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Abstract 

MULTIPLE IMPUTATIONS FOR LINEAR 
REGRESSION MODELS 

* David Brownstone 

Department of Economics 

U.C. Irvine 

Irvine, CA 92717 

BITNET: DBROWNST@UCI 

Rubin (1987) has proposed multiple imputations as a general method for 

estimation in the presence of missing data. Rubin's results only strictly apply to 

Bayesian models, but Schenker and Welsh (1988) directly prove the consistency of 

multiple imputations inferences when there are missing values of the dependent 

variable in linear regression models. This paper extends and modifies Schenker and 

Welsh's theorems to give conditions where multiple imputations yield consistent 

inferences for both ignorable and nonignorable missing data in exogenous variables. 

One key condition is that the imputed values must have the same conditional first 

and second moments as the true values. Monte Carlo studies show that the 

multiple imputation covariance estimates are accurate for realistic sample sizes. 

They also support the applications of multiple imputations in Brownstone and 

Valletta (1991), where the multiple imputations estimates substantially changed the 

qualitative conclusions implied by the model. 

* Financial support from the U.C. Irvine Research Unit in Mathematical Behavioral 
Sciences is gratefully acknowledged. Cheng Hsiao, David Lilien, Ken Small, 
anonymous referees, and participants at Camp Econometrics ill provided many 
useful comments and suggestions, but they are not reponsible for the remaining 
flaws. 
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1. Introduction 

Econometricians have been active in developing techniques for handling 

"nonignorable" missing data such as sample selection and truncation (see Heckman, 

1976). There has been far less interest in ignorable missing data (i.e. where the 

missing data mechanism depends only on observed exogenous data). The two usual 

methods for dealing with ignorable missing data are to use only cases with complete 

data or to impute missing values and then treat the imputed values as if they were 

observed. The former solution is frequently inefficient and the latter solution 

almost always produces biased confidence intervals and tests. 

Little and Rubin ( 1987) show that two general methods for consistent 

inferences with ignorable missing data are maximum likelihood and multiple 

imputations. This study concentrates on the latter since maximum likelihood 

techniques are more familiar to most econometricians, frequently require strong 

distributional assumptions, and are also frequently difficult to compute using 

standard software packages. In contrast, multiple imputation methods are 

relatively easy to implement. Moreover, some of the imputation methods described 

in Section 3 of this paper do not require strong distributional assumptions. In 

principle, the imputations can be done once and then used for many different 

analyses. Thus, by including the multiple imputations in a public use file, 

confidential information such as exact addresses could be used to improve the 

quality of the imputations without sacrificing confidentiality of the data in the 

public use file. 

Rubin (1987, Chapter 4) shows that if the data are being analyzed and missing 

data being imputed using full Bayesian models, then multiple imputations provide 

consistent estimates. These results can be difficult to apply in situations where the 

analyst is not willing ( or able) to specify a full Bayesian model. Schenker and 

Welsh (1988) give a direct proof of the consistency of multiple imputations when 
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here are missing values of the dependent variable in a linear regression model. This 

application of multiple imputations is not practically important since the complete 

data least squares estimator is the maximum likelihood estimator for this model and 

therefore dominates the multiple imputations estimator. The next section of this 

paper reviews the multiple imputations method and shows how Schenker and 

Welsh's results can be modified and extended to provide general conditions for the 

consistency and asymptotic normality of multiple imputations estimators when 

there are missing data in independent variables in linear regression models. 

When there are missing data in independent variables, or, as in Brownstone 

and Valletta (1991), additional information which can be used to improve 

imputations for dependent variables, then multiple imputations will generally be 

more efficient than the complete data least squares estimators. In these cases the 

non-missing dependent variable observations corresponding to the observations with 

missing independent variables provide additional information which is captured by 

the multiple imputations procedures. However, multiple imputation estimators are 

generally not fully efficient, as shown in Section 4 by comparing them with Ruud's 

(1991) Simulated EM estimators. Nevertheless, for the applications in Brownstone 

and Golob (1992) and Brownstone and Valletta (1991), multiple imputations 

estimators were substantially more efficient than the corresponding complete data 

estimators. 

The third section considers imputation methods for ignorable missing data in 

both dependent and independent variables in regression models. Two methods also 

analyzed by Schenker and Welsh are shown to satisfy the conditions for consistency 

given in the second section. A new method which uses bootstrap iterations to draw 

the imputation values is also described and shown to satisfy the consistency 

conditions. This "bootstrap" imputation method has the advantage of being less 

sensitive to departures from normality. Monte Carlo studies illustrate the 
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consistency and small sample performance of multiple imputations using these 

imputation methods. The results in this section justify the application of multiple 

imputations in Brownstone and Valletta's {1991) study of measurement errors in 

cross-section and dynamic earnings equations. 

