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Abstract 

Some basic features of the relativistic treatment of many-body systems (nu

clear matter, neutron matter, electrically charge neutral many-baryon/lepton neu

tron star matter) are discussed and illustrated by some selected examples. After 

a short review of the Hartree and Hartree-Fock approximation, special attention 

is given to the basic structure of Brueckner-type approaches . 
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I. Introduction 

In the last decade there has been rising interest in describing nuclear systems, 

like nuclear matter, neutron matter, and neutron star matter, in a relativistic 

many-body quantum field approach. (More details are given in refs. 1 and 2.) 

Relativistic methods are advantageous in several respects; among these are, for 

instance: 1 ,2 The shift of the equilibrium density of nuclear matter from the so

called Coester line towards the equilibrium density of nuclear matter (eo ~ 0.15 

fm -3) via a new saturation mechanism; the relativistic analysis of scattering data; 

the description of finite systems and the natural incorporation of the spin-orbit 

force. Of great importance is also the access to the equation of state (EOS) of high

density matter, encountered in the treatment of astrophysical problems and the 

analysis of heavy-ion reactions. Naturally, there exists a great interest to explore 

the quantum field approach in many respects in a more microscopic framework. 

To mention are, for example, the consideration of consistency questions, predictive 

power and limitations of the method, etc. 

II. General considerations 

In a rather rough scheme one can illustrate the attempt of treating the rela

tivistic nuclear many-body problem as given in table 1, where the types of differ

ent dynamical descriptions (i.e. Lagrangians) versus many-body approximations 

are sketched. More or less explored are the parts labeled by crosses, where -

due to its simplicity - the Hartree (H) approximation has been utilized in most 

cases. We have concentrated ourselves on the parts denoted by circles. Of course, 

table 1 oversimplifies since one can add other features like, for instance: renor

malization, random phase approximation, finite temperature effects, etc. 1 In the 

given scheme, the Hartree and Hartree-Fock (HF) approximations belong to the 

phenomenological theories (i.e., no saturation with "free" one-boson-exchange po-
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tential parameters).2,3 In the framework of these approaches one has to adjust 

the coupling strenghts to "basic nuclear parameters", i.e. binding energy, effec

tive mass, incompressibility, symmetry energy at saturation density eo of normal 

nuclear matter, which themselves are not accurately known. For instance, the 

incompressibility J{ is expected to lie in the range between 200 and 350 MeV; for 

the effective mass m* one has the bandwidth 0.6 - 0.85 mN (mN denotes the nu

cleon mass).4 The general benefit of both the Hartree as well as the Hartree-Fock 

approximation is their capacity to describe nuclear properties near saturation satis

factorily. However in the Hartree scheme one needs a meson self-interactions.1 The 

Hartree-Fock approximation can get along (I{ ~ 300 MeV, m* ~ 0.7 mN) with

out a self-interactions by selecting more sophisticated Lagrangians (i.e., a, w, 7r 

and e mesons).5 Common to both of these models is their great flexibility to fit 

the saturation region of nuclear matter with different coupling constants, which 

reduce their predictive power for the high-density extrapolation.4,5 The latter is 

of interest for high-energy heavy-ion reactions and astrophysical questions (e.g. 

neutron stars). 6 This flexibility (and resulting uncertainty) is illustrated in figs. 1 

and 2, where we exhibit the different (theoretical) baryon/lepton compositions of 

a neutron star in the Hartree and Hartree-Fock approximation, respectively.6 In 

fig. 3 we show firstly the relativistic saturation mechanism (with higher densities 

one has a decrease of the (a meson) attraction (m * decreases) and an increase of 

the (w meson) repulsion, which together acts as a density-dependent interaction 

bec~ming more repulsive at higher densities; free spinors lead to the old satura

tion mechanism (see also fig. 6)) in the Hartree-Fock theory and secondly the 

different behavior of the "kinetic" (i.e. Dirac) and potential part of the energy for 

two Lagrangians, which both lead to the same density and energy at saturation 

(K differs!). Figure 4 exhibits the dependence of the EOS on m* and K; near 

saturation the equation of state is determined by J{, but for higher densities the 

behavior is solely determined by m*. Due to the described uncertainties of the 
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phenomenological approach, one may be tempted to resort back to more sophisti

cated many-body theories, which can get along with the use of one-boson-exchange 

potentials. 

