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Filling the gaps: Cognitive control as a critical lens for 
understanding mechanisms of value-based decision-making

R. Frömer, A. Shenhav
Cognitive, Linguistic, and Psychological Sciences, Carney Institute for Brain Science, Brown 
University, Providence, RI

Abstract

While often seeming to investigate rather different problems, research into value-based decision 

making and cognitive control have historically offered parallel insights into how people select 

thoughts and actions. While the former studies how people weigh costs and benefits to make a 

decision, the latter studies how they adjust information processing to achieve their goals. Recent 

work has highlighted ways in which decision-making research can inform our understanding 

of cognitive control. Here, we provide the complementary perspective: how cognitive control 

research has informed understanding of decision-making. We highlight three particular areas of 

research where this critical interchange has occurred: (1) how different types of goals shape 

the evaluation of choice options, (2) how people use control to adjust how they make their 

decisions, and (3) how people monitor decisions to inform adjustments to control at multiple 

levels and timescales. We show how adopting this alternate viewpoint offers new insight into 

the determinants of both decisions and control; provides alternative interpretations for common 

neuroeconomic findings; and generates fruitful directions for future research.
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For decades, research into the mechanisms of how people adjust their information 

processing to achieve their goals (cognitive control) and how they weigh costs and 

benefits to make a choice (value-based decision-making) was conducted largely in parallel, 

distinctions between which were seemingly underscored by differences in their dominant 

experimental paradigms. In a typical decision-making experiment (e.g., a choice between 

two gambles, food items, or consumer goods; Collins & Shenhav, 2021; Glimcher, 2002; 

Hare, Schultz, Camerer, O’Doherty, & Rangel, 2011; Rangel & Clithero, 2014), a participant 

must weigh the relevant costs and benefits to determine for themselves what the best 

course of action is. In a typical cognitive control experiment (e.g., a Stroop, Eriksen 

flanker, or Simon task; Friedman & Robbins, 2021), the best course of action is indicated 
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unambiguously (e.g., the participant is instructed to name the stimulus color, and that 

color is easy to identify), but choosing that response requires engaging control processes 

to overcome a bias towards automatically responding in a different way (e.g., based on 

another salient feature of the stimulus). While these two sets of tasks involve similar sets of 

computations (Rangel, 2009; Ritz, Leng, & Shenhav, under review), they are used to address 

questions that are in large part non-overlapping (Fig. 1). Decision-making research typically 

gives greater focus to the process of integrating information about the stimuli to select a 

response (Fig. 1A), taking account of previous learning, long-run preferences (e.g., risk 

aversion), motivational state (e.g., current hunger level), and more (Campbell-Meiklejohn, 

Simonsen, Frith, & Daw, 2016; Lempert & Phelps, 2016; Louie, Grattan, & Glimcher, 

2011). By contrast, cognitive control research typically gives greater focus to the factors 

that shape the response selection process (Fig. 1B), for instance how people enhance their 

processing of the target feature (e.g., color) and/or suppress their processing of the distractor 

(e.g., word) based on recent performance (Ritz et al., under review).

Interactions across these fields have increased in recent years, addressing questions at their 

intersection that could not have previously been addressed by either alone. A recent example 

of this is a body of work that has used models of value-based learning and decision-making 

to understand how people select the best level of cognitive control for a given situation 

(Lieder, Shenhav, Musslick, & Griffiths, 2018; Shenhav et al., 2017). Here, we will highlight 

the significant advances that have been made through the opposite direction of interchange: 

ways in which insights drawn from research on cognitive control have illuminated the 

mechanisms by which people make value-based decisions. For example, the process by 

which people select between a given set of options has been well-described by an array 

of decision-making models, but accounting for how the parameters of this process change 

over time (e.g., the threshold for making a decision; Ratcliff & McKoon, 2008) may require 

an additional level of description beyond the choice itself. What determines when and how 

these parameters are adjusted? What kind of information about the choice process and/or 

the options themselves needs to be monitored to inform these adjustments. In other words, 

how is decision-making controlled? These are questions central to research into traditional 

cognitive control tasks like the Stroop (Botvinick & Cohen, 2014).

We will argue that drawing parallels to traditional research in cognitive control has not only 

helped understand how value-based decision-making is modulated, but has also provided 

a different lens through which to (re-)interpret elements of the decision process itself. 

We will highlight three areas where such connections have proven particularly valuable. 

First, while goals already play an important role in common models of decision-making 

– particularly when determining how attributes are weighted in option valuation (e.g., a 

goal of being healthy will be associated with a stronger weight on options’ health attributes 

relative to others) – cognitive control research provides insights into how these goals are 

regulated and flexibly adjusted; how goals defined at the task level additionally shape the 

selection process (and its correlates) (e.g. whether a person is identifying the best or the 

worst option in a set); and what types of processes occur automatically in response to a 

set of stimuli irrespective of one’s goal. Second, as noted above, whereas decision-making 

research defines the decision process in rich detail, cognitive control research provides 

insights into how the parameters of this process are altered and under what conditions, 
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including which neural circuits are most likely to be responsible based on analogous control 

adjustments in more traditional control tasks. Third, whereas decision-making research 

describes how representations of value are updated, integrated, and transformed to determine 

one’s actions (e.g., from attribute value to option value to action value), cognitive control 

research provides insights into the higher-order information that is represented about this 

very choice process (e.g., choice difficulty or confidence) that might bear on adjustments 

to ongoing or future choices. Understanding these choice monitoring processes can in turn 

help identify cases in which such monitoring signals can be misattributed to signatures 

of decision-making per se. Collectively, these different lines of work highlight important 

synergies that have emerged through the interdisciplinary interactions between decision-

making and cognitive control research, and point to fruitful directions for future work.

Representations of value are shaped by a diversity of goals

A central question in research on value-based decision-making is how the brain computes 

and compares values. Addressing this question requires knowing what the relevant 

representations are that underlie these computations and how they are encoded in the 

brain. Decision-making research has developed a good understanding of how the brain 

represents the variable that is at the center of these decisions: subjective value. Studies 

have demonstrated how the subjective value of one’s options is determined by integrating 

over its attributes and their meaning for that individual in that particular context (Rangel & 

Clithero, 2014). They have further demonstrated that these integrative values are encoded 

by a consistent set of brain regions (Levy & Glimcher, 2012), with activity in those 

regions increasing with the subjective value a person assigns to a given option (though 

see Hayden & Niv, 2021). A critical feature of value representations is that they have a 

canonical, directional, and task-independent meaning. That is, even though subjective values 

are multidimensional and can vary dynamically with context and with the decision-maker’s 

motivational state, these values are always assumed to fall on an ordinal scale whereby 

some options are more preferred to others at a given point. Where options fall relative 

to each other on this scale (and their relative activations in value-encoding regions of the 

brain) is therefore meaningful not only for the immediate task (e.g., choose Option A vs. 

Option B) but also for other tasks you might engage in outside of the lab (e.g., likelihood 

of recommending Option A to a friend or buying products that share properties with that 

option).

Within research on cognitive control, by contrast, it is typically assumed that the relevant 

representations are fundamentally and flexibly defined by the current task and that these 

representations encompass not only information about the features themselves, but also how 

these currently relate to relevant target responses (Badre, Bhandari, Keglovits, & Kikumoto, 

2021; Collins & Frank, 2013; Kikumoto & Mayr, 2017). Thus, information about stimuli 

and potential responses is considered with respect to one’s current task goals (e.g., when 

responding to the ink color of “BLUE” written in red, “red” achieves my current task goal 

better than “blue” and vice versa for word reading). Ultimately, these goals themselves need 

to be considered in terms of their overall value for an individual (Shenhav, Botvinick, & 

Cohen, 2013; Shenhav et al., 2017), which is something we will return to later, but in this 

section we will instead focus on what critical new insights cognitive control research can 
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offer into the different ways goals can shape these representations that underlie value-based 

choice.

The influence of goals on how we weigh elements of value

The fundamental assumption that our goals shape the way we process stimuli links research 

into decision-making and cognitive control. In the case of value-based choice, one of the 

most straightforward ways this manifests is in how strongly an individual considers different 

attributes of their options. For instance, when facing a set of food options, someone who 

is currently on a diet, might place greater weight on the healthiness-related attributes 

of those options (i.e., those that determine which foods are the healthiest) than on their 

tastiness-related attributes (Hare, Camerer, & Rangel, 2009). The same goals can be induced 

exogenously (e.g., through the experimenter’s instruction to focus on one attribute versus 

another; (Maier, Raja Beharelle, Polania, Ruff, & Hare, 2020; Tusche & Hutcherson, 

2018), demonstrating that valuation can adjust flexibly and dynamically with an individual’s 

current goals. Indeed, people are even able to adjust this valuation process based on the 

goals that they infer another person would have in this situation, for instance when choosing 

on behalf of someone who cares more about health than taste (or vice versa) (Harris, 

Clithero, & Hutcherson, 2018). In each of these cases, a common finding is that regions of 

the valuation network track the weighted value of a given option, that is, how preferable 

that option is when accounting for how much weight will be placed on each of the choice 

attributes (Hare et al., 2009; Hutcherson, Plassmann, Gross, & Rangel, 2012; Douglas G. 

Lee & Hare, 2021). Notably, the brain regions most commonly implicated in directing 

more attention towards choice attributes that are weighted most strongly – and thereby 

modulating value-related activity in regions such as vmPFC – are the same ones that have 

also traditionally been implicated in directing attention towards goal-relevant attributes in 

standard cognitive control paradigms like the Stroop (e.g., dlPFC (Hutcherson et al., 2012)).

