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ABSTRACT OF THE DISSERTATION

A Genomic Analysis Pipeline and Its Application to Pediatric Cancers

By

Michael Dylan Zeller

Doctor of Philosophy in Computer Science

University of California, Irvine, 2014

Professor Pierre Baldi, Chair

We present a cancer genomic analysis pipeline which takes sequencing reads for both germline

and tumor genomes as input and outputs prioritized lists of the most affected genes in the

tumor genome. Using publicly available datasets and literature specific to each patient,

we extract out clinically relevant information to be used in a novel reporting and ranking

system in order to identify the most affected genes and pathways within a patient. Network-

based approaches that integrate protein-protein, protein-TF, and protein-drug interaction

data are used to identify potentially therapeutic drugs and their targets. Effects of genetic

variations on gene expression, as profiled by RNA-seq in tumor samples, are used to provide

further evidence of “driver” mutations – those mutations responsible for tumor progression.

Additionally, previously implicated small and large variations (including gene fusions) are

reported.

Results are presented in a collaborative interface that combines all evidence for the top

ranking genes and pathways. Affected genes in and around protein coding sequences are

investigated further using sequence-level features such as predicted secondary structure, sol-

vent accessibility, phosphorylation status, and protein domains. By using an integrative

approach, effects of genetic variations on gene expression are used to provide further evi-

dence of “driver” mutations.

xii



This pipeline has been developed with the aim to be used in assisting in the analysis of

pediatric tumors, as an unbiased and automated method. We present results that agree

with previous literature and highlight specific findings in a few patients. Portions of this

pipeline have been successfully reused in the analysis of other high-throughput sequencing

data in non-cancer related projects. This work provides a basis for which future personalized

medicine pipelines can be systematically performed in order to assist in the treatment of

newly diagnosed cancer patients.
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Chapter 1

Introduction

Cancers are ranked among the leading causes of death worldwide, with 8.2 million deaths

in 2012 as reported by the World Health Organization (WHO). The American Society of

Clinical Oncology predicts that within the next 16 years, cancer will overtake heart disease

as the number one killer. The rise of cancer as a leading cause of death can be attributed

to an increase in the average lifespan, which was 46.3 in 1900 and rose to 73.8 in 1998

for males in the US. As an individual ages, and risks such as accidental death and heart

attacks decrease, the occurrence of cancer within an individual is inevitable. In fact, about

80 percent of men who reach age 80 have prostate cancer cells in their prostate, although in

many cases this will not lead to death [39]. It is imperative that we address the burden that

the rise of cancer will have on the clinician and in the research lab, through the development

of standard methods for analyzing cancer genomes that lead to easily interpretable results.
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1.1 Heterogeneity of cancer

At the most fundamental level, cancer is a disease of the DNA. Mutations are acquired in

your cells, either through environment or genetic susceptibility over time. Normally, these

mutations are sequestered through normal cell machinery, but in some cases they sneak

through. Over time, these changes to the DNA sequence and the molecules that interact

with it ultimately lead to uncontrolled cell proliferation. The multiply affected pathways

through which these mutations are acquired have been well characterized, and no single

pathway or mutation gives rise to the cancer phenotype [70].

Figure 1.1: Cancer is naturally heterogeneous. As a tumor progresses, multiple mu-
tations are acquired. A subset of mutations allow a tumor to survive chemotheraphy
and result in relapse after treatment.
Figure and legend adapted from [46].

It has been shown that cancer evolves through a reiterative process of clonal expansion [66].

As shown in Figure 1.1, this process in AML involves multiple tumor cell subpopulations, that

during the normal course of treatment, become resistant to chemotherapy through selective

pressure. The resulting population of cells contain multiple acquired mutations, some of

which can be identified through analytic approaches [187]. Typically, 2 to 8 mutations

are attributed to “driving” the tumor progression, non-essential mutations in the tumor

2



are referred to a “passenger” [169]. Thus, current standard therapies could benefit from a

more targeted, personal approach that takes into account the specific subclonal populations

present in an individual’s tumor. Sorting out the “driver” from “passenger” mutations in an

individual is essential in meeting this goal.

1.2 Gene expression in cancer

The role of gene expression in cancer is less understood than that of the acquired DNA

mutations, especially those that have an obvious affect on the resulting protein sequence.

Mutations in DNA regions that have unknown function may still play a role in the develop-

ment of uncontrolled cell growth, through the increase in transcription of certain key genes

and pathways. The ENCODE project annotated 80% of the genome as functional, much of

which is out-side of protein coding sequences ([2, 3]). As far back as 2000, researchers have

been able to identify specific and common aberrant gene expression profiles among cancers

[139].

More recently, others have been able to successfully extract out prognostic genes from gene

expression data in pancreatic cancer [180], supporting the role of aberrant gene expression

playing an important role in tumor progression. While researchers have been successful in

analyzing the human genome for DNA alterations using high-throughput sequencing tech-

nologies, the challenge of integrating multiple sources of data, such as gene expression, still

remains [47].
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1.3 The rise of personalized medicine

With respect to our current understanding of cancer biology, our approach to cancer has

become more personalized. It has become standard procedure to screen for specific BRCA1

mutations in breast cancer cases, in addition to other low-throughput methods such as

immunohistochemistry approaches for HER2 positive or negative staining in breast cancer

[114]. These approaches are limited to a few handful of genes and cannot, for instance,

identify novel mutations in BRCA1. Thus high-throughput sequencing technologies capable

of identifying not only the DNA sequence (DNA-seq) but, for instance, also epigenetic states

(e.g. Methyl-seq) and gene expression levels (RNA-seq), hold the promise to help better

understand cancer in all its various forms in addition to holding the key information needed

for a more personalized approach to medicine.

Indeed large-scale cancer sequencing projects, such as the Cancer Genome Atlas [6], have

already started and produced volumes of data that are already well beyond what can be

transferred over the Internet. However, these projects are still at a relatively early stage

of development and are fraught with numerous challenges associated with the complexity

of the sequencing technology, the lack of standardization, the sheer volume of data, the

heterogeneity of cancers, the complexity of cancer biology, and the problem of obtaining

proper control samples, to name only a few. Although incomplete by necessity, problems,

solutions, and results from these projects ought to be shared periodically in order to move

the field towards more standardized solutions and accelerate the pace of discovery.

As recent as 2009, personalized medicine treatments for AML based on markers identified

using microarray profiling [151] had been suggested. In more recent years we have seen cases

where high-throughput sequencing was used during patient treatment ([175, 103]). In an

even more recent paper, researchers outline the challenges and necessary components of a

personalized medicine pipeline [164]. Despite a decline in sequencing costs as we approach
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reaching the goal of a $1000 genome, significant barriers to entry still exist in getting per-

sonalized medicine into the clinic, including the high-cost of analyzing these genomes [108].

1.4 Pediatric cancer

Worldwide, it is estimated that childhood cancer has an incidence of more than 175,000 per

year, and a mortality rate of approximately 96,000 per year. In the United States, cancer

is the second most common cause of death among children between the ages of 1 and 14

years, exceeded only by accidents, with an incidence of about 12,000 of newly diagnosed

cases per year and 1,300 deaths. The most common cancers in children are (childhood)

leukemia (34%), brain tumors (23%), and lymphomas (12%). Other, less common childhood

cancer types are: Neuroblastoma (7%), Wilms tumor (5%), NonHodgkin lymphoma (4%) ,

Rhabdomyosarcoma (3%), Retinoblastoma (3%), Osteosarcoma (3%), Ewing sarcoma (1%),

Germ cell tumors, Pleuropulmonary blastoma, Hepatoblastoma, and hepatocellular carci-

noma. White and Hispanic children are more likely than children from any other racial or

ethnic group to develop cancer. The causes of most childhood cancers are unknown.

In this thesis we describe the ongoing development of a computational pipeline for the anal-

ysis of high-throughput sequencing cancer data that is currently being applied to pediatric

cancer data that is regularly being sequenced, and further re-sequenced on recurrence, as a

result of a collaboration between the University of California, Irvine (UCI) and the Children

Hospital of Orange County (CHOC). The CHOC receives on the order of 100 new cases per

year, and a project was started in 2012 to sequence the genome from healthy and cancer

tissues of a subset of newly diagnosed cases – and therefore with no emphasis on particular

tumors or tissue types – together with high-throughput gene expression measurements from

cancer cells using RNA-seq.
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1.5 Genomic analysis pipeline

The impact of high-throughput sequencing (HTS) has not been confined to cancer biology

research. While sequencing analysis tools have been around for a long time [143], the impact

of high-throughput sequencing on genetics research in recent years cannot be denied. For

any research question you can now probe the genome or transcriptome of your samples and

identify significant differences between a control and an experimental condition.

We have successfully used high-throughput sequencing in a number of collaborations on

campus at the University of California, Irvine. In doing so, we have acquired standard

analysis pipelines for dealing with each of the major types of sequencing data being obtained

currently:

• DNA-seq

• RNA-seq

• ChIP-seq

Our goal has been to develop an analysis pipeline comprising a combination of in-house and

third party software to manage and analyze the raw data produced by these experiments.

In the case of pediatric cancer, we intend to so in a timely manner after sequencing data

becomes available. This includes the identification and ranking of affected genes containing

both small and large variants, and their integrative systems biology analyses against the large

background of omic, literature, and other data available to us in order to derive inferences

of clinical relevance specific to the cancer types of the patients sequenced. In the case of

other projects, we aim to explore novel biological questions with an emphasis on assessing the

differences in DNA composition or gene expression profiles between two biological conditions.

In the subsequent chapters we outline a genomic analysis pipeline that was developed to

explore cancer, and in particular pediatric cancers. Portions of this pipeline are reused to
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study other related diseases such as canonical Wnt signaling in colon cancer [76] (submitted),

predicting phosphorylation sites in the human proteome [63], and the role of transcription

factor Grhl3 in skin wounding and related diseases [64] (submitted), to name a few applica-

tions. This pipeline is used to analyze sequencing reads directly from Illumina sequencers,

which is commonly delivered by the Genomics High-throughput Sequencing Facility (GHTF)

here on campus, in addition to variant calling services performed by two popular vendors –

Illumina, Inc. and Complete Genomics.
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Chapter 2

Sequence processing methods

High-throughput sequence processing is by no-means standardized as of yet. Solutions exist,

but vary in details from lab to lab, and even from person to person within a single lab. Many

tools exist for processing this data, and each have their own pros and cons, as well as varying

levels of technical support. Within our lab, we have multiple ways to process different types

of high-throughput sequencing data, with multiple steps depending on the project.

An overview of the workflow for the pediatrics cancers project is presented in Figure 2.1.

It begins by collecting two different samples for each patient participating in the CHOC

pediatric cancers project. The first sample is collected in the tissue affected by the cancer

Figure 2.1: Overview of the genomics analysis pipeline which starts from raw sequenc-
ing reads derived from two biological samples per patient and results in a HTML
report with ranked genes and pathways.
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and the second sample is collected either from blood or saliva, depending on the patient,

to be used as a control sample during the analysis. The samples are processed each by the

DNA-seq step, and the tumor sample is additionally processed by the RNA-seq analysis step.

The DNA-seq step in this case provides list of variants and the RNA-seq provides expres-

sion values which feeds into the Differential Analysis step (see Section 3.2.4). An additional

pipeline step exists for processing ChIP-seq datasets, which were not obtained in the pe-

diatrics project. We describe the pipeline steps with respect to the pediatrics project, but

also highlight a few examples throughout the thesis where these steps are used in other

non-cancer related projects.

2.1 DNA-seq

DNA-seq is the most common method used to probe the genome in order identify the DNA

alterations responsible for a disease, such as p53 mutations in cancer [122]. When the

mutations have been previously well characterized, DNA microarrays can be used to detect

a wide range of DNA alterations, but this fails to characterize novel mutations. More recently,

approaches such as exome sequencing, which sequences only the 1% of the genome responsible

for coding sequences, have been successful in identifying the mutations responsible for disease

[123]. Additionally, DNA-seq is the method by which we build reference genomes of model

organisms, including human [1]. Variations of this technology exist, such as the Pacific

Bioscience’s RS II sequencer, which can perform single DNA molecule sequencing producing

read lengths of up to 20kb [23].

For our pediatrics project, we take advantage of commercial solutions that exist for rapidly

processing DNA-seq data in order to identify DNA variations compared to the human refer-

ence genome. Complete Genomics’s (Mountain View, CA) Cancer Sequencing Service and
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Illumina, Inc.’s (San Diego, CA) RapidTrack WGS Service are used to sequence the tumor

and control samples. Sequencing platforms, data vendors, patient description, and data

obtained for each patient are reported in Table A.1.

Sequencing reads provided by Complete Genomics are paired 35 bp reads where each 35

bp read is made of four shorter reads close but not necessarily contiguous on the sequenced

genome. Sequencing reads for all the datasets generated on an Illumina instrument are paired

100 bp reads. Each vendor perform their own variant calling. Illumina, Inc. provides DNA-

seq variants called using their software CASAVA. Open-source solutions exist in addition

to these commercial solutions, such as VarScan2 [93] or Gatk [45], for identifying DNA

mutations in a wide-range of DNA-seq data, and can be used in place of these commercial

vendors for identifying variants within DNA-seq reads.

Quality controls and data filtering The sequencing data quality is assessed based on

the standard PHRED quality scores predicted during the base calling step on each sequenc-

ing platform and on the base call distribution for each sequencing cycle. Typically, reads

mapping to the mitochondrial or nuclear ribosomal RNA genes and PhiX control reads are

removed from the original datasets when analysis is performed in-house.

Alignment to reference genome hg19/GRCh37 Both Complete Genomics and Illu-

mina deliver the short-read alignment results as part of their sequencing service. Alignments

delivered by Complete Genomics are performed using the CGA tools developed by the same

company to handle the specific structure of the short-reads. Alignments delivered by Illu-

mina are performed using their short-read aligner Eland v2e. Alignments to the reference

genome can also be performed using open-source software Bowtie [99] or BWA [100] which

are based on the Burrows-Wheeler transformation [26], although for Complete Genomics

these do not perform well with short-reads of length 35bp.
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2.1.1 Genome assembly

Standardized multi-genome assemblies Rapidly evolving technologies and softwares,

lack of standardization, and large volumes of heterogeneous data are common issues in

genomic analyses and are paired here with the necessity to compare several assemblies for the

same individuals to extract relevant differences potentially correlated with the corresponding

disease. Our strategy to limit the effects of these problems and provide uniform downstream

analyses for all the patients is to adopt a fixed representation of genome assemblies consisting

in three major components: 1) the features needed for the downstream analysis; 2) a fixed

level of description and annotation; and 3) a standardized scoring system and data format

allowing multiple genome assemblies and RNA-seq experiments to be rapidly combined with

each other and compared.

Features selected to describe each assembly include a unique call for each allele, the called

allele sequence, zygosity, ploidy, call confidence level, read counts (coverage), and genomic

annotations corresponding to each position.

Control and cancer genomes comparison The two assembled genomes for each patient

can directly be compared from the assemblies described in the previous section. First,

positions not fully called on both genomes and both alleles have been excluded from the rest

of the analysis as they do not allow a reliable comparison between the two genomes. Around

95% of the known positions in the reference sequences are fully called on both genomes

regardless of the sequencing platform.
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2.1.2 Identifying variations

Small variations are usually defined as the DNA differences with the reference genome se-

quences that can be directly observed in and predicted from short sequencing reads, i.e. of

very limited size. These variations can be accurately predicted in many cases, are widely

studied, reported in numerous databases, and many of them are already documented for

their possible implication in diseases together with their frequency in the population. They

are thus of great interest for genomic analyses and the focus of many studies worldwide.

Comparative analysis The small variations called during the genome assembly (see Sec-

tion 2.1.1) are classified into four categories: SNPs, insertions, deletions, and substitutions.

Between 4 and 4.5 million such variations with the reference sequences are called for each

assembled genome in the pediatrics cancers project. The large number of small variations

results in many false calls and systematic biases in many cases, and some methods to address

this have been developed [29].

However, in our case, the two samples for each patient in the CHOC pediatric cancers project

are sequenced on the same platform and the genomes are assembled using the same methods

and software, hence a significant part of the biases and false calls is thus likely to be repeated

on each assembly. By comparing both genomes and extracting only the differences between

the cancer genome and the control genome, we can reasonably assume these issues to affect

the resulting set of variations significantly less.

Variations observed between the cancer genome and the control genome only represent a

very small fraction of the variations called on both genomes, less than 0.01% in most cases

(example provided for one patient in Table 2.1), reducing drastically the number of variations

to further analyze for each patient. Variations observed on both genomes are not studied

further regardless of the effect these variations may have on proteins when they occur in
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Table 2.1: Mixed variations include cases where different small variants are called
between the two alleles of a genome or between the two genomes.
Table adapted from [188] (submitted).

Variation Control DNA vs Reference Cancer DNA vs Reference Cancer DNA vs Control DNA
SNPs 3,359,243 76.08% 3,356,920 76.11% 36,931 40.15%
Substitutions 207,760 4.71% 209,452 4.74% 20,545 22.33%
Deletions 637,146 14.43% 633,823 14.37% 31,024 33.73%
Insertions 201,883 4.57% 200,976 4.56% 3,472 3.77%
Mixed 9,381 0.21% 9,193 0.21% 14 0.02%
Total 4,415,413 4,410,364 91,986

gene regions.

Absence of control samples in other diseases In some cases there is an absence of

a control sample for DNA-seq, such as is the case for non-cancer diseases that arise due to

environmental changes or a genetic disorder from birth. When dealing with high-throughput

sequencing data for these cases, we still usually have access to a cohort of normal patient

samples, typically a random subset of the population that does not have the disease in

question (e.g. 1000 genomes project [4]). This cohort of normal patients can be processed

in exactly the same way as the disease samples, so that it can be used to infer a set of

commonly occurring small and large variations.

