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ABSTRACT OF THE DISSERTATION

An Initial Study of Two Approaches to Eliminating Out-of-Thin-Air Results

By

Peizhao Ou

Doctor of Philosophy in Computer Engineering

University of California, Irvine, 2018

Professor Brian Demsky, Chair

Eliminating so-called “out-of-thin-air” (OOTA) results is an open problem in many existing

programming language memory models including Java, C, and C++. OOTA behaviors are

problematic in that they break both formal and informal modular reasoning about program

behavior. In spite of many years of research efforts, defining memory model semantics that

are easily understood, allow existing optimizations, and forbid OOTA results remains an

open problem. This dissertation explores two solutions to this problem that forbid OOTA

results. The first solution is targeted towards Java-like languages in which all memory oper-

ations may create OOTA results, and the second solution is targeted towards C/C++-like

memory models in which racing operations are explicitly labeled as atomic operations. Our

solutions provide a per-candidate execution criterion that makes it possible to examine a

single execution and determine whether the memory model permits the execution. We im-

plemented and evaluated both solutions in the LLVM compiler framework. Our results show

that on an ARMv8 processor the first solution has an average overhead of 3.1% and a max-

imum overhead of 17.6% on the SPEC CPU2006 C/C++ benchmarks, and that the second

solution has no overhead on average and a maximum overhead of 6.3% on 43 concurrent

data structures. The results indicate that these approaches to eliminating out-of-thin-air

behaviors deserve further consideration.
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Chapter 1

Introduction

With the wide scale deployment of multi-core processors, software developers must write par-

allel software to leverage the benefits provided by additional cores. In the meantime, main-

stream hardware architectures primarily target shared-memory multiprocessors, in which

multiple cores share the same main memory and communicate with one another through

reading from and writing to the shared memory1. In a simplistic and ideal world, reasoning

the execution of multi-threaded programs would be fairly straightforward: there exists a

global view of the shared memory; each thread executes the memory operations strictly in

program order, and a write to the shared memory immediately updates the shared memory

and becomes visible to all the threads while a read from the shared memory retrieves the most

up-to-date value. This intuitive abstraction was first introduced as sequential consistency

by Lamport (1979).

However, in order to gain better performance, modern hardware violates sequential consis-

tency in many ways. For example, out-of-order execution in modern processors can break the

abstraction that memory accesses are executed in program order; or the memory subsystem

1In this dissertation, we are somewhat relaxed in our exchangeable usage of load/read to refer to the
action of retrieving the value from a shared memory location, and store/write to refer to the action of
updating a shared memory location with a value.
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(e.g., store buffer or cache, etc.) can break the abstraction that a write is immediately visible

to all the threads. Thus, we need a contract between a specific architecture and its users to

specify what value a load can obtain for a multi-threaded program written at the machine-

code level. Such a contract is known as a hardware memory model. A memory model in

general specifies the semantics of memory reads/writes in a multi-threaded environment, and

a hardware memory model does so at the hardware (or machine code) level.

In addition to the underlying hardware, standard compiler optimizations can also violate

sequential consistency because they can transform the source code in such a way that read-

/write operations appear to be reordered (Marino et al., 2011). In the meantime, the cor-

rectness of certain multi-threaded programs written in high-level programming languages

can rely on the non-existence of certain relaxed behaviors2 (e.g., reordering of memory ac-

cesses). Thus, in order to make source code portable across different compiler frameworks and

hardware platforms, researchers and practitioners have designed and proposed programming

language memory models, which serve as contracts between language users and language

implementers to specify the semantics of loads and stores in a multi-threaded program at

the programming language level. Most programming languages, such as C/C++ and Java,

guarantee sequential consistency for programs without data races (Adve and Hill, 1990).

However, this guarantee is fragile — a single data race voids the sequential consistency

guarantee for the entire program. Indeed, programs with data races have undefined semantics

under the C/C++11 memory model (Boehm and Adve, 2008; JTC, 2011; Becker, 2011;

Batty et al., 2011), mostly due to the fact that data races can violate the assumptions made

by compiler optimizations. For existing compilers, assigning meaningful semantics to racy

programs is extremely complicated. The language semantics must capture behaviors that

arise from both compiler and processor optimizations. While the C and C++ memory models

2In literature, in the context of shared-memory multi-core systems, relaxed/weak (memory) behavior
usually refers to the executions that are not sequentially consistent, and relaxed/weak memory models
usually refer to the memory models that allow relaxed/weak behavior.
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do not even attempt to assign semantics to such programs, Java is intended to support the

safe execution of untrusted code. Thus, Java must ensure safety for racy programs and the

Java Memory Model (Manson et al., 2005; Shipilëv, 2016a,b) attempts to assign semantics

to such programs. A similar situation exists in C and C++ when it comes to the support

for low-level atomic operations. The weakest atomic operations, which are specified using

the memory order relaxed memory order parameter, only guarantee coherence and cannot

be used to implement synchronization.

Hence, in both situations for Java and C/C++ relaxed atomics, one of the design goals is to

define reasonable and preferably easy-to-understand semantics that allow standard compiler

optimizations and modern hardware optimizations. This, however, has been shown to be

very difficult, mostly due to an outstanding problem — eliminating out-of-thin-air (OOTA)

results, i.e., results that can be justified only by some circular reasoning. For example, in

a concurrent execution, we may justify the store of value 42 to memory location x only

because we assume the exact store would happen in the first place. Such OOTA results

have been shown to be disastrous because they hinder both formal and informal modular

reasoning of concurrent programs. In this dissertation, we present two approaches to tackling

this problem, i.e., the dependency-preserving approach and the load-store-order-preserving

approach. We implemented both approaches on top of the LLVM compiler framework and

evaluated their runtime overheads on an ARMv8 multiprocessor3. The remainder of this

dissertation is structured as follows:

• In the remainder of this chapter, we discuss the background of sequential consistency

(Section 1.1), hardware memory models (Section 1.2), compiler optimizations (Sec-

tion 1.3), and programming language memory models (Section 1.4) in order to give

readers sufficient background on how the out-of-thin-air problem arises.

• In Chapter 2, we depict the out-of-thin-air problem that this dissertation focuses on,

3The study presented in this dissertation is based on Ou and Demsky (2018).
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show the disastrous consequences of allowing OOTA results, and outline existing pro-

posals for solving the problem and our contributions.

• In Chapter 3, we demonstrate our memory model extensions for both of our approaches.

• In Chapter 4, we discuss our approach to extending the LLVM compiler to preserve

our dependency notion.

• In Chapter 5, we discuss our approach to extending the LLVM compiler to preserve

load-store ordering.

• In Chapter 6, we evaluate both approaches and show their runtime overheads.

• In Chapter 7, we discuss related work.

• In Chapter 8, we conclude and outline potential future work.

1.1 The Sequentially Consistent Memory Model

Sequential consistency, or the sequentially consistent (SC4) memory model, provides an

intuitive abstraction that a multi-threaded program is executed as if there exists a strict

interleaving of memory accesses from each thread that respects program order. Figure 1.1

shows the execution of a simple example5 under the SC memory model. Here, variables x

and y are two global variables which have the initial value of 0, and variables r1 and r2

are local variables (or registers) that are initialized to be 0. Then there are two threads,

Thread 1 and Thread 2: Thread 1 writes value 1 to variable x and then reads from variable

4We loosely use the term “SC” to refer to either “sequentially consistent” or “sequential consistency” in
this dissertation.

5We use pseudocode snippets like this throughout this dissertation. It is important to note that these
examples are written in a C-like language whose purpose is to show the effect of memory accesses in a multi-
threaded environment, and that they can actually represent code written in assembly, C/C++, or Java, etc.,
depending on the context. Also, in later examples, we use lower-case letters x, y, z, etc., to represent shared
global variables, and symbols r1, r2, r3, etc., to represent local variables or registers, unless otherwise stated.
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y; Thread 2 symmetrically writes value 1 to variable y and then reads from variable x. Under

the SC memory model, depending on the actual interleaving of the two threads, there exist

three possibilities for the values that variables r1 and r2 can hold: (1) r1=r2=1; (2) r1=1 ∧

r2=0; or (3) r1=0 ∧ r2=1. We show a possible interleaving of an SC execution that yields

the result of r1=r2=1 in Figure 1.2, in which the two stores from both threads are executed

before both loads. Notably, no execution would generate the result of r1=r2=0 under the SC

memory model since both threads must respect the program order and thus write value 1 to

either variable x or y before any reads from variable x or y can be executed. The Dekker’s

mutual exclusion algorithm (Dijkstra, 2002) essentially relies on the non-existence of this

behavior (i.e., r1=r2=0) to provide mutual exclusion.

x = y = r1 = r2 = 0; // Initially
Thread 1 Thread 2
x = 1; y = 1;

r1 = y; r2 = x;

Figure 1.1: With x=y=r1=r2=0 initially, r1=r2=0 is not allowed under the SC memory
model. The Dekker’s algorithm essentially relies on the non-existence of this behavior to
provide mutual exclusion.

Steps States of Shared Memory and Local Variables
Initially, no thread executes x=y=r1=r2=0

Thread 1 executes line “x=1;” x=1 ∧ y=r1=r2=0

Thread 2 executes line “y=1;” x=y=1 ∧ r1=r2=0

Thread 1 executes line “r1=y;” x=y=r1=1 ∧ r2=0

Thread 2 executes line “r2=x;” x=y=r1=r2=1

Figure 1.2: A possible interleaving of Thread 1 and Thread 2 in Figure 1.1 which yields the
result of r1=r2=1 under the SC memory model.

Given its simplicity, there exist many analyses, tools, concurrent data structures, and algo-

rithms that are designed based on the SC memory model. In fact, researchers have explored

approaches that just provide sequential consistency (Marino et al., 2011; Singh et al., 2012)

for memory accesses for the C/C++ programming language. However, these approaches may

require special hardware support to achieve competitive performance because mainstream
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hardware does not implement sequential consistency. We will illustrate this in Section 1.2.

1.2 Hardware Memory Models

While the SC memory model is intuitive, it is not implemented by mainstream processors

(e.g., x86, ARM6, Power7, and Itanium) for the sake of performance. Instead, these proces-

sors have relaxed memory models that are strictly weaker than the SC memory model and

generally allow different levels of reordering of memory accesses.

1.2.1 Relaxed Behaviors Exposed by Hardware

The x86 Multiprocessors

The x86 multiprocessors are designed to have a relatively strong hardware memory model,

which is formalized as the x86-TSO memory model (Owens et al., 2009; Sewell et al., 2010).

It disallows load-load, load-store, and store-store reordering, but allows store-load reordering,

i.e., allowing a later load to be reordered up across a previous store (in program order) to

a different memory location. Also, the x86-TSO memory model enforces that there exists

a total order for stores (to all memory locations) that is consistent across all the threads,

which is referred to as total store ordering (TSO).

We use Figure 1.1 as an example to show the relaxed behavior that x86 processors can

expose. Here, if we write the code snippet in Figure 1.1 in x86 assembly and run it on an

x86 processor, it is possible that we observe the result of r1=r2=0. In this non-SC execution,

6We use the term “ARM” to refer to both the older version of ARM — ARMv7, and the more recent
version of ARM — ARMv8, unless otherwise stated.

7We use the term “Power” in this dissertation to refer the multiprocessor family that includes various
IBM POWER and PowerPC implementations.
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both threads appear to perform store-load reordering and let both loads execute before the

previous stores and read the stale values. One notable hardware optimization called store

buffering can result in this execution. This optimization would add a store buffer unit that

is local to each thread8. Then a store would go to the store buffer unit rather than directly

to the main memory. To ensure per-location coherence, a load would first check whether the

store buffer contains a store to its location or not; if so, it can do a thread-local store-to-

load forwarding or otherwise would need to fetch the value from the shared memory (or a

higher-level cache). At some point of the execution, the stores in the store buffer would be

propagated to other cores. Hence, in this example, if both stores to variable x and y execute

and stay in each thread’s store buffer, and before they are propagated to the other thread,

both loads to the opposite variables may execute and only see the initial value of 0. This

example is also known as the store buffering example.

The ARM and Power Multiprocessors — More Relaxed Behavior

The ARM and Power architectures have similar (but not identical) relaxed memory mod-

els (Maranget et al., 2012; Sarkar et al., 2011, 2012; Flur et al., 2016; Pulte et al., 2018), which

are weaker than the x86-TSO memory model and can expose more relaxed behavior. First

of all, not surprisingly, similar to the x86-TSO memory model, the ARM and Power memory

models allow the store buffering behavior (i.e., the store-load reordering). In addition, in

the architectural design of ARM and Power multiprocessors, there exist other aspects/op-

timizations that can expose other types of reordering of memory accesses, e.g., aggressive

out-of-order execution such as speculative execution, more complicated store buffering opti-

mizations such as hierarchical store buffering, and complex memory subsystem, etc. Also, as

opposed to the total store ordering property in the x86-TSO memory model, the ARM and

8Here we picture a context where the store buffer unit is local to each thread, which is consistent with
the x86-TSO abstract machine. However, for processors other than x86, depending on the actual processor
design, the store buffer unit could be local to each thread, shared between threads on the same SMT core,
or some more complicated design, etc.
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Power memory models allow stores to different memory locations to propagate to different

threads in different orders (with caveats). We will show examples to illustrate the relaxed

behavior that the ARM and Power memory models allow in the following.

Message Passing — Store-Store & Load-Load Reordering Consider the message

passing example shown in Figure 1.3. Here, variables data and flag are two shared variables,

and variables r1 and r2 are registers, and they all have the initial value of 0. Thread 1 can

be viewed as a producer thread which updates the value of variable data and then updates

variable flag to 1 to indicate to Thread 2 that variable data is ready to be consumed.

Thread 2 can be viewed as a consumer thread, which continuously reads the flag variable

until it has a non-zero value; once Thread 2 observes that the value of variable flag becomes

non-zero, it starts to read variable data, which presumably should observe the value of 1 by

the design of this producer-consumer scheme. In real-world code, one can expect Thread 1

to be the thread that initializes the fields of a complex object (i.e., store “data=1”) and

then assigns the pointer to the initialized object to a variable (i.e., store “flag=1”), and

Thread 2 to be the thread that continuously checks if the pointer to that object is non-null

(i.e., “r1=flag”) and starts to read the fields of that object (i.e., “r2=data”) if the pointer

is non-null. Thus, the correctness of this code scheme essentially relies on the assumption

that when the load from variable flag reads non-zero values, the later load from variable

data must see the effect of the store “data=1”.

If we write this code directly in x86 assembly, we are guaranteed that we will only observe

the result of r1=r2=1 because the x86-TSO memory model does not allow store-store or

load-load reordering. However, for the same example, the ARM and Power memory models

allow the non-SC result of r1=1 ∧ r2=0 because they allow load-load reordering as well as

store-store reordering for different memory locations. For example, under the ARM and

Power memory models, stores in a thread may not propagate to other threads in program
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order. Thus in Thread 1, the store to variable flag may propagate to Thread 2 before the

store to variable data, as a result of which Thread 2 may see the update to variable flag but

miss the update to variable data. It appears to Thread 2 that the two stores in Thread 1

are reordered. In addition, the two loads in Thread 2 can also appear to be reordered even

if both stores are propagated to Thread 2 in program order. A possible scenario is that the

processor performs speculative reads. In Thread 2, before the earlier load from variable flag

returns value 1, the later load from variable data can speculatively execute and return a

stale value (i.e., value 0).

data = flag = r1 = r2 = 0; // Initially
Thread 1 Thread 2
data = 1; while (!(r1 = flag));

flag = 1; r2 = data;

Figure 1.3: The message passing example. With data=flag=r1=r2=0 initially, although the
execution of r1=1 ∧ r2=0 is not allowed by the x86-TSO memory model, it is allowed by the
ARM and Power memory models.

Load Buffering — Load-Store Reordering Another notable reordering that is archi-

tecturally allowed on ARM and Power is the load-store reordering. Consider the example

shown in Figure 1.4, which looks similar to the store buffering example except that both

threads perform a load first and a store to the opposite location second. The non-SC re-

sult of r1=r2=1 is architecturally allowed on ARM and Power9. Once again, similar to the

message passing example, x86 processors would disallow this execution as they do not allow

load-store reordering.

9According to Maranget et al. (2012), this result has been observed on ARM processors and has not been
observed on Power processors in practice, but it is architecturally allowed for both.
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x = y = r1 = r2 = 0; // Initially
Thread 1 Thread 2
r1 = x; r2 = y

y = 1; x = 1;

Figure 1.4: The load buffering example. With x=y=r1=r2=0 initially, although the execution
of r1=r2=1 is not allowed by the x86-TSO memory model, it is architecturally allowed for
ARM and Power.

1.2.2 Constraining Relaxed Behavior with Memory Fences and

Dependencies

Although mainstream hardware can expose relaxed behaviors to users, they usually offer

options to constrain relaxed behavior by enforcing stronger ordering guarantees. One impor-

tant mechanism is to provide explicit machine instructions called memory fences (or memory

barriers), or fences. The core idea is that given a specific fence instruction, certain types

of memory operations that are before the fence (in program order) must become globally

visible10 before certain types of memory operations that are after the fence (in program or-

der). For example, the mfence instruction in the x86 architecture requires that all memory

operations before it (in program order) must be globally visible before any memory oper-

ations after it (in program order)11. Figure 1.5 shows a concrete example in which we use

the mfence instruction to forbid the execution of r1=r2=0 in the store buffering example, by

adding an mfence instruction between each store-load pair in both threads.

x = y = r1 = r2 = 0; // Initially
Thread 1 Thread 2
x = 1; y = 1;

mfence; mfence;

r1 = y; r2 = x;

Figure 1.5: With x=y=r1=r2=0 initially, r1=r2=0 is not allowed by the x86-TSO memory
model because we insert an mfence instruction between every store-load pair in both threads.

10A load operation is considered to be globally visible when the value to be loaded into the destination
register is determined.

11In the abstract machine of the x86-TSO memory model, the mfence instruction will flush the store buffer
of that thread and propagate the stores to other threads.
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Similarly, in the ARM and Power memory models, there exist similar fence instructions.

The notable difference is that since the ARM and Power processors generally allow more

reordering of memory accesses than the x86 architecture does, they provide more flexible

fence variants. For example, the ARM architecture provides the full fence named “dmb sy”

(or “dmb” for short), which is effectively similar to mfence in the x86 architecture (Maranget

et al., 2012; Pulte et al., 2018); also, it provides weaker variants, such as the “dmb ld” in-

struction which only waits for loads (before the fence in program order) to complete, or the

“dmb st” instruction which only waits for stores (before the fence in program order) to com-

plete (ARM, 2016). Similarly, the Power architecture also provides different variants of fence

instructions such as the sync instruction (also known as the heavyweight sync) which en-

forces store-store, store-load, load-load, and load-store ordering, and the lwsync instruction

(also known as the lightweight sync) which is cheaper to execute than the sync instruc-

tion and enforces similar ordering constraints except store-load ordering (Sarkar et al., 2011;

Maranget et al., 2012). For example, if we replace the mfence instructions in Figure 1.5 with

either dmb or sync instructions in ARM or Power assembly, respectively, they can prohibit

the execution of r1=r2=0, similar to using mfence instructions in x86 processors; however,

fences like “dmb ld”, “dmb st”, or lwsync are not sufficient to prohibit the relaxed behavior

in this case. In addition, the ARMv8 architecture introduces fence-like load/store instruc-

tions to enforce ordering constraints, which we will discuss in more details in Chapter 5.

In addition to fences, certain dependencies between hardware instructions can also constrain

the reordering of memory operations. For example, Figure 1.6 shows a variant of the load

buffering example, with the key difference that there exists a control dependency from the

earlier load to the later store in both threads. Loosely speaking, under the ARM and

Power memory models, when the result of a load is used to compute the condition of a

conditional branch, and a store is after the conditional branch in program order, then the

load forms a control dependency towards the store, which requires the load-store ordering

to be respected (Sarkar et al., 2011; Maranget et al., 2012; Pulte et al., 2018). Hence, in
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this case, the result of r1=r2=1 is disallowed. There also exist other types of dependencies.

