [0.2,0.21] 0.27 [0.25,0.29] 0.76 [0.75,0.77]
trees alpha phylogenetic space + climate 0.15 [0.15,0.16] 0.57 [0.48,0.68] 0.86 [0.86,0.86]
trees alpha phylogenetic space + geodiversity 0.17 [0.17,0.18] 0.38 [0.32,0.45] 0.82 [0.82,0.83]
trees alpha phylogenetic space + climate +

geodiversity
0.14 [0.14,0.14] 0.54 [0.46,0.64] 0.88 [0.88,0.89]

trees alpha functional space only 0.09 [0.09,0.09] 0.12 [0.11,0.14] 0.73 [0.72,0.74]
trees alpha functional space + climate 0.08 [0.08,0.08] 0.21 [0.18,0.25] 0.79 [0.79,0.8]
trees alpha functional space + geodiversity 0.08 [0.07,0.08] 0.17 [0.14,0.21] 0.8 [0.8,0.81]
trees alpha functional space + climate +

geodiversity
0.07 [0.07,0.07] 0.24 [0.19,0.28] 0.84 [0.83,0.84]

trees beta taxonomic space only 0.3 [0.29,0.3] 0.32 [0.31,0.34] 0.16 [0.14,0.19]
trees beta taxonomic space + climate 0.29 [0.28,0.3] 0.33 [0.32,0.35] 0.2 [0.17,0.23]
trees beta taxonomic space + geodiversity 0.29 [0.28,0.3] 0.34 [0.32,0.36] 0.2 [0.17,0.23]
trees beta taxonomic space + climate +

geodiversity
0.29 [0.28,0.29] 0.34 [0.32,0.36] 0.22 [0.2,0.25]

trees beta phylogenetic space only 0.18 [0.18,0.19] 0.22 [0.21,0.24] 0.63 [0.62,0.64]
trees beta phylogenetic space + climate 0.16 [0.16,0.17] 0.36 [0.3,0.41] 0.71 [0.7,0.72]
trees beta phylogenetic space + geodiversity 0.17 [0.17,0.18] 0.26 [0.23,0.28] 0.68 [0.67,0.69]
trees beta phylogenetic space + climate +

geodiversity
0.16 [0.15,0.16] 0.32 [0.28,0.38] 0.73 [0.72,0.74]

trees beta functional space only 0.1 [0.1,0.11] 0.12 [0.11,0.12] 0.51 [0.49,0.52]
trees beta functional space + climate 0.1 [0.1,0.1] 0.14 [0.13,0.15] 0.54 [0.52,0.56]
trees beta functional space + geodiversity 0.1 [0.1,0.1] 0.13 [0.12,0.14] 0.54 [0.52,0.55]
trees beta functional space + climate +

geodiversity
0.1 [0.09,0.1] 0.14 [0.13,0.16] 0.56 [0.54,0.58]

trees gamma taxonomic space only 0.12 [0.12,0.13] 0.19 [0.17,0.21] 0.9 [0.9,0.91]
trees gamma taxonomic space + climate 0.09 [0.09,0.09] 0.42 [0.35,0.5] 0.95 [0.95,0.95]
trees gamma taxonomic space + geodiversity 0.09 [0.09,0.1] 0.29 [0.24,0.35] 0.94 [0.94,0.95]
trees gamma taxonomic space + climate +

geodiversity
0.08 [0.07,0.08] 0.38 [0.31,0.46] 0.96 [0.96,0.96]

trees gamma phylogenetic space only 0.12 [0.11,0.12] 0.17 [0.15,0.19] 0.89 [0.89,0.9]
trees gamma phylogenetic space + climate 0.08 [0.08,0.09] 0.36 [0.29,0.43] 0.94 [0.94,0.95]
trees gamma phylogenetic space + geodiversity 0.1 [0.09,0.1] 0.27 [0.22,0.31] 0.93 [0.93,0.93]
trees gamma phylogenetic space + climate +

geodiversity
0.08 [0.07,0.08] 0.32 [0.26,0.37] 0.95 [0.95,0.96]

3
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(continued)
taxon biodiversity

level
biodiversity
dimension

model RMSE CV RMSE R2

trees gamma functional space only 0.13 [0.13,0.13] 0.17 [0.16,0.19] 0.65 [0.64,0.67]
trees gamma functional space + climate 0.11 [0.11,0.11] 0.28 [0.24,0.33] 0.75 [0.74,0.76]
trees gamma functional space + geodiversity 0.12 [0.11,0.12] 0.21 [0.18,0.24] 0.73 [0.71,0.74]
trees gamma functional space + climate +

geodiversity
0.1 [0.1,0.11] 0.28 [0.24,0.33] 0.78 [0.77,0.79]

4
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Table S3: This table shows the Widely Available Information Criterion (WAIC) for each model, along with
the standard error of the WAIC. Lower WAIC values indicate a more parsimonious fit.

taxon biodiversity level model WAIC standard error of WAIC
birds alpha space only 15278.9 230.6
birds alpha space + climate 13189.6 259.3
birds alpha space + geodiversity 13307.8 246.9
birds alpha space + climate + geodiversity 11922.8 256.1
birds beta space only 13245.3 197.8
birds beta space + climate 11525.5 214.9
birds beta space + geodiversity 11698.0 203.9
birds beta space + climate + geodiversity 10407.8 213.2
birds gamma space only 16016.9 215.8
birds gamma space + climate 14375.7 243.3
birds gamma space + geodiversity 14053.7 231.8
birds gamma space + climate + geodiversity 12908.8 240.4
trees alpha space only 10308.1 205.6
trees alpha space + climate 6737.0 236.5
trees alpha space + geodiversity 7810.7 226.4
trees alpha space + climate + geodiversity 5412.5 248.2
trees beta space only 18052.9 257.3
trees beta space + climate 17223.2 276.8
trees beta space + geodiversity 17545.7 262.8
trees beta space + climate + geodiversity 16957.1 278.8
trees gamma space only 8349.6 205.3
trees gamma space + climate 4009.5 228.0
trees gamma space + geodiversity 5444.2 220.2
trees gamma space + climate + geodiversity 2541.7 245.6

5
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Supplementary Figures

Figure S1: Model performance assessed with standard evaluation

Figure S1: This figure shows the relative root mean squared errors obtained from standard resubstitution
evaluation, in which the models are fit using all data and the predicted and observed values compared. The
raw errors are divided by the range of the observed data to produce a relative value comparable among
models. A lower value represents better performance of the model predicting biodiversity. Error bars are 95%
credible intervals. Here, we not only compare taxa but also the four types of model: space only (null), space
+ climate, space + geodiversity, and space + climate + geodiversity (full model). The Bayesian R-squared
values for the full models are also shown. For most biodiversity variables, tree biodiversity is better predicted
by a combination of space, climate, and geodiversity, compared to bird biodiversity. The exceptions are
taxonomic and phylogenetic beta-diversity and phylogenetic alpha-diversity, which are predicted relatively
poorly for trees.

6
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Figure S2: Spatial variation in geodiversity-biodiversity relationships

Figure S2: The spatial variability of the relationship between each predictor and each response, by taxon.
The spatial variability is measured by the standard deviation of each coefficient value among ecoregions.
Error bars represent the 95% credible interval of the standard deviation parameter. Higher values represent
relationships that vary more spatially.
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Supplementary Figures S3-S14

The following figures are maps of the coefficient on each climate or geodiversity predictor from the full
multivariate models predicting alpha, beta, and gamma diversity for birds and for trees. Each figure shows the
coefficients from the alpha, beta, and gamma models for each of the three biodiversity dimensions (taxonomic,
phylogenetic, and functional) for one taxonomic group. Figures 3 through 8 show the coefficients for birds
separately for each predictor, and figures 9 through 14 show the coefficients for trees.

In figures S3a, S4a, etc. below, the color of each TNC ecoregion is the region-level coefficient estimate from
the model (USA-wide fixed-effect slope + random-effect slope from that region). The colors are scaled so that
darker red ecoregions have more positive coefficients, and darker blue ecoregions have negative coefficients.
White ecoregions have coefficients approximating zero, and dark gray ecoregions have coefficients that could
not be estimated.