These variations are defined to be those variations identified by our pipeline that are also

present in a significant subset of the normal population. These significant common variants

are used to filter the disease patient variants, in much the same way as if we had a single

normal sample for that patientas in the case of our pediatric patients. Additionally, we

can still make use of our other data sources to filter out other commonly observed SNPs,

particularly the SNPs found in dbSNP, to further filter the disease patient variants.

Large variations Large variations are the large-scale chromosomal variations or rear-

rangements leading to a significant change in the classical organization of the DNA in the

genome.
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• Novel junctions are observed junctions between distant parts of the genome (intra-

or inter-chromosomal).

• Gene fusions are a special case of novel junctions leading to the fusion of two distantly

located genes resulting in a new, functionally different protein product. This analysis

is performed in-house for the data delivered by Illumina.

• Copy number variations (CNVs) are relatively large deletion or duplication events

leading to a different number of copies observed for specific regions of the genome.

• Chromosome duplications or deletions are a particular case of CNVs where an

entire chromosome is either missing or observed with more than two copies. These

variations are detected using in-house software and further validated based on the

expression results obtained following the protocol described in Section 3.

We thus implemented a case-by-case set of rules based on the overlap length between the

large variations predicted for the baseline genome and the ones predicted for the cancer

genome (not detailed here) to decide if a large variation is likely to be unique to the cancer

genome or not. Similarly to the small variations, we list all of the genes affected by large

variations in the cancer genome considering the eight following categories:

• Deletion

• Inversion

• Tandem-duplication

• Distal-duplication

• Inter-chromosomal rearrangement

• Gene fusion

• Higher CNV

• Lower CNV
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The sizes of each of these gene lists are summarized in Table 2.2.

2.1.3 Variant location and effect

Small variations observed only in the cancer genome and in genic regions can be further

analyzed as their effect on the resulting proteins can be directly deduced from their location

in many cases. Eight distinct types of disruptions or changes in the proteins are considered in

our pipeline. Seven of them are inspired by the classification of the variant effects performed

by the CGA tools (Complete Genomics) and we added the loss of heterozygosity between

the germline and cancer genomes, frequently reported in cancer cases [91], resulting in the

following classification:

• Missense (change of amino-acid)

• Nonsense (premature stop codon)

• Nonstop (stop codon altered)

• Misstart (start codon altered)

• Splicing (variation in a donor or acceptor site)

• Frameshift (indels changing the reading frame)

• Inframe (indels not changing the reading frame)

• LOH (loss of heterozygosity)

For each of the eight variant effects listed above, we use the hg19 gene coordinates to extract

the list of genes overlapping the called small variations. The confidence for a gene to be

actually affected by such variation is directly given by the confidence of the small variation

call. The sizes of the gene lists for each patient are summarized in Table 2.2 and range from a

few genes for the most deleterious variations to a few hundred genes for missense mutations,

which are more common and less likely to be deleterious than other variations.
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Table 2.2: Mean size and standard deviation of the gene lists extracted during the
various stages of the analysis for each patient. These lists are used in computing a
ranking score for each gene in the final reports.
Table adapted from [188] (submitted).

Small Variations Large Variations Gene Expression
Gene List Mean StdDev Gene List Mean StdDev Gene List Mean StdDev
Missense 589.9 437.1 Deletion 406.2 555.1 Under expr. HIGH 52.0 67.1
Nonsense 26.2 27.8 Inversion 234.3 325.1 Under expr. MED 433.2 172.3
Nonstop 2.0 3.0 Tandem-Dup 122.8 188.1 Under expr. LOW 14.2 21.7
Misstart 1.2 2.0 Distal-Dup 8.3 27.6 Over expr. HIGH 24.8 42.7
Splicing 31.4 28.0 Inter-Chr 51.0 51.2 Over expr. MED 438.2 99.6
Frameshift 113.3 161.2 Gene Fusion 24.4 21.7 Over expr. LOW 4.9 11.2
Inframe 61.4 51.0 Higher CNV 782.2 1221.8 All tumors HIGH 54.9 71.1
LOH 179.6 321.5 Lower CNV 488.4 1423.3 All tumors MED 457.0 147.7

All tumors LOW 74.0 82.1
Tumor sig. 1430.4 489.8
Control sig. 1087.2 1208.5
Contrast sig. 2455.7 3011.0

UNION 781.1 563.6 UNION 2030.3 1774.7 UNION 4897.9 2570.6

Flagged small variations Putative small variations, specifically single nucleotide poly-

morphisms (SNPs), have been categorized into three subsets – unique, common, or flagged

– with respect to the latest dbSNPs (version 137) tracks from the UCSC Genome Browser

[113]. Specifically, when creating these subsets we used the curated subsets of dbSNPs

referred to as Common SNPs and Flagged SNPs.

SNPs that have a minor allele frequency of at least 1% and that are mapped to a single

location in the reference genome assembly are included in the Common SNPs subset. Taken

as a set, these commonly occurring SNPs should be less likely to be associated with severe

genetic diseases.

Further, for the Flagged SNPs, only SNPs flagged as clinically associated by dbSNP, that

map to a single location in the reference genome assembly, and not known to have a minor

allele frequency of at least 1%, are included. SNPs that do not fit into either the common or

flagged SNPs subsets are categorized as unique SNPs, specific to the patient. Additionally,

COSMIC annotations [56] are added to the small variation calls whenever available.
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Protein domains Besides the commonly characterized affect of small variations on pro-

tein coding sequence detailed in Section 2.1.3, we characterized the location of small variants

based on predicted secondary structure and solvent accessibility using the SCRATCH soft-

ware suite [33]. In addition, protein domain families predicted by Pfam [129] are used to

identify if the small variation affects a protein family domain, which in many cases can

identify important functional portions of a protein such as protein binding domains. This

information is incorporated into our final report in order to manually investigate the conse-

quences of small variations.

Phosphorylation sites Phosphorylation sites identify locations of serine, threonine, and

tyrosine residues which are targeted by kinases, which account for about 500 human proteins.

PhosphoSite Plus [75] is used as a database of validated phosphorylation sites across all hu-

man proteins for 155,588 non-redundant sites. Sequence variations overlapping the portions

of the coding sequences responsible for coding for these affected residues are identified us-

ing simple overlaps of coordinates, as they may play an important role in many diseases,

particularly cancer [133] (see Section 3.1.3).

Variant transcription factor binding sites Putative transcription factor binding sites

(TFBS) for the human reference genome build hg19 are predicted using MotifMap ([184, 37]).

A conservation score of at least 2 (the bayesian branch length score (BBLS)), along with a

FDR score of at most 0.20 (computed using randomly permuted motifs) are used to filter

potential binding sites down to a total of 3,523,896 sites across the 717 transcription factors

annotated by TRANSFAC (version 9) and JASPAR. TFBS are overlapped for variants falling

within 5bp of the consensus to identify possible deleterious regulatory connections in our

network analysis.
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Mitelman fusions The Mitelman database [116] contains 3752 entries corresponding to

gene fusions implicated in different types of cancer. To identify and prioritize these gene

fusions in our patients, we cross this database with all of the gene fusions found for each

patient to identify high-priority fusions and to present the relevant literature in our final

reports that are of clinical relevance. Three of the patients in our study contained fusions

previously described. These fusions were originally identified in the same tumor type as each

of the patients. All identified Mitelman fusions are listed in Table A.3.

2.2 RNA-seq

RNA-seq measures the abundance of transcripts within a sample. RNA-seq correlates with

cDNA microarrays, another method of measuring transcript abundance, in addition to pro-

viding a better estimate of protein levels as measured using mass spectrometry [57]. It is

more sensitive, particularly for low-level transcripts, and linearly related to the abundance

of the target transcript [121]. It also has the ability to identify novel transcripts and dif-

ferentially expressed isoforms. On the other hand, the analysis of RNA-seq is much more

computationally intensive.

RNA-seq in pediatric patients When the sample extracted at the tumor tissue is not

exhausted by the DNA extraction, RNA sequencing is also performed using an Illumina

HiSeq 2500 instrument either by the Scripps Research Next Generation Sequencing Core

Facility (San Diego, CA) or by the Genomics High-Throughput Facility of the University

of California, Irvine (Irvine, CA). The RNA sequencing data is subject to the same quality

controls and is pre-filtered to remove common contaminants in RNA-seq libraries. The RNA

sequencing data is aligned to the reference genome hg19 together with the known splice

junction sequences extracted from the RefSeq database using Eland v2e. Sequencing data
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obtained and the vendors used for each patient is shown in A.1.

Quantifying expression Gene expression levels are computed directly from the read

alignment results. Standard RPKM values (reads per kilobase of exon model per million

mapped reads) [121] are computed directly for each exon, splice junction, and isoform cov-

ered by the sequencing data. In some cases, as is the case for our pediatric patients, no RNA

sequencing data is available for the baseline genome samples, or any other control tissue

samples, and therefore standard differential analysis of the gene expression levels cannot be

performed for each patient. This problem is discussed further in Section 3.2.4.

Other tools used Additional methods for quantifying expression exist, and another com-

mon set of tools is used to process RNA-seq datasets outside of the pediatric cancers project,

in some cases. Typical measurements of expressions are made by counting the number of

reads that align to different mRNA sequences, i.e UTRs and exons, and tools exist to con-

struct the reference transcriptome from annotation files, such as TopHat2 [88].

In order to use TopHat2, mean fragment lengths are computed over FASTQ files by first

aligning all reads using Bowtie [99] and then using SAMtools [101] to compute the mean

distance between mate pairs in a paired-end RNA-seq. This distance is then used to prevent

discordant reads and to pick the best read alignments based on the expected read-length dis-

tribution. In some cases, especially with longer reads such as the 100bp reads from Illumina,

fragment lengths below 200bp can cause dove tailing (i.e. paired-end reads overlap), and in

most cases should be allowed. After aligning to the reference transcriptome, TopHat2 uses

cufflinks [162] to probabilistically assign reads to different isoforms, based on the abundance

of reads aligning to unique exon, in addition to identifying novel transcripts based on reads

aligning to the exons of known transcripts.
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Figure 2.2: Grhl3 transcript visualized in IGV [160]. RNA-seq reads align to exons for
Grhl3 mutant and normal samples. Deleted exon denoted by lack of reads on exons 4
through 7 for mutant samples. Abnormal sample is identified by a lack of reads across
all Grhl3 examples (first sample).

Visualizing read counts across transcripts The accuracy of the read counts in this

context can be used to easily differentiate between mutant and wildtype mice harboring a

deletion in the coding sequence of the gene, Grhl3 (Figure 2.2). Additionally, tools exist

such as cummerRbund [61], which can assist in providing visualizations of RNA-seq data.

Clustering of transcripts can be performed for time-course RNA-seq experiments, as was

performed for a Carbon limited time-course in Y. lipolytica (Figure 2.3).

2.2.1 Small variations in transcripts

RNA sequencing data is available for a large portion of the patients in the pediatric cancers

project. Small variations can also be called for the transcripts based on the alignment

results (Section 2.1). We use the software developed by Illumina, Casava Variant Detection

and Counting (VDC), to extract SNPs and indels following the same protocol as the one
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Figure 2.3: The cummeRbund R package [61] can be used to extract out significantly
changing transcripts from cuffdiff results and performs k-medoid clustering on expres-
sion profiles. Nine clusters of Yarrowia RNA-seq time-course are identified, showing
that the majority of transcripts change expression at the last time point.
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used by Illumina for their DNA sequencing service.

Additionally, we make use of TopHat-Fusion [89] for Illumina, Inc. reads. TopHat-Fusion

wraps the TopHat tool to align each end of a 100bp read to the genome to discordant regions

of the transcriptome. After identifying such reads, TopHat-Fusion can identify the junction

involved in a fusion between two transcripts. These fusion transcript can be used to validate

fusions identified in the DNA-seq in such cases.

2.2.2 De novo assembly

De novo assembly of transcripts is performed in some cases in order to be reference inde-

pendent. Many tools exist to solve this problem, such as Oases [147], SOAPdenovo-Trans

[185], and Trinity [65]. De novo assembly of RNA-seq reads provides the ability to character-

ize previously uncharacterized transcripts, using tools such as ORF Finder [137] to identify

coding sequences within assembled reads, and then subsequently to BLAST these ORFs to

identify likely functions for these transcripts. RNA-seq de novo assembly can be used to

identify 3’ and 5’ UTRs of transcripts, which would otherwise be unknown for a reference

genome that has been previously unannotated.

Expression profiling in Yarrowia lipolytica time-course De novo assembly of RNA-

seq reads is necessary when a good reference genome does not currently exist, as is the case

for Y. lipolytica. While assemblies do exist ([86, 49]), they are poorly annotated and lack

gene expression information aside from predicted transcripts based on sequence alone, using

tools such as GLIMMER [43], in addition to tools specifically designed for yeast such as

YGAP [176], which are only able to explain approximately 20-30% of reads derived from the

RNA-seq (data not shown).

We performed de novo assembly of RNA-seq reads in Y. lipolytica RNA-seq time-course
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shown in Figure 2.3 using Trinity [65]. After obtaining de novo transcripts, we identify ORFs

and BLAST to the 32 yeast genomes to identify the transcript based on protein sequence

alignment results. In this case, we then aligned these transcripts back to two versions of

the reference genome using Exonerate [150], in order to compare the quality of the genome

assemblies (based on DNA-seq reads).

We evaluated the quality of our own in-house assembly and found that a larger number of

transcripts align back to this reference compared to the previous genome assembly performed

in 2004 [49]. On average, 134 more de novo transcripts align back with 95% or better sequence

identity to the new assembly and on average 2600 de novo transcripts align better than the

previous assembly.

2.3 ChIP-seq

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is used to pull-down

fragments of DNA bound to specific factors, usually transcription factors, and then sequence

them. ChIP-seq, like the other high-throughput sequencing methods, can be performed using

an microarray instead of sequencing (ChIP-chip) but is rarely performed anymore. ChIP-

seq almost always uses a reference genome in order to align reads, and de novo methods are

almost unheard of, nor are they needed, as the quality of the genome assembly does not have

a large impact on ChIP-seq results [25].

Peak calling ChIP-seq relies on identifying the DNA fragments that were pulled down by

antibodies attached to beads. Identification of these fragments is done through a statistical

technique known as peak calling, which looks for higher than normal read count distributions

along a region (i.e. peaks).
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A number of solutions exist for doing so, including MACS [189] and QuEST [165]. p-value

cutoffs (typically p<10-5, or a peak score of 50) are used to assess the confidence in binding

based on the parameters of a Poisson modeled estimated on equivalent regions of the Input

sample, which is the cross-linked DNA before the antibody pull-down. Typically, a false

discovery rate is estimated by calling peaks within this Input sample for each p-value cutoff.

ChIP-seq peaks are analyzed for enriched sequences (i.e. motifs). This process is described

in further detail in Section 3.1.4. The tool HOMER [72] is used to assign peaks to their

nearest gene or to identify overlapping genomic features. Enrichment of these features can

be assessed by sampling random fragments of the genome and comparing the distributions of

features such as conservation, methylation, CpG%, among others (see Section 2.3.2) within

the called peaks.

Quality control Besides the use of an input DNA sample, a number of quality control

metrics exist, such as those laid out by the ENCODE project [97]. The ENCODE project

recommends comparing the peak sets of the replicates such that Rep A and B peak lists

are truncated to the same length, followed by comparing top 40% of the replicate A peak

list with the entire replicate B peak list (and vice versa). If 80% of the top 40% set is

contained in the larger set, then the data is considered to be very reproducible. Another

metric, the irreproducibility discovery rate [102], has been shown to work well and can be

used to determine a cutoff for the number of peaks to call based on the concordance among

ChIP-seq biological replicates and can be implemented using MACS. Lastly, peaks between

samples or between experiments can be overlapped to determine a significance using the

hypergeometric distribution. HOMER [72] is able to compute this statistic based on the

overlaps of peak BED files.

24



2.3.1 TCF1E ChIP-seq in a colon cancer cell line

ChIP-seq was performed between a mutant and wildtype TCF1E in a colon cancer cell line

DLD-1 to profile the DNA binding profile in the presence or absense of a second binding

domain within this protein (See Section 3.1.4) under doxycycline-induced expression at 0hr,

2hrs, and 9hrs.

ChIP-seq sequencing reads were analyzed by first aligning 50bp single-end reads to the

hg19 reference genome (GRCh37/hg19) with Bowtie v2.0.0-beta6 [98]; 70-80% of the reads

uniquely mapped to the genome), allowing at most three mismatches per read. MACS

v1.4 [189] was used to call ChIP-seq peaks where only one unique read per position was

retained to avoid PCR artifacts and a default cut-off for a peak score greater than 50 was

used to discard weak binding events. Replicate mapped reads were either pooled together

before peak calling (pooled analysis) or replicates were kept separate and peak calling was

performed independently (replicate analysis).

A comparison of the peaks called at each time point exhibited significant overlap for each

of the dnTCF1EWT and dnTCF1Emut biological replicates. For example, the reciprocal

overlap of the top 20% of wildtype 2 hour peaks was 61% and 54% and for mutant 2hrs it

was 80% and 86%. We further assessed reproducibility using IDR analysis, a stringent rank

order approach that compares the rank order p-values of peaks in biological replicates. IDR

analysis showed that a cut-off of the top 1,000 peaks had a False Discovery Rate of 0.1 for

dnTCF1EWT and .04 for dnTCF1Emut. Following the ENCODE protocol for ChIP-seq,

we therefore pooled the biological replicates for each time point.

The top 1000 peaks identified in our wildtype are shown in Figure 2.4A. The fainter heatmap

signals for the mutant samples at these sites indicate weaker binding, a general pattern also

reflected in the fewer number of total peaks called for the mutant. Read distributions within

peaks are visualized using IGV [160] (Figure 2.4C), by computing the read coverage at every
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Figure adapted from [76] (submitted).
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base pair of the genome using bedtools [130].

