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Using principles of motor control 
to analyze performance of human 
machine interfaces
Shriniwas Patwardhan 1, Keri Anne Gladhill 2, Wilsaan M. Joiner 3, Jonathon S. Schofield 4, 
Ben Seiyon Lee 5 & Siddhartha Sikdar 1,6*

There have been significant advances in biosignal extraction techniques to drive external 
biomechatronic devices or to use as inputs to sophisticated human machine interfaces. The control 
signals are typically derived from biological signals such as myoelectric measurements made either 
from the surface of the skin or subcutaneously. Other biosignal sensing modalities are emerging. With 
improvements in sensing modalities and control algorithms, it is becoming possible to robustly control 
the target position of an end-effector. It remains largely unknown to what extent these improvements 
can lead to naturalistic human-like movement. In this paper, we sought to answer this question. 
We utilized a sensing paradigm called sonomyography based on continuous ultrasound imaging of 
forearm muscles. Unlike myoelectric control strategies which measure electrical activation and use 
the extracted signals to determine the velocity of an end-effector; sonomyography measures muscle 
deformation directly with ultrasound and uses the extracted signals to proportionally control the 
position of an end-effector. Previously, we showed that users were able to accurately and precisely 
perform a virtual target acquisition task using sonomyography. In this work, we investigate the time 
course of the control trajectories derived from sonomyography. We show that the time course of the 
sonomyography-derived trajectories that users take to reach virtual targets reflect the trajectories 
shown to be typical for kinematic characteristics observed in biological limbs. Specifically, during 
a target acquisition task, the velocity profiles followed a minimum jerk trajectory shown for point-
to-point arm reaching movements, with similar time to target. In addition, the trajectories based 
on ultrasound imaging result in a systematic delay and scaling of peak movement velocity as the 
movement distance increased. We believe this is the first evaluation of similarities in control policies in 
coordinated movements in jointed limbs, and those based on position control signals extracted at the 
individual muscle level. These results have strong implications for the future development of control 
paradigms for assistive technologies.

In recent years, there have been significant advances in the control of biomechatronic devices driven by biologi-
cal signals derived from the user1–9. Various biological signals have been used for gesture intent recognition to 
drive such biomechatronic devices, including electrical signals such as surface electromyography (sEMG)10–12, 
electroencephalography13,14, electrocorticography15,16, as well as mechanical signals such as mechanomyography17 
and sonomyography18–24. These signal extraction techniques have found broad applications in rehabilitation 
engineering25–27. However, these techniques have their own limitations. In some of these techniques, the users 
have control over only a few degrees of freedom, while in others, the user can proportionally control movement 
velocities, one gesture at a time, and need to use an ad hoc triggering mechanism to cycle through different 
gestures26,28,29. Clinically, there continues to be a significant unmet need to improve the control of biomechatronic 
devices. Prosthetic users can often reliably control only a small number of degrees of freedom of advanced multi-
articulated prosthetic hands30. Nearly all of the individuals affected by stroke, cerebral palsy, or Parkinson’s disease 
often fail to attain normal function and activity levels even with the help of modern rehabilitation practices and 
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assistive devices31. Exoskeletons have been designed to achieve better joint function32–34, but effective control 
over the exoskeleton is a critical limiting factor35.

To address these limitations there is extensive ongoing work on developing sophisticated machine learning 
algorithms to decode motor intent from non-invasive sensing modalities, as well as research on acquiring signals 
with increased signal to noise ratio and better specificity. Examples of ongoing algorithmic research includes 
pattern recognition36–39, artificial neural networks40 and regression-based techniques41–46. Examples of techniques 
being pursued to overcome the low signal-to-noise47,48, and low specificity49,50 of conventional sEMG include 
subcutaneously implanted electrodes51,52, or specialized surgical procedures like targeted muscle reinnervation53 
as well as emerging noninvasive sensing modalities such as sonomyography18–24.

We chose to evaluate a human machine interface controller based on sonomyography, an emerging control 
method that uses real-time dynamic ultrasound imaging of deep lying musculature to infer motor intent. While 
the methods proposed in this paper can be extended to any human machine interface controller, we chose to 
use sonomyography because of its potential to achieve high signal to noise ratio for proportional positional 
control. Prior work from our group18–21 and others22–24 has shown real-time ultrasound imaging of forearm 
muscle deformations during volitional motor action can be used to decode motor intent during proportional 
isotonic movement54. In our previous work18, we showed that able bodied individuals as well as persons with 
limb deficiency were able to accurately and precisely control a virtual cursor using sonomyography.

In this paper, we investigate whether the concept of minimum jerk trajectory can be utilized to evaluate the 
performance of a human machine interface controller based on sonomyography. It has been shown humans 
follow typical minimum jerk trajectories during a variety of tasks such as arm reaching55–57, catching58, drawing 
movements59, vertical arm movements60, head movements61, saccadic eye movements62, chewing63, and several 
other motor skills64. Showing such a dynamic behavior of the task trajectories would be valuable to assess task 
performance from a motor control perspective. Although this minimum jerk trajectory has been shown for 
multi-joint coordinated movements such as reaching tasks, these studies predominantly measure the trajectory 
of some kinematic displacement. However, it has not been shown to exist during target acquisition tasks where 
the control signals are derived from an internal measurement using a sensor that is directly tracking muscle 
activation (i.e., not the resulting movement of the end-effector). Our objective in this paper is to evaluate the 
extent control signals derived at the muscle level follow the time course of minimum jerk trajectories.