The fourth section discusses the application of multiple imputations to 

regression models with nonignorable missing data. The key new difficulty presented 

by this case is obtaining consistent parameter and standard error estimators for the 

imputation model. This section shows how multiple imputations methods can be 

used to obtain consistent standard errors for weighted linear regression with 

estimated weights and a Feasible GLS alternative to Heckman's {1976) two-step 

estimator for sample selection models. This latter application allows for consistent 

inference without the complex matrix computations given by Lee, Maddala, and 

Trost {1980). The finite-flample behavior of the multiple imputations estimates is 

demonstrated with a Monte Carlo example based on Brownstone and Englund's 

{1991) model of Swedish housing demand. 

2. Multiple Imputation Methods 

The fully efficient approach to the problem of missing data is to specify a 

model for the missing data mechanism and then jointly estimate this model together 

with the analysis model using maximum likelihood techniques (see Fuller, 1987 and 

Little and Rubin, 1987). A simpler approach is to somehow generate imputed 

values for the missing data, and then analyze the resulting completed data set as if 

there were no missing values. While this is simple, it also leads to downward biased 

standard error estimates regardless of the accuracy of the imputation procedure. 

The difficulty with this approach is that some method is needed to account for the 

errors in the imputation procedure. 
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Rubin (1987) has proposed multiple imputation as a general method for 

generating consistent inferences from data sets with imputed values. Instead of just 

generating one imputation, a number of imputations are created for each missing 

observation, resulting in a number of completed data sets. Estimators and test 

statistics are computed from each completed data set and then combined to 

generate the final inferences. The next section gives explicit methods for obtaining 

proper multiple imputations. This section summarizes the methods used for 

combining estimators computed from each completed data set and shows how 

Schenker and Welsh's (1988) results can be extended to handle missing data in 

exogenous variables in linear regression models. 

Assume that we are interested in estimating some vector 0, and, in the 

absence of missing data and conditional on all of the observed data, we have an 
A 

estimator O which has an asymptotic Normal distribution with mean O and 

covariance n. Suppose also that there is a consistent estimator, n, for n. Further 

assume that we have a "proper" imputation model (to be defined later), and that we 

have drawn a set of M independent (conditional on the observed data) imputations 
A* 

for each missing value. For each of the resulting M completed data sets compute Oi 
A. 

and ni . The final estimate of O is the average of the point estimates from the M 

completed data sets: 

(1) 
_ -1 M A. 
OM= M \" O . . l. 1 1 

l= 

If OM is the corresponding average of the completed data covariance estimates and 

(2) 

then 



D. Brownstone Page 6 September 28, 1991 

(3) 

is the estimate of the covariance of ( BM - 0). Note that TM can be heuristically 

derived from: 

(4) 

where a are estimates of the unknown parameters in the imputation model. The 

first term on the right-hand side of equation (4) is estimated by OM' and it 

represents the covariance within a set of imputations. The second term is estimated 

by (1 + M-1)BM, and it represents the covariance across different sets of 

imputations. 

As both the number of imputations, M, and the sample size get large, the 

Wald test statistic for the null hypothesis that fJ= 0°, 

(5) 

has an asymptotic Xi distribution (K is the rank of 0). If Mis finite, but still 

moderately large (M~5K), then Rubin (1987) shows that a better asymptotic 

approximation to the null distribution of the Wald test is given by an F distribution 

with Kand v degrees of freedom, where 

(6) v = (M-l)(l+rM 1)
2 and 

rM = (l+M-1
) Tr(BMOM 1)/K. 

Note that, if K = 1, then rM is the relative increase in variance due to nonresponse. 

Li et. al. (1991) give an alternative approximation for smaller M. In some 
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applications, particularly public use files, M must be small. However, it is clear that 

the variance of BM is reduced by larger M. This suggests that it is better to 

compute M large enough so that II in equation (6) is large enough to use the 

asymptotic Xi distribution for inference. All of the estimations reported in this 

paper used M large enough so that II is greater than 100. The resulting M values are 

between 10 and 20. 

The key issue is how to generate "proper" multiple imputations; i.e. 

imputation methods where OM and TM are consistent for O and 0. Rubin (1987) 

shows that if one is using an explicit Bayesian model, then making independent 

draws from the posterior predictive density function for the missing observations 

will generate proper imputations. Since it can be difficult to verify that a particular 

imputation procedure is proper without using a formal Bayesian model, I will 

discuss conditions which are easier to verify for linear regression models. 

Consider the standard linear model: 

(7) y = XO+ E, 

where, conditional on X, the components of E are independent and identically 

distributed random variables with mean O and variance 112, and O is a K-dimensional 

vector of unknown coefficients. In the absence of missing data, 0 would be 
A 

estimated by ordinary least squares, 0, and inference would be based on: 

(8) 

I 

vN (0- 0) ~ ~-l (lim X' f) = N(o,u2~-1) 
./N 

s2 = y' (I - X(X
1 

Xf1x' )Y / (N-K) ~ u2, 

where ~ = lim (X X)/N is assumed to be positive definite. Now suppose that the 
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first N0 observations contain missing data in either (or both) of the exogenous or 

endogenous variables, but that there are no missing data in the remaining N 
1 

( = N -

N
0

) observations. 