These parallels have led to the view that cognitive control acts on value representations 

analogously to how it acts on perceptual information: When our goal is to attend to faces 

rather than houses (Nelissen, Stokes, Nobre, & Rushworth, 2013) or the direction of motion 

for a set of dots rather than their color (Danielmeier, Eichele, Forstmann, Tittgemeyer, 

& Ullsperger, 2011), the dlPFC maintains that goal and acts on stimulus processing 

regions to prioritize some stimulus attributes over others when determining how to respond 

(MacDonald, Cohen, Stenger, & Carter, 2000). When our goal is to maximize the value of 

some choice attributes over others (e.g., health over taste), the dlPFC similarly facilitates the 

prioritization of one attribute value over another (Hutcherson et al., 2012). Under this view, 

it is natural to think of control as directing the flow of reward information within the value 

network, such that neural signals within vmPFC come to signal how rewarding an option is 

based on one’s current goals. However, as we discuss next, it turns out that this is only one 

way goals alter the representation of value.

The influence of goals on how we represent value

As discussed earlier, activity in specific regions of the valuation network (e.g., vmPFC 

and ventral striatum) has been shown to track reward value in a directionally consistent 
manner (Blair et al., 2006; V. M. Brown, Wilson, Hallquist, Szanto, & Dombrovski, 2020; 
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De Martino, Fleming, Garrett, & Dolan, 2013; Grabenhorst & Rolls, 2011; Grueschow, 

Polania, Hare, & Ruff, 2015; Hutcherson et al., 2012; Jocham, Klein, & Ullsperger, 2011; 

Lebreton, Abitbol, Daunizeau, & Pessiglione, 2015; Lim, O’Doherty, & Rangel, 2011; 

Moneta, Garvert, Heekeren, & Schuck, 2021; Plassmann, O’Doherty, & Rangel, 2010; 

Shapiro & Grafton, 2020; Vaidya & Badre, 2020; Vassena, Krebs, Silvetti, Fias, & Verguts, 

2014; Westbrook, Lamichhane, & Braver, 2019), with greater activity coding for higher 

levels of expected reward (meta-analyses in (Bartra, McGuire, & Kable, 2013; Clithero & 

Rangel, 2014; Levy & Glimcher, 2012)). This accumulation of findings suggests that, as 

goals shape value-based choices, ventral striatum and vmPFC should be expected to track 

the ultimate read-out of how those goals shaped the reward a person expects, with lower 

activity reflecting lower expected reward and greater activity reflecting greater expected 

reward. Water may be experienced as more rewarding when one is thirsty than when they 

are not, and a healthy food may be experienced as more rewarding when one is on a diet 

than when they are not, but activity in these regions should nevertheless always provide a 

directionally consistent read-out of those expected rewards (Levy & Glimcher, 2012).

The problem with this account arises when you consider the typical task set under which 

choice values are studied. In the vast majority of research on value-based choice, the 

participant’s goal (implicitly and/or explicitly) is the same: choose the option you most 
prefer. As a result, signals of reward value can carry two kinds of information. First, as 

described above, they reflect a directional read-out of how much the person likes those 

options. Second, these reward signals reflect the extent to which a given option supports 

their current task goal. From this perspective, a signal that an option is highly rewarding 

can indicate that this option is more aligned with (i.e., more congruent with) the overarching 

goal of finding the best option, compared to a less rewarding option.

If choice value signals can carry either of these types of information, the striking implication 

is that correlates of choice value that have predominantly been interpreted as reflecting 

(directionally-consistent) reward value may have in fact reflected goal congruency instead. 

We recently tested this question by examining which of these two accounts better explains 

value-related neural activity as well as a common behavioral signature of choice value, 

the effect of overall value on choice speed. Past work has shown that people are faster 

to choose among a set of options (1) the greater the difference between the best option 

and the remaining options (higher value difference) and (2) the more valuable the options 

are on average (higher overall value) (Hunt et al., 2012; Pirrone, Azab, Hayden, Stafford, 

& Marshall, 2017; Smith & Krajbich, 2019; Teodorescu, Moran, & Usher, 2016). The 

former effect follows naturally from the fact that larger value differences make it easier 

to discriminate between the options (as is the case for more discriminable options in a 

perceptual decision-making task), the explanation for the latter, overall value, effect has been 

less straightforward. Drawing on the animal learning literature, one plausible explanation is 

that choice sets with high overall value are taken as signals of higher reward rates in the 

current environment, encouraging them to respond faster (e.g., more vigorously) in order to 

move on to the next choice sooner (Niv, Daw, & Dayan, 2006; Niv, Daw, Joel, & Dayan, 

2007; Niv, Joel, & Dayan, 2006).
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However, it is also possible that high value options yield faster choices not because of their 

reward value but because of the fact that such options are more congruent with the typical 

goal of choosing the best option. Indeed, past work on recognition memory showed that 

when participants are asked to choose which of a set of items they had seen more frequently, 

they are faster to respond when sets were overall higher in frequency (holding constant the 

relative frequency of the options, the analog to value difference) (Guerin & Miller, 2011; 

Hintzman & Gold, 1983). When they were asked to instead choose which item they had seen 

less frequently, this overall frequency effect reversed – now, participants were faster for sets 

with the lowest frequency items rather than the highest frequency items (as had been the 

case for the opposite instruction), suggesting that response speed was determined by how 

goal congruent those options were, rather than how high or low their frequency was. Thus, 

by reversing the task set, these authors were able to distinguish directionally-specific versus 

goal congruency accounts of item frequency on behavior.

To test the extent to which choice value effects were reward versus goal-specific, we 

borrowed a similar approach (Frömer, Dean Wolf, & Shenhav, 2019). On some blocks of 

trials, we had participants choose the item they most prefer out of a set of four options (as 

is standard), whereas on other blocks we had them instead choose the item they least prefer. 

Behaviorally, we found that higher-valued sets were associated with faster responding in the 

“choose best” task context (replicating numerous past studies (Hunt et al., 2012; Pirrone 

et al., 2017; Smith & Krajbich, 2019; Teodorescu et al., 2016)) but they were associated 

with slower responding in the “choose worst” context. When choosing the worst item, 

participants were instead faster the less good the choice set was as a whole, consistent with 

a goal congruency account (Fig. 2 A, B). We were able to capture this finding using a 

modified leaky competing accumulator model (Bogacz, Usher, Zhang, & McClelland, 2007; 

Usher & McClelland, 2001), according to which the current choice goal defined how the 

subjective value of a given item entered the evidence accumulation process – when the goal 

was to choose the worst item in a set, the least preferred items in a set provided the strongest 

evidence towards that goal (cf. Sepulveda et al., 2020 for a similar approach using GLAM 

and a generalization to perceptual choice). Using fMRI, we tested the complementary set 

of predictions for neural activity, in particular whether value-related BOLD activity in the 

valuation network would maintain directional consistency across these two choice contexts 

(suggesting that such activity always reflects how rewarding those options are, independent 

of the goal) or whether this value code would reverse when choosing the least preferred 

option (suggesting that such activity reflects goal congruency rather than reward value per 

se). We found that the latter coding scheme was the only one that accounted both for 

correlates of relative value and overall value in the valuation network (Fig. 2 C). Recent 

work has extended these findings to show that even arbitrary goals such as lighting a fire 

versus tying a boat can flexibly warp putative value representations of options to reflect 

their usefulness for that goal (Castegnetti, Zurita, & De Martino, 2021), and that multiple 

potentially conflicting goals can be simultaneously represented in mOFC (Moneta et al., 

2021).

While our recent study provided strong evidence that neural signals of choice value 

can reflect goal congruency rather than reward value, that study also found evidence 

of directionally-consistent overall value signals (i.e., always reflected how good the set 
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was), over and above those associated with goal congruency (and in the absence of any 

corresponding directionally-consistent relative value signals). This result suggests that there 

may be multiple forms of valuation occurring in parallel, a possibility we explore next.

Distinguishing value signals that are goal-related from those that are not

So far, we have focused on choice value as the medium through which people make their 

decisions. The default interpretation of neural activity in a given region associated with 

the values of one’s options while making a decision, tends to be that this activity (e.g., 

correlates of relative value, overall value, and chosen/unchosen values) reflects an element 

of a goal-directed decision process (e.g., valuation and/or comparison between options). 

In other words, these value signals are often presumed to be integral to the process of 

selecting the best option, in the same way that signals reflecting Stroop stimulus features 

are presumably integral to the process of selecting the appropriate color. However, when 

studying Stroop performance, cognitive control research takes for granted that these stimuli 

simultaneously trigger more automatic (e.g., habitual) signals that are overlaid with (and 

sometimes compete against) the goal-directed ones.

In the context of value-based learning and decision-making, there is a form of automatic 

processing that is engaged by Pavlovian associations, that is, associations between stimuli/

cues and expected outcomes that can trigger approach or avoidance behavior (Dickinson 

& Balleine, 1994). For instance, the smell of popcorn or cigarette smoke can trigger 

physiological responses and approach behavior for people who have positive associations 

with either (Wood & Neal, 2007; Wood & Runger, 2016). Importantly, these Pavlovian 

processes are distinguishable from those that give rise to goal-directed decision-making, 

and a large body of work has demonstrated that these have distinct behavioral signatures 

(Dayan, Niv, Seymour, & Daw, 2006) and are underpinned by separable neural circuits (van 

der Meer, Kurth-Nelson, & Redish, 2012). Thus, despite correlates of option values being 

typically interpreted in goal-directed terms (i.e., as inputs to a value-based comparison), it is 

possible that these value signals are heterogenous in nature, reflecting both goal-directed and 

more automatic forms of value processing.

