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Abstract We present formal evolutionary models for the origins and persistence of
the practice of Female Genital Modification (FGMo). We then test the implications
of these models using normative cross-cultural data on FGMo in Africa and Bayesian
phylogenetic methods that explicitly model adaptive evolution. Empirical evidence
provides some support for the findings of our evolutionary models that the de novo
origins of the FGMo practice should be associated with social stratification, and
that social stratification should place selective pressures on the adoption of FGMo;
these results, however, are tempered by the finding that FGMo has arisen in many
cultures that have no social stratification, and that forces operating orthogonally to
stratification appear to play a more important role in the cross-cultural distribution of
FGMo. To explain these cases, one must consider cultural evolutionary explanations
in conjunction with behavioral ecological ones. We conclude with a discussion of the
implications of our study for policies designed to end the practice of FGMo.
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Introduction

In many parts of the world the prevailing culture requires that women undergo gen-
ital cutting/modification prior to their marriage. These operations typically occur
between infancy and late puberty, and they may be extremely costly in terms of
health, survival, and reproduction; these operations thus constitute a major chal-
lenge for evolutionary explanation. The analyses presented herein test competing
hypotheses for the distribution of this cultural trait, with a particular focus on how
the conditions that may have selected for the emergence of the trait (arguments for
origins) might differ from those that account for its persistence (arguments for main-
tenance). We first present a model that demonstrates how conditions selecting for
the origins of female genital modification (FGMo)1 might differ from those that
select for its persistence. In particular, we model how wealth and/or status differ-
ences within social groups might select for the emergence of this potentially costly
trait, and how subsequent frequency-dependent forces might keep the trait in the pop-
ulation, despite its costs. We then use empirical data from Africa to test whether
status differences and social stratification are associated with the origins of FGMo.
Our expectation (derived from the model) is that stratification will be associated
with the de novo origins of FGMo and will increase the likelihood of the intercul-
tural transmission of FGMo. We use our results to discuss the adaptive significance
of apparently costly cultural traits, and to discuss the importance of differentiating
explanations for the origins and the maintenance of cultural traits.

Our study lies at the intersection of several literatures. First is the substantial
literature on how marriage markets affect a range of cultural practices, including
marriage payments (Anderson 2003; Bell and Song 1994; Borgerhoff Mulder 1995)
and other household outcomes (Chiappori et al. 2002; Quisumbing et al. 2000).
Many of these insights are inspired by Becker (1981). Second, we develop hypothe-
ses on the basis of a wide-ranging research literature on female “circumcision”
(Ericksen 1989; Shell-Duncan and Hernlund 2000; Silverman 2004). While con-
tributors to this literature span many different disciplines, there is considerable
agreement over the hypothesized functions of FGMo and related practices, though
less agreement with regards to its specific geographical origin. Third, we draw

1Also known as Female Circumcision, Female Genital Mutilation (FGM), Female Genital Cutting (FGC),
or a combination of these terms, such as FGM/C. The terminology one should use when discussing this
practice is a matter of concern. We purposefully avoid using the term “mutilation” in the text of this paper
because we feel that it is unduly value-laden. Likewise, we feel that it is wrong to distance the practice of
female genital modification from male genital modification (circumcision) because such an action seems
to validate one type of unnecessary, non-consensual removal of genital tissue (common in “Western”
culture), while stigmatizing a similar practice in other cultures. We use the more neutral term FGMo to
contextualize the practice within the wider anthropological scope of body modification.
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indirectly on the insights of signaling (or handicap) theory, as developed in evo-
lutionary biology and applied in anthropology (Grafen 1990; Smith et al. 2003),
viewing FGMo as a signal demonstrating sexual fidelity and paternity certainty.
Fourth, we use formalized evolutionary models to identify distinct hypotheses for
the origins and maintenance of costly cultural traits, as these potentially differing
dynamics are rarely separated in analysis (Borgerhoff Mulder et al. 2006). Fifth, a
growing (albeit widely-dispersed) literature across academic venues and policy cir-
cles addresses the morality of, and challenges to, eradicating the practice of FGMo
(Shell-Duncan and Hernlund 2000). We use our results to address some of the debates
in this complex area.

Female Genital Modification

The prevalence of FGMo worldwide is unknown, but it is estimated that more than
125 million girls and women alive today have undergone some form of FGMo, with
another 30 million at risk of being cut in the next decade (UNFPA-UNICEF 2013). It
is most common in Africa, affecting up to 90% of women in Djibouti, Egypt, Eritrea,
Mali, Sierra Leone, and Somalia, and more than 50% of women in other African
countries, such as Benin, Ethiopia, Burkina Faso, Chad, Ethiopia, Gambia, Guinea
Bissau, Kenya, Liberia, Nigeria, Sudan, and Togo. It occurs elsewhere across south-
ern and central Africa and in the Middle East—for example, in Oman, Yemen, and
the United Arab Emirates, as well as in some Asian countries, including Indonesia,
Malaysia, Sri Lanka, and India (WHO 1998).

Little is known about the origins of the practice. Scholars have proposed a sin-
gle origin in Egypt, on the basis of circumcised fifth century BC mummies (Little
2003), or ancient Meroe (Mackie 2000; Mackie and LeJeune 2009). In these highly
stratified ancient empires, infibulation may have been practiced in the context of
extreme resource inequality, with families cutting girls or women to signal their
fidelity to wealthy, highly polygynous males. Mackie has hypothesized that the prac-
tice diffused across social strata and spread along female slave trade routes. Others
suggest a multi-source origin, arguing that as FGMo spread out of its original core
areas, it encountered and merged with preexisting practices associated with initiation
rites for both males and females (Dorkenoo 1994). Strong evidence for either claim
is nevertheless lacking. Although the practice sometimes spread with Islam, many
non-Islamic groups practice FGMo.

Types of operations vary in severity, entailing the removal of the prepuce or hood
of the clitoris (clitoridectomy), the clitoris and all or part of the labia minora (exci-
sion), or the complete clitoris, labia minora, and all or part of the labia majora,
followed by a sewing together of the labia (infibulation, or Pharaonic circumcision).

The health costs (and benefits) of FGMo are hotly disputed (e.g., Shell-Duncan
and Hernlund 2000). Estimates are likely to be biased by the complications being
concealed where the practice is illegal, exaggerated by prejudice and by proponents
of elimination strategies, and impacted by lack of good data. Furthermore, Western
observers tend to stress pain, reduced sexual enjoyment, and medical complications,
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whereas (some) African scholars emphasize the cultural importance of the tradition;
for example, a Kenyan woman commented that FGMo might be seen as “buying
maturity with pain” (Davison 1996:60). Nevertheless, the evidence is clear that these
operations, and particularly the more severe forms, can cause extensive short- and
long-term medical complications, with implications for maternal health, pregnancy
loss and stillbirth, primary and secondary fertility, and child survival (Mackie 2003;
Shell-Duncan and Hernlund 2000; Banks et al. 2006), as well as for mental health
(e.g., Whitehorn et al. 2002), and HIV risk (WHO 2010).

Most pertinent to this paper are arguments regarding the function of FGMo, or
similar practices with likely negative effects for women’s health and well-being.
There are three types of explanations. The first, and by far the most predominant,
concerns the marriageability of women. Though specifics differ markedly in dif-
ferent parts of the world, virginity, “purity,” and sexual restraint before marriage
are highly regarded in many societies that practice FGMo. FGMo operations are
seen as a way of protecting sexual propriety, morality, and paternity (Ericksen 1989;
Little 2003; UNFPA-UNICEF 2013), or demonstrating the obedience and respect
required for marriageability (WHO 2010). Furthermore, FGMo is often associated
with veiling, child betrothal, virginity testing at marriage, a transfer of sexual and
reproductive rights to the groom and his family at marriage, and the legitimacy of
subsequent births. FGMo is sometimes found in groups that lack strong chastity and
fidelity expectations—for example, the Rendille women of Kenya are free to engage
in premarital sex but must undergo FGMo at marriage (Mackie 2000). Neverthe-
less, scholars investigating FGMo across multiple sites typically stress the theme of
safeguarding female sexual purity, enhancing marriage chances, and preserving fam-
ily honor (Shell-Duncan and Hernlund 2000; UNFPA-UNICEF 2013; WHO 2010).
For instance, uninfibulated women in Sudan during the early 1970s were widely
considered to be like prostitutes (Hayes 1975).

A second set of explanations is more heterogeneous. They include protecting the
health of a baby, increasing the likelihood of conception, reducing (or increasing)
sexual pleasure, achieving an aesthetic ideal, or becoming a fully adult member
of society; these more proximate considerations are also linked to marriageability,
albeit indirectly. Particularly idiosyncratic notions include the belief that FGMo pre-
vents child mortality [through avoiding fatal connection between baby’s head and
the clitoris during delivery (Myers et al. 1985)], that FGMo cured certain “female
psychological disorders” in Victorian England (Little 2003), and that genital cutting
is a functionless fad, as witnessed recently in Chad. Although FGMo in southern
Chad may have been adopted in the nineteenth century to deter slave raiders from
taking women, adolescent girls in the 1990s reportedly sought out the operation,
often without parental knowledge, as something “fun, rebellious and cool” (Leonard
2000:190).

The third explanation stresses the importance of tradition, custom, and cultural
identity. For instance, the very name of the Kipsigis of Kenya implies “we the circum-
cised,” referring to the rebirth that is believed to occur at circumcision ceremonies,
a central part of Kipsigis identity vis-a-vis other ethnic groups (Daniels 1970).
Even more strategically, the Kenyan Mukogodo appear to have adopted circumcision



Hum Nat

ceremonies to hasten their transition in becoming Maasai (Cronk 2004). In a compi-
lation of studies on attitudes toward FGMo, more than half the respondents reported
that tradition was their primary reason for undergoing the operation (Warzazi 1986).
Some authors emphasize only the importance of following the ancestors; others note
strong social pressure to conform to the behavior of others, and still others explicitly
recognize the force of current social convention.

As many researchers on FGMo recognize, there are intricate interdependen-
cies between these hypotheses, even in cases where marriageability is not the
explicitly-stated motivation for FGMo (for example, as in the Senegambian region
[Shell-Duncan and Hernlund 2007]). It is extremely difficult to distinguish the more
general motivations of social respectability and conformity from the motivation to
be seen as a suitable wife (Mackie and LeJeune 2009). Furthermore, some of the
more idiosyncratic beliefs underlying the need for FGMo may also serve as a way of
encouraging conformity to social norms. Accordingly Mackie (2000)—emphasizing
the critical role of social convention in maintaining particular practices—notes how
the belief that an uncut woman will be unfaithful fixes the custom, even if the con-
ditions that first gave rise to the trait have changed: “As soon as women believed
that men would not marry an unmutilated woman, and men believed that an unmuti-
lated would not be a faithful partner in marriage, the convention was locked in place”
(Mackie 2000:264).

An Evolutionary Approach

Our evolutionary analysis of FGMo draws closely on the literatures reviewed above.
Parents or other kin may choose to subject young female relatives to costly oper-
ations to enhance their marriageability. In other words, the trait may be sexually
selected, functioning to enhance the access of females to favored mates. The intu-
ition here is that in an initial non-FGMo population parents use FGMo to ensure
and signal the virginity of their daughters at marriage. Insofar as women who have
undergone FGMo observe more sexual restraint (whether as a consequence of the
operation or of associated customs), FGMo also signals higher paternity certainty
to a prospective groom. Where there is little difference in quality among prospec-
tive grooms, it is unlikely that parents would inflict this physiological cost on their
daughters. However, where there is extensive competition among women to become
the brides of particularly wealthy or powerful men, a costly trait such as FGMo could
arise as a bargaining tool. The simple logic here parallels evolutionary arguments for
the origin of another costly display—dowry, and its association with stratification
(Dickemann 1979; Gaulin and Boster 1990; see also Fortunato et al. 2006)—and has
in fact been marshaled as an explanation for the origins of FGMo (Mackie 2000).
Some support comes from evidence that female puberty rituals are more elaborate
and costly as social complexity increases, although this is based on a non-random
sample drawn from a selection of foraging societies deemed to be only weakly
stratified (Owens and Hayden 1997). Other support comes from comparative analysis
that links public menarcheal ceremonies to strong fraternal interest groups, where it



Hum Nat

appears that powerful kin-based units are making explicit contractual negotiations
over women (Ericksen 1989; Paige and Paige 1981).