Assume further that there is some method for producing imputed values of the 

• • missing variables, denoted Y
O 

and X
0
, conditional on the observed data and the 

imputation model parameters, which has the following properties: 

(9) 
., • I 

Plim (Yo Xo)/N = Plim (YoXo)/N and 
• I • I 

Plim (XO Xo)/N = Plim (XoXo)/N. 

These conditions, which state that the asymptotic moments of the imputed 

variables match the first two asymptotic moments of the unobserved true variables, 

are sufficient to establish the consistency of the multiple imputations parameter 
- 4* 

estimator, OM, since the completed data least squares estimate, 0 , is given by: 

(10) 

4* 4 
Assumptions 9 imply that Plim O = Plim O = 0. 

Establishing the asymptotic distribution of OM requires additional 

assumptions about the imputation process. Suppose that: 

(11) 

4* 4 
If the stacked vector ,i/N ( 8. - 8) converges to a multivariate normal distribution 

with off-diagonal correlations given by 

(12) 
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then for fixed M~2, 

(13) 

Schenker and Welsh1s {1988) Lemma 1 then implies that 

(14) IN ( OM - 0) = IN ( OM - 0) + IN ( (J - 0) 

1 N(O,u2A-l + ('E/M + Ec(M-1)/M)) . 

Since it is clear that NOM is a ~nsistent estimator of u2A-1, the consistency 

of NTM for the asymptotic covariance of OM depends on N(l+M-1)BM. 

Straightforward calculation shows that 

A* • A* • / 
(15) Plim N ( Oi - OM) ( Oi - OM) = (E - Ec)(M-1)/M , so that 

(16) Plim N(l+M-l)BM = (l+M-1)(E - Ec) . 

Comparing equations (14) and (16), it is clear that TM is consistent only if E = 2Ec. 

If this condition is satisfied, then a large number of multiple imputations reduces 

the variance component estimated by (l+M·1)BM by a factor of 2 relative to a 

single imputation. The next section will examine some simple imputation methods 

and demonstrate that they satisfy the E = 2Ec condition. 

Although the above analysis generalizes Schenker and Welsh (1988), there are 

some important differences. The key difference is that Schenker and Welsh assume 

that Ec = 0, and they center their analysis around the least squares estimator for 
A • 

the complete data., 01' This allows them to get the stronger results that IN ( OM - 0) 

is asymptotically independent of BM and that BM converges to a Wishart 



D. Brownstone Page 10 September 28, 1991 

distribution. Unfortunately, their conditions only apply to the case where there is 

ignorable missing data in the endogenous variable in a regression model and the 

missing values are imputed using only the observed data (i.e. Y 
1 

and X
1
). These 

A 

conditions imply that the complete data estimator, 0
1
, has lower variance than the 

multiple imputations estimator, OM. Schenker and Welsh's results further imply 

that as M goes to infinity, the asymptotic covariance of OM converges to the 
A 

asymptotic covariance of 0
1
. Therefore multiple imputations or any other attempt 

A 

to improve on 0
1 

is not useful in this situation. The generalizations and 

modifications carried out in this section justify the use of multiple imputations in 

situations where OM does have lower asymptotic covariance than Or 

3. Imputation Methods 

The previous sections shows that the consistency of the multiple imputations 

estimators, OM and TM' depends crucially on the properties of the methods used to 

draw the imputed values. This section describes some simple imputation procedures 

and shows that they satisfy all of the requirements for the consistency of the 

multiple imputations estimators given in the previous section. These results will be 

illustrated by a number of Monte Carlo examples. All of the methods described 

here assume that the missing data process is ignorable conditional on fully observed 

exogenous variables. This implies that the complete data least squares estimator, 

0
1

, is consistent. The next section will discuss extensions to cases with nonignorable 

missing data. 

To keep the notation simple, I will first consider the case where there is only 

one exogenous variable. The general approach to generating imputations which 

match the first two moments of the missing variable ( and therefore satisfy 

conditions 9) is given by: 
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(17) 

• where 110 are independent draws from the distribution of X
0 

- E(X
0 
I Y 

0
). Note that 

• 110 have mean O and variance equal to V(X0 I Y 
0
) = u~, so that 

(18) 

(19) 
., • I ., • 

E(X0 X0) = E(E(X0 I Y 0) E(X0 I Y 0)) + E(E( 110 110) I Y 0) 
I I 

= V(E(X
0

1Y
0
)) + E(X

0
) E(X

0
) + E(V(X

0 
X

0
)jY0) 

Since the missing data process is ignorable, standard parametric or 

nonparametric regression methods (see Manski, 1991) can be used to consistently 

estimate E(X11Y1) and V(X
1

1Y
1
) from the observed data. These estimates can 

then be used to create imputed values according to equation (17) above. If, as will 

be assumed in the rest of this section, (X,Y) are jointly normally distributed, then 

E(X
1

1Y
1
) and V(X

1
jY

1
) can be estimated by regressing X

1 
on Y

1
. Note that 

equations (18) and (19) still hold even if (X,Y) are not joint normal, as long as some 

consistent estimators of E(X
1

1Y
1
) and V(X

1
1Y

1
) are available. It is crucial, 

however, to condition on Y. 