Recent work supports this heterogenous account of value signals observed during decision-

making. For instance, Shenhav and Buckner (2014) had participants make value-based 

choices between pairs of goods, and later provide an overall appraisal of how good they 

had felt about each pair of options. Consistent with past work (Arana et al., 2003; C. 

Padoa-Schioppa, 2013; Strait, Blanchard, & Hayden, 2014), they found that activity in the 

value network (in particular, vmPFC) was greatest when participants were choosing between 

two options of similarly high value, compared to when they were choosing between options 

that differed in value or were similarly low in value. This finding aligns well with the 

interpretation that vmPFC is involved in choice comparison, and therefore tracks both the 

value of one’s options and the demand for comparison between them (Hunt et al., 2012; 

Camillo Padoa-Schioppa & Conen, 2017; Pelletier & Fellows, 2019). This study found that 

activity in the value network during these choices (again, including vmPFC) also tracked 

how good subjects felt to see those options (appraisals that were assessed retrospectively, 

after subjects left the scanner). These appraisal-related signals, denoting the overall value 
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of one’s options, were also broadly consistent with putative decision-making functions 

proposed for these value regions. For instance, some classes of evidence accumulation 

models – including the Leaky Competing Accumulator (Bogacz et al., 2007; Usher & 

McClelland, 2001), which was used to account for behavioral variability in Frömer et al.’ 

study of goal congruency – naturally generate overall value-like effects over the course of 

their dynamic processing of choice options (Hunt & Hayden, 2017; Hunt et al., 2012).

Thus, both types of signals that this study observed in the value network could be 

accounted for within a goal-directed framework. What was surprising was that - across 

two experiments - these signals were consistently found in different parts of the value 

network. Signatures of difficult high-value choices were found in a more ventral region 

of vmPFC, within medial OFC, whereas signatures of overall appraisal were found in a 

more dorsal regions, within pregenual ACC (Fig. 3B). This dissociation within vmPFC was 

mirrored by an equivalent dorsal-ventral dissociation within regions of the posterior midline 

(retrosplenial cortex vs. PCC, respectively). The canonical valuation network (Bartra et al., 

2013) tends to encompass both sets of regions, despite evidence that this dorsal-ventral 

divide is also seen within patterns of structural and functional connectivity across these 

regions (Choi, Yeo, & Buckner, 2012; Toro-Serey, Tobyne, & McGuire, 2020; Yeo et al., 

2011). The authors interpreted this finding to suggest that (a) these two forms of choice 

value signals may reflect distinct processes rather than two elements of a common goal-

directed valuation process and that (b) the appraisal-related signals observed in the more 

dorsal regions (e.g., pgACC) may in fact reflect a relatively automatic (e.g., Pavlovian) 

response that occurs independently of choice (Grabenhorst & Rolls, 2011; Lebreton, Jorge, 

Michel, Thirion, & Pessiglione, 2009).

We recently performed two follow-up experiments to more directly test this hypothesized 

dissociation between more automatic appraisal occurring in parallel with goal-directed 

valuation. In one study, we had participants evaluate sets of options and either choose 

between those options (as in the earlier experiment) or appraise their overall value (Shenhav 

& Karmarkar, 2019). We found that BOLD activity in the more ventral cortical regions 

of the value network (including mOFC) was greater when participants were choosing 

compared to when they were appraising, consistent with a role in goal-directed decision-

making. Conversely, we found that activity in the more dorsal regions (including pgACC) 

tracked how much participants liked the set overall, and did so irrespective of the task 

goal on that trial (i.e., whether it was an appraisal trial or a choice trial), consistent 

with a more automatic appraisal process (Fig. 3C). Using EEG, in a more recent study 

we showed that appraisal-related and choice-related signals have distinct spatiotemporal 

profiles (Fig. 3D (Frömer & Shenhav, 2019)). Whereas choice-related variables (e.g., value 

difference, choice confidence) were most closely associated with response-locked EEG 

activity at fronto-central and centro-parietal electrodes (consistent with previous research 

on value-based evidence accumulation (Pisauro, Fouragnan, Retzler, & Philiastides, 2017; 

Polania, Krajbich, Grueschow, & Ruff, 2014; Polania, Moisa, Opitz, Grueschow, & Ruff, 

2015)), appraisal-related variables (e.g., overall value, set liking) were instead most closely 

associated with stimulus-locked EEG activity at parietal electrodes (consistent with past 

research on affective reactions to emotional stimuli (Abdel Rahman, 2011)).
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Collectively, this work suggests that value-based choices trigger both goal-directed and 

automatic forms of evaluation, and that these different types of value signals occur within 

overlapping but dissociable circuits and time windows. Thus, it is possible for one form of 

value signal to be confused for another.

Exerting control over our current choice

Value-based choice has been successfully described using evidence accumulation models 

(Frömer et al., 2019; Hunt et al., 2012; Krajbich, Armel, & Rangel, 2010; Pisauro et al., 

2017; Polania et al., 2015) and such models have been able to account for patterns of neural 

activity observed during value-based choice. This broad class of evidence accumulation 

models – borrowed from research on judgments of memory and perception – describes 

how categorization problems are solved over time (Bogacz et al., 2007; Fontanesi, Gluth, 

Spektor, & Rieskamp, 2019; Ratcliff & McKoon, 2008; Usher & McClelland, 2001). 

According to these models, noisy evidence (decision-relevant information that varies across 

observations) is sampled from memory (Bakkour, Zylberberg, Shadlen, & Shohamy, 2018; 

Shadlen & Shohamy, 2016; Vaidya & Badre, 2020) and accumulated over time, and this 

process is terminated when a prespecified level of evidence (decision boundary) is reached. 

Classic (and widely used) versions of such models assume that the input to the accumulation 

process as well as the decision-bound are constant throughout a decision (Pisauro et al., 

2017; Polania et al., 2014; Vassena, Deraeve, & Alexander, 2020), and that deciding for 

either option requires the same amount of evidence. More recent work has shown that 

this is neither normative (i.e. the best way to solve the problem) nor always observed 

in value-based choice. In what follows, we will discuss ways in which control might 

be recruited to dynamically adjust the inputs to evidence accumulation, the threshold for 

deciding (decision-bound), and/or to inhibit biases towards particular options.

Controlling the flow of information

According to evidence accumulation models, decision-makers accumulate evidence for each 

option and that evidence competes to determine one’s response. However, this approach 

quickly comes up against the limitations of our cognitive resources to collect and hold the 

necessary information in mind, particularly for large choice sets. One way that our control 

system can help resolve this is to focus attention on a subset of options at a time, and vary 

which options we attend to over the course of a decision. Researchers have shown that 

people do systematically adjust which options they attend to and, more importantly, that 

these attentional adjustments influence how those options are evaluated. For instance, when 

choosing among rewarding options, all else being equal, the longer an option is attended, the 

more likely it is to be selected (Armel, Beaumel, & Rangel, 2008; Krajbich et al., 2010).

There are multiple proposals for how attention influences choice. One prominent account 

proposes that attention has the effect of increasing the influence of the attended option 

on evidence accumulation (by magnifying its value) and diminishes the influence of the 

unattended options (Fig. 4A). This so-called attentional drift diffusion model (aDDM) 

explains why, for instance, greater attention to a rewarding option makes it more likely to be 

chosen and greater attention to an aversive option makes it less likely to be chosen (Armel et 

Frömer and Shenhav Page 9

Neurosci Biobehav Rev. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



al., 2008). The aDDM has more generally been successful at accounting for the influence of 

overt attention (typically measured by the direction of eye gaze) on choice behavior (Smith 

& Krajbich, 2019; Thomas, Molter, Krajbich, Heekeren, & Mohr, 2019) and associated 

neural activity (Lim et al., 2011). An alternative account of attention’s influence on choice 

is that attention serves to reduce uncertainty in one’s options rather than simply magnifying 

their value per se (Z. Li & Ma, 2020). Here, attention helps construct the values of options 

using efficient coding (Polanía, Woodford, & Ruff, 2019). Under this account, items that are 

attended more have a stronger influence on choice merely because the decision-maker had 

more opportunity to sample their value.

Our understanding of how attention directs the flow of information has been improved by 

emerging work on how people decide where to deploy their attention. One account proposes 

that people direct their gaze towards options they believe to have a high value (Gluth, Kern, 

Kortmann, & Vitali, 2020), and shows that incorporating this account of gaze allocation 

into the aDDM can improve its ability to account for both eye movements and choice 

behavior. It can explain a gaze bias towards the option that is ultimately chosen, a bias 

that emerges as the choice progresses (Westbrook et al., 2020) and which may account 

for past observations of a direct influence of gaze on choice likelihood (J. F. Cavanagh, 

Wiecki, Kochar, & Frank, 2014; Mormann & Russo, 2021). This model was inspired by 

research that suggests that rewards can “capture” attention in an automatic or bottom-up 

fashion (Anderson, 2019; Anderson, Laurent, & Yantis, 2012; Vaidya & Fellows, 2015), 

but a more recent set of studies shows that the allocation of gaze to the most promising 

options may be goal-driven rather than reward-driven. By varying the participant’s choice 

goal between choosing the best option and the worst options, as in Frömer et al (2019), 

Sepulveda and colleagues (2020) showed that eye-movements are drawn towards the most 

goal-congruent option (see also Kovach, Sutterer, Rushia, Teriakidis, & Jenison, 2014) and 

that this goal-driven allocation of attention drove choice behavior in both value-based and 

perceptual decisions.