We also asses the significance of overlap of our ChIP-seq, with another recently published β-

catenin ChIP-seq experiment in a different colon cancer cell line [172]. As we would expect,

we found significant enrichment of the 10614 β-catenin ChIP-seq peaks within our mutant

and wildtype peaks for 2 and 9 hours (p=10E-587 for WT 2hrs, 10E-125 for MUT 2hrs), but

not our 0hr time points (p=0.74 and p=0.25, respectively). Additionally, these peaks can be

analyzed later using the methods outlined in Chapter 3 and are presented in Section 3.1.4.

2.3.2 Sequence features of GRHL3 ChIP-seq peaks in wounding

experiments [64]

We explore the sequence level features of Grhl3 ChIP-seq peaks in various conditions related

to skin development. We identified 4,035 (common to two independent experiments), 4,820

and 9,294 significant GRHL3 peaks (FDR<0.05), respectively, in embryonic day 16.5 mouse

skin, recovery from wax stripping, and on day 4 of 5% IMQ treatment. Unexpectedly, the

perfect consensus GRHL3 binding site ([96, 179]) was found in a relatively small fraction

of the peaks (for further discussion on searching for motifs and PWMs within our pipeline

see Section 3.1.1), and many computationally identified [37] GRHL3 sites across the genome

were not bound by GRHL3. To test for significance of motif occurrence, PWMs for GRHL3

were searched across all peaks using HOMER and MotifMap in the ChIP-seq peaks as well as

for 100 random shuffles of peaks (controlling for the peak size and chromosomal distribution),

and assessed significance using the Z-score at α <0.05. We found that GRHL3 PWMs were

significant within the embryonic and wax stripping ChIP-seq but not the IMQ, while the

GRHL3 perfect consensus was not significant in any of the ChIP-seq.

We assessed a number of peak level features for significance in peaks containing a GRHL3

PWM site versus genome-wide sites containing the GRHL3 PWM: distance to nearest TSS,
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Figure 2.5: Distance to nearest TSS, CpG%, GC%, and mean conservation for ChIP-
seq peaks containing the GRHL3 PWM as compared to the 300bp around all GRHL3
binding sites within the genome.
Figure adapted from [64] (submitted).
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CpG%, GC%, Conservation, CpG methylation overlap, RepeatMask overlap. Using a log-

odd score cutoff tuned to a known GRHL3 site, we used MotifMap to first identify all

locations of the GRHL3 PWM in the genome (mm9) above the cutoff, expanded to 300bp

(roughly the average peak length for the ChIP-seq peaks). Similarly, ChIP-seq peaks were

filtered for those containing at least one GRHL3 site above the cutoff. For each peak level

feature, we tested for a significance difference in the ChIP-seq peaks containing GRHL3

as compared to the genome background using a one-sided Wilcoxon rank-sum test for the

numeric features (distance, CpG%, GC%, and conservation) and a Fishers exact test on

the CpG methylation and RepeatMasker overlap counts. We found that both evolutionary

sequence conservation and DNA methylation showed highly significant enrichment in the

bound versus non-bound GRHL3 PWM sites and that the highest confidence peaks common

between the different experiments showed even greater enrichment of these features (Fig-

ure 2.5). This data suggests that GRHL3 preferentially associates with those sites found in

regions marked by sequence conservation and DNAmethylation, indicative of gene-regulatory

regions.
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Chapter 3

Expression analysis

As described previously (see Section 1.2), the role of gene expression in cancer is important,

but not as well understood as the role of DNA variations falling within protein coding

sequences. Figure 3.1 shows an overview of the various transcriptional regulators in the

cell. The role of chromatin, depicted as beads on a string in this figure, is explored in

Section 3.2.5, as an application of our standard expression analysis pipeline for RNA-seq.

The other components of this figure, transcription factors (either proximal or distal), are

explored via the sequence composition of their observed binding sites, known as transcription

factor binding sites (TFBS), and how we search for and quantify them. We explore how the

distribution of these sites within the sequences upstream of a gene can be used to identify

causal relationships between transcription factors and a list of genes.

We then move onto describe the portion of the pipeline that identifies the most significant

expression differences between two groups of samples. With respect to the pediatric cancer

patients, we show how this is used to identify transcripts with aberrant gene expression in the

tumor. One of the more novel aspects of our genomics analysis pipeline is our incorporation

of expression data into a DNA-seq pipeline, as described later in Section 4.2.2. In order
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to obtain these results, we have a standard pipeline for the differential analysis of the two

primary sources of expression data: (1) microarray and (2) RNA-seq. We also include a

few examples of where this analysis step was performed to investigate non-cancer related

research questions.

3.1 Transcription factor binding sites

Figure 3.1: Transcription initiation is regulated by multiple factors, such as the or-
ganization of chromatin as well as the presence or absence of co-factor complexes.
Transcription factor binding sites (TFBS) directly upstream or distal to the tran-
scription initiation sites are used to identify sets of sequences to which a particular
transcription factor binds.
Figure and legend text adapted from [171].
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3.1.1 Searching for motifs

The sequences for which a transcription factor binds to, usually identified using either protein

binding affinity assays or ChIP-seq for that factor, are referred to as transcription factor

binding sites (TFBS). TFBS can be summarized for a factor in the form of a position-weight

matrix (PWM). These PWMs denote the relative base-pair frequencies of each base position

of a TFBS, usually with respect to a background base pair frequency. Such a model is limited

in that it cannot model gaps or conditional probabilities between bases in a TFBS, but in

practice it works quite well and has become ubiquitous in the field. A visual representation

of an example PWM is shown in Figure 3.2, as rendered by the software WebLogo [36].

These log-odds matrices for a particular transcription factor are referred to as motifs. A

number of tools exist for working with transcription factor motifs in the form of PWMs,

including tools such as PoSSuMsearch [16] and MOODS [94] which are regularly used to

identify sequences that match with a certain probability within a large set of sequences, in

addition to the general ChIP-seq analysis software suite HOMER [72], which identifies these

sequences within a smaller subset of regions of interest in the genome. MEME [11] and

HOMER can even extract a PWM from a set of sequences by identifying sets of enriched

k-mers (sequences of length k) for various k.

3.1.2 Incorporating conservation

Our pipeline relies heavily on MotifMap ([184, 37]), which making use of the MOODS pipeline

[94] in order to search for all annotated motifs obtained from the databases TRANSFAC

[111] and JASPAR [24]. These sites are annotated for popular genome builds, for which

we currently support mouse (mm9), human (hg19), and yeast (sacCer2). In addition to a

probability of binding, MotifMap provides a measure of conservation, the bayesian branch

length score (BBLS), that has been shown to increase the accuracy of identifying true binding
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Figure 3.2: The position-weight matrix (PWM) for p53 is visualized using a sequence
logo, which denotes the frequency of binding at each base position of a TFBS. The
height of each vertical stack represents the relative frequency at which that base
appears at that position. PWMs are summarized as a consensus sequence, i.e.
RRNCWWGBYYVRRCHWGYYB for P53.

sites, as measured by ChIP-seq, for a number of factors. We make use of this conservation

score to help remove false positive TFBS, using a conservation cut-off (see Section 2.1.3).

3.1.3 Phosphorylation site prediction from motifs

Phosphorylation sites are a second important regulatory mechanism in the cell. These sites

are present on proteins and when activated can inhibit the normal function of that protein,

or cause a protein to be recognized by the ATP-dependant ubiquitin-proteasome degradation

pathway. Recent studies have shown that 90% of tumors contain phosphorylation related

mutations [133], and these are observed at a higher frequency in cancer datasets compared to

the background population [132]. Identifying these sites within protein sequences, and then

mapping them to the genome is an important aspect in annotating the DNA-seq variants

(see Section 2.1.3). We describe a recent paper published in Cellular Signalling in which we

identify genuine phosphylation sites by a number of kinases using PWMs.

Ranking of putative phosphoproteins with MAPK docking-sites We started with

a list of 394 human proteins with putative docking sites of the D-site class, identified by
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Figure 3.3: A) Linear representation of known JNK targets with all potential ST/TP
phosphosites shown. Those sites predicted by our PWM method labeled as JNK.
Literature-validated phosphosites are indicated with yellow crosses. The D-finder-
predicted D-site is shown as a purple rectangle; B) Linear representation of full-length
SMTNL2 protein and all potential ST/TP phosphosites. Phosphosites identified in the
mass spectrometry/mutagenesis experiments are indicated with yellow crosses.
Figure adapted from [63].
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D-finder and published previously [178]. D-finder was developed using a training set of

literature-verified D-sites found in JNK substrates and binding partners, and thus D-finder’s

predictions should be enriched for JNK substrates relative to ERK/p38 substrates.

Each protein on the list of D-finder predictions was scanned for SP and TP sites, as these

constitute potential MAPK phosphosites. Proteins were scored based on the number of

S/TP sites they contained within a 100 amino acid window on either side of their putative

docking site. In this manner, 308 proteins were identified as potential substrates, meaning

that they contained at least one potential phosphosite within 100 residues of the predicted

docking site. Of these 308, 232 contained a cluster of 2 or more S/TP sites near the D-site.

To further analyze these 308 putative substrates for potential JNK phosphosites, we used

a probability-weight matrix (PWM)-based approach to scan for S/TP sites that were in a

local sequence context that indicated that they might be efficient JNK phosphosites.

Construction of position weight matrices for the identification of potential JNK

phosphorylation sites We compiled known in vitro and in vivo JNK1/2/3 phosphosites,

found in the current database of PhosphoSitePlus [75], and used these data to create position

weight matrices (PWMs). PWMs were computed for JNK1, JNK2 and JNK3, for phospho-

serine and phosphothreonine sites independently, thus resulting in a total of 6 PWMs. These

PWMs take as input 15-residue peptide substrings centered on the SP or TP residue being

evaluated. We calculated background frequencies for each amino acid from the set of every

phosphoserine- and phosphothreonine-containing peptide within PhosphoSitePlus. This ap-

proach for determining background frequencies (as opposed to using global coding sequence

frequencies, for example) should in principle reduce any bias towards over-scoring a peptide

based on global properties (charge, surface accessibility, intrinsic disorder) that the set of all

phosphoacceptor peptides may be enriched for.
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These PWMs were then scanned over known JNK substrates, using LAsearch as implemented

in PoSSuM 1.3 [16], which calculates a p-value for each S/T site based on the expected

number of matches for all permutations of the PWM for a background sequence of the same

length as the input (E-value). The p-value threshold used when predicting JNK phosphosites

was tuned so that 80% of the input JNK1 and JNK2 peptides would be predicted correctly

as JNK phosphosites. This threshold was chosen as it minimized the sum of false negatives

plus false positives in known JNK substrates.

The output resulting from applying these PWMs to three known JNK targets (ATF2, JUNB,

and JUN [21]) is shown in Figure 3.3A. For ATF2, the JNK PWMs correctly identified the

known JNK phosphosites T69, T71 and S112, while also correctly rejecting the many other

ST/TP sites found throughout the protein. For JUNB, the JNK PWMs correctly identified

the known JNK phosphosites T102 and T104, while also correctly rejecting the 3 other

ST/TP sites in the polypeptide. Finally, for the canonical JNK substrate JUN, the JNK

PWMs displayed a similar degree of accuracy, although it did falsely predict a single SP site

(this lone false positive, however, was not within 100 amino acids of the D-site). From these

examples it can be concluded that the JNK PWMs we constructed are both sensitive and

specific.

SMTNL2 is a predicted MAPK substrate The human SMTNL2 protein was found

to contain 11 minimal putative MAPK phosphoacceptor sites (S/TP) within 100 amino

acids of the D-site; furthermore, 5 of these were predicted to be likely JNK phosphosites

by the JNK PWM approach (Figure 3.3B), 3 of which were subsequently validated through

mass-spectrometry.
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3.1.4 Alternative target recognition in the Wnt signaling pathway

[76]

The Wnt signaling pathway is one of several vital developmental pathways conserved in all

phyla of the animal kingdom ([74, 153]). In abnormal settings, such as when mutations in

Wnt pathway components cause overactive signaling, gene expression patterns of prolifera-

tion are unbalanced. For example, early development of the majority (80%) of colon cancer

cases are driven by overactive Wnt/β-catenin signaling ([120, 5]). The targets and gene

programs that are misregulated in these cells are specified by the DNA binding specificities

of the LEF/TCFs. The factor studied here, TCF1E, contains two DNA binding domains, a

WRE binding domain and a C-clamp binding domain [77].

Although the C-clamp has been shown to interact with select GC-rich Helper sites in mam-

mals [77] and Drosophila [20], its role in the genome-wide binding of C-clamp isoforms of

TCFs is unknown. We have previously shown that the human C-clamp interacts with a

short Helper site (5-RCCG-3) with an unusual degree of flexibility in that the site can be

recognized on the 5 or 3 side of a Wnt Response Element with a tolerance for varied spacing

between the elements [77]. We also determined that the C-clamp recognizes a 7 nucleotide

extended Helper site (5-GCCGCCR-3), a motif first identified in Drosophila as occurring

adjacent to WREs for dTCF/pangolin recognition [30]. We therefore searched for enrich-

ment of a slightly shorter version of the extended Helper site (5-RCCGCC-3) in our ChIP-seq

peaks because the C-clamp is highly conserved between humans and Drosophila and because

the short 4bp Helper site occurs too frequently for meaningful searches.

ChIP-seq to profile binding of wildtype and mutant TCF1 We performed ChIP-

seq experiments to determine the binding profile of a wildtype and C-clamp mutant version

of TCF1 in DLD-1 colon cancer cells. Our results indicate that the C-clamp-Helper site
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interaction widely contributes to binding site selection and strength.

In agreement with previous cap analysis gene expression (CAGE) results (not shown), a sig-

nificant difference in binding of the helper site consensus sequence was observed (RCCGCC;

Figure 3.4A). The frequency of RCCG within wildtype peaks is much higher than observed

in human genome promoters (Figure 3.4B).

We find that wildtype TCF1 bound to a greater number of gene bodies and promoters

compared to mutant TCF1 (Figure 2.4B), suggesting that the C-clamp helps position TCF1

for transcriptional regulation.

To account for the issue that promoters and gene bodies tend to be more GC-rich than

intergenic regions, we evaluated the occurrence of the Helper site in peaks within promoter

regions (defined as -1kb to +100bp from the TSS) for both wildtype and mutant as compared

with the frequency of the Helper site in all human RNA polymerase II promoters. We used

the incidence of (5-RCCGCC-3) per base pair to determine if the Helper site occurrence is

significantly higher than expected. Despite a higher background GC content within promot-

ers, the incidence of RCCGCC per bp is still significantly greater within promoters bound by

dnTCF1EWT (Figure 3.4B) (Mann-Whitney-Wilcoxon test; p=2.3E-12). For comparison,

the incidence of the Helper site in promoters occupied by dnTCF1Emut is not significantly

greater than the genome background promoters (p¿0.05; Figure 3.4B).

Using frequency plots for each factor, we readily observe a different once in RCCGCC fre-

quency among ChIP-seq peaks in wildtype and mutant (Figure 3.4C), in addition to localiza-

tion of these sites near the peak centers as shown in Figure 3.5. We also observed a greater

percentage of dnTCF1EWT ChIP-seq peaks that have at least one occurrence of the Helper

site compared to dnTCF1Emut, whereas the percentage of peaks containing a WRE was

similar between the two. (Figure 3.4C).

Our bioinformatics analysis also indicates that the C-clamp can interact with a Helper site
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Figure adapted from [76] (submitted).

independently of a concurrent HMG-WRE interaction. Surprisingly, we find that these sites

can contribute to TCF1EWT-mediated transcriptional regulation, suggesting that the C-

clamp-Helper site interaction can contribute to transcription without a neighboring HMG-

WRE interaction. These sites have been validated using mutagenesis analysis for a few

examples.

Changes in gene expression We also assessed early changes in gene expression in tan-

dem with ChIP-seq experiments using a metabolic labeling and high throughput RNA-seq

technique called 4Thiouridine-seq. This technique selectively labels actively transcribed

nascent RNAs, and by comparing 4Thiouridine-seq transcript changes with ChIP-seq data,

we identified new C-clamp dependent Wnt target genes that showed direct regulation by

TCF1, including histone genes, and other genes with high relevance to cell proliferation.

We conclude that the C-clamp can work independent of WRE interactions in modulating

the DNA activities and transcriptional output of TCF1E. However, our results also indicate

that the DNA binding specificities of the HMG box and C-clamp synergize to control gene
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expression of a subset of Wnt target genes (See Figure 3.6).

3.1.5 Enrichment analysis

Given a set of genes, possibly obtained by the differential analysis outlined in the next

section, a common question is what transcription factors are responsible for regulating a

subset or all of these genes? An unfortunate fact is that the gene responsible for regulating

a set of differentially expressed genes is not always identified as changing itself, as is the case

for IL-12 in the transcriptional response to UV light [118].