To examine the extent sonomyography-based control signals mimic those of the intact limb, we developed two 
experiments. In Experiment 1, subjects controlled a virtual cursor position based on the position of a hand-held 
manipulandum. This data was collected to characterize typical baseline multi-joint coordinated movements. In 
Experiment 2, the same subjects moved a virtual cursor based on the control signals derived from sonomyo-
graphy of the forearm muscles during wrist flexion-extension. Our research objective was to characterize the 
trajectories derived from the activation of the lower level muscle groups of the forearm (Experiment 2) and deter-
mine the extent to which they reflected the trajectories derived from multi-joint coordinated movement of the 
upper limb (Experiment 1). We hypothesized that similar to the point-to-point reaching movements performed 
using a hand-held manipulandum, the trajectories resulting from sonomyography would follow a minimum jerk 
trajectory, resulting in a systematic scaling in peak movement velocity magnitude and delay in time for the peak 
to occur as the movement distance increased. Such an analysis of movement trajectories provides not only all 
the standard metrics such as accuracy and path length, but also valuable time-domain information regarding 
the dynamics of the movement.

Methods
Participants.  The same ten able-bodied individuals (mean age: 30 ± 5 years, 5 female) were recruited for 
both the experiments. Eight participants reported being right-hand dominant. All experiments described in this 
work were approved by the George Mason University Institutional Review Board and performed in accordance 
with relevant guidelines and regulations. All participants provided written, informed consent prior to participat-
ing in the study, and were also compensated for their participation.

Experimental setup and procedure.  Experiment 1.  Participants were asked to sit upright in front of a 
waist-high table. They sat in front of a horizontal 27-inch LCD monitor. The chair height was adjusted for each 
subject so that they could comfortably perform the task and view the screen. The experimental system included 
a monitor, a digitizing tablet, and a Windows PC to run the experimental paradigm and collect the behavioral 
data. The LCD monitor was mounted horizontally in front of subjects, displaying the target locations to achieve 
during each trial. The monitor was 10 inches above the digitizing tablet (Intuos4, Wacom) that tracked and re-
corded hand position at 60 Hz. Subjects grasped a cylindrical handle with their right hand, 2.5 cm in diameter, 
containing the tablet stylus inside. The hand/stylus moved on the tablet below the monitor. The position of the 
LCD monitor obstructed the vision of the tablet and the arm movements made by subjects. This setup is referred 
to as the ‘manipulandum’ setup (Fig. 1a,c).

The task was designed in PsychoPy and the data was collected and stored after being de-identified, with only 
a subject ID number. The participants were asked to move the manipulandum such that they were within a small 
circle (diameter 5 cm) to the left edge of the screen. Once they arrived at this point and held their position for 
3 s, a target location was shown to the right of this position on the screen and they were prompted to acquire 
this newly presented target (diameter 5 cm). Once they moved the manipulandum to the correct target posi-
tion, and held this new target position for 3 s, they were asked to move back to the original position to the left 
edge of the screen. This describes one trial. Seven such targets were displayed in each block of trials, and each 
block was repeated 5 times. This resulted in each participant performing the task 35 times (7 targets presented 5 
times each). All the subjects performed the task with their right hand, with targets being presented to the right 
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of the user and the user always starting from the left edge of the screen. The movement trajectory taken by the 
subject on each trial was sampled at 60 Hz and stored in separate tables. This data was analyzed post-hoc using 
custom-developed scripts in MATLAB.

Experiment 2.  Participants were asked to sit upright with their elbow below their shoulder and the forearm 
comfortably secured to a platform on the armrest of the chair. Participants were instrumented with a clinical 
ultrasound system (Terason uSmart 3200T) connected to a low-profile, high frequency, linear, 16HL7 trans-
ducer. The imaging depth was set to 4 cm and the gain was set to 60. The transducer was manually positioned 
on the volar aspect of the forearm (dominant arm), in order to access the deep and superficial flexor muscles 
of the forearm. Subjects performed the task with their dominant limb. Left handed users started with their 
left wrist fully extended and the cursor to the left most edge of the screen with targets being presented to the 
right. Right handed users started with their right wrist fully extended and the cursor to the right most edge 
of the screen with targets being presented to the left. The transducer was secured in a custom designed probe 
holder and held in place with a stretchable cuff. In order to to prevent direct observation of the wrist and hand 
movements, participants placed their hand in an opaque enclosure. A USB-based video grabber (DVI2USB 
3.0, Epiphan Systems, Inc.) was used to transfer ultrasound image sequences in real time to a PC (Dell XPS 15 