These findings resonate with an emerging new perspective that frames decision-making 

primarily as a process of active information search (Hunt, 2021). This view not only 

bridges decision-making with active information-sampling (Boldt, Blundell, & De Martino, 

2019; Cohen, McClure, & Yu, 2007; Gottlieb, 2018; Gottlieb, Cohanpour, Li, Singletary, & 

Zabeh, 2020; Gottlieb & Oudeyer, 2018; Hunt et al., 2018; Hunt, Rutledge, Malalasekera, 

Kennerley, & Dolan, 2016; Kaanders, Nili, O’Reilly, & Hunt, 2020; Kobayashi & Hsu, 

2019; Kobayashi et al., 2021), extended behaviors (Callaway, van Opheusden, et al., 2021; 

Holroyd & Yeung, 2012), and learning (Behrens, Woolrich, Walton, & Rushworth, 2007; 

Frömer et al., 2020; Nassar et al., 2012; O’Reilly, 2013), it also highlights a fundamental 

control problem in decision-making. Accordingly, a group of recently proposed process 

models puts information search at the core of the decision process (Callaway, Rangel, & 

Griffiths, 2021; Jang, Sharma, & Drugowitsch, 2021; Song, Wang, Zhang, & Li, 2019). 

These authors address the question of how information should be sampled through gaze 

based on what the decision-maker knows, and doesn’t know, at a given point in time. Here, 

gaze is used as a means to reduce uncertainty in a goal-directed way. In effect, this expands 

the decision-makers response space, such that in addition to choosing any of the choice 

options, the decision-maker can now also decide to keep sampling the current option or 
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shift their gaze to any of the alternative options (Fig. 4A). The decision-maker makes these 

decisions continuously (Yoo, Hayden, & Pearson, 2021) rather than making one discrete 

choice at the end. This perspective change could have implications for our interpretations of 

behavioral and neural correlates of choice value. Active sampling requires representations 

of uncertainty for each option’s value individually and relative to the values of the others 

(I might be more certain that option A is better than option B than in the specific value 

of option A). It also requires decisions about whether to exploit the current option or shift 

gaze and sample the other one. dACC activity has been linked to both levels of uncertainty 

and decisions to explore one’s environment (Bobadilla-Suarez, Guest, & Love, 2020; J. F. 

Cavanagh, Figueroa, Cohen, & Frank, 2012; Cohen et al., 2007; Monosov, 2017, 2020; 

White et al., 2019), as well as to conflicts in the decision of what to attend to (Shenhav, 

Straccia, Musslick, Cohen, & Botvinick, 2018). These all thus offer salient alternative 

interpretations of choice-related activity to evidence accumulation. As we will review next, 

monitoring mechanisms likewise impact how much information we gather before we decide.

Controlling our threshold for deciding

Control can not only adjust the flow of information for a decision but also play a role 

in determining how much information is sufficient in order to make a choice. Within 

the evidence accumulation framework, a default solution to this problem is to specify a 

predetermined amount of evidence that needs to be accumulated in support of one option 

over another, which is referred to as the decision bound or decision threshold (Ratcliff 

& McKoon, 2008; Schulz, Fleming, & Dayan, 2021). The bound assures a desired level 

of accuracy, on average, while limiting deliberation time in a principled and evidence-

dependent way. For a given bound, the stronger the evidence the faster decisions will be 

made, and the weaker the evidence the more time the decision-maker will allow the decision 

to take. The height of one’s threshold thus determines their speed-accuracy tradeoff, 

with higher thresholds producing slower and more accurate choices and lower thresholds 

producing faster and less accurate choices. Theoretically, the same decision threshold can be 

maintained across all tasks and across all choices within a given task, but there are a variety 

of factors that may lead someone to want to adjust their decision threshold.

First, people may have reasons to specifically prioritize speed over accuracy or vice versa 

(Wickelgren, 1977), leading them to lower or raise their threshold accordingly. The motive 

for this can be extrinsic – for instance if the individual is explicitly instructed to focus more 

on one goal than the other (van Veen, Krug, & Carter, 2008) – but these priorities can also 

arise from intrinsic motives. For example, research has shown that people tend to set higher 

thresholds than is generally optimal (e.g., vacillating over options that are equally rewarding; 

(Oud et al., 2016; Shenhav & Buckner, 2014)), which may be accounted for by a general 

bias towards being accurate and/or aversion to making an error (Bogacz, Brown, Moehlis, 

Holmes, & Cohen, 2006; Bogacz, Hu, Holmes, & Cohen, 2010; Simen et al., 2009).

A second factor that can warrant threshold adjustments is the presence of a deadline. Having 

a single threshold means waiting until a specific quantity of evidence is accumulated, 

which is not always guaranteed to happen within a desired time window. One solution 

to this is to set a lower threshold (as in the example above) but, in addition to still not 
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offering a guaranteed time window (e.g., if the evidence is very weak), it also sacrifices 

the accuracy across all choices. An alternate way of addressing this is to vary the threshold 

over the course of a decision, such that it is initially high enough to achieve a reasonable 

speed-accuracy tradeoff but then gradually lowers (“collapses”) over time, reaching a 

minimum close to one’s time deadline (e.g., 2 seconds) (Frazier & Yu, 2007; Karsilar, 

Simen, Papadakis, & Balci, 2014; Miletic & van Maanen, 2019). This guarantees that some 
response is made by that point, but allows that choice to be noisier or more random the 

closer the participant is to the deadline.

People can also adjust their threshold based on information they acquire about the choice 

options. For instance, when they experience high levels of conflict between their options 

(i.e., when those options are similarly valued), they increase their threshold for responding 

on that trial (J. F. Cavanagh et al., 2011; Fontanesi, Palminteri, & Lebreton, 2019; Frank, 

2006; Frank et al., 2015; Frank, Samanta, Moustafa, & Sherman, 2007), buying the decision-

maker time to identify the best option (Fig. 4B). These conflict-related decision threshold 

adjustments have been shown to be mediated by the same circuits that are involved in 

guiding analogous conflict-related control adjustments in typical cognitive control tasks, 

namely through interactions between dACC, which detects the need for control (Botvinick, 

Nystrom, Fissell, Carter, & Cohen, 1999; Pochon, Riis, Sanfey, Nystrom, & Cohen, 2008), 

and subthalamic nucleus (STN), which acts as a global break (Frank, 2006; Frank et al., 

2015; Frank et al., 2007).

Conflict provides an indication that the decision-maker may benefit from additional 

evidence, but how do they balance that against the costs of delaying their choice? After 

all, taken to the extreme, this approach of increasing thresholds in response to conflict 

leads one down the dirty path to Buridan’s ass, the allegorical donkey who famously 

starved to death between two equally-sized hay stacks (Lipowski, 1970, 1971) . Clearly, 

if one’s options are the same (or indiscriminately similar), no amount of time will help 

choosing correctly among them. It has recently been shown that a collapsing bound can also 

provide the optimal solution to this problem (Tajima, Drugowitsch, Patel, & Pouget, 2019; 

Tajima, Drugowitsch, & Pouget, 2016), balancing the value of additional information against 

the opportunity costs associated with the additional time required to make a response. 

Consistent with predictions of this account, both these costs and benefits have been shown 

to influence decisions of how much additional information to collect (Gluth, Rieskamp, & 

Buchel, 2012).

Controlling which option we choose

The point of decision-making is to identify which option best suits our goal. Since we 

typically start from a position of not knowing which option is best, it is generally in our 

best interest as decision-makers to start a decision by giving each option equal footing 

in the race towards a decision threshold. There are however, many cases in which some 

information is available before our choice or where we have a natural inclination toward 

one option over the other. We may for instance have a favorite dish at our local restaurant 

that we choose most of the time or tend to follow the chef’s daily recommendation – 

whatever that is. In the framework of evidence accumulation, such biases are captured 
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through asymmetries in the bound heights or starting point biases (Mulder, Wagenmakers, 

Ratcliff, Boekel, & Forstmann, 2012). That makes it easier to pick the bias option and 

requires that we accumulate more evidence for the alternative.

Some of these biases are goal-directed and adaptive. For instance, if one knows that there 

are regularities in one’s choice environment that render one choice more likely than the 

other (e.g. that the chef’s recommendations are typically the best choice), biasing one’s 

starting point speeds up decision-making at no considerable cost. Leveraging structure this 

way may even help make better decisions on average when choices are difficult, as when 

momentary evidence is weak (Braun, Urai, & Donner, 2018). In such cases, the bias will 

facilitate the optimal decision most of the time. There are, however, also cases in which 

these biases are more habitual and potentially maladaptive. Several such biases are well 

documented, including loss aversion, immediacy, and default bias. In these cases, the biases 

lead to poorer decisions and choosing against them requires investing additional time and 

effort. For instance, for economically equivalent outcomes, people tend to choose the certain 

option over gambles, when it is framed as a gain, while choosing gambles over those same 

options when they are framed as a loss (De Martino, Kumaran, Seymour, & Dolan, 2006; 

Tversky & Kahneman, 1981). People also tend to prefer immediate over delayed rewards, 

but these preferences can be altered by changing people’s reference point in a similar way 

as the gain/loss framing (Lempert & Phelps, 2016; Weber et al., 2007). When the options 

are framed as a reward in the future that can be accelerated by forgoing part of the reward, 

people prefer the later reward instead of the immediate reward (G. F. Loewenstein, 1988). 