In figures S3b, S4b, etc., below, the ecoregions are shaded based on whether the 95% credible interval around
the coefficient overlaps zero. Red shaded regions have entirely positive nonzero 95% credible intervals, while
blue shaded regions have entirely negative nonzero 95% credible intervals. Dark gray shaded regions have
95% credible intervals that contain zero.

8
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Figure S3a: Coefficients of mean annual temperature on bird diversity, values shown

Figure S3b: Coefficients of mean annual temperature on bird diversity, nonzero regions shown

9
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Figure S4a: Coefficients of mean annual precipitation on bird diversity, values shown

Figure S4b: Coefficients of mean annual precipitation on bird diversity, nonzero regions shown

10
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Figure S5a: Coefficients of elevation variability on bird diversity, values shown

Figure S5b: Coefficients of elevation variability on bird diversity, nonzero regions shown
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Figure S6a: Coefficients of GPP variability on bird diversity, values shown

Figure S6b: Coefficients of GPP variability on bird diversity, nonzero regions shown
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Figure S7a: Coefficients of geological age diversity on bird diversity, values shown

Figure S7b: Coefficients of geological age diversity on bird diversity, nonzero regions shown
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Figure S8a: Coefficients of soil type diversity on bird diversity, values shown

Figure S8b: Coefficients of soil type diversity on bird diversity, nonzero regions shown
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Figure S9a: Coefficients of mean annual temperature on tree diversity, values shown

Figure S9b: Coefficients of mean annual temperature on tree diversity, nonzero regions shown
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Figure S10a: Coefficients of mean annual precipitation on tree diversity, values shown

Figure S10b: Coefficients of mean annual precipitation on tree diversity, nonzero regions shown
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Figure S11a: Coefficients of elevation variability on tree diversity, values shown

Figure S11b: Coefficients of elevation variability on tree diversity, nonzero regions shown
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Figure S12a: Coefficients of GPP variability on tree diversity, values shown

Figure S12b: Coefficients of GPP variability on tree diversity, nonzero regions shown
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Figure S13a: Coefficients of geological age diversity on tree diversity, values shown

Figure S13b: Coefficients of geological age diversity on tree diversity, nonzero regions shown
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Figure S14a: Coefficients of soil type diversity on tree diversity, values shown

Figure S14b: Coefficients of soil type diversity on tree diversity, nonzero regions shown

20

Page 70 of 114Global Ecology and Biogeography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Response to reviewers 
*** Below we reproduce the reviewers’ comments from the most recent round of peer 
review, with our responses to each individual comment printed in bold and preceded 
with ***. 
 
---------------- 
EDITOR'S COMMENTS TO AUTHORS 
Editor: Bahn, Volker 
Comments to the Author: 
Thank you for your thorough revisions. You addressed most points well. Reviewer 1 only has 
some minor requests for changes in figures. Reviewer 2 and I are inclined to say that you did 
enough for a publishable manuscript but we both still have some reservations on the rigor and 
how you present your methodology and results. Please read over reviewer 2’s comments 
carefully and see how far you can address them with reasonable effort. 
To me one semantic issue remains (and I apologize if I didn’t comment on that last iteration). 
You use the terms “predictive power” and “explanatory power” loosely, maybe even 
interchangeably, when really they are strong terms with important, somewhat distinct meanings. 
Predictive power means the ability of a model to predict onto independent, new data (here 
locations). In a spatial model, this can only be tested on locations that were held out and are 
outside the reach of spatial autocorrelation to training locations. The blocked CV achieves that 
partly (there can still be some autocorrelated test locations close to the borders). However, 
using that technique you actually find that you don’t have any predictive power. Explanatory 
power implies a causal relationship. To prove such a relationship again requires that you apply 
the claimed relationships in a new context. Resubstitution (training data = test data) does not 
allow to evaluate explanatory power. What you find out with resubstitution is goodness of fit. Or 
in other words, correlation does not imply causation. I’m not dogmatic about this. I think that 
simple models with low risk of overfitting paired with much data make a correlation free of any 
causation pretty unlikely. Unfortunately, it has been shown repeatedly that in particular in spatial 
data correlation without causation is not only possible, but has an elevated probability to happen 
because of coincidence of spatial structure. Therefore, to me the much more parsimonious 
interpretation of your results (see your great summary at the beginning of the Discussion 
starting L 380) is that there is little functional relationship between environmental variables and 
the different measures of diversity. The goodness-of-fit achieved in resubstitution models would 
then be a reflection of coincidence in spatial structure in these variables. This interpretation 
much more parsimoniously explains your “intriguingly context-dependent” relationships that vary 
so much among regions and dependent variables and the lack of predictive power as evaluated 
on independent test data than that all functional relationships happen to be idiosyncratic to 
ecoregions and measures of diversity. 
I personally think that we are about to see a paradigm shift toward finding very little functional 
relationship between coarse environmental variables and diversity, and that your study is a 
strong contribution toward that paradigm shift, but you are trying to interpret it according to the 
old paradigm, that is propped up by countless studies correlating diversity (and distributions) 
with environmental variables. I will not abuse my power as editor to enforce that view upon you, 
and you have already made some space in the discussion for that viewpoint. I will leave it up to 
you to think about this one more time and do as you see fit with this thought. The same goes for 
the comments of reviewer 2. 
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*** Thanks for your thoughts and interpretation. We agree that the body of work exploring 
the relationship between biodiversity and environmental variables is top-heavy with 
correlational studies and that there are few convincing demonstrations of mechanism. 
Our work is no exception. However we do not agree that the explanation that there is 
little or no functional relationship between coarse-scale environmental variables and 
biodiversity is most parsimonious. From what we know about biology, we can derive 
mechanistic hypotheses for large-scale environmentally-driven biodiversity trends from 
first principles, and the many correlational studies support those hypotheses. 
Furthermore, in noisy systems it is possible to mask true effects with conservative 
statistical tests designed primarily to minimize Type I error.  
 
L 81: here you use explanatory power. In the abstract it was predictive power. Most of your 
approaches don’t evaluate either one. Explanatory power should be tested in a mechanistic 
sense, ie the predictors need to be shown to have a process-based relationship to the 
dependent variable. Predictive power needs to be evaluated by predicting onto independent 
data, ie locations outside of SAC distance of training locations. What you are looking at is 
goodness-of-fit. 
L 303 That is actually assessing predictive performance and by implication explanatory power. 
L 310 This only assesses goodness-of-fit, which need not be (but can be) related to explanatory 
power. It can be purely correlational. 
L 358 Again, fit best rather than explained most 
  
Dr. Volker Bahn, Editor 
 
*** Thank you for your careful reading of the text. We have modified the text in the 
abstract and at the four places in the main text that you noted to more carefully 
distinguish between tests of predictive power and tests of goodness-of-fit. 
 
---------------- 
REVIEWER COMMENTS TO AUTHORS 
 
Referee: 1 
 
Comments to the Author 
Thank you for addressing my comments. I have gone through the revisions that the authors 
have made and I am now satisfied with the manuscript. The only suggestion I would like to 
make is to make small changes to some figures. Specifically, please increase the font in figures 
2-4 because the scales are not legible. 
 
*** We increased the legend font size on Figures 2-4. 
 
Referee: 2 
 
Comments to the Author 
The authors made some efforts to respond to some of my concerns. Nevertheless, I am not 
really convinced to some of the responses. 
 
First, obviously my suggestion to use an additive response was not as simple as it appeared to 
me. I understand that additive beta is correlated to gamma. But what happens if this beta is 
scaled by gamma? What is the difference compared to a simple Sorensen-Index? From a 
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biological perspective, I want to know what is measured by the Sorensen-Index or any other 
index?  
 
*** Thank you for your suggestion. We further tested our taxonomic beta-diversity model 
on the bird community data using the additive partition beta-diversity scaled by gamma-
diversity (regional richness). The coefficients all had the same sign as the original 
Sorensen dissimilarity metric (see the figure below). The only difference in interpretation 
was that the credible intervals of the coefficients on elevation diversity and mean 
precipitation overlapped zero when the scaled additive beta-diversity was used for the 
response variable, though they did not for the dissimilarity beta-diversity. The broad 
overall similarity between the two sets of coefficients reassuringly indicates that the 
dissimilarity and additive partitioning metrics (when correctly scaled to remove 
dependence on gamma-diversity) are likely measuring the same latent variable -- the 
among-community variation. Therefore, we feel that we have thoroughly investigated the 
possibility of using additive partition beta-diversity and that it would not yield additional 
insight to include in the manuscript. 
 