The final step is to establish that the imputations satisfy E = 2Ec. Without 

loss of generality we can further assume that E(X) = E(Y) =0. Conditional on the 
A* A 

observed data, which includes any estimated parameters in E(X
0 
I Y 0), ./ff ( Oi - 9) 

has the same asymptotic distribution as 
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(20) 

where 170 = X0-E(X0 I Y 0). Since we are assuming that (X,Y) are bivariate normal, 
I 

(Si'Rj) are also joint normally distributed so that (Si Rj) are elements of;:. matrix 

* with an asymptotic Wishart distribution. Since '7i have the same distribution as 11
0 

and are independent of E
0 

and 11
0

, 

, { 2u2 if i=j 
E(S. S.)/N = '7 

1 J 2 .f . .J. • 
O'TJl lrJ 

(21) 
, { 0 if i=j 

E(S. R.)/N = 
1 J 2 'f · .J. • 

O' '7f 1 1 rJ 

, { A+ 62u~ if i=j 
E(R. R.)/N = , where 

1 J A ifi#j 

Moment formulas for the Wishart distribution (see Press, 1982, page 115) then give: 

(22) 

(23) 
I 2 I I 

E(S. R.) /N = 2 E((S. R.) (S. R.))/N , 
1 1 1 1 J J 
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and therefore 

{24) 

Thus, the multiple imputations estimator, OM, is consistent and asymptotically 

normally distributed for fixed M~2, a.nd TM is a consistent estimator of its 

asymptotic covariance. 

The computations required for multiple imputations with the imputation 

procedure in equation ( 17) a.re similar to those required by the EM algorithm for 

maximum likelihood described in Little and Rubin (1987, pp. 143). The E 

( expectation) step calculates the two "complete data" sufficient statistics 

conditional on the observed values and current parameter values according to: 

""" I I """ s1 =X0 Y0 + x
1 
Y1 , x0 = E(X0IX

1
, Y, O) 

{25) 
""" I """ I s2 =X

0
X

0 
+ Var(X

0
1X

1
, Y, 0) + X

1
X1 

The M (maximization) step calculates a new estimate of 0 using the above sufficient 

statistics. The EM algorithm iterates between the E a.nd M step, using the new (J 

from the M step to update the sufficient statitics in equations (25). 
• A 

If the imputed values from equation (17), X
0
, replace X

0 
a.nd the variance 

term is dropped, then the resulting simulated sufficient statistics calculated from 

{25) are clearly unbiased estimates of S
1 

a.nd S
2

. If this method of updating the 

sufficient statistics is iterated similarly to the EM algorithm, then it becomes 

Ruud's (1991) Simulated EM estimator. Of course, the multiple imputation 

algorithm does not update the para.meter estimates before each imputation. 
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Another difference is that, except for special cases with exponential families 

(including the slope parameters in the linear model), the completed data estimators 

used in multiple imputations do not maximize the expected log-likelihood as 

required by the EM algorithm. Therefore it is clear that the multiple imputation 

estimator is generally not equal to, nor as efficient as, the maximum likelihood 

estimator. 

The simple model analyzed above is not very interesting from a practical 

perspective since, as in Schenker and Welsh's model, the multiple imputations 
4 

estimator is dominated by least squares computed from the complete data, 0
1
. 

However, if there are additional fully observed exogenous variables, Z, then, as long 

as (X,YI Z) is bivariate normal and E(XI Y,Z) is homoskedastic and linear in Z, the 

above analysis will show the consistency of multiple imputations if everything is 
4 

conditioned on Z. If a is the least squares estimator of X
1 

on Y
1 

and Z1 ands; is 

the standard unbiased least squares estimator of the conditional variance, u;, then 

one set of proper imputations can be generated from the following procedure: 1) 

* * 
draw u; from (N1-K)s;

1
/;((Ni-K) and draw a from a 

4 * , 1 
N(a,u; [(Y

1 
Z

1
) (Y

1 
Z

1
)r ), then 2) construct 

(26) 

where Fis a vector of N
0 

independent draws from a standard normal distribution. 