These findings demonstrate that the reference point for choices influences how they are 

made. Even for simple perceptual judgments, people exhibit a status quo bias that makes 

choices against the default require outsized evidence in their favor (Fleming, Thomas, & 

Dolan, 2010). Thus, when in doubt, people stick with the default (Bruckner, Nassar, Li, 

& Eppinger, 2020). Such a bias towards the status quo also leads people to overharvest in 

foraging tasks and require outsized evidence in favor of leaving a depleting patch (Kolling, 

Behrens, Mars, & Rushworth, 2012; Shenhav, Straccia, Botvinick, & Cohen, 2016; Shenhav, 

Straccia, Cohen, & Botvinick, 2014).

Choosing against these biases is associated with greater dACC activity, consistent with 

its involvement in default override in cognitive control tasks (Botvinick, Braver, Barch, 

Carter, & Cohen, 2001). For instance, dACC activity increases when overcoming one’s 

bias to respond according to the status quo (Fleming et al., 2010) or to respond based 

on Pavlovian drives (J. F. Cavanagh, Eisenberg, Guitart-Masip, Huys, & Frank, 2013), 

suggesting that these and other forms of override that occur during value-based choice 

engage similar control mechanisms as those responsible for overriding automatic responses 

in standard response conflict paradigms (e.g., Stroop or flanker tasks) within research on 

cognitive control. Venkatraman and colleagues (Venkatraman, Payne, Bettman, Luce, & 

Huettel, 2009; Venkatraman, Rosati, Taren, & Huettel, 2009) provided direct evidence for 

this, showing that nearby regions of dACC signal (a) Stroop-like conflict between responses, 

(b) value-based conflict between similarly valued decision options , and (c) the need to 

override one’s default strategy for selecting between those value-based options.
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Choice biases can therefore significantly impact how correlates of choice value are 

interpreted. For instance, when the decision-maker is biased towards harvesting their current 

patch of rewards rather than switching to a different patch, as is typically the case in 

foraginglike environments (Kane et al., 2019), enticing them to switch can result in greater 

levels of choice conflict and, with it, the need to potentially exert control to override 

that stay bias. Thus, neural correlates of the value of a non-default response (e.g., the 

value of foraging) can capture signatures of decision conflict and default override such as 

those observed by Venkatraman and colleagues (Kolling et al., 2012; Shenhav et al., 2016; 

Shenhav et al., 2014). The converse is true of correlates of the value of the default response 

(e.g., the value of staying (Shenhav et al., 2016)), which can capture activity related to the 

ease of choice, the relevance of which we discuss in the next section.

Exerting control beyond our current choice

We have so far discussed choices the way they are typically studied: in isolation. However, 

we don’t make choices in a vacuum, and our current choices depend on previous choices 

we have made (Erev & Roth, 2014; Keung, Hagen, & Wilson, 2019; Talluri et al., 2020; 

Urai, Braun, & Donner, 2017; Urai, de Gee, Tsetsos, & Donner, 2019). One natural way 

in which choices influence each other is through learning about the options, where the 

evaluations of the outcome of one choice refines the expected value (incorporating range 

and probability) assigned to that option in future choices (Fontanesi, Gluth, et al., 2019; 

Fontanesi, Palminteri, et al., 2019; Miletic et al., 2021). Here we focus on a different, 

complementary way, central to cognitive control research, where evaluations of the process 
of ongoing and past choices inform the process of future choices (Botvinick et al., 1999; 

Bugg, Jacoby, & Chanani, 2011; Verguts, Vassena, & Silvetti, 2015). In cognitive control 

research, these choice evaluations and their influence on subsequent adaptation are studied 

under the umbrella of performance monitoring (Carter et al., 1998; Ullsperger, Fischer, 

Nigbur, & Endrass, 2014). Unlike option-based learning, performance monitoring influences 

not only which options are chosen, but also how subsequent choices are made. It also 

informs higher order decisions about strategy and task selection (Fig. 5A).

Monitoring to adjust future decisions

We have reviewed earlier that people rely on performance monitoring (e.g. conflict) to 

detect the need to adjust decision parameters online. While only signals preceding the 

initial decision can be used to trigger such adaptation of the ongoing response, monitoring 

continues beyond this initial decision and dynamically updates estimates of the goodness 

of the decision as novel information becomes available (Fig. 5B)(Calder-Travis, Charles, 

Bogacz, & Yeung, 2020; Charles & Yeung, 2019; Desender, Donner, & Verguts, 2021; 

Shapiro & Grafton, 2020; Steinhauser & Yeung, 2010, 2012; Ullsperger et al., 2014; Yeung, 

Botvinick, & Cohen, 2004; Yeung & Cohen, 2006; Yeung & Nieuwenhuis, 2009; Yeung & 

Summerfield, 2012). Collectively, these signals can be leveraged to adjust the parameters 

of subsequent choices. People for instance slow down following incorrect choices (Fischer, 

Nigbur, Klein, Danielmeier, & Ullsperger, 2018) and bias information-processing in favor of 

goal-relevant information following the experience of conflict (Bejjani, Tan, & Egner, 2020; 

Botvinick et al., 1999; Fröber, Stürmer, Frömer, & Dreisbach, 2017).
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Surprisingly little empirical work has been done to explore to what extent such dynamics 

impact value-based decisions. Within the domain of perceptual decision-making, research 

suggests that people use performance monitoring to inform future decisions parameters. 

People for instance have a sense of confidence in their decisions (Fig. 5B), often 

conceptualized as the subjective probability that a choice was correct (Pouget, Drugowitsch, 

& Kepecs, 2016). Continued evaluations of choices can elicit changes in confidence and, 

at the extreme, changes of mind (Resulaj, Kiani, Wolpert, & Shadlen, 2009; van den Berg 

et al., 2016; Yeung & Summerfield, 2012), and such continued evaluations are reflected in 

shared neural correlates of confidence and error monitoring (Boldt & Yeung, 2015; Murphy, 

Robertson, Harty, & O’Connell, 2015; Vaccaro & Fleming, 2018). It has been proposed 

that one’s momentary sense of confidence both reflects and guides the amount of evidence 

accumulated for decision-making (Yeung & Summerfield, 2012). In line with this idea, 

when given the option to seek additional information following initial choices, people are 

more likely to do so when their confidence is low, but not low enough to invoke a change 

of mind, that is when they are most uncertain whether their choice was correct or an 

error (Desender, Boldt, & Yeung, 2018; Desender, Murphy, Boldt, Verguts, & Yeung, 2019; 

Schulz et al., 2021). In the absence of such an option, people respond to choices made with 

low confidence by increasing their choice caution (decision bound) on subsequent choices, 

similar to post-error slowing (Desender, Boldt, Verguts, & Donner, 2019).

Experiences of confidence can inform parameters not only for decisions immediately 

following the current one, but also exert an influence at longer time scales by informing 

expectations of how likely one is to choose correctly when making similar decisions. It has 

been proposed that evidence accumulation is effortful and that decision-makers economize 

the time spent on it (Drugowitsch, Moreno-Bote, Churchland, Shadlen, & Pouget, 2012). 

People invest more cognitive effort when they expect those efforts to be rewarding and for 

those efforts to matter for achieving those rewards (i.e., when they expect their efforts to 

be efficacious) (Frömer, Lin, Dean Wolf, Inzlicht, & Shenhav, 2021; Schevernels, Krebs, 

Santens, Woldorff, & Boehler, 2014; Shenhav et al., 2013; Shenhav, Prater Fahey, & Grahek, 

2021). Because expectations about confidence predict accuracy and thus the delivery of 

rewards, such confidence signals can be considered value signals in themselves (Lebreton 

et al., 2015) and thereby inform the extent to which engaging in effort is worth it. People 

should therefore be more motivated to engage in and accumulate evidence for types of 

choices associated with high confidence. Indeed, that is what Boldt, Schiffer, Waszak, and 

Yeung (2019) found. Participants were cued with the type of the upcoming choice and 

learned to associate each cue with a level of confidence. They invested more effort, in 

that they prepared more (indicated by larger preparatory EEG activity between cue and 

target) and adopted a higher threshold when they had higher confidence in the upcoming 

choice type (indicated by larger peak amplitude in decision-related EEG activity, and 

confirmed with computational modeling). This finding contrasts with the typical bound 

increase following low confidence or errors, and probably reflects different origins of low 

confidence that call for different adjustments. On one hand, low confidence can indicate that 

insufficient evidence was accumulated prior to making a choice, which prompts a higher 
threshold to avoid repeated premature responding. On the other hand, it can also indicate 

that the evidence available for a decision is weak, in which case there is marginal return for 
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longer evidence accumulation, prompting a lower decision bound (Fig 5 D). In the former 

situation, accumulating evidence longer is worthwhile, while in the latter it is not.

The worth and worthwhileness of prolonged evidence accumulation should not just depend 

on properties of the ongoing (or in this case upcoming) choice, but also how valuable 

alternative choices are that could be made during that time. This is another way in which 

past choices can influence the parameters of future choices; by shaping expectations about 

the value of future choices. A plethora of work has shown that humans and animals alike 

increase response vigor with increasing reward rates (Niv, Daw, et al., 2006; Niv et al., 

2007; Niv, Joel, et al., 2006). This behavior was explained as an attempt to reduce the 

opportunity cost of sloth, which increases as the amount of reward increases that is forgone 

through inaction. Otto and Daw (2019) recently demonstrated that this principle extends 

to incentivized perceptual decision-making. They varied the magnitude of rewards people 

would receive for accurate perceptual decisions and showed that people adopt a lower 

decision threshold as the reward rate goes up, allowing them to complete more trials. 