As noted above, other functions may contribute to the practice of FGMo over
time. For example, FGMo (at least when accompanied by ritual) can constitute a key
rite of passage (Van Gennep 1960); it is also a cardinal symbol of ethnicity since
groups that do not practice FGMo are sometimes seen as deficient or inferior by
groups that do. There are also clear reasons why it is difficult to dislodge FGMo once
it is in place as a marker of marriageability since a family that abjures FGMo for
their daughters may fail to find husbands, thereby possibly reducing their daughters’
contribution to the next biological and cultural generation. Evolutionary scientists
refer to this as a coordination game (e.g., Efferson et al. 2015), and it can strongly
influence the payoffs to FGMo in some contexts. Without a critical mass of FGMo-
rejecters, there can be a strong disincentive for families to reject the practice; in
addition, having increased payoffs in the mating market as a function of FGMo use
might also disincentivize abandonment of the practice.

These arguments lead to the hypothesis that the origins of FGMo are likely to
be linked to stratification, based on the rationale that where considerable variance
among men in mate quality exists, and where men invest heavily in their offspring,
parents will be willing to inflict possible physiological (and other) costs on their
daughters in order to reap the benefits of marriage to a high-ranking man. Conversely,
the custom might persist purely as a consequence of the high cost of not conforming,
irrespective of the presence of high variance in wealth or status among men.

Modeling the Emergence and Persistence of FGMo

We begin methodologically by providing formal theoretical models for the emer-
gence and persistence of FGMo. We then use phylogenetic models of adaptive
evolution to test the implications of the theoretical models using cross-cultural data.

Assumptions and Notations

The following assumptions and notations are constant across all models:

a. Mating assessment is universal—that is, each woman agrees on a mating value
for each man, and each man agrees on a mating value for each woman. A given
woman’s mating value is denoted f (and a given man’s, m). The distributions
for the mating values of women and men are df and dm, respectively. Mating
values are reflective of the integrated suite of traits of interest to the opposite sex
(Schacht and Grote 2015).

b. The symbols rf and rm denote the functions that map the mating value of an
individual woman or man to her or his rank in the mating market. These functions
lead to a ranking of all women where the woman with the highest mating value
gets rank rf = 1, the woman with the second highest mating value gets rank
rf = 2, and so on. The woman with rank rf = 1 is then assumed to marry the
man with rank rm = 1, and so on. Thus, if f1 is the woman with the highest
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mating value in the df distribution, then her rank is described as rf (f1, df ) = 1;
she will be paired with the male whose rm = 1, the highest-ranked male from
the dm distribution.

c. The marriage value of a given person in df or dm can be returned as a
function, Vf or Vm, of rank, such that Vm(rm(m1, dm)), for example, is the
marriage value of the highest-ranked man. The marriage value function is
order preserving but allows for a nonlinear relationship between rank order
and marriage value; a unit change in rank may not significantly impact mar-
riage value near the bottom of a ranking scale, but it might have a huge impact
on marriage value near the top of a ranking scale—especially in stratified
societies.

d. Everyone gets married.
e. FGMo comes at a constant cost, c.
f. FGMo gives a woman a higher mating value and, therefore, an opportunity to

marry a more valuable man.
g. The sex ratio is balanced such that the number of women in the population, Nf ,

is equal to the number of men in the population, Nm.
h. There is a benefit, s, to having the same behavior as the rest of the group. Gener-

ally, s is a function of the proportion of women, α, that have the FGMo behavior.
We define s(1/N) = 0, indicating that no social benefit will accrue to an indi-
vidual who is the only one in a population to have a given trait. We conceive of
this pressure as resulting from frequency-dependent dynamics, such as confor-
mity bias (Henrich and Boyd 1998; Henrich and Gil-White 2001; McElreath et
al. 2003; and see Discussion).

i. Baseline fitness across women is described as w̄.

The General Model

We will consider two models. In the first, FGMo gives an assurance of virginity, and
therefore, a constant increase in mating value, i, to every woman who has FGMo.
In the second model, FGMo acts as a costly signal of general fitness. In this model,
we treat the increase in mating value as a random variable, x, since different women
can signal differential fitness in a nondeterministic way. Presumably, a woman will
not know the effect of the signal before she undergoes the operation. Death, for
example, is a possible, and not entirely uncommon, outcome of undergoing genital
cutting (UNICEF 2013). Further, the signaling value of FGMo is likely to depend
on the social context of the practice. For example, in the Kipsigis population stud-
ied by Borgerhoff Mulder in the 1980s, FGMo was often practiced in semi-public
ceremonies and girls were socially judged on their stoicism and ability to withstand
the pain of the cutting. Recovery from the clitorectomy is the subject of discussion
and social scrutiny, with considerable gossip (Power 1998, 2000) over who recov-
ered quickly and who needed to be taken to the dispensary or hospital. The ability
to tolerate pain and recover quickly are presumably signals of quality and immuno-
competence that are impossible to fake. In contrast, FGMo in Egypt (studied by
Ericksen in the 1990s) was conducted in private by midwives; in such a context
there is much less scope for FGMo to act as a costly signal. Figure 1 illustrates
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Fig. 1 A simplified sketch of the mathematical model described in this section. In frame (a), we observe
a distribution of mating values (on the real number line) for five women. We have highlighted two indi-
viduals in red (highest-ranked) and blue (second highest-ranked). The arrows from Mating Value to Rank
are indicative of the rank function rf and map mating values to an ordered ranking. The arrows from Rank
to Marriage Value are indicative of the value function Vm and map a woman’s rank score on the marriage
market to the marriage value of her husband (on the real number line). In frame (b), we imagine that the
woman shown in blue has undergone FGMo and has thus added i or x to her mating value. This allows
her to move from her previous position on the Mating Value scale (shown in the blue outlined circle) past
the woman labeled in red. This in turn increases her rank and allows her access to the marriage value of
the highest-ranked man. (Refer to online version for colors)

how the mathematical mechanisms outlined here function to produce the behavior
of the model.

In both models, a woman who does not undergo FGMo has a payoff, P :

P = w̄ + Vm(rf (f, df )) + s(1 − α) (1)

where α is the proportion of the population who undergo FGMo. Equation 1 says
that the value she gets from marrying depends on the marriage value of the man she
marries, which depends on her rank, rf (f, df ), which in turn depends on her value,
f , and the distribution of mating values across all females, df . The last term is the
social payoff from having the same behavior as proportion 1 − α of the population.

The Virginity Assurance Model

In the virginity assurance model, the payoff, PVA, for undergoing FGMo is:

PVA = w̄ + Vm(rf (f + i, df )) + s(α) − c (2)

Under this condition, FGMo will emerge when, for any woman, PV A − P > 0,
for α = 0. That is, when:

Vm(rf (f + i, df )) − Vm(rf (f, df )) − s(1) − c > 0 (3)

So for FGMo to emerge, we need at least one (or a combination) of the following:
low social control or conformity bias, s; a high value of FGMo, i; or a large difference
in the marriage value of men, Vm. We will not elaborate on how FGMo spreads
through the population, nor will we discuss all possible equilibria that can appear.
Rather, we focus on what is needed for an equilibrium in which every woman in the
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population undergoes FGMo. In the virginity assurance model, this occurs for cases
such that when α = 1, then PVA − P > 0 holds for all women in the population.
That is, where

Vm(rf (f + i, df )) − Vm(rf (f, df )) + s(1) − c > 0 (4)

Here two things have changed from the emergence condition in Eq. 3; the social
effect has switched so that it now benefits FGMo, and also the value distribution of
women, df , has changed since each woman has added i to her value. This means that
when α = 1 each woman is in the same position on the ranking scale as she would
have been had no one undergone FGMo.

So Eq. 4 can be reduced to:
s(1) − c > 0 (5)

Several interesting conclusions can be drawn from Eq. 5. Whereas the marriage
value function for males, Vm, is critical in explaining the origins of FGMo, it has no
effect on the maintenance of the trait at fixation. Another conclusion is that strong
social pressure is required to obtain an equilibrium in which every woman has under-
gone FGMo. Finally, we can see that the difference in payoff between being a woman
in a society in which every woman undergoes FGMo and a society in which no one
does is strictly negative for each woman since the rankings are unchanged between
the FGMo and non-FGMo equilibria, but all women pay a cost, c, in the FGMo
equilibrium.

The Costly Signaling Model

Here we assume that FGMo functions as a general costly signal of fitness, rather
than a signal of virginity. It is unreasonable to imagine that this effect is the same
for each woman or child, or that the effect is known before the decision to commit
FGMo is taken. Therefore, we model the mating value increase from having FGMo
as a random variable, x. The payoff, PCS , to undergoing FGMo is thus:

PCS = w̄ + Vm(rf (f + x, df )) + s(α) − c (6)

And FGMo emerges in a population if the expected value of PCS exceeds P for at
least one woman in the population when α = 0. That is, when

E[Vm(rf (f + x, df ))] − Vm(rf (f, df )) − s(1) − c > 0 (7)

An equilibrium where everyone in the population undergoes FGMo is maintained
if E[PCS] > P for every woman in the population when α = 1. That is, when

E[Vm(rf (f + x, df ))] − Vm(rf (f, df )) + s(1) − c > 0 (8)

And here the difference from the virginity assurance model becomes clear. If we
again look at a case in which a low-ranking woman in a non-FGMo society considers
FGMo, she can (depending on the distributions of x, df and dm) still have

E[Vm(rf (f + x, df ))] − Vm(rf (f, df )) > 0 (9)

Even though the probability of having a higher payoff after FGMo might be small,
FGMo could have a high enough expected value to be worthwhile. This also means
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that there might be women who benefit from living in a society in which every
woman undergoes FGMo, which was not the case in the virginity assurance model.
On average though, each woman still gets c less payoff.

For a better understanding of our results, let’s look closer at the implications of
Eq. 9. For the woman with lowest mating value before FGMo, Eq. 9 can be expressed
as:

Nf∑

k=0

Φ(k)V m(Nf − k) − V m(Nf ) > 0 (10)

where Φ(k) is the probability that undergoing FGMo gives her a higher value than k

other women, and Nf is the number of women in the population. Note that as long as
Φ(k) is not strictly zero for all k, then the left-hand side of Eq. 10 is strictly positive,
although it is not necessarily greater than c. Thus, FGMo could function to increase
a woman’s mating value relative to other women, though this is not guaranteed
generally.

To further investigate the implications of this model, we make the reducing
assumptions that df and x are normally distributed random variables. In this case,
all that matters to our model are the variances of the respective distributions; to
understand the impact of variance in x and df , let us note that the probability that a
realization from Normal(μ1, σ2) is greater than a realization from Normal(μ2, σ2) is
just the probability that Normal(μ1 − μ2, 2σ2) > 0, which is determined by the dif-
ference between μ1 and μ2 and by σ. In our model, the difference between μ1 and μ2
is determined by the variance in the mating value of women, df , and σ is the variance
of the random variable x.

An increasing variance of df decreases the chance that a low-ranking woman
can move up on the scale as a function of FGMo adoption. An increase in the
variance of x increases the chances that a low-ranking woman can move up on
the mating value ranking scale. Finally, as Vm becomes an accelerating function of
increasing rank, it increases the value for a woman of moving up on the mating
value ranking scale.

Conclusions of the Model

In conclusion, our evolutionary models show that variance in male mating value
should be associated with the origins of FGMo. The costly signaling model suggests
that some women can benefit from FGMo at fixation, whereas under the virginity
assurance model, no women benefit from FGMo at fixation. Further, we show that
variance in male mating value is not strictly required for the maintenance of FGMo at
fixation so long as social pressure is sufficient to maintain FGMo after it originates.
Finally, we show that variance in male mating value may, however, factor into the
maintenance of FGMo when the prevalence of FGMo is below fixation. This find-
ing helps to explain the empirical observation by Efferson et al. (2015) that, in some
cases, FGMo persists in populations at levels well below fixation—a situation that is
unlikely to arise under a purely coordination-based model of FGMo persistence that
does not also account for the effects of the differential value of males on the marriage
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market. We provide a more detailed discussion of our model-based findings in light
of Efferson et al. (2015) in the Electronic Supplementary Materials, Section 9.

Methods

Adaptive Phylogenetic Analysis of Empirical Data

Data Sources and Sample Selection

To test whether variance in male value is associated with the distribution of FGMo
across cultures, we use an extensive coding of data on female genital modification in
Africa, the continent in which the custom is largely concentrated. The sample con-
sists of 112 cultural clusters geographically distributed across Africa, drawn from
Murdock’s Ethnographic Atlas (Murdock 1969). For this sample, Ericksen (1989)
examined all available ethnographic sources for evidence of FGMo. Following
Ericksen (1989), clusters that contain more than one culture are represented by the
culture with the best coverage on the topics being coded; in cases where more than
one culture had good source materials, the choice was determined randomly. Inter-
ested readers are directed to Ericksen (1989) and Paige and Paige (1981) for detailed
discussion of the included cultural clusters, sample construction, citations to primary
sources, and ethnographic details; methodological details concerning the standard
cross-cultural sample can be found in Murdock and White (1969).