 
Figure: Comparison of standardized regression coefficients on predictors of taxonomic 
bird beta-diversity, using two different types of beta-diversity. The dissimilarity type is 
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the one used in the manuscript. Error bars represent 95% credible intervals around the 
parameter estimates. 
 
To explain the biological meaning of our chosen beta-diversity index, we added text at 
line 193 as follows:  
 

“The Sørensen dissimilarity index represents the degree to which pairs of 
communities differ from one another in their species composition, independent of 
their species richness, and encompasses both species turnover and nestedness 
components of beta-diversity. This contrasts with beta-diversity indices based on 
multiplicative or additive partitions of alpha- and gamma-diversity (Anderson et al. 
2011).” 

 
Furthermore, I am still not happy of replacing zeros and ones of the beta-diversity in the tree 
data. It is very difficult to evaluate the effect of the arbitrary decision. 16 % of all tree sites have 
values of zero and 1. That´s a lot! What happens if we exclude such zeros and ones from the 
analysis? One might argue, if you have no beta-diversity at all (zeros) we have nothing to 
predict. 
 
*** Thank you for your comment. As you suspect, since there are a large proportion of 0 
and 1 values for tree beta-diversity, the model results are indeed sensitive to whether we 
exclude the values or adjust them. However, we disagree with the statement that no beta-
diversity means that there is nothing to predict. A zero value of beta-diversity means that 
there is no species turnover among the focal plot and its neighbors, and a value of one 
indicates that no species are shared among the plots (complete turnover). It is important 
to note that 0 beta-diversity does not mean no species were present, it simply means the 
species are identical among the communities under consideration. FIA plots with no 
trees were not considered in our analysis. Because the 0 and 1 values represent true 
biological phenomena, extreme points on the continuum between no turnover and 
complete turnover, we were also interested in understanding which environmental 
factors are associated with locations where no turnover or complete turnover occurs. 
Therefore, we determined that adjusting the 0 and 1 values was the best of the imperfect 
options available to us. 
 
Second, I am still not happy about the procedures to estimate functional diversity. It was clear to 
me that morphological data of relevant traits are not available in books or data banks. But I am 
convinced that it would have been possible (of course with a little bit of effort) to measure the 
relevant traits of bill, legs, tail and wings at museum specimen. With such data at hand the 
authors would have the possibility to retrieve a rich picture of the functional diversity.  
 
*** Thank you for your suggestion. Unfortunately collecting bird morphological trait data 
spanning the United States was outside the scope of our study, but we agree that this 
would be a fascinating avenue for future research that would yield a better 
understanding of patterns of variation in relevant bird functional traits. 
 
Furthermore, the author checked the impact of the correlation of several of their data used to 
estimate functional diversity with body size by correlating a distance matrix using a reduced set 
of variables to the original matrix. They found a high matrix correlation. To my opinion this is not 
the test needed; to my feeling this test shows only that these traits do not measure new aspects 
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of the functional diversity. Why using them at all? An appropriate way of removing body size is 
to regress these variables on body size and to use the residuals for further calculations. 
 
*** While we agree with the sentiment behind this comment, we feel that the test we ran in 
response to your comments on the previous revision adequately addresses this point. (In 
that previous document, we compared the pairwise Gower functional distance matrices 
for all birds with and without the traits that were highly correlated with body size. A 
Mantel test shows that the two distance matrices were very highly correlated, with r = 
0.979). While we agree that this could be interpreted as justification for removing the 
traits, we intended our functional diversity metrics to include all traits for which we had 
adequate data for most of the bird species in our dataset. Our functional diversity 
metrics appear to be robust to the inclusion or exclusion of a small number of correlated 
traits among the set of possible traits, so we do not feel that any additional insight into 
important biological patterns can be gained by continuing to test out other possible trait 
combinations or scaling the morphological traits by body size. 
 
Nevertheless, after the revisions the paper has matured to an interesting contribution, although I 
am not always convinced by the theoretical predictions, data, procedures and results. 
Particularity some of the predictions in the introduction are not really informative. For example, 
that different measures of biodiversity have different relationships to geodiversity is to my 
opinion a bit empty. Different measures are different by definition and should have different 
relationships. But the finding that the relationships between biodiversity and climate as well as 
geodiversity is context dependent is an important message that might caution the increasing 
tendency to rely too much on remote sensing to predict biodiversity. 
 
*** Thank you for your comment. We agree that the prediction that different dimensions 
of biodiversity should have different relationships with geodiversity may seem trivial. 
Our motivation for including this prediction was essentially rhetorical: we noticed that 
many conservation organizations are advancing the idea that “we must conserve 
geodiversity to conserve biodiversity.” However, it is probable that focusing 
conservation efforts on geodiversity would only have a positive effect on conserving 
some aspects of biodiversity, and a neutral or even negative effect on other aspects. As 
you note, the various dimensions of biodiversity are inherently different by definition, 
and many of them are orthogonal to one another. In summary, we included this 
prediction primarily to underscore the context-dependence for readers and to make the 
point that this context-dependence has consequences for conservation such that the 
blanket statement that “geodiversity = biodiversity” is inadequate.  
 
We added text to the introduction section of the manuscript to emphasize this point 
(lines 79-83): 
 

“Furthermore, conservation frameworks, including CNS, typically advance the 
idea that conserving geodiversity will result in positive outcomes for biodiversity 
writ large (Beier & de Albuquerque 2015). This assumption must be tested 
empirically, especially given potential tradeoffs among orthogonal dimensions of 
biodiversity within and among taxa: conserving one aspect of biodiversity might 
have a neutral or even negative effect on other aspects.” 
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1

1 Beyond counts and averages: relating 

2 geodiversity to dimensions of biodiversity

3 Running title: Geodiversity across dimensions of biodiversity

4 Abstract

5 Aim

6 We may be able to buffer biodiversity against the effects of ongoing climate change by 

7 prioritizing the protection of habitat with diverse physical features (high geodiversity) associated 

8 with ecological and evolutionary mechanisms that maintain high biodiversity. Yet, the 

9 relationships between biodiversity and habitat vary with spatial and biological context. In this 

10 study we compare how well habitat geodiversity — spatial variation in abiotic processes and 

11 features — and climate explain biodiversity patterns of birds and trees. We also evaluate the 

12 consistency of biodiversity-geodiversity relationships across ecoregions.

13 Location

14 Contiguous United States

15 Time period

16 2007-2016

17 Major tTaxa studied

18 Birds, trees

19 Methods

20 We quantified geodiversity with spatially continuous remotely-sensed data and generated 

21 biodiversity maps from the Forest Inventory and Analysis and Breeding Bird Survey datasets. 

22 We fit separate multivariate regressions to alpha-, beta-, and gamma-diversity, accounting for 
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23 spatial autocorrelation among Nature Conservancy ecoregions and relationships among. The 

24 response variables for each model were taxonomic, phylogenetic, and functional biodiversity. 

25 We fit models including climate alone (temperature, precipitation), geodiversity alone 

26 (topography, soil, geology), and climate + geodiversity.

27 Results

28 A combination of geodiversity and climate predicted predictor variables fit most forms of bird 

29 and tree biodiversity with less than 10% relative error. Models using geodiversity and climate 

30 performed better for local (alpha) and regional (gamma) diversity than turnover-based (beta) 

31 diversity. Among geodiversity predictors, variability of elevation predicted fit biodiversity best; 

32 interestingly, topographically diverse places tended to have higher tree diversity but lower bird 

33 diversity.

34 Main conclusions

35 Although climatic predictors tended to have larger individual effects than geodiversity, adding 

36 geodiversity improved climate-only models of biodiversity for both taxa. Geodiversity predicted 

37 was correlated with biodiversity more consistently than climate across ecoregions, but models 

38 tended to have poor predictive accuracyfit in ecoregions held out of the training dataset. With 

39 ongoing climate change, ecoregion-scale geodiversity could help prioritize conservation regions 

40 for U.S. tree and bird biodiversityPatterns of geodiversity could help prioritize conservation 

41 efforts within ecoregions. However, we need to understand the underlying mechanisms more 

42 fully before we can build models transferable across ecoregions.