Additional sets of imputations needed for multiple imputations can be constructed 

by repeating the above procedure. Schenker and Welsh call this method, which is a 

simple extension of a method used in Herzog and Rubin (1983), the "normal 

imputation" procedure. 
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The "normal imputation" procedure can be easily modified to accommodate 

multivariate missing data. If J is the number of variables to be imputed, X
0 

is now 
A 

a NO• J matrix, a is a matrix of least squares ( or seemingly unrelated regression) 

estimates with J columns, and s2 is a J•J estimated residual correlation matrix. u2* 
T/ * T/ 

is drawn from a Wishart(s~1J,(N1-K)) distribution, vec(a ) is drawn from a 

N(vec( ~), <1f •((Y 
1 

Z
1
), (Y

1 
Z

1
)r1) distribution, and Fis a N

0
•J matrix of 

independent standard normal random variables. This multivariate imputation 

procedure clearly also works for imputing missing values of the endogenous variable, 

Y
0

. In this case, the regression(s) used to impute Y
0 

only contain Z as right hand 

(exogenous) variables. 

The practical usefulness of the normal imputation procedure is illustrated here 

with a small Monte Carlo study. The data are generated according to: 

(27) 

ys = 1 + XS + cpl 

% =XS+ cp2 

y = ys - .2xs + cp3 , 

where the cpi are each composed of 200 independent draws from a standard normal 

distribution and xs is also drawn from a standard normal but held fixed throughout 

the Monte Carlo repetitions. The last 100 observations of ys and xs are treated as 

missing, and they are replace by (multiply) imputed values using the multivariate 

normal imputation procedure described in the previous paragraphs. This design is a 

simplified version of a model used in Brownstone and Valletta (1991), where ys and 

xs represent true values of primary job earnings and tenure respectively. The true 

values, obtained from employer administrative records, are only observed in a 

relatively small validation study, but the reported values, 71 and x, are observed in 

both the validation and main samples. 
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The Monte Carlo results for the slope coefficient, given in Table 1, are based 

on 400 Mox:.te Carlo repetitions. As expected, all of the slope estimates are very 

close to the true value, 1. The multiple imputations variance estimator, TM, is also 

quite close to its true value. Table 1 also illustrates the general conclusion that the 

variance of the multiple imputations estimator lies between the variance of the 
-

complete data estimator, 0
1

, and the estimator computed using the true values of 

the missing observations, 0 (which is not available except in a Monte Carlo study). 

-* Although the completed data estimator, 0 (least squares treating one set of 

imputed values as fixed) is only slightly less efficient than multiple imputations in 

this example, the standard error estimates computed using the usual least squares 

formulas are downward biased by almost 50 percent. 

Estimator 

OM 

{fM 
-* 0 

A* 

_SE( 0 ) 

01 
A 

SE( 0
1

) 

0 
A 

SE(O) 

Table 1: Monte Carlo Results For Slope Coefficient and SE 
Estimators in Regression of ys on a constant and xs 

Mean Standard Deviation 

0.99 .088 

0.084 .008 

0.99 .094 

0.067 .005 

1.00 .100 

0.99 .004 

1.00 .065 

0.069 .003 

Note: SE(•) denotes the standard error of the least squares coefficient estimator 

using the usual formula (s2(X
1 xr1). 
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When faced with data generated from equations (27), many applied 
A 

econometricians would use the complete data estimator, 0
1
, which is consistent, but 

inefficient. Some would use a single imputation, which, if proper in the sense 

defined at the beginning of this section, would also yield a consistent estimator. 

Unfortunately, treating the imputed values as fixed leads to biased inferences. The 
A 

multiple imputations estimator is relatively easy to compute, more efficient than 0
1 

A* 
and 0 , and yields consistent inferences. Finally, some would treat y and x as proxy 

variables and estimate the slope coefficient by regressing 11 on x and a constant. 

This would be disastrous for the design used here, yielding an average estimate of 

.41 with a standard deviation of .07. 

Additional Monte Carlo experiments were performed using variations on the 

design in equations (27). As the measurement error ( cp
2 

and cp
3
) variances increase, 

• A* 
the variances of the imputation estimators ( OM and 8 ) increase towards the 

A 

variance of the complete data estimator, 0
1
. Also, as the number of multiple 

imputations, M, is reduced to 5 or 10, the variance of the multiple imputations 

variance estimator, TM, increases, but its mean value over the Monte Carlo 

repetitions remains close to the true values. The results of these additional Monte 

Carlo experiments are reported in a separate appendix available from the author. 

Although the above analysis of the normal imputation procedure assumed 

joint normality of (X,Y), all that is necessary is that the moment conditions in 

equations (21) and (22) are satisfied. Schenker and Welsh suggest a modification of 

the normal imputation procedure which is less sensitive to the normality 

assumption. Their "adjusted normal imputation" method replaces Fin equation 

(26) with N
0 

independent draws with replacement from the studentized residuals 

from the regression of X
1 

on (Y
1
,z

1
). They then use Freedman's (1981) results on 

the consistency of bootstrap distributions to show that this adjusted method has the 

same asymptotic properties as the normal imputation procedure. 
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One difficulty with the "adjusted normal imputation" method is that it still 
A 

assumes that a a.nd s~ follow a normal a.nd chi-squared distribution, which is only 

asymptotically correct. This suggests further modifying the imputation procedure 

* to also draw a a.nd u~ from their bootstrap distributions. This "bootstrap 

imputation" procedure is implemented by: 

a) Draw a N 
1 

element vector of simulated residuals by drawing independently 

with replacement from the least squares residual vector from the regression of 

X
1 

on {Y1,Z1), 17
1
. 