For example, a data dependency roughly captures the dependency from the storing value

of a store to the store itself, and an address dependency captures the dependency from the

address of a load/store to the load/store itself. While dependencies can exist naturally in

the source code as shown in Figure 1.6, one can also intentionally add dependencies to the

assembly code for stronger ordering guarantees. For example, we can write the code shown in

Figure 1.7 directly in ARM or Power assembly, in which the branch conditions are translated

exactly as in “r1==r1” and “r2==r2”. Then these intentionally added control dependencies

can effectively forbid the load-store reordering in both threads and thus the result of r1=r2=1

is disallowed.

x = y = r1 = r2 = 0; // Initially
Thread 1 Thread 2
r1 = x; r2 = y

if (r1) { if (r2) {
y = 1; x = 1;

} }

Figure 1.6: A variant of the load buffering example. With x=y=r1=r2=0 initially, r1=r2=1
is not allowed by the ARM or Power memory models because in both threads there exists a
control dependency from the earlier load to the later store.

x = y = r1 = r2 = 0; // Initially
Thread 1 Thread 2
r1 = x; r2 = y

if (r1==r1) { if (r2==r2) {
y = 1; x = 1;

} }

Figure 1.7: The load buffering example with intentionally added control dependencies. Here,
one should expect that this is ARM or Power assembly code with the branch conditions
translated exactly as in “r1==r1” and “r2==r2”. With x=y=r1=r2=0 initially, r1=r2=1 is
not allowed by the ARM or Power memory models similar to Figure 1.6.

Note that hardware fences (depending on the actual type of fences) may incur significant

runtime overhead, so developers generally use them only when a specific ordering constraint

is necessary to guarantee the correctness of a multi-threaded program. For example, if we
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want to implement the Dekker’s mutual exclusion algorithm correctly on x86 processors, we

must insert the mfence instruction appropriately similar to Figure 1.5.

It is important to note that the discussion about the x86-TSO, ARM, and Power memory

models in this section is far from complete, but it should be sufficient for the purpose of

illustration in the scope of this dissertation. Notably, the ARM and Power memory models

would allow more relaxed behaviors such as allowing a store to be propagated to other

threads at different time, etc., but mainstream hardware does enforce cache coherence — a

per-location total order. Indeed, researchers have invested tremendous efforts in clarifying

and formalizing hardware memory models vigorously. Notably, Owens et al. (2009); Sewell

et al. (2010) formalize the x86-TSO memory model; Sarkar et al. (2011) formalize the Power

memory model; Maranget et al. (2012) clarify the Power and ARMv7 memory model; and

Flur et al. (2016); Pulte et al. (2018) formalize the ARMv8 memory model.

1.3 Compiler Optimizations

There exists yet another important aspect that attributes to exposing relaxed behaviors.

Given a multi-threaded program written in a high-level programming language such as

C/C++ or Java, etc., and suppose we have a specialized multiprocessor that only admits SC

executions, we could still be subject to relaxed behaviors, due to the existence of compiler

optimizations. Modern compilers have introduced many optimizations that help increase the

performance of programs written in high-level programming languages, and there is a gen-

eral rule behind these optimizations, usually referred to as the “as-if ” rule, which roughly

means that a compiler can transform a program as long as they do not change the observable

behavior of the program. This, however, can expose relaxed behaviors in a multi-threaded

environment.
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Consider the example shown in Figure 1.8, which is a variant of the program shown in Fig-

ure 1.1. The difference is that this program is written in a high-level programming language

such as C/C++, and that Thread 1 has one more load statement “r0=y” in the beginning.

An optimizing compiler can transform this code such that the transformed program would

exhibit the execution in which r1=r2=0 even if it is run on an SC multiprocessor. The likely

transformation done by the compiler follows: in Thread 1, the compiler realizes that the

two loads from variable y are separated by a store that is to a different shared variable x

(by points-to analysis the compiler can figure out that variable x and y point to different

memory locations), and thus in a single-threaded environment, the second load from variable

y is redundant (since the store “x=1” cannot change the value of variable y). Hence, instead

of issuing two loads, the compiler can replace the second load simply with the result of the

first one. Then the execution in which r1=r2=0 can be produced by the following interleav-

ing: (1) Thread 1 loads from variable y and r0 obtains value 0; (2) Thread 2 writes value

1 to variable y; (3) Thread 2 reads from variable x and r2 obtains value 0; (4) Thread 1

writes value 1 to variable x; and (5) variable r1 reuses the result of variable r0 (instead

of reloading from variable y), which also obtains value 0. This transformation also appears

that the second load “r1=y” is reordered up across the store “x=1” and executes early. Note

that there also exist other compiler optimizations that may appear to perform other types

of reordering (Marino et al., 2011) .

1.4 Programming Language Memory Models

Given the fact that different multiprocessors and compilers can expose different levels of

relaxed behaviors, it would be exceedingly difficult to write high-performance and portable

multi-threaded programs. Moreover, Boehm (2005) argues that “threads cannot be imple-

mented as a library”, with the idea that a multi-threaded program may not be compiled

14



x = y = r1 = r2 = 0; // Initially
Thread 1 Thread 2
r0 = y;

x = 1; y = 1;

r1 = y; // Redundant load r2 = x;ww�Transformed
Thread 1 Thread 2
r0 = y; // Reads 0

x = 1; y = 1;

r1 = r0; // Reuse earlier load r2 = x;

Figure 1.8: Given this program written in a high-level programming language such as
C/C++, with x=y=r0=r1=r2=0 initially, an optimizing compiler can transform the code
such that the execution r1=r2=0 is allowed even if the transformed program is run on a
multiprocessor that only admits SC behaviors.

correctly (i.e., matching the users’ intention) if a programming language is designed and

implemented independently of threading issues. As a result, programming language design-

ers and researchers have invested significant amount of effort in designing memory models

at the programming language level. These programming language memory models serve as

contracts between language users and language implementers and provide a layer of abstrac-

tion that is independent of specific compilers and hardware. In other words, if a developer

writes a multi-threaded program based on a programming language memory model and uses

a compiler that supports the memory model to compile the program (to a given ISA), the

generated program should only exhibit behaviors allowed by the memory model.

To begin with, most programming languages provide sequential consistency for programs

without data races (Adve and Hill, 1990; Gharachorloo et al., 1992) by default, usually re-

ferred to as the SC-DRF (sequential consistency for data-race-free programs) model. A data

race in this context generally means “concurrently happening” memory accesses to the same

memory location such that at least one of these memory accesses is a write. These program-

ming languages provide specific concurrency primitives such as atomic read/write and mutex

(e.g., lock/unlock) operations to protect the accesses to shared variables and guarantee se-

15



quential consistency if the program is free from data races. This is a nice property for many

usage scenarios, i.e., programming with (default) concurrency primitives to ensure data race

freedom; unfortunately, however, a single data race could break this guarantee. This leaves

the following questions to the designers of programming language memory models: what se-

mantics should we assign to programs with data races and to programs that require low-level

support for atomic operations (e.g., in the C/C++ context). We will discuss the Java and

C/C++ memory models to explore how these issues are addressed in different contexts in

Section 1.4.1 and Section 1.4.2.

1.4.1 The Java Memory Model

The Java memory model (Manson et al., 2005; Shipilëv, 2016a,b) differentiates synchroniza-

tion memory accesses from ordinary memory accesses by separating memory locations into

two distinct parts: the volatile memory locations (variables declared with the volatile

keyword) and ordinary (non-volatile) memory locations (any other non-volatile variables).

Reads/writes to volatile locations are atomic accesses that are totally ordered (across dif-

ferent volatile locations) and can be used to establish synchronization between threads.

In addition, conflicting volatile accesses are not considered data races in Java and thus

can “happen concurrently” without voiding the sequential consistency guarantee.

However, when it comes to data races, the Java memory model becomes subtle. Java is

designed to be a safe language, which means that it needs to provide at least some semantics

even for incorrect (or untrusted) code, which includes code with data races. Precisely provid-

ing such semantics is extremely challenging because it should allow current (and potentially

future) optimizations used in compilers and hardware while it should disallow those espe-

cially undesired relaxed behaviors. It is very important to note that though many efforts

have been invested, the Java memory model is still not satisfactory, especially because it
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disallows some common optimizations that JVMs actually perform, such as redundant read

elimination (Cenciarelli et al., 2007; Ševč́ık and Aspinall, 2008).

1.4.2 The C/C++ Memory Model

Unlike Java, C/C++ is not a safe language and does not have the need to provide a safety

guarantee for untrusted code. Hence, the C/C++ memory model (Boehm and Adve, 2008;

JTC, 2011; Becker, 2011; Batty et al., 2011; Batty, 2014) designers have decided that C/C++

programs with data races would have undefined behaviors, which means it is the developers’

responsibility to ensure that their program is free of data races. However, as an important

programming language for many performance-critical systems, C/C++ does have the need

to support low-level concurrency primitives used in scenarios such as lock-free algorithms.

Similar to Java, to differentiate atomic memory accesses from ordinary memory accesses,

C/C++ let users specify atomic objects and use atomic read, write, or read-modify-write

operations to atomically read/write these objects. Also, operations on atomic objects are

not considered data races. However, unlike the fact that Java only has volatile accesses,

C/C++ atomic operations provide more flexibility for developers to make tradeoffs between

the ordering guarantees provided and the overhead incurred, and they can have one of the

six memory orders, each of which falls into one or more of the following categories:

seq-cst: memory_order_seq_cst – strongest memory ordering, there exists a total order of

all operations with this memory ordering. Loads that are seq cst either read from the

last store in the seq cst order or from some store that is not part of seq cst total order.

Note that seq cst accesses essentially behave as volatile accesses does in Java.

release: memory_order_release, memory_order_acq_rel, and memory_order_seq_cst –

a store-release may form release/consume or release/acquire synchronization. When a

load-acquire reads from a store-release, it establishes a happens-before relation between
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the store and the load.

acquire: memory_order_acquire, memory_order_acq_rel, and memory_order_seq_cst –

a load-acquire may form release/acquire synchronization.

consume: memory_order_consume – a load-consume may form release/consume synchro-

nization, which is only carried across to memory accesses that have dependencies on

the load-consume (with caveats). It is important to note that researchers or practi-

tioners have not found a clean and efficient way to implement load-consume yet, and

that mainstream compilers (including the latest version of GCC and Clang/LLVM

compilers) usually treat them as the relatively stronger load-acquire.

relaxed: memory order relaxed – weakest memory ordering. The main design goal of re-

laxed atomics is that one can exactly translate them into a plain load/store instruction

in machine code without adding extra synchronization constraints. Hence, the only

constraint for relaxed atomics is a per-location modification order total ordering (also

known as cache coherence) that is equivalent to the per-location coherence property

in hardware memory models. Therefore, relaxed atomics cannot be used to implement

synchronization, and the effects of compiler optimizations can in some cases be visi-

ble to relaxed atomics. Thus in some sense relaxed atomics have qualitatively similar

behaviors to ordinary memory accesses in Java.

The C/C++ memory model then expresses program behavior in the form of binary relations

or orderings. We briefly summarize the relations:

• Sequenced-Before: The evaluation order within a program establishes an intra-

thread sequenced-before (sb) relation—a strict preorder of the atomic operations over

the execution of a single thread.
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• Reads-From: The reads-from (rf ) relation consists of store-load pairs (X, Y ) such

that Y takes its value from X—or X
rf−→ Y . In the C/C++ memory model, this relation

is non-trivial, as a given load operation may read from one of many potential stores in

the execution.

• Synchronizes-With: The synchronizes-with (sw) relation captures the synchroniza-

tion that occurs when certain atomic operations interact across threads.

• Happens-Before: In the absence of memory operations with the consume mem-

ory ordering, the happens-before relation is the transitive closure of the union of the

sequenced-before and the synchronizes-with relations. Note that a data race is precisely

defined as two memory accesses such that they are not ordered by the happens-before

relationship and at least one of them is a non-atomic write.

• Sequentially Consistent: All operations that declare the memory_order_seq_cst

memory order have a total ordering (sc) in the program execution.

• Modification Order: Each atomic object in a program has an associated modification

order (mo)—a total order of all stores to that object—which informally represents an

ordering in which those stores may be observed by the rest of the program.

Program executions directly observe the reads-from relation by observing the values that

loads return. The synchronizes-with, happens-before, sequentially consistent, and modifica-

tion order orderings constrain the reads-from relation and are only indirectly observable by

the effect that they have on the reads-from relation. We show and discuss a few concrete

examples written under the C++ memory model in the following.

Using the Strongest Ordering Parameter seq cst Figure 1.9 shows a C++ version

of the store buffering example shown in 1.1. Here, both variables x and y are declared as the

atomic int type rather than the normal int type, and all loads/stores are associated with
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the seq cst ordering parameters. We use Figure 1.10 to show why the non-SC execution

of r1=r2=0 is not allowed in this example. This graph shows the sc (i.e., the total order

for seq cst operations) and rf (i.e., reads-from) edges of the execution of r1=0 ∧ r2=1; the

nodes represent memory operations, and the green edges represent the sc edges, and the red

edges represent the actual rf edges. The prefix Init in the nodes indicates the nodes are

from the initialization thread (before Thread 1 and Thread 2), and the prefix T1 indicates

a node is from Thread 1, and the prefix T2 indicates a node is from Thread 2. Since the

seq cst memory operations form a total order, and loads must read from the latest store

in that sc order, the load “r2=x.load()” in Thread 2 cannot read from the initial value.

Similar reasoning applies to other possible sc total orders of the memory operations in this

example, and hence the non-SC execution of r1=r2=0 is disallowed.

atomic int x, y;
Thread 1 Thread 2
x.store(1, seq cst); y.store(1, seq cst);

int r1 = y.load(seq cst); int r2 = x.load(seq cst);

Figure 1.9: With x and y declared as atomic variables and all memory accesses to them
associated with the seq cst memory order parameter, this C++ program will only admit
SC executions, i.e., r1=r2=0 is not allowed.

Using the release & acquire Ordering Parameters for Synchronization Fig-

ure 1.11 shows a C++ version of the message passing example, in which variable data

is a non-atomic variable and variable flag is an atomic variable, and the store to and load

from the variable flag use the release and acquire ordering parameters, respectively. Fig-

ure 1.12 depicts the execution graph with sb (sequenced-before), sw (synchronizes-with), hb

(happens-before) and rf edges for this example. As we can see, whenever the load-acquire

from variable flag reads value 1 from the store-release to variable flag, they establish a

synchronizes-with edge. Together with the sequenced-before edges in both threads, ordinary

store “data=1” happens before ordinary load “r2=data”, which ensures that there does not

exist a data race for the load/store on variable data and that load “r2=data” must see
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Init: x.init(0)

Init: y.init(0)

sc

T1: x.store(1)

sc

T1: r1=y.load()

rf

sc

T2: r2=x.load()

rf

T2: y.store(1)

sc sc

Figure 1.10: The execution graph for the example shown in Figure 1.9. The total order sc
forbids the execution of both loads reading the initial stores.

the side effect of store “data=1”. Note that if we replace the release or acquire ordering

parameters with the relaxed ordering parameter, there would be data races in the program

and the program would have undefined semantics according to the C++ memory model.

int data = 0;
atomic int flag;
Thread 1 Thread 2
data = 1; while (!(r1 = flag.load(acquire)));

flag.store(1, release); int r2 = data;

Figure 1.11: With data declared as an non-atomic variable, flag declared as an atomic
variable, data=flag=0 initially, the release store and acquire load together establish a
synchronizes-with edge and thus ensure that the ordinary store data=1 happens-before the
ordinary load r2=data, and thus this code is data-race-free and the execution of r1=1 ∧
r2=0 is not allowed.

Using the Weakest Ordering Parameter relaxed Figure 1.13 shows a C++ version

of the load buffering example, in which all shared variables are declared as atomic int
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Init: data=0

Init: flag.init(0)

sb

T1: data=1

hb

T1: flag.store(1)

sb

T2: r2=data

rf/hb

T2: r1=flag.load()

rf/sw sb

Figure 1.12: The execution graph for the example shown in Figure 1.11. The sw edge
establishes happens-before relationship between the store/load on variable data.

and all memory operations use the relaxed ordering parameter. This program does not

have a data race since all memory accesses are atomic operations; however, since relaxed

atomics themselves do not establish synchronization, the execution of r1=r2=1 is allowed.

We show its execution graph in Figure 1.14, in which there exists a cycle in the union of

sequenced-before and reads-from edges. As discussed above, relaxed atomics are designed

to be subject to compiler and processor optimizations, and the example here shows that with

relaxed atomics, the C/C++ memory model allows the load-buffering behavior.

atomic int x, y;
Thread 1 Thread 2
int r1 = x.load(relaxed); int r2 = y.load(relaxed);

y.store(1, relaxed); x.store(1, relaxed);

Figure 1.13: With x and y declared as atomic variables and all memory accesses to them
associated with the relaxed memory order parameter, the C++ memory model allows the
behavior of r1=r2=1.
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Init: x.init(0)

Init: y.init(0)

sb

T1: r1=x.load()

hb

T1: y.store(1)

sb

T2: r2=y.load()

rf

T2: x.store(1)

sbrf

Figure 1.14: The execution graph for the example shown in Figure 1.13. The loads and stores
with the relaxed ordering parameter do not establish synchronization, and the C/C++
memory model allows cycles in the union of the sb and rf relation.
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Chapter 2

Overview of the OOTA Problem

Although the Java and C/C++ memory models have different design requirements and fo-

cuses, there exists a very important commonality: both Java’s non-volatile memory accesses

and C/C++’s relaxed atomics are designed to be subject to existing compiler and hardware

optimizations. In both contexts, there still exists an outstanding open problem — elimi-

nating out-of-thin-air (or OOTA) results. Indeed, neither the Java nor C/C++ memory

models have a satisfactory solution to this challenging problem, even though the C/C++

memory model is generally thought to be the state-of-the-art design of programming lan-

guage memory models. A significant amount of the complexity of the Java memory model

comes from eliminating OOTA results, yet so far it yields a memory model that forbids some

common compiler optimizations, and solving this problem remains exceedingly challenging.

The C/C++ memory model on the other hand takes a “hand-wavy” solution, which does not

clearly and satisfactorily define OOTA results and only vaguely states that implementations

should not produce out-of-thin-air results.

In this dissertation, we focus on studying the runtime costs of two approaches that require

strengthening existing memory models to eliminating out-of-thin-air behaviors, hoping that
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our effort will help programming language memory model designers better understand the

potential runtime costs of these solutions, which we believe are promising approaches that are

worth further study and consideration. In this chapter, we will discuss the OOTA problem,

its undesired consequences, and potential solutions in more details.

2.1 The Problem

A key challenge in programming language memory models is prohibiting out-of-thin-air be-

haviors or satisfaction cycles. This problem is well known (Batty et al., 2013; Pichon-

Pharabod and Sewell, 2016; Manson et al., 2005; Batty et al., 2015a) and has been described

in detail (Boehm and Demsky, 2014). Figure 2.1 presents an execution that real processors

produce. As discussed in Section 1.2.1, a processor might reorder the store “x=42” up across

the load “r2=y” in Thread 2, Thread 1 can then read the value 42 from x and store it in y,

and finally Thread 2 can load 42 from y. If we write this code with C/C++ atomics and

assign the relaxed ordering parameter to all loads and stores, the C/C++ memory model

also allows this execution (i.e., r1=r2=42).

Thread 1 Thread 2
r1 = x; r2 = y;

y = r1; x = 42;

Figure 2.1: “Real Example”. With x=y=0 initially, can r1=r2=42?