Female genital modification, FGMo, was coded as present if the practice
was mentioned as occurring by at least one ethnographer, either present or past,
irrespective of how much detail was given; inter-coder reliability between three
independent readers using English and non-English sources was 0.79 (Ericksen
1989). Recognizing that our analysis could be biased by considering FGMo as being
practiced in cultural groups where the frequency of practice is actually quite low,
we conduct a secondary analysis based on classifying FGMo as present only if
contemporary FGMo prevalence is > 50% (Electronic Supplementary Materials,
Section 8); the results of this analysis were qualitatively the same as those of our
main analysis.

We use the existence of economic and/or social stratification as our measure
of variation in male quality, based on the assumption that more stratified societies
exhibit greater differences in male resource holdings, and greater power and pres-
tige differences; stratification is coded using Variable 67 (class stratification) in
Murdock (1957). This variable contains four categories:

1. Absence of significant class distinctions among freemen, ignoring varia-
tions in individual repute achieved through skill, valor, piety, or wisdom.

2. Wealth distinctions based either on the possession or distribution of prop-
erty, present and socially important but not crystallized into distinct and
hereditary social classes, or on hereditary aristocracy and lower class of
ordinary commoners or freemen, where traditionally ascribed noble status
is at least as decisive as control over scarce resources.
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3. Dual or elite stratification in which an elite class derives its superior status
from, and perpetuates it through, control over scarce resources, particularly
land, and is therefore differentiated from a property-less class.

4. Complex stratification into social classes correlated in large measure with
extensive differentiation of occupational statuses.

In our model, we use a binary variable for stratification in which categories 2, 3,
and 4 are collapsed, yielding a variable that distinguishes cultural groups with wealth
and class distinctions from cultural groups without such distinctions. For a small
number of cultural groups, the Ethnographic Atlas had missing information; we
investigated the primary ethnographic literature to obtain equivalent data for these
groups. The Supplementary Materials (FGMoData.csv) contains our data and the rel-
evant citations to supplementary primary sources. In total, we have data from 63
stratified cultural groups and 49 non-stratified groups; 44 groups practice FGMo
and 68 do not.

Bayesian Phylogenetic Modeling of Adaptive Evolution

To model the effect of stratification on the evolution of FGMo, we utilize a Bayesian
phylogenetic model of adaptive evolution (based on an Ornstein-Uhlenbeck process)
in the spirit of Butler and King (2004). The methods advanced by Butler and King
(2004) conceptualize evolution across a phylogeny as a function of both selective
processes and drift. This approach thus constitutes critical progress in phylogenetic
analysis insofar as it allows for adaptive hypotheses to be evaluated with phyloge-
netic models that explicitly include selection dynamics. The methods advanced by
Butler and King (2004) allow us to (1) investigate the extent to which the likeli-
hood of a cultural group practicing FGMo is conditioned on the state of that cultural
group as stratified versus non-stratified and (2) contrast the strength of selection for
FGMo based on stratification with the strength of drift (and selective forces operating
orthogonally to stratification).

Standard tools for phylogenetic inference concerning the evolution of discrete
traits (Pagel 1994; Pagel and Meade 2006; Ives and Garland 2010, 2014) repre-
sent an alternative analytic strategy. In the main text, we focus on the adaptive
phylogenetic analysis because we find that the model dynamics more elegantly
match the empirical processes we wish to understand. For thoroughness, we
present the results from various other discrete trait phylogenetic models in the
Electronic Supplementary Materials, Section 7; our findings are consistent across
all approaches.

Butler and King (2004) developed a software package (OUCH, Ornstein-
Uhlenbeck for Comparative Hypotheses) for adaptive phylogenetic analysis in the R
software environment (R Core Team 2013). This software package, however, treats
phylogenies as known data, deals poorly with parameter constraints, and relies on
a maximum likelihood estimation procedure that fails to function reliably in many
contexts, as detailed in Butler and King (2004).

To improve on the software introduced by Butler and King (2004), we wrote our
own Bayesian implementation of the adaptive phylogenetic model using Hamilton
Markov Chain Monte Carlo (HMC) simulation (Hoffman and Gelman 2014) in
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C++, using the Stan 2.2.0 library (Stan Development Team 2013a). We provide code
to run similar models in R, via the RStan interface. Our Bayesian implementation
allows us to integrate over phylogenetic uncertainty, impose parameter constraints,
and use prior information to identify parameters that are not necessarily identifiable
under maximum likelihood estimation.

Following Butler and King (2004), we imagine trait evolution over a phylogenetic
tree occurring as an Ornstein-Uhlenbeck process where a trait, X, evolves under a
regime composed of both selection and drift such that:

∂X(t) = α[β(t) − X(t)]∂t + σ∂B(t) (11)

where ∂X(t) is the change in the character trait X over the course of a small incre-
ment of time, α is the strength of selection, β(t) is the optimal trait value, and σ
mediates the intensity of “white noise” fluctuations, ∂B(t).

Below we describe the phylogeny used in our analysis and then outline the
mathematical details of our statistical model, which uses the phylogenetic gener-
alized linear model structure discussed by Ives and Helmus (2011) and Ives and
Garland (2014)—with appropriate modifications to implement the adaptive process
model introduced by Butler and King (2004).

A Phylogeny of Language Families Based on Lexical Similarity

We begin our phylogenetic analysis with a hierarchical clustering of the selected
cultural groups (N = 112) in Africa (Murdock 1969) according to the linguistic
divergences postulated in Ethnologue (Lewis 2009). Following Walker et al. (2012),
we then utilize the estimated dates of lexical divergence produced by the ASJP
(Automated Similarity Judgment Program) to define the prior expected proportion-
ality of branch lengths (Holman et al. 2011). Neither the clustering of languages in
Ethnologue nor the estimated times of language divergence produced by the ASJP
are free of controversy (see peer commentary in Holman et al. 2011). There are two
critical issues with the use of linguistic data to infer the splitting of cultural groups:
first, linguistic evolution, as with any form of cultural evolution, is not necessarily
treelike. There is, however, some treelike structure to linguistic and cultural evolu-
tion, and we believe accounting for this structure is better than ignoring it completely
(Gray et al. 2010). And second, assumptions of constant rates of language evolution
have been shown to be in conflict with empirical data (Gray et al. 2007). ASJP esti-
mates of divergence dates, however, are not based on constant evolutionary rates, and
are estimated using empirical calibration on the basis of historical, archaeological,
and other evidence, as suggested by Gray et al. (2007).

Despite the fact that the phylogenetic tree used in our analysis is only of limited
accuracy, in the Bayesian interpretation of the model fit in our analysis, phylogenetic
information is utilized to construct prior beliefs concerning the expected covariance
of the preferences for the FGMo trait across cultural groups resulting from shared
ancestry. The fact that there is error in the ASJP estimates of divergence times is not
necessarily a problem for our analysis. So long as the errors of estimated divergence
times based on lexical similarity are roughly proportional across cultural groups, and
do not vary as a function of stratification or FGMo prevalence, our inferences are
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unlikely to be biased (the actual calender dates of linguistic divergences do not matter
for our analysis).

Furthermore, we know of no other published phylogenies that estimate the diver-
gence times (branch lengths) of all African languages in a unified framework; the
ASJP phylogeny is also derived under more theoretical and empirical rigor than
standard Bayesian approaches to phylogenetic reconstruction that utilize a simple
binary coding procedure of cognate classes from Swadesh lists. Future studies will
surely improve inference concerning the nature and dating of the somewhat treelike,
somewhat reticulated river-network-like cultural evolutionary pasts of extant human
groups (Towner et al. 2012). When such data become available, our inferences herein
should be reinvestigated.

Figure 2 displays our phylogeny with prior branch lengths scaled to the ASJP esti-
mates. In the Electronic Supplementary Material in Section 3, we detail how exactly
we bring the ASJP divergence times into our analysis, and how we model uncertainty
in these values.

Fig. 2 The phylogeny of African languages used in this analysis. In this figure, branch lengths are pre-
sented as proportional to maximum likelihood AJSP divergence estimates; the actual phylogenetic tree
implemented in the model, however, is a constrained random variable, allowing Bayesian integration
over uncertainty in phylogenetic information. Black branches on the tree indicate non-stratified selection
regimes. Red branches indicate stratified selection regimes. Gray branches indicate a mixture of strati-
fied and non-stratified selection regimes. This mixture modeling allows for integration over uncertainty in
deeper, nonterminal branches. The blue points on the edge of the phylogenetic tree indicate the presence
of the practice of FGMO. (Refer to online version for colors)
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Modeling Adaptive Evolution

At each MCMC (Markov Chain Monte Carlo) iteration, a random painting of
divergence times onto the branches of the phylogenetic tree is proposed. We then
standardize the phylogeny to the unit interval such that t = 0 is the time of the
deepest divergence and t = T = 1 is the present. We then calculate two matri-
ces, S and C, from the phylogeny. The S matrix is an N by N matrix (N =number
of cultures included in this analysis=112) of the time points when cultural group n

split from each and every other cultural group. The C matrix is an N by � matrix
of the cut-points/transitions in epochs within a lineage, where κ(n) is the total num-
ber of epochs in lineage n, and � = max(κ(n)) = 12 is the maximum number of
epochs in a cultural lineage observed in our data. A cultural lineage is defined as
the path from the tip of the phylogenetic tree to its most basal node. The history
of the nth lineage is then a series of κ(n) branch segments demarcated by epochs
0 = t0

n < t1
n < t2

n < ... < t
κ(n)
n = T , where each epoch constitutes a single kind of

selective regime, to be defined more thoroughly later (see Appendix A in Butler and
King 2004).

Equation 11 describes a stationary, Gaussian, and Markovian process with
well-defined moments; following, Butler and King (2004), we make a reducing
assumption that in every lineage, evolution of a cultural trait, X, occurs along
piecewise-constant selection regimes. Accordingly, the expected value of a trait
evolving along a cultural lineage, n, can be defined as:

μ[n] = E[Xn(T )|Xn(0) = β[n,0]] = e−αT β[n,0] +
κ(n)∑

γ=1

e−αT (eαC[n,γ] − eαC[n,γ−1] )β[n,γ] (12)

where β[n,0:κ(n)] is a parameter vector “painted” with θ parameters. The first cell
of this vector, β[n,0], is defined to be equal to θanc, the estimated trait value of the
most basal node in the phylogeny (ancestral), and all other cells are populated with
differing θ parameters that describe the hypothesized selective regime acting on the
γ th epoch in lineage n. The specific way that other θ parameters are painted on to
the phylogenetic tree will be made clearer when we describe the exact models being
compared in this study.

Regarding covariance, we assume that when t < S[n,m], lineages n and m evolved
as a single group, and when t > S[n,m] the two lineages evolve independently.
Accordingly, the covariance matrix V[n,m] can be defined as:

V[n,m] = Cov[Xn(T ),Xm(T )|Xn(0) = Xm(0) = β[n,0]] = σ2

2α
e−2α(T −S[n,m])(1 − e−2αS[n,m] )

(13)

To complete the basic model definition, we define regularizing priors on the α and
σ parameters, which concentrate prior probability density near zero. We considered
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both half-Gaussian and half-Cauchy (Gelman 2006) priors (see Electronic Supple-
mentary Materials, Section 5 for more information on these priors). In our final
analysis, we used the following half-Gaussian priors:

α ∼ Normal(0, 5)T [0, ∞] (14)

σ ∼ Normal(0, 5)T [0, ∞] (15)

We use regularizing unit normal priors on each cell of the θ parameter vector. These
priors can be understood as imposing the Bayesian corollary of Tikhonov regulariza-
tion (Tikhonov and Arsenin 1977), or ridge regression (Hoerl and Kennard 1970), and
aid in the identification of θ and α, which are not necessary well identified otherwise:

θ ∼ Normal(0, 1) (16)

We then model the data using a multivariate normal distribution parameter-
ized to accept a Cholesky factor, LV , from the decomposition of the variance-
covariance matrix, V , in place of the variance-covariance matrix itself. This
parameterization of the model improves the performance of the HMC estima-
tion process for technical reasons that are outlined in the Stan manual (Stan
Development Team 2013b). To link μ and LV to the outcomes, we use a
parameter vector, �, which represents the strength of evolving social preferences
for FGMo:

� ∼ Multivariate Normal Cholesky(μ, LV ) (17)

and then use the statement:

FGMo[n] ∼ Bernoulli(Logistic(�[n])) (18)

to return the log probability of the data, FGMo, conditioned on the estimated social
preferences for FGMo; FGMo is a vector of binary indicators of the practice of
FGMo.