43 Keywords

44 biodiversity, geodiversity, Breeding Bird Survey (BBS), Forest Inventory and Analysis (FIA), 

45 alpha-diversity, beta-diversity, gamma-diversity, phylogenetic diversity, functional diversity, 

46 richnessconservation
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47 Introduction

48 In the face of an ongoing sixth mass extinction, society is challenged to minimize biodiversity 

49 loss through conservation efforts (Ceballos et al. 2015). While many conservation policies and 

50 strategies focus on conserving particular species (e.g., the United States Endangered Species 

51 Act, the International Union for Conservation of Nature Red List), there is growing interest in 

52 broadening conservation to include preserving parcels of Earth’s surface that promote diversity 

53 even as species shift their ranges in response to climate change (Beier & de Albuquerque 

54 2015). For example, The Nature Conservancy (TNC) prioritizes preserving areas with high 

55 geodiversity — variation in Earth’s abiotic processes and features — through their ‘Conserving 

56 Nature’s Stage’ (CNS) campaign (Beier & de Albuquerque 2015). Conserving nature’s stage 

57 requires a firm understanding of biodiversity-geodiversity relationships, yet we know little about 

58 how these relationships vary across space, among taxa, and across different dimensions of 

59 biodiversity (Zarnetske et al. 2019). Addressing this knowledge gap is key to advancing 

60 conservation prioritization. 

61 Geodiversity represents natural variation in geologic, geomorphic, and soil features (Gray 2004, 

62 2008) and can be measured in a variety of ways. Most studies focus on elements of topography 

63 (roughness, elevation, slope and aspect), geology (geologic diversity, landscape complexity), 

64 soils (pH, organic matter, nutrient availability), or hydrology (variation of hydrological features 

65 such as rivers, ponds and lakes; Hjort et al. 2012; Wang et al. 2013; Kaskela et al. 2017). Some 

66 geodiversity definitions include climate, using variables such as temperature, precipitation, 

67 evapotranspiration, water balance, and solar radiation, while others explicitly exclude climate 

68 from their definition (Gray 2004; Parks & Mulligan 2010; Tukiainen et al. 2017). A 

69 comprehensive definition of geodiversity includes all abiotic features and processes found within 

70 Earth’s atmosphere, lithosphere, hydrosphere, and cryosphere (Record et al. in press; 

71 Zarnetske et al. 2019).
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72 Abiotic variation may promote increased variety of available niches for organisms (Tews et al. 

73 2004), and high geodiversity is likely to indicate biodiversity hotspots (Lawler et al. 2015, but 

74 see Noss et al. 2014). However, little is known about how geodiversity of Earth’s surface 

75 compares to climate in explaining variation in biodiversity, whether relationships generalize 

76 across geographic locations, and what types of biodiversity have the closest relationship with 

77 geodiversity. Despite the potential importance of geodiversity for explaining patterns of 

78 biodiversity, models explaining patterns of biodiversity rarely include geodiversity (Bailey et al. 

79 2018). Furthermore, conservation frameworks, including CNS, typically advance the idea that 

80 conserving geodiversity will result in positive outcomes for biodiversity writ large (Beier & de 

81 Albuquerque 2015). This assumption must be tested empirically, especially given potential 

82 tradeoffs among orthogonal dimensions of biodiversity within and among taxa: conserving one 

83 aspect of biodiversity might have a neutral or even negative effect on other aspects. In this 

84 study, we use bird and tree occurrence data and remotely-sensed environmental data from 

85 across the United States to increase our understanding of biodiversity-geodiversity 

86 relationships. Geodiversity, in conjunction with climate, predicts patterns of species diversity of 

87 plants (Tukiainen et al. 2017; Bailey et al. 2018) and animals (Parks & Mulligan 2010; Alahuhta 

88 et al. 2018) across disparate biomes. Informed by these previously documented patterns, our 

89 Prediction 1 is that combining geodiversity and climate predictors will significantly increase 

90 improve the explanatory powergoodness-of-fit of models explaining biodiversity of birds and 

91 trees.

92 Recent work shows that the biodiversity-geodiversity relationship depends on spatial grain and 

93 extent (Bailey et al. 2017; Zarnetske et al. 2019). Nevertheless, most studies have focused on 

94 alpha-diversity (local diversity) measured within a plot. In contrast, most large-scale mapping 

95 studies characterizing diversity have equated diversity with gamma-diversity, or the size of the 

96 regional species pool (Currie & Paquin 1987; Jenkins et al. 2015). Only a few have accounted 
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97 for the three levels of biodiversity: alpha-diversity, beta-diversity (turnover among plots) and 

98 gamma-diversity (Meynard et al. 2011; Gossner et al. 2013). Beta-diversity represents 

99 compositional turnover among local communities, linking local diversity (alpha-diversity) to 

100 regional species pools (gamma-diversity). We expect that the relationship between geodiversity 

101 and beta- and gamma-diversity will be stronger than alpha-diversity, because high geodiversity 

102 often reflects high diversity of habitats within regions and therefore more unique local species 

103 assemblages (Stein et al. 2014). This leads to Prediction 2: Geodiversity will explain more 

104 variability in the beta and gamma levels of biodiversity than alpha-diversity.  

105 The relationship between geodiversity and biodiversity may also vary with the dimensions of 

106 biodiversity (taxonomic, functional and phylogenetic diversity). Targeting functional and 

107 phylogenetic diversity is especially important for conserving unique ecological function (Steudel 

108 et al. 2016) and evolutionary history (Davis et al. 2018) in the face of the current biodiversity 

109 crisis. Because phylogenetic (Winter et al. 2012) and functional (Lamanna et al. 2014) 

110 biodiversity are explicitly linked to different ecological and evolutionary mechanisms, they may 

111 provide deeper insight into ecological and evolutionary processes that underlie regional 

112 variation in diversity.  However, few studies of geodiversity have investigated these multiple 

113 dimensions of biodiversity (Meynard et al. 2011); most studies have considered only taxonomic 

114 diversity (e.g., Safi et al. 2011; Stevens & Gavilanez 2015). Because each dimension of 

115 biodiversity represents a unique mechanistic connection with the environment, we predict 

116 (Prediction 3) that the different dimensions of biodiversity will have different relationships with 

117 geodiversity.

118 Relationships between dimensions of biodiversity and geodiversity vary across geographic and 

119 environmental space. In some areas and environmental contexts, one form of geodiversity 

120 might be a more reliable predictor of biodiversity than elsewhere. For example, topographic 

121 complexity generates a diversity of climatic conditions at small to intermediate spatial scales 
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122 ranging from meters (Bennie et al. 2008) to tens of kilometres (Badgley et al. 2017), which may 

123 buffer species against local extinctions as climate warms (Dobrowski 2011; Lenoir et al. 2013). 

124 Such buffering is, however, conditional on climatic context: if an entire landscape is far outside 

125 of the physiological range of tolerance for some taxonomic or functional groups, geodiversity is 

126 likely to be unimportant for maintaining local biodiversity. For example, along the central 

127 California coast, land and ocean surface temperatures contrast strongly and there is high 

128 heterogeneity in topography and associated cloud and fog patterns. Such conditions support 

129 relatively high local richness of tree species (Barbour et al. 2007). Inland, in contrast, the 

130 average climate of the Coast Range is more arid and fog is absent (Ackerly et al. 2010), so only 

131 the coolest facets of the landscape support any level of tree cover. In this context, topographic 

132 heterogeneity is still associated with higher tree diversity, but the relationship is likely to be 

133 weaker. For these reasons, we predict (Prediction 4) that the influence of different geodiversity 

134 predictors on biodiversity will vary across ecoregions. In particular, mountainous ecoregions 

135 with more mesic climates will have more positive relationships between topographic diversity 

136 and biodiversity than more arid mountain ranges.

137 In this study, we use bird and tree occurrence data and remotely-sensed environmental data 

138 from across the United States to increase our understanding of biodiversity-geodiversity 

139 relationships. We make the following predictions:

140 (1) Geodiversity will significantly increase the explanatory power of models explaining 

141 biodiversity of birds and trees.

142 (2) Geodiversity will explain more variability in beta- and gamma-diversity than alpha-

143 diversity.

144 (3) The different dimensions of biodiversity will have different relationships with geodiversity.