Screen with targets and 
user controlled cursor

Digitizing tablet with 
hand-held manipulandum

Subject seated in 
front of the screen

(a) Manipulandum

Screen with targets and 
user controlled cursor

Ultrasound 
machine

Ultrasound transducer 
attached to forearm with

a stretchable cuff

Opaque 
enclosure

(b) Sonomyography

Target presented randomly from this set

Cursor position at
start of each trial

(c) Manipulandum

ExtendFlex

User controlled cursor

Cursor position at
fully extended state

(start of each trial)

Cursor position at
fully flexed state

(d) Sonomyography

Figure 1.   (a) Setup for Experiment 1. Subjects were seated in front of a digitizing tablet to capture the 
movement trajectories as they moved a manipulandum. A LCD monitor was placed above the tablet that 
showed the target location and the subjects’ manipulandum position. The subjects were asked to achieve the 
target positions displayed on the screen. (b) Setup for Experiment 2. Subjects were instrumented with an 
ultrasound transducer that recorded cross-sectional ultrasound images of their forearm, which resulted in a 
proportional signal correlating to their extent of flexion. The position of the subject-controlled cursor on the 
screen in front of them was driven by the proportional signal derived from sonomyography. Subjects were 
asked to achieve the target positions displayed on the screen. (c) Diagram showing the target acquisition task 
performed in Experiment 1. The dark circle on the left shows the starting position, while all the possible target 
locations are shown as faint circles on the screen. (d) Diagram showing the target acquisition task performed 
in Experiment 2. All possible targets are given by faint red lines. The ’X’ indicates the user controlled cursor. 
Flexing their wrist would make the cursor go left and extending their wrist would make the cursor go right 
(for a right handed person). It would be opposite for a left handed person. A fully extended wrist state would 
correspond with the cursor being at the right-most edge of the screen and a fully flexed state of the wrist would 
correspond with the cursor being in the left-most edge of the screen (for a right handed person).
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9560). The acquired image frames were processed in MATLAB (The MathWorks, Inc.) using custom-developed 
algorithms18. The participants had a computer screen in front of them where they could see a real-time plot of 
their derived proportional position, along with the virtual targets. This setup is referred to as the ‘sonomyogra-
phy’ setup (Fig. 1b,d).

Participants underwent a training procedure in which they performed repeated wrist extension and flex-
ion. These movements were timed to a metronome such that the participant was cued to transition from full 
extension to full flexion within one second, hold the position for one second, return to full extension within 
one second, and hold the position for one second. This process was repeated five times. The ultrasound images 
corresponding with the full extension and flexion phases were averaged into a single representative image each, 
and added to a training database with a corresponding ‘extension’ or ‘flexion’ label. This formed the reference 
data set. The training captured the users’ flexion/extension end-states, and mapped those two end-states onto 
the two edges of the screen, such that all partial states would have a corresponding position on the screen for 
the cursor. Our training method has been described in detail in our previous work18. We only asked the users 
to move as accurately as possible, and told them that they had 10 s to do this, before the trial timed out. We 
asked the users to perform comfortable levels of flexion/extension during training, so that they would be able 
to perform these motions repeatedly.

During the actual trials, cross-sectional ultrasound images of the subject’s forearm were compared to this 
reference data set to derive a proportional signal as described in our prior work18. This derived proportional signal 
was sent to the computer, where the participant controlled an on-screen cursor that could move horizontally 
in proportion to the degree of muscle activation in the forearm (i.e., the cursor moved left in response to wrist 
flexion and right in response to wrist extension for right-handed subjects and opposite for left-handed subjects). 
The objective was to reach a vertical target line as accurately as possible before the trial ended, and retain the 
cursor at the target line until the trial ended. The interface presented a target position at random from a set of 
seven predefined, equidistant positions, which were identical to the target distances presented in Experiment 1. 
The target remained at each position for 10 s and then moved to the next position until all seven target points 
were presented. For each target position, the participant was prompted, via an automated audio cue, to move 
the cursor to rest position before the task began. After the seven targets were presented, the participant would 
rest for one minute and then repeat the task. They completed six blocks, with the first block for practice, and the 
following five blocks were used for analysis (7 targets, presented 5 times each).

Computation of movement parameters.  For both the experiments, movement trajectories were 
recorded along with the associated timestamp and imported into MATLAB. No trials were discarded. The fol-
lowing metrics were computed.

Movement distance.  Seven targets were presented at 12.5% , 25% , 37.5% , 50% , 62.5% , 75% , and 87.5% of screen 
width. For Experiment 1, the width of the manipulandum tablet was the same as the workspace shown on the 
27 inch LCD screen above it (see Fig. 1a). For Experiment 2, a 27 inch computer monitor showed the cursor 
and target locations. The distance between the start point (always at 0% of screen width) and the target was 
the movement distance. The movement of the cursor in Experiment 2 was a virtual movement proportional to 
the range of motion, but scaled to the size of the screen, meaning that a fully extended state of the hand made 
the cursor go one extreme edge of the screen whereas a fully flexed state made it go to the other extreme. For 
example, 50% movement distance would require moving the cursor 13.5 inches on the screen. In this work, all 
movement distances and movement velocities have been expressed in terms of percentage of screen width. The 
target in Experiment 1 was a filled grey circle with a fixed radius, and the users were asked to reach a black dot at 
the center of the target as accurately as possible. In Experiment 2, the target was a filled red vertical band with a 
fixed width, and the users were asked to reach a one-pixel wide black line at the center of the target as accurately 
as possible.