Model Construction

In this paper, we fit two models to the data. In the first, we conceive of the evolution-
ary dynamics as an Ornstein-Uhlenbeck process with a single global optima for all
cultural groups, an OU(1) model. This model serves as a null model, where stratifi-
cation plays no role in the adaptive evolution of FGMo. In this case, we paint every
branch of the phylogeny other than the most basal node, θanc, with a single parameter
that represents a single global selection regime, θgsr.

In the second model, we conceive of the evolutionary dynamics as an Ornstein-
Uhlenbeck process with separate optima for stratified and non-stratified cultural
groups, an OU(2) model. In this case, we paint the phylogeny using two θ parameters,
with one corresponding to a stratified selection regime, θssr, and one corresponding
to a non-stratified selection regime, θnssr.

Deep ancestral branches are not easily classifiable as stratified or non-stratified,
but the phylogenetic tree contains information on the probability of stratification
in deeper branches conditional on the state of the branch tips and the strength of
selection for stratification along the branches. Accordingly, at each MCMC iteration,
we estimate the probability of stratification in deep branches by using the Butler
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and King (2004) method to model the culture-group specific evolution of stratifi-
cation with an OU(15) model (See Electronic Supplementary Materials, Sections
2 and 6 for details and model diagnostics). Following this, we model the evolu-
tion of FGMo, conditioned on the estimated state of stratification at every node in
the phylogeny.

More formally, in the OU(2) model, at each MCMC iteration, we run an adaptive
phylogenetic model on stratification using the observed binary data variable Strat .
We model:

�strat ∼ Multivariate Normal Cholesky(μstrat, LVstrat) (19)

where μstrat and LVstrat are corollaries to μ and LV and are derived from Equations 12
and 13 in the same way; �strat is a parameter vector representing the log odds that a
given cultural group is stratified, and:

Strat[n] ∼ Bernoulli(Logistic(�strat[n])) (20)

provides the log probability of the observed stratification data conditional on the
proposed parameter values.

The βstrat matrix for the stratification model is painted with θ parameters such that
the branches for each language family and subfamily have unique parameters (e.g.,
language family parameters are θNiloSaharan, θNigerCongo, etc., and language subfamily
parameters are θOmotic, θMande, etc.). The way in which these parameters are painted
onto the branches is made clear in the Supplementary Stan code, using variables
GID2 and GID3 from the Supplementary Data.

Under such a model it is straightforward to calculate the probability of stratifica-
tion in any epoch in any lineage, �[n,γ], from Eq. 12 as:

�[n,γ] =Logistic

⎛

⎝e−αT βstrat[n,0] +
κ(n)∑

γ=1

e−αT
(
eαC[n,γ] − eαC[n,γ−1]

)
βstrat[n,γ]

⎞

⎠

(21)
To model the evolution of FGMo as a function of stratification, we then paint the tips
of the phylogeny (in the FGMo model) with parameters using observed data:

β[n,κ(n)] =
{

θssr, if Strat[n] = 1
θnssr, if Strat[n] = 0

(22)

and paint all nonterminal epochs (e.g., where γ �= κ(n)) across all lineages (in the
FGMo model) as a mixture of θssr and θnssr with mixing proportions determined by
�:

β[n,γ] = θssrΛ[n,γ ] + θnssr(1 − �[n,γ ]) (23)

Software Environment

Each complete model was fit using the Stan 2.2.0 software, using the No-U-Turn
sampler, a variant of Hamiltonian Monte Carlo (Stan Development Team 2013a). We
ran multiple small chains to ensure that the models were well-defined and converged
to similar posterior regions. Our final results are based on the results from a sin-
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gle long chain, run for 20,000 warm-up iterations and 400,000 sampling iterations,
thinned at an interval of 20. We found that our model was well identified for all θ
parameters, for α, and effectively identified for σ, although σ itself is not numeri-
cally well identified. Convergence diagnostics and model identification are discussed
in detail in the Electronic Supplementary Materials, Sections 4 and 6.

All pre-processing of data and post-processing of MCMC samples was conducted
using the R environment for statistical computing (R Core Team 2013).

Model Comparison

We compare models using the Watanabe-Akaike information criterion (WAIC)
(Gelman et al. 2014), which is a more fully Bayesian generalization of the standard
Akaike information theoretic criteria, AIC. Computed WAIC is defined as:

WAIC = −2(lppd − pE) (24)

The computed log pointwise posterior predictive density, lppd, is defined as:

lppd =
N∑

n=1

log

⎛

⎝ 1

Q

Q∑

q=1

Pr
(
FGMo[n]|�[n,q]

)
⎞

⎠ (25)

where q = 1...Q references the index of simulations from the posterior distribution.
The effective number of parameters, pE , is computed as:

pE =
N∑

n=1

VarQq=1

(
log(P r(FGMo[n]|�[n,q]))

)
(26)

where the symbol VarQq=1 represents the function to calculate the sample variance
over the posterior simulations.

Results

Analysis of the data with Ornstein-Uhlenbeck process models and information the-
oretic model comparison methods shows that while stratified cultural groups are on
average slightly more likely to practice FGMo than non-stratified groups, there is lit-
tle evidence that the stratification model provides a better fit for the data than the null
model.

Table 1 presents the key parameters of our models, showing the posterior mean
and medians estimates, as well as the central 95% posterior confidence intervals
(95PCIs) from the fitted OU(1) and OU(2) models. Table 2 presents the results of
model comparison using WAIC.
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Table 1 Key parameter estimates from our models, showing relative support for α (selection based on
stratification) and σ (drift and/or orthogonal selective forces) in explaining the distribution of FGMo in
Africa

Model Mean Median 2.5% PCI 97.5% PCI

θanc OU(2) −0.075 −0.078 −1.974 1.853

θssr OU(2) −0.04 −0.042 −1.868 1.761

θnssr OU(2) −0.278 −0.289 −2.106 1.56

α OU(2) 2.781 2.636 0.412 6.105

σ OU(2) 6.891 6.712 2.234 12.502

θanc OU(1) −0.047 −0.039 −1.994 1.889

θgsr OU(1) −0.18 −0.212 −1.789 1.547

α OU(1) 2.652 2.496 0.337 5.88

σ OU(1) 7.404 7.102 2.701 14.023

The mean and median are point estimates of the posterior distribution; the 2.5% and 97.5% equal tail
posterior confidence intervals (PCI) present the dispersion of the posterior distribution. The top set of
parameter estimates is from the OU(2) model, and the bottom set of estimates is from the OU(1) model.
The symbols prefixed by θ indicate the estimated optimal trait value (log odds) under the ancestral, global,
stratified, or non-stratified selection regime, as indicated by the subscripts. We note that σ dominates α in
both the OU(1) and OU(2) models, which is indicative that the distribution of FGMo in Africa is better
explained by drift and/or selective forces operating orthogonally to stratification than by stratification
itself. In the OU(2) model, however, we find that stratification relative to non-stratification is weakly, but
positively, associated with elevated social pressure for FGMo

Inspection of the θssr and θnssr parameter estimates from the OU(2) model in
Table 1 shows a moderate difference in the mean estimated strength of social prefer-
ences for FGMo as a function of stratification. Converting these parameter estimates
to the probability scale, we find that stratified cultural groups are about 6% more
likely, on average, to practice FGMo than non-stratified cultural groups. Although the

Table 2 Results of formal model comparison using WAIC. WAIC, pE , and lppd are defined in the text

Model pE lppd WAIC dWAIC wWAIC

OU(1)-Null 28.099 −28.409 113.017 0 0.848

OU(2)-FixedBranchTips 27.407 −30.821 116.458 3.441 0.152

dWAIC indicates the difference in WAIC between the best model and the second model, and wWAIC
indicates the weight in probability that the specified model will make the best predictions on new data,
conditional on the set of models being considered. We note that the OU(1) model outperforms the OU(2)
model. This result indicates that the distribution of FGMo across our sample of African cultural groups
can be most parsimoniously explained by a model with a single global optima, as opposed to a model with
separate optima for stratified and non-stratified societies. However, these wWAIC values are very close,
and the application of WAIC to these models is not completely justified given the relative strength of drift;
as such, we argue that both models are important to consider. See Electronic Supplementary Materials,
Section 5 for a discussion of methodological issues that arise with WAIC, as σ increases relative to α in
adaptive phylogenetic models.
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confidence intervals on these estimates are wide and largely overlap one another, the
estimates of θssr and θnssr are in the direction predicted by our evolutionary models.

Model comparison with WAIC, however, shows that the OU(1) model is preferred
over the OU(2) model. So while increased stratification appears to be weakly asso-
ciated with increased odds of FGMo, accounting for stratification does not improve
predictions sufficiently to compensate for the increased model complexity in an
information theoretic framework.

In conclusion, although we present evidence that social stratification places pos-
itive selection pressure on social preferences for FGMo, it is evident that σ (which
accounts for drift and/or selection dynamics operating orthogonally to stratification)
plays a more important role in explaining the cross-cultural distribution of FGMo.
Future research is needed to disentangle the effects of drift from other possible
selective drivers of FGMo.

Since our variables for both stratification and FGMo are binary, use of continu-
ous measures of resource inequality (e.g., a Gini coefficient) or FGMo prevalence
might yield more informative results. However, we do not as of yet have access
to such data. Future comparative work in anthropology might benefit from using
higher-resolution cultural data (where such data exist) or, even better, individual-level
measures (e.g., Borgerhoff Mulder et al. 2009; Hill et al. 2011). For example, if we
had cross-cultural, individual-level data on FGMo prevalence and male wealth, we
could estimate FGMo prevalence and calculate a Gini coefficient on wealth, which
would likely be more informative than the simple binary coding scheme used in this
analysis. Likewise, as methods of estimating cultural-group divergences through lan-
guage information become more refined, the effectiveness and accuracy of cultural
phylogentic methods may improve substantially.

Discussion

This paper offers four principal contributions. First we develop explicit evolution-
ary models for the origin and maintenance of FGMo. In so doing we provide both
a formal justification for an existing hypothesis that the practice is related to social
stratification (Mackie 2000) and a novel set of predictions regarding the distinction
between trait origins and maintenance (albeit also recognized by Mackie [2000]).
Second, we consider two generative models for FGMo based on virginity assurance
and costly signaling, and we find that both lead to similar macro-level model dynam-
ics and could therefore be responsible for the emergence of FGMo when there is
inequality in male mating or marriage value. Third, we fit an empirically grounded
statistical model that includes the two main effects from the theoretical model: a
selective effect based on the inequality in mate value (operationalized in the empirical
analysis using stratification as a proxy) and a social transmission effect (operational-
ized in the empirical model using a term orthogonal to the proposed selective regime
based on stratification). Finally, we provide code for a Bayesian implementation of
the Ornstein-Uhlenbeck process model developed by Butler and King (2004).

We use mathematical models to show the importance of differentiating expla-
nations for cultural trait origins from those for persistence; the importance
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of this distinction for explaining trait distributions has been made previously
(Borgerhoff Mulder 2001) but has not, to our knowledge, been formally modeled or
investigated with empirical data. The results of our adaptive phylogenetic analysis
suggest that stratification is associated, though only weakly, with selection pressure
on the uptake of FGMo. However, the fact that σ dominates α in explaining the evo-
lutionary dynamics of the FGMo trait in Africa indicates that drift and/or selective
forces operating orthogonally to social stratification play a very significant role in
explaining the current cross-cultural distribution of the FGMo trait. This is entirely
consistent with the view of earlier scholars who suggest that FGMo became decou-
pled from the signaling of marriageability and chastity as it spread into less stratified
populations (Mackie 2000).

Historical records, albeit largely speculative, that place the origins of FGMo in
ancient Egypt, or the strongly Egyptian-influenced and fabulously wealthy trading
city of Meroe, are consistent with our model-based findings that variance in male
mating value and social stratification should be causally linked to the de novo ori-
gins of FGMo, since ancient Egyptian society was marked by complex stratification
(Murdock 1957).

Although our model-based results indicate that stratification is needed for
the de novo origins of FGMo, once the trait has arisen in a single cultural
group its adoption in any subsequent cultural groups does not require stratifi-
cation. Once FGMo has arisen in a cultural group, and the system has equi-
librated such that s—a measure of frequency-dependent or conformist biases
(Boyd and Richerson 1985; Henrich and Gil-White 2001; Henrich and Boyd 1998)—
functions to increase pressure on individuals to undergo FGMo, the genesis of FGMo
in further groups can occur strictly as a function of s, irrespective of stratification.
Thus, the dynamics of the de novo origins of FGMo differ from the subsequent
dynamics of intercultural transmission (Ross et al. 2015). Though our adaptive phy-
logenetic model illustrates that the evolution of FGMo is not strictly dependent on
stratification, the model still suggests that stratification increases the likelihood of
intergroup transmission or adoption of FGMo.