145 (4) The influence of different geodiversity predictors on biodiversity will vary across 

146 ecoregions.
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147 Methods

148 We used multivariate linear mixed models with spatial random effects to determine which 

149 geodiversity predictors explain the most variation across the levels and dimensions of bird and 

150 tree biodiversity in the contiguous U.S. We used biodiversity and geodiversity data collected 

151 from 2007-2016. 

152 Breeding Bird Survey (BBS)

153 The North American Breeding Bird Survey (BBS, https://www.pwrc.usgs.gov/bbs/) is an annual 

154 survey of breeding birds across the U.S. and Canada begun in 1966. Volunteer observers report 

155 species and counts of birds seen or heard during 3-minute observations at 50 stops spaced 

156 every ~800 m along routes ~39.4 km in length (Sauer et al. 2013). There are ~3480 active 

157 routes in the contiguous U.S. with continuous yearly stop-level data. We excluded any routes 

158 with an ambiguous midpoint coordinate (discontinuous transects), leaving 3089 routes. We 

159 included only the surveys conducted under the standard protocol, discarding repeat surveys and 

160 any observations recorded by trainees.

161 Forest Inventory and Analysis (FIA)

162 The U.S. Department of Agriculture Forest Service’s Forest Inventory and Analysis program 

163 (FIA) surveys the composition and status of forests throughout the United States, with data 

164 collected annually (Bechtold et al. 2005). Each FIA plot consists of four 7.2-m fixed radius 

165 subplots. Plots are spaced roughly on a 5-km grid across forested land. Each plot is surveyed 

166 approximately every 5 years (Bechtold et al. 2005). Each tree is identified to species. We 

167 obtained the most recent survey from all forested, non-plantation FIA plots in the contiguous 

168 United States (119,177 plots). Some plots in the Pacific Northwest Region included a larger 
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169 “macroplot” around the central subplots; we excluded any trees outside the subplot boundary. 

170 The year of the most recent survey varied between 2012 and 2016. 

171 Phylogenetic and Trait Data

172 We obtained phylogenetic trees and compiled trait information for all bird and tree species in the 

173 BBS and FIA databases, respectively, and used them to calculate the distance-based 

174 phylogenetic and functional diversity indices described below. See Appendix 1 for additional 

175 details.

176 Calculation of Biodiversity Metrics

177 For both tree and bird communities, we calculated biodiversity metrics based on species 

178 presence at the site level (here defined as a single FIA plot or BBS route). For trees in FIA, we 

179 used the most recent survey as a single time point for each site, as there is little turnover in 

180 species composition between surveys and the probability of imperfect detection is low. To 

181 minimize the effects of imperfect bird detection in the BBS survey, we pooled observations from 

182 all stops in each route and pooled all surveys from 2007-2016. See Appendix 2 for additional 

183 details. 

184 We calculated alpha-, beta-, and gamma-diversity (referred to as levels of biodiversity) within a 

185 circle of 50 km radius around each site, originating at the centre of the FIA plot or midpoint of 

186 the BBS route. We defined any BBS route whose midpoint fell within the 50-km circle around 

187 the focal route midpoint to be a neighbour route (see Appendix 2). We took (1) the median 

188 diversity of all sites in the radius, including the focal site (alpha), (2) the median pairwise 

189 diversity of all pairs of sites in the radius, including the focal sites (beta), and (3) the aggregated 

190 diversity of all sites in the radius (gamma). Each diversity level has three dimensions: 

191 taxonomic, phylogenetic, and functional (Table S1). For taxonomic diversity, alpha-diversity and 
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192 gamma-diversity were represented by species richness and beta-diversity by pairwise Sørensen 

193 dissimilarity. The Sørensen dissimilarity index represents the degree to which pairs of 

194 communities differ from one another in their species composition, independent of their species 

195 richness, and encompasses both species turnover and nestedness components of beta-

196 diversity. This contrasts with beta-diversity indices based on multiplicative or additive partitions 

197 of alpha- and gamma-diversity (Anderson et al. 2011). To quantify phylogenetic diversity, we 

198 calculated mean pairwise phylogenetic distance (MPD) of each community with the R package 

199 picante (Kembel et al. 2018). We randomized the phylogenetic distance matrix 999 times and 

200 calculated the z-score of the observed phylogenetic distances relative to the distribution of 

201 phylogenetic distances of the randomized matrices to remove dependence on richness. 

202 Similarly, we calculated a distance-based metric of functional diversity by finding the Gower 

203 distance between the trait values for all possible species pairs, and then calculating the mean 

204 pairwise distance among all pairs of species in each community and its z-score. Because the 

205 BBS surveys poorly estimate abundances of some species, we calculated incidence-based 

206 biodiversity metrics for both birds and trees so that metrics are comparable between the two 

207 taxa. 

208 Geodiversity Data Sources and Processing

209 We obtained and processed remotely-sensed data for the contiguous United States to generate 

210 geodiversity and climate data layers. Remotely-sensed geodiversity variables are particularly 

211 valuable in disentangling the independent effects of climate and geodiversity. Many biodiversity 

212 analyses use climatic data products that interpolate weather station data using elevation, e.g. 

213 Worldclim v.1 (Hijmans et al. 2005). Using elevation to derive temperature values makes it 

214 difficult to evaluate independent contributions from climate and topography (Körner 2007). 

215 Remotely-sensed temperature represents the temperature of the land surface, in contrast with 

216 weather stations that measure air temperature several meters above ground level (Bechtel 
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217 2015). In areas with very sparse coverage of meteorological stations and/or complex 

218 topography, the error introduced by interpolating between ground stations may be large. In 

219 many regions, especially grasslands, shrublands, and croplands, surface temperature shows 

220 large systematic deviations from air temperature (Mildrexler et al. 2011). What is more, studies 

221 have shown that surface temperature may be more ecologically relevant than air temperature 

222 (Pau et al. 2013; Still et al. 2014). The thermodynamic temperature of an organism, which drives 

223 its respiration rate and vapor pressure deficit, is more closely related to the surface temperature 

224 than the surrounding air temperature. Remotely-sensed data products provide spatially 

225 continuous, independent, and direct measures of climate and geodiversity for use in biodiversity 

226 models. 

227 We generated predictors from the following remotely-sensed data products: elevation from 

228 SRTM (Farr et al. 2007), land surface temperature from MODIS MOD11A2 (Wan et al. 2015), 

229 precipitation from CHIRPS (Funk et al. 2015), and gross primary productivity (GPP) dynamic 

230 habitat index from MODIS (Hobi et al. 2017). We generated additional predictors from non-

231 remotely-sensed products including soil type category from SoilGrids (Hengl et al. 2017), which 

232 uses remotely-sensed data to interpolate ground-based measurements, and geologic age 

233 category from USGS International Surface Geology. We included GPP because spatial 

234 variability in GPP integrates many geodiversity variables known to influence biodiversity via 

235 resource availability (Austin & Smith 1989; Alahuhta et al. 2018). GPP spatial variability is 

236 moderately correlated with mean annual precipitation but largely orthogonal to the other 

237 geodiversity variables we chose (Figure 1), indicating that it may capture additional spatial 

238 variation not accounted for by the other three geodiversity variables. See Appendix 3 for 

239 additional details.

240 We coarsened all environmental data layers by calculating the means within 25 km2 pixels to 

241 equal the coarsest resolution of any layer, then we aggregated all geodiversity and biodiversity 
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242 variables within a 50-km radius around the centre of each FIA plot and the midpoint of each 

243 BBS route. The 50-km scale of aggregation averages over a wide range of microhabitats and 

244 microclimates, capturing the geodiversity-biodiversity relationship at a coarse spatial grain; it is 

245 possible that a smaller grain of analysis would reveal different patterns (Zarnetske et al. 2019). 

246 For continuous predictors, we calculated the mean of all pixels partially or wholly in the 50-km 

247 radius, and we used the mean terrain ruggedness index (TRI; Wilson et al. 2007) of the 3×3 

248 pixel neighbourhood around all pixels to represent spatial variability. For discrete predictors, we 

249 used Shannon entropy of all pixels in the radius to represent spatial variability. Shannon entropy 

250 has been shown to monotonically increase with increasing number of landscape patch types, to 

251 behave consistently in both real and simulated landscapes, and to correlate positively with many 

252 other measures of landscape heterogeneity (Peng et al. 2010). Importantly, while many past 

253 studies have used variables extracted from spatially continuous layers at points to characterize 

254 environmental variation, we explicitly consider spatial variation in the regions around the points 

255 where biodiversity was measured. Defining geodiversity in terms of this variation is critical for 

256 fully explaining biodiversity because a single point value cannot capture the diversity of niche 

257 space that may determine biodiversity (Lawler et al. 2015).