Trial start and end point.  The start point of each trajectory was set to the first sample where the movement 
velocity was positive. This was defined as the movement onset. The trial was marked as finished when the user-
driven cursor was greater than 95% of the target for the first time.

Time to target.  The time taken by the cursor to move from the start point to the end point was defined as the 
time to target for that trial. For every movement distance, we computed an average time to target and used it to 
compute the minimum jerk trajectory for that target.

Minimum jerk trajectory.  The minimum jerk trajectory (MJT) minimizes the acceleration changes over the 
duration of the movement. This has been shown to be followed extensively throughout a wide variety of human 
movements. The MJT is represented as

The position and velocity profiles resulting from Eq. (1) as functions of time (t) are given65 by

(1)MJT =

∫ tf

ts

||
...
x (t)||2dt

(2)x(t) = x0 + (xf − x0)(10τ
3 − 15τ

4 + 6τ
5)
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where,

Position error.  The average root mean square error between the cursor position and the minimum jerk trajec-
tory over the duration of the movement was defined as the position error.

Path Efficiency.  Path efficiency is the ratio of actual path length to the ideal path length. The actual path length 
was calculated by measuring the total distance traversed by the user to settle at the target. The ideal path length 
was defined as the distance between the starting point and the center of the target. For example, if for a given 
movement distance, the user-cursor trajectory started at 0 and traversed through points A-B-C to finally reach 
the target, then the path length would be 0A+AB+BC.

Statistical analysis.  We employed a two-stage approach to assess the effects of the interactions between 
control modality and movement distance. We utilized the Scheirer–Ray–Hare (SRH) test, an extension of the 
Kruskal-Wallis test to experimental designs with multiple factors66,67. Similarly, the SRH test is a non-parametric 
analogue to multiple-factor analysis of variance (ANOVA).

In the first stage, we ran four total SRH tests corresponding to each response variable - peak velocity achieved 
during the trial, time taken to achieve the target, position error between target and cursor, and the time to velocity 
peak. The factors included control modality (Manipulandum and Sonomyography), movement distance (12.5%, 
25%, 37.5%, 50%, 62.5%, 75%, and 87.5% of screen width), and an interaction effect between control modality 
and movement distance. The type of analysis performed in the second stage depended on whether the interac-
tion term was significant in the first stage.

In the second stage, for response variables that did not have a significant effect with respect to the interac-
tion term, we performed an updated set of SRH tests omitting the interaction term. For the response variables 
that had a significant interaction effect between control modality and movement distance, we performed two 
separate Kruskall–Wallis (KW) tests for subsets of the trials. The first subset consists of trials performed at the 
seven movement distances corresponding to the manipulandum modality, and the second subset includes the 
remaining trials performed at the seven movement distances obtained via sonomyography. After subsetting, 
note that there is just a single factor (movement distance) for each KW test. We elected to fix control modality 
for the Kruskal Wallis tests to minimize the total number of tests. However, one may choose to fix movement 
distance in future studies.

Two Brown-Forsythe tests were performed to test the effect of control modality on the variance of time to 
target and peak velocity across modalities. Two Brown-Forsythe tests were also performed to test the effect of 
movement distance on variance in path efficiency for the same control modality. A statistical significance level 
of p = 0.05 was used throughout this work.

Results
In Experiment 1, we quantified the movement parameters while subjects made reaching movements of differ-
ent amplitudes. Subjects moved a virtual cursor to one of seven different target positions. The cursor location 
reflected the location of the manipulandum moved by the subject. We analyzed performance by examining 
the trajectories of the cursor for each movement distance. As shown in prior literature55,68,69, the trajectories of 
the movement had a single velocity peak at approximately their mid-point, and a bell-shaped velocity profile 
(Figs. 2a and 3a).

In Experiment 2, we characterized performance when the cursor was driven using sonomyography. The 
movement distances were the same as those used in the arm reaching task with the manipulandum. In this 
case subjects moved the cursor to the required target by flexing their forearm muscles to the appropriate level. 
As above, we analyzed performance by examining the trajectories of the cursor for each movement distance. 
As was the case for the reaching movements, the trajectories taken by the subjects had a single velocity peak at 
approximately their mid-point, and a bell-shaped velocity profile (Figs. 2b and 3b).