Most intriguingly, our model shows how, over ecological time, ordinary adaptive
processes can lead to the emergence of a trait that encourages individuals to accept
huge fitness costs in their pursuit of mates. This, of course, is not unusual in the ani-
mal world (Chapman et al. 1995; Wigby and Chapman 2005). However, as a result
of the biases that influence the spread of culturally transmitted traits (conformity
and/or imitation of prestigious individuals), such traits can stabilize over evolutionary
time and, because of the strength of cultural norms and social stigma against devi-
ation, hold in place institutions that can, in this case, severely damage women. Our
modeling therefore shows how ordinary adaptive processes, combined with cultural
evolutionary feedbacks, can generate stable evolutionary outcome states in which
sexual conflict is not resolved (Borgerhoff Mulder and Rauch 2009). Such outcome
states might even set in place systems of gene-culture evolution in which genetic
variations arise because of culturally specific sexual selection pressures (Ross and
Richerson 2014). Futhermore, our modeling demonstrates the futility of thinking
of cultural evolutionary and ordinary adaptive processes as alternative explanations
since they are jointly required to explain the evolutionary dynamics of FGMo.



Hum Nat

In our theoretical models, we focused mainly on differentiating the evolutionary
forces responsible for the de novo origins of FGMo and its subsequent maintenance
in a population. The results of our phylogenetic analysis, however, show that the
effects of stratification are weak, and that characterizing the cross-cultural origins of
FGMo requires more explicit treatment of the dynamics underlying intergroup trans-
mission; these dynamics are investigated elsewhere in an empirical case study of the
intergroup transmission of FGMo in the African diaspora and indigenous populations
of Colombia (Ross et al. 2015).

The relationship between s and the intercultural transmission of FGMo is complex
and will be structured by culturally and historically particular processes. For instance,
imagine that migrants from a non-FGMo culture enter an FGMo cultural area. In
such a case, s and conformist biases can now act to place selective pressure on the
uptake of FGMo by these intercultural migrants, even if stratification was not present
in the migrants’ cultural group. Such an effect would be exacerbated if there were
perceived prestige differences between the FGMo-practicing cultural group and the
non-FGMo-practicing migrant group that cause migrants to copy the behaviors of the
prestigious group (Richerson et al. 2015). This pattern would be likely if FGMo is
associated with the prestigious class in stratified areas.

A similar pattern would be observed if adoption of the cultural traits of a
dominant or prestigious cultural group is an essential step in successfully integrat-
ing into that culture; such dynamics might partially underlie the observation by
Cronk (2004) that Kenyan Mukogodo appear to have adopted FGMo to hasten their
transition to becoming Maasai, or the observation by Ericksen (1989) that the Fur
appear to have adopted FGMo to marry with their nomadic, stock-owning, and more
wealthy Zaghawa neighbors. Similarly, non-practicing displaced ethnic communi-
ties in Darfur (Sudan) have adopted FGMo when moving to cities, just as in the
state of Khartoum, where migrants from West Africa now cut their daughters to
gain acceptance in their new host community (DFID 2013). If successful intercul-
tural migrants are emulated or held in high esteem, or if migration events involve a
large portion of a cultural group, then frequency-dependent, conformist, and pres-
tige biases might result in the propagation of FGMo back into the migrants’ natal
cultural group.

Different patterns of transmission are also possible. We know, for example, that
during the intense military turmoil in the Great Lakes region of central Africa that
refugee segments of Bantu-speaking Abaluhyia lineages, subsequently known as the
Tiriki, adopted the age set organization of their Niolotic Terik neighbors. In return
for asylum with the more military-prepared Terik, Tiriki elders accepted the full set
of initiation rituals for their sons, including circumcision and seclusion, in a bid to
obtain protection (Levine and Sangree 1962; Boyd et al. 1997).

In contrast, in many contexts the practice of FGMo may mark an ethnic boundary
(McElreath et al. 2003) between groups that practice FGMo and those that do not.
In such contexts, s could militate against adoption of the cultural traits of out-groups
and work against the intercultural transmission of FGMo to neighboring populations.
Case studies in which such socially or behaviorally marked ethnic boundaries func-
tion to prevent the transmission of information and behavior across groups are well
described in the literature (Barth 1998; Van den Berghe 1987).
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As such, we expect that the dynamics governing the transmission of FGMo and
other costly traits will be historically and locally contingent based on the nature of
intercultural contact. We suspect that the mechanisms underlying these intercultural
dynamics are likely to include frequency-dependence or conformist learning biases—
as outlined in our introductory review of how FGMo is embedded in deeply held
societal conventions—as well as prestige-biased learning, whereby adopting FGMo
may facilitate inclusion in a more powerful or prestigious population. Similarly, we
note that the decline in FGMo is particularly striking in countries such as Kenya and
Tanzania, where FGMo is less prevalent across constituent ethnic groups (UNFPA-
UNICEF 2013), suggesting that abandonment is more tolerable, even practicable,
with non-practitioners as neighbors. Future research should investigate in more detail
the socioecological circumstances that aid in the intercultural transmission of FGMo
and those that hinder transmission and hasten abandonment.

Our conclusions are generally consistent with those of Murdock (1959), who
argues that the trait of FGMo—in his terminology, excision—is widely distributed
across Africa because of cultural diffusion. For example, in East Africa, southern
Nilotes and Bantu are thought to have adopted the custom from Cushitic neighbors,
given that there is little evidence of FGMo among other Nilotes and the apparent
Cushitic roots to the linguistic term used for the operation (Murray 1974). In West
Africa too there is strong inferential evidence that FGMo was adopted by some of the
neighbors of the FGMo-practicing Mande—for example, the Kissi and the Kran, but
not the Kpelle, Guro, and Gbande—but the details of the adoption during this historic
period of diffusion are unclear (Ericksen 1989). Furthermore, ethnographic reports
(Stannus 1919) indicate that the Yao of northwestern Mozambique and southern
Tanzania appear to have adopted female “circumcision” during their close collabo-
ration with Swahili and Arab slave traders in the nineteenth century, although now
it is largely dropped. We note, however, that these conclusions regarding the histor-
ical diffusion of the trait are based largely on the observation that FGMo appears in
populations that do not necessarily share a common language, geography, and cul-
tural history, and that our methods (like those of Towner et al. 2012) provide an
improvement in inference.

Implications for Policy

Here we sidestep ethical arguments regarding whether or not FGMo should be aban-
doned, as well as the debates over who has the moral authority to take the lead in such
initiatives, recognizing that this can only be locally adjudicated. As Shell-Duncan and
Hernlund (2000:126) observe for the Rendille of Kenya, “awareness of the fact that
female ‘circumcision’ is associated with adverse health consequences is widespread,
yet the Rendille view the risks as worth taking in light of the implications for mar-
riageability.” There are clear social, psychological, and physical consequences to the
practice of genital cutting, and these need to be weighed very carefully in each case.
But, if abandonment is viewed as appropriate, the question of how to achieve such
a goal remains. Many strategies are currently discussed, including medicalization of
the practice (for example, the use of less extreme procedures in hospitals by specially
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trained practitioners), mass education campaigns, formal legislation with criminaliza-
tion of operators and their clients, withdrawing of foreign aid programs, developing
ritual alternatives, or simply relying on the processes of development and the erosion
of tradition (Shell-Duncan and Hernlund 2000).

Many scholars argue that knowledge of the origins of FGMo will not contribute
to a determination of its current significance; others maintain that understanding the
historical roots of the tradition helps justify the persistence of the custom to dis-
approving outsiders, and still others insist that the origins and maintenance of the
practice cannot be conceptually separated from development of strategies for its elim-
ination (Mackie 2000). The present analysis, with its implications for the importance
of frequency-dependent biases in the maintenance of FGMo, supports this third view-
point. Specifically, it points to the potential value of programs that foster contracts
within small communities whereby all parties make a pact not to send their daughters
for the operation; our model suggests that such pacts may be especially effective
in cultural groups who have acquired FGMo via social transmission, or in cultural
groups where there no longer exists sufficient heterogeneity in the value of men on
the marriage market to create the selective pressures that would eclipse the effects
of such pacts. Mackie (1996) has made precisely this point, drawing an analogy
between successful campaigns to eradicate footbinding in China through fostering of
such local contracts. Furthermore, the most recent evaluation of the status of FGMo
globally suggests that public declarations, or collective announcements of abandon-
ment by village delegates, have for the most part been very successful in supporting
change (UNFPA-UNICEF 2013), especially if the initiative is supported by locally
respected leaders (WHO 2010).

There is nevertheless huge variation within and between communities in the rate of
abandonment (Shell-Duncan and Hernlund 2007), which begs further study. Recent
observations by Efferson et al. (2015) that FGMo is not purely a coordination norm,
in conjunction with the findings reported here, might help to explain this heterogene-
ity. Whereas community-based pacts might be effective in abating FGMo in contexts
where FGMo is driven primarily by coordination problems (or other frequency- or
prestige-based social norms), in cases where FGMo is maintained at intermediate
levels by selective pressures related to heterogeneity in the value of men or ranking
of women on the marriage market, abatement pacts are unlikely to be effective. This
is because FGMo may not be maintained purely by coordination. Future empirical
study of the relative cross-cultural effectiveness of FGMo abatement programs as a
function of male wealth inequality in each cultural group may help to validate this
hypothesis.
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from linguistic data), and that 2) evolutionary change can be investigated without37

considering the effects of selection regimes operating on different branches of the38

tree, often—but not always—through assumption of a global Brownian motion39

process.40

We find both of these assumptions problematic in the domain cultural phlyoge-41

netic analysis. Namely, there is no reason to assume that the phylogeny of language42

and the phylogeny of a given cultural trait are the same, as independent cultural43

traits can have independent evolutionary histories [Borgerhoff Mulder et al., 2006].44

The fact that linguistic data provides prior information about divergence times for45

the splitting of physical communities, does not rectify this concern—especially if46

selection for a cultural trait is strong as a function of a covariate. Additionally,47

the very hypotheses we hope to test with cross cultural data are often adaptive48

hypotheses—hypotheses that require an estimation of the evolutionary pressure49

exerted on a given cultural trait by socio-ecological conditions or another cultural50

trait.51

We note that the mean vector used in our model (see Equation 12 in the main52

text) does not simply assume that there is a single global process which defines the53

expected value of a cultural trait, instead the expected value of a trait is defined by54

the strength of selection, and the postulated selective regimes operating on each55

epoch in each linage. Correlations in outcomes can thus be understood as arising56

from either similar selection regimes (through the definition of µ), or from shared57

cultural history (through the definition of V ).58

Next, we note that the variance-covariance matrix used in our model (see59

Equation 13 in the main text) is not simply a variance-covariance matrix de-60

rived from linguistic data—it is a variance-covariance matrix specified randomly61

at each MCMC iteration whose value is jointly conditional on: 1) a randomly gen-62

erated matrix of culture group divergence times (based on the ASJP topology,63

with random local perturbations, see next subsection “Modeling Phylogenetic Un-64

certainty”), 2) the estimated strength of selection, α, acting on trait evolution over65

the phylogeny, and 3) the estimated strength of Brownian motion, σ.66

The relative value of covariance in V across cultural groups, up to a factor, σ2,67

is conditional only on the estimated divergence times of the cultural groups and68

the strength of selection acting on the evolving trait of interest, with covariance69

between cultural groups decreasing monotonically, as α increases and selective70

dynamics drive cultural groups to adopt locally optimal behaviors (See Figure 1).71

[Fig. 1 about here.]72

In cases with strong selection, error structure will not be determined by lin-73

guistic information; instead, error structure will tend towards assumptions of in-74

dependence. Correlations in outcome realizations, however, will arise through the75

correlations introduced directly in the µ vector, via the θ parameters describing the76

selective regimes operating on each cultural group. If selection is strong and cul-77

tural groups share selective regimes, the values in their µ vectors will be positively78

correlated.79

In cases where selection is very weak for a focal cultural trait (based on the80

selective regimes painted on to the phylogeny), then error structure tends towards81

that which would be expected from the linguistic divergence data and the esti-82

mated strength of Brownian motion fluctuations.83
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This model behavior makes the application of phylogenetic models of adaptive84

evolution to cultural data less problematic than the application phylogenetic cor-85

relation methods to such data, in that phylogenetic models of adaptive evolution86

can disentangle—to some extent—the effects of convergent selection and shared87

ancestry.88

Furthermore, the selective regimes painted onto the phylogeny can even be89

based on the linguistic groups themselves. As such, the selective pressure exerted90

on an evolving cultural trait in specific language subgroups can even be estimated91

during model fitting. We use such methods in the OU(15) sub-model of the evolu-92

tion of stratification conditional on language group, included in the OU(2) model93

of the evolution of FGMo conditional on stratification, detailed in the main text.94