258 Finally, we spatially grouped geodiversity and biodiversity observations using TNC’s terrestrial 

259 ecoregions (Olson & Dinerstein 2002) to account for spatial autocorrelation in response 

260 variables. We selected this classification scheme over alternatives because the regions are 

261 defined based on biodiversity analyses conducted across many taxa, and because the number 

262 of ecoregions in the contiguous USA (63 after excluding 6 border regions with insufficient data) 

263 is high enough to adequately account for spatial autocorrelation in biodiversity responses within 

264 the study area without overfitting.
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265 Selection of Predictor Variables

266 We selected six predictor variables for our models: two climate variables to describe the climate 

267 norms inside the radius (mean annual temperature and mean annual precipitation), and four 

268 predictors to describe geodiversity or environmental heterogeneity (mean TRI of elevation and 

269 GPP, Shannon diversities of geological age category and soil type). Together, the six variables 

270 encompass most of the variation in geodiversity and climate among locations in the contiguous 

271 United States and are only modestly correlated with one another (Figure 1), meeting model 

272 assumptions. Based on our a priori hypothesis that geodiversity is related to biodiversity, we 

273 included one predictor to represent each of the unique geodiversity data sources available to us 

274 (elevation, soil type, and geological age category). In addition, we selected GPP diversity to 

275 represent other aspects of geodiversity not captured by the first three variables. Our choice of 

276 mean annual temperature and mean annual precipitation to represent long-run climate norms is 

277 reasonable because the two variables have no relationship to one another at our scale of 

278 observation (Figure 1).

279 Final Data Processing

280 First, we excluded any site within 50 km of the Canada or Mexico borders because the 50-km 

281 radius around those sites contained areas without biodiversity measurements. We logit-

282 transformed the taxonomic beta-diversity variable, which is a raw dissimilarity metric varying 

283 between 0 and 1 in the model. No bird sites had a taxonomic beta-diversity of exactly 0 or 1, but 

284 ~16% of tree sites had taxonomic beta-diversity of exactly 0 or 1, which is outside the domain of 

285 the logit function. Thus, we replaced zeroes with 0.001 and ones with 0.999. We took a spatially 

286 stratified random sample of tree sites where each sampled site was a minimum of 20 km from 

287 any other site, to minimize spatial autocorrelation not captured by our model. This process left 
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288 ~3000 sites, so that sample sizes were comparable between the datasets used to fit each 

289 model. 

290 Model Fitting

291 We fit spatial multivariate mixed models with the following fixed predictors: (1) all six predictor 

292 variables as fixed effects, (2) only the four geodiversity predictors as fixed effects, (3) only the 

293 two climate predictors as fixed effects, and (4) no fixed effects (null model with only spatial 

294 random effects). We fit multivariate models for each diversity level (alpha, beta, and gamma) 

295 and each taxon (birds, trees), totalling 24 models (4 predictor sets × 3 diversity levels × 2 taxa = 

296 24). Each model had three response variables corresponding to the three dimensions of 

297 biodiversity (taxonomic, phylogenetic, and functional). We used the null model z-scores to 

298 represent phylogenetic and functional biodiversity in all the models.

299 We fit a random intercept and slope for each predictor in each TNC ecoregion. We excluded 

300 ecoregions with <5 sites, because random effects estimated with <5 data points are not robust. 

301 The excluded ecoregions were primarily in Canada or Mexico and only have a small area inside 

302 the contiguous United States that is at least 50 km from a land border. After excluding these 

303 ecoregions, 63 ecoregions remained. We estimated random slopes and intercepts for each 

304 ecoregion with a multilevel conditional autoregressive (CAR) structure to model the spatial 

305 variability in the biodiversity-geodiversity relationship among ecoregions (Besag & Kooperberg 

306 1995). We specified the neighbourhood structure with an adjacency matrix identifying all pairs of 

307 regions that share a border. The ecoregion random effects in the model were therefore spatially 

308 structured, accounting for spatial autocorrelation in the biodiversity values of neighbouring 

309 regions. We chose to model spatial dependence using discrete regions because of better out-of-

310 sample prediction performance than simultaneous autoregressive models (Kress, unpublished).

Page 88 of 114Global Ecology and Biogeography

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

14

311 We fit the models in a hierarchical Bayesian framework using the R package brms (Bürkner 

312 2017). We modelled error in response variables as normally distributed. Finally, we 

313 standardized both predictor and response variables before fitting the models so that we could 

314 compare effect sizes across predictors and responses. The standard deviation of each 

315 coefficient represents the among-region variability of each predictor-response relationship.

316 Model Validation

317 To assess model predictive performancefit, we performed spatially blocked leave-one-location-

318 out cross-validation (Roberts et al. 2017). We refit each of the models 63 times, each time 

319 holding out all data points from one of the 63 ecoregions. We found the root mean squared error 

320 (RMSE) of the predicted values of the withheld data from each fold to get a cross-validation 

321 RMSE for each model.  We also calculated the RMSE of the models fit to all the data. We 

322 divided all RMSE values by the range of the observed data to yield relative values that can be 

323 compared among models. We also calculated RMSEs using resubstitution evaluation, in which 

324 no data points were held out in model fitting. This procedure assesses the explanatory 

325 powergoodness-of-fit of models across the entire contiguous U.S. but does not fully correct for 

326 spatial autocorrelation.

327 We calculated the Bayesian R-squared (Gelman et al. 2018) for each model to quantify the 

328 proportion of variation in the response explained by fixed and spatial random effects combined. 

329 Finally, we calculated the widely applicable information criterion (WAIC; Watanabe 2010) for 

330 each model.
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331 Results

332 Description of geodiversity and biodiversity variables

333 Correlations among geodiversity predictor variables were relatively low (Figure 1a). The 

334 pairwise correlation between elevation diversity and geologic age diversity was relatively high (r 

335 = 0.52), indicating that geodiversity measured as topographic variability is correlated with 

336 geodiversity measured as the variety of geologic substrate ages. Notably, the correlation 

337 between elevation diversity and mean annual temperature was low (r = -0.20). In both birds 

338 (Figure 1b) and trees (Figure 1c), taxonomic and phylogenetic diversity were positively 

339 correlated with one another at all levels; this relationship was strongest for birds. However, local 

340 (alpha) and regional (gamma) functional diversity tended to correlate negatively with other forms 

341 of biodiversity in both birds and trees.  

342 Geodiversity variables (Figure 2) had unique patterns and spatial grains of variability. Climate 

343 variables varied at broad scales, while geologic and topographic variables varied at scales 

344 corresponding to major land features such as mountain ranges (Figure 2). Biogeographic 

345 patterns were disparate across dimensions of biodiversity for birds (Figure 3) and trees (Figure 

346 4). Bird diversity patterns were spatially idiosyncratic (Figure 3), while tree diversity showed a 

347 strong longitudinal pattern, with taxonomic diversity highest in the east and functional and 

348 phylogenetic diversity highest in the west (Figure 4). 

349 Effects of climate and geodiversity across taxa and components of biodiversity

350 Among geodiversity variables, elevation variability tended to be the strongest predictor of 

351 biodiversity (Figure 5). Elevation variability was associated with increased bird taxonomic beta-

352 diversity but with decreased bird phylogenetic and functional diversity at all levels. Interestingly, 

353 it had a positive effect across all levels and dimensions of tree biodiversity; it was the only 
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354 predictor with such a consistently positive relationship. Higher mean annual temperature was 

355 associated with lower taxonomic diversity but higher phylogenetic and functional diversity in 

356 birds. In contrast, for trees, precipitation was a much more important climate driver than 

357 temperature (Figure 5). The effect size for temperature was not distinguishable from zero for 

358 most levels and dimensions of tree diversity. For birds, taxonomic alpha-diversity (local 

359 richness) was highest in colder and wetter areas, but most other levels and dimensions of 

360 biodiversity showed the opposite pattern. For trees, taxonomic and functional diversity were 

361 higher in wetter areas, but phylogenetic diversity was higher in drier areas.  