To identify which transcription factors may be regulating a set of genes, we use a Fisher’s

Exact test to determine significance of the number of binding sites within the list, as com-

pared to the 36742 transcripts annotated in the human genome, and subsequently rank

transcription factors by this p-value. Fisher’s exact test uses the formula below, along with

a contingency table as shown in Table 3.1. Using the TFBS identified by MotifMap (see

Section 2.1.3), and for a specific set of distances (usually 3kb or 10kb from the transcription

start site of transcripts), we identify all bases containing a TFBS for each transcription factor

both within the transcriptome and within the transcripts of our gene list. This analysis can

be extended to co-localization of >1 TF using 2x4 contingency tables, whose probabilities

can be calculated using Monte Carlo Methods [112].

p =
(a+b

a
)(c+d

c
)

( n

a+c
)

This analysis is incorporated into our pipeline as part of a standard gene list enrichment

analysis step using the same framework as in Section 5.1 to present enrichment results.
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Table 3.1: Contingency table used for Fisher’s exact test calculation for identifying
enriched TFBS. We assume each base pair sequence in the genome has a background
probability of being a TFBS and are independent

Bases in promoters Gene set Genomewide
Is a TFBS a b
Is not a TFBS c d

Additionally, all analysis is performed using a server-client interface which keeps in memory

a database of all TFBS within a fixed distance and cutoffs from all transcripts in the human

genome, for returning enrichment results in less than a minute for any sized list. This step

additionally computes DAVID GO term enrichment [44], GO terms listed per gene, GSEA

[158] for gene lists of interest, and the TFBS enrichment described here. Additionally, this

step reconstructs the original network with PPI and MotifMap edges along with the enriched

network, listing all identified transcription factors in the initial list using a network approach

shown in the section below, as well as described further in Section 4.1.

3.1.6 Defining the transcriptional regulatory network of skin wound-

ing

As an example of the application of the TFBS enrichment outside of the context of pediatric

cancers, we identify the transcriptional regulators of the human response to skin wounding.

We analyzed RNA-seq data obtained by collaborators and their colleges at the UCI Medical

Center for skin samples extracted pre- and post-surgery, in order to investigate the human

skin wounding response in human tissue. Differential transcripts were identified (496 up- and

412 down-regulated) using the methods described in Section 3.2.4. These genes were found

to be related to wounding response through enriched GO terms found with DAVID [78] as

part of the standard analysis pipeline. The list of enriched TFBS within this list are shown

in Table 3.2, among which NFkB, STAT4, SRF, CREB, PURA had enrichment for binding

sites, but were not found to be differentially expressed. ETS2 was enriched in addition to
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Table 3.2: Enriched transcription factors in skin wounding

Factor TFBS in Bases in Motif
Targets Genome Targets Genome Uniprot Accession Log-odds p-Value

SRF 107 612 3376844 147004742 P11831 M00152 7.6125E+00 3.8771E-53
NF-kappaB 121 1593 3376844 147004742 P19838 M00774 3.3066E+00 2.9822E-27
HNF4 1070 35844 3376844 147004742 P41235 M00134 1.2995E+00 5.1235E-16
RELA 42 416 3376844 147004742 NA MA0107 4.3952E+00 3.3643E-14
c-Rel 49 669 3376844 147004742 Q04864 M00053 3.1885E+00 1.6288E-11
AP-1 174 4480 3376844 147004742 P01100 M00517 1.6908E+00 2.6488E-10
REL 44 633 3376844 147004742 NA MA0101 3.0260E+00 7.6351E-10
CREB 216 6006 3376844 147004742 P16220 M00916 1.5656E+00 1.3625E-09
NF-kappaB(p65) 28 339 3376844 147004742 NA NA 3.5955E+00 3.1232E-08
MTF-1 7 19 3376844 147004742 Q14872 M00650 1.6042E+01 1.3003E-06
RelB:p52(NF-kappaB) 27 389 3376844 147004742 NA NA 3.0215E+00 1.3076E-06
AR 25 347 3376844 147004742 P10275 M01201 3.1363E+00 1.7020E-06
TEF-1 1113 41789 3376844 147004742 P28347 M00704 1.1595E+00 1.9339E-06
ATF 90 2279 3376844 147004742 NA M00017 1.7192E+00 2.8737E-06
NeuroD 1826 71172 3376844 147004742 Q13562 M01288 1.1169E+00 4.5150E-06
STAT1 37 706 3376844 147004742 P42224 M00224 2.2815E+00 1.0032E-05
STAT5A(homodimer) 22 333 3376844 147004742 NA NA 2.8760E+00 2.4072E-05
MAFA 394 13789 3376844 147004742 Q8NHW3 M01709 1.2439E+00 3.4531E-05
SOX10 412 14495 3376844 147004742 P56693 M01131 1.2374E+00 3.7450E-05
ETS2 726 27080 3376844 147004742 P15036 M01207 1.1671E+00 6.0842E-05
OCT1 48 1115 3376844 147004742 P14859 M00342 1.8741E+00 9.3469E-05
ATF4 9 80 3376844 147004742 P18848 M00514 4.8969E+00 1.8285E-04
STAT5B(homodimer) 13 187 3376844 147004742 NA NA 3.0263E+00 6.6460E-04
Bach1 14 230 3376844 147004742 O14867 M00495 2.6498E+00 1.4096E-03
TCF-4 62 1765 3376844 147004742 Q9NQB0 M00671 1.5292E+00 1.9624E-03
NF-kappaB(p50) 26 571 3376844 147004742 NA NA 1.9822E+00 1.9781E-03
Bach2 20 400 3376844 147004742 Q9BYV9 M00490 2.1767E+00 2.3502E-03
SOX9 18 357 3376844 147004742 P48436 M00410 2.1950E+00 2.6158E-03
LEF1 137 4578 3376844 147004742 Q9UJU2 M01022 1.3028E+00 3.1424E-03
TATA 3 12 3376844 147004742 P20226 M00252 1.0884E+01 4.2074E-03
ATF3 26 619 3376844 147004742 P18847 M00513 1.8284E+00 4.7724E-03
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Figure 3.7: Network reconstruction using only differentially expressed transcripts iden-
tified in the RNA-seq experiment along with the enriched transcription factors iden-
tified using the TFBS enrichment analysis pipeline step. Significant genes are shown
in red or green. Only a handful of enriched factors are differentially expressed them-
selves.

being differentially expressed pre- and post-wounding and having the most edges between

nodes in the network representation show in Figure 3.7. It is currently being investigated

for its role in skin differentiation and the wounding repair pathway.

3.2 Differential expression analysis

Differential expression analysis steps aim to identify significant differences in gene expression

between two, or more, conditions. In order to do so, a reliable measure of gene expression

in a sample is required. Currently, two methods are employed to analyze gene expression:
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microarray and RNA-seq. The analysis steps overlap between the two, although significant

differences exist between both methods, leaning in favor of RNA-seq in almost all cases [170].

3.2.1 Microarray differential analysis

We need to process a number of microarray datasets in the pediatric cancers project (see

Section 4.2.2, which makes use of this step). Despite the rapid adoption of RNA-seq over

microarray [7], microarrays are still regularly performed and in some cases are the only form

of expression data available for older experiments. Microarrays measure the strength of

binding between two complementary strands of DNA, or even between protein and DNA,

using florescent probes (for an example, see Figure 3.8).

We process microarray data using the following steps:

• Background normalization

• Mean-variance bias normalization

• Quantile normalization

• Determining significant transcripts

• Multiple-test correction

Background normalization Different probes on an array have different binding affinities

to their complementary DNA sequences. To measure this non-specific binding, mismatch

probes are typically used to assess this error. One popular algorithm, MAS5 [127], is used

to normalize each probe in an Affymetrix array using these mismatch probes. A second

popular algorithm, RMA [81], does not make use of these spots but is not used in this

pipeline. The RMA method additionally performs quantile normalization, which we do

perform subsequently.
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Additionally, every spot has a background intensity around the individual spots due to

the fluorescence markers used in their quantification. This background intensity is usually

subtracted from the spot intensity average, and an additional step that is performed by

MAS5.

Mean-variance bias normalization Microarray data is known to have a significant

mean-variance bias, meaning that as the mean intensity of a probe increases, so does the

variance. This is intuitive, because as intensity values approach 0, so does the variance. A

similar problem is faced when attempting to apply a t-test to any correlation values (bounded

by 0 and 1) which lead to Fisher’s z’ transformation for correlations [55]. Typically, this vari-

ance in microarrays is adjusted for using a log transformation on the expression values after

background normalization. Alternatively, the R package (vsn) for variance stabilizing nor-

malization in microarray data are used [79, 50] (http://Bioconductor.org/). This method

performs a variance correction that is log for large expression values but becomes linear as

expression values approach 0, where the log transformation breaks down. In addition to the

variance correction, using known non-differentially expressed spots this method calculates

maximum likelihood shifting and scaling calibration parameters for different arrays. This

type calibration has been shown to minimize experimental effects [95].

Quantile normalization Generally, it is desirable that the distributions of expression

profiles across multiple samples is similar. In most experiments, the majority of genes are

not expected to be changing, so this is reasonable. In order to fix what are likely sample-

specific biases, for example, overall lower expression in one sample compared to others,

quantile normalization is employed [22]. This is used in a number of other methods, such

as RMA [81]. When microarrays are of wildly different microarray platforms, such as those

between Affymetrix HG-U133plus vs. HG-U133A, and possibly even between Affymetrix

microarray intensities and Illumina BeadArray, one can use quantile normalization as a way
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to compensate for different technology biases as is done in the case of the many pediatric

datasets obtained for the pediatric cancer project (see Section 4.2.2).

Determine significance of differential expression To identify significant differences

between two measurements, a t-test is usually employed. In our pipeline, differential analysis

is done using the Cyber-T software described in [13] and available online at http://cybert.ics.uci.edu.

Cyber-T calculates a Bayesian regularized estimate of the variance of the signal intensity

levels. Then theses variance estimates are used to compare the groups with a t-test. Cyber-T

has been shown to perform well under low-replicate conditions.

Multiple test correction When test many hypotheses at the same time (i.e. testing

for differential expression in each gene of the human transcriptome), and using a standard

p-value cutoff of 0.05 for each test, one will be left with approximately 1500 incorrect tests

due to the 5% error rate per test. In order to obtain an overall error rate of 5%, i.e. a

false discovery rate (FDR) of 5%, a stricter p-value threshold needs to be used for each

test. At the limit, if a 5% error rate is desired, then a p-value cutoff of 0.05/(number of

tests) needs to be used, or similarly, we can multiply our p-values by the number of tests

to correct our p-values and allow use of the original 0.05 p-value cutoff. This approach is

known as Bonferroni correction [174], and is considered quite conservative. An alternative,

and the one that we employ regularly is Benjamini-Hochberg correction [19], which uses

the Benjamini-Hochberg step-up method to adjust p-values such that choosing an adjusted

p-value cutoff of 0.05 controls the false discovery rate by rejecting the null hypothesis of all

tests below the first test that has an uncorrected p-value less than it’s percentile-rank times

0.05.
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Figure 3.8: Example microarray image for two samples: one obtained from a non-
tuberculosis infected patient and another from an infected patient from Colombia.
Intensity of florescence quantifies the reactivity of that patient’s blood to the protein
within each spot of the array, and differential analysis identifies the most reactive
proteins.

3.2.2 Identifying differential antigens

Besides identifying differential transcripts in cancer microarray datasets, as outlined in Sec-

tion 4.2.2, we have processed numerous other microarray datasets, including protein microar-

ray datasets, using a very similar pipeline. These protein microarrays were developed by the

Felgner Lab [40] to profile immune response by exposing blood serum to translated proteins

in each spot of the array. Spots are printed onto an ELISA [53], which is used to measure

the reactivity between antibodies in the sera to proteins on the array.

The M. tuberculosis dataset consists of sera samples collected from Colombia where the

exposed group tests positive using both sputum smear and bacterial culture tests for M.

tuberculosis and the naive control group is negative for both tests. Additionally, all sera are

HIV negative in order to minimize the confounding relationship between HIV positive sera
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and the antibody response to the M. tuberculosis antigens.

We applied our standard analysis pipeline to these datasets to obtain a ranking of antigens

based on their significance in infected vs. uninfected patients (Figure 3.9). We use the same

methods used to previously analyze the immune response to B. henselae infection [167].

Multiple antigen classifiers were built using Support Vector Machines (SVMs) [12, 35]. The

e1071 and ROCR packages in R were utilized to train the SVMs and to produce receiver

operating characteristic curves, respectively, and we observed AUC values of 82% after only

including the top 10 differential antigens. Afterwards, performance values leveled off and

there was no advantage to including any more than 10 antigens in our predictor.

This analysis was further extended to not only the prediction of patient infection status,

but to the prediction of protein antigenicity using sequence-level features and training an

ensemble method on the significant antigens identified for M. tuberculosis and four other

infections [106] (Figure 3.10).

3.2.3 RNA-seq differential analysis

The underlying distribution of the expression values for RNA-seq differ significantly from

that of microarrays, but much of the same analysis still applies. Background normalization

is no longer needed, but the distribution of read counts differs from that of microarray

intensity values. While microarray intensity values are drawn from a normal distribution,

arising from measurement error, counts of RNA-seq reads aligning within a transcript have

a poisson distribution [154], which has variance equal to mean. To allow for variance, a

negative binomial model is commonly used, which assumes RNA-seq measurement error

arises from a beta distribution.

Packages designed to handle perform differential analysis on read count data assume this
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Figure 3.9: Identifying differential antigens through the use of a standard microar-
ray analysis pipeline. Significance of differences is plotted along the upper x-axis as
-log10(p-values). Comparison with average signal intensity from the array identifies a
handful of antigens with significant differences between infected and uninfected pa-
tients.
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Figure 3.10: ROC curves calculated from the 10-fold cross-validation of ANTIGENpro
and Vaxijen [48].
Figure adapted from [106].
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negative binomial model (DEseq [9], EdgeR [136], cuffdiff [161]). On the other hand, RPKM-

normalized [121] values do not fit the poisson model, coming from a real valued distribution.

By using RPKM values, we can still make use of a bayesian t-test [85] or non-parametric tests,

as was performed in the microarray differential expression analysis portion of the pipeline

(Section 3.2.1). As CyberT has been shown to work well across a number of different datasets,

and particularly well for low replicate datasets, we make use of it extensively in our RNA-seq

differential analysis portion of the pipeline.

3.2.4 RNA-seq differential analysis in pediatric patients

In the absence of tissue-matched control RNA-seq samples for each patient – which in many

cases is not feasible to obtain – each patient’s RPKM values are compared to a pooled sample

created by combining the other patients’ RPKM values. We perform a pooled analysis,

similar to what is done in [175, 103]. Differential analysis of RPKM-normalized read counts

is performed using CyberT [13] which was recently upgraded to handle both DNA microarray

and RNA-seq data [85]. A confidence in the Bayesian prior of 3 is used instead of the default

of 10 within CyberT to estimate the variance in gene expression. Rather than use strict

p-value cutoffs, the top 5% most significantly over- or under-expressed genes, as well as the

top 5% least significantly changing genes, are retained for down-stream analysis. The sizes

of each of these gene lists are summarized under the gene expression column in Table 2.2.

In Figure 4.5, we show the RPKM values obtained for each patient for the DCC transcript,

using the analysis steps in Section 2.2. Patient CHOC08 can be seen to have a much

higher expression of this transcript than other patients, despite a relatively flat expression

profile across various tissue types for which tumors were obtained, and is highlighted in our

differential analysis as having a very significant p-value (p=2.49E-11; top 1%).
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Figure 3.11: Expression for DCC as measured by RPKM is significantly higher than
other patients (p=2.49E-11; upper), yet with no detected DNA variants present within
DCC coding sequence. BioGPS GCRMA expression values are relatively constant
across tissue types for which tumor samples were obtained (lower) [188].

Variant transcription factors Transcription factors have been shown to have a large

role in tumor progression, as evidenced by a large number of transcription factors that are

known tumor suppressors. We identify potentially important affected transcription factors

by making use of the predicted TFBS described in Section 2.1.3. For each transcription

factor, we determine the number of binding sites predicted within 3kb upstream and 1kb

downstream of the transcription start site (TSS) of all transcripts in the human genome.

We compare these counts to those within the same distance to genes in each of the following
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three lists:

1. The top 5% under-expressed genes in the patient vs. other patient RNA-seq differential

analysis

2. The top 5% over-expressed genes in the patient vs. other patient RNA-seq differential

analysis

3. The top 5% differential genes in the control vs. tumor microarray data obtained for

this patient’s cancer type, as described in Section 4.2.2.

We use a Fisher’s Exact test to determine significance of the number of binding sites within

the above lists, as compared to the 36742 transcripts annotated in the human genome, and

subsequently rank transcription factors by p-value (see Section 3.1.5). For each enriched

transcription factor with p-value less than 0.05, we determine if the protein for that tran-

scription factor is affected by any small or large variations or has abnormal gene expression

for that patient. This results in lists of approximate 0-20 variant transcription factors per

patient. In conjunction with the expression of the putative targets of these factors, we can

identify what are likely causal relationships between over- or under-expression of certain

factors and subsequent over- or under-expression of their targets.

3.2.5 The neuron-specific chromatin regulatory subunit BAF53b

is necessary for synaptic plasticity and memory [168]

Recent exome sequencing studies have implicated polymorphic Brg1-Associated Factor (BAF)

complexes (mammalian SWI/SNF chromatin remodeling complexes) in several human intel-

lectual disabilities and cognitive disorders. However, it is currently unknown how mutations

in BAF complexes result in impaired cognitive function. Mice harboring selective genetic
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manipulations of BAF53b have severe defects in long-term memory and long-lasting forms

of hippocampal synaptic plasticity. These findings suggest that the BAF nucleosome re-

modeling complex regulates gene expression required for proper neuronal function, synaptic

plasticity and memory processes.

Changes in gene expression during memory consolidation Thus, we set out to

identify which genes BAF53b regulates during memory consolidation. We performed an

RNA sequencing experiment using dorsal hippocampal tissue from four groups of animals:

Baf53b+/- mice taken directly from their home cage without training, Baf53b+/- mice taken

30 min after OLM training, wild-type mice taken directly from their home cage without

training and wild-type mice taken 30 min after OLM training. We have previously observed

substantial gene expression changes in the dorsal hippocampus 30 min after OLM training

[14]. Mean PHRED quality scores indicate high-quality sequencing data for each replicate

(not shown).

We first compared the expression profiles of the wild-type and Baf53b+/- mice home cage

groups and found that the majority of genes (19,524) were equivalently expressed at baseline

in the two groups (Figure 3.12A). There were also groups of genes that showed increased ex-

pression (80) in wild-type compared with Baf53b+/- mice and vice versa (57) at home cage.