• b) Generate a simulated vector of observed X
1 

values, X
1
, by adding the 

A 

simulated residuals in a) to (Y 
1
,Z

1
)a. 

* • 
c) Calculate a by regressing X

1 
on {Y

1
,Z

1
). 

• * • • 
d) Calculate imputed values, X0 = {YO z0)a + 17

0 
, where 170 is a NO element 

vector drawn independently with replacement from 11
1 

as in a). 

Each loop through these four steps creates another set of imputations. Freedman's 

{1981) results also imply that this bootstrap imputation procedure has the same 

asymptotic properties as the normal imputation procedure. Small sample biases in 

the bootstrap can be removed by multiplying the residual vector, 11
1

, by 

(N / {N cK))-1/2 before resampling in steps a) and d). Although this bootstrap 

method does not require normality, it is crucial that the residual vector, 11, be 

homoskedastic. 

When the Monte Carlo study leading to Table 1 is replicated using the above 

bootstrap imputation procedure, then the results are almost identical to Table 1. It 

would be interesting to examine the behavior of these different imputation schemes 

when the data generating process is not normally distributed, since that is where 

differences should arise. The bootstrap imputation procedure may also be easier to 

implement in existing statistical software packages, since it does not require explicit 

sampling from parametric distributions. 



D. Brownstone Page 19 September 28, 1991 

ff the regression function, E(X I Y,Z), is nonlinear, then none of the above 

techniques will yield proper imputations. Assuming that E(Y I X,Z) is still linear 

and homoskedastic, the imputation methods could be modified by replacing the 

least squares approximation to E(X I Y,Z) with some other consistent estimator. 

Manski (1991) gives a recent review of possible estimators. As long as imputations 

generated according to equation (17) asymptotically satisfy the moment conditions 

in equations (18), (19), (21) and (22), the resulting multiple imputations estimators 

should still be consistent. In practice, most models with E(X I Y,Z) nonlinear will 

also have E(YI X,Z) nonlinear. Brownstone and Golob (1992) used multiple 

imputations in a model where (X,YI Z) follow a joint ordered probit distribution. 

Monte Carlo studies and internal consistency checks suggest that multiple 

imputations yields consistent inferences in their application. 

One possible difficulty with all of the imputation procedures discussed above 

is that when (Y
0
, Z

0
) contains outliers relative to (Y

1
, Z

1
), regression predictions 

can be far outside the range of the observed values, X
0
. In many cases this means 

that the imputed values are the ones with the highest leverage in the completed case 

estimations. Little (1988) has proposed a method, called predictive mean 

matching, which avoids imputing extreme values. Predictive mean matching uses 

the output from one of the other imputation procedures and then assigns the 

observed value in X
1 

which is closest to the imputed value as the final imputed 

value. This method can introduce large biases unless the range of the observed 

values, X
1
, includes the range of the unobserved true values, X

0
. 

Multiple imputations using either Little's predictive matching or the new 

bootstrap imputation procedure should be more robust to departures from normality 

than maximum likelihood methods. 
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4. Multiple Imputations for Nonignorable Missing Data 

The previous sections of this paper have all assumed that the missing data 

process is ignorable, which means that, conditioned on Z, (X
1
,Y

1
) is a simple 

random sample from (X,Y). In this case the complete data estimator, f\, is 

consistent and the main issues are efficiency and consistent inference. If the missing 
A 

data process is nonignorable, then 0
1 

and all of the imputation procedures discussed 

in the previous section are inconsistent. One common approach (see Heckman, 

1976) in applied econometrics is to postulate a joint model for the response 

probability and the regression equation (7) and then jointly estimate the model 

using the observed data. If the response probabilities are known, such as with 

deliberate choice-based sampling, then weighted least squares with weights 

proportional to the inverse response probabilities will yield consistent estimates 

using the observed data1. Once some method of consistently estimating 

E(X
0 
I Y 

0
,Z

0
) is adopted, then any of the methods discussed in Section 3 can be used 

to generate proper multiple imputations for the missing observations. This section 

shows how multiple imputations can also be useful for consistently estimating the 

imputation models when there are non-ignorable missing data. 