362 The effects of geologic age variability and soil type variability tended to be relatively weak, 

363 although for birds, soil type variability positively affected taxonomic diversity, and for trees, 

364 geologic age variability positively affected taxonomic diversity. Spatial variability in GPP had a 

365 positive relationship with bird taxonomic and functional diversity and a positive relationship with 

366 tree turnover and regional diversity across the three dimensions of biodiversity.  

367 Overall model performance

368 The spatially blocked cross-validation showed that the models with climate or geodiversity 

369 predictors performed no better than the null model when predicting all biodiversity values from 

370 an entire ecoregion held out during model fitting (Figure 6). However, cross-validation prediction 

371 error for models including climate tended to be higher than for models including geodiversity. 

372 Model evaluation using the full dataset without holding out any locations showed that models 

373 including the six fixed predictors and the random ecoregion spatial effect were the best fit for 

374 biodiversity of trees and birdsexplained most of the spatial variation in biodiversity of trees and 

375 birds, as shown by the RMSEs, WAIC values, and Bayesian R-squared values (Figure S1;  

376 Table S2). Geodiversity explained a consistent proportion of variation in most forms of bird 

377 biodiversity. For trees, the explanatory power of geodiversity depended on the level of 
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378 biodiversity considered: geodiversity explained local (alpha) and regional (gamma) biodiversity 

379 better than turnover (beta). 

380 Spatially varying biodiversity-geodiversity relationships

381 The strength of biodiversity-climate relationships varied more across ecoregions than the 

382 strength of biodiversity-geodiversity relationships (Figure S2). Interestingly, the relationship 

383 between mean annual precipitation and tree taxonomic and functional biodiversity tended to be 

384 more strongly positive in drier western ecoregions where precipitation is limiting (Figure S10). 

385 Phylogenetic diversity showed an opposite spatial pattern: drier areas in the west had higher 

386 tree phylogenetic diversity. In those ecoregions, we observed high phylogenetic diversity at sites 

387 dominated by gymnosperms (Pinus and Juniperus spp.) with a few associated angiosperm 

388 species, notably Cercocarpus ledifolius and Populus tremuloides. These dry sites, which tended 

389 to have low to intermediate taxonomic and functional diversity, may be driving the negative 

390 relationship between precipitation and phylogenetic diversity in the western USA. Notably, the 

391 relationship between elevation variability and biodiversity was relatively consistent across 

392 ecoregions, being generally positive for trees, positive for bird taxonomic diversity, and negative 

393 for bird functional and phylogenetic diversity. Other geodiversity-biodiversity relationships varied 

394 idiosyncratically across space (Figures S2-S14).

395 Discussion

396 The magnitude and direction of the relationships between environmental variability and 

397 biodiversity were intriguingly context-dependent, varying between birds and trees, by diversity 

398 level (alpha, beta, and gamma), by diversity dimension (taxonomic, phylogenetic, and 

399 functional), and by ecoregion. Below we explore potential reasons for this context-dependence 

400 as they relate to the predictions we made initially.  
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401 Effects of climate and geodiversity across components of biodiversity

402 A combination of geodiversity and climate predictors predicted biodiversity within 10% relative 

403 error for most forms of biodiversity for both birds and trees (Figure S1). However, these more 

404 complex models performed worse than the null models in spatially blocked cross-validation, 

405 when predicting biodiversity values in ecoregions not used to fit the model (Figure 6). The poor 

406 performance of models outside the training dataset may indicate that similarity among 

407 neighboring communities of birds and trees explains the majority of variation in biodiversity, with 

408 deterministic effects of geodiversity and climate playing a smaller role. Alternatively this 

409 suggests that a large proportion of the relationship between geodiversity and bird and tree 

410 biodiversity is spatially context-dependent, providing only weak support for our prediction that 

411 geodiversity and climate together explain variation in biodiversity among ecoregions (Prediction 

412 1). The high level of spatial autocorrelation and high variability in relationships among 

413 ecoregions prevented the statistical models from identifying spatially transferable relationships 

414 between geodiversity and biodiversity. Nevertheless, geodiversity variables performed relatively 

415 better than climate variables at out-of-sample prediction (Figure 6), suggesting a potential use of 

416 geodiversity to identify biodiversity hotspots at local to regional scales. The poor performance of 

417 the models relative to null models reveals the difficulty of disentangling environmental drivers of 

418 biodiversity from biogeographical and historical contingency and caution against relying heavily 

419 on geodiversity or climate to predict biodiversity in regions far from where models are fit.

420 Temperature and precipitation means had the strongest effects on diversity, across taxa and 

421 across the levels and dimensions of biodiversity. However, adding geodiversity predictors 

422 significantly increased explanatory power when evaluating models trained on the full dataset 

423 (Figure S1), although neither climate nor geodiversity predictors increased prediction accuracy 

424 in spatially blocked cross-validation (Figure 6). Among geodiversity predictors, topographic 

425 variability had the largest effect on biodiversity. Interestingly, topographic variability had a 
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426 positive relationship with tree diversity across levels, but was associated with lower bird 

427 diversity. This may be because breeding bird diversity is driven by highly mobile migratory bird 

428 species seeking out high-productivity regions for breeding sites (Anderson & Shugart 1974; 

429 Cody 1981). The tendency of topographic variability to promote microclimate variability may be 

430 less important for bird diversity relative to tree diversity. The diversity of niche opportunities 

431 available to trees may depend on the microhabitats created by topographic variation. Niche 

432 diversity for birds may be driven more by the diversity of food sources, which could be reduced 

433 in more topographically rugged regions. In contrast with topographic variability, geologic age 

434 and soil type diversity tended to have little or no effect on biodiversity in the regions and taxa we 

435 studied. 

436 We found that geodiversity has significant effects on all diversity levels. Gamma-diversity, which 

437 integrates the alpha and beta levels, is best predicted by a combination of geodiversity and 

438 climate. This finding contrasts with Prediction 2, that geodiversity’s effect would be strongest on 

439 turnover (beta) and regional diversity (gamma). For trees in particular, geodiversity combined 

440 with climate predicted beta-diversity less well than alpha- and gamma-diversity. This result may 

441 be due to incomplete sampling of the local community by single FIA plots. If trees have patchy 

442 distributions at local scales, the small-sized FIA plots may overestimate beta-diversity because 

443 some species that are present throughout the region will be absent from a random subset of 

444 plots within the focal region (Figure 4). Therefore, local sampling might obscure the true pattern 

445 of turnover among plots, but not the regional diversity, which integrates over many plots. We 

446 show that familiar maps of biodiversity, which are commonly created using species range maps 

447 (Currie & Paquin 1987; Brown & Lomolino 1998; Jenkins et al. 2015), represent gamma-

448 diversity patterns, but not necessarily other forms of biodiversity. Our results show that these 

449 different levels of biodiversity (Figures 3 and 4) exhibit different relationships with environmental 
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450 gradients. Our maps promote a more nuanced view of biodiversity and emphasize that each 

451 level and dimension has a different relationship with spatial variability in the environment. 

452 Although we found generally similar responses across biodiversity dimensions, differences may 

453 indicate ecologically or evolutionarily meaningful relationships. In general, we found similar 

454 responses across biodiversity dimensions because they tend to correlate positively with one 

455 another (Figure 1). This finding partially contradicts Prediction 3 that patterns would differ across 

456 dimensions. However, in support of Prediction 3, some environmental drivers had opposite 

457 effects on different dimensions of biodiversity (Jarzyna & Jetz 2016). This result parallels 

458 contrasting patterns across biodiversity dimensions previously documented in mammals (Davies 

459 & Buckley 2011). For example, areas with increased greater topographic variability tended to 

460 have higher bird taxonomic diversity but lower phylogenetic and functional diversity. Birds’ 

461 taxonomic diversity might not have the same signal as phylogenetic or functional diversity 

462 because both the functional guilds and the phylogenetic lineages of birds differ greatly from one 

463 another in species richness (De Graaf et al. 1985). For example, there are many functionally 

464 similar and closely related species within the guild of small insectivorous songbirds. An increase 

465 of species richness in the insectivore guild would result in increased taxonomic diversity without 

466 influencing the other dimensions of diversity. The high numbers of bird species harboured by 

467 geodiverse regions likely reflects increased taxonomic diversity within speciose guilds. 