In the first stage, a two-way Scheirer–Ray–Hare test was performed to test the effect of the control modality 
and the movement distance on the peak velocity achieved during a trial. The peak velocity increased significantly 
with respect to the movement distance across both control modalities (Fig. 4, p < 0.05, degrees of freedom = 6, 
H = 578.13). The peak velocity also increased significantly with respect to control modality (p < 0.05, degrees of 

(3)v(t) =
1

d
(xf − x0)(30τ

2 − 60τ
3 + 30τ

4)

x(t) = Position of cursor at time t

v(t) = Velocity of cursor at time t

ts = Start time

tf = Finish time

d = Time to target, tf − ts

x0 = Starting position

xf = Target position

τ =
t

d
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freedom = 1, H = 57.27, higher for Experiment 2 than Experiment 1), but did not change significantly with the 
interaction term (p = 0.08, degrees of freedom 6, H = 11.12). In the second stage, an updated SRH test omitting 
the interaction term showed that the peak velocity increased significantly with respect to movement distance 
(p < 0.05) and increased significantly with respect to control modality (p < 0.05, higher for Experiment 2 than 
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Figure 2.   Position traces versus time. The red line shows the mean position trace across all subjects, and 
the shaded yellow region shows one standard deviation. The horizontal axis represents time (seconds) from 
movement onset at time zero, and the vertical axis represents the distance to the target as a percentage of the 
workspace. The black line represents the minimum jerk trajectory based on the time to reach the target.
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Figure 3.   Velocity traces versus time. The red line shows the mean velocity trace across all subjects, and 
the shaded yellow region shows one standard deviation. The horizontal axis represents time (seconds) from 
movement onset at time zero, and the vertical axis represents the movement velocity as a percentage of the 
screen covered per second. The black line represents the minimum jerk trajectory based on the time to reach the 
target.
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Experiment 1). A linear regression showed that the peak velocity increased linearly with respect to movement 
distance for Experiment 1 (slope = 1.08, R2 = 0.96 ) as well as Experiment 2 (slope = 1.68, R2 = 0.94).

In the first stage, a two-way Scheirer–Ray–Hare test was also performed to test the effect of the control modal-
ity and the movement distance on the time to target. The time taken by subjects to acquire the target increased 
significantly as the movement distance increased, for both control modalities (Fig. 5, p < 0.05, degrees of freedom 
= 6, H = 110.15). The time to target increased significantly with respect to control modality (p < 0.05, degrees 
of freedom = 1, H = 506.28, higher for Experiment 1 than for Experiment 2), but did not change significantly 
with the interaction term (p = 3.98, degrees of freedom = 6, H = 6.22). In the second stage, an updated SRH test 
omitting the interaction term showed that the time to target increased significantly with respect to movement 
distance (p < 0.05) and increased significantly with respect to control modality (p < 0.05, higher for Experiment 
1 than Experiment 2). A linear regression showed that the time to target increased linearly with respect to move-
ment distance for Experiment 1 (slope = 0.01, R2 = 0.96 ) as well as Experiment 2 (slope = 0.01, R2 = 0.53 ). These 
results showed that the peak velocity magnitudes and the time to target scaled with respect to the movement 
distance for the same control modality, but were significantly different when compared across control modalities.

Seven independent F-tests were conducted to test the difference in variance of peak velocity between the two 
experiments for the same movement distances. For example, peak velocities measured for a target distance of 50% 
from Experiment 1 were tested against peak velocities measured for a target distance of 50% from Experiment 2, 
and so on. All F-tests showed that the variance in peak velocities for all target distances was greater for Experi-
ment 2 than the peak velocities for the corresponding target distances for Experiment 1 (p < 0.05, see Fig. 4).

Seven independent F-tests were also conducted to test the difference in variance of time to target between 
the two experiments at the same movement distances. All F-tests showed that the variance in time to target for 
all target distances was greater for Experiment 2 than the time to target for the corresponding target distances 
for Experiment 1 (p < 0.05, see Fig. 5).

Each trial’s peak velocity was plotted against its time to target, normalized with respect to the peak velocity 
and time to target for the trial’s movement distance (see Fig. 6). Then ellipses were drawn such that the size of 

25 50 75 100
Movement distance
(% of screen width)

0

50

100

150

200

Pe
ak

 V
el

oc
ity

(%
 o

f s
cr

ee
n 

w
id

th
 p

er
 s

ec
)

Slope = 1.08, R2 = 0.96, p < 0.05

(a) Manipulandum

25 50 75 100
Movement distance
(% of screen width)

0

50

100

150

200

Pe
ak

 V
el

oc
ity

(%
 o

f s
cr

ee
n 

w
id

th
 p

er
 s

ec
)

Slope = 1.68, R2 = 0.94, p < 0.05

(b) Sonomyography

Target 12.5% Target 25% Target 37.5% Target 50% Target 62.5% Target 75% Target 87.5%

Figure 4.   Peak velocity versus movement distance. Each violin shows the distribution of peak velocities for all 
trials plotted against movement distance for those trials. As the movement amplitude increased, the subjects 
proportionally increased the peak movement velocity.
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the axes corresponded with the standard deviation of peak velocities and time to target respectively, and the 
center of the ellipse was at coordinates given by the normalized time to target and normalized peak velocity 
respectively. The normalized peak velocity (normalized to the average peak velocity for the smallest target 
distance) increased to 4.24 times for the manipulandum and 4.93 times for sonomyography (from the shortest 
to the longest movement distance). However, the normalized time to target (normalized to the average time to 
target for the smallest movement distance) increased to only 2.46 times for the manipulandum and 1.83 times for 
sonomyography (from the shortest to the longest movement distance. For both control modalities, the relative 
difference in peak velocity (difference in the horizontal location) was more than the relative difference in time 
to target (difference in the vertical location).