Using such methods, the strength of the inferred association between an evolving95

cultural trait (stratification in this case) and language group, is estimated directly96

and allowed to vary across language clusters.97

2 Investigating the Coevolution of Stratification and Language98

To investigate the relationship between stratification and language group, we fit99

an OU(1) model (a single global selection regime for stratification) and an OU(15)100

model (with unique optima as a function of language family and subfamily).101

In the OU(15) model, the effect of selective forces associated with language102

group on the evolution of stratification can be estimated directly. In such a context,103

learning the language group of a culture contributes direct information about the104

strength of selective regimes operating on that cultural group during any epoch in105

the past, which in turn allows for the likelihood of that culture being stratified at106

any epoch to be calculated conditional on the model assumptions and data. Using107

linguistic information to analyze the evolution of stratification in such a context108

is methodologically appropriate, because the direct effect of each language group109

on the evolution of stratification is estimated in the model.110

Table 1 displays the relevant parameter estimates from the OU(1) and OU(15)111

models. We observe increased likelihood of stratification in some language groups112

(Semetic, Berber, and Mande language groups), decreased likelihood of stratifica-113

tion in other groups (the Sudanic language groups), and a lack of relationship to114

stratification in other groups.115

[Table 1 about here.]116

Table 2 presents the results of model comparison. WAIC-based model compar-117

ison suggests that the larger OU(15) model with distinct evolutionary optima118

for language family and sub-family, generates better predictions than the OU(1)119

model, in spite of its increased parameter complexity. These results illustrate that120

the relationship between stratification and language group is reliable, and that121

our method of inferring the likelihood of stratification in non-terminal branches122

based on language group (as detailed in the main analysis) is well justified, and123

not based on assuming covariance between language group and stratification to a124

greater extent than is supported by the data.125

In cultures where selective regimes based on language group are not associated126

with stratification, linguistic group conveys very little information about the like-127

lihood of stratification to our main model linking stratification and the evolution128
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of FGMo (See Supplementary Table “StratificationPreferences.xlsx” for estimates129

of the likelihood of stratification at deeper nodes of the phylogeny based on the130

OU(15) model).131

[Table 2 about here.]132

3 Modeling Phylogenetic Uncertainty133

To account for phylogenetic uncertainty, we sample a new phylogenetic tree at each134

MCMC iteration. All sampled trees have the same gross topology, meaning that the135

hierarchical clustering of cultural groups is unchanged across MCMC iterations;136

however, the divergence times (S and C) of branches on the phylogeny differ137

across MCMC samples. Our model thus integrates over small scale perturbations138

in branch times, while still making use of the maximum likelihood tree structure139

based on ASJP data.140

We begin with the CML matrix, which contains the maximum likelihood esti-141

mates of divergence times for each epoch in each lineage taken directly from the142

ASJP records [Holman et al., 2011, Supplementary Data A]. We fix two minor is-143

sues with ASJP dates: 1) there are four cases where the terminal divergence dates144

of a cultural group are not defined in the ASJP data—we model these splits as145

unknown parameters with uniform constrained support on the interval between146

the divergence time of the previous epoch and the present time, and 2) there are147

four cases where the ASJP dates for divergence time of a parent family in the148

linguistic hierarchy are younger than at least one of their daughters—we model149

these data by replacing the pathological ASJP date with a parameter that has150

uniform constrained support on the interval between the ASJP divergence times151

of the previous and subsequent epochs.152

To proceed with the model, we then decompose the CML matrix into a two-153

dimensional array of values, D, which is composed of the unique divergence times154

in the phylogenetic tree, and a map, IDD, that links the parameters in the D155

array back to their locations in the the CML matrix. D is of length Γ and has a156

width equal to the number of unique parameters at each epoch. For example, in157

the first cell of D, the width is 1, since during the first epoch all cultural groups are158

considered to have been evolving as part of the same group, in the second cell the159

width is 4, since there are four unique divergence times (one for Khoe, one for Nilo-160

Saharan, one for Niger-Congo, and one for Afro-Asiatic); this pattern continues161

for each level of the hierarchical clustering of language groups. The variable IDD162

indicates the locations where a parameter in D occurs in CML.163

We then create an array of parameters, δ with direct correspondence to D in
order to add random fluctuations to each value in D. Each cell in δ is given upper
and lower constraints, Mx and Mn, respectively. A prior is specified each cell of δ
such that:

δ ∼ Normal(0,Mx)T [Mn,Mx]

where T [Mn,Mx] indicates the truncated likelihood operator, and the standard164

deviation set to equal Mx gives each δ parameter a weakly informative prior. We165

sum D and δ, and transform the results from years before present, as in ASJP,166

to years since the origin of the most basal node; we use the IDD map to paint167

the resulting values back onto a parameter matrix, CRandom, which has the same168
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structure as the original CML matrix. We then error check each proposed CRandom169

matrix to ensure that each and every lineage in the matrix is positive-ordered (ie.170

each cell in the lineage is positive and larger than the previous cell in the lineage).171

If any proposed matrix is not positive-ordered, the proposed MCMC sample is172

Metropolis rejected to maintain detailed balance. CRandom is standardized to the173

unit interval to become C, the parameter matrix used in the model description174

described in the main text. The S matrix is derived from C, by returning the value175

of C in lineage n1 for the most recent epoch in which cultural group n1 and n2176

were evolving as a single group.177

The modeling described in this section and in the methods section of the text178

is described more directly in R/Stan computer code, also included in this sup-179

plement. Mx and Mn are set to 350 years and -350 years respectively, to give a180

700 year window of uncertainty around each branch point in the phylogeny. See181

Supplementary Table “CutTimesPosterior.xlsx” for the ASJP dates, and the asso-182

ciated mean and 95PCIs of the posterior realizations of these dates generated by183

our model.184

4 Testing the Basic Model with Simulated Data185

The adaptive phylogenetic models used in this study are large and complicated. In186

this section, we briefly detail the output and results of our model when simulated187

data are analyzed. Testing a model with simulated data is an essential step in188

verifying that a model is capable of properly analyzing real data and returning189

parameter estimates that make sense in light of a given data set.190

We begin by utilizing the empirical stratification data, and then simulating191

fourteen distinct FGMo data sets from the stratification data using a conditional192

Bernoulli probability generator with the probability parameter set to various val-193

ues if Stratification = 1, and various other values if Stratification = 0 (See194

Supplementary Table “SensitivityAnalysis.xlsx”, for settings and results).195

We fully analyzed each simulated data set with the main OU(1) and OU(2)196

models described in the main text. For each simulated data set and each model, we197

ran a single Markov chain for 5,000 warm-up iterations, and sampled the following198

15,000 iterations thinning at an interval of 4.199

The models fit in this sensitivity analysis used half-Cauchy priors on the posi-200

tive constrained parameters; we later found half-Gassian priors to perform better.201

In spite of this, results from the simulation study show that our phylogenetic202

models are effective at recovering parameter values that make sense in light of203

the simulated data, and that the WAIC metric is effective in choosing the more204

complex model when stratification leads to divergence in FGMo frequency, and205

choosing the null model when stratification is not predictive of FGMo frequency.206

5 Current Shortcomings in Our Formulation of Bayesian Phylogenetic207

Modeling of Adaptive Evolution208

1) Assumption of Piece-wise Constant Selection Regimes - We find the assumption209

of piece-wise constant selection regimes to be quite troublesome. Simply because210
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we know a given cultural group to be stratified at the current time, does necessarily211

mean that this group has been stratified over the entire terminal epoch.212

This assumption in our model gives the cultural groups with deep divergence213

times for their terminal epoches disproportionate weight in the estimation of model214

parameters; furthermore, because the terminal branches are fixed, the value of µ for215

a cultural group with deep divergence times is much more sensitive to the values216

of θnssr and θssr than the value of µ for a cultural group with a more recent217

terminal divergence time, since θnssr and θssr are mixed for the majority of this218

cultural group’s evolution. Furthermore, this behavior undermines the effectiveness219

of WAIC, because WAIC is very sensitive to pointwise predictive density, and thus220

a single outlier with a deep divergence time for its terminal epoch can have a strong221

impact on WAIC.222

It would be optimal to let the θnssr and θssr parameters on the terminal branch223

segments mix as a function of time since present in order to better represent our224

uncertainty about the nature of the selection regime in the past. We know of no225

general, non-ad hoc methods for implementing such a function at this time, so new226

research is needed.227

In our specific model formulation, an attractive option might be to use Λ[n,κ(n)]228

to mix θnssr and θssr on the terminal branches, instead of simply painting them229

on to the terminal branches in a binary fashion using the observed data. We fit230

this ‘random terminal branch tip model’, in addition to the ‘fixed terminal branch231

tip model’. The random terminal branch tip model model was preferred by WAIC232

(See Table 3) to the fixed branch tip model and the OU(1) model, possibly because233

the sensitivity of predictions to θnssr and θssr in cultures with deep terminal234

divergences is reduced. This choice, however, throws away too much information,235

since we know that state of stratification in each cultural group to a greater degree236

of certainty than Λ[n,κ(n)] for the recent past.237

[Table 3 about here.]238

2) Prior Specification - Our model uses what we believe from theory and239

semi-systematic experimentation to be reasonable priors. However, no rigorous240

study has compared the performance of various priors on inference in models like241

ours. We find that both half-Gaussian (Normal(0, 5)T [0,∞]), and half-Cauchy242

(Cauchy(0, 1)T [0,∞], or Cauchy(0, 0.1)T [0,∞]) priors led to similar results.243

Our sensitivity analysis used half-Cauchy priors, but we later elected to use244

half-Gaussian priors in our final MCMC runs, since these priors mitigated some245

pathological behavior associated with the half-Cauchy parameterization.246

247

3) WAIC needs more careful thought - WAIC is conditioned upon the point-248

wise evaluation of data and model parameters. When selection is strong, WAIC249

comparison in our model is properly defined because the model errors approach250

independence, and each datum can be seen as a unique point, for which a point-251

wise approach to predictive evaluation makes sense (in other words, the predictive252

fit of each cultural group gets equal weight in WAIC, because each cultural group253

is in fact an independent data point). However, as drift becomes important rel-254

ative to selection, WAIC as we have defined it becomes somewhat tendentious,255

because WAIC still believes each datum to be a unique point useful for evaluating256

predictive information loss, even though each point is not completely independent.257
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However, to the extent that we care about our model predicting each point,258

our formulation of WAIC seems valid; on the other hand, one could argue that we259

should not care as much about our model predicting each point, but rather each260

language subfamily. We concede to such an argument, but lament that methods261

of model comparison useful for such contexts are still in development. Work on262

WAIC is still a very new field, and new computational formulations of WAIC may263

be useful for approximations to leave-one-group-out, instead of leave-one-point-264

out, cross validation. Such methods would be an improvement over our methods265

herein. WAIC appears to be well behaved in our sensitivity analysis, however, so266

we are reasonably confident that our WAIC results are valid.267

6 Assessing Model Fit268

We investigated model fit by plotting the traceplots and pairs plots of all model269

parameters. We include these plots for the main model parameters in each of270

the following models: OU(1)FGMo|Null, OU(2)FGMo|Stratification (Fixed Ter-271

minal Branch Tips for FGMo|Stratification), OU(2)FGMo|Stratification (Ran-272

dom Terminal Branch Tips for FGMo|Stratification), OU(1)Stratification| Null,273

OU(15)Stratification|Language(Fixed Terminal Branch Tips for FGMo|Stratification),274

and OU(15)Stratification|Language(Random Terminal Branch Tips for FGMo|Stratification).275

6.1 Pairs Plots276

[Fig. 2 about here.]277

[Fig. 3 about here.]278

[Fig. 4 about here.]279

[Fig. 5 about here.]280

[Fig. 6 about here.]281

[Fig. 7 about here.]282

6.2 Traceplots283

[Fig. 8 about here.]284

[Fig. 9 about here.]285

[Fig. 10 about here.]286

[Fig. 11 about here.]287

[Fig. 12 about here.]288

[Fig. 13 about here.]289
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Additionally, we used Stan’s posterior summary statistics rhat and effective290

sample size, neff , to assess model fit. These statistics are included in Supple-291

mentary Table “StanSummaryOfResults.xlsx”. All θ parameters were well esti-292

mated and clearly identified; however, σ, and to a lesser extent α, showed signs293

of poor identification in some models, especially under half-Cauchy rather than294

half-Gaussian priors. This behavior is not unexpected, due to the inherent issues295

with identification of α, θ, and σ in the Butler and King [2004] framework.296

Our use of regularizing priors, however, improves identification of most model297

parameters over the standard Maximum Likelihood Estimation methods men-298

tioned in Butler and King [2004]. All θ parameters are well behaved in every299

model, and we fail to see any serious identification issues between α and θ. We300

only note a minor issue that α can grow substantially when the θ parameters of301

a model approach zero in a given MCMC sample (this behavior is more common302

with half-Cauchy priors than with half-Gaussian priors). This behavior could be303

rectified by adopting stronger priors that place very low prior probability at values304

of α > 20 as per the suggestion described in Butler and King [2004, Supplementary305