Figure 2.2 presents an out-of-thin-air example with the same reads-from relationship between

loads and stores as the previous example, as shown in Figure 2.3. If both loads read from

the subsequent stores, and all the loads/stores have the relaxed ordering parameter, the C

and C++ memory model formalism admits the execution in which r1=r2=42 (or any other

value), conjuring the value of 42 “out of thin air”. Notably, with only the execution graph

shown in Figure 2.3, we are not able to distinguish the two examples by the C/C++ memory

model. The key difference between these two examples is that in the problematic example,
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the stores depend on the previous loads.

Thread 1 Thread 2
r1 = x; r2 = y;

y = r1; x = r2;

Figure 2.2: Canonical Out-of-Thin-Air Example. With x=y=0 initially, can r1=r2=42?

T1: r1=x.load()

T1: y.store(42)

sb

T2: r2=y.load()

rf

T2: x.store(42)

sbrf

Figure 2.3: The execution graph for both executions in Figure 2.1 and Figure 2.2. Though
the two examples are different, both executions are allowed by the C/C++ memory model
formalism, and we cannot differentiate one from another by the sequenced-before and reads-
from relationship.

Note that if we directly write these examples in assembly, no processor will produce the

problematic results in Figure 2.2. Processors preserve a notion of dependency — a processor

core will not make a speculative store visible to other cores. Compilers in general do not

preserve dependencies — compiler optimizations can easily optimize away dependencies (e.g.,

an if statement in which both branches store the same value to the same variable). Compiler

optimizations conspire with relaxed hardware implementations to create the problem.

Although there is agreement that Figure 2.2 represents OOTA behavior and should be prohib-

ited, the precise definition of OOTA behavior is disputed. Consider the example (from Boehm

and Demsky (2014)) shown in Figure 2.4. An optimizing compiler may discover that the

load r1=x in Thread 1 will always return the value of 42 no matter whether the conditional

branch is taken or not. Hence it can replace the store y=r1 with y=421, and then through

1This optimization is implemented for non-atomic memory accesses in both the GCC and Clang/LLVM
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the same reads-from relationship between loads and stores as Figure 2.2, the execution in

which r1=r2=42 is allowed. While some researchers argue that this is OOTA behavior and

should be disallowed, other researchers may argue that this is legitimate behavior because

the value of 42 in this example arises from the untaken branch.

Thread 1 Thread 2
r3 = x; r2 = y;

if (r3 != 42) x = r2;

x = 42;

r1 = x;

y = r1;

Figure 2.4: With x=y=0 initially, can r1=r2=42? While there seems to be general consensus
that the execution shown in Figure 2.1 is not OOTA behavior and that the execution shown
in Figure 2.2 is OOTA behavior, researchers may not agree whether the execution in this
example is OOTA behavior.

2.2 Consequences

Historically, Java was the first general-purpose shared-memory programming language that

attempts to assign semantics to concurrent code, with the two major design goals: (1)

allowing existing compiler and processor optimizations and (2) providing sufficiently strong

guarantees for concurrent code to function correctly. However, the original Java language

specification (Gosling et al., 1996) was shown by Pugh (1999) to fail to achieve either goal.

It was both too strong to admit common compiler optimizations and too weak to support

some commonly used programming idioms. Various proposals for fixing the original model

were found to either prohibit optimizations or allow undesired behaviors (Maessen et al.,

2000; Manson and Pugh, 2001; Adve, 2004; Saraswat, 2004). Later, Manson et al. (2005)

proposed a new Java memory model, which provides safety guarantees including disallowing

out-of-thin-air executions. This is a major design requirement for a safe language like Java,

compilers. Although both compiler frameworks do not optimize this case for relaxed atomics at this point,
it is a legitimate optimization (by the C/C++ memory model) which they may adopt in the future.
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and one of the reasons is that out-of-thin-air values on references (e.g., suppose r1 and r2

are object references in Figure 2.2) would allow the program to do anything. Yet, again, this

has been shown to unsound with respect to some common compiler optimizations that are

actually performed by Java compilers (Ševč́ık and Aspinall, 2008; Cenciarelli et al., 2007),

and this problem remains unresolved.

The C/C++11 memory model on the other hand has been shown to be sound with respect to

existing compiler optimizations (Morisset et al., 2013), but unfortunately the memory model

formalism allows out-of-thin-air executions, and the issue is also unresolved. As previously

noted (Boehm and Demsky, 2014; Batty et al., 2013; Vafeiadis et al., 2015; Vafeiadis and

Narayan, 2013), allowing out-of-thin-air results is disastrous. Serious issues of allowing

OOTA results include:

1. OOTA Results Break Formal Modular Reasoning: As noted by Batty et al.

(2013), OOTA executions can break certain types of compositional reasoning about

programs. In particular, even if the guarantees provided by each component satisfy

the assumptions of all other components, OOTA results allow executions in which two

components mutually violate their own guarantees and thus violate the assumptions

of the other component (circularly justifying their violation of their guarantees).

In languages that allow OOTA results, compositionality requires proving that each

component in a composition is non-interfering (i.e., that it does not write to the memory

locations of other components). Indeed, some analyses and tools that are based on the

C/C++ memory model either simply assume the non-existence of OOTA behavior

or require a stronger version of the C/C++ memory model that prohibits OOTA

behavior (Norris and Demsky, 2013; Ou and Demsky, 2015; Meshman et al., 2015;

Kokologiannakis et al., 2017).

2. OOTA Results Break Informal Modular Reasoning: While developers rarely
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formally prove their software correct, OOTA results can even break informal reasoning

about programs. Indeed, for many programs it may be necessary to avoid including

accesses to relaxed atomics in the code base. For example, simply exposing an interface

to relaxed stores to a virtual machine interpreter is likely sufficient to allow OOTA

results that can produce arbitrary executions.

3. OOTA Results Can Affect Race-Free Computations: OOTA results can induce

race-free computations to produce surprising results. The following example is courtesy

of Sarita Adve:

Thread 1 Thread 2

if (x) y=1; if (y) x=1;

Even with x=y=0 initially, OOTA results allow this computation to set both x and y

to 1.

Figure 2.5 shows a concrete example borrowed from Boehm and Demsky (2014) that helps

illustrate the severity of allowing OOTA behaviors. In this example, Foo is a struct with an

atomic pointer pointing to the next Foo object, and variable a and b are two shared pointers

pointing to two disjoint lists of Foo objects. If we allow OOTA behavior, the execution in

which r1=b ∧ r2=a would be allowed. The reason is that Thread 1 can assume the load

from a->next returns value b, and then updates b->next with value a, and thus Thread 2

loads value a from b->next, and finally updates a->next with value b, which satisfies the

assumption in the first step. This as a result links the two lists a and b, which presumably

should be disjoint. It is clear that allowing such behavior is unacceptable as it breaks the

reasoning of almost any code.
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struct Foo {
atomic<Foo*> next;

};
Foo *a, *b;

Thread 1 Thread 2
Foo* r1 = a->next.load(relaxed); Foo* r2 = b->next.load(relaxed);

r1->next.store(a, relaxed); r2->next.store(b, relaxed);

Figure 2.5: The ghostly linking of disjoint lists because of allowing OOTA behavior.

2.3 Potential Solutions

Researchers have proposed several different basic approaches to solving the out-of-thin-air

problem. We next discuss the different basic approaches. These approaches fall into two

primary categories. The first category attempts to eliminate the problem by changing the

memory model specification without significant changes to the compiler and the second

category attempts to eliminate the problem by providing stronger guarantees.

2.3.1 Approaches that Primarily Affect the Language Specifica-

tion

Precisely Specifying the Effects of Existing Optimizations: Forbidding OOTA be-

haviors by precisely specifying the effects of existing optimizations is one potential solution.

This approach is tempting as it incurs no runtime overheads and requires no modifications

to either compilers or processors. Researchers have proposed event-structures-based memory

models (Jeffrey and Riely, 2016; Pichon-Pharabod and Sewell, 2016) that were later shown

not to be compiled to ARM without additional fences in some cases (Kang et al., 2017).

Attempts at forbidding OOTA executions by precisely specifying the effects of optimizations

have to date yielded complicated memory models. Indeed, Batty et al. (2015b) show that

there is no per-candidate-execution solution to the problem. For example, Kang et al. (2017)

30



propose a memory model based on a semantics that claims to resolve the OOTA problem,

and the proof of its compilation correctness has been shown by Podkopaev et al. (2017).

While this approach can potentially solve the OOTA problem, a less complex but slightly

stronger memory model may still be desirable if the overhead is acceptably small.

The Java Memory Model also attempted this approach (Manson et al., 2005), but the ap-

proach has since shown to be unsound with respect to standard compiler optimizations (Ševč́ık

and Aspinall, 2008; Cenciarelli et al., 2007). Moreover, the Java memory model is extremely

complicated for both compiler developers and application developers to understand. It is also

complicated to use the constraints placed on OOTA executions by the Java memory model

to prove correctness properties for concurrent programs. Indeed, Botinčan et al. (2010) have

shown that for the Java memory model, the problem of verifying causality requirements for

a finite execution of an arbitrary multi-threaded program is undecidable.

Case-Based Approaches: Another approach is to constrain the usage of atomics to spe-

cific cases and then provide simple semantics for those cases. The most well known example

of this approach is the classic “data race freedom implies sequential consistency” memory

model used by most multi-threaded programming languages (Adve and Hill, 1990). In this

model, if there is no sequentially consistent execution with a data race, then the system

guarantees that all executions are sequentially consistent. Other work enumerates common

use cases for relaxed atomics and provides semantics for those use cases (Sinclair et al., 2017).

There are two basic challenges with this approach: (1) memory model developers must

ensure that the cases handled cover the important usage scenarios and (2) bugs can produce

behaviors that fall outside the well defined cases and then the memory model may provide

little or no guarantees as to the program’s behaviors.
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2.3.2 Approaches that Provide Stronger Guarantees

Approach 1: Forbid Load-Store Reordering: A conceptually simple approach to for-

bidding OOTA executions is to forbid load-store reordering (Boehm and Demsky, 2014; La-

hav et al., 2017). Precisely, the memory model requires that sequence-before∪reads-from

is acyclic. This greatly simplifies the memory model for both compiler and application de-

velopers, but can potentially incur significant runtime costs.

Implementing this approach requires changes to compiler optimizations and the potential

generation of a fence-like operation. The cost of this approach depends on both the details

of the memory model and the hardware architecture. While x86 processors already provide

this behavior without requiring fences, architectures like ARM or PowerPC may incur higher

overheads. We believe that this approach is likely to be acceptable for memory models like

C/C++11 as it only affects relaxed loads and stores2. However, this approach affects all

loads and stores in Java programs, and thus is likely to be less acceptable in the context of

Java.

Approach 2: Preserve Dependencies: Earlier work suggested but did not implement

one potential approach to forbidding OOTA executions — require the compiler to preserve

a simple, syntactic notion of dependency (Boehm and Demsky, 2014). Effectively, this ap-

proach provides a syntactic definition for a dependency relationship and then requires that

dependency∪ reads-from is acyclic. This is a strictly weaker guarantee than the previous

approach. It is worth noting that the Linux kernel memory model does not have out-of-thin-

air values because it essentially respects syntactic dependencies as hardware does (Alglave

et al., 2018). McKenney et al. (2016) have proposed an approach based on preserving se-

mantic dependencies rather than syntactic dependencies. For example, they allow reducing

2Under C/C++11, non-atomic loads and stores cannot race, or the program has no semantics. Thus,
reordering cannot be observed.
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an expression with syntactic dependency to a constant if it is known to always result in that

constant value (e.g., reducing “r1=x*0” to “r1=0”). This trades off the simplicity of the

memory model specification for the degree of compiler optimizations that are allowed. In

this dissertation, we explore an approach of preserving syntactic dependencies.

While this approach does not require the addition of any extra fence instructions, it does

constrain the optimizations performed by the compiler. The primary concern with this

approach is that the overheads were previously unknown and feared to be high.

2.4 Contributions

This dissertation makes the following contributions:

• A dependency-based approach to forbidding OOTA: It presents a dependency-

preserving approach to forbid out-of-thin-air executions.

• An approach to preserving load-store ordering to forbid OOTA: It presents

an approach to preserving load-store ordering to extend C/C++-like language memory

models to forbid out-of-thin-air executions.

• Implementations of both approaches in the LLVM compiler: It presents im-

plementations of both approaches to forbidding OOTA in the LLVM compiler.

• Evaluation: It evaluates the overhead of both approaches on an ARMv8 processor.

It shows that the average overhead of preserving dependencies relative to compiling

with full optimizations (-O3) is 3.1% on the SPEC CPU benchmarks for a prototype

implementation that is likely amenable to further optimizations. It shows that under

our experimental setting preserving load-store ordering has no overhead on average

and worst-case overhead of 6.3% on concurrent data structure benchmarks.
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Chapter 3

Memory Model Extensions that

Disallow OOTA Behaviors

In this chapter, we first discuss a dependency-preserving memory model that disallows out-of-

thin-air behaviors by defining a notion of dependency and preserving it. While it is desirable

that we formalize this memory model in the context of an existing programming language,

e.g., C/C++ or Java, both the C/C++ and Java languages are complex and the formalization

would exceed the scope of this dissertation. Therefore, we introduce a simple language that

captures the core features of an imperative programming language in Section 3.1. Then, we

define the notion of dependency based on this language and describe how we preserve such

dependencies in Section 3.2. Last, we discuss a load-store-order-preserving memory model

that prevents out-of-thin-air behaviors in Section 3.3.
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3.1 The Language

Figure 3.1 presents the core syntax of our language1. To simplify the illustration, we only

support one value type — numerals. When we read from or write to a global variable/memory

location, we explicitly use the load or store keywords to distinguish them from assignments

to local variables. Our language is based on the static single assignment (SSA) form (Rosen

et al., 1988), where we can have phi functions (φ) at the end of an if/else block or in the

beginning of a while loop’s header. The syntax starts with Program, which has an optional

declaration of global variables followed by a list of function definitions. Figure 3.2 shows

an example code snippet written in our language. In this example, we declare three global

variables x, y, and z and perform load/store from/to these global locations in line 3, 6 and

10, respectively. Line 9 is the φ function for the if/else conditional branch, meaning that

if the condition “r2==0” is true, local variable r5 will be assigned with r3; otherwise, it will

be assigned with r4.

3.2 Language-Level Dependency Notion

While there is general agreement about extreme examples that conjure new values and exhibit

out-of-thin-air behavior (e.g., the example shown in Figure 2.2), there is no consensus on

the exact definition of an out-of-thin-air execution. In this dissertation, we broadly define

an out-of-thin-air execution to be any execution in which the behavior of an operation is

circularly involved in causally justifying its own behavior. To prohibit such executions, we

define a conservative syntax-based notion of dependency that maps loads in a thread to all

stores in the thread whose behavior the loads may affect. We also provide a proof sketch of a

theorem about the causality of executions in our memory model in Section 3.2.1. The precise

1The toy language here is purely for the purpose of simplifying illustration, and our actual implementation
is for C/C++.
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Var ::= Variable Names

Func ::= Function Names

Num ::= Constant Numerals

opb ::= C-like binary operators

opu ::= C-like unary operators

Expr ::= Num | Var | FuncCall | Expr opb Expr

| opuExpr | load Expr

VarList ::= Var (“,” Var)∗

ExprList ::= Expr (“,” Expr)∗

Phi ::= Var “=” “φ” “(” Var “,” Var “)”

PhiList ::= (Phi (“;” Phi)∗)?

Stmt ::= skip | Stmt “;” Stmt | Var “=” Expr |
store Expr “,” Expr | FuncCall |
return Expr? |
if Expr then Stmt else Stmt fi PhiList |
while PhiList Expr do Stmt od

FuncDef ::= Func “(” (VarList)? “)”

begin Stmt “;” end

FuncCall ::= Func “(” ExprList? “)”

Program ::= (VarList “;”)? FuncDef+

Figure 3.1: The core syntax of our language

1: x, y, z;

2: main() begin

3: r1 = load &x;

4: r2 = r1 * 0;

5: if r2 == 0 then

6: store &y, 1;

7: r3 = 0

8: else r4 = 1 fi

9: r5 = φ(r3, r4);

10: store &z, r5;

11:end

Figure 3.2: An example code snippet written in our language
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(a) Data depen-
dency

(b) Explicit control
dependency

(c) Address de-
pendency

(d) Implicit control
dependency

r1 = load &x; r1 = load &x; r1 = load &x; r1 = load &x;

r2 = r1 * 0; if r1 != 0 then store r1, 0; if r1 != 0 then

store &y, r2; store &y, 1 r2 = load &z; store &y, 1

else store &y, r2; else

skip store &z, 0

fi; fi;

r2 = load &z;

store &y, r2;

Figure 3.3: Does the last store to y depend on the first load “r1 = load &x” in each of
theses examples? Assume z=1 before each execution.

definition of the notion of dependency for our language with the operational semantics is

shown below:

Const.Expr:
〈const, V, dep,D, PC, FD〉 → 〈〈const, ∅〉, V ′, dep′, D′, PC′, FD′〉

Var.Expr:
〈var, V, dep,D, PC, FD〉 → 〈〈V [var], D[var]〉, V ′, dep′, D′, PC′, FD′〉

Unary.Expr:
〈E, V, dep,D, PC, FD〉 → 〈〈V,D〉, V ′, dep′, D′, PC′, FD′〉

〈opu E, V, dep,D, PC, FD〉 → 〈〈opu V,D〉, V ′, dep′, D′, PC′, FD′〉

Binary.Expr:

〈E1, V, dep,D, PC, FD〉 → 〈〈V1,D1〉, V ′, dep′, D′, PC′, FD′〉
〈E2, V ′, dep′, D′, PC′, FD′〉 → 〈〈V2,D2〉, V ′′, dep′′, D′′, PC′′, FD′′〉

〈E1 opb E2, V, dep,D, PC, FD〉 → 〈〈V1 opb V2,D1 ∪ D2〉, V ′′, dep′′, D′′, PC′′, FD′′〉

Load.Expr:
〈Addr, V, dep,D, PC, FD〉 → 〈〈VAddr,D〉, V ′, dep′, D′, PC′, FD′〉 Vload = load(VAddr)

〈load Addr, V, dep,D, PC, FD〉 → 〈〈Vload,D ∪ {fresh load}〉, V ′, dep′, D′, PC′, FD′〉

Assignment:
〈E, V, dep,D, PC, FD〉 → 〈〈V,D〉, V ′, dep′, D′, PC′, FD′〉

〈var = E, V, dep,D, PC, FD〉 → 〈skip, V ′[var := V], dep′, D′[var := D], PC′, FD′〉

Store:

〈Addr, V, dep,D, PC, FD〉 → 〈〈VAddr,DAddr〉, V ′, dep′, D′, PC′, FD′〉
〈V al, V ′, dep′, D′, PC′, FD′〉 → 〈〈VVal,DVal〉, V ′′, dep′′, D′′, PC′′, FD′′〉 s := store(VAddr,VVal)

〈store Addr, V al, V, dep,D, PC, FD〉 →

〈skip, V ′′, dep′′ ∪ ((DAddr ∪ DVal ∪ PC′′ ∪ FD′′)× {s}), D′′, PC′′, FD′′ ∪ DAddr〉

Composition.Skip:
〈skip;S, V, dep,D, PC, FD〉 → 〈S, V ′, dep′, D′, PC′, FD′〉
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Composition.Left
〈S1, V, dep,D, PC, FD〉 → 〈S′