Decision-makers thus balance the trade-off between maximizing reward on the current trial 

versus obtaining rewards on other choices. To achieve that, they need to make higher order 

decisions about when to decide (Boureau, Sokol-Hessner, & Daw, 2015; Dayan, 2012; Gluth 

et al., 2012). When the current choice requires a great deal of effort or takes a long time, 

whereas other potential choices promise greater rewards, it is normative to cut one’s losses 

and move on to the next choice. Yet, the effort and time requirements typically only become 

apparent while making the choice. A principled solution to achieve this balance is therefore 

to employ a collapsing bound (see above) and calibrate its shape to the expected reward and 

ease of alternative choices (Tajima et al., 2016). To do that, people would need to monitor 

and update the value of their choice context as well as the effort and confidence associated 

with their decisions. This offers yet another potential interpretation of neural correlates of 

either value difference or overall value. Instead of being integral to the ongoing choice 

process itself, they might reflect the tracking and updating of variables relevant to control 

(Frömer et al., 2019; Frömer & Shenhav, 2019; Kane et al., 2021; Y. S. Li, Nassar, Kable, & 

Gold, 2019).

Just as rewards can serve as training signals to guide future choices, so can confidence 

and conflict (Yeung & Summerfield, 2012). For instance, people use confidence as a proxy 

for feedback when actual feedback is not available or delayed, as is often the case in real 

world decisions (Carlebach & Yeung, 2020a; Guggenmos, Wilbertz, Hebart, & Sterzer, 

2016; Ptasczynski, Steinecker, Sterzer, & Guggenmos, 2021). High confidence – or ease 

– then can serve as a positive reinforcer (Winkielman, Schwarz, Fazendeiro, & Reber, 

2003). Conversely, conflict-related signals – including errors and subjective effort – have 

been proposed to reinforce avoidance (Botvinick, 2007). Indeed, people are more likely 

to subsequently reverse choices made with low confidence (Folke, Jacobsen, Fleming, & 

De Martino, 2016; Shenhav & Buckner, 2014) and conflict signals have been found to 

diminish reward-based approach learning and enhance punishment-based avoidance learning 

(J. F. Cavanagh, Masters, Bath, & Frank, 2014). These findings demonstrate that monitoring 

influences valuation and comparison of subsequent choices. We will next discuss how 

similar decision-making factors, related to reinforcement and opportunity costs, shape 

higher-order decisions.
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Monitoring over multiple levels of a response hierarchy

So far we have focused on the ways in which monitoring informs how we select responses. 

These decisions – among response options (e.g., which item to select) – are not the only 

ones that people make and monitor, but a hierarchy of decisions are made and evaluated in 

parallel (cf. Fig. 5A). It is clear from a large body of literature that people use a range of 

different strategies to make choices, and that strategy selection is influenced by features of 

the choice problem, the choice context, and individual characteristics of the decision-maker 

(Beach & Mitchell, 1978). For instance, people adjust attentional priorities under time 

pressure, resulting in different choice patterns than in the absence of time constraints (Teoh, 

Yao, Cunningham, & Hutcherson, 2020). They also adjust how thoroughly they attend to 

each of their options based on the size of the set and which options they encounter while 

searching it (Thomas, Molter, & Krajbich, 2021). In this section, we review the mechanisms 

that inform such higher order adjustments.

In many instances people have learned the strategies they use based on previous experience. 

A variety of strategies people use when making decisions, such as risk-minimizing strategies 

(Erev & Barron, 2005), are rooted in biases in previously experienced outcomes which 

shape choice strategies over time (Erev & Roth, 2014). Participants may for instance be 

more likely to engage a risk-minimizing strategy when they have happened to experience 

disproportionately more negative outcomes. Such learning need not be driven by the 

chosen outcome only, but also the counterfactual one that was forgone. Counterfactual 

feedback elicits behavioral adjustments just like factual choice outcomes and through similar 

mechanisms (Fischer & Ullsperger, 2013). For instance, when provided with counterfactual 

choice outcomes that elicit regret, people adjust their decision strategy in a way to 

minimize future regret at the expense of maximal reward (Coricelli et al., 2005). Like 

errors or negative feedback, counterfactual outcomes that elicited regret were associated 

with increased activity in dACC, and so were decisions to minimize regret at the expense of 

reward.

It is conceivable that we experience similar negative emotions to regret when our efforts are 

not justified by their outcomes, including lower confidence than we expected. Such negative 

evaluations of the choice process are thought to teach us to avoid strategies whose costs 

exceed their benefits (Botvinick, 2007). In line with this framework, the engagement of 

control appears to be registered as a subjective cost (mental effort; (Westbrook & Braver, 

2015), that drives choices to avoid such costs (McGuire & Botvinick, 2010) (Desender, 

Buc Calderon, Van Opstal, & Van den Bussche, 2017; Dunn, Lutes, & Risko, 2016; 

Kool, McGuire, Rosen, & Botvinick, 2010), unless offset by sufficient expected reward 

(Westbrook et al., 2019). People thus select choice strategies that balance the value of the 

outcome itself against the (cognitive) cost of obtaining it (D. G. Lee & Daunizeau, 2021; 

Lieder & Griffiths, 2017; Shenhav et al., 2013). One well-known consequence of this is that 

people may choose to satisfice rather than put in the effort to maximize rewards (Wabba 

& House, 1974), as they for instance increasingly do as their option set grows (Thomas 

et al., 2021). To find the strategy that optimizes the balance between outcome and effort, 

people could monitor not only the outcome itself, but whether it was worth the cost of 

the strategy that brought it about (Lieder & Griffiths, 2017; Lieder et al., 2018; Shenhav 
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et al., 2017). Thus, a variety of signals derived from performance monitoring, including 

evaluations of outcomes and conflict, could inform the cost-benefit evaluation of choice 

strategies, influence how choices under consideration are made, and be leveraged to adjust 

choice strategy selection across multiple choices. These signals all likely correlate with and 

are thus easily misattributed to choice value. These same signals may also influence which 

choices are sought out and whether choices are made at all.

Another way in which monitoring guides higher order decisions is by informing the value 

we assign to tasks. We have mentioned earlier that engaging in one choice typically comes 

at the expense of engaging in something else. We thus need to choose at all times what 

to engage with and, by extension, what not to engage with. To make this choice, we need 

to learn, monitor and update the costs and benefits associated not only with options or 

strategies, but with entire tasks. There is growing evidence that people determine the value 

of engaging in a given task by learning abstract features of their environment (e.g. reward 

rate – how good is my current environment?) (Wittmann et al., 2016) or of their own 

capacities (global performance on a task – how good am I at this?) (Rouault, Dayan, & 

Fleming, 2019). It is becoming increasingly clear that people use such information to adjust 

behavior in flexible ways when given the opportunity to do so. One example is a recent 

study that modified the standard foraging paradigm, where people need to decide when 

to abandon a depleting patch for an unknown new one (Kolling et al., 2012; Shenhav et 

al., 2016; Shenhav et al., 2014) so that people could revisit previous patches and decide 

where to forage next. Hall-McMaster, Dayan, and Schuck (2021) showed that people learn 

and represent reward rates of different patches and use this information to choose patches 

that maximize reward. Importantly, they also leverage information about the rewards at 

other patches to adaptively adjust decisions about when to leave the current patch. Thus, 

ubiquitous neural representations of overall value in value-based choice may not be related 

to the ongoing choice at all (Frömer et al., 2019; Frömer & Shenhav, 2019), but instead 

may reflect an automatic evaluation of a choice context that under typical real-world 

circumstances could be used to determine whether to engage with that context again in 

the future (cf. Shenhav & Karmarkar, 2019).

People do not require explicit rewards to estimate the values of tasks. They can estimate 

how worthwhile engaging in a task is by integrating experiences of local confidence into 

task-dependent expectations of success (Boldt, Schiffer, et al., 2019; Rouault et al., 2019). 

It has been proposed that – similar to reward - confidence may serve as a common currency 

to compare and prioritize between tasks (de Gardelle, Le Corre, & Mamassian, 2016; de 

Gardelle & Mamassian, 2014). In line with this proposal, people prioritize higher confidence 

tasks over lower confidence tasks when sequencing tasks, all else being equal (Aguilar-

Lleyda, Lemarchand, & de Gardelle, 2020). Given that confidence is typically higher for 

easier tasks, these findings could reflect another instance of effort avoidance (Desender et 

al., 2017; Dunn et al., 2016; Kool et al., 2010; McGuire & Botvinick, 2010). In a series 

of experiments, Carlebach and Yeung (2020b) tested explicitly whether confidence – like 

effort - acts as a cost-benefit factor when choosing between tasks. They asked participants 

to choose between tasks that were identical with regards to demands and performance, but 

elicited different levels of confidence through varying post decision evidence. Participants 

avoided tasks in which they had made an error but, more importantly, preferred tasks 
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in which they were more confident in their correct responses. This preference for high 

confidence tasks prevailed even when feedback was provided, ruling out a simple reward-

learning account in favor of a more nuanced cost-benefit estimation.

Collectively, the work reviewed above shows that monitoring informs cost-benefit decisions 

across multiple levels, from the selection of options to the selection of decision parameters 

to the selection of choice strategies to the selection of tasks to engage with. This 

highlights the remarkable efficiency of the deciding mind that recycles information to 

optimize decisions across multiple time-scales and levels of abstraction. At the same time, 

it underscores the tremendous credit assignment problem we face when interpreting the 

functional significance of these signals.

Monitoring ongoing cognitive processes

Up to now, we have focused on the implications of cognitive control for decision-making, 

including for one’s current decision, subsequent decisions, and other types of decisions. 