Although weighted regression methods are simple to use, inferences from these 

procedures are only valid for known fixed sampling weights. In many cases it may 

be possible to consistently estimate the sampling weights, but then inference 

procedures need to be modified to account for the estimation error in the sampling 

1 See DuMouchel and Duncan (1983). Note that this is just the Weighted Exogenous 
Sample Maximum Likelihood Estimator (Manski and Lerman, 1977) applied to the 
linear regression model. DuMouchel and Duncan point out that the correct 
covariance estimator for weighted least squares in this situation is given by 

I I I 

s2(X DX)·1(X D2X)(X DX)·1. Unfortunately, most weighted least squares 

packages use the GLS formula s2(X' DX) ·1 which is inconsistent here. 
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weights. Suppose it is possible to generate multiple sets of imputed sampling 

weights, then consider multiple imputation estimators given in equations (1) - (3) -. -. . 
with Oi and ni being the weighted regression coefficient and covariance estimators -. for the ith set of imputed weights. Since conditional on the ith set of weights, O. and 

1 
.. . - - -
ni are clearly consistent, OM and OM are consistent for O and E(Cov( OM I weights)) 

. - .. 
(at least as M ➔ 111). Since E(OMlith set of weights)= Oi' as M goes to infinity BM is 

consistent for Cov(E(OMlweights)). Therefore, by equation (4), TM is consistent for 

Cov( OM) when both N and M go to infinity. 

Rubin (1986) gives a method for estimating and multiply imputing weights for 

statistical file matching. Brownstone and Golob (1992) use this method to multiply 

impute weights needed to predict the number of commuters who would carpool to 

work as a function of the level of various carpooling incentives. A small Monte 

Carlo study established the validity of the multiple imputations inferences for this 

example. However, since the estimation error in the weights is very small in this 

application (i.e. BM is 5% of TM), this is not a very demanding test of the 

methodology. 

Since the Weighted Exogenous Sample Maximum Likelihood Estimator 

(WESMLE, see Manski and Lerman, 1977) is a linear function of the weights, 

multiple imputations should yield consistent inferences for the WESMLE applied to 

nonlinear models. This application might prove useful in handling attrition from 

panel data, where the attrition probabilities ( and therefore response probabilities 

and weights) could be estimated using pre-attrition wave data. Since most large 

surveys produce estimated final weights ( called "post-iltratification" or 

"non-response reweighting"), the multiply imputed WESMLE developed here 

should have broad applicability. 

Multiple imputations can also be useful for estimating standard sample 

selection models. It is common to use Heckman1s (1976) two--step procedure to 
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estimate these models. Unfortunately, it is sufficiently difficult to obtain consistent 

standard errors (see Lee, Maddala, and Trost, 1980) for the two-5tep procedure that 

they are rarely computed in applied work. Multiply imputing values for the Mill's 

Ratio yields a computationally simpler consistent variance estimate. This technique 

will be illustrated by a Monte Carlo study closely based on Brownstone and 

Englund's {1991) model of Swedish housing demand. 

(28) 

{29) 

The standard sample selection model is given by: 

z- = W a + TJ, z = 1 if Z->0 and = 0 otherwise, 

y = XIJ + E, observed only if z = 1, 

where (TJ E) are bivariate normal [0,0,1,0'2,p]. Therefore: 

{30) Prob (z=l) = ~(Wa), 

where ~ is the standard normal cumulative distribution function, and 

(31) E(ylz=l) = XIJ-pq).(Wa), 

where the Mill's Ratio is defined as 

(32) 
¢(Wa) 

A=--
~(Wa) 

(¢is the standard normal density function). It is more efficient to estimate this 

model by maximum likelihood, but it is usually estimated estimated with a two 
.. 

stage procedure: 1) estimate a from the probit selection equation (30) to get a, then 
.. 

2) estimate IJ and pO' by regressing JI on X and -A(Wa). 
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Heckman (1976) shows that these two stage estimates are consistent and 

derives a consistent estimator for their sampling covariances. Unfortunately, these 

consistent covariances are rarely computed because of their complexity. However, 
A A 

conditional on a, the regression of yon X and ,\(Wa) is consistent with 

heteroskedastic residuals. If ej is the residual corresponding to the jth observation, 
• A 

then, conditional on a 

A A A 

(33) Var(ej) = <12 -(p<1)2.\(Wja)(.\(Wja) + Wja) . 

Therefore, 

(34) 

A 

is a consistent estimator of u2, which can be used to get a consistent estimator, <1J, 

for Var(e/ 

Feasible GLS estimation of equation (31) can then be implemented by 
A A A A 

regressing Y/ ot on X/ <1j and -,\(W{1)/ uj yielding consistent estimates O and n 
conditional on a. If multiple imputations of,\ are drawn by making independent 

draws of a from the asymptotic normal distribution of a, then the same argument 

used previously in this section shows that the resulting multiple imputations 
- -

estimators OM and TM are consistent for O and the asymptotic covariance of OM as 

M and N go to infinity. This multiply-imputed feasible GLS estimator is 

asymptotically more efficient than Heckman's 2~tep estimator, and it is easier to 

compute than Lee, Maddala, and Trost's (1980) consistent covariance estimator for 

Heckman1s procedure. 