1, V
′, dep′, D′, PC′, FD′〉

〈S1;S2, V, dep,D, PC, FD〉 → 〈S′
1;S2, V ′, dep′, D′, PC′, FD′〉

Phi.Taint:
〈〈v,D〉, V, dep,D, PC, FD〉 → 〈skip, V, dep,D[v := (D[v] ∪ D)], PC, FD〉

assign phi(v = φ(v0, v1); phiList,VP )⇒ v = vVP ; assign phi(phiList,Vp)

assign phi(ε,VP )⇒ ε assign phi(; ,VP )⇒ ε

taint phi(v = φ(v0, v1); phiList,D)⇒ 〈v,D〉; taint phi(phiList,D)

taint phi(ε,VP )⇒ ε taint phi(; ,VP )⇒ ε

If.True:

〈cond, V, dep,D, PC, FD〉 → 〈〈true,D〉, V ′, dep′, D′, PC′, FD′〉
〈S1, V ′, dep′, D′, PC′ ∪ D, FD′〉 → 〈skip, V ′′, dep′′, D′′, PC′′, FD′′〉

〈if cond then S1 else S2 fi phi, V, dep,D, PC, FD〉 →

〈assign phi(phi; , 0) taint phi(phi; ,D) skip, V ′′, dep′′, D′′, PC,

FD′ ∪ {l | l ∈ D ∧ hasReachableStore(S2)}〉

If.False:

〈cond, V, dep,D, PC, FD〉 → 〈〈false,D〉, V ′, dep′, D′, PC′, FD′〉
〈S2, V ′, dep′, D′, PC′ ∪ D, FD′〉 → 〈skip, V ′′, dep′′, D′′, PC′′, FD′′〉

〈if cond then S1 else S2 fi phi, V, dep,D, PC, FD〉 →

〈assign phi(phi; , 1) taint phi(phi; ,D) skip, V ′′, dep′′, D′′, PC,

FD′′ ∪ {l | l ∈ D ∧ hasReachableStore(S1)}〉

While.Taken:

〈assign phi(phi; , 0) skip, V, dep,D, PC, FD〉 → 〈skip, V ′, dep′, D′, PC′, FD′〉
〈cond, V ′, dep′, D′, PC′, FD′〉 → 〈〈true,D〉, V ′′, dep′′, D′′, PC′′, FD′′〉
〈S, V ′′, dep′′, D′′, PC′′ ∪ D, FD′′〉 → 〈skip, V ′′′, dep′′′, D′′′, PC′′′, FD′′′〉

〈while phi cond do S od, V, dep,D, PC, FD〉 → 〈〈loop phi cond do S od, PC〉,

V ′′′, dep′′′, D′′′, PC′′′, FD′′′〉

While.Untaken:

〈assign phi(phi; , 0) skip, V, dep,D, PC, FD〉;→ 〈skip, V ′, dep′, D′, PC′, FD′〉
〈cond, V ′, dep′, D′, PC′, FD′〉 → 〈〈false,D〉, V ′′, dep′′, D′′, PC′′, FD′′〉

〈taint phi(phi; ,D) skip, V ′′, dep′′, D′′, PC′′, FD′′〉 → 〈skip, V ′′′, dep′′′, D′′′, PC′′′, FD′′′〉

〈while phi cond do S od, V, dep,D, PC, FD〉 →

〈skip, V ′′′, dep′′′, D′′′, PC, FD′′′ ∪ {l | l ∈ D ∧ hasReachableStore(S)}〉

Loop.Taken:

〈assign phi(phi; , 1) skip, V, dep,D, PC, FD〉 → 〈skip, V ′, dep′, D′, PC′, FD′〉
〈cond, V ′, dep′, D′, PC′, FD′〉 → 〈〈true,D〉, V ′′, dep′′, D′′, PC′′, FD′′〉
〈S, V ′′, dep′′, D′′, PC′′ ∪ D, FD′′〉 → 〈skip, V ′′′, dep′′′, D′′′, PC′′′, FD′′′〉

〈〈loop phi cond do S od, PCold〉, V, dep,D, PC, FD〉 →

〈〈loop phi cond do S od, PCold〉, V ′′′, dep′′′, D′′′, PC′′′, FD′′′〉
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Loop.Untaken:

〈assign phi(phi; , 1) skip, V, dep,D, PC, FD〉 → 〈skip, V ′, dep′, D′, PC′, FD′〉
〈cond, V ′, dep′, D′, PC′, FD′〉 → 〈〈false,D〉, V ′′, dep′′, D′′, PC′′, FD′′〉

〈taint phi(phi; ,D) skip, V ′′, dep′′, D′′, PC′′, FD′′〉 → 〈skip, V ′′′, dep′′′, D′′′, PC′′′, FD′′′〉

〈〈loop phi cond do S od, PCold〉, V, dep,D, PC, FD〉 →

〈skip, V ′′′, dep′′′, D′′′, PCold, FD′′′ ∪ {l | l ∈ D ∧ hasReachableStore(S)}〉

We formalize the program execution state as the tuple δ = 〈N, V, dep,D, PC, FD〉, where N

represents a computational node (e.g., an expression or statement), V represents a mapping

from an expression to its concrete value, dep represents a dependency set, which is a subset

of the Cartesian product of the load set and store set in an execution. For example, “(l, s) ∈

dep” means that store s depends on load l; D represents a dependency mapping from an

expression to the set of loads the expression depends on, PC represents the set of loads on

which the current instruction has explicit control dependency, and FD represents the set of

loads on which future stores should depend. Essentially, the rules of our semantics focus on

recording which loads an expression or statement depends on in each step of the execution,

and when we finish executing the program, the final result is recorded in dep — the complete

dependency relation between loads and stores in the execution. The details of dependency

rules follow:

1. Expressions: In general, an expression has data dependency on its subexpressions,

meaning that the expression depends on whatever loads its subexpressions depend on.

In our operational semantics, an expression E can be reduced to a pair 〈V ,D〉, in

which V represents the concrete value to which E is evaluated, and D represents the

set of loads E depends on. The Const.Expr rule means a constant numeral is evaluated

to itself and does not depend on any loads; the Var.Expr rule means a variable var

retrieves its concrete value recorded in V and its dependency set recorded in D; the

Unary.Expr and Binary.Expr rules are specifically for unary and binary expressions,

respectively; the Load.Expr rule means that a load expression has data dependency on

its address. It is important to note that in the dependency relation we define, loads
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are the sources and stores are the sinks. More specifically, given a load instruction l

and its address Addr (which depends on D), l depends on the union of D and l itself,

denoted as fresh load (since l becomes the source in the dependency relation after

we execute the load). In the Load.Expr rule, “Vload = load(VAddr)” means reading the

value from address VAddr and assigning it to Vload.

2. Assignments: For an assignment statement “var = E”, the left-hand side variable var

has data dependency on the right-hand side expression E. Thus, the Assignment rule

assigns the concrete value of E to var and also passes the dependencies of E to var.

3. Stores: For a store statement s, “store Addr, Val”, where the address Addr has

dependency on load set DAddr and the storing value has dependency on load set DV al,

s has data dependency on DAddr ∪ DV al. For example, in 3.3 (a), since the storing

value r2 has data dependency on “r1 = load &x”, so store “store &y, r2” depends

on “r1 = load &x”. In addition, s should depend on the set of loads on which it has

explicit control dependency, which in our operational semantics is recorded in PC.

For example, in 3.3 (b), store “store &y, 1” depends on “r1 = load &x” because

of explicit control dependency.

However, it is not sufficient to only consider explicit data and control dependen-

cies. Consider the question of whether the last store “store &y, r2” depends on

the first load “r1 = load &x” in Figure 3.3 (c). At first glance, it may appear to

be that “store &y, r2” only depends on “r2 = load &z” but is independent of

“r1 = load &x” since “store &y, r2” does not have an explicit data dependency

or control dependency on “r1 = load &x”. However, if we consider the question of

what value the memory location y will hold at the end of the execution (assuming

z=1 before each execution), we can see that the answer becomes either the value

1 or 0 depending on whether r1 points to the memory address of z, which means

“store &y, r2” actually depends on “r1 = load &x”. Technically speaking, if we
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can tell by some static analysis (e.g., some sort of points-to analysis) that r1 always

points to a different memory address than z, then “store &y, r2” does not depend on

“r1 = load &x”. However, if we rely on such analysis in our rules, we will end up with

an extremely complicated dependency notion; moreover, the fact that C/C++ allows

pointer arithmetics and pointer conversions would further complicate the dependency

notion because the precise addresses of loads and stores may not be always known.

Hence, instead of incorporating the details of the points-to analysis in our definition of

dependency, we take a very conservative approach. In our semantics, if the address of

a store depends on some load, then we require that all subsequent stores also depend

on that load. We refer to this type of dependency as an address dependency. Back

to the example shown in Figure 3.3 (c), we simply conservatively say that the store

“store &y, r2” depends on the load “r1 = load &x”, even if the compiler knows r1

will never point to the address of z. As a result, in our implementation, if the compiler

wishes to reorder a store s′ (“store &y, r2” in this example) up above another store

s (“store r1, 0” in this example), it has to make s′ depend on any loads that the

address of s depends on (“r1 = load &x” in this example).

Consider the example shown in Figure 3.3 (d), in which we need to answer the same

question of whether the last store “store &y, r2” depends on the first load “r1=

load&x”. Similar to the example shown in Figure 3.3 (c), the store “store &y, r2”

does not have a data dependency or explicit control dependency on “r1 = load &x”;

however, given z=1 initially, the value that the memory location y will hold can actually

be value 1 or 0, depending on whether the condition “r1 != 0” is true. The essential

reason why we have such dependency is that in an untaken branch there exists a store

(i.e., “store &z, 0” in the else branch) which overwrites a memory location that

is later read. Similar to address dependency, a fine-grained definition of this type of

dependency would require the introduction of a program analysis and complicate our

dependence notion. Instead, we take a conservative approach by stating that if the
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condition of a control flow block (i.e., an if/else block or while loop) depends on a

load, and the untaken branch has a syntactically reachable store, then all subsequent

stores after the conditional branch also depend on that load. We refer to this type of

dependency as implicit control dependency.

We can see that the address dependency set and implicit control dependency set share

two commonalities: (1) along with the execution of a program, both dependency sets

will only be augmented by adding more loads; and (2) whenever a future store state-

ment is executed, we must ensure that the future store depends on the loads in these

two sets. Hence, our operational semantics uses FD to record the union of address

dependency and implicit control dependency, on which all future stores depend.

Figure 3.4 presents a dependency cycle example involving address dependencies. In

this example, global variables x and y are 0 and each element in the global array z is

0. For the problematic execution in which r1=r2=1, the reason why r1=x can return

value 1 is a chain of justifications that start with the assumption that r1=x can return

value 1. As a result, the load in line 3 of Thread 1 does not read from the store in

line 2 of Thread 1. Note that the dependence is transmitted through the absence of

reading from the store in line 2. Rather than explicitly model the dependence from

the store to the load, our semantics leverages the fact that all dependency chains end

with a store and simply adds a dependency on the load “r1=x” to all stores after the

store “z[r1]=1”, which in our example is the store “y=1”. Our dependency-preserving

memory model forbids this execution because there exists a cycle in dep ∪ rf .

4. Phi (φ) functions: A phi function “v=φ(v0,v1)” with respect to condition cond is

essentially an assignment statement that selects its right-hand side value associated

with cond, whether cond is from an if/else branch or a while loop. For an if/else

branch, v0 comes from the if branch, and v1 comes from the else branch. For a while

loop, v0 comes from outside the loop, and v1 comes from inside the loop. For example, if
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int x=y=0; // Initially 0

int z[2]; // Initially 0

Thread 1 Thread 2

1:r1 = x; 1:r2 = y;

2:z[r1] = 1; 2:x = r2;

3:if (!z[0])

4: y = 1;

Figure 3.4: If x=y=0 and each element in array z is 0 initially, can r1=r2=1? Note that
according to our dependency notion, store “y=1” has an address dependency on load “r1=x”
because the address of store “z[r1]=1” depend on “r1=x”.

the phi function is associated with an if/else branch, and condition cond is true, then

the phi function effectively becomes “v=v0” with an extra (explicit) control dependency

on cond. Thus, the phi variable v depends on whatever loads v0 and cond depend on.

In our rules, the assign phi function transform phi functions to assignments so that we

can apply the Assignment rule for data dependency, and the taint phi function and the

Phi.Taint rule together taint the phi variables with the explicit control dependency on

the condition. For example, the phi variable r5 in line 9 in Figure 3.2 has an explicit

control dependency on the if condition, which depends on the load “r1 = load &x”.

As a result, by the Store rule, the store “store &z, r5” in line 10 also depends the

“r1 = load &x”.

5. If/else branches: An if/else branch can potentially introduce explicit and implicit

control dependencies, as shown in Figure 3.3 (b) and (d). In addition, we must ensure

that the phi variables associated with the branch also have dependencies on the ap-

propriate right-hand side variable and a dependency on the if condition as discussed

above. The If.True and If.False rules are applied when the if condition is true or false,

respectively. The hasReachableStore() function returns true or false for whether or

not a given block of statements has a syntactically reachable store (i.e., potential store).

Note that the explicit control dependency set PC returns to its original state after we

execute the if/else branch, and we track implicit control dependencies by applying
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the hasReachableStore() function on the untaken branch.

6. While loops: In our dependency rules, a while loop can be unrolled indefinitely and

viewed as if they were nested if/else branches. However, in terms of formalization,

unlike normal if/else branches, we need to distinguish the first time we enter the

while loop from later loop continuations for two reasons: (1) we need to assign the phi

functions differently depending on whether we enter the loop for the first time or not;

and (2) when we finish executing a loop, since we need to recover the explicit control

dependency set PC, we need to record the old PC set based on the two different cases.

Thus, we define the While.Taken rule for cases where we enter the loop for the first

time and the loop condition is true, and the While.Untaken rule for those where we

enter the loop for the first time and the loop condition is false. Note that once a

while loop is taken for the first time, we change the loop keyword from while to loop

as an indicator that the loop has been taken at least once. Also, when a while loop

is taken for the first time, we record the old PC so that we can recover the PC status

when we finish executing the loop. We then define the Loop.Taken rule for cases where

a loop is taken after the first time, and the Loop.Untaken rule for cases where a loop is

finished after being executed at least once. Note that applying any of these four rules

has an effect on the explicit control dependency set PC and future store dependency

FD similar to that of the conditional branch rules.

7. Function calls: Since we only have function calls in which the functions are pre-defined

and have a definite function name, a function call can be viewed as an inlined block

of statements with extra data dependencies from the actual parameters to the formal

parameters and from the return value to the actual function call result. Hence, to

simplify the presentation and focus on the core problem, we omit the dependency rule

involving function calls in the operational semantics shown above.

However, this is not sufficient for real-world programming languages, which can have
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function pointers (e.g., C/C++) or virtual dispatch mechanisms (e.g., object-oriented

programming languages). The essential problem is that when the address of a function

call depends on some load l, we should conservatively assume that the function call

could potentially have stores that write to any possible memory location and thus must

ensure that any future store from the point of the function call also depends on load l.

We refer to this type of dependency as a function dependency. It is important to note

that the implementation of our dependency-preserving compiler shown in Chapter ??

effectively enforces function dependency.

3.2.1 Out-of-Thin-Air Properties of the Dependency-Based Mem-

ory Model

Since there is no agreed upon definition of out-of-thin-air executions, we provide a proof

sketch for a property about the causality of executions in our memory model.

Definition 3.2.1. (Value independent semantics). A memory model has value-independent

semantics iff the semantics of the memory model do not depend on the value loaded or stored

with the exception of CAS. The C/C++ and Java memory models are both value independent.

Definition 3.2.2. (Load available semantics). A memory model has load available semantics

if a load can always read from some value that will not affect which values later loads can

read from. For the C/C++ memory model, this is the earliest store in the modification order

that is visible to the load.

Theorem 3.2.1 (Dependency Theorem). For a memory model that has value-independent

and load available semantics and that ensures that dep∪ rf is acyclic, then if a store s is not

reachable from a load l in the graph dep ∪ rf for an execution e, then for any value v that

the load l returns there exist an execution e′ with an equivalent load which returns value v
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such that either: (1) e′ has an error or (2) e′ has a store s′ that writes the same value to the

same address as s.

Proof Sketch.

Define A to be the part of the execution that can reach l in the dep∪ rf graph. Define B to

be the part of the execution that l can reach in the dep ∪ rf graph. Define C to the part of

the execution that can reach s in the dep ∪ rf graph.

Then:

1. Load dependencies for the address of a store sa or the condition of a branch with an

untaken store in B is not sb before anything in C. This is true by the definition of

dependency.

2. Load dependencies for the address of a store sa or the condition of a branch with an

untaken store in B is not sb before anything in A. This is true by the definition of

dependency and by the assumption that dep ∪ rf is acyclic.

3. There is no load in C that reads from any store in B. This is true by the definition of

dependency.

4. Load dependencies for the address of a store sa or the condition of a branch with an

untaken store that are sb before A are in A. This is true by the definition of dependency.

5. Load dependencies for the address of a store sa or the condition of a branch with

an untaken store that are sb before C are in C. This is true by the definition of

dependency.

For any value v that load l returns, we can construct an execution e′ in which (1) every store

that is sb before A ∪ C in the execution e′ has an equivalent store in e that writes to the
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same address, (2) every store in A ∪ C in e is in e′ and writes to the same address, and (3)

every load that is sb before A ∪ C reads from the same store as it did in e (note that some

loads than are sb, but not in A∪C may be missing) since all of the load dependencies for the

conditional branches or addresses of stores are in A∪C. The stores in execution e′ that are

sb before A ∪ C are a subset of stores in execution e and they write to the same addresses

so this is possible (loads in execution e′ who are missing their corresponding store are not in

A ∪ C and can simply be made to read from some store without affecting other loads since

we assume that the memory model has load available semantics). Note that the stores may

not write the same values, but the memory semantics are value-independent and thus admit

the same rf relation. Note that we may have new loads appear that are sb before A ∪ C,

but such loads can always read from a value by the assumption that the memory model has

load available semantics.

The execution e′ may throw an error in which case we trivially prove the property. Thus

assume that execution e′ does not throw an error. Then by induction on dep ∪ rf and the

definition of dep, the store s′ must store the same value as store s.

Theorem 3.2.1 implies that executions with causality cycles or satisfaction cycles in which a

store s cyclically justifies the value it stores are not possible if dep∪ rf is acyclic. Any load l

that reads from s cannot reach s in the dep∪ rf graph since it is acyclic and the load l reads

from s. Thus by the theorem, the load l can return any value and store s will still store the

same value.

3.3 A Load-Store-Order-Preserving Memory Model

An alternative approach to eliminating out-of-thin-air behaviors is to strengthen the exist-

ing C/C++ memory model by requiring sequence-before ∪ reads-from to be acyclic. This
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well-known C/C++ memory model variant has been proposed by researchers (Vafeiadis and

Narayan, 2013; Batty et al., 2013; Boehm and Demsky, 2014) as one of the possible ap-

proaches to forbidding out-of-thin-air behaviors. Note that this is not the “perfect” fix to

the problem since it forbids not just the problematic out-of-thin-air executions (e.g., Fig-

ure 2.2) but also some legitimate executions such as the load buffering example shown in

Figure 2.1. Notably, this approach is less likely to be acceptable for Java-like memory mod-

els because they must describe the behavior of all loads and stores (including volatile and

non-volatile memory accesses), which is likely to incur a much higher cost2.

2To implement the load-store-order-preserving memory model discussed here, a Java compiler (JVM)
must ensure that no compiler optimizations will effectively perform the load-store reordering for all loads
and stores and also insert load-store fences/dependencies in the generated code accordingly.
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Chapter 4

Dependency-Preserving Compiler

This chapter describes the design and implementation of our approach to preserving our

extended memory model in the LLVM compiler infrastructure (Lattner and Adve, 2004). We

target the LLVM compiler in this dissertation for two reasons: (1) LLVM is widely supported

and considered by many as the state-of-the-art compiler framework; and (2) LLVM is not

just adopted as a C/C++ compiler but is also adopted in the context of a commercial JVM,

e.g., Azul’s Falcon compiler (Azul, 2017).