But the set of controlled cognitive processes that decision-making draws on – including 

attention, working memory, and episodic memory – are also required for other tasks that 

an individual needs to perform, often in parallel or in sequence with the need to make 

a decision. The information generated while evaluating one’s choices, and the processes 

that are engaged, thus help determine what resources are available to or required of 

choice. Information generated while evaluating one’s choices can therefore impact a person 

independently of its influence on a given decision. While research in this area is still 

relatively limited, in this section we extrapolate from work highlighted above to identify 

important areas of intersection that would benefit from further research.

Earlier, we discussed the important role that choice conflict can play as a signal that 

additional information may be needed for the current decision (i.e., adjusting decision 

threshold). But conflict can also serve as a signal that additional cognitive resources are 

needed for the current task and thus that potentially fewer resources are available to other 

tasks being performed in parallel (Botvinick, 2007; Lehle, Cohen, Sangals, Sommer, & 

Sturmer, 2011). For instance, it is possible that when engaged in a difficult decision 

(e.g., which item on the menu to select or which school to attend) we may have more 

difficulty engaging in other control-demanding tasks (cf. Navon & Miller, 1987). Choice 

conflict serves as a direct proxy for how long a decision will take (Shenhav et al., 2014) 

and thus how many cognitive resources this will draw on in terms of overall attention to 

one’s options, maintaining relevant information in working memory, and/or directing search 

through episodic memory (Botvinick et al., 2001; Chong & Akrami, 2021; Grinband et al., 

2011). Being aware of the potential drain on cognitive capacity caused by a given decision 

may further influence what other tasks the person chooses to achieve in parallel (e.g., how 

many items to try to remember from your shopping list, or what kind of conversation to 

engage in with your dinner partner). Such signals can also help determine whether additional 

cognitive resources need to be directed to any of those tasks.

Decisions can also induce surprise. One’s options can be unexpectedly good or unexpectedly 

bad, and the choice between them can be unexpectedly easy or unexpectedly hard (Lin, 

Saunders, Hutcherson, & Inzlicht, 2018; Shenhav et al., 2014; Vassena et al., 2020; 
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Williams, Ferguson, Hassall, Wright, & Krigolson, 2021). Whether it is in reaction to 

oddball stimuli, unexpected noises, or unpredicted events, research has shown that the 

experience of surprise triggers changes in physiology and cognition, including changes in 

overall attention (to detect changes in the environment), arousal, pupil diameter, affective 

appraisals, and levels of caution (McNaughton & Gray, 2000; Notebaert et al., 2009; 

Sokolov, 1963; Wessel, 2018a, 2018b; Wessel et al., 2016). As in the examples above, 

such reactions to surprise or novelty while making a decision can occur independent of the 

decision process itself. That does not mean that they have no bearing on cognitive control. 

Those same surprise signals can serve as a proxy for additional demands for cognitive 

control being redirected towards other tasks (Razmi & Nassar, 2021), and/or the downstream 

impact of such attentional reorienting on one’s ability to maintain focus on the current 

decision-making task (Shenhav, Musslick, Botvinick, & Cohen, 2020).

Finally, choices can trigger affective reactions. First, conflict can itself induce negative 

affective states and concomitant bodily reactions (Braem et al., 2017; Dreisbach & Fischer, 

2015) and thus can serve as an indirect proxy for the demand for additional regulatory 

resources (Shackman et al., 2011; Wager et al., 2016). Second, as reviewed earlier, the 

choice options themselves also, and in parallel, trigger affective reactions related to how 

good or bad those options are (Shenhav & Buckner, 2014; Shenhav, Dean Wolf, & 

Karmarkar, 2018). Thus, considering options for delicious foods or potential vacation spots 

often entails generating anticipatory affective reactions to those enjoyable outcomes (B. 

Knutson & Greer, 2008; Brian Knutson, Rick, Wimmer, Prelec, & Loewenstein, 2007; 

G. Loewenstein, 1987), and the same is true for aversive decisions like which of several 

risky medical procedures to undertake (Botti, Orfali, & Iyengar, 2009). These affective 

reactions can contribute in a goal-directed way, as part of the process of accumulating 

evidence for different courses of action (Sharot & Sunstein, 2020). But, as the example of 

medical decision-making makes vivid, the affective states that are induced when considering 

potential future outcomes can independently influence cognitive processing (Shenhav & 

Buckner, 2014; Shenhav & Karmarkar, 2019). Such changes in affective or mood state can 

influence where and how we direct our attention (e.g., to mood-congruent information) and 

how effectively we engage controlled resources (Dreisbach, 2006; Grahek, Musslick, & 

Shenhav, 2020; Mather & Carstensen, 2005; Moser, Moran, Schroder, Donnellan, & Yeung, 

2013, 2014; Proudfit, Inzlicht, & Mennin, 2013; van Steenbergen, Band, & Hommel, 2010). 

To remain focused on the decision-making task at hand, additional cognitive resources may 

be required to regulate the influence of these changes in affective state, and concomitant 

alterations in bodily state, on ongoing cognition.

Decisions and control over future research directions

We have reviewed work that incorporates ideas from cognitive control to provide novel 

insights into value-based decision-making. We highlighted the importance of decision 

makers’ goals for understanding the relationship between preferences and behavior, and that 

neural activity can separately reflect the value of one’s options with respect to one’s current 

goal and the choice-independent affective appraisal of those same options. We have outlined 

how control helps guide information flow, response caution, and helps overcome choice 

biases. And, finally, we have reviewed work that investigates how the same monitoring 
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functions that help evaluate our current choice also shape our behavior beyond the current 

choice, and even beyond decision-making entirely. A set of common themes emerges from 

the sum of this work, which in turn point to remaining gaps in the literature and potential 

research directions aimed at addressing those gaps. First, the representation and processing 

of value-related information is incredibly flexible, suggesting that people can make choices 

in many different ways. Second, decision-making occurs across multiple levels of hierarchy 

and over multiple time scales, and each of these represents a target for control. Third, 

in parallel to decision-making, monitoring supports these different control adaptations. 

Together, these directions support an overarching aim of understanding what determines 

how an individual makes their choices, and of computationally and neurally dissociating 

mechanisms underpinning the decision-making process from those that underpin how 

decision-making influences and is influenced by cognitive control.

To achieve this, future work would benefit from studying a greater variety of choice contexts 

that considers the cognitive resources and cognitive flexibility that decision-makers have at 

their disposal. It remains unclear how the brain decides whether to compute and compare 

value (and/or how precisely) versus using a simplifying approach to generating a choice 

(Hayden & Niv, 2021), nor what the underlying computations and neural value correlates 

of simplified choice strategies are (Binz, Gershman, Schulz, & Endres, 2020; Dayan, 2012). 

Decision-makers could, for instance, rely on memory to retrieve previous solutions rather 

than recomputing value and comparison each time (Dasgupta & Gershman, 2021), or they 

could have heuristics such as always choosing certain options if they are part of the set (e.g. 

if the vending machine has Snickers, I get Snickers and ignore the other options).

Many of the choice paradigms reviewed above use small sets of options, both across and 

within choices, which allows for such strategies, so that it is possible that participants in 

these studies might not engage in the type of choice we assume they are. In particular, many 

of the neuroscience findings are based on two-alternative forced choices among a small 

set of options. If familiarity with a small set of options allows the choice to be reduced 

to a perceptual one or a simple recognition task, we might have identified correlates of 

choice value that really reflect signatures of perceptual decision-making (Pisauro et al., 

2017), object/state recognition (Grill-Spector & Kanwisher, 2005), or direct retrieval of 

a learned policy (Hayden & Niv, 2021). Indeed, it has recently been shown that decision-

makers change how they interact with their options as they become more and more familiar 

with them, as evidenced by changes in their gaze patterns (S. E. Cavanagh, Malalasekera, 

Miranda, Hunt, & Kennerley, 2019). Finer-grained estimates of choice dynamics such as 

gaze or mouse tracking therefore hold promises for further elucidating interactions between 

strategic/heuristic processes and more comprehensive evaluations (Callaway, Rangel, et 

al., 2021; Hunt et al., 2016; Jang et al., 2021; Stillman, Krajbich, & Ferguson, 2020). 

Computational models that explicitly address these interactions may then also scale better 

to larger choice sets, where strategies that reduce information processing costs play a much 

more prominent role (Thomas et al., 2021), and could provide insights into the mechanisms 

by which decision-making is adapted to changing contextual demands (Teoh et al., 2020).

Investigating alternative ways in which people choose – and the cognitive computational 

and neural mechanisms they employ to do so (perhaps routinely) – requires utilizing 
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paradigms that afford these strategies. Currently, choices are often studied “all else being 

equal”, omitting many features of more naturalistic choices such as contextual and temporal 

dependencies, competing alternative tasks, control over choices, etc. by design (Gabay 

& Apps, 2020; Mormann & Russo, 2021; Yoo et al., 2021). As demonstrated with the 

learnable version of the foraging paradigm we reviewed earlier (Hall-McMaster et al., 

2021), providing people with contextual structure and additional control over their choices 

provides a new window into how they make them (Constantino & Daw, 2015; Kolling et 

al., 2012; Shenhav et al., 2016; Shenhav et al., 2014; Yoon, Geary, Ahmed, & Shadmehr, 

2018). Taking this route may also shed new light on the computations underlying neural 

correlates of choice value. Overall, these studies uncover additional computations supporting 

decision-making that are ripe for study.