We next examined differences in gene expression following training in the wild-type mice.

Consistent with numerous studies [8], wild-type mice showed robust changes in gene ex-

pression, including many immediate early genes (IEGs), following OLM training (compared

with home cage; Figure 3.12B), indicating that the training period was sufficient to induce

activity-dependent gene expression during memory consolidation. In addition, many of the

activity-regulated genes (124) increased in the wild type were also significantly induced in

Baf53b+/- mice following training (P<0.05). These genes were enriched for Gene Ontology

[10] terms for regulation of transcription, RNA processing and intracellular signaling, and
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Figure 3.12: (a) Gene expression diagram for wild-type compared with Baf53b+/- mice
taken directly from the home cage. (b) Gene expression for genes that increased or
decreased expression following behavior (30 min post training) compared with home
cage. Genes with differential expression at home cage were removed before analysis.
’Both’ indicates genes regulated similarly in wild-type and Baf53b+/ mice. ’Unique
Increase’ comprises genes that increased in only the indicated genotype. ’Unique
Decrease’ comprises genes that decreased in only the indicated genotype. Groups:
Baf53b+/ mice taken from home cage (HC, n = 6), Baf53b+/ mice taken 30 min post
training (Beh, n = 6), wild-type taken from home cage (n = 6) and wild-type taken
30 min post training (n = 6). Total gene counts for each genotype given above or
below each column. (c) qRT-PCR validation of the IEG c-Fos (ANOVA; main effect
of behavior, F1,20 = 157.6, P <0.0001; no effect of genotype, F1,20 = 0.49, P = 0.49;
no interaction, F1,20 = 0.45, P = 0.51). Expression is shown relative to Gapdh and
normalized to wild-type mice taken from home cage. (d) qRT-PCR validation of the
IEG Egr2 (ANOVA; main effect of behavior, F1,20 = 224.2, P ¡ 0.0001; no effect of
genotype, F1,20 = 1.53, P = 0.23; no interaction, F1,20 = 0.55, P = 0.47). Expression
is shown relative to Gapdh and normalized to wild-type mice taken from home cage.
*P <0.05, n values refer to number of mice.
Figure adapted from [168].
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included the majority of IEGs (Figure 3.12C,D). This suggests that BAF53b and nucleosome

remodeling do not affect IEG expression during memory consolidation and that the long-

term memory impairments observed in Baf53b+/- mice are caused by different mechanisms.

Of the 300 genes with increased expression in the wild type following OLM training, the ex-

pression of 176 failed to significantly increase in the Baf53b+/- mice (P>0.05; Figure 3.12B).

These genes were enriched for Gene Ontology terms involving transcription regulation and

neurogenesis, as well as chromosome organization and chromatin modification, indicating a

potential role for BAF53b in organizing higher order chromatin structure. In the Baf53b+/-

mice, there were also a group of genes (171) that were induced following behavior that were

not normally increased in the wild type (Figure 3.12B). These genes were enriched for Gene

Ontology terms involving regulation of cell death, glutamate release, behavioral response to

drugs of abuse, synaptic transmission and regulation of neurogenesis.

In addition to increases in gene expression, there were 101 genes whose expression decreased

in the wild type following OLM training compared with home cage (Figure 3.12B) and 76

genes that decreased in the Baf53b+/- mice. Of the 101 genes that decreased in the wild

type, 14 also decreased in the Baf53b+/- mice and 87 that did not. The 87 genes that

failed to show an activity-dependent decrease in expression in the Baf53b+/- mice were

enriched for Gene Ontology terms involving cell homeostasis, postsynaptic cell membrane

and cytoskeleton. In addition to the impaired decrease in gene expression, the Baf53b+/-

mice also had 62 genes whose decrease in expression following behavior was not matched

in the wild type. These aberrantly decreased genes were enriched for Gene Ontology terms

involving mitochondria function.

To further explore the link between the impairments in maintenance of long-term potenti-

ation and cofilin phosphorylation, we examined gene expression for Gene Ontology terms

involved in actin cytoskeleton and the postsynaptic density. Most genes examined showed

similar expression between the Baf53b+/- mice and their wild-type littermates. However,
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there were several genes that showed misregulation either at baseline (home cage) or follow-

ing OLM training that are involved in regulating the Rac-PAK and RhoA-LIMK pathways

that both culminate in phosphorylation of cofilin and actin cytoskeleton reorganization [134].

For example, mir132 has been shown to regulate spine plasticity ([173, 80]) and long-term

OLM41 by regulating Rac1 activity through translational repression of p250GAP [173]. Ad-

ditional regulators of this pathway were also disrupted in the Baf53b+/- mice, including

Citron (Rho interacting kinase) and Fhl2 (a member of the four-and-a-half LIM only protein

family implicated in linking signaling pathways to transcriptional regulation). Components

upstream of the Rac-PAK and RhoA-LIMK were also altered in the Baf53b+/- mice, in-

cluding the NMDA receptor subunits Grin2b and Grin2a, as well as Efna4.

3.3 Hybrid approach

Additionally, we explored the possibility of using microarray data as a control for RNA-seq

datasets, in the absence of RNA-seq controls, as was the case for our pediatrics patients. To

do so, we obtained the only two datasets available to us with both microarray and RNA-seq

for the same samples. One is in yeast [124] and another in rat [157], each containing 3 and

4 control/experiment samples each.

We obtained the microarray samples and RNA-seq samples for both papers from GEO and

the short read archive (SRA), respectively. We aligned FASTQ files for the RNA-Seq data

to the respective reference genomes using Tophat [88] and cufflinks [162] with annotation

GTFs from UCSC, to derive log2(RPKM) for annotated transcripts. We processed the

microarray CEL files using MAS5 [127], quantile normalization, and log2 transformation, to

derive equivalent log2(expression) values.

Next, we used Affymetrix probe annotations to map to SGD and RGD gene IDs, and paired
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Figure 3.13: Regression of rat RNA-seq data with microarray data for the same sam-
ples. log2 normalized microarray expression is plotted vs. log2 normalized RPKM
values and a robust linear model is fit to the data. RNA-seq and microarray agree,
except for lowly expressed transcripts.

up probes with transcripts, taking the max probe log2(expression) value across multiple

probes per transcript. Mean expression was computed for each set of experiment/control

biological replicates, to be used in the next step (see Figure 3.13).

We then linearly transformed the log2(RPKM) data to log2(expression) using robust linear

models, rlm in R [82] (with init=”lts” and method=”MM”), on the mean across transcripts

for our two groups being compared. Lastly, we quantile normalized the two groups being

compared, after transformation. To identify differential transcript, CyberT [13] was ran

with a confidence of 3, window size of 101, and a p-value cutoff of 0.05, and found that while

more differential genes were called (Figure 3.14), it appears possible to combine RNA-seq

data with GEO data reusing the original fit. It is unclear if this trend persists across species,

and in the absence of human samples with both microarray and RNA-seq data available,
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ential analysis (left). Differential genes are shown in red (right), where more genes
are significantly differential than in the GEO control vs. experiment, representing a
higher false positive rate.

this hybrid approach was not incorporated into the final genomic analysis pipeline for the

pediatric cancers project.
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Chapter 4

Integrative analysis

4.1 Network analysis

One of the fundamental problems facing modern analysis of high-throughput sequencing data

is the integration of multiple -omic datasets [47]. More and more frequently we encounter

research questions that involve multiple -omic datasets such as those that combine DNA-seq

and RNA-seq (our CHOC pediatrics project), RNA-seq and ChIP-seq (role of TCF1E in Wnt

signaling; Section 3.1.4), and a time-course RNA-seq across multiple conditions (Learning

and memory in BAF53b knockout mice; Section 3.2.5), among other common combinations.

On top of this, we have access to publicly available datasets from GEO ([51, 15]), haplotyp-

ing projects such as dbSNP [149] and COSMIC [56], and high-throughput drug-interaction

databases ([181, 90]), to name a few. Integrating these databases with our individual results

from different portions of our genomic analysis pipeline requires pulling data from many

of these publicly available databases. We maintain copies of many such publicly available

datasets for immediate use in the various projects that need them. We keep this information

within a single data repository and have wrapped access to each of them into a single unify-
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ing framework. We created this framework for easily performing overlaps of these databases

and the results of our -omic datasets analyses.

To further integrate our various analyses, we make use of in-house software that we developed

to visualize the interactions among our -omic datasets and our databases of interactions. The

central component in this portion of the pipeline is a network-based view of our data. To

achieve this, we needed to obtain information on the various ways the pieces of our data

interact. Such information is able to summarize our results by tying together the most basic

elements of our networks, our nodes: transcripts, proteins, and genes. Edges between nodes

can denote that protein X interacts with protein Y (a protein-protein interaction), or that

protein A has a predicted binding site within a certain distance to transcript A of gene B.

We use this framework to build such networks, and visualize them using Cytoscape Web

[105]. Besides determining the input set of nodes in our networks, our -omics datasets can

be visually overlaid within the network by making use of publicly available plotting software

(Google Visualization API) to plot the gene expression values for each gene, for example, as

the node itself.

In total, we incorporate data from the following sources in this portion of our pipeline, none

of which are specific to cancer:

Nodes:

• Proteins: UniProtKB [107]

• Genes/mRNA: UCSC [113]

• microRNA: mirbase [68]

• Protein complexes: CORUM [141]

Edges:

• microRNA-RNA: miRanda [67]

63



• Protein-protein: BioGRID [155], String [83], MIPS [125]

• Drug-protein: PharmGKB [177], BindingDB [104], DrugBank ([182, 181, 90])

• TFBS: MotifMap ([184, 37]), CENTIPEDE [128]

Annotations:

• Epigenetic marks: ENCODE [3]

• Pathways: KEGG [84], NCI PID [144], UniPathway [119]

• Abundance: ProteinAtlas [163], BioGPS [183]

• Protein features: Pfam [129], PhosphositePlus [75], SCRATCH [33]

4.1.1 Circadian clock regulates the host response to Salmonella

[18]

In a paper published in PNAS [18], we help identify the connections between circadian tran-

scription as regulated by the transcription factor, CLOCK, and the response to Salmonella

infection within mice affected either at night or during the day. We integrate our -omic

dataset processed using the steps outlined in Section 3.2 into a network view, incorporating

transcripts with transcription factor binding sites using the in-house software described in

Section 4.1.

Regulatory Network analysis Our network was initialized with the proteins identified

as belonging to cluster 1 from the analysis of microarray data containing expression profiles

for mice affected and unaffected during the night or during the day with salmonella (see Fig-

ure 4.1A), together with the clock protein aryl hydrocarbon receptor nuclear traslocator-like

(ARNTL) and the NF-κB proteins NF-κB1, -κB2, v-rel reticuloendotheliosis viral oncogene
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homolog A (RelA), and reticuloendotheliosis oncogene (cRel). MotifMap ([184, 37]) was

used to search for putative transcription factor binding sites within an 8-kb region centered

on the translation start site of each gene in our network, excluding exons. Using known

positional-weight matrices for clock and NF-kB proteins, as well as hypoxia inducible factor

1, alpha subunit (HIF1-α) (which was already present in cluster 1), we assigned to every

site the following two scores: (i) a motif matching score (Z-score); and (ii) a conservation

score [Bayesian Branch Length Score; BBLS [184]] calculated by using a multiple alignment

of 30 genomes from mouse to zebrafish. We filtered these sites by using a Z-score threshold

of 4.27 (P=0.00001), along with a modest amount of conservation by using a BBLS cutoff

of 1.0. Directed edges were drawn between the transcription factors and the proteins whose

gene had at least one binding site satisfying the above criteria. The resulting network was

also further pruned (Figure 4.1D) by progressively removing those that were not annotated

as transcription factors in either JASPAR ([24, 110]) or TRANSFAC 9.4 [111] databases,

which jointly comprise >800 binding matrices corresponding to >400 distinct transcription

factors in mouse.

Computational Analysis Reveals Connections Between Circadian Transcription

and Inflammatory Response To extend our comprehension of the transcriptional path-

ways participating in the circadian activation of the host defense against infection, we used

the above computational modeling approach to predict the transcriptional regulatory net-

works involved in the control of genes in each of the four clusters identified in our genomic

profiling analysis. In cluster 1, we identified main synergistic nodes connecting transcrip-

tion driven by BMAL1:CLOCK (ARNTL:CLOCK) to critical inflammatory pathways (Fig-

ure 4.1D). The gene node graphics show transcription factors with significant changes in

expression between different conditions (blue, WT infected vs. uninfected day; green, WT

infected vs. uninfected night; brown, Clock mutant infected vs. uninfected day; orange,

Clock mutant infected vs. uninfected night; P<0.05; Figure 4.1). In agreement with previous
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Figure 4.1: Microarray analysis from cecum of mice infected with S. Typhimurium re-
veals a circadian mechanism modulating the response to acute bacterial infection. (A)
Heat diagram showing changes in gene expression detected in mice infected with S. Ty-
phimurium at day or night in WT and Clock mutant mice, compared with uninfected
controls. A list of the most represented subcategories of genes from each cluster, the
number of genes included in each subcategory, and the relative P value are shown.
(B and C) Transcriptional profiles of selected proinflammatory/antimicrobial genes
identified in cluster 1. (D) Network of transcription factors involved in regulation of
subsets of genes included in cluster 1. Significant changes (P < 0.05) are shown as
colored circles (blue, WT infected vs. uninfected day; green, WT infected vs. unin-
fected night; brown, Clock mutant infected vs. uninfected day; orange, Clock mutant
infected vs. uninfected night). (E) Competitive infection with a mixture of S. Ty-
phimurium WT and iroN mutant at two different times of the day.
Figure and legend text adapted from [18].

reports, NF-B and hypoxia inducible factor 1, alpha subunit (HIF-1) are the transcription

factors with the largest numbers of connections ([73, 148]). Both NF-B and HIF-1 share

many target genes with the transcription factor BMAL1 (ARNTL), which cooperates with

CLOCK in regulating circadian transcription. Notably, HIF-1 appeared to mediate signifi-
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cant changes in all four conditions that we analyzed. Nodes were much larger in WT mice

compared with Clock mutant mice, thus indicating that many pathways regulated by HIF-1

also require a functional clock system. This observation is of particular interest because

cross-talk between hypoxic and circadian pathways has been proposed, and Hif-1 is thought

to be a clock-controlled gene [52].

4.2 Cancer-specific integrative analysis

Without context, calling variants within an individual’s genome is not enough to identify

the most relevant mutations in a patient. Variants provided by commercial solutions such

as Complete Genomics or Illumina, Inc., or by open-source pipelines such as VarScan2 [93],

do not solve the problem of ranking the most important genic mutations. Rather, they

rank the most confident of such mutations, and in most cases an overwhelming number of

potential driver mutations are identified. Common solutions exist, such as using predefined

lists to screen variants, usually obtained for domain-specific knowledge such as the gene lists

present within QIAGEN’s Ingenuity Pathway Analysis (IPA R©, QIAGEN Redwood City,

www.qiagen.com/ingenuity). In addition to gene lists, other domain-specific knowledge can

be incorporated and can even provide a ranking of the most important genes (see Chapter 5).

Solving this problem requires us to perform a few steps in our genomic analysis pipeline

that are specific to each type of cancer, in order to provide a context in which to identify

the most affected genes for each pediatrics patient. We integrate this information with

the variants identified from DNA-seq, along with the transcripts identified as differentially

expressed in the RNA-seq, to build a network view of the most important pathways within

each individual.
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Table 4.1: Mean size and standard deviation of the gene lists curated using the three
different methods for multiple types of cancer.
Table from [188] (submitted).

Curated Gene Lists
Gene List Mean StdDev
Entrez 154.6 134.5
MEDLINE 70.8 69.5
GeneRIF 63.7 74.1
UNION 243.3 196.2

4.2.1 Curating literature

To narrow down our variants to those contained within genes known to be involved in a

certain type of cancer, gene lists are automatically curated from three primary sources.

These three sources are (1) NCBI MEDLINE abstract and titles, (2) NCBI GeneRIF [115],

and (3) NCBI Entrez queries.

For the first source, we perform text pattern matching on the corpus of abstracts and titles

from NCBI Medline, using the UCSC hg19 genome annotation tables for a list of all known

gene symbols in our search. Using the PubMed API, we retrieve a list of articles matching a

specific type of cancer and extract all gene symbols in the titles and abstracts of these articles.

Secondly, we cross reference the same articles with NCBI GeneRIF in order to find all genes

that have been manually annotated for these articles. NCBI GeneRIF contains 800,000 gene

symbols annotated to MEDLINE articles, 477,417 of which are for Homo sapiens. Thirdly,

the NCBI Entrez web API is used to return a list of genes for any query related to each type

of cancer. The final sizes of each of our curated gene list for each type of cancer are shown

in Table 4.1.

Genes affected in multiple cancers Additionally, lists of genes which are known to be

affected in or related to cancer are pulled from three public sources, in order to create a list

of genes commonly implicated in a wide range of cancers. These sources, along with the

number of symbols in each, are: (1) The Bushman Lab Cancer Gene List [27] (2032), (2)
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Table 4.2: Number of unique gene symbols for each type of cancer extracted using the
three curated gene methods
Table from [188] (submitted).