III. Theory 

A useful tool for the description of many-body systems is the Green's func

tion scheme. I - 3 Here one has to solve - for Brueckner-type approximations - the 

coupled system of the Dyson equation for the two-point Greens function (denoted 

by G) and the effective scattering matrix T in matter (Go is the free two-point 

function): 1-3 

( [G°(1, 2)]-1 - ~(1, 2)) G(2, I') 8(1, I') , (1) 

< 121Tll'2' > = < 121vll'2' - 2'1' > 

+ i < 121vl34 > A(34,56) < 561Tll'2' >, 
(2) 

respectively, where the self-energy ~ given by 

~(1,2) = -i < 141TI52 > G(5,4). (3) 

The Hartree and Hartree-Fock approximations result from eqs. (1)-(3) by 

setting T = v and T = v - vex, respectively. The quantity v stands for the 

• nucleon-nucleon interaction in free space as described, for example, by the Ho2 

and HEA meson-exchange models for the nucleon-nucleon interaction. In the case 

of the T matrix formalism one can choose for the intermediate particle-particle 

propagator either the Brueckner propagator,I,2 or the propagators of the so-called 

A treatment. These are given by3 AOO _ iGoGo, AI0 = t(GGo + GOG)sym, and 

All = iGG and correspond to the so-called A 00, A 10, and All approximations, 
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respectively. A useful simplification can be achieved by utilizing the spectral rep

resentation of the two-point Green's function, i.e. 

G( ) -1+00 

dw A(w,P) 
p - -00 W-(pO-Il)(l+i1J) , 

(4) 

since all desired quantities can be expressed in terms of the self-energy ~ and the 

spectral function A alone.3 ,6 In comparison with the non-relativistic case, the prob

lem is much more complicated since one needs for the solution a self - consistent 

particle (anti-particle) basis. The use of free spinors gives essentially the old 

saturation mechanism with its drawbacks. A further complication is the atypical 

structure - in comparison with the non-relativistic case - of the relativistic spectral 

function. Due to the Dirac character of the baryons, one has to deal simultaneously 

with three (i.e., scalar, vector, and time-like) ~pectral functions. For instan~~, the 

scalar spectral function, As, takes the form (~i = Ai + ifi with i = S, V,0;3,8 

WI,2(p) = ~o ± [(mN + ~S)2 + (Ipl + ~v )2P/2 is the energy-momentum relation 

of particles (1) and anti-particles (2), respectively): 

As(pO - Il, p) = 

= ~ [[[mN + AS(p)]2 + [lpl + AV(p)]2 - [Ao(p) - po]2 

_ f~(p) - fi,r(p) + f~(p)]2 + f2(p)] -1 (5a) 

x {If(p)1 sign((1l -pO)f(p)) . [mN + As(p)]- Ifs(p)1 sign((1l - pO)fs(p)) 

x [[mN + As(p)]2 + [lpl + AV(p)]2 - [Ao(p) - Po]2 - f~(p}- fi,r(p) - f~(p)]} , 

ri-+o [ ~ ( -)] ----+ m N + L.J S WI, P 

I 
a~s - a~v . a~o 1-1 

X 2[(mN + ~s)-a + (Ip I + ~v )-a + (~o - wt) (1 - ~)] 
WI WI UWI 

X 8(po - wt) - (1 -+ 2) (5b) 

with 

f(p) = 2{fs(p)[mN + As(p)] + fv(p)[lpi + Av(p)] (6a) 
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+ [1J sign(pO - p,) - ro(p)] [Ao(p) - pO]} 

r,-02 . (0 ) [ () 0] ---+. 1J sIgn p - p, . Ao p - p . (6b) 

It should be noted that As of eq. (5a) (and also Av and Ao) consists in 

general of two parts,S of which only the first one (the 0 function term of eq. (5b) 

obtained for ri ~ 0) resembles to the non-relativistic case. Presently, one has 

to assume r i = 0. 3 With this assumption - the validity depends on the chosen 

many-body approximation (A 00, A 10, All) as well as on the covered energy range 

- one can solve the problem keeping full self-consistency (no effective mass ap

proximation; the relativistic Brueckner-Rartree-Fock approximation emerges as a 

by-product). For la~dapol < 1/2 it is then possible to keep the particle/anti-

particle distinction with energy-momentum relations WI and W2, respectively, from 

above (i.e. o-function type spectral functions; the spectral function A depends on 

~ and furthermore on its energy-derivatives). Numerically it is rather difficult to 

solve the coupled set of equations of the A method (cf. eqs. (1)-(3)) by means of 

a self-consistent iteration procedure far from saturation.3 

IV. Illustrative examples 

In fig. 5 we show the energy per particle in nuclear matter for different 

Brueckner-type calculations, which clearly indicate that the nuclear density is 

located in relativistic calculations in the right density range. In a non-relativistic 

calculation, for instance for the REA potantial,10 one obtains for the binding 

energy per particle in nuclear matter the values given in table 2. It can be seen 

that the use of the vacuum basis (i.e., free spinors) brings an improvement, but 

the saturation mechanism resembles still the non-relativistic case as illustrated in 

fig. 6. The next two figs. 7 and 8 exhibit the behavior of the self-energy matrix 

elements in the self-consistent basis ( the matrix elements for the anti-particle states 