4.1 Design

The LLVM compiler infrastructure is designed to compile source code and generate opti-

mized library or executable files in a modular and reusable fashion. The standard LLVM

compilation pipeline is shown in Figure 4.1, and we illustrate the workflow as follows:

1. Given C/C++ source code files, the Clang front end translates them into a type of

target-independent intermediate representation (IR), i.e., the LLVM Bitcode or the
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Figure 4.1: The standard LLVM compilation workflow for C/C++

LLVM IR. The LLVM IR generated in this step has not been optimized yet, and

hence it preserves all the trivial computations and control flows except very obvious

constant folding, etc. For example, the statement “x = 2 * 2” in the source code will

be translated into “store 4, x” in the unoptimized IR; however, the statement “x = r1

* 0” will be preserved. It is important to note that such trivial constant folding does

not break dependencies.

2. The unoptimized LLVM IR generated in step 1 will then go through the LLVM IR

optimizer, which performs a list of target-independent LLVM IR transformation passes

to generate optimized LLVM IR. In the LLVM tool chain, the LLVM optimizer —

opt — can perform these optimizations. Note that these transformation passes can

potentially change the IR and break dependencies.

3. The optimized LLVM IR generated in step 2 will then be passed to the LLVM backend

code generator, which performs instruction selection, register allocation, peephole op-

timizations, etc., and finally generates optimized binary object files. In the LLVM tool
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chain, the LLVM static compiler — llc — implements this step. Note that the backend

transformations are implemented as a list of code generation passes (LLVM machine

passes performed in some machine code representations), and these passes can also po-

tentially break dependencies. In general, the LLVM infrastructure supports multiple

backend code generators for different architectures. In our work, we use the AArch64

(ARM’s 64-bit architecture) backend as a case study and thus will focus on the code

generation passes for AArch64 hardware. Our case study explore ARM 64 because

it is the most relevant mainstream processor that implements a memory model that

does not preserve load-store ordering. Intel processors implement the TSO memory

model which by default preserves load-store ordering, and thus are expected to incur

significantly less overhead to implement our memory model.

4. Finally, the system linker will link the optimized object files and generate optimized

library or executable files. Note that on a Linux machine, it is a common case to use

the GNU linker as the default system linker.

As shown in the above pipeline, in order to ensure that dependencies are preserved down to

the generated binary code, we must make sure the transformations in step 2 and 3 preserve

the dependencies. Ideally, we should review each transformation pass. If it can potentially

break dependencies, we should modify the optimization to retain most of the benefits of the

optimization while preserving dependencies; otherwise, we should leave the pass unchanged.

However, for our research project, this incurs too much manual effort. There are more than

50 LLVM transformation passes in step 2. Fortunately, a preliminary result shows that if we

run only a select set of 35 IR-to-IR passes alone in step 2, the performance loss over running

the standard set of IR-to-IR passes (as called in “opt -O3”) is only 1.8%. As a result, we

disable all other IR-to-IR passes and focus our efforts on the select set of passes. We show

the set of IR passes that we enable in Appendix A.
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4.2 Implementation

Several important compiler optimization passes are inherently dependency-preserving and re-

quire either no changes or only minor changes. We first discuss those that require no changes

and then discuss how we modify/disable the remaining passes to preserve dependencies.

4.2.1 Unmodified Passes

Function inlining: This optimization expands specific function call sites in the body of

the caller functions, potentially reducing function call overhead and introducing more op-

portunities for later optimizations. Our preliminary result shows that turning off inlining

incurs an overhead of 26% on AArch64 targets. Fortunately, no change is required for this

pass as long as we conservatively preserve the syntactic dependencies in all functions. For

example, Figure 4.2 shows a function foo that internally calls another function bar. The

third column shows that as long as we preserve the dependency between the argument arg

and the return statement “return arg * 0”, the foo function after inlining still preserves

the dependency between the load from x and the store to y.

Original foo() Original bar() Inlined foo()

void foo() { int bar(int arg) { void foo() {
r1 = x; return arg * 0; r1 = x;

y = bar(r1); } y = r1 * 0;

} }

Figure 4.2: Function inlining does not break the dependency between the load from x and
the store to y as long as function bar preserves its internal dependencies, as shown in the
third column.

Common subexpression elimination: Common subexpression elimination (CSE) re-

places a redundant expression with the value of a pre-computed common expression. For
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example, it will transform the instructions “z=x*y; t=x*y” to “r1=x*y; z=r1; t=r1”. We

can see that the dependency from x and y to t is preserved because it is carried by the inter-

mediate value r1. In LLVM, the global value numbering (gvn) pass can perform redundant

load elimination that has similar effect to CSE.

Dead code elimination: Dead code elimination in general eliminates the instructions that

are unreachable or have no visible effects to the program, and does not break dependencies.

In LLVM, this corresponds to adce (aggressive dead code elimination) and dce (dead code

elimination).

4.2.2 Modified Passes

To preserve a simple notion of syntactic dependency, we must consider both data depen-

dencies and control dependencies. For example, as shown in Figure 4.3, the original LLVM

optimizations (-O3) recognize that the expression “r1*0” will always generate the value 0

and will transform the store instruction to “y=0”, which no longer depends on the load

from x. In the other example shown in Figure 4.4, the original LLVM optimizations (-O3)

determine that no matter which branch the program takes, it will execute the same store

instruction, so it merges the two stores to y and later eliminates the empty control blocks.

Hence, this breaks the dependency from “y=1” to the load from x.

Unoptimized code Optimized code
r1 = x; r1 = x;

y = r1 * 0; y = 0;

Figure 4.3: LLVM optimizations (-O3) can break data dependencies.

We next outline the important optimization passes that we have modified to preserve de-

pendencies:

Combining redundant instructions (instcombine): This pass combines instructions

53



Unoptimized code Optimized code
if (x > 0) y = 1; y = 1;

else y = 1;

Figure 4.4: LLVM optimizations (-O3) can break control dependencies.

to fewer and simpler ones and does not modify the control flow graph. For example, it

performs simple constant folding, dead code elimination, algebraic simplification, and re-

ordering of operands to expose more common subexpression elimination opportunities, etc.

To preserve dependencies, we modify this pass to disable the transformations that can poten-

tially break dependencies. Figure 4.5 shows examples of our modification to the instruction

simplification optimization in order to preserve dependency. More specifically, Figure 4.5(a)

shows an example in which we prevent it from simplifying the condition “r2=(r1==r1)” to

“r2=true”. At the same time, we still allow those dependency-preserving transformations

and also perform a limited form of strength reduction on algebraic instructions when the

original simplification would break dependencies. For example, Figure 4.5(b) shows that al-

though we cannot completely simplify the three AND instructions to the value 0, we can still

perform partial simplification and eliminate two redundant AND instructions; Figure 4.5(c)

shows that while we cannot transform “r1*0” to the value 0, we can transform it to a

potentially less expensive AND instruction.

Unoptimized code Dependency-preserving code
(a) r2 = (r1 == r1); ⇒ r2 = (r1 == r1);

if (r2)... if (r2)...

(b) r2 = r1 & 0xffff; ⇒ r4 = r1 & 0;

r3 = r1 & 0xffff0000;

r4 = r2 & r3;

(c) r2 = r1 * 0; ⇒ r2 = r1 & 0;

Figure 4.5: Examples of how the dependency-preserving instcombine pass transforms the
code.

Simplify the CFG (simplifycfg): This pass simplifies control flows, which includes a

form of dead code elimination with respect to control flows (e.g., removing unreachable basic
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blocks and basic blocks that contain only an unconditional branch), basic block merging, and

hoisting common code outside of control flow blocks. Since we disable dependency-breaking

algebraic simplifications in the instcombine pass, the simplifycfg pass cannot eliminate con-

trol flows by statically calculating the value of conditions. For example, in Figure 4.6 (a),

since we disable simplifying the condition “r1 == r1” to the value true, the transforma-

tion shown in the middle column cannot happen, and thus the control flow dependency is

preserved.

However, transformations that involve moving stores out of the control flow blocks are gen-

erally problematic and should be prohibited. Figure 4.4 shows such an example in which the

pass first hoists the common stores “y=1” out of the if/else branch and then eliminates

the if/else blocks, which breaks the dependency of “y=1” on the load from x. Figure 4.6

(b) shows an even more problematic example. Before the transformation, the store “y=1”

depends on the load “r1=x”, and the store “*addr=2” also depends on “r1=x” because of

the conditional store “y=1” that is sequenced-before it (i.e., implicit control dependency).

After the original transformation, although the new unconditional store “y=r1?1:0” still de-

pends on “r1=x”, the later store “*addr=2” no longer depends on “r1=x”. Our dependency-

preserving transformation preserves this missing dependency by adding redundant compu-

tations that require the value of the condition (i.e., “(&y)|(r1&0)”) to compute the address

of the new unconditional store (i.e., “*r2=r1?1:0”) so that all later stores still depend on

the old condition r1.

We also disable the elimination of control flow blocks in some cases even when there is

no store within the control flow blocks. For example, in Figure 4.6 (c), we can see in the

unoptimized code that the store to z syntactically depends on the load from x even though

r1 is a local variable. However, before LLVM runs the simplifycfg pass, it runs a pass

that transforms the LLVM IR to static single assignment (SSA) form, which simplifies the

instruction “z=r1” to “z=1” and makes the if/else blocks empty. This step alone preserves
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the control dependency because it does not modify the control flow. However, after that,

the simplifycfg pass will eliminate the empty if/else blocks and transform it to the code

shown in the middle, in which “z=1” does not depend on the load from x anymore. Our

dependency-preserving transformation on the right keeps the empty conditional branch.

This shows that multiple dependency-preserving passes combined together can break depen-

dencies. The fundamental problem that causes this is the poorly defined notion of depen-

dency in the IR. In the example in Figure 4.6 (c), the later simplifycfg pass has no information

about whether the empty conditional branch carries a dependency to later stores, thus elim-

inating it can potentially break a dependency, as shown in this case. Ideally, if the IR was

augmented with extra dependency edges between statements, we could use that information

to ensure that a specific transformation does not break existing dependency edges. In prac-

tice, to make our approach simpler to implement in the existing LLVM framework without

requiring large changes to LLVM’s IR, we adopt a coarse-grained extension to the IR such

that basic blocks contain extra information indicating whether some other statements may

or may not depend on them. In this case, when we construct the SSA form and encounter

a PHI node that has the same value from multiple basic blocks, we conservatively mark the

incoming blocks as unremovable to preserve such control flow blocks even if they are empty.

Passes that potentially reorder stores: According to our dependency notion, reordering

an earlier store s1 and a later store s2 can potentially break address dependencies if the

address of s1 depends on some load that s2 does not depend on. We list the passes that can

reorder stores and our corresponding strategies as follows:

1. Dead store elimination pass (dse): This pass looks for stores that have no visible side

effects and eliminates them. Figure 4.7 (a) is an example in which the first store in the

unoptimized code “arr[r1]=0” is a dead store since there are no loads after it until

the last store “arr[r1]=1”. In addition, store “y=1” depends on load “r1=x” because
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Unoptimized Original transforma-
tion

Dependency-preserving
transformation

(a) r1 = x; r1 = x; r1 = x;

if (r1 == r1) y = 1; y = 1; if (r1 == r1) y = 1;

else y = 2; else y = 2;

(b) r1 = x; r1 = x; r1 = x;

y = 0; y = r1 ? 1 : 0; r2 = (&y) | (r1 & 0);

if (r1) y = 1; *addr = 2; *r2 = r1 ? 1 : 0;

*addr = 2; *addr= 2;

(c) r1 = 0; z = 1; // Keep empty blocks

if (x > 0) r1 = 1; if (x > 0) ;

else r1 = 1; else ;

z = r1; z = 1;

Figure 4.6: Examples of how the simplifycfg pass can potentially break dependencies.

the address of “arr[r1]=0” depends on “r1=x” (i.e., address dependency). After

the original transformation, this pass eliminates the store “arr[r1]=0”, which breaks

the dependency from store “y=1” to load “r1=x”. Our solution is to add redundant

computations involving the address arr[r1] to the store to y, which ensures that the

dependency on “r1=x” is passed to the store “*r2=1”.

2. Loop invariant code motion (licm): This pass optimizes loops by moving loop invariant

code outside of the loop. In general, it hoists load instructions out of the loop body

and sinks store instructions to the end of the loop. Figure 4.7 (b) shows an example

that illustrates why this can be problematic. In the unoptimized code, all stores

“arr[i++]=1” depend on the load from x, but the original transformation breaks this

dependency by sinking the store “addr[x]=0”. We disable such transformations.

3. SLP (superword-level parallelization) vectorization (slp-vectorizer): This pass can com-

bine similar independent instructions into vector instructions. Figure 4.7 (c) shows how

it can effectively reorder stores by combining adjacent stores. We modify this pass to

prohibit the original transformation shown in Figure 4.7 (c).

4. Memory copy optimization (memcpyopt): This pass performs optimization related to
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memset, memcpy, and memmove calls, and we disable this pass.

Unoptimized Original transformation Dependency-preserving
transformation

(a) r1 = x; r1 = x; r1 = x;

arr[r1] = 0; y = 1; r2 =(&y)|((arr+r1)&0);

y = 1; arr[r1] = 1; *r2 = 1; // y = 1

arr[r1] = 1; arr[r1] = 1;

(b) do { do { do {
addr[x] = 0; arr[i++] = 1; addr[x] = 0;

arr[i++] = 1; } while (i < 100); arr[i++] = 1;

} while (i < 100); addr[x] = 0; } while (i < 100);

(c) arr[x&0] = 0; y = 1; arr[x&0] = 0;

y = 1; arr[0..3] = {0..3}; y = 1;

arr[1] = 1; arr[1] = 1;

arr[2] = 2; arr[2] = 2;

arr[3] = 3; arr[3] = 3;

Figure 4.7: Examples of how reordering stores can potentially break dependencies.

Loop unrolling This pass performs loop unrolling, which expands the loop body across

multiple iterations, reducing the overhead of checking the loop condition and updating the

trip count, and expose further optimization opportunities (e.g., vectorization). Similar to

if/else control dependencies, the loop body generally depends on the loop condition, and

thus a full unrolling (i.e., expanding the loop body completely) can potentially break depen-

dencies. Hence, we modify this pass such that it does not statically reason about the trip

count of a loop and fully unroll the loop when its trip count is not an explicit constant, as

shown in Figure 4.8 (a). However, if the trip count of a loop is specified as a constant, as

shown in Figure 4.8 (b), we allow full unrolling because the loop condition does not depend

on any loads.

Backend passes that can break dependencies: Given a dependency-preserving LLVM

IR, the LLVM backend generates object code by passing the IR through a sequence of

backend passes, which can also potentially break dependencies in the following ways:

58



Before transformation After transformation
(a) for (int i = 0; i < (x*0 + 2); i++) ⇒ arr[0] = 0;

arr[i] = i; arr[1] = 1;

(b) for (int i = 0; i < 2; i++) ⇒ arr[0] = 0;

arr[i] = i; arr[1] = 1;

Figure 4.8: Examples of loop unrolling. (a) statically computing the trip count and unrolling
the loop potentially breaks control dependencies; (b) unrolling loops with explicit constant
trip count does not break dependencies.

1. Data dependencies: The major backend pass that breaks data dependencies is the

SelectionDAG-based instruction selection pass. To generate machine code, the LLVM

backend first builds a per basic block structure called a selection DAG, which is a

directed acyclic graph that represents the order of instruction within a basic block. It

then goes through several rounds of node combining, which effectively performs a form

of algebraic simplification, common subexpression elimination, constant folding, and

strength reduction, etc. Similar to the modifications we made to the instcombine pass,

we disable algebraic simplifications that can break dependencies.

2. Control dependencies: In addition to the IR-level control flow simplification, the LLVM

backend can further simplify control dependencies, e.g., merging branches and elimi-

nating empty blocks, including those conditional branches on which we potentially rely

to preserve dependencies. We modify the code generation preparation (codegenprepare)

pass and completely disable the control flow optimizer (branchfolding) pass to preserve

control dependencies.
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Chapter 5

Load-Store-Order-Preserving

Compiler

This chapter describes the implementation of our approach to preserving atomic load-store

ordering in the LLVM compiler for AArch64 targets. In LLVM IR, atomic load/store oper-

ations are special load/store operations with memory ordering parameters similar to their

C/C++ counterparts (e.g., memory order acquire), and atomic read-modify-write oper-

ations (e.g., compare exchange strong and fetch add) are represented as atomicrmw or

cmpxchg. Similar to the dependency-preserving approach, we need to ensure that both IR-

level optimizations and the backend generate code that preserves load-store ordering for

atomic operations.

5.1 Target-Independent Optimizations

For IR optimization passes, we only need to focus on those passes that can potentially

perform load-store reordering to atomic load/store operations, which fortunately is a small
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subset of the IR optimization passes. For example, these passes include the loop invariant

code motion pass (licm), the memory copy optimization pass (memcpyopt), the dead store

elimination pass (dse), the SLP vectorization pass, etc. We carefully reviewed these passes

and found that they do not perform load-store reordering for atomic operations by design.

The reasons include: (1) the semantics of atomic operations disallow the optimization (e.g.,

atomic operations cannot be optimized into a memcpy/memset operation since it can po-

tentially reorder the atomic operations and change the visible side effect) or (2) it is tricky

to reason about the correctness of optimizations of atomic operations, and the optimization

is not especially important in most cases. For example, the licm pass will optimize normal

loads/store out of a loop but is conservative with atomic operations. As a result, we can

enable all the original IR-level passes.

5.2 Backend Optimizations for AArch64

5.2.1 LLVM AArch64 Backend for C/C++ Atomics

Figure 5.1 shows how the LLVM backend compiles C++ atomics to assembly for AArch64

targets. In example (a), an atomic load/store with memory order relaxed ordering pa-

rameter is compiled to a normal load/store instruction, while an atomic load with memory_

order_acquire1 or store with memory order release is compiled to a load-acquire (ldar)

or store-release (stlr), respectively, which are load and store instructions in AArch64 with

implicit one-way barrier semantics. For example, the normal load and store in line 2 and

3 can be reordered by the processor at runtime, while the ldar in line 1 guarantees that

loads/stores after it cannot be reordered before the load. Similarly, all loads/stores before

1memory order consume is not broadly supported by compilers due to challenges associated with
preserving data dependencies. LLVM effectively converts it to the stronger ordering parameter
memory order acquire.
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the stlr in line 5 cannot be reordered after it. In example (b), a fetch add operation is

compiled to a loop that continuously attempts to atomically fetch and add one to the mem-

ory location. It takes advantage of the exclusive load/store (ldxr/stxr) pair, which has

exclusive locking semantics on the load/store address to guarantee the read-modify-write is

atomic. It is important to note that in the ARMv8 architecture, the success bit (w10 in

this example) of a successful store-exclusive is not supposed to introduce any dependency

from the load-exclusive it is paired with (Pulte et al., 2018). As a result, the store in line 6

does not have a dependency on the load in line 2 and thus can be reordered before it. In

example (c), a compare-and-swap operation is compiled to a conditional branch that com-

pares the load value with the expected value and then decides whether or not it should store

the new value to the memory. Since there is a control dependency (line 3) from the load

part (line 2) to any stores after the compare-and-swap operation, those subsequent stores

cannot be reordered before the load part. The conclusions from these three examples are

(1) that atomic loads that have a stronger ordering parameter than memory order relaxed

and atomic compare-and-swap operations already have an ordering constraint relative to

subsequent stores, and (2) that we only need to preserve the ordering from the relaxed load

and those fetch add-like read-modify-write operations (with ordering parameters that do

not have acquire semantics) to subsequent stores.