PubMed Query Entrez Query Total Entrez GeneRIF PubMed
(all AND (pediatric OR leukemia))
OR (acute AND lymphoblastic AND leukemia)

acute lymphoblastic leukemia 349 224 96 125

(aml AND (pediatric OR leukemia))
OR (acute AND myeloid AND leukemia)

acute myeloid leukemia 622 412 177 203

atrt
OR (atypical AND teratoid AND rhabdoid)

atypical teratoid rhabdoid 10 3 2 7

(clearcell OR (clear AND cell)) AND sarcoma clearcell sarcoma 300 294 2 12
ependymoma ependymoma 17 11 1 6

hlh OR hemophagocytic lymphohistiocytosis
hemophagocytic
lymphohistiocytosis

51 27 9 20

(hodgkins OR hodgkin OR hodgkin’s)
AND lymphoma

hodgkins lymphoma 207 12 120 94

(jpa OR pediatric OR pilocytic OR juvenile)
AND astrocytoma

juvenile astrocytoma 35 19 5 13

mds OR Myelodysplastic syndrome myelodysplastic syndrome 244 171 52 71
medulloblastoma medulloblastoma 189 171 28 16
melanoma melanoma 580 286 252 213
neuroblastoma neuroblastoma 505 337 133 144
osteosarcoma osteosarcoma 361 253 79 104
rhabdomyosarcoma rhabdomyosarcoma 178 143 20 40
(testicular OR ’germ cell’)
AND (cancer OR tumor)

germ cell tumor 134 26 26 41

wilms AND tumor wilms tumor 111 84 17 23

The Cancer Gene Census [58] (489), and (3) Network of Cancer Genes 3.0 [38] (1495). In

total, 450 genes symbols were found in all three sources, across the 2916 genes present in at

least one source.

Gene list benchmark using expert knowledge We compared our results with those

from a manually curated list of gene symbols suspected to be involved in germline tumors

provided by our colleagues at CHOC:

DCC, FHIT, ALPPL2, HRAS, CGB, MGMT, FHL2, KITLG, KIT, ALPP, MXI1,

MYBL2, MADH4, MAGEA4, LLGL2, EPCAM, MYCL1, CCNE1, CDKN2A, CDKN2C,

POU5F1, CDKN2D, PIWIL1, KLK10, FAS, KLK13, TP53, RB1, DDX4, MYCN, JUP,

AFP, NRAS, CCND2, PDGFRA, MDM2, GRB7, TNFRSF6, PLAP
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We proceeded to overlap this gene list with the list of 134 total gene symbols extracted by

our automated methods. For the extraction method from PubMed we found that 5 of the

41 symbols overlap: AFP, FAS, KIT, TP53, PLAP. For the Entrez queries method we found

that 1 of the 26 symbols overlap: KITLG. For the GeneRIF method we found that none of

the 26 genes were within the manually curated list.

Using the gene lists of genes affected in multiple cancers, of the 2916 genes present in any

single source, 27 of the 30 manually curated genes were found. Using just the 450 genes

confirmed in all three sources, 17 of 30 of the manually curated gene lists were found.

These overlaps suggest that our extraction method from PubMed queries performs relatively

well, compared to the other methods. Although, in the case of the Entrez queries for germline

tumors, we find an addition gene that was not picked up by the literature based method.

4.2.2 GEO datasets

Microarray datasets are automatically obtained from the Gene Expression Omnibus (GEO)

[15] for the cancer types of our pediatric patient samples using the cancer type as a query.

Control datasets and samples for each cancer type are also obtained if available. These

control datasets are used in lieu of proper control sample RNA-seq datasets for each patient,

which are not realistically obtainable for the pediatric patients being sequenced. We use these

control datasets in the methods below to complement the RNA-seq differential analysis in

such cases. The datasets obtained and the number of samples per type of cancer are shown

in Table A.2 and Table 4.3.
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Table 4.3: Number of microarray samples per type of cancer
Table from [188] (submitted).

ALL (64) AML (436) AML CONTROL (39)
ATRT (18) CLEARCELLSARCOMA (14) CLEARCELLSARCOMA CONTROL (3)

EPENDYMOMA (75) EPENDYMOMA CONTROL (75) EWINGSSARCOMA (16)
HLH (17) HLH CONTROL (33) HODGKINS (14)

HODGKINS CONTROL (10) HODGKINS OTHER (45) JPA (23)
JPA CONTROL (8) MDS (13) MDS CONTROL (15)

MEDULLOBLASTOMA (53) MELANOMA (7) MELANOMA OTHER (11)
NEUROBLASTOMA (93) OSTEOSARCOMA (25) OSTEOSARCOMA OTHER (12)

RHABDOMYOSARCOMA (12) SARCOMA (43) SARCOMA CONTROL (15)
TESTICULAR (67) TESTICULAR CONTROL (3) WT (44)
WT CONTROL (26)

Differential genes

Following standard microarray practices, each microarray dataset obtained is background

normalized using the MAS5 algorithm [127]. Using platform annotations provided by GEO,

probes are matched to gene symbols, and for cases where there are multiple probes per

gene symbol, the probe with the maximum expression is retained. In the cases where raw

expression is available, expression values are log-normalized to correct for the variance-

mean bias commonly observed in microarray data. For any preprocessed datasets where raw

microarray data is not available, data is log normalized if it was not already, to keep scales

consistent.

After all datasets for all types of cancer present within our patients are preprocessed, gene

symbols are then matched across all microarray samples. After removing samples and sym-

bols that are missing more than 75% of data, 17011 unique gene symbols remain, for which

any missing data is imputed using k-nearest neighbors. Lastly, quantile normalization is

used to normalize between all arrays and the distribution of expression values across tumor

types is shown in Figure 4.2. This pre-processing step is performed again if any additional

patients with distinct types of cancer are obtained.
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To test for differential transcripts, Cyber-T ([13, 85]) with a Benjamini-Hochberg multiple

test corrected p-value cutoff of 0.05 is performed on a number of different contrasts utilizing

the microarray data. In particular, when control samples exist for a type of cancer, Cyber-T

is used to identify differentially expressed transcripts specific to that type of cancer which

can be used to prioritize (1) variants within those transcripts or (2) those transcripts that

were also identified by the RNA-seq analysis differential analysis in patients afflicted with

that cancer.

Cyber-T is additionally used to perform the exact same analysis as is done using the pooled

cancer patient RNA-seq samples described in Section 3.2.4. In lieu of the patient samples,

the median expression values for each gene symbol are used across all microarray samples for

that type of cancer. The median microarray sample for each patient is tested for differential

expression against the set of median microarray samples derived for each other patient as

was done for the RNA-seq data. Additionally, in the types of cancer where control data is

available, we perform the same differential analysis for all patients with that type of cancer

using the median control microarray data instead of the median tumor microarray data.

Lastly, using all of the tumor microarray data for all types of cancer, we use Cyber-T to

identify transcripts that are commonly expressed, or unexpressed, in cancer. In summary,

we define the following gene lists using microarray data:

1. GEO Control vs GEO Cancer (if applicable) for each tumor type

2. GEO Control vs GEO Matched Cancer (if applicable) for each tumor type

3. GEO Cancer vs GEO Matched Cancers for each tumor type

4. Common in GEO Cancers Expressed

5. Common in GEO Cancers Unexpressed
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(a) Venn diagram of the overlap performed
(b) Gene list overlaps help prioritize RNA-seq
transcripts

Figure 4.3: Diagram of the processes used to prioritize expression variations

4.2.3 Gene list overlaps

When we attempt to prioritize RNA-seq differential genes based on the expression or lack of

expression of transcripts, we observe no clear separation between transcripts with variants

and transcripts without variants. Instead, we must make use of the list of genes identified

from our differential analysis of the microarray data for each type of cancer, in addition to

gene lists curated from literature for each type of cancer, to prioritize transcripts identified

by the RNA-seq differential analysis in patients with each type of cancer.

We first investigated the significance of various overlaps using a Fisher’s Exact test to iden-

tify the overlaps with the most significant enrichment for small variants within patients. We

observe significant (P<0.05) overlap of three of the cancer specific gene lists with affected

genes within patients. The most informative, and significant, are the list of genes curated

from literature, the differential transcripts identified using microarray data, and the tran-

scripts with high expression compared to other patients that also fall within the microarray

differential transcripts.

The significance of the last list above prompted us to prioritize our RNA-seq differential

transcripts using a similar gene list overlap approach, since this overlap was found to enrich
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Figure 4.4: Distribution of RPKM values for patient TR. Red ticks denote variants’

RPKM values in this same patient.

Table 4.4: Significance of overlap with missense mutations for the various gene-
expression differential analysis approaches for patient CHOC03
Table from [188] (submitted).

List Size # Variants Overlap −log10(P ) P <0.05
Curated from Literature 117 1319 10 1.36 TRUE

Bottom 5% RNA-Seq p-value HIGH 206 1319 15 1.12 FALSE
Bottom 5% RNA-Seq p-value LOW 3 1319 0 0.82 FALSE

Bottom 5% RNA-Seq p-value MEDIUM 354 1319 15 0.11 FALSE
Control vs Tumor Top 100 100 1319 7 0.81 FALSE

Control vs Tumor p-value <0.05 8595 1319 593 15.95 TRUE
Negative fold Top 5% RNA-Seq p-value HIGH 185 1319 13 0.97 FALSE
Negative fold Top 5% RNA-Seq p-value LOW 10 1319 1 1.03 FALSE

Negative fold Top 5% RNA-Seq p-value MEDIUM 242 1319 13 0.41 FALSE
Positive fold Top 5% RNA-Seq p-value HIGH 154 1319 15 2.15 TRUE
Positive fold Top 5% RNA-Seq p-value LOW 1 1319 0 1.28 FALSE

Positive fold Top 5% RNA-Seq p-value MEDIUM 165 1319 10 0.60 FALSE
Bottom 100 p-values for cancer GEO ANOVA 100 1319 6 0.57 FALSE
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for transcripts with small variants – which likely influences the expression of those affected

genes. For gene lists (2) and (3) from our microarray analysis in Section 4.2.2, we can

identify tissue-specific genes and genes we would expect to change, respectively, in the RNA-

seq analysis against the pooled patient samples for patients with that type of cancer. These

help further prioritize the differential RNA-seq transcripts into HIGH, MEDIUM, and LOW gene

lists based on overlaps with microarray gene lists (1), (3), and (2), respectively, where the

HIGH category corresponds to the same overlap we found a significant enrichment of small

variants in. The average size of these lists are summarized in Table 2.2.

4.2.4 Normal tissue expression

The Human U133A Gene Atlas dataset [156] is obtained from BioGPS [183] to be used

as a measure of normal tissue expression for the tissues most similar to the tumor sample

obtained in each patient. This determines a baseline gene expression profile in healthy tissue

to be used as a control. This dataset contains GCRMA values as a result of normalizing

the microarray samples obtained from 79 human tissues. Combining these with the RPKM

values from the RNA-seq analysis, we generate profiles of gene expression in (1) all patient

tumor tissue samples and (2) all of the matched normal tissue samples, in order to identify

abnormal patterns of expression in patients, i.e. those that would not be expected due to

normal differences between tissues from which tumors were obtained. An example of this

profile is shown in Figure 4.5.

4.2.5 Mitelman fusions

The Mitelman database [116] contains 3752 entries corresponding to gene fusions implicated

in different types of cancer. To identify and prioritize these gene fusions in our patients, we

cross this database with all of the gene fusions found for each patient to identify high-priority
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Figure 4.5: BioGPS expression (lower) suggests that high expression of PAX2 in Wilms
tumor patient (upper) is normal considering the normal gene expression within the
kidney.

fusions and to present the relevant literature in our final reports that are of clinical relevance.

Three of the patients in our study contained fusions previously described. These fusions were

originally identified in the same tumor type as each of the patients. All identified Mitelman

fusions are listed in A.3. The hits identified for our clear cell sarcoma patient are listed in

Table 4.5.
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Table 4.5: Entries in the Mitelman fusion database [116] for our Sarcoma patient. Most
identified EWSR1/ATF1 entries have been previously found in clear cell sarcomas.
Table from [188] (submitted).

Author, Year Journal Morphology Gene

Antonescu et al, 2011 Genes Chromosomes Cancer Malignant epithelial tumor, special type EWSR1/ATF1
Dunham et al, 2008 Am J Surg Pathol Angiomatoid malignant fibrous histiocytoma EWSR1/ATF1
Friedrichs et al, 2005 Int J Surg Pathol Clear cell sarcoma EWSR1/ATF1
Fukuda et al, 2000 Pathol Int Clear cell sarcoma EWSR1/ATF1
Hallor et al, 2007 Cancer Lett Angiomatoid malignant fibrous histiocytoma EWSR1/ATF1

Hansen Hallor et al, 2005 Genes Chromosomes Cancer Angiomatoid malignant fibrous histiocytoma EWSR1/ATF1
Hiraga et al, 1997 Virchows Arch Clear cell sarcoma EWSR1/ATF1

Panagopoulos et al, 2002 Int J Cancer Clear cell sarcoma EWSR1/ATF1
Rossi et al, 2007 Clin Cancer Res Angiomatoid malignant fibrous histiocytoma EWSR1/ATF1
Somers et al, 2005 Am J Surg Pathol Osteogenic/bone tumor, NOS EWSR1/ATF1

Speleman et al, 1997 Mod Pathol Clear cell sarcoma EWSR1/ATF1
Taminelli et al, 2005 Virchows Arch Clear cell sarcoma EWSR1/ATF1
Zucman et al, 1993 Nat Genet Clear cell sarcoma EWSR1/ATF1

4.2.6 Prognosis

Much work has been done to identify the most prognostic gene markers, specific to a type of

cancer [180]. Such genes identify the difference in survival odds, usually captured using the

Kaplan-Meier estimate [60], between subsets of the patients with low- or high-expression for

that gene. Prognostic data is acquired by researchers at hospitals who profile incoming pa-

tients with high-throughput gene expression methods (either microarray or RNA-seq based)

and have also measured the survival statistics for these same patients.

For rhabdomyosarcoma and neuroblastoma, the web site Oncogenomics has processed neu-

roblastoma data from the Oberthuer Lab. Our neuroblastoma patient, has the highest ranked

gene DCC, with numerous mutations and low RPKM compared to other patients (see Fig-

ure 4.5). We observe a significant (p=0.012) difference in survival rates between patients

in the low expression group (125) vs the high expression group (126) for DCC as indicated

in Figure 4.6(a). Another high ranking gene, PAX3, is significant in Rhabdomyosarcoma

(fused in our patient and high expression compared to others) (p=2.960e-03; Figure 4.6(b)).

PrognoSan [117] is a publicly available source of manually curated and publicly available

survival and gene expression profile data obtained from GEO. At it’s current date, it provides
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(a) DCC (b) PAX3

Figure 4.6: Prognostic curves using Oncogenomics datasets for Neuroblastoma and
Rhabdomyosarcoma highlight significant survival differences for patients with low or
high expression of key affected genes for two patients. DCC (left) has low expression in
a neuroblastoma patient, in addition to numerous genetic mutations within its coding
sequence and PAX3 (right) is involved in a gene fusion in a Rhabdomyosarcoma patient
in addition to higher overall expression.

raw data for extracting out Kaplan-Meier estimates for AML and a few other cancer types

that are not present without our pediatric cohort. Currently, there is a lack of prognostic

data for other common pediatric cancers. Availability of future prognostic datasets for all

types of cancers is essential for a proper personalized medicine pipeline, such as is being

done in the area of pharmacogenetics [138], as in the example of certain detectable DNA

alterations in HIV patients affected drug efficacy [126].

4.3 Cancer pathways

It has been shown that cancer cells share in common multiple acquired capabilities that

enable the cell to proliferate uncontrollably. These hallmarks of cancer have been highlighted

previously ([70, 71]) and show a wide range of known pathways to be affected across different

types of cancer. To visualize the connections between affected genes for each patient within

known pathways – as well their connections to unaffected proteins – networks are created

using in-house software which are then rendered in a web browser using CytoscapeWeb [105].
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Figure 4.7: Network is used to relate transcripts to each other and to potential drugs.
Figure from [188] (submitted).

In order to initialize networks with proteins related to specific pathways, 478 known pathways

are downloaded from KEGG Pathways [84] and the NCI Pathway Interaction Database [144].

Subsequently, transcription factor (TF)-DNA, TF-TF, protein-protein edges are added to

the network based on the publicly available datasets from MotifMap ([184, 37]) and BioGRID

[155], respectively. Variants on proteins, as well as the proteins identified as differential in

the microarray and RNA-seq analyses, are used to highlight portions of the network and

help visually interpret the biological role of the mutations. Variant TFBS are visualized by

highlighting the edges between transcription factors and the genes that contain a site for that

factor within its promoter. Further, drug-protein interactions are added to the network, as

described in the next section. Taken together, this network approach assists in investigating

potential driver mutations with a focus on identifying potential drug candidates and their

targets. A simplified example of such a network is shown in Figure 4.7.
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Figure 4.8: Dark boxes indicate proteins with clinically associated variations.
Figure from [188] (submitted).

4.4 Identifying drug candidates

In order to elucidate potentially druggable therapeutic targets, we have integrated sev-

eral publicly accessible databases of drugs into our network analysis. We have included

well-characterized and predicted drug-effects, binding affinities, and drug-efficacy. These

databases include the following resources:

• DrugBank [90] [181] [182]

• BindingDB [104]

• PharmGKB [177]

Each database provides an orthogonal set of annotations from which one can infer potential

attenuation of known drug-effect, or perhaps novel drug interaction. Additional drug and

drug-target information were also incorporated using semantic web resources for open drug

data. These include Bio2RDF [17] [28], Chem2Bio2RDF [31], and Linked-Open Drug Data

(LODD) [142]. Figure 4.8 shows the original AML pathway from the KEGG database.

Figure 4.9 shows the corresponding auto-generated drug-target network used in exploring

potential therapeutic targets.
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Figure 4.9: Network limited to variants. Circles denote proteins and hexagons denote
drugs. Filled circles denote affected proteins, with identified potentially therapeutic
drugs circled.
Figure from [188] (submitted).