The practical utility of the above multiple imputations approach is illustrated 

using a simplified version of Brownstone and Englund's (1991) model of Swedish 
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housing tenure choice and "quantity" of housing demanded by owners. In the 

notation of equations (28) and (29), z=l if the household owns a home and y 

represents quantity of owner~ccupied housing measured by regionally-deflated 

assessed value. Wand X contain age of household head, size of household, housing 

price measures, and measures of household income which a.re constructed to avoid 

endogeneity problems caused by the asymmetric tax treatment of owner and 

renter~ccupied housing. To keep this example simple, I will only report results 

here for various estimates of the coefficients of the disposable income and the 

negative of the Mill's Ratio variables in the conditional demand equation. Table 2 

gives results from applying various estimators to the same 665 observations used in 

Brownstone and Englund (1991), which includes 425 owners. 

Table 2: Conditional Housing Demand Estimators 

Estimator Income Coefficient p(T 

MLE 2.26 0.27 
(0.39) (0.069) 

Heckman 2.40 0.20 
2-Step (0.92) (0.19) 

Feasible GLS 2.40 0.15 
(0.91) (0.15) 

Note: Asymptotic standard errors in parentheses a.re computed using: Berndt, 
Hall, Hall and Hausman (1974) estimator for MLE, Lee, Madda.la, and Trost 
(1980) estimator for 2~tep, and multiple imputations described above for 
Fea.siole GLS. 

The MLE appears much more efficient than the other estimators, but there 

does not seem to be much difference between the 2~tep and Feasible GLS 

estimators in this example. The usual least squares standard error estimates from 
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the second step of either the 2-step or Feasible GLS estimator a.re approximately 

50% of the consistent values given in Table 2, which highlights the importance of 

getting consistent standard errors for these estimators. This downward bias is 

expected from the asymptotic results in Lee, Maddala, and Trost (1980). 

To guard against the possibility that the results in Table 2 a.re contaminated 

by model misspecification, a Monte Ca.rlo study of the 2--step and Feasible GLS 

estimator was performed using the MLE estimates applied to equations (28) and 

(29) as the data genera.ting process. The MLE itself is not included in this study 

because of convergence problems with some of the Monte Carlo samples. These 

Monte Carlo estimates, given in Table 3, ca.n also be interpreted as parametric 

bootstrap estimates of the sampling variability of the two estimators. 

Table 3: Monte Carlo Results for Conditional Housing Demand Estimators 

Income Coefficient pq 
Estimator Mean Std. Dev. Mean Std. Dev. 

2-Step 1.91 0.78 0.27 0.16 
SE(2-Step) 0.92 0.25 0.19 0.068 

Feasible GLS 1.54 0.72 0.25 0.16 
SE(FGLS) 0.81 0.18 0.19 0.062 

Note: SE(•) represent the same consistent standard error estimators used in Table 
2. 

Table 3 shows the same similarity between the estimators as in Table 2, 

although there is some indication that the variability of the multiple imputations 

standard error estimator is lower than Lee, Ma.ddala and Trost's estimator. The 

main difference between these estimators is computational; Lee, Maddala and 

Trost's estimator requires manipulation of N•K ma.trices, while the multiple 
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imputations estimator requires repetitive manipulation of K1eK matrices. 

5. Conclusions 

Econometricians have avoided imputing values for missing data since this can 

lead to seriously biased inferences. Multiple imputations is a general method for 

consistent inferences with imputed values. This paper has modified and extended 

Schenker and Welsh's (1988) results to directly prove asymptotic normality of the 

multiple imputations point estimator and consistency of the covariance estimator 

for univariate and multivariate endogenous or exogenous missing data in linear 

regression models. Similar methods, together with linearization, should yield 

similar results for nonlinear models estimated by maximum likelihood or minimum 

distance techniques. In addition to these theoretical results and Rubin's (1987) 

Bayesian analysis, the Monte Carlo studies and empirical examples described here 

show that multiple imputations is a useful addition to applied econometricians' 

toolkits. 

Although typically not fully efficient, multiple imputations estimators are 

relatively easy to compute for a wide variety of problems. When the the new 

bootstrap imputation methods discussed in Section 3 are used, multiple imputations 

are also less sensitive to distributional assumptions than parametric likelihood 

methods. As Rubin (1987) and Schenker, Treima.n, and Weidman (1988) have 

pointed out, distribution of multiply-imputed public use data sets provides a new 

approach for communicating the accuracy of the data collected in large surveys like 

the PSID and CPS. This would provide much more quantitative information than 

the currently available imputation flags or accuracy codes. 
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The multiple imputations technique is no substitute for careful joint modeling 

of the missing data. process and a.11 variables affected by missing data.. The 

strengths of the method a.re computational s°implicity, flexibility, and, when 

bootstrap-type imputation methods are used, robustness against small-sample 

normality assumptions. In addition to their use in missing data problems, Section 4 

also shows how multiple imputations can be used to get consistent covariance 

estimators for Heckman'& 2-step estimator in the sample selection model and for the 

WESMLE with estimated weights. 
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