5.2.2 Forbidding Reordering of Loads and Stores in AArch64

To forbid a normal load from being reordered with subsequent stores in AArch64 targets,

Boehm and Demsky (2014) propose that one could add either a fence or a bogus conditional

branch after the load (i.e., adding control dependency from the load to subsequent stores).

For cases in which a load is followed by a store, one could alternatively add a bogus address

dependency (Maranget et al., 2012) from the load to the store to guarantee the ordering.

Also, a similar strategy with respect to adding address dependency to insert (between the
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C++ code AArch64 assembly
(a) r1 = arr[0].load(acquire); ⇒ 1: ldar w1, [x8]

r2 = arr[1].load(relaxed); 2: ldr w2, [x8, #4]

arr[2].store(0, relaxed); 3: str wzr, [x8, #8]

arr[3].store(0, release); 4: add x8, x8, #12

5: stlr wzr, [x8]

(b) r1 = arr[0].fetch add(1, relaxed); ⇒ 1:.BB 1:

arr[1].store(0, relaxed); 2: ldxr w9, [x8]

3: add w9, w9, #1

4: stxr w10, w9, [x8]

5: cbnz w10, .BB 1

6: str wzr, [x8, #4]

(c) int expected = 0; ⇒ 1:.BB 1:

r1 = arr[0].compare exchange weak( 2: ldxr w9, [x8]

expected, 1, relaxed, relaxed); 3: cbz w9, .BB 2

return; 4: clrex

5: ret

6:.BB 2:

7: orr w9, wzr, #0x1

8: stxr w10, w9, [x8]

9: ret

Figure 5.1: Examples of how LLVM backend compiles C++ atomic operations to assembly
code for AArch64 targets. In each example, variable arr is an array of atomic int, and
register x8 contains the base address of array arr.

target relaxed load and subsequent stores) a bogus load whose address depends on the target

relaxed load. To better understand the performance characteristics of these options, we use

micro-benchmarks written in assembly to benchmark the performance overhead of these

options on an ARM Cortex-A72 core.

The first option is to simply replace the normal load with a ldar load, which has implicit

acquire semantics. The second option is to replace the normal store with a stlr store,

which has implicit release semantics. The third option is to insert a “dmb ld” fence before

a relaxed store so that it waits for previous loads to finish. The fourth option is to add

a bogus conditional branch after the normal load such that the branch condition uses the

result of the load. Note that at the time of writing this dissertation, there is still some
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uncertainty about what the branch target should look like. In this dissertation, we evaluate

this strategy based on Pulte et al. (2018)’s model, in which any instruction succeeding a

conditional branch in program order has control dependency on the loads that the branch

has data dependency on. We will discuss this issue in more details in Section 6.2.4. The

fifth option is to add a bogus load whose address depends on the target relaxed load. The

sixth option is to add extra address/control dependency from the normal load to an existing

subsequent store or conditional branch instruction. Figure 5.2 shows the performance over-

head of these strategies, which is normalized to the performance of the micro-benchmarks

without any load-store ordering constraints. The “Store” column represents the scenario in

which a load is followed by a store, and the “Conditional Branch” column represents the

scenario in which a load is followed by a conditional branch. This result shows that using

release stores is the most expensive option and adding bogus conditional branches after re-

laxed loads is the least expensive option in either scenario for the processor we used, and

that adding fences (i.e., the first three options) is more expensive than the other three al-

ternatives. Given this preliminary result, we adopt the strategy of adding bogus conditional

branch in the implementation of our load-store-order-preserving compiler. It is important to

note that compared to adding bogus conditional branches, the strategies of adding address

dependencies to existing stores/branches or inserting bogus dependent loads can be potential

solutions for those processors that incur higher overheads from fake conditional branches.

Strategy/Subsequent Instruction Store Conditional Branch
Acquire Load 500.1% 267.7%
Release Store 1095.1% 382.0%
DMB LD Fence 457.1% 238.3%
Bogus Conditional Branch 28.6% 26.2%
Bogus Load 50.0% 26.4%
Extra Dependencies to Existing Store/Branch 50.0% 28.8%

Figure 5.2: Performance overhead incurred by different strategies of forbidding load-store
reordering for micro-benchmarks.

Figure 5.3 (a) and (b) show examples in which a relaxed load is followed by an existing

subsequent store or conditional branch in the same basic block, respectively. In both exam-
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C++ code AArch64 assembly
(a) r1 = arr[1].load(relaxed); ⇒ 1: ldr w1, [x8, #4]

arr[0].store(0, relaxed); 2: and w2, w1, wzr

3: cbnz w2, .BB 1

4:.BB 1:

5: str wzr, [x8]

(b) r1 = arr[1].load(relaxed); ⇒ 1: ldr w1, [x8, #4]

if (r2) 2: and w9, w1, wzr

arr[0].store(0, relaxed); 3: cbnz w9, .BB 1

4:.BB 1:

5: cbz w2, .BB 2

6: str wzr, [x8]

7:.BB 2:

(c) r1 = arr[1].load(relaxed); ⇒ 1: ldr w1, [x8, #4]

if (r1) 2: cbz w1, .BB 1

arr[0].store(0, relaxed); 3: str wzr, [x8]

4:.BB 1:

(d) r1 = arr[1].load(relaxed); ⇒ 1: ldr w1, [x8, #4]

arr[r1].store(0, relaxed); 2: str wzr, [x8, w1, sxtw #2]

Figure 5.3: Our approach to imposing the ordering between relaxed loads and subsequent
stores. Register x8 contains the base address of array arr. Bogus conditional branches are
added intentionally to impose the load-store ordering in example (a) and (b), and example
(c) and (d) do not require such extra ordering constraints because the ordering constraints
exist in the source code inherently.

ples, we intentionally add a bogus conditional branch that uses the result of the load, i.e.,

lines 2 to 4 in Figure 5.3 (a) and lines 2 to 4 in Figure 5.3 (b). This intentional control

dependency forces stores after the load to be visible after the load. Note that we add an AND

instruction (specifically AND with zero) in lines 2 of both examples (a) and (b) to ensure

that the conditional branch consistently takes the same direction to avoid too many branch

mispredictions.

Another important observation is that for some relaxed loads, there already exist reordering

constraints from the load to subsequent stores. For example, in the source code in Figure 5.3

(c), the conditional branch after the relaxed load already depends on the result of the load,

so any stores after the load in the assembly naturally have a control dependency on the load
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and must be visible after it without adding any redundant instructions. Similarly, Figure 5.3

(d) shows an example in which a subsequent store naturally has an address dependency on

the load and thus we do not need to add extra reordering constraints. In order to optimize for

these cases to avoid unnecessary overheads, we implement a local analysis that conservatively

checks whether the address of a subsequent store or the condition of a subsequent branch

depends on specific loads and use the analysis result to decide whether we need to add a

bogus conditional branch after the loads.

To implement our solution, we made two modifications to the LLVM AArch64 backend:

1. Add extra ordering constraints for relaxed loads: We modify the code generation prepa-

ration pass such that before LLVM lowers optimized IR to machine code, it collects

the set of relaxed loads that need extra ordering constraints (e.g., examples shown in

Figure 5.3 (a) and (b)). We then intentionally add bogus conditional branches after

the collected relaxed loads. Note that when there are multiple relaxed loads in a se-

quence, we only insert one bogus conditional branch whose condition uses the result

of all those loads.

2. Preserving redundant data/control dependencies: After the above modification to the

code generation preparation pass, we still need to ensure that later backend passes (e.g.,

the SelectionDAG-based instruction selection and control flow optimization pass) do

not optimize these instructions away, e.g., eliminating “and w2, w1, wzr”.
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Chapter 6

Evaluation

In this chapter, we evaluate the cost of the two approaches to avoiding out-of-thin-air be-

haviors in C/C++ for AArch64 targets. In our evaluation, we report execution times on a

Firefly-RK3399 board, which has a six-core 64-bit CPU (two ARM Cortex-A72 cores and

four ARM Cortex-A53 cores), 4 GB memory, and runs Ubuntu 16.04.2. We have made both

our compiler implementations and benchmarks publicly available at http://plrg.eecs.

uci.edu/oota-html. As Sullivan (2017) shows, the performance results can vary depending

on the processor in question. More specifically, their results seem to suggest that dependen-

cies and fences may exhibit less performance penalty in ARMv8 than in ARMv7 and Power

architectures. Ideally, the evaluation would have been more complete if we also considered

the ARMv7 and Power architectures; however, in LLVM, they use different backends (which

does require review and modifications) to generate architecture-specific code, so this is a

non-trivial effort. As a first step, we believe that evaluating the approaches on a relatively

new version of 64-bit ARM processor could still be a useful indicator for future processors,

and decided to leave the evaluation on the ARMv7 and Power architectures as future work.
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6.1 Cost of Preserving Dependencies

Although avoiding out-of-thin-air behaviors applies only to multi-threaded code, our dependency-

preserving approach incurs overhead for both single-threaded and multi-threaded programs.

Single-threaded code represents a worse case scenario—the memory system bandwidth is

not utilized by other cores and thus the extra instructions we add have a relatively higher

cost. Thus, we measure the overheads of our dependency-preserving optimizations on single-

threaded code.

6.1.1 Single-Threaded Programs

We ran each C/C++ benchmark in SPEC CPU2006 (Henning, 2006) under four compiler

configurations. The configuration “Full Optimizations” is the stock LLVM compiler with

all optimizations enabled (-O3); the configuration “No Optimization” is the stock LLVM

compiler with all optimizations disabled (-O0); the configuration “Dependency-preserving”

is our dependency-preserving compiler. Due to the amount of engineering work needed to re-

view/modify each optimization pass, we only select a core set of IR-level optimization passes

(35 out of 46) to carefully review and modify when necessary to implement the dependency-

preserving compiler. The configuration “Partial Optimization” is the stock LLVM compiler

whose IR-level optimizations only include the same core set of passes that are enabled in our

dependency-preserving compiler.

Note that the “No Optimization” configuration (-O0) naturally preserves dependencies; how-

ever, the benchmarks under this configuration execute with an average (geometric mean)

slowdown of 155.9% and a maximum slowdown of 580.9%. Figure 6.1 shows more detailed

performance overhead of each benchmark under configurations “Partial Optimization” and

“Dependency Preserving”, with each normalized to the performance under “Full Optimiza-

68



tion” (-O3) configuration. Under the “Partial Optimization” configuration, the benchmarks

incur an average of 1.8% slowdown and a maximum of 11.6% slowdown. Our dependency-

preserving compiler has an average 3.1% slowdown and a maximum of 17.6% slowdown.

Given the fact that we completely turn off 11 IR-level passes in our dependency-preserving

compiler, which roughly accounts for the 1.8% overhead as shown under the “Partial Opti-

mization” configuration, it is likely that one could further reduce the overhead of preserving

dependencies by analyzing those optimization passes. There also remain opportunities for

further optimization of the passes that we modified for the dependency-preserving memory

model.
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Figure 6.1: Performance overhead (in percentage) introduced by different compiler config-
urations compared to the full optimization configuration (-O3) for C/C++ benchmarks in
SPEC CPU2006.

Speedup in Single-Threaded Runs As shown in Figure 6.1, we observe speedup in

the single-threaded runs for some benchmarks under our dependency-preserving compiler.

A possible explanation is the non-linear interaction between some optimization passes on
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some benchmarks. In fact, researchers have shown that different compiler options or trans-

formation combination could have a significant impact on performance factors (e.g., cache

accesses) (Pan and Eigenmann, 2006; Cavazos et al., 2007). One supportive observation

in our case is that some benchmarks such as “401.bzip2” under the “Partial Optimization”

configuration also have a speedup over the baseline “Full Optimization” configuration. More-

over, our dependency-preserving compiler does require modifying some backend passes such

that they do not eliminate intentionally added AND instructions or conditional branches; and

we have observed that simply disabling the backend control flow optimizer pass (i.e., Branch-

Folding) in the stock LLVM (“-O3”) yields speedups for some single-threaded benchmarks.

To give a more detailed comparison, we also list the overhead incurred by our dependency-

preserving compiler over the “Partial Optimization” configuration in Figure 6.2.
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Figure 6.2: Performance overhead (in percentage) introduced by our dependency-preserving
compiler compared to the “Partial Optimization” configuration for C/C++ benchmarks in
SPEC CPU2006.
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6.1.2 Multiple Copies of Single-Threaded Programs

To evaluate the performance overhead in a multi-core environment, we ran two copies of

each C/C++ benchmark in SPEC CPU2006 at the same time, with each copy running

on a Cortex-A72 core. We report the performance overhead of our dependency-preserving

compiler compared to the stock LLVM with all optimizations enabled (-O3) in Figure 6.3.

In this scenario, our dependency-preserving approach incurred an average slowdown of 2.6%

and a maximum slowdown of 13.7%, which is smaller than that of running in a single-

copy scenario in Section 6.1.1. A likely explanation is that our approach to preserving

dependencies increases the number of instructions that are executed but does not significantly

increase the number of memory accesses to data. As a result, when we run multiple copies

of the same program simultaneously, the memory bandwidth that is accessible to each copy

is reduced, and hence the cost of running the extra CPU instructions becomes relatively

smaller (especially for memory-bounded programs). This experimental result indicates that

in multi-core environments in which more than one core is used, the performance overhead

incurred by our dependency-preserving compiler is likely to be smaller than that incurred in

the single-core scenario.

6.2 Cost of Forbidding Load-Store Reordering

Unlike the dependency-preserving approach, forbidding load-store reordering to avoid out-

of-thin-air behaviors only affects relaxed atomics in C/C++11. Hence, for example, the

load-store-order-preserving approach should impose no overhead on the SPEC CPU2006

benchmarks because they do not use any C/C++ relaxed atomics. We believe that re-

laxed atomics will primarily appear in concurrent data structure code, while most other

program code would not be affected since they would likely use other primitives that pro-

vide stronger semantics, e.g., locks and atomics with memory order seq cst. Hence, we
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Figure 6.3: Performance overhead (in percentage) introduced by our dependency-preserving
compiler compared to the full optimization configuration (-O3) for C/C++ benchmarks in
SPEC CPU2006 with two copies of each benchmark running at two cores simultaneously. We
omit the “429.mcf” benchmark here because running two copies at the same time requires
more than 4 GB memory and thus causes out-of-memory error.

focus on evaluating the performance overhead incurred by forbidding load-store reordering

for real-world concurrent data structures. The results can be roughly viewed as the up-

per bound of the performance overhead of this approach. The performance impact on full

applications would depend on how much time those applications spend in concurrent data

structure code. Ideally, we would also like to benchmark full applications; however, many

existing multi-threaded applications that we have access to are not kept up-to-date with the

C/C++ memory model, and porting them to use C/C++ atomics is a non-trivial effort.

Hence we leave it as future work.
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6.2.1 Concurrent Data Structures with Multiple Threads

In this evaluation, we gather a total set of 43 real-world concurrent data structures from

several different sources, which range from basic synchronization primitive implementations,

concurrent queues/stacks/deques to concurrent maps. Most of these data structures are lock-

free, and all of them intensively utilize C/C++11 atomics. In more details, among these

concurrent data structures, we collect 18 of them from the CDS C++ library (Khiszinsky,

2017), 13 of them from the Folly library (Facebook, 2018), 4 different implementations of

concurrent maps from the Junction library (Preshing, 2018), 2 queue implementations by

Rigtorp (2017a,b), and 6 benchmarks used in CDSSpec (Ou and Demsky, 2017).

We ran each benchmark using 7 compiler configurations: (1) the stock LLVM compiler with

all optimizations enabled (-O3), i.e., Full Optimization; (2) our load-store-order-preserving

compiler which adds bogus conditional branches after relaxed loads (Bogus Conditional

Branch); (3) a variant of configuration 2 which adds address dependencies to existing stores

rather than bogus conditional branches if there is a subsequent store after a relaxed load

(Address Dependency to Store); (4) a modified compiler which adds address dependencies

from relaxed loads to a subsequent load, which can be an existing load if any or an inten-

tionally inserted bogus load otherwise (Bogus Load). Note that for a target relaxed load,

we insert a bogus load whose address is the same as the relaxed load to avoid cache misses;

(5) a modified compiler which treats relaxed loads as acquire loads (Acquire Load); (6) a

modified compiler which treats relaxed stores as release stores (Release Store); and (7) a

modified compiler which inserts “dmb ld” fences before relaxed stores (DMB Fence).

Since the Firefly-RK3399 board has two faster ARM Cortex-A72 cores and four slower ARM

Cortex-A53 cores, it can potentially increase the noise in our performance evaluation if we

run the benchmarks with multiple threads across the two different types of cores. Hence, we

ran each of our benchmark with two threads, and each thread exclusively runs on a Cortex-
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A72 core. We ran each benchmark test case for 5 times and use the average (arithmetic

mean) of those 5 runs as the execution time for each benchmark test case. For a benchmark

in which there exist multiple variants, we use the geometric mean of the execution time of

all the variants as the execution time of that benchmark. Although we ran the benchmarks

with only two threads in this experiment, it is important to note that the extra overhead

(i.e., extra dependencies or fences) that we introduce in this approach is local to each core

and thus should not result in extra communication between cores, and hence one would

not expect scaling issues; moreover, if the processor has limited memory bandwidth, as the

number of cores utilized increases, the relative overhead of these extra dependencies or fences

should become smaller.

Multiple Threads Single Thread
Configurations/Overheads Average Maximum Average Maximum
Bogus Conditional Branch -0.3% 6.3% -0.0% 5.2%
Address Dependencies to Store 1.3% 23.2% 0.5% 8.7%
Bogus Load 2.6% 42.9% 2.8% 14.7%
Acquire Load 0.4% 27.5% 2.1% 42.7%
Release Store 3.6% 82.6% 6.8% 38.9%
DMB Fence -0.1% 32.0% 3.2% 25.9%

Figure 6.4: Performance overheads (over full optimizations) incurred by different strategies
of forbidding load-store reordering for concurrent data structure benchmarks on Cortex-
A72 cores. The “Multiple Threads” columns show results for benchmarks running with two
threads, and the “Single Thread” columns show results for benchmarks running with a single
thread.

The performance overheads of different strategies to preserve load-store ordering (running

with two threads) over the performance under full optimizations are shown in the “Multiple

Threads” columns in Figure 6.4. The “Average” column shows the geometric mean of

the execution time of our benchmarks, and the “Maximum” column shows the maximum

overhead incurred by the corresponding strategy. We can see that the “Bogus Conditional

Branch”, “Acquire Load” and “DMB Fence” strategies incur an average overhead of less

than 0.5% across the 43 benchmarks on average. Notably, the “Bogus Conditional Branch”

strategy does not incur an overhead on average and only incurs a maximum of 6.3% overhead.

All other strategies have higher maximum overhead than the “Bogus Conditional Branch”
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strategy, indicating that they are less desirable approaches to preserving load-store ordering

in our experimental setting. We also show the performance results of each benchmark for

the Bogus Conditional Branch strategy in Appendix B.

Contention Under this experimental setting, we found that some of our benchmarks have a

faster execution time under our load-store-order-preserving compilers over full optimizations

(-O3), such as the Folly UnorderedAtomicInsertMap implementation (Facebook, 2018). A

possible explanation is that there exists contention in the data structure, and adding extra

instructions to implement ordering constraints alleviates this contention. To better compare

the performance of our approach, we also run our benchmark in a single-threaded (contention-

free) setting in Section 6.2.2.