To assist in identifying potential therapeutic drugs, we use a network-based approach which

leverages the auto-generated networks for all pathways. For any gene target, we identify

which KEGG or NCI pathways it is present in, and perform a breadth-first search starting

at the gene target until we find a drug with an affected gene target. Additionally, if multiple

such drug-targets exist at the same distance from our initial target, we choose the drug that

targets the most genes, with preference given to drugs with a greater number of affected

targets. Figure 4.9 shows the set of drugs reached by this method via a search originating

from each of the affected genes in the AML pathway for one patient. Using the pathway

ranking method described in Section 5, we additionally prefer drugs obtained from the top

ranked pathways that contain our gene target.
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Chapter 5

Reporting

Collaborative interfaces are one of the five essential elements of a personalized genome anal-

ysis pipeline as outlined by Valencia and Hidalgo [164]. Such an interface displays the results

of the various analysis steps distilled down to just the most important pieces of information

that a clinician or non-computational biologist can easily interpret, usually in some kind of

interactive interface such as the Integrative Genome Viewer (IGV) ([135, 160]) but sometimes

in a static PDF report.

In the cases of identifying genetic variations in an individual, identifying a list of differentially

expressed genes between two conditions, or in calling ChIP-seq peaks, the task of identifying

the most important results to present for further study is non-obvious, particular such list

sizes are on the order of 100s and 1000s. For differential genes, most tools such as CyberT

[13, 85] provide p-values which can rank genes to identify the most significant, but in many

cases domain knowledge is incorporated such that the a subset of the most significantly

differential genes is retained for further study, such as a list of genes involved in a certain

pathway, or genes having an enriched GO terms identified using tools such as DAVID [44].

In the case of pediatric cancers, we have a ranking of DNA variations based on the number
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of reads supporting the altered DNA sequence in that patient, but the problem of identifying

the most important of such mutations still remains.

We developed a novel approach to reporting for our pediatric pipeline in order to sift through

the still many affected genes found in each patient, despite having removed variations present

in the germline control samples. When looking at the overlap with the 487 KEGG and NCI

pathways in our network analysis, on average 342 pathways had at least one small variation

per patient. Additionally, we find that over 100 curated genes per patient are present within

one of these pathways. To reduce this to a more clinically relevant and manageable number

of affected pathways, it is necessary to limit pathways based on their importance in a each

specific type of cancer. Similarly, we must limit the list of affected genes that contain

genetic variants or have aberrant gene expression. After doing so, we then build networks

for the pathways most affected pathways in each patient in order to visualize the interactions

between affected genes within the same pathway, and to identify potential drug candidates.

5.1 Framework

Our distilled reports are presented to collaborators and clinicians through in-house software

that renders reports into HTML, allowing for easily presenting tables of results and down-

loadable figures to collaborators. We adhere to the approach outlined by Knuth in his book

Literate Programming [92], and implement all of our reports using a markup language em-

bedded in so-called “runnable reports”. Our in-house software is an extension of previously

developed software, org-mode [146], combined with the popular statistical computation lan-

guage R [131]. Figure 5.1 shows an example of such mark-up, and how it is commonly used

in our reports.

Custom PHP code is used to wrap calls to emacs which is used to render the org-mode
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* Curated Genes (=Curated=)

For src_R[:session *R* :results raw]{disease},

src_R[:session *R* :results raw]{length(curated)}

genes were curated from PubMed and Entrez searches.

Out of these,

src_R[:session *R* :results raw]{length(curated.variants)}

were found to have some type of variation present

and are listed below.

#+BEGIN_SRC R :session :results verbatim raw :exports results

capture.output(write.org(load.table(’curated.txt’)))

#+END_SRC

Figure 5.1: Example org-mode markup for reports

reports to HTML. This webserver implements a read-only group account, in addition to

user accounts with permission to edit the reports and rerun. This allows for a one-way

sharing of reports using a uniform, and secure, interface. HTML reports are styled using

modern software packages, including jQuery, Bootstrap. A pop-up dialog using fancybox

and an in-house node-js server wraps the R package shiny [140] as shown in Figure B.6. See

Appendix B for screenshots of our collaborative interface generated for each patient using

this framework. All software requirements are listed in Appendix A.2.

5.2 Ranking pathways and genes in pediatric cancer

In order to filter genes with variations down to the ones most probable to contain driver

mutations, we develop a ranking method for both pathways and genes based on enrichment

scores. Using the list of curated genes described previously – those specific to a type of

cancer – we use a Fisher’s exact test to determine the statistical significance of the overlap

between the curated gene list and the list of genes in each pathway. Pathways are then

ranked based on this significance value. This ranking is specific to each type of cancer but
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not specific to any individual patient. Additionally, for each patient, the ranked pathways

for their type of cancer are filtered for only those pathways containing at least one genetic

variation (small or large) within the curated list of genes for that cancer. In most patients,

this reduces the average affected pathways from 342 down to less than 50 affected pathways.

Specifically, we compute the pathway enrichment p-value as the probability of observing the

overlap between the pathway gene list and our curated gene lists, assuming 39131 genes in

the human genome.

Score(Pathway) = − log
10
(pathway enrichment p-value)

Similarly, for each patient, we compute an enrichment score for any single gene based on

the list of variants which are affecting that gene. The enrichment score of each individual

type of variant listed in Table 2.2 (under the small variations, large variations, and gene

expression columns) is determined using the overlap of variants of a particular type within

the table with the list of curated genes for that patient’s cancer, calculated using a Fisher’s

Exact test.

Score(Gene) =
∑

− log
10
(variant enrichment p-value)

To justify this approach, assuming the curated lists reflect the genes we expect to be mutated

in patients with this type of cancer, we should observe more variations within this list than

in a random gene list of the same size. As remarked on in Section 4.2.3, we find this to

be the case across patients. Types of genetic variations that score higher will be ones that

contain a larger number of affected genes within the curated list, and therefore we might

expect our driver mutations to be carried by the same categories of mutations in those genes,

and others, within the same patient.

86



To assess the robustness of our gene ranking method to variations in the previously curated

gene lists, we used a leave-one-out approach. After the initial ranking of genes based on

the initial curated gene list for each patient, we removed each of the top 50 curated genes

from the curated gene list and re-ranked that gene in order to measure its change in rank.

We found that across all patients, 81% of the top 50 genes for each patient moved less than

25 ranks, with a median change in rank of 3 for the top 25 curated genes. Further, within

the top 10 genes for each patient we observed a median change in rank of only 1. This

suggests that the top ranked curated genes are influenced less by their own contribution to

the ranking score than those further down the list and that the ranking of genes is relatively

stable with respect to the composition of the curated gene list.

Lastly, using the list of 450 symbols common to most cancers as was defined in Section 4.2.1,

we look for affected genes within this more general list that rank highly but are not contained

within the curated list of genes. These are genes that have been implicated in any type of

cancer. Therefore, any affected genes within this list warrant further consideration aside

from those in our curated gene lists for each type of cancer. Our final reports are in the

form of network views of the top ranked pathways, along with tables of the top ranked genes

along with their associated pathways, drug candidates, and expression profiles.

5.3 Interesting findings in pediatric cancer

5.3.1 Patient CHOC23 (AML)

To demonstrate the effectiveness of our pipeline in identifying genes affected by likely driver

mutations, we explore the ranking observed for one of our patients with acute myeloid

leukemia (AML), CHOC23. Our objective is to identify the affected genes within the tumor

genome of CHOC23 that most directly relate to AML. We employed the ranking method
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Table 5.1: Top 10 ranked pathways for CHOC23 (AML)
Table from [188] (submitted).

Pathway Description Score Size
Curated
Overlap

Curated
Affected

PI3K-Akt signaling pathway 7.07 881 35 3
Chronic myeloid leukemia 5.66 179 13 1
Acute myeloid leukemia 4.19 180 11 3
Signaling events mediated
by HGFR (c-Met)

3.81 80 7 1

Pathways in cancer 3.09 890 26 3
Hepatitis B 2.94 374 14 1
Small cell lung cancer 2.93 215 10 2
Pancreatic cancer 2.73 191 9 1
ATR signaling pathway 2.63 39 4 1
Toll-like receptor signaling 2.64 236 10 1

described previously to rank the pathways that would be of most interest in AML, the results

of which are presented in Table 5.1. The top 3 pathways for this patient were PI3K-Akt

signaling pathway, Chronic myeloid leukemia, and Acute myeloid leukemia. This initial

ranking of pathways is not specific to this patient and is shared with all AML patients. As

we would expect, the leukemia pathways for CML and AML rank near the top.

The gene ranking method also performs well for this patient, and in contrast to the pathway

ranking, is specific to this patient. As shown in Table 5.2, this method ranks MLL3 the

highest. The score for MLL3 is calculated as follows:

Score(MLL3) = Score(Fusion) + Score(Deletion)

+ Score(LowerCN) + Score(Missense)

= 0.5767 + 1.5911 + 0.6887 + 0.6484

= 3.51

The higher value for Score(Deletion) reflects the fact that, in this patient, deletions are

more enriched within the curated list of genes for AML than any of the other variations.

For the majority of patients, the genetic variations that score highest are: (1) microarray
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Table 5.2: Top 10 curated gene ranking for CHOC23 (AML)
Table from [188] (submitted).

Gene Score RPKM Variants (counts)

MLL3 3.51 0.71703
fusion (6); deletion (1);
lowerCN (13); missense (1)

ERCC1 2.92 0.8563 under expr. LOW; inversion (3)

NCOR1 2.78 0.78821
inversion (3); deletion (1);
higherCN (3)

TCF7L1 2.55 0.42467 deletion (1); unique inframe (1)
NCOR2 2.51 0.76177 under expr. MEDIUM; deletion (6)
HPR 2.24 0.41816 deletion (1); missense (1)
LEPR 2.24 0.30763 deletion (12); missense (1)
NRAS 2.16 0.46848 flagged missense (1)

HSPA1A 1.70 0.55796 under expr. MEDIUM; tandemdup (1)
MUT 1.65 0.37452 tandemdup (1); missense (1); loh (1)

differential genes, (2) fusions, (3) deletions, and (4) genes with lower RPKM compared to

other patients. The fact that this gene ranks at the top is of no small consequence, it is one

of the few identified Mitelman fusions in all of the patients. The other mutations identified

provide further evidence that MLL3 is significantly altered in this patient, and contribute to

it being the highest ranked.

We make use of our automated method for drug recommendations to address the problem

of a lack of directly druggable targets. For this patient, none of the top ten ranking curated

genes have any drugs that directly target them, making therapeutic recommendations for

these genes problematic. To address this, we search over each of the top ranked genes and

identify which of the top ranked pathways, if any, that gene is contained within. If one or

more pathways exists, we perform a graph-based search for the nearest best drug candidates,

as described earlier in Section 4.4.

For this patient, the first such targets with drug candidates are TCF7L1 and NCOR2. In

the absense of directly druggable targets, we find that TCF7L1 has two potential drug can-

didates. The first of which, Staurosporin – a potent protein kinase inhibitor – is identified in

the Prostate Cancer pathway through TCF7L1′s interaction with CTNNB1, which interacts

with Staurosporin′s direct target GSK3B. Interestingly, we find a number of additional tar-

gets for Staurosporin in the AML pathway (shown in Figure 4.9 for a different AML patient)
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– AKT2, AKT3, KIK3CG, and PIM1, all containing genetic variants within this patient.

The second drug candidate, Vorinostat, a HDAC1 inhibitor, is identified in the Regulation

of β-catenin pathway, again through TCF7L1’s interaction with CTNNB1, which interacts

with HDAC1.

We also identify Vorinostat as the best drug candidate for our next highest ranked gene,

NCOR2, through an entirely different pathway, the Notch signalling pathway where HDAC1

and NCOR2 have a protein-protein interaction. This drug has been in Phase II clinical

trials for AML patients, and while it was not shown to be effective alone, it shows promise

as a potential drug for high-risk patients in conjunction with other drugs [145]. It may be

the case that only a subset of patients, such as this one, would respond to this drug. In

the absense of any direct drug candidates in the top ranked genes, we are able to identify

reasonable drug candidates through this pathway-based approach.

5.3.2 Patient CHOC33 (Neuroblastoma)

Another interesting case is patient CHOC33, a neuroblastoma patient. Neuroblastoma is

a tumor derived from neural crest cells from the sympathetic nervous system. Using this

patient as an example, we explore how we relate the gene expression data to the top ranked

genetic variations found. Our pipeline focuses on the curated list of genes associated with

neuroblastoma (505 genes), for which the top ranking in this patient are as follows: PTPRD

(2.68), PARK2 (2.44), DCC (2.34), and ALK (2.22). All of these genes contain genetic

variants within their coding sequences.

Our second ranked gene, PARK2, contains a deletion in the first intron as well as an exonic

region of higher copy number, as shown in Figure 5.2, which contributes to its high rank.

PARK2 is also identified as having a relatively higher expression in this patient compared

to others (Figure 5.3). The gene expression profile provides strong evidence that PARK2
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Figure 5.2: PARK2 variations in patient CHOC33. Zoomed in region highlights fea-
tures of exon 2 within the copy number variant, which includes a functional ubiquitin
domain identified by Pfam.
Figure from [188] (submitted).

gene expression is being altered as a result of its genetic variants. This lends credibility

to the called genetic variants, as well as informing on the direction of change of PARK2

expression in this patient’s tumor. Additionally, by overlapping Pfam predicted domains for

PARK2, we identified a portion of the ubiquitin domain that confers PARK2 a role in the

ubiquitin-ligase pathway (Figure 5.2). This further suggests that PARK2 is functioning in

tumor progression in this patient. Recently, PARK2 has been shown to have an emerging

role in cancer [186].

5.3.3 Patients CHOC36 and CHOC03 (AML)

We perform a meta analysis on our two primary AML patients, CHOC36 and CHOC03,

in which we attempt to find genes that had common variations: either genetic or in their

expression. One such gene is EPOR, which stood out as having significantly higher expression

in both patients compared to other patients’ tumors (Figure 5.4). Despite a known higher

expression in healthy bone marrow as compared to other tissues (data not shown), the level

of EPOR expression observed for these two patients is not observed in other patients for

which the RNA-seq data was also obtained from the patient’s bone marrow.

EPOR, known as erythropoietin receptor, is involved in the Jak-STAT signaling pathway,
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Figure 5.3: PARK2 gene expression in patient tumors (top) and BioGPS normal tissue
gene expression in tumor-matched tissues (bottom), where patient CHOC33 is the first
bar on far left. We observe higher expression for PARK2 in CHOC33 as compared
to other patients, in contrast to a relatively constant gene expression across healthy
tissues.
Figure from [188] (submitted).

which ranks within the top five pathways for both patients. Additionally, for CHOC03, the

top 5% most highly differentially expressed genes were enriched within the list of curated

genes for AML, indicating a strong increase in expression in a subset of curated genes for

this patient as compared to other patients. This not only has the effect of ranking EPOR

highly (#19 ranked curated gene, #1 ranked curated gene within a top 25 ranked pathway),

but also of highlighting specific pathways that are over-expressed, mainly the PI3K-Akt

and Jak-STAT signaling pathways. The Jak-STAT signaling pathway for CHOC03 contains

high expression variants in a number of highly connected genes, namely: STAT5A, EPOR,

PTPN6, IL6ST, CSF2RF, JAK3, TPOR, and PIM1 all show much higher expression than

other patients. These variants are readily visible using the network approach (network not

shown).

While not differentially expressed between our curated AML control vs. tumor microarray

samples (P=0.6354), it has been shown previously that in approximately 60% of AML pa-
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tients, EPOR is unexpressed [32]. Additionally, remission times for patients with higher

EPOR expression is significantly lower compared to those without EPOR expression [159]

which is likely the case for these patients since all of the patients sequenced are after re-

currence of the primary tumor. Additionally, in some cases patients with AML are being

treated with erythropoiesis-stimulating agents, but it is believed that this could cause prolif-

eration in a subset of AML patients with EPOR expression ([54, 32]), suggesting that these

AML patients fall into a specific subtype of AML, differentiating them from our secondary

AML patients CHOC23 and CHOC26, for which we do not observe an increase in EPOR

expression.

Additionally, we investigated what transcription factors were enriched in each of our AML

patients based on the location of predicted binding sites upstream of our differential gene

lists (see Section 3.2.4). Further validating the importance of EPOR in these patients, we

identify a significant enrichment for transcription factor LMO2 in our list of over-expressed

transcripts (rank #3 for CHOC03; p-value = 4.5E-5). LMO2 and three out of its 25 targets

predicted by MotifMap (EPOR, ANK1, and TRIM10) all have high expression in this patient

(Figure 5.4). LMO2 has been previously found to be involved in AML [34], and its high

expression, particularly in CHOC03, compared with other patients is further evidence of a

subtype of AML within our primary AML patients.
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Chapter 6

Conclusion

What we have developed for our pediatric cancers project is a complete genomic analysis

pipeline starting from raw sequencing reads leading to clinically interpretable results in the

form of short (1-100) ranked lists of the most important affected genes. In practice, the

turn around time is a day for processing of the raw sequencing reads and generating the

final reports – for patients with cancer types for which curated gene lists have already been

obtained.

Our pipeline adheres to the five steps of a cancer analysis pipeline outlined by Valencia

and Hidalgo [164]: 1. Genome analysis: We analyze DNA-seq and RNA-seq data from

commercial vendors using a uniformed format for calling variants. 2. Consequences of

mutations and genomics alterations: For small variations we identify the affect on protein

sequence in addition to protein secondary structure, solvent accessibility, and known protein

domains. 3. Network level analysis: We make use of NCI and KEGG pathways to identify

the most relevant pathways for each type of cancer. 4. Drug: We make use of the ranked

pathways and genes to identify potential drug candidates for each patient. And lastly, 5.

Collaborative interfaces: We integrate multiple sources of information into a network view
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that includes regulatory information across all patients and tissue types for exploring the

interactions among affected genes and potential drugs.

6.1 Applications of pipeline

Our pipeline has an emphasis on pediatric cancers, but we present results where we can

reuse portions of our pipeline in the analysis of other high-throughput sequencing projects.