How are decisions shaped by adaptations across multiple levels and time-scales? We have 

outlined earlier that decisions between options are shaped by decisions about components 

of the ongoing choice (e.g. what to attend to in order to maximize information gain), and 

decisions about resource allocation beyond the current choice (e.g. how worthwhile are 

other choices or tasks). A common theme across all of these levels is that decision-makers 

minimize effort. It is likely that when making real-world decisions, people reduce effort by 

remembering solutions that might be useful in the future (Dasgupta & Gershman, 2021), 

not only for choices among options, but also for higher order decisions about how to 

decide (Griffiths et al., 2019) and what information to pay attention to (Callaway, Rangel, 

et al., 2021; Jang et al., 2021). These solutions across different levels of hierarchy (e.g., 

choice parameters, strategies), could then serve as defaults and be iteratively refined to 

support goal-directed behaviors (J. W. Brown & Alexander, 2017; Holroyd & Verguts, 

2021; Holroyd & Yeung, 2012; Lieder et al., 2018). In addition to better understanding the 

strategies people use to simplify decision-making, future work should also seek to better 

explain how people learn when and how to use these different strategies. For instance, 

it could be that people initially implement default strategies and parameters, and then 

systematically override them when the values or other features of those choice options 

diverge from expectations (e.g., when these deviations suggest that the default strategy is no 

longer optimal; Daw, Niv, & Dayan, 2005; Miller, Shenhav, & Ludvig, 2019).

Another, somewhat rocky but important path for future research is towards a better 

understanding of the role that monitoring plays in decision-making. We have reviewed 

earlier how experiences of conflict and confidence guide decision-making across levels of 

hierarchy and different time-scales. Dissociating monitoring from choice-related processes 

is a major challenge precisely because monitored signals are often aliased with signals of 

choice value and its derivatives (Desender, Ridderinkhof, & Murphy, 2021). For instance, 

confidence in value-based choices integrates multiple cues related to choice difficulty (De 

Martino et al., 2013), changes of mind (Folke et al., 2016), goal congruency of options 

(Sepulveda et al., 2020), and value certainty (Boldt, Blundell, et al., 2019; D. Lee & 

Coricelli, 2020; D. G. Lee & Daunizeau, 2021). Like estimates of value (Callaway, Rangel, 

et al., 2021; Gluth et al., 2020; Jang et al., 2021; Z. Li & Ma, 2020), local expressions of 

confidence likely evolve dynamically over time (Desender, Donner, et al., 2021; van den 

Berg et al., 2016), and are perhaps even integral to regulating the ongoing choice process 

(Balsdon, Wyart, & Mamassian, 2020; Schulz et al., 2021; Yeung & Summerfield, 2012). 
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One way of disambiguating whether a neural correlate of choice value reflects functions 

integral or external to choice is to test whether such activity has a necessary or causal role 

in driving choice behavior. Doing so, recent studies have provided evidence that correlates 

of value-based evidence accumulation within regions such as the dACC are more consistent 

with a role in monitoring than choice (Kane et al., 2021; Y. S. Li et al., 2019).

Overall, the work we have reviewed demonstrates the incredible progress that has been 

made through interactions between research on decision-making and cognitive control. As 

research at and across these intersections continues to proliferate, we are hopeful that 

these respective fields (and associated fields within the cognitive, affective, and social 

neurosciences) will continue to identify theoretical and experimental gaps in one another, 

and through persistent collaborations that these gaps will be filled just as rapidly. These 

efforts will benefit from innovations in both modeling and experimentation, in particular 

ones that seek to account for ever more complex aspects of the deciding mind.
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Highlights

• Research into value-based decision-making and cognitive control answer 

complementary questions

• We review ways in which taking a cognitive control perspective provides 

novel insights into the mechanisms of value based choice

• We highlight three particular areas of research where this critical interchange 

has occurred: (1) how different types of goals shape the evaluation of choice 

options, (2) how people use control to adjust how they make their decisions, 

and (3) how people monitor decisions to inform adjustments to control at 

multiple levels and timescales.
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Figure 1. Basic mechanisms of value-based decision-making and cognitive control.
A) A typical decision-making paradigm requires participants to choose between two options. 

Weighted attribute values determine the subjective value of each option, and the subjective 

values of these options feed into an evidence accumulation process that determines the 

final choice. (Note that models differ in how subjective values are translated into evidence 

accumulation, including whether this is done at the level of the attributes or options 

as a whole, as well as the extent of interactions between different streams of evidence 

accumulation.) The weight placed on different choice attributes (e.g., taste vs. health) is 

shaped by a person’s evaluative goals (e.g., whether they are currently on a diet or were 

instructed by the experimenter to focus attention on the healthy attribute). B) In a typical 

cognitive control task, a participant’s choice depends on their task goal (e.g., whether to 

read a displayed word or name its color). Information about different stimulus features 

(e.g., word, ink color) enters an evidence accumulation process that gives rise to the 

response. Critically, one of these feature processing pathways is more automatic than the 

other (reflected in thicker arrow for word-reading), increasing the potential for interference 

with processing the goal-relevant feature. Monitoring of this accumulation process, and its 

outcomes (not shown), helps determine when additional control is demanded to up-regulate 

the current goal.
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Figure 2. The influence of task goals on behavioral and neural correlates of value-based decision-
making.
A) While evaluative goals determine how subjective values are computed, task goals 

determine the mapping between those values and potential responses. B) Past work has 

consistently observed that people are faster to choose when faced with high-value options 

compared to low-value options (holding choice difficulty constant). One account of these 

findings is that they reflect speeding effects related to expected reward per se. This reward-
based account predicts that participants respond faster when choosing among higher-valued 

options, regardless of whether their task is to choose the best or the worst option (left). A 

goal-congruency account predicts that this typical overall value effect should reverse when 

the participant’s task is to choose the worst option (right). Across two studies, Frömer, 

Dean Wolf and Shenhav (2019) found behavior consistent with a goal-congruency account 

(bottom). C) BOLD activity within the value network tracked the relative and overall 

value of one’s options in a goal-specific (directionally-flexible) rather than reward-specific 

(directionally-consistent) manner. In addition to goal-values, this study found activity related 

with the overall reward value of options, potentially reflecting additional processes related to 

automatic appraisal (cf. Fig. 3).
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Figure 3. Dual roles of value in appraisal and goal-directed processing.
A) Subjective values play roles in determining choice (blue dashed square) as well as in 

separate appraisal processes (green dashed square) that can inform functions outside the 

decision-making process (e.g., affective experiences and approach or avoidance tendencies). 

B) Reward processing consistently triggers activity in a network comprising vmPFC, 

striatum and posterior cingulate cortex (top left). Shenhav and Buckner (2014) found that 

dissociable networks track the appraisal of one’s options (dorsal) versus choosing among 

them (ventral) (bottom left). Shenhav and Karmarkar (2019) followed up on this finding 

and showed that across an appraisal and a choice task, the dorsal network, always tracked 

how much people liked their options overall (top right), whereas the ventral network was 

significantly more active when participants choose among options rather than appraising 

them (bottom right). C) Frömer, Nassar, Ehinger & Shenhav (in submission) showed that 

appraisal-related factors correlated with activity locked to stimulus onset, whereas choice-

related factors correlated with activity locked to the response. These findings are consistent 

with appraisal of one’s options occurring more rapidly and in parallel with goal-directed 

processes that lead up to one’s response.
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Figure 4. Controlling our ongoing decisions.
A) Control affects the flow of information. Left: In the attention drift diffusion model, 

attention affects the weighting of options’ impact on the drift rate. Attended options have 

a stronger impact than unattended options, which makes options that are attended more 

likely to be chosen. Right: Newer work accounts not only for attention effects, but also 

explains how attention is deployed to reduce choice uncertainty in a goal-directed manner. 

Decision-makers decide continuously whether to keep sampling information about the 

currently attended option, shift their gaze to the other option, or make a choice based 

on the available information. The values of options are estimated over time based on 

Bayesian value estimation, so that the momentary value representation approaches the true 

values of options over time while uncertainty in those value estimates decreases. Attention 

impacts the precision of the momentary evidence based on which Bayesian value estimation 

operates. This figure is reproduced from Jang, Sharma and Drugowitsch (2021). B) Control 

affects the threshold for deciding. When a conflict is detected, (yellow arrow) the threshold 

can be increased to buy the decision-maker time to make the right choice. C) Control 

supports overcoming choice biases. Choice biases shift the starting point for evidence 

accumulation (e.g., towards repeating the previous response, or a choice default). This 

facilitates responding consistently with one’s bias, but requires control to choose against 

one’s bias.
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Figure 5. Monitoring to guide behavior across multiple levels.
A) Monitoring not only informs control over the ongoing choice, but also higher-order 

strategy and task selection. B) Performance monitoring provides a continuous readout of 

the evaluation of one’s choice process. As the decision-variable for one’s decision evolves, 

estimates of confidence and uncertainty are updated. Here, we illustrate a change of mind, 

where the initial decision is identified as erroneous and reversed. Note how uncertainty 

increases as evidence for the right option catches up with evidence for the left option, and 

then decreases again as the conflict is resolved and the right option is correctly identified. 

The confidence in the initial decision was low, and the error in approaching this boundary 

was detected. C) Confidence increases monotonically with the probability that one’s choice 

was correct/good. In contrast, uncertainty is low when an error was detected, as well 

as when the response is unambiguously correct. Confidence can also serve as a proxy 

for feedback - low confidence serves as a negative reinforcement signal, whereas high 

confidence serves as a positive reinforcement signal. D) Uncertainty can be reduced by 

sampling longer, but is also influenced by the strength of the evidence. Sampling is more 

efficacious when evidence strength is high compared to when it is low, leading to higher 

certainty and confidence gains. One’s past experiences of confidence can inform how much 

evidence accumulation is worthwhile.
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