6.2.2 Concurrent Data Structures with a Single Thread

We run our benchmarks in a single thread on an ARM Cortex-A72 core in order to study the

performance overhead of our approach without the contention issue under the 7 compiler

configurations described in Section 6.2.1. For example, for a concurrent queue, we ran

the queue with a single thread, which executes a certain number of enqueue method calls

and then a certain number of dequeue method calls. The results are shown in the “Single

Thread” columns in Figure 6.4. We can see that without contention, the “Bogus Conditional

Branch” strategy does not incur an overhead over full optimizations on average and only

incurs a maximum of 5.2% overhead. It also shows that the “Bogus Load”, “Acquire Load”,

“Release Store” and “DMB Fence” strategies are more expensive on average and in worst

case, which agrees with our micro-benchmarking results shown in Figure 5.2. Notably, even

though the “Bogus Load” strategy only adds address dependencies to existing or bogus loads

(which may seem inexpensive), it is still not desirable relative to the “Bogus Conditional

Branch” strategy. A possible explanation is that the added address dependencies can halt
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the execution of all future memory operations.

Thus, among the six strategies we implemented, when we consider both the multi-threaded

and single-threaded experiment results, the “Bogus Conditional Branch” strategy is the

most desirable under the processor we use because it has the lowest average overhead and

worst-case overhead in both the multi-threaded and single-threaded runs compared to all

other strategies. Also, if we consider the single-threaded runs, the “Address Dependencies to

Store” strategy is only slightly less desirable than the “Bogus Conditional Branch” strategy,

and it may serve as a potential approach for processors that incur higher overheads from

fake conditional branches.

6.2.3 Optimizations for the Load-Store-Order-Preserving Approach

There are two core ideas behind our optimizations to alleviate the performance overhead of

enforcing the load-store ordering. One is to take advantage of existing ordering constraints

that are intrinsic to the source code to avoid adding unnecessary extra ordering constraints,

and the other one is to move the added ordering constraints out of the critical sections when

possible. We discuss them in more details as follows.

Avoid Unnecessary Ordering Constraints As shown in Figure 5.3 (c) and (d), a

relaxed load can automatically have ordering constraints to subsequent stores because of

existing control or address dependencies, e.g., when the result of the load is used to compute

the condition of an immediately following conditional branch. Another scenario to optimize

is when a relaxed load is followed by fetch add-like atomic operations with acquire and

release semantics and there does not exist any atomic store in between. One notable real

example is the synchronizing barrier implementation (Velikov, 2012), with an interesting

code snippet shown in Figure 6.5. The fetch add operation that immediately follows the
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relaxed load on variable step has the memory order acq rel memory order, and the LLVM

backend will transform this fetch add operation to acquire load-exclusive and release store-

exclusive instructions. As a result, the fetch add operation effectively acts as a fence that

forbids the relaxed load and any subsequent stores to be reordered across it. Another such

pattern is a relaxed load immediately followed by a CAS operation. In the implementation of

our load-store-order-preserving compiler, we have an analysis to identify these patterns for

relaxed loads to avoid adding unnecessary ordering constraints.

unsigned step = step .load(relaxed);

if (nwait .fetch add(1, memory order acq rel) == n - 1) {
// Subsequent stores...

}
// Other subsequent stores...

Figure 6.5: A relaxed load followed by a fetch add-like read-modify-write operation (no
other atomic store in between) is naturally guaranteed to be ordered before subsequent
stores after the read-modify-write operation.

Move Added Ordering Constraints out of Critical Sections If a relaxed load in the

critical path requires adding extra ordering constraints, we can potentially reduce the penalty

if we can safely move the intentionally added ordering constraints out of the critical path.

Figure 6.6 shows the code for the unlock method of the Ticket Lock (Reed and Kanodia,

1979) implementation. This lock data structure maintains a turn variable to indicate whose

turn it is to take the lock. For a thread that holds the lock, the unlock method simply

increments the turn variable to allow the next waiting thread to acquire the lock. Since the

thread holding the lock has exclusive access to the turn variable, it does not use an atomic

fetch add operation, which is potentially more costly than a plain load and store. In this

case, to ensure that the relaxed load is ordered before all subsequent stores, a straightforward

approach is to add a bogus conditional branch right after the relaxed load and before the

release store; however, this intentionally added control dependency is in the critical section

because the turn variable has not been incremented yet (so the waiting thread potentially

needs to wait for a longer time). One observation is that the store in this case has release
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semantics, meaning that the load cannot be reordered across it. Hence, we can instead add

the bogus conditional branch after the release store. As a result, the critical section does not

contain any added control dependency that delays the process of releasing the lock. In our

implementation, for a relaxed load, we try to find the latest release store in the same basic

block of that load and add the bogus conditional branch after that last release store.

void unlock() {
unsigned my turn = turn.load(std::memory order relaxed);

// Still in the critical section

turn.store(my turn + 1, std::memory order release);

// Not in the critical section anymore

}

Figure 6.6: Example of a relaxed load followed by a release store. Since the relaxed load
cannot be reordered across the release store, we can safely delay adding a bogus conditional
branch till after the release store rather than before the release store.

6.2.4 Subtleties of Control Dependencies in the ARMv8 Memory

Model

According to the formalized ARMv8 memory model by Pulte et al. (2018), the definition of

control dependency is straightforward: all instructions that are after a conditional branch

in program order are control-dependent on the loads that the branch is data-dependent

on. This notion of control dependency is syntactic and holds regardless of the instructions

in the untaken branch, and without any distinction of true and false dependencies1. The

implementation of our load-store-order-preserving compiler is essentially based on this model,

and the bogus conditional branch that we intentionally added directly jumps to the next

instruction, i.e., the taken and untaken branches are at the same location. Take Figure 6.7

as an example, in which we load a value to register w1 (line 1), perform an AND operation on

1The ARMv8 architecture reference manual defines true dependencies and false dependencies, which
essentially aims at requiring the processor implementation to preserve only true dependencies (but not
false dependencies). For example, for instruction “and x2, x1, xzr”, register x2 has false dependency on
register x1, while for instruction “and x2, x1, x0”, register x2 has true dependencies on registers x0 and
x1. However, it is still not clear how one could precisely define this in a satisfactory way.
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the load result with zero (line 2), branch to the next instruction if the value in register w2 is

not zero (line 3), and then perform a store right after the branch(line 5). Here, the store in

line 5 has control dependency on the load in line 1 regardless of the fact that line 2 has false

data dependency and the conditional branch in line 3 jumps directly to the next instruction

(i.e., line 5).

1: ldr w1, [x0]

2: and w2, w1, wzr

3: cbnz w2, .BB 1

4:.BB 1:

5: str wzr, [x3]

6: ret

Figure 6.7: According to Pulte et al. (2018)’s memory model, the store in line 5 has control
dependency on the load in line 1.

However, the precise definition of control dependency is not entirely clear in the text of the

ARMv8 architecture reference manual (ARM, 2016). As it states:

“A Control dependency from a read R1 to a subsequent instruction I2 exists if and

only if there is a Register dependency from the data value returned by R1 to the

data value used in the evaluation of a conditional branch or the determination of a

synchronous exception on an instruction and I2 is only executed as a result of one

of the possible outcomes of that conditional branch or synchronous exception.”

The problematic phrase is that “I2 is only executed as a result of one of the possible outcomes

of that conditional branch”, which by some way of interpretation could mean that the store

in line 5 in Figure 6.7 is not control-dependent on the load in line 1 because the store

executes in all possible (taken or untaken) branches regardless of the branch condition. At

the time of the writing of this dissertation, there also exist rumors that there is research

effort in formalizing a weaker definition of control dependency in the ARMv8 memory model

than that defined in Pulte et al. (2018)’s model. However, it is not clear what such a
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definition would become, and the exact placement of the branch target in our load-store-

order-preserving compiler would also remain unclear till a precise definition is known. In

Figure 6.8, we hypothesize a stronger strategy to enforce load-store ordering, which hopefully

would survive future weakening to the notion of control dependency. In this strategy, instead

of letting the added conditional branch (line 3) jump right to the next instruction, we let

it jump to an infinite loop (line 6 and 7). We believe this is a strong constraint that would

form control dependency because at the point of executing the conditional branch, it can

potentially execute the next store or jump to execute an instruction that halts the whole

program, although at runtime the branch of the infinite loop would never be taken.

1: ldr w1, [x0]

2: and w2, w1, wzr

3: cbnz w2, .BB 2

4: str wzr, [x3]

5: ret

6:.BB 2:

7: b .BB 2

Figure 6.8: In this example, the target of the conditional branch in line 3 is an infinite loop
(line 6 and 7), instead of the next instruction as shown in Figure 6.7. This does not change
the semantics of the original code since the branch would not be taken at runtime.

Following this hypothesis, we implement a variant of our load-store-order-preserving com-

piler, which we refer to as the strong-load-store-order-preserving compiler. It differs from

our load-store-order-preserving compiler in the following ways: (1) for a relaxed load that

requires adding bogus control dependencies, we insert a bogus conditional branch that jumps

to an infinite loop rather than to the immediately subsequent instruction; (2) we turn off

the branch analysis, i.e., we add bogus control dependencies even for relaxed loads whose

results are used in a subsequent conditional branch (as shown in Figure 5.3 (c)); and (3)

similar to fetch add like operations, we treat non-acquire compare-and-swap operations as

regular relaxed loads and adds bogus control dependencies for their load parts.

We then run the same set of concurrent data structure experiments as shown in Section 6.2.2
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and Section 6.2.1 under our strong-load-store-order-preserving compiler on the Cortex-A72

cores. For the multi-threaded runs, our strong-load-store-order-preserving compiler incurs

an average of 0.6% overhead and a maximum of 22.7% overhead over baseline (O3); for

the single-threaded runs, it incurs an average of 1.0% overhead and a maximum of 9.5%

overhead over baseline. Compared to the results of our load-store-order-preserving compiler

(for Cortex-A72 cores) shown in Figure 6.4, we can see that our strong-load-store-order-

preserving compiler does incur slightly higher overhead than our load-store-order-preserving

compiler (for both single-threaded and multi-threaded runs). A likely explanation for this

is that our strong-load-store-order-preserving compiler treats more operations as relaxed

loads (and hence adds more bogus control dependencies than the load-store-order-preserving

compiler), and that adding branches that jump to infinite loops (rather than the immediately

subsequent instructions) can increase the cost of branch mispredictions.
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Chapter 7

Related Work

The out-of-thin-air problem has been shown to be a challenging issue that makes informal

reasoning, formal reasoning, and compiler optimization very difficult (Boehm and Demsky,

2014; Batty et al., 2013; Vafeiadis et al., 2015; Vafeiadis and Narayan, 2013). In spite of

much research on high-performance concurrent programming languages, we still do not have

a definitive solution to the out-of-thin-air problem. Indeed, Batty et al. (2015b) show that

there is no per-candidate-execution solution to the problem.

7.1 The Java and C/C++ Memory Models

The original Java memory model (Gosling et al., 1996) has been shown by Pugh (1999) to

be flawed, which is both too strong to admit compiler optimizations and too weak for some

commonly used programming idioms to work correctly. Various proposals for fixing the origi-

nal model were found to either prohibit optimizations or allow undesired behaviors (Maessen

et al., 2000; Manson and Pugh, 2001; Adve, 2004; Saraswat, 2004). Later, Manson et al.

(2005) propose a new Java memory model (Shipilëv, 2016a,b), which disallows out-of-thin-air
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executions by establishing a notion of justifying (well-behaved) executions: a write can only

perform early when there exists a justifying execution for it. As a result, it disallows the

canonical out-of-thin-air example shown in Figure 2.2 by showing that there cannot exist a

justifying execution for the write of 42 to either variable x or y. However, this model was

also found unsound with respect to some common compiler optimizations (Cenciarelli et al.,

2007; Ševč́ık and Aspinall, 2008) such as redundant read elimination. This issue remains

unresolved so far. The fact that our dependency-preserving approach supports normal mem-

ory accesses rather than just C/C++ atomics indicates that it is a promising direction to

explore for the Java memory model.

Unlike the Java memory model, the C/C++11 memory model (Boehm and Adve, 2008;

JTC, 2011; Becker, 2011; Batty et al., 2011) is shown to be sound with respect to com-

piler optimizations (Morisset et al., 2013), and researchers have used it in many aspects

including compilation schemes to specific architectures, model checking, compositional li-

brary abstraction, program logics and concurrent data structure specifications (Batty et al.,

2011, 2012; Sarkar et al., 2012; Norris and Demsky, 2013; Batty et al., 2013; Vafeiadis and

Narayan, 2013; Turon et al., 2014; Ou and Demsky, 2017). However, it does not forbid out-

of-thin-air executions; and the C++14 memory model (JTC, 2014) does not clearly define

out-of-thin-air behaviors and only vaguely states that implementations should ensure that

out-of-thin-air values that circularly depend on their computations should be disallowed. In

our dependency-preserving approach, we formally define a notion of dependency and evaluate

a prototype implementation on widely deployed commercial hardware.

Different from the axiomatic aspect of the C/C++11 memory model, Nienhuis et al. (2016)

present an equivalent operational operational for it. To represent the relaxed behaviors

allowed by the C/C++11 memory model, their semantics introduce symbolic steps, which

allow a read to read a symbolic value that is determined later. Notably, they allow cyclic

justification to account for out-of-thin-air executions.
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7.2 Forbidding OOTA While Allowing Compiler Opti-

mizations

Researchers have also proposed memory models whose goal is to disallow out-of-thin-air

behaviors while embracing compiler optimizations. Essentially, these memory models and

the two approaches we study in this dissertation are tradeoffs between the simplicity of the

memory model and the degree of compiler optimizations allowed. For instance, these memory

models primarily targets at forbidding the canonical OOTA example shown in Figure 2.2 and

allowing the load buffering example shown in Figure 2.1. Our approaches take a different

direction to impose some constraints on compiler optimizations, which forbids the executions

in both examples; and we provide an initial study of the runtime overhead of restricting

compiler optimizations to eliminate out-of-thin-air behaviors.

Event-structure-based game-like model for Java Jeffrey and Riely (2016) have pro-

posed a weak memory model based on event structures, which are sets of memory access

events with some causal order and conflict relationship. In their approach, a program is

viewed as a single event structure, and an execution is a justified configuration of the event

structure. To prohibit out-of-thin-air executions, they introduce the notion of well-justified

configurations, and they show that well-justified configurations are sequentially consistent

in the absence of data races. However, as the authors point out, their model does not allow

the reordering of independent reads, which makes it too strong to be efficiently implemented

on architectures such as Power and ARM. The authors suggest a fix for it, which, however,

may invalidate some other guarantees their initial proposal provides.

Event-structure-based model for C/C++ Pichon-Pharabod and Sewell (2016) have

also proposed an event-structure-based memory model with the goal of providing an en-
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velope around compiler and processor optimizations and forbid out-of-thin-air executions.

Their basic idea is to use an event structure to represent the current state for each thread

and capture all of its potential executions, and to allow interleaving of threads and trans-

formations over the event structure to abstract optimizations. They introduce mechanisms

such as deordering, merging, execution steps, value range speculation steps, etc, to simulate

the effect of compiler optimizations from thread-local to inter-thread optimizations. Their

model considers locks, relaxed atomics, and ordinary memory accesses, and it was later

pointed out that it does not validate some weak behavior allowed by the ARMv8 mem-

ory model (architecturally allowed at the time) and may not be compiled to ARM without

adding fences (Kang et al., 2017).

Promising semantics Kang et al. (2017) propose a memory model that forbids out-of-

thin-air behaviors based on operational semantics with timestamps and promises. The core

idea is that a thread can “promise” a write (i.e., issue the write early) if the thread can fulfill

that promise later without interacting with other threads (i.e., the promise is thread-locally

certified), which simulates the effect of load-store reordering by allowing a store to be visible

to other threads early. They attach a unique timestamp to each write, and each thread

records the largest timestamps for each memory location that it has observed. To ensure

cache coherence, a read can only from a write that has a timestamp that is at least as large

as the one observed so far. Their model handles the C/C++ release/acquire and relaxed

atomics, and ordinary memory accesses, and provides well-defined semantics for programs

with data races. Because of the idea that a promise only needs to be locally certified, many

thread-local optimizations are allowed by the model. They show their model is sound with

respect to some basic reordering optimizations and can be compiled to x86 and Power using

the expected compilation schemes, and Podkopaev et al. (2017) also show the proof of its

compilation correctness to ARM.
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Generative operational semantics for Java Jagadeesan et al. (2010) propose an opera-

tional memory model for Java with the goal of providing a generative view of the operational

semantics to the Java memory model. For data-race-free programs, their model is consistent

with the Java memory model; and when there are data races, their model would allow some

optimizations that the Java memory model disallows, e.g., validating the roach-motel re-

ordering and some peephole optimizations. To model compiler and processor optimizations,

it introduces the notion of speculation. Speculative executions create two copies of the origi-

nal process, the initial copy and the final copy, which are executed independently. The initial

copy assumes nothing, and the final copy assumes the speculated writes. A valid execution

is one where every speculation can be finalized, and when the speculation is finalized, only

the final copy remains. To ensure the properties of no-thin-air-reads and data-race-freedom,

it imposes constraints on the speculation such that it is not self-justifying, but is initial,

consistent and timely.

Operational aspects for C/C++ Podkopaev et al. (2016) propose an operational mem-

ory model for C11 that supports a large subset of the features of the C11 memory model.

Their model accounts for relaxed behaviors by introducing the notions of viewfront and op-

eration buffer that has a nesting structure. Each thread maintains a viewfront to record

which writes it has observed and can be used to ensure cache coherence. The per-thread

operation buffers allow a thread to postpone the execution of an action and allow reads to

return symbolic values, which is used to account for speculating relaxed behaviors. With

nested buffers, they can account for optimizations such as merging writes that appear in

both branches of an if/else block. It has not been proved that their model would support

standard compiler optimizations.

Theory of memory models Saraswat et al. (2007) propose a model (for the X10 lan-

guage) that represents a program as a graph, in which nodes represent memory actions and
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edges represent program order or synchronization order. Relaxed behaviors are then repre-

sented through the notion of a step, which performs transformations on the graphs such as

joining and splitting of the nodes. However, the model is built upon a restricted language

and does not support general branches, and thus it is not clear how hard it would be to map

their transformations to program transformations in a general-purpose language like Java.

Happens-before memory model Zhang and Feng (2013, 2016) propose an operational

memory model that is based on a replay mechanism to simulate speculation and allow writes

propagate to different threads at different times. Their model forbids some but not all

OOTA behaviors. Notably, their replay mechanism must keep track of syntactic dependencies

between instructions, and hence it would disallow some compiler optimizations.

It is important to note that the approaches that fall into this category generally expose

memory models that are substantially different from (and arguably more complicated than)

the C/C++ memory model, and it remains unclear whether they are sufficiently easy to

understand for compiler writers and developers.

7.3 Case-Based Approaches

Some other approaches are to constrain the usage of atomics to specific cases and provide

simple semantics for those cases. The well-known DRF-SC (Adve and Hill, 1990; Gharachor-

loo et al., 1992) model guarantees that all executions are sequentially consistent if there is no

sequentially consistent execution with a data race, which is easy to understand and allows

a wide range of optimizations (Ševč́ık, 2011; Morisset et al., 2013). Other work enumerates

common use cases for relaxed atomics and provides semantics for those use cases (Sinclair

et al., 2017). However, there are two challenges with these approaches: (1) memory model

designers must ensure that the cases handled cover the important usage scenarios and (2)
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bugs can produce behaviors that fall outside the well defined cases and then the memory

model may provide little or no guarantees as to the program’s behaviors.

7.4 Enforcing Stronger Memory Models

Preserving dependencies Boehm and Demsky (2014) have proposed the approach of

preserving syntactic dependencies to forbid out-of-thin-air behaviors, yet they do not strictly

define the notion of syntactic dependencies, and the overhead of preserving such dependencies

was unknown before. McKenney et al. (2016) have proposed an approach based on preserving

semantic dependencies rather than syntactic dependencies, which presumably allows more

optimizations than the syntactical approach. However, it is unclear how one can precisely

define such a notion of semantic dependencies.