Appendix].306

Half-Gaussian prior distributions appear to perform better than half-Cauchy307

priors in constraining α and σ. In our models, α never grew pathologically for more308

than a few MCMC iterations before returning to the area of high density (< 10),309

even with half-Cauchy priors, so both kinds of prior are deemed reasonable.310

The σ parameter, however, shows the worst issues with identification across311

models, as it tends toward a random walk (under half-Cauchy priors) as it grows312

past a value of 8 or larger, especially in the OU(2)FGMo|Stratification model. This313

behavior likely results from two keys facts about our model: 1) in our model for-314

mulation σ and α are not perfectly orthogonal, so the ‘correct’ value of covariance315

in V , can always be specified by different combinations of α and σ, leading to a316

‘tug-of-war’ between these parameters. Pragmatically, however, α is constrained317

heavily because it factors into the likelihood through both the mean vector and318

the variance-covariance matrix; as such, α and σ are fairly well identified from319

each other.320

More importantly, 2) σ only factors into the overall model likelihood via its321

ability to modulate the variance and covariance in predicted values of Ψ ; since322

limx→∞ logistic(x) = 1, and limx→−∞ logistic(x) = 0, once σ has grown suffi-323

ciently large, its evolution can diverge to an ever increasing random walk without324

leading to numeric differences in predictions or the likelihood of a model. While325

the exact numerical value of the σ parameter in such a context is not identifiable,326

lack of numerical identifiability does not lead to a non-identified model, nor does327

it hamper inference concerning the role σ plays in the evolutionary dynamics of328

the system. If σ is large enough such that it diverges to a random walk, then329

inferentially we know sigma to be large relative to selection pressure α, even if330

we cannot assign it a unique numerical value or range. Figure 14 illustrates how331

density on the unit interval—of logistic(Ψ[n])—changes as a function of the value332

of σ. After σ exceeds approximately 8 or 10, probability density hardly changes as333

σ continues to increase on the linear scale. We note that σ is better constrained334

by half-Gaussian, than half-Cauchy priors.335

[Fig. 14 about here.]336
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7 Alternative Phylogenetic Methods337

In our paper, we elected to use and focus on the Butler and King methodology for338

phylogenetic modeling of adaptive evolution. Other approaches are also possible339

[see Pagel, 1994; Pagel and Meade, 2006]. We were keen on the ability of the340

Butler and King methodology to allow us to: 1) probabilistically model the state341

of stratification in deeper nodes of the phylogenetic tree, and to test if there are342

distinct evolutionary optima of the social preference for FMGo that depend on343

the state of stratification, and 2) partially disentangle the effects of selection and344

drift.345

For thoroughness, we present the results of other standard methods for phylo-346

genetic analysis of discrete traits in this supplement.347

7.1 PGLS Methods348

Phylogenetic signals were estimated using the D statistic for binary characters349

[Fritz and Purvis, 2010], implemented in the R package caper [Orme et al., 2011].350

To investigate the relative importance of geographic and linguistic proximity, we351

used Mantel tests as implemented in the R-packages cluster [Maechler et al., 2013]352

and vegan [Oksanen et al., 2012], but see [Harmon and Glor, 2010]. For these tests,353

geographic proximity was measured using ordinary Euclidean distance, while phy-354

logenetic distance was measured by counting the number of nodes between lan-355

guages in the phylogeny. The model with highest Mantel r statistic was judged356

as the model providing the highest level of explanation. We checked for correlated357

evolution using the Pagel [1994] test of correlated (discrete) character evolution358

as implemented in Mesquite [Maddison and Maddison, 2011] and for the influence359

of stratification using Phylogenetic Generalized Least Squares (PGLS) as imple-360

mented in caper [Orme et al., 2011].361

7.2 PGLS Results362

There exists a significant phylogenetic signal in the binary variable, FGMo, (D=0.516;363

significance of phylogenetic signal, p = 0.001; significance of departure from Brow-364

nian motion p = 0.089). Interestingly, we found significant phylogenetic signals for365

both latitude (p<0.001) and longitude (p<0.001) indicating a marked correlation366

between the language phylogeny and the geographical location of the populations367

studied.368

Utilizing Mantel tests, we attempted to tease apart the relative importance of369

geographic proximity and phylogenetic proximity. We tested four alternative pre-370

dictor models: (1) linguistic proximity, (2) geographical proximity, (3) linguistic371

proximity with geographical proximity as a covariate, and (4) geographical proxim-372

ity with linguistic proximity as a covariate. These tests indicated that geographical373

proximity with linguistic proximity as a covariate was the model with most ex-374

planatory power for all variables. However, due to the close correlation between375

linguistic and geographical proximity, as indicated by the strong phylogenetic sig-376

nal for latitude, as well as the methodological problems with the Mantel tests377
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[Nunn et al., 2006; Dekker et al., 2007], we provide results of both phylogenetic378

and non-phylogenetic analyses of the hypothesis tests.379

We failed to find evidence of a strong correlation between FGMo and strati-380

fication. Both non-phylogenetic, non-parametric Kruskal-Wallis tests (H = 1.270,381

p = 0.736), as well as Phylogenetic Generalized Least Squares tests (λ=0, p =382

0.335), gave the same qualitative results.383

7.3 PGLMM Methods384

In addition to the simple models outlined above, we compared our main results385

to those produced using a phylogenetic implementation of a standard general-386

ized linear mixed model (PGLMM) [Ives and Garland Jr, 2014], using a Bayesian387

estimation procedure.388

As in Ives and Garland Jr [2014], we have:389

FGMo[n] ∼ Bernoulli(P[n]) (1)

390

logit(P[n]) = β0 + β1Strat[n] + ε[n] (2)

391

ε ∼ Multivariate Normal((0, . . . , 0), σ2S) (3)

where S is a distance matrix with unit diagonal derived from the linguistic phy-392

logeny.393

In our model, we have priors:394

β ∼ Normal(0, 5) (4)

395

σ2 ∼ Cauchy(0, 1)T [0,∞] (5)

See supplementary model code for implementation and further details.396

7.4 PGLMM Results397

Using the PGLMM model outlined in Ives and Garland Jr [2014] we find results398

that are qualitatively comparable to our main findings. The effect of stratification399

on the log odds of a population practicing FGMo is 0.49 (PCI95: -2.37, 4.52),400

which is positive, but non-significant.401

8 FGMo Prevalence402

Finally, since considering any cultural group as an FGMo practicing group if there403

is any normative use of FGMo (even at low frequencies) has the potential to inflate404

the size of the drift term, we collected data on contemporary FGMo prevalence,405

and reclassified groups as practicing FGMo only if contemporary prevalence was406

at least 50%. Because prevalence data by ethnicity is hard to come by, due to407

missing data, our revised model had N=100, rather than N=112, observations.408
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As in the main analysis, we find that σ dominates α in both the OU(1) and409

OU(2) models, and that the OU(1) model is preferred to the OU(2) by WAIC. See410

Tables 4 and 5.411

[Table 4 about here.]412

[Table 5 about here.]413

9 Interpreting Efferson et al. [2015]414

Following cautions raised in Efferson et al. [2015], we emphasize that our model415

does not assume that the social transmission bias arises purely from a coordination416

game; a wide range of social pressures, be they based on religious obligation [Gru-417

enbaum, 2001], gender marking [Gruenbaum, 2001], coordination [Mackie, 2000],418

or cultural identity [Daniels, 1970], can all mutually interact to yield the net effects419

accounted for by s(α). Again following Efferson et al. [2015], our model formal-420

izes the assumption that some males may hold considerable power in the mating421

market and explicitly considers the effects of providing these men with virginity422

assurance or costly signals of sexual fidelity, via the functions Vm(rf (f + i, df )) or423

Vm(rf (f+x, df )). Our model also integrates information on the costs, c, of FGMo,424

but we did not consider inter-individual variation in these costs in the main text.425

These costs, however, are likely to be heterogeneous across individuals, and426

could possibly contribute to the empirical observation by Efferson et al. [2015]427

that, in some cases, FGMo occurs in populations at levels well below fixation. To428

see how, let us consider the behavior of the model when there are two classes of429

men, rich and poor, and the cost of undergoing FGMo depends on the wealth class430

of men to which a given woman is paired, with wives of the rich men paying cost431

cr and wives of poor men paying the cost cp—this assumption may be justified432

by noting that the costs of FGMo on women are often expressed via long-term433

medical complications, especially during pregnancy [Mackie, 2003; Shell-Duncan434

and Hernlund, 2000; Banks et al., 2006], and that males with increased financial435

resources might be able to better offset these costs by increasing the access of436

females to higher quality health care.437

Although we limit the analytical exploration of our model in the main text to438

special cases describing the origins (α = 0) and maintenance (α = 1) of the FGMo439

cultural trait, our model provides a framework for understanding the dynamics440

leading to intermediate frequencies of FGMo, such that 0 < α < 1. Given the gen-441

erality of our model, we can define the marriage value function for males, Vm, such442

that for some arbitrary fraction of males, α̂, Vm(rf (f + i, df ))− Vm(rf (f, df )) >443

s(1 − α̂) − s(α̂) + cr, and for 1 − α̂ of males, Vm(rf (f, df )) = Vm(rf (f + i, df )).444

This condition formalizes an empirical observation that in many populations the445

majority of male wealth values are similar, with a few outliers being responsi-446

ble for the majority of the inequality [Borgerhoff Mulder et al., 2009], and leads447

to a situation where there is wealth-based incentive for the highest-ranked frac-448

tion of women, α̂, to practice FGMo, and there is no wealth-based incentive449

for the lowest-ranked 1 − α̂ fraction of women to practice FGMo, since there450

is no difference in marriage value as a function of undergoing FGMo, due to451

Vm(rf (f + i, df ))− Vm(rf (f, df )) = 0.452
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However, for the lowest ranked woman paired with one of the wealthy men, her453

marriage partner will be the same with or without her undergoing FGMo, so for her454

not to switch strategies, social pressures must be responsible; she will not switch455

strategies so long as s(α̂) − s(1 − α̂) > cr. For the highest ranked female paired456

to one of the poor males, she will not undergo FGMo when P − PV A > 0, which457

holds so long as s(α̂)− s(1− α̂) < cp; this condition implies that all lower-ranked458

women will also not engage in FGMo.459

Because cr, cp, and s are arbitrary, we can always find parameter values to sat-460

isfy both critical conditions—specifically, cr < s(α̂)− s(1− α̂) < cp—so our model461

is thus capable of producing a stable FGMo distribution for all values of α̂ ∈ [0, 1].462

Thus, while a pure coordination game may not be able to explain the frequency463

distribution of FGMo in some groups, as shown by Efferson et al. [2015], even if s464

was determined solely by a coordination game, our model demonstrates how con-465

sideration of FGMo in a mating market operating under under a system of mating466

payoffs coupled with coordination payoffs and variation in costs of FGMo could467

produce the empirical outcomes documented by Efferson et al. [2015]. Following468

this line of logic, and much previous emprical research, we argue that it may be469

more nuanced to argue that FGMo is not purely a social coordination norm, than470

to argue that it is not a coordination norm; depending on the parameters of the471

model, there could be very strong coordination norms driving FGMo, even when472

FGMo is practiced at intermediate levels.473
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Fig. 1 Figure 1 displays a plot of the covariance (as estimated in Equation 13 of the main
text) between two cultural groups who diverged at time t = 0.9 in the unit-scaled phylogeny.
As α grows from 0 → 20 covariance declines exponentially toward zero. Each line is a contour
for σ2 = {1,4,16,64} from lower-left to upper-right.
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Fig. 2 Figure 2 displays the pairs plot for the OU(1)FGMo|Null model.