Mean velocity traces were plotted against time to show scaling of peak velocities on average for every target, 
as well as the systematic shift in time to achieve peak velocity, which is a feature of the minimum jerk trajectory 
model (see Fig. 7). For Experiment 1, the time taken to achieve the peak velocity for the farthest target increased 
by 1.69 times compared to the smallest target, while it increased 0.97 times for Experiment 2.

In the first stage, a two-way Scheirer–Ray–Hare test was conducted to test the effect of control modality 
and movement distance on the time taken to achieve velocity peak. It increased significantly with respect to 
movement distance, for both control modalities (Fig. 8, p < 0.05, degrees of freedom = 6, H = 26.16). The time 
taken to achieve peak velocity also increased significantly with respect to control modality (p < 0.05, degrees of 
freedom = 1, H = 518.56, higher for Experiment 2 than Experiment 1), and also changed significantly with the 
interaction term (p < 0.05, degrees of freedom = 6, H = 26.18). Since the interaction effect was significant for 
time to velocity peak, in the second stage, two separate Kruskall–Wallis (KW) tests are conducted for subsets 
of the trials. The first subset consists of trials performed at the seven movement distances corresponding to the 
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to target are normalized with respect to the average peak velocity and average time to target for the smallest 
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Figure 7.   Normalized mean velocity profiles across all subjects versus time. The data is grouped by movement 
amplitude (each color represents a different movement distance). The peak velocity achieved by the subjects 
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manipulandum modality, and the second subset includes the remaining trials performed at the seven move-
ment distances obtained via sonomyography. After subsetting, note that there is just a single factor (movement 
distance) for each KW test. The test results indicated that movement distance is statistically significant for both 
levels of control modality (p < 0.05). We elected to fix control modality for the Kruskal Wallis tests to minimize 
the total number of tests.

To assess the performance of subjects, the trajectory of each trial was compared to the minimum jerk tra-
jectory. For every target position, we computed the average time to target and used this time to compute the 
minimum jerk trajectory for that target position. The time series root mean square error was computed between 
the average position trace and the minimum jerk trajectory, and termed as position error. In the first stage, a 
two-way Scheirer–Ray–Hare test was conducted to test the effect of control modality and movement distance 
on the position error. It increased significantly with respect to movement distance, for both control modalities 
(Fig. 8, p < 0.05, degrees of freedom = 6, H = 59.74). The position error increased significantly with respect to 
control modality (p < 0.05, degrees of freedom = 1, H = 37.11, higher for Experiment 2 than Experiment 1), and 
also changed significantly with the interaction term (p < 0.05, degrees of freedom = 6, H = 24.002, higher for 
Experiment 2 than Experiment 1). Since the interaction effect was significant for position error, in the second 
stage, two separate Kruskall–Wallis (KW) tests are conducted for subsets of the trials. The first subset consists 
of trials performed at the seven movement distances corresponding to the manipulandum modality, and the 
second subset includes the remaining trials performed at the seven movement distances obtained via sonomyo-
graphy. After subsetting, note that there is just a single factor (movement distance) for each KW test. The test 
results indicated that movement distance is statistically significant for both levels of control modality (p < 0.05).

A linear regression showed that the position error increased linearly with respect to movement distance 
for Experiment 1 ( R2 = 0.90 ) as well as Experiment 2 ( R2 = 0.52 ). The position error was not predominantly 
negative or positive, meaning on average, the user trajectory was not strictly above or below the minimum jerk 
trajectory. For Experiment 1, the average root mean square error between the users’ cursor position and the 
minimum jerk trajectory was between 1.2 and 5.78% of the screen width, increasing with target position. For 
Experiment 2, it was between 4.45 and 6.22% of the screen width, also increasing with target distance. All the 
position and velocity traces were tightly packed with the standard deviation across trials ranging from 0.53 to 
2.36% for Experiment 1, and 4.27–5.82% for Experiment 2, both increasing with target distance. These results 
show that both control modalities had low variation across subjects.

All the trials for Experiment 1 , and 96.57% of the trials for Experiment 2 were completed within 2 s (see 
Fig. 9). The average path efficiency was 101.03%± 2.2% for Experiment 1 and 84.06%± 16.81% for Experiment 
2. Seven independent F-tests were conducted to test the difference in variance path efficiencies between the two 
experiments at the same movement distances. All F-tests showed that the variance in path efficiencies for all 
target distances was greater for Experiment 2 than the variance in path efficiencies for the corresponding target 
distances for Experiment 1 (p < 0.05, see Fig. 10). The ideal path length was defined as the distance between 
the starting position and the center of the target position. However, during certain trials, subjects seem to have 
stopped moving after achieving the outer edge/radius of the target. This meant that the target was ”achieved”, 
but with a path length shorter than the ideal path length, making some path efficiencies greater than 100%.