(~ 600 - 700 MeV) are almost constant for p < PF (PF is the Fermi-momentum) 
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and are not given). The energy dependence of :E is rather weak (0 :S P :S PF), 

but stronger (one order of magnitude) as in the Hartree-Fock approximation. 7 The 

energy derivatives of :E, which measure this dependence and enter in the spectral 

functions (cf. eqs. (5) and (6)), are given in fig. 9. They cause a change in the 

momentum distribution e(lpl; PF) as shown in fig. 10. In the final fig. 11 we show 

a nice application of the neutron star matter (electrically charge neutral many

baryon/lepton system) equation of state6 to rotating neutron stars, treated in the 

framework of general relativity.ll Shown are the rotating as well as non-rotating 

neutron star masses M as a function of central energy density Ec. The Keplerian 

velocity is given in the case of the rotating star models HV and A Ij-Jlonn + HV (see 

figure caption 11). 
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Figure captions 

Fig. 1. Lepton/baryon composition of a neutron star in the relativistic Hartree ap

proximation6 as a function of nuclear density (1 (M / M0 = 1.98 and R = 11.16 

km at the mass peak). All charged baryon states with masses mB :::; 1232 

MeV (i.e., ~ particle) are taken into account. The outer surface of the star in 

the mass density region 7.8 (density of 56Fe)< {t/(g/cm3
) < 1011 is taken into 

account by the EOS of Harrison and Wheeler; for the inner surface region, 

1011 < {t < 1013 g/cm3 , the EOS of Negele and Vautherin is used.6 

Fig. 2. Same as fig. 1, but calculated for the relativistic Hartree-Fock approximation 

(M/M0 = 2.38 and R = 11.51 km at the mass peak).6 

Fig. 3. Illustration of the relativistic saturation mechanism in nuclear matter in the 

Hartree-Fock approximation, which shows the non-monotonic behavior of the 

"kinetic" (Dirac) and potential energy Ekin and Epot , respectively, as a func

tion of the Fermi-momentum PF. The different curves belong to Lagrangians 

with different couplings, but the same energy per particle and density (J{ 

differs), which illustrate the flexibility of the HF approach.7 

Fig. 4. Dependence of the EOS, i.e. energy per nucleon E/N vs. nuclear density (1, 

on the incompressibility J{ and the effective mass m* (x m* /mN) in the 

Hartree approximation for nuclear matter. Dashed curves: m* = 0.85 mN; 

solid curves: m * = 0.6 m N. The tipper lying curves correspond to J{ =300 

MeV, the lower ones to J{=240 MeV. 

Fig. 5. Nuclear matter energy per particle vs. Fermi-momentum for different Brueck

ner-type approximations (Ho2 one-boson-exchange potential). Solid line: A 00 

approximation; dashed line: A 10 approximation; dash-dotted line: relativistic 

Brueckner-Hartree-Fock approximation. 

Fig. 6. Kinetic (Dirac) and potential energy of nuclear matter vs. Fermi-momentum 

for the relativistic Brueckner-Hartree-Fock approximation (Ho2 potential). 

The dashed curves correspond to the use of the self-consistent basis (i.e. non-

11 



monotonic behavior)j the solid curves give the outcome utilizing free spinors 

(i.e. similar to the non-relativistic saturation mechanism). 

Fig. 7. Self-energy matrix element ~q,q, vs. lillpF calculated for the A 10 approxima

tion (HEA potentialj3,IO cp denotes the self-consistent particle states) .. 

Fig. 8. Self-energy matrix element ~q,8 vs. liJllpF calculated for the A10 approxima

tion (HEA potentialj3,IO () denotes the anti - particle states). 

Fig. 9. Energy derivatives ~;~ (solid line) and I~~g I (dashed line) vs. lillpF in the 

A 00 approximation (Ho2 potential 9). 

Fig. 10. Momentum distribution e(lillpFjPF) vs. liJllpF and PF in the AOO approxi

mation (Ho2 potentiaI9
). 

Fig. 11. Gravitational star mass M (in units of the solar mass M G ) vs. central energy 

density €c for two star models (HV and A ~onn + HV j the latter contains the 

influence of two-particle correlations on the HV 6 equation of state ).11 The 

upper lying curves refer to stars rotating at their maximum Kepler velocities 

(the numbers attached to these curves give the rotational frequency in units 

of sec-I), the lower curves belong to non-rotating star models. l1 
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Table 1. Illustration of different many-body approximations versus Lagrangian 

descriptions (q>4 denotes the inclusion of cubic and quartic self-interaction terms 

of the (1 meson field). 

Lagrangian H HF 2-body 

.J 
(Dynamics) correlations 

nucleons 

(1,W + EEl 

(1,w,q>4 + EEl 

(1,W,7r,(] + EEl 

(1, W, 7r, (], cp4 + EEl 

(1, W, 7r, (], 1], 0, </> + EEl EEl 

more baryons (~,:E, A, 3, ... ) 

(1,w,q>4 EEl EEl 

(1,W,7r,(],cp4 EEl EEl 

(1, W, 7r, (], 1], 0, </> EEl EEl + (N +~) 

13 



Table 2. Binding energy at saturation density calculated for the A 00 approx

imation using the REA meson-exchange potential (nr=non-relativistic, sc=self-

consistent ). 

E/N [MeV] (! [fm-3 ] 

AOO (nr) -14.47 0.229 

A (,0 (free spinors) -5.72 0.127 

A 00 (sc basis) -8.70 0.131 
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