468 The discrepancy in relationships we observed among the dimensions of biodiversity we 

469 examined mirror that of a previous study examining biodiversity change over time. Increases in 

470 taxonomic diversity without corresponding changes in phylogenetic or functional diversity may 

471 indicate biotic homogenization of assemblages; 40 years of BBS surveys show a homogenizing 

472 trend over time (Jarzyna & Jetz 2017). While our study does not address change over time, the 

473 discrepancy between taxonomic and functional/phylogenetic diversity patterns with topographic 

474 variability and with temperature is notable. Jarzyna and Jetz also observed that the greatest 
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475 temporal changes in diversity occurred at higher elevations and latitudes, ascribing this pattern 

476 to climate change. We documented a positive association between temperature and beta-

477 diversity for all dimensions, but we found lower phylogenetic and functional diversity in 

478 topographically diverse regions (Figure 5). This result echoes the temporal pattern documented 

479 by Jarzyna and Jetz, suggesting that bird communities at high elevations and in cold regions 

480 may be relatively homogeneous and thus relatively more vulnerable to changing climate. In the 

481 case of breeding birds in the United States, topographically diverse regions may in fact be the 

482 most sensitive to environmental change. 

483 Phylogenetic and functional diversity have similar patterns with respect to most predictor 

484 variables. This finding makes sense given that many, though not all, traits are phylogenetically 

485 conserved (Devictor et al. 2010), such that phylogenetic diversity roughly approximates 

486 functional diversity (Winter et al. 2012). However, tree phylogenetic diversity increases with 

487 decreasing precipitation, while functional diversity and taxonomic diversity decrease. This 

488 suggests that the angiosperm and gymnosperm species that contribute to high phylogenetic 

489 diversity in low-precipitation regions may have convergently evolved suites of adaptations to dry 

490 environments (Méndez-Alonzo et al. 2012), resulting in low functional diversity at those sites. 

491 Spatially varying biodiversity-geodiversity relationships

492 The relationship between geodiversity variables and biodiversity variables varied in direction 

493 and magnitude across the ecoregions of the United States. For example, elevational variability 

494 had a greater effect on tree biodiversity in the central and eastern United States, providing 

495 support for Prediction 4. In the west, climatic factors and a smaller regional species pool set 

496 upper bounds on richness, so the opportunity for increased richness with increased geodiversity 

497 is reduced relative to the east (Figure S11). In contrast, the effect of elevational variability on 

498 bird taxonomic diversity was more likely to be non-zero in regions of high topographic relief, 
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499 such as the Appalachian ecoregion and the northern Rocky Mountains (Figure S5). For trees, 

500 the effect of precipitation on biodiversity was more likely to be significant in the drier central and 

501 western United States (Figure S10), where water tends to be limiting. This suggests that in 

502 regions where climatic factors strongly control species diversity, the influence of geodiversity on 

503 biodiversity is weaker. However, this result may depend on spatial extent of the study region; a 

504 similar model fit only for trees in the Pacific Northwest region shows a strong positive correlation 

505 between elevational variability and tree alpha- and gamma-diversity (Record et al. in press). 

506 The form of the geodiversity-biodiversity relationship and the particular variables that are the 

507 best predictors of biodiversity may not be transferable across ecoregions.  This may present a 

508 conundrum for organisms that are migrating to track climate conditions and may encounter 

509 novel geological features. The Nature Conservancy documented a similar pattern: when they 

510 initially developed the Conserving Nature’s Stage framework, they identified geological variables 

511 as the best predictors of biodiversity in the Northeast U.S. (Anderson & Ferree 2010). Those 

512 variables did not predict biodiversity well when they extended the approach to the Southeast 

513 (Anderson et al. 2014), where geologically homogeneous regions of the Coastal Plain host high 

514 biodiversity. 

515 Conclusions and future directions

516 Our study found that topographic variability was related to biodiversity independently from, and 

517 in different ways than, climatic means. This result suggests that using remotely-sensed 

518 temperature data, rather than values interpolated between weather stations using local 

519 elevation, may improve our ability to distinguish between the effects of climate and of 

520 topographic variability (Pau et al. 2013; Still et al. 2014). Remotely-sensed temperature has 

521 broader spatial coverage than interpolated temperature and is not inherently dependent on 
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522 elevation. Therefore, it would be valuable to confirm whether remotely-sensed temperature is 

523 biologically relevant across a range of taxa (Heft-Neal et al. 2017). 

524 With the increasing intensity of global change threatening biodiversity and ecological integrity, it 

525 is vital to conserve nature’s stage and create refugia for organisms moving to track their optimal 

526 climatic conditions. While past ecological research and the results of this study show that 

527 climate explains much of the spatial variation in biodiversity of trees and birds, geodiversity is 

528 related to biodiversity independently of climate. To disentangle the effects of climatic and 

529 topographic drivers, spatially continuous remotely-sensed data are necessary. Biodiversity-

530 geodiversity relationships depend on taxonomic group, spatial location, the level and dimension 

531 of biodiversity considered, and the grain of analysis (Zarnetske et al. 2019): there is no single 

532 relationship valid for all conditions. To date, biodiversity-geodiversity relationships have primarily 

533 been characterized in a few well-studied taxa (Meynard et al. 2011; Hjort et al. 2012; Wang et 

534 al. 2013; but see Kaskela et al. 2017; Tukiainen et al. 2017); our study of birds and trees only 

535 hints at potential mechanisms underlying differences in relationships among taxonomic groups. 

536 Future work across a wider range of taxa would allow us to identify the mechanisms behind the 

537 differences. Although we need to understand the underlying mechanisms more fully before we 

538 can build models that are transferable across ecoregions, globally available geodiversity 

539 predictors can inform conservation practitioners working at a local scale to conserve different 

540 dimensions of biodiversity in the face of climate change.
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734 Figures

735

736 Figure 1. Heat maps showing correlations between pairs of environmental predictor variables 

737 including geodiversity and climate (a), bird biodiversity variables (b), and tree biodiversity 

738 variables (c). Pearson correlation coefficients are shown, along with colours showing the 
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739 magnitude of the correlation coefficients. TD = taxonomic diversity; PD = phylogenetic diversity; 

740 FD = functional diversity.

741

742

743 Figure 2: Maps of climate and geodiversity predictor variables across the contiguous United 

744 States, centred on BBS route midpoints and FIA plots (fuzzed locations shown).
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745

746 Figure 3: Maps of bird biodiversity at BBS routes, across 3 levels and 3 dimensions of 

747 biodiversity. For taxonomic diversity, richness is plotted for alpha- and gamma-diversity, and 

748 pairwise dissimilarity score is plotted for beta-diversity. For phylogenetic and functional diversity, 

749 z-scores are plotted for all levels. Midpoints of each route are shown on the map.

750
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751

752

753 Figure 4: Maps of tree biodiversity at FIA plots, across 3 levels and 3 dimensions of biodiversity. 

754 The same biodiversity metrics are shown as in Figure 3. Fuzzed locations of each FIA plot are 

755 shown on the map.

756

757
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758

759 Figure 5: Scaled coefficients of fixed effects for birds and trees. Error bars show 95% credible 

760 interval around parameter estimate. Parameters with credible intervals that do not overlap zero 

761 are shown in red. Within each model, predictors are scaled so that coefficients can be 

762 compared across variables within the model. Predictors representing mean climate are shaded 

763 in grey; the other predictors represent geodiversity.
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764

765 Figure 6: Model performance for bird biodiversity and tree biodiversity, assessed with spatially 

766 blocked leave-one-location-out cross-validation. This figure shows the root mean squared errors 

767 from the space-only or null models (red), models with climate predictors (green), models with 

768 geodiversity predictors (blue), and full models (purple) for each taxon and each response 

769 variable. Individual models were fit holding out all data points from one ecoregion, then the 

770 holdout data points were predicted and root mean squared error calculated across all 

771 ecoregions.  The raw errors are divided by the range of the observed data to produce a relative 

772 value comparable among models. A lower value represents better performance of the model. 

773 Error bars are 95% credible intervals. Because each cross-validation fold excludes an entire 
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774 region, the null model including only the spatial random effect tends to predict the held out 

775 values as well or better than the models including climate and geodiversity predictors. However, 

776 models including geodiversity predictors tend to perform as well or better than the models 

777 including climate predictors, especially for phylogenetic and functional diversity. 
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