In Section 3.1.3 we show how the search for transcription factor binding sites is adapted

to predicting phosphorylation sites in the human proteome. In Section 3.1.4 we developed

a ChIP-seq analysis pipeline in parallel with our DNA-seq and RNA-seq portions of the

pipeline, which attempts to answer a specific research question in colon cancer cells using

novel analysis approaches. In Section 3.1.6 we show how we can define a transcriptional

regulatory network of skin wounding using the TFBS enrichment portion of our pipeline,

combined with the network analysis described in Section 4.1. In Section 3.2.2 we use our

differential analysis pipeline for microarray datasets to identify differential antigens in devel-

opment of a vaccine for Tuberculosis. In Section 3.2.5 we use our differential analysis pipeline

developed for RNA-seq data to investigate BAF53b knockout mice. Overall, we outlined a

standard set of analyses performed for various types of high-throughput sequencing data.

6.2 Comparison to other work

In contrast to other published pipelines [42], our pipeline successfully integrates expression

data into our ranking, in addition to giving priority to mutated variant transcription factors.

A recent opinion paper [109], highlights the importance of the integration of multiple -omic

datasets, which we have demonstrated.
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Our method differs from other methods such as IntOGen [62] or MuteProc [87], which only

attempt to use a cohort of patients to identify a list of driver mutations across patients.

These are not specifically aimed at identifying the driver mutations within a single patient.

Similarly, the commercial packages offered by Tgen or Cypher Genomics only screen for

mutations within a predefined and pre-ranked set of mutations, and are typically biased

towards a handful of well studied genes (i.e. TP53). When a rough comparison is made to

reports obtained for a few of these patients, it was found that these commercial offerings list

genes almost always falling within our curated list of genes, that predominantly had missense

mutations and aberrant copy number variations, all of which are reported by our pipeline as

well.

6.3 Importance of automation

Most importantly, after initially obtaining the datasets used in our integrative approach, our

pipeline is automated up to and including the identification of potential drug candidates,

and handles newly diagnosed patient with cancer types we have already seen without any

intervention. This is an important aspect when working with pediatric cancer patients

where the time from diagnosis to treatment is critical. In fact, the main reason multiple

sequencing technologies were required for this project was to balance the turn around time

of the sequencing technology and the cost of the sequencing technology on a per patient

basis. Being able to return clinically relevant results immediately after sequencing results

are obtained is an important aspect of a complete genomics analysis pipeline such as this, and

will be critical of any personalized genomics pipeline that is to have widespread adoption.
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6.4 Value of integrative approach

By combining RNA-seq, DNA-seq, and microarray data, in addition to numerous sources of

annotations on the reference genome, we were able to identify likely driver mutations in pedi-

atric cancers. We found that such an integrative approach is essential, and information from

gene expression data in particular, can complement a search for genetic variants, making

results more robust. Typically, we observe many mutations within the top ranked path-

ways, indicating that multiple genes are likely affected in a tumor cell in order to effectively

knockout critical pathways, as shown to be required in cancer ([70, 71]).

In some cases, gene expression data alone can stratify patients with different subtypes of

cancer, such as was the case for our primary AML samples and EPOR expression. In other

cases, gene expression data was found to agree with the DNA-seq variants, giving stronger

evidence that this particular variant could be considered a driver mutation. The gene lists

derived from microarray control vs. tumor data (when available) are found to overlap well

with the set of genes affected by variants (P=1E-15 for AML patient CHOC03). These

curated lists allow for screening of variants within a set of the most important genes and

pathways, by making use of multiple sources of patient data.

We found that using integrative approaches in the form of gene and drug networks along

with gene expression profiles helped improve the interpretation of genetic variants. Our novel

ranking methods quickly identify the most important mutations for the cancer specific to

each patient and we showed in a few example patients that the most highly ranked genes

and pathways had interesting results that agreed with literature. What we have developed

thus far is a general genomic pipeline, which we demonstrated a use for in identifying likely

driver mutations in pediatric cancer. This same pipeline can be readily adapted to the study

of any genetic variants associated with any trait or disease of interest (e.g. the “driver”

mutations of schizophrenia).
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6.5 Future work

During the course of the development of our pipeline we observed specific biases in some of

the results depending on the sequencing platform used, necessitating in some cases correcting

for these biases, as is the case for a few fusions that appeared in multiple Illumina patients

that at first appeared clinically relevant. Such technology biases are an aspect of our future

work in this pipeline, and with more patients we will be able to identify the full scope of

such biases and correct them in a systematic way. Given the advantage of the network

representation for interpreting results and identifying relationships between variations, we

also see the advantage in implementing some network-based inference to complement our

enrichment-based approach, in order to increase the quality of the rankings of pathways and

likely driver mutations.

Figure 6.1: Biases in sequencing technology are observed when patients are clustered
using hierarchical clustering on the variants within each patient, two correlated clus-
ters are observed which separate the sequencing technologies exactly
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tigny, C. Marck, C. Neuvéglise, E. Talla, N. Goffard, L. Frangeul, M. Aigle, V. An-
thouard, A. Babour, V. Barbe, S. Barnay, S. Blanchin, J.-M. M. Beckerich, E. Beyne,
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Appendix A

Supplementary Information

A.1 Hardware requirements

Our pipeline is run on a 26 node 16-core 2.2 GHz AMD Opteron(TM) Processor 6274 cluster

consisting of 48GB RAM per machine, running CentOS release 5.9 (Final).

Storage requirements per patient include approximately 400-500GB for storing the sequenc-

ing alignments for both the DNA-seq and the RNA-seq, and 5-10GB in output files including

gene lists, variant details per transcript, final networks and reports. Additionally, approx-

imately 100GB is needed for the necessary database files, etc., that are shared across all

patients as well as those specific to each type of cancer.

The entire pipeline runs in approximately 2 days compute time per patient, distributed using

Sun Grid Engine (SGE 6.2u5).
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A.2 Software requirements

We present a list of all software packages we make use of in the pipeline, including versions

and references where applicable.

Stand-alone packages:

• picard-tools (1.81)

• samtools (0.1.18) [101]

• casava (1.8.2)

• SCRATCH (1.0) [33]

• blast (2.2.26)

• MACS (1.4) [189]

• Bowtie (2.0.0-beta6) [98]

• TopHat2/TopHat-Fusion (2.0.3) [88, 89]

• cufflinks/cuffdiff (2.1.1) [162, 161]

• Trinity (2014-04-13p1) [65]

• GSEA (2.2.08) [158]

• MOODS (1.0) [94]

• PoSSuMsearch (1.3) [16]

• VarScan2 (2.3.6) [93]

• IGV (2.2.13) [160]

• Exonerate (2.2.0) [150]

• Weblogo (2.8.2) [36]

Collaborative interfaces:

• Cytoscape Web (1.0.4) [105]
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• Apache (2.2.15)

• Django (1.4.1)

• Flask (0.10.1)

• Bootstrap (2.2.1)

• jQuery (1.8.3)

• fancybox (2.1.5)

Python (2.6.5) modules:

• networkx (1.7) [69]

• pybedtools (0.6.2)

• cybtpy [85]

R (2.15.0) packages:

• DAVIDQuery [78]

• GEOquery [41]

• affy [59]

• limma [152]

• shiny [140]

• MASS [166]

• ggbio

• cummeRbund

• biovizBase

• impute

A.3 Pediatric cancer
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Table A.1: Corresponding disease and tumor sample source, DNA and RNA sequencing
data vendors for each patient. GHTF = UC Irvine GHTF.

Participant Gender Diagnosed Disease Tumor Sample Source WGS Vendor RNA
CHOC33 Female Neuroblastoma Third Rib Left Side Illumina Scripps
CHOC07 Female Rhabdomyosarcoma Soft Tissue, Posterior Tibia C. Genomics Scripps
CHOC20 Male Atypical Teratoid Rhabdoid Tumor Brain, Left Temporal Illumina Scripps
CHOC35 Male Metastatic Osteosarcoma Lung, Right Upper Lobe C. Genomics Scripps
CHOC18 Male Hemophagocytic Lymphohistiocytosis Blood C. Genomics Scripps
CHOC01 Male Ependymoma Brain Tissue C. Genomics Scripps
CHOC36 Female Acute Myeloid Leukemia (AML) Bone Marrow C. Genomics Scripps
CHOC11 Male Rhabdomyosarcoma Pleural, Left Pleural Base C. Genomics Scripps
CHOC43 Female Acute Lymphoblastic Leukemia (ALL) Cerebralspinal Fluid Illumina N/A
CHOC38 Male Hodgkin’s Lymphoma Right Neck Mass C. Genomics Scripps
CHOC02 Female Large Cell/Anaplastic Medulloblastoma Brain Tissue, Posterior Fossa C. Genomics Scripps
CHOC10 Male Myelodysplastic Syndrome Bone Marrow C. Genomics Scripps
CHOC41 Male Germ Cell Tumor Medialstinal Mass C. Genomics Scripps
CHOC21 Male Acute Lymphoblastic Leukemia (ALL) Bone Marrow Illumina Scripps
CHOC23 Female Ewing’s Sarcoma, AML Bone Marrow Illumina Scripps
CHOC08 Female Clear Cell Sarcoma Soft Tissue, Left Chest Wall C. Genomics Scripps
CHOC04 Female Acute Lymphoblastic Leukemia (ALL) Bone Marrow C. Genomics Scripps
CHOC30 Female Medulloblastoma Posterior Fossa Illumina Scripps
CHOC34 Male Pilocytic Astrocytoma Temporal Lobe/Intrav. Nodule Illumina Scripps
CHOC39 Female Wilm’s tumor Left Kidney C. Genomics Scripps
CHOC13 Female Ewing’s Sarcoma Left Popliteal Mass C. Genomics GHTF
CHOC09 Female Melanoma Soft Tissue, Right Buttock C. Genomics Scripps
CHOC28 Female Osteosarcoma Right Chest Wall Mass Illumina Scripps
CHOC29 Male Hodgkin’s Lymphoma Periportal Lymph Node C. Genomics Scripps
CHOC26 Female Acute Lymphoblastic Leukemia, AML Bone Marrow Illumina N/A
CHOC25 Female Embryonal Tumor with ANTR Brain, R. Perieto-Occipital Illumina Scripps
CHOC24 Female Atypical Teratoid Rhabdoid Tumor Brain, Left High Parietal C. Genomics N/A
CHOC03 Male Acute Myeloid Leukemia (AML) Bone Marrow C. Genomics Scripps
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Table A.2: GEO microarray datasets used

GEO ID Samples
GSE10615 TESTICULAR (27)

GSE10899
ALL (4)
AML (6)

GSE12417 AML (405)

GSE12453
HODGKINS (12)
HODGKINS CONTROL (10)
HODGKINS OTHER (45)

GSE12512
OSTEOSARCOMA (25)
OSTEOSARCOMA OTHER (12)

GSE12907
JPA (21)
JPA CONTROL (4)

GSE16254 NEUROBLASTOMA (88)

GSE1825
EWINGSSARCOMA (5)
NEUROBLASTOMA (5)

GSE2223
JPA (2)
JPA CONTROL (4)

GSE22696
WT (26)
WT CONTROL (26)

GSE26050
HLH (11)
HLH CONTROL (33)

GSE2657
HODGKINS (2)
SARCOMA (4)

GSE2712
CLEARCELLSARCOMA (14)
CLEARCELLSARCOMA CONTROL (3)
WT (18)

GSE2719
SARCOMA (39)
SARCOMA CONTROL (15)

GSE27283
EPENDYMOMA (75)
EPENDYMOMA CONTROL (75)

GSE2779
MDS (13)
MDS CONTROL (15)

GSE28026 ATRT (18)
GSE30074 MEDULLOBLASTOMA (30)

GSE4587
MELANOMA (7)
MELANOMA OTHER (11)

GSE468 MEDULLOBLASTOMA (23)
GSE4698 ALL (60)

GSE8607
TESTICULAR (40)
TESTICULAR CONTROL (3)

GSE9476
AML (25)
AML CONTROL (39)

GSE967
EWINGSSARCOMA (11)
RHABDOMYOSARCOMA (12)
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Table A.3: Mitelman fusions identified in all patients

Patient ID Author..Year Morphology Karyotype Gene
CHOC11 Galili et al 1993 Alveolar rhabdomyosarcoma t(2;13)(q36;q14) PAX3/FOXO1
CHOC11 Gordon et al 2003 Pleomorphic rhabdomyosarcoma t(2;13)(q36;q14) PAX3/FOXO1
CHOC11 Shapiro et al 1993 Alveolar rhabdomyosarcoma t(2;13)(q36;q14) PAX3/FOXO1
CHOC23 Bain et al 1998 Myelodysplastic syndrome t(9;11)(p21;q23) MLL/MLLT3
CHOC23 Goto et al 1994 Acute myelomonocytic leukemia t(9;11)(p21;q23) MLL/MLLT3
CHOC23 Iida et al 1993 AML without differentiation t(9;11)(p21;q23) MLL/MLLT3
CHOC23 Iida et al 1993 AML t(9;11)(p21;q23) MLL/MLLT3
CHOC23 Iida et al 1993 Acute myelomonocytic leukemia t(9;11)(p21;q23) MLL/MLLT3
CHOC23 Joh et al 1996 Acute myeloid leukemia t(9;11)(p21;q23) MLL/MLLT3
CHOC23 Jun et al 2011 Acute myeloid leukemia t(1;9;11)(p34;p21;q23) MLL/MLLT3
CHOC23 Matsuo et al 1997 AML without differentiation ins(11;9)(q23;p21p23) MLL/MLLT3
CHOC23 Nakamura et al 1993 ALL/lymphoblastic lymphoma t(9;11)(p21;q23) MLL/MLLT3
CHOC23 Nakamura et al 1993 Acute myeloid leukemia t(9;11)(p21;q23) MLL/MLLT3
CHOC23 Negrini et al 1993 AML t(9;11)(p21;q23) MLL/MLLT3
CHOC23 Poirel et al 1996 AML without maturation t(9;11)(p21;q23) MLL/MLLT3
CHOC23 Shago et al 2004 AML ins(9;11)(p21;q23q23) MLL/MLLT3
CHOC23 Soler et al 2008 AML without maturation ins(9;11)(p21;q13q23) MLL/MLLT3
CHOC23 Super et al 1997 AML t(9;11;13)(p21;q23;q34) MLL/MLLT3
CHOC23 Voskova et al 2004 AML with minimal differentiation t(9;11)(p21;q23) MLL/MLLT3
CHOC23 Yamamoto et al 1994 AML without maturation t(9;11)(p21;q23) MLL/MLLT3
CHOC23 Yamamoto et al 1994 Acute myelomonocytic leukemia t(9;11)(p21;q23) MLL/MLLT3
CHOC23 Yamamoto et al 1994 AML without differentiation t(9;11)(p21;q23) MLL/MLLT3
CHOC23 Yamamoto et al 1994 ALL/lymphoblastic lymphoma t(9;11)(p21;q23) MLL/MLLT3
CHOC08 Antonescu et al 2011 Malignant epithelial tumor, special type t(12;22)(q13;q12) EWSR1/ATF1
CHOC08 Dunham et al 2008 Angiomatoid malignant fibrous histiocytoma t(12;22)(q13;q12) EWSR1/ATF1
CHOC08 Friedrichs et al 2005 Clear cell sarcoma t(12;22)(q13;q12) EWSR1/ATF1
CHOC08 Fukuda et al 2000 Clear cell sarcoma t(12;22)(q13;q12) EWSR1/ATF1
CHOC08 Hallor et al 2007 Angiomatoid malignant fibrous histiocytoma t(12;22)(q13;q12) EWSR1/ATF1
CHOC08 Hansen Hallor et al 2005 Angiomatoid malignant fibrous histiocytoma t(12;22)(q13;q12) EWSR1/ATF1
CHOC08 Hiraga et al 1997 Clear cell sarcoma t(12;22)(q13;q12) EWSR1/ATF1
CHOC08 Panagopoulos et al 2002 Clear cell sarcoma t(12;22)(q13;q12) EWSR1/ATF1
CHOC08 Rossi et al 2007 Angiomatoid malignant fibrous histiocytoma t(12;22)(q13;q12) EWSR1/ATF1
CHOC08 Somers et al 2005 Osteogenic/bone tumor t(12;22)(q13;q12) EWSR1/ATF1
CHOC08 Speleman et al 1997 Clear cell sarcoma t(12;22)(q13;q12) EWSR1/ATF1
CHOC08 Taminelli et al 2005 Clear cell sarcoma t(12;22)(q13;q12) EWSR1/ATF1
CHOC08 Zucman et al 1993 Clear cell sarcoma t(12;22)(q13;q12) EWSR1/ATF1
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Appendix B

Collaborative interface
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Figure B.1: The top 25 affected pathways are displayed with summary information for
a patient.
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Figure B.2: The list of Mitelman fusions along with the ranked genes in the curated
list. Yellow highlights denote variants present for that gene.

125



Figure B.3: The list of variants within a single pathway can be obtained via a hyperlink
in the top-level report. Each of the affected curated genes within the pathway are listed
along with their variants.
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Figure B.4: An interactive network representation combining protein-protein, TF-
protein, and drug-protein interactions for all top 25 pathways is generated and in-
cluded in the report. Red nodes denote affected genes and details are obtained by
clicking on each node.
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Figure B.5: Expression profiles for tumor (top) and normal (bottom) tissues is dis-
played with the patient on the far left as compared to all other patients on the right.
Figures are generated on demand using the shiny package in R along with fancybox
to implement the pop-up dialog.

Figure B.6: Details for each transcript are obtained on demand using the ggbio and
biovizBase packages for R. Protein sequence features (solvent accessibility and sec-
ondary structure from SCRATCH and Pfam domains) are highlighted.
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