Discussion
In this work, we used sonomyography to investigate the time course of control signals derived from imaging 
forearm musculature during a virtual target acquisition task, and compared it to control signals derived during 
cursor movements based on physical arm reaching movements. For both control modalities, the peak velocity 
and the time to target increased linearly with respect to movement distance. The change in time to target for the 
different movement distances was smaller for control signals derived from sonomyography than for the control 
signal derived from the manipulandum. Once the target was acquired, there was a greater deceleration phase 
for the manipulandum than for sonomyography (Fig. 7). The position traces of the cursor controlled by both 
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Figure 8.   Root mean squared position error between the users’ cursor position and the ideal minimum jerk 
trajectory. The error increased as the movement distance to that target increased.
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modalities exhibited a trajectory close to the minimum jerk trajectory (Fig. 2), and the velocity profiles had a 
single bell-shaped peak at approximately the movement mid-point (Fig. 3). These results were consistent across 
subjects and across trials within each subject. Thus, the sonomyography-based movement trajectories derived 
from the users’ forearm muscles during wrist flexion/extension were consistent with behavior previously docu-
mented for coordinated multi-joint movements of the upper limb. This is novel since we report the existence of 
the minimum jerk trajectories using only internal measurement of muscle activation (sonomyography), rather 
than kinematic or external tracking of the effector (i.e. accelerometer on the arm).

Characterizing movement quality in control tasks.  The virtual cursor control task is often used to 
evaluate the performance of human machine interfaces70–75. Traditionally, surface electromyography has been 
used to decode motor intent and drive the cursor during a virtual target achievement control task76–80. Various 
algorithms have been used to generate the control signal, including pattern recognition, linear regression, etc, 
and the derived signal can be used to control either the velocity or position of the cursor. The performance of 
the control paradigm is characterized using standard metrics such as movement time, path length, path effi-
ciency, completion rate, accuracy, precision, etc.81. However, these metrics describe user performance without 
characterizing the time-course of the signal i.e. the evolution of the signal with respect to time. Therefore, with 
these standard metrics it is not possible to evaluate the movement quality in terms of its similarity to naturalistic 
human movements.

The minimum jerk trajectory during human movement.  Hogan82 proposed that the central nerv-
ous system reflects the minimum jerk trajectory during the path-planning stage when a target is pre-selected. 
Others56,64,83–87 have shown that similar behavior is displayed during a variety of tasks such as arm reaching55–57, 
catching58, drawing movements59, vertical arm movements60, head movements61, saccadic eye movements62, 
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Figure 9.   Percentage of trials completed versus time. The data is grouped by movement distance. The 
percentage of trials completed within a certain time period was inversely proportional to the movement 
distance. Each color shows a different movement distance, whereas the black line shows the average number of 
trials across all movement distances. These figures also show that almost all the trials were completed within 2 s.

25 50 75 100
Movement distance
(% of screen width)

0

20

40

60

80

100

120

Pa
th

 e
ffi

ci
en

cy
 (%

)

(a) Manipulandum

25 50 75 100
Movement distance
(% of screen width)

0

20

40

60

80

100

120

Pa
th

 e
ffi

ci
en

cy
 (%

)

(b) Sonomyography

Target 12.5% Target 25% Target 37.5% Target 50% Target 62.5% Target 75% Target 87.5%
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chewing63, and several other motor skills64. Highly coordinated multi-joint upper limb movement has been 
shown to exhibit minimum jerk trajectories55,56,60,88, but to the best of our knowledge, these results have not been 
shown with respect to movement trajectories derived directly from imaging the musculature controlling a single 
joint. That is, the majority of the previous studies have documented the minimum jerk trajectory by tracking 
the kinematics of the moving body part, but not shown this to hold true when the control was derived using an 
internal measurement like ultrasound imaging of forearm muscles. Similar to the prior work described above, 
here we demonstrated that virtual end-point trajectories derived from sonomyography also follow a minimum 
jerk trajectory.

Typical point to point movement trajectories show a scaling of peak velocities and time to acquire targets 
based on target distance89,90. Neurologically healthy subjects follow typical movement trajectories based on 
distance to the target, and have very minimal abrupt changes due to error correction as they move closer to the 
target. During point to point reaching tasks, as the movement amplitude increases, the peak velocity (height of 
the bell-shaped velocity curve) increases proportionally. We have shown this behavior in the sonomyography 
trajectories as well (Fig. 3b). In prior work54 we have demonstrated that sonomyographic signals are proportional 
to motion completion level and here we offer evidence that the minimum jerk trajectory is followed at the single 
joint level. These two results suggest that it may be possible to use sonomyography to investigate how other 
motor control policies based on muscle activation apply at the single joint level. For example, sonomyography 
could also be used to investigate the properties of motor control at the single joint level in individuals with a 
limb deficiency or movement disorders.