Forbidding sb ∪ rf cycles Boehm and Demsky (2014) propose the approach of ensuring

the relation sb ∪ rf is acyclic on relaxed atomics. This model forbids the load-buffering

behavior that is allowed by the ARM and Power memory models and by some compiler

optimizations that potentially reorder reads/writes to different locations. Hence, imple-

menting this model would require restricting some compiler optimizations and introducing

additional memory fences or dependencies, and the actual overhead was unclear. Vafeiadis

and Narayan (2013) also consider this memory model and have shown the soundness of a

program logic called relaxed separation logic (RSL) for C11 relaxed atomic accesses based on

such a strengthened model. Our work complements this by providing an initial evaluation

on the overhead of the approach for execution of real-world concurrent data structure code

on a mainstream processor.
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Local DRF Dolan et al. (2018) have recently proposed a memory model that provides

a property called local data race freedom, which guarantees that all data-race-free portions

of a program still have sequential consistency semantics. They show that to implement

their memory model, one would need to preserve the ordering between loads and stores.

They implement it on OCaml with similar strategies that we use in our load-store-order-

preserving compiler and show that the average overhead over stock OCaml compiler for

ARMv8 architecture with sequential programs is ∼0.6%. Although both their results and

ours suggest that the overhead of preserving load-store ordering is relatively low on ARMv8

architecture, it is important to note the differences: (1) the primary goal of their model is to

provide the local DRF property but not to prohibit OOTA behavior, although their model

effectively disallows OOTA behavior; and (2) their results are based on OCaml. Similar to

the Java memory model, the OCaml memory model (Dolan et al., 2014) specifies atomic and

normal memory accesses, and atomic accesses are sequentially consistent. Their approach

needs to preserve load-store ordering for all normal (non-atomic) accesses; while our approach

targets the C/C++ memory model, which only affects the C/C++ atomics.

The SRA memory model Lahav et al. (2016) propose the SRA memory model, which

imposes release-acquire semantics on all memory accesses and requires that the union of the

(per-location) modification-order and happens-before relations be acyclic. This model effec-

tively forbids OOTA behavior and can be efficiently implemented on the x86 architecture;

however, its strong constraints are likely less acceptable on ARM and Power processors.

Enforcing TSO Ševč́ık et al. (2013); Demange et al. (2013) propose TSO for C and

Java, which is strictly stronger than our approach of preserving load-store ordering and

disallows OOTA behavior. While this approach can be reasonable for x86 multiprocessors,

the overhead of these proposals has not been practically studied and may not be the desired

approach when compiled for the ARM and Power processors, and it may not be viable
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solution for languages that are intended to support portable high-performance concurrent

programs.

Enforcing SC Researchers (Marino et al., 2011; Singh et al., 2012) have suggested stronger

memory models, e.g., sequential consistency, in which out-of-thin-air behaviors are prohib-

ited. They show that the cost is low when they implement such memory models on specialized

hardware. Our approaches also explore stronger memory models than the existing C/C++

memory model; however, the constraints we impose in general are much weaker than the

sequential consistency memory model. In addition, both of our approaches directly target

existing widely-deployed commercial processor designs that implemented a relaxed memory

model. Liu et al. (2017) have proposed a stronger Java memory model, which by default has

sequential consistency semantics. They show that the overhead is arguably acceptable for

server-side applications running on Intel x86 architectures.

Benchmarking weak memory models There is also work that benchmarks the perfor-

mance of weak memory models. Ritson and Owens (2016) focus on investigating the cost

of prohibiting out-of-thin-air behaviors on the Linux kernel. They inject identifiable assem-

bly sequences into the compiler output and use binary rewriting techniques to test different

instruction sequences that may prevent out-of-thin-air behaviors. Our work focuses on a

more general-purpose approach which involves modifying existing compiler code generation

process and comparing the result with the original compiler.

7.5 Other Related Work on Weak Memory Models

The RMC approach Crary and Sullivan (2015); Sullivan (2017) has proposed an ap-

proach called Relaxed Memory Calculus (RMC) that is fundamentally different from the
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C/C++ and Java memory models. In the RMC approach, programmers essentially reason

about the relative ordering of memory accesses in concurrent programs (in a fashion close

to hardware memory models) and explicitly specify the constraints on the execution order

and visibility of writes. Unfortunately, the RMC approach also suffers from OOTA behav-

ior and needs further fixes. It is important to note that Sullivan (2017) demonstrates that

ARMv8 seems to have a smaller overhead on dependencies/fences than ARMv7 and Power;

more notably, SC atomics perform nearly as well as C11 atomics on ARMv8. Hence, this

encourages future work to extend our evaluation to the ARMv7 and Power architectures.

Proposals for other languages There are also relaxed memory model proposals for other

high-level programming languages such as Go (goM, 2014), Javascript (jav, 2016), Rust (rus,

2018), Swift (swi, 2017), and WebAssembly (web, 2017). These memory model proposals

generally use the C/C++ or Java memory models as their guideline and would likely face

the OOTA problem. The two approaches that we study in this dissertation could also serve

as potential solutions for these proposals.

Concurrency Semantics for LLVM IR Chakraborty and Vafeiadis (2017) propose a

model based on event structures for LLVM intermediate representation, which is stronger

than the C/C++ memory model, weaker than known hardware memory models and validates

compiler optimizations.

Hardware Memory Models There exist significant research efforts in investigating and

formalizing hardware memory models (Sewell et al., 2010; Sarkar et al., 2011; Maranget

et al., 2012; Flur et al., 2016; Pulte et al., 2018). While hardware memory models may be

subject to changes for future processor design and optimizations, they generally do not allow

out-of-thin-air behaviors since they respect a syntactic data and control dependencies, while

traditional compiler optimizations could potentially introduce such behaviors (Boehm and
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Demsky, 2014). Our dependency-preserving approach defines a dependency notion that is

close to that of the hardware and enforces the compiler to generate code that respects such

dependencies.

Instantaneous instruction execution framework Zhang et al. (2017) provide a frame-

work based on operational semantics to specify weak (hardware) memory models. Their

model introduces hardware abstractions based on monolithic memory, invalidation buffers,

timestamps and dynamic store buffers, etc., to capture micro-architectural optimizations in

modern processors, and can express SC and TSO.

Denotational Weak Memory Models Castellan (2016) has proposed a denotational

semantics based on event structures for a toy concurrent programming language. In his

model, a thread is represented by a deordered event structure, and relaxed behaviors are

covered with two parts, the processor part and the memory part. The processor part explains

the reordering of memory operations, and the memory part explains how memory operations

are propagated to the other threads.
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Chapter 8

Conclusion and Future Work

Restricting compiler optimizations is a promising solution to eliminate out-of-thin-air behav-

iors. Our results show that on an ARMv8 processor the dependency-preserving approach

has an average overhead of 3.1% and a maximum overhead of 17.6% on the SPEC CPU2006

C/C++ benchmarks, and that the load-store-order-preserving approach has no overhead on

average and a maximum overhead of 6.3% on 43 concurrent data structures, which indicates

that the approach deserves further consideration. There remain opportunities to further re-

duce overheads by implementing more sophisticated optimizations and by carefully auditing

the compiler optimization passes we omitted.

The two approaches we have studied in this dissertation may inspire future research on inves-

tigating the runtime overhead of forbidding OOTA behavior, and some potential directions

are listed as follows:

• Evaluating the overhead on other relevant processors. The current evaluation is

targeted at an ARMv8 processor. As Sullivan (2017) points out, the ARMv8 processors

may have a smaller overhead on dependencies/fences than the ARMv7 and Power

processors, and hence it would make our study of the two approaches more thorough
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to evaluate them on ARMv7 and Power processors.

• Extending the benchmarks. We evaluate the dependency-preserving approach on

single-threaded and two-copy SPEC CPU2006 benchmarks. One potential improve-

ment is also to evaluate this approach on multi-threaded application benchmarks. We

evaluate the load-store-order-preserving approach on relatively small-scale concurrent

data structure benchmarks. It may enhance the evaluation to add (single-threaded and

multi-threaded) full application benchmarks and high-performance computing bench-

marks that use C/C++ relaxed atomics.

• Implementing and evaluating the dependency-preserving approach for Java.

The dependency-preserving approach is currently implemented and evaluated for C/C++.

Given that this approach may potentially fit in the Java context, one potential direction

to strengthen the study would be implementing the dependency-preserving approach

for Java and evaluating its runtime overhead.

94



Bibliography

2014. The Go Memory Model. https://golang.org/ref/mem. (May 2014).

2016. ECMAScript Sharedmem: Formal Memory Model Proposal Tracking. https://

github.com/tc39/ecmascript_sharedmem/issues/133. (July 2016).

2017. https://github.com/apple/swift/blob/master/docs/proposals/Concurrency.

rst. (Jan 2017).

2017. https://github.com/tc39/ecmascript_sharedmem/issues/133. (May 2017).

2018. https://doc.rust-lang.org/beta/nomicon/atomics.html. (2018).

Sarita V. Adve. 2004. The SC- Memory Model for Java. http://rsim.cs.illinois.edu/

~sadve/jmm/sc-.pdf. (2004).

Sarita V. Adve and Mark D. Hill. 1990. Weak Ordering - A New Definition. In Proceedings
of the 17th Annual International Symposium on Computer Architecture.

Jade Alglave, Luc Maranget, Paul E McKenney, Andrea Parri, and Alan Stern. 2018. Fright-
ening Small Children and Disconcerting Grown-ups: Concurrency in the Linux Kernel. In
23rd International Conference on Architectural Support for Programming Languages and
Operating Systems.

ARM. 2016. ARM Architecture Reference Manual (ARMv8, for ARMv8-A architecture
profile). (2016).

Azul. 2017. https://www.azul.com/press_release/falcon-jit-compiler/. (May 2017).

Mark Batty. 2014. The C11 and C++11 Concurrency Model. Ph.D. Dissertation. University
of Cambridge.

Mark Batty, Mike Dodds, and Alexey Gotsman. 2013. Library Abstraction for C/C++
Concurrency. In Proceedings of the Symposium on Principles of Programming Languages.

Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod, and Peter
Sewell. 2015a. The Problem of Programming Language Concurrency Semantics. In Pro-
ceedings of the 2015 European Symposium on Programming.

95

https://golang.org/ref/mem
https://github.com/tc39/ecmascript_sharedmem/issues/133
https://github.com/tc39/ecmascript_sharedmem/issues/133
https://github.com/apple/swift/blob/master/docs/proposals/Concurrency.rst
https://github.com/apple/swift/blob/master/docs/proposals/Concurrency.rst
https://github.com/tc39/ecmascript_sharedmem/issues/133
https://doc.rust-lang.org/beta/nomicon/atomics.html
http://rsim.cs.illinois.edu/~sadve/jmm/sc-.pdf
http://rsim.cs.illinois.edu/~sadve/jmm/sc-.pdf
https://www.azul.com/press_release/falcon-jit-compiler/


Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod, and Peter
Sewell. 2015b. The Problem of Programming Language Concurrency Semantics. In Pro-
ceedings of the 24th European Symposium on Programming.

Mark Batty, Kayvan Memarian, Scott Owens, Susmit Sarkar, and Peter Sewell. 2012. Clar-
ifying and Compiling C/C++ Concurrency: from C++11 to POWER. In Proceedings of
the Symposium on Principles of Programming Languages.

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathema-
tizing C++ Concurrency. In Proceedings of the Symposium on Principles of Programming
Languages.

Pete Becker. 2011. ISO/IEC 14882:2011, Information Technology – Programming Languages
– C++. (2011).

Hans Boehm and Brian Demsky. 2014. Outlawing Ghosts: Avoiding Out-of-Thin-Air Results.
In Proceedings of the 2014 ACM SIGPLAN Workshop on Memory Systems Performance
and Correctness.

Hans-J Boehm. 2005. Threads Cannot Be Implemented as A Library. In Proceedings of the
2005 ACM SIGPLAN Conference on Programming Language Design and Implementation.

Hans J. Boehm and Sarita V. Adve. 2008. Foundations of the C++ Concurrency Memory
Model. In Proceedings of the 2008 ACM SIGPLAN Conference on Programming Language
Design and Implementation.
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Aleksey Shipilëv. 2016b. Java Memory Model Pragmatics. https://shipilev.net/. (Oct
2016).

Matthew D Sinclair, Johnathan Alsop, and Sarita V Adve. 2017. Chasing Away RAts:
Semantics and Evaluation for Relaxed Atomics on Heterogeneous Systems. In Proceedings
of the 44th Annual International Symposium on Computer Architecture.

100

https://github.com/rigtorp/SPSCQueue
https://github.com/rigtorp/MPMCQueue
https://shipilev.net/blog/2014/jmm-pragmatics/
https://shipilev.net/blog/2014/jmm-pragmatics/
https://shipilev.net/


Abhayendra Singh, Satish Narayanasamy, Daniel Marino, Todd Millstein, and Madanlal
Musuvathi. 2012. End-to-end Sequential Consistency. In Proceedings of the 39th Annual
International Symposium on Computer Architecture.

Michael J Sullivan. 2017. Low-level Concurrent Programming Using the Relaxed Memory
Calculus. Ph.D. Dissertation. Carnegie Mellon University.

Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. GPS: Navigating Weak Memory
with Ghosts, Protocols, and Separation. In Proceeding of the 29th ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications.

Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin Morisset, and Francesco
Zappa Nardelli. 2015. Common Compiler Optimisations are Invalid in the C11 Memory
Model and what we can do about it. In Proceedings of the Symposium on Principles of
Programming Languages.

Viktor Vafeiadis and Chinmay Narayan. 2013. Relaxed Separation Logic: A Program Logic
for C11 Concurrency. In Proceeding of the 28th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications.

Momchil Velikov. 2012. http://stackoverflow.com/questions/8115267/

writing-a-spinning-thread-barrier-using-c11-atomics. (Oct 2012).
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Appendix A

The Select Set of IR-Level Passes

Enabled in Our

Dependency-Preserving Compiler

Figure A.1 presents the select set of IR-level passes that we enable in our dependency-

preserving compiler. Note that compared to the full set of IR-level passes enabled under full

optimizations (-O3), this is a relatively small set, which means that there remain opportu-

nities to further reduce the overhead by reviewing the disabled passes.
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Pass Name Is the Pass Modified

simplifycfg Modified

instcombine

dse

licm

slp-vectorizer

loop-unroll

gvn Unmodified

loop-rotate

mem2reg

globalopt

functionattrs

tailcallelim

lower-expect

sroa

inline

forceattrs

inferattrs

prune-eh

adce

rpo-functionattrs

elim-avail-extern

float2int

strip-dead-prototypes

globaldce

constmerge

deadargelim

argpromotion

early-cse

correlated-propagation

loop-unswitch

indvars

loop-idiom

loop-deletion

barrier

alignment-from-assumptions

Figure A.1: The select set of IR-level transformation passes that we enable in our
dependency-preserving compiler. Note that we globally modify the InstructionSimplify anal-
ysis to preserve data dependencies and to avoid phi nodes merging, which can affect some
of the unmodified passes that rely on it, e.g., the gvn pass.
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Appendix B

Detailed Results for the

Load-Store-Order-Preserving

Compiler

Now that Figure 6.4 presents a summary of the overheads of several different strategies of

preserving load-store ordering, this chapter presents the detailed results for each concurrent

data structure that we used to evaluate our load-store-order-preserving compiler.

104



B.1 Results for Adding Bogus Conditional Branches

on Cortex-A72 Cores

B.1.1 Running with a Single Thread

We first present detailed results for single-threaded execution for preserving load-store or-

dering using bogus conditional branches. These results best capture the actual overhead

that our compiler adds to the code to preserve load-store ordering. The plots show per-

centage slowdown relative to -O3 compilation. Positive numbers mean that the load-store

order preserving version is slower than the -O3 version while negative numbers mean that

the load-store order preserving version is faster than the -O3 version.
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Figure B.1: Performance overhead (in percentage) of the Bogus Conditional Branch strategy
over Full Optimizations for different split-ordered list variants from the CDS Library with a
single thread.
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Figure B.2: Performance overhead (in percentage) of the Bogus Conditional Branch strategy
over Full Optimizations for different skip list map variants from the CDS Library with a single
thread.
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Figure B.3: Performance overhead (in percentage) of the Bogus Conditional Branch strategy
over Full Optimizations for different Michael map variants from the CDS Library with a single
thread.
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Figure B.4: Performance overhead (in percentage) of the Bogus Conditional Branch strategy
over Full Optimizations for different queue benchmarks/variants from the CDS Library with
a single thread.
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Figure B.5: Performance overhead (in percentage) of the Bogus Conditional Branch strategy
over Full Optimizations for the Treiber stack and elimination-backoff stack variants from the
CDS Library with a single thread.
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Figure B.6: Performance overhead (in percentage) of the Bogus Conditional Branch strategy
over Full Optimizations for other benchmarks/variants from the CDS Library with a single
thread.
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Figure B.7: Performance overhead (in percentage) of the Bogus Conditional Branch strategy
over Full Optimizations for different benchmarks/variants from the Folly Library with a
single thread.
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Figure B.8: Performance overhead (in percentage) of the Bogus Conditional Branch strategy
over Full Optimizations for different benchmarks from CDSSpec, Rigtorp’s SPSC & MPMC
Queues and the Junction Library with a single thread.

B.1.2 Running with Multiple Threads

We next present detailed results for multiple-threaded execution for preserving load-store

ordering using bogus conditional branches for completeness. These results are significantly

more challenging to interpret as theoretically more efficient code can result in worse perfor-

mance due to extra contention. The results are also noisy — small differences in timing can

result in large performance differences. The plots show percentage slowdown relative to -O3

compilation. Positive numbers mean that the load-store order preserving version is slower

than the -O3 version while negative numbers mean that the load-store order preserving

version is faster than the -O3 version.
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Figure B.9: Performance overhead (in percentage) of the Bogus Conditional Branch strategy
over Full Optimizations for different split-ordered list variants from the CDS Library with
multiple threads.
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Figure B.10: Performance overhead (in percentage) of the Bogus Conditional Branch strategy
over Full Optimizations for different skip list map variants from the CDS Library with
multiple threads.

115



-2

-1

 0

 1

 2

 3

MichaelMap_DHP_less

MichaelMap_HP_cm
p

MichaelMap_Iterable_DHP_less

MichaelMap_Iterable_HP_cm
p

MichaelMap_Lazy_DHP_less

MichaelMap_Lazy_HP_cm
p

MichaelMap_Lazy_RCU_GPB_less

MichaelMap_Lazy_RCU_GPI_cm
p

MichaelMap_Lazy_RCU_GPT_cm
p

MichaelMap_RCU_GPB_less

MichaelMap_RCU_GPI_cm
p

MichaelMap_RCU_GPT_cm
p

S
lo

w
d
ow

n
 o

ve
r 

"-
O

3
" 

in
 p

er
ce

n
ta

g
e BogusCondBranch

Figure B.11: Performance overhead (in percentage) of the Bogus Conditional Branch strat-
egy over Full Optimizations for different Michael map variants from the CDS Library with
multiple threads.
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Figure B.12: Performance overhead (in percentage) of the Bogus Conditional Branch strategy
over Full Optimizations for different queue benchmarks/variants from the CDS Library with
multiple threads.
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Figure B.13: Performance overhead (in percentage) of the Bogus Conditional Branch strategy
over Full Optimizations for the Treiber stack and elimination-backoff stack variants from the
CDS Library with multiple threads.
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Figure B.14: Performance overhead (in percentage) of the Bogus Conditional Branch strategy
over Full Optimizations for other benchmarks/variants from the CDS Library with multiple
threads.
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Figure B.15: Performance overhead (in percentage) of the Bogus Conditional Branch strat-
egy over Full Optimizations for different benchmarks/variants from the Folly Library with
multiple threads.
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Figure B.16: Performance overhead (in percentage) of the Bogus Conditional Branch strategy
over Full Optimizations for different benchmarks from CDSSpec, Rigtorp’s SPSC & MPMC
Queues and the Junction Library with multiple threads.
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