FIGURES 17

Theta0

−4 0 2 4 0 4 8 12

−
4

0
2

4

−
4

0
2

4

−0.04

ThetaStrat

−0.02 −0.07

ThetaNonStrat

−
4

0
2

4

0
4

8
12

0.01 −0.06 −0.17

Alpha

−4 0 2 4

0.02 0.00

−4 0 2 4

0.09 0.22

0 5 10

0
5

10

Sigma

Fig. 3 Figure 3 displays the pairs plot for the OU(2)FGMo|Stratification model with fixed
terminal branch tips for FGMo|Stratification.
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Fig. 4 Figure 4 displays the pairs plot for the OU(2)FGMo|Stratification model with random
terminal branch tips for FGMo|Stratification.
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Fig. 5 Figure 5 displays the pairs plot for the OU(1)Stratification|Null model.
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Fig. 6 Figure 6 displays the pairs plot for the OU(15)Stratification|Language model, with
fixed terminal branch tips for FGMo|Stratification.
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Fig. 7 Figure 7 displays the pairs plot for the OU(15)Stratification|Language model, with
random terminal branch tips for FGMo|Stratification.
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Fig. 8 Figure 8 displays the traceplot for the OU(1)FGMo|Null model.
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Fig. 9 Figure 9 displays the traceplot for the OU(2)FGMo|Stratification model with fixed
terminal branch tips for FGMo|Stratification. Note that α and θ are stationary, well identified,
and well mixed. On the other hand, we see that σ is well identified, but not as well mixed.
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Fig. 10 Figure 10 displays the traceplot for the OU(2)FGMo|Stratification model with ran-
dom terminal branch tips for FGMo|Stratification. Note that α and θ are stationary, well
identified, and well mixed. On the other hand, we see that σ is not as well mixed, and shows
some signs of poor identification during the tail end of the simulation.
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Fig. 11 Figure 11 displays the traceplot for the OU(1)Stratification|Null model.
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Fig. 12 Figure 12 displays the traceplot for the OU(15)Stratification|Language model with
fixed terminal branch tips for FGMo|Stratification.
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Fig. 13 Figure 13 displays the traceplot for the OU(15)Stratification|Language model with
random terminal branch tips for FGMo|Stratification.
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(d) µ = 0

Fig. 14 Frames (a) through (d) illustrate how probability density on logistic(Ψ[n]) changes as
a function of the value of σ, using simulated values for µ and V . In each subfigure, the mean
value for Ψ[n] is held constant and σ increases from {1, 2, 4, 8, 10, 12, 14}, as red changes to
magenta. Once σ has grown past approximately 8 on the linear scale, further growth fails to
numerically alter probability density over logistic(Ψ[n]. These plots illustrate that while σ is
not numerically identified, our overall model is well identified. We qualitatively see that σ is
estimated to be large relative to α.



FIGURES 29

List of Tables581

1 Parameter estimates of the OU(1) and OU(15) submodels for the582

evolution of stratification conditional on language group. We note583

increased likelihood of stratification in the Semetic, Berber, and584

Mande language groups, and decreased likelihood of stratification585

in the Sudanic language groups. In other language groups, however,586

there appears to be no strong association between language group587

and stratification. We note that the parameters α and σ are of sim-588

ilar magnitude and fairly large, reflecting the fact that there exist589

signals of both selection and drift in the evolution of stratification590

conditional on language group. . . . . . . . . . . . . . . . . . . . . 31591

2 Results of formal model comparison using WAIC. WAIC, pE, and592

lppd are defined in the main text. The symbol dWAIC indicates593

the difference in WAIC between the best model and the subsequent594

models, and the symbol wWAIC indicates the weight in probabil-595

ity that the specified model will make the best predictions on new596

data, conditional on the set of models being considered. We see that597

WAIC prefers an adaptive model of stratification with distinct op-598

tima based on language family, to an OU(1) model unconditional599

on language family. We give further discussion about the relevance600

of fixed versus random branch tips later in this supplement. . . . 32601

3 Results of formal model comparison of the FGMo|Stratification602

model using WAIC. We see that WAIC prefers an adaptive model of603

FGMo based on stratification (with random branch tips for stratifi-604

cation), to an OU(1) model. We also note that the random branch605

tips model outperforms the the fixed branch tips model for pre-606

dicting FGMo|Stratification, because the sensitivity of predictions607

to θnssr and θssr in cultures with deep terminal divergences is re-608

duced. Although the performance of the OU(2) model with random609

branch tips relative to the OU(1) appears to suggest that stratifi-610

cation plays an important role in the adaptive evolution of FGMo,611

inspection of the model’s parameter estimates shows only very small612

effects, with σ still dominating the evolutionary dynamics (See Sup-613

plementary Table “StanSummaryOfResults.xlsx”). . . . . . . . . . 33614
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4 Key parameter estimates from our revised model, showing relative615

support for α (selection based on stratification) and σ (drift and/or616

orthogonal selective forces) in explaining the distribution of FGMo617

in Africa. The mean and median are point estimates of the posterior618

distribution; the 2.5 and 97.5 percent equal tail posterior confidence619

intervals (PCI) present the dispersion of the posterior distribution.620

The top block of parameter estimates are from the OU(2) model,621

and the bottom block of estimates are from the OU(1) model. The622

symbols prefixed by θ indicate the estimated optimal trait value (log623

odds) under the global, stratified, or non-stratified selection regime,624

as indicated by the subscripts. We note that σ dominates α in both625

the OU(1) and OU(2) models, which is indicative that the distribu-626

tion of FGMo in Africa is better explained by drift and/or selective627

forces operating orthogonally to stratification, than by stratification628

itself. In the the OU(2) model however, we find that stratification629

relative to non-stratification is weakly, but positively, associated630

with elevated social pressure for FGMo. . . . . . . . . . . . . . . . 34631

5 Results of formal model comparison on the revised model using632

WAIC. WAIC, pE, and lppd are defined in the text. The symbol633

dWAIC indicates the difference in WAIC between the best model634

and the second model, and the symbol wWAIC indicates the weight635

in probability that the specified model will make the best predic-636

tions on new data, conditional on the set of models being considered.637

We note that the OU(1) model outperforms the OU(2) model. This638

result indicates that the distribution of FGMo across our sample of639

African cultural groups can be most parsimoniously explained by a640

drift model with a single global optima, as opposed to a model with641

separate optima for stratified and non-stratified societies. However,642

these wWAIC values are very close, and the application of WAIC to643

these models is not completely justified given the relative strength of644

drift; as such, we argue that both models are important to consider. 35645
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Table 1 Parameter estimates of the OU(1) and OU(15) submodels for the evolution of strat-
ification conditional on language group. We note increased likelihood of stratification in the
Semetic, Berber, and Mande language groups, and decreased likelihood of stratification in the
Sudanic language groups. In other language groups, however, there appears to be no strong
association between language group and stratification. We note that the parameters α and σ
are of similar magnitude and fairly large, reflecting the fact that there exist signals of both
selection and drift in the evolution of stratification conditional on language group.

Model Parameter Language Mean Median 2.50% 97.50%

OU(1) θGSR Africa 0.4352 0.4342 -0.777 1.5983
OU(1) θanc Ancestral 0.0284 0.0244 -1.9426 1.9886
OU(1) αS - 5.6144 5.266 0.9623 12.0886
OU(1) σS - 4.1018 3.6508 0.3677 10.3519

OU(15) θanc Ancestral 0.034 0.037 -1.92 1.983
OU(15) θFam[1] AfroAsiatic 0.149 0.146 -1.754 2.042
OU(15) θFam[2] NigerCongo 0.049 0.051 -1.922 1.983
OU(15) θFam[3] NiloSaharan 0.086 0.096 -1.872 1.983
OU(15) θFam[4] Khosian -0.016 -0.008 -1.976 1.913
OU(15) θSubFam[1] Berber 0.335 0.336 -1.555 2.196
OU(15) θSubFam[2] Chadic -0.032 -0.041 -1.975 1.9
OU(15) θSubFam[3] Cushitic -0.085 -0.086 -2.01 1.854
OU(15) θSubFam[4] Omotic 0.014 0.012 -1.94 2
OU(15) θSubFam[5] Semitic 0.438 0.449 -1.493 2.343
OU(15) θSubFam[6] Khosian -0.001 -0.009 -1.952 1.95
OU(15) θSubFam[7] AtlanticCongo 0.094 0.115 -1.513 1.594
OU(15) θSubFam[8] Mande 0.302 0.302 -1.564 2.143
OU(15) θSubFam[9] CentralSudanic -0.294 -0.294 -2.176 1.618
OU(15) θSubFam[10] EasternSudanic -0.222 -0.22 -2.069 1.65
OU(15) θSubFam[11] Fur 0.136 0.133 -1.802 2.087
OU(15) αS - 5.655 5.262 1.338 11.99
OU(15) σS - 5.116 4.851 0.318 11.77
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Table 2 Results of formal model comparison using WAIC. WAIC, pE, and lppd are defined
in the main text. The symbol dWAIC indicates the difference in WAIC between the best model
and the subsequent models, and the symbol wWAIC indicates the weight in probability that
the specified model will make the best predictions on new data, conditional on the set of models
being considered. We see that WAIC prefers an adaptive model of stratification with distinct
optima based on language family, to an OU(1) model unconditional on language family. We
give further discussion about the relevance of fixed versus random branch tips later in this
supplement.

Model pE lppd WAIC dWAIC wWAIC

OU(15)-FixedBranchTips 23.657 -49.742 146.798 0 0.786
OU(1)-Null 19.988 -55.331 150.639 3.841 0.115
OU(15)-RandomBranchTips 20.376 -55.103 150.958 4.16 0.098
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Table 3 Results of formal model comparison of the FGMo|Stratification model using WAIC.
We see that WAIC prefers an adaptive model of FGMo based on stratification (with ran-
dom branch tips for stratification), to an OU(1) model. We also note that the random branch
tips model outperforms the the fixed branch tips model for predicting FGMo|Stratification,
because the sensitivity of predictions to θnssr and θssr in cultures with deep terminal diver-
gences is reduced. Although the performance of the OU(2) model with random branch tips
relative to the OU(1) appears to suggest that stratification plays an important role in the
adaptive evolution of FGMo, inspection of the model’s parameter estimates shows only very
small effects, with σ still dominating the evolutionary dynamics (See Supplementary Table
“StanSummaryOfResults.xlsx”).

Model pE lppd WAIC dWAIC wWAIC

OU(2)-RandomBranchTips 27.486 -26.748 108.468 0 0.892
OU(1)-Null 28.099 -28.41 113.017 4.55 0.092
OU(2)-FixedBranchTips 27.407 -30.822 116.458 7.991 0.016



34 TABLES

Table 4 Key parameter estimates from our revised model, showing relative support for α
(selection based on stratification) and σ (drift and/or orthogonal selective forces) in explaining
the distribution of FGMo in Africa. The mean and median are point estimates of the posterior
distribution; the 2.5 and 97.5 percent equal tail posterior confidence intervals (PCI) present
the dispersion of the posterior distribution. The top block of parameter estimates are from
the OU(2) model, and the bottom block of estimates are from the OU(1) model. The symbols
prefixed by θ indicate the estimated optimal trait value (log odds) under the global, stratified,
or non-stratified selection regime, as indicated by the subscripts. We note that σ dominates α in
both the OU(1) and OU(2) models, which is indicative that the distribution of FGMo in Africa
is better explained by drift and/or selective forces operating orthogonally to stratification, than
by stratification itself. In the the OU(2) model however, we find that stratification relative to
non-stratification is weakly, but positively, associated with elevated social pressure for FGMo.

Model Mean Median 2.5% PCI 97.5% PCI

θssr OU(2) -0.245 -0.217 -2.22 1.523
θnssr OU(2) -0.601 -0.6 -2.732 1.551
α OU(2) 1.299 1.148 0.095 3.326
σ OU(2) 4.547 4.379 1.848 8.448

θgsr OU(1) -0.654 -0.693 -2.57 1.411
α OU(1) 1.339 1.173 0.075 3.475
σ OU(1) 5.784 5.397 2.576 10.95
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Table 5 Results of formal model comparison on the revised model using WAIC. WAIC,
pE, and lppd are defined in the text. The symbol dWAIC indicates the difference in WAIC
between the best model and the second model, and the symbol wWAIC indicates the weight
in probability that the specified model will make the best predictions on new data, conditional
on the set of models being considered. We note that the OU(1) model outperforms the OU(2)
model. This result indicates that the distribution of FGMo across our sample of African cultural
groups can be most parsimoniously explained by a drift model with a single global optima, as
opposed to a model with separate optima for stratified and non-stratified societies. However,
these wWAIC values are very close, and the application of WAIC to these models is not
completely justified given the relative strength of drift; as such, we argue that both models
are important to consider.

Model pE lppd WAIC dWAIC wWAIC

OU(1)-Null 18.75 -19.34 76.18 0 0.91
OU(2)-FixedBranchTips 17.67 -22.71 80.76 4.59 0.09
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