Common motor control principles have been found to hold for various tasks under many different environ-
mental and task performance conditions55–64,91. However, there is some debate over whether the typical motor 
behaviors are the result of internal properties of the motor system or they are simply the result of responses to 
visual and perceptual information. For certain periodic bimanual tasks, it has been argued that the motor system 
is subordinate to the visual/perceptual constraints while performing visuospatial motor tasks92. In the current 
work, users had complete access to visual feedback, and we did not perturb the visual representation of the task 
in real-time during the task. However, we have tested the effect of removing visual feedback of the cursor on task 
performance (errors, time to target, etc)93. In future work, we plan to test the effect of removing visual feedback 
on the dynamics of the performance reported here.

Applications in rehabilitation engineering.  Our results demonstrate that it is possible to achieve natu-
ralistic control using control signals derived from muscle. Sonomyography is an emerging modality that is being 
used for controlling upper and lower limb prosthetic devices94, but can also be used to control biomechatronic 
devices such as exoskeletons95–97 and prosthetic hands18,54,93.The results presented in this work have direct rel-
evance to designing control strategies for such devices, that reflect the natural movements of the human body. 
Surface electromyography has been the predominant method of decoding motor intent in persons with move-
ment disabilities using electrical signals from the surface of the skin26. This has proved to be a valuable tool, but 
it faces some challenges in terms of low signal to noise ratio and specificity due to the measurements being made 
at the surface level. However, techniques based on ultrasound imaging track the spatiotemporal patterns of deep 
lying musculature, giving access to information beyond surface level measurements.

Other applications of positional control.  Sonomyography, as well as other modalities that enable robust 
positional control, could also be used to closely examine feedforward and feedback control mechanisms during 
grasping movements. These mechanisms are efficiently combined during grasping tasks98–103. The action usually 
starts with feedforward control until some form of haptic feedback is available from the environment. When 
such haptic feedback is available, there is a trade-off between energy efficiency and slip prevention, that allows 
the user to maintain a force that is higher than the minimum necessary force for just grasping the object104. 
Users often exhibit higher grip force while using only a feedforward control strategy in the absence of visual 
feedback105,106. Prosthetic users rely heavily on feedforward mechanisms107 as visual information is often the 
only type of feedback available to them. These control paradigms could be further studied using sonomyogra-
phy, by comparing muscle deformation following onset of movement but before object interaction, with muscle 
deformation after object interaction has taken place. The magnitude and timing of these changes could be stud-
ied alongside electrical measurements preceding the muscle activation, to further inform our understanding of 
how the motor systems directs object manipulation in the real world. The current results show that it is possible 
to study the time course of such interactions and characterize how the movement quality is affected after the 
onset of a movement disorder or sensory loss. Several studies have shown that adaptation to errors induced by 
external forces is very natural for able bodied individuals108–112, but this mechanism is affected in persons with 
neuromuscular disorders113–117. Sonomyography could be another tool to study motor learning and adaptation 
by characterizing the time course of muscle movement as a reaction to external forces during certain tasks.

In our current study, the sonomyographic control signals did not directly track individual muscle boundaries 
or landmarks in the musculature. We aim to develop more advanced signal extraction techniques that will track 
individual muscle compartments in the future. In addition, the current studies were conducted on able bodied 
subjects. It would be very informative to investigate how these results compare to the movement trajectories 
exhibited by persons with limb deficiency as well as other neuromusculoskeletal impairments under the same 
protocol. In this work, although we placed the ultrasound transducer in an approximately similar spot for all 
participants as described in the methods section, we did not standardize the probe placement perfectly. Since 
our signal extraction algorithm is trained separately for every user, this was not a huge problem, but if we move 
towards tracking physical muscle/bone landmarks then we will also need to standardize probe placement. In 
this study, we showed all the results using only one hand motion (wrist flexion/extension). However, in our 
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previous work18,54 that the sonomyography signal tracks motion completion level accurately for a range of hand 
motions. That is why, we believe that we could explore similar trajectory tracking using other motions in future 
work as well. Additionally, there is a slight difference in how the targets were presented for the two experiments, 
in terms of the mirroring of the hand used for control. For Experiment 2, we do not believe that this mirroring 
had a significant effect on the results, as the sonomyography signal has been shown previously to have an average 
stability error of 6.51% for able bodied subjects and persons with amputation. Our current study was not powered 
to evaluate differences in limb dominance. Future studies could investigate the impact of limb dominance on 
control trajectory performance.

Conclusions
We have shown in this work that (1) sonomyography is a tool capable of investigating the time course of muscle 
deformation when the users engage in isotonic movements, and (2) subjects demonstrate comparable planning 
and execution of a virtual cursor control task using a hand-held manipulandum or imaging of the forearm mus-
cles. Movement trajectories based on isotonic activation of the limb muscles sensed through sonomyography, and 
those resulting from arm movement show similar characteristics: single bell-shaped velocity profiles, scaling of 
peak velocity based on movement distance, shift in time to achieving peak velocity, and increase in time to target 
based on movement distance. These results have been shown previously with respect to kinematics of whole limb 
movements, but we have shown that the same control relationships are reflected in control signals derived at 
the muscle level. In the future, these findings could enable the use of sonomyography and other robust position 
control signals to study the extent to which motor control relationships are preserved in individuals with neu-
romusculoskeletal impairments, and how these relationships are affected by multi sensory feedback modalities.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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