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Abstract

Matroids and convex geometry in combinatorics and algebra
by
Felix Gotti
Doctor of Philosophy in Mathematics
University of California, Berkeley

Professor Lauren K. Williams, Chair

This thesis is a compendium of three studies on which matroids and convex geometry
play a central role and show their connections to Catalan combinatorics, tiling theory, and
factorization theory. First, we study positroids in connection with rational Dyck paths.
Then, we study certain matroids on the lattice points of a regular triangle in connection
with lozenge tilings. Finally, we explore the connection between the atomic structure of
submonoids of (N¢, +) and the geometric properties of the cones they generate.

Positroids, first studied by Postnikov in 2006, are matroids that parameterize the cells of
the totally nonnegative part of a Grassmannian variety. The first part of this thesis concerns
with the study of a family of positroids that can be parameterized by (rational) Dyck paths.
We call such positroids (rational) Dyck positroids. Using work of Reed and Skandera, we
show that Dyck positroids on the ground set [2n] are in natural bijection with unit interval
orders of size n. We also offer recipes to read the decorated permutation of a Dyck positroid
directly from either the antiadjacency matrix representation or the interval representation
of the corresponding unit interval order. Finally, for the family of rational Dyck positroids,
we provide combinatorial descriptions for some of the most relevant combinatorial objects
that are in bijection with positroids.

The second part of this thesis pertains to the study of certain class of matroids which
naturally appear in the set of 1-dimensional intersections of complete complex flag arrange-
ments. More specifically, these matroids encode the dependency relations among the lines of
such flag arrangements. The bases of such matroids can be thought of as certain n-subsets
of lattice points of a regular n-simplex. For dimension 2, we provide various cryptomorphic
characterizations of these matroids in connection with lozenge tilings of a regular triangle.
We also study the connectivity of members of this family of matroids in any dimension.

Finitely generated submonoids of (N¢, +), also known as affine monoids, are crucial in the
study of combinatorial commutative algebra and, in particular, toric geometry. Let C denote
the class consisting of all submonoids of (N +) (not necessarily finitely generated). The
last part of this thesis is devoted to explore how atomic properties of a monoid M in C (and
the monoid algebras M induces) are connected with the geometry of its conic hull cone(M)



and with the combinatorial structure of the face lattice of cone(M). For monoids in C,
we investigate two of the most important arithmetic invariants in factorization theory: the
system of sets of lengths and the elasticity. We conclude this thesis studying the atomicity of
monoid algebras, including the algebras induced by monoids in C. We shall provide a partial
answer to a fundamental question about the atomicity of monoid algebras that Gilmer asked
back in the 1980’s.
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Chapter 1

Introduction

Matroids, posets, and lattices are combinatorial objects that have found connections to
many other objects with geometric and algebraic flavors. This thesis is a compendium
of three projects on which certain classes of matroids, posets, and lattices play a central
role. The first part of this thesis consists of Chapter 2 and Chapter 3, which are based
on the papers [50] (joint work with Anastasia Chavez) and [96], respectively. Here we
study a family of matroids, called positroids, along with their connection with unit interval
orders and rational Dyck paths. The second part of this thesis consists of Chapter 4 and
Chapter 5, which are based on the paper [102] (joint work with Harold Polo). In this part,
we investigate certain matroids on the lattice points of a regular triangle in connection with
lozenge tilings. Lastly, the third part of this thesis consists of Chapter 6, Chapter 7, and
Chapter 8, which are based on the papers [95], [91] and [56], respectively ([56] is a joint
work with Jim Coykendall). This last part is dedicated to the study of the atomic and
factorization structure of submonoids of (N¢, +) (and their monoid algebras) in connection
with combinatorial and geometric properties of their conic hulls.

The classical theory of total positivity, introduced by Gantmacher, Krein, and Schoenberg
in the 1930’s, has been recently revitalized as a result of the many connections it has with
Lusztig’s work, in particular, with the introduction of the totally nonnegative part of a
real flag variety. Consequently, an exploration of the combinatorial structure of the totally
nonnegative part of the Grassmannian was initiated. Motivated by the work of Lusztig and
the work of Fomin and Zelevinsky, in 2006 Postnikov initiated the study of positroids [127],
matroids represented by elements of (Grg,)>o. He proved that they are in bijection with
various families of elegant combinatorial objects, including Grassmann necklaces, decorated
permutations, I-diagrams, and certain classes of plabic graphs (all of them to be introduced
later).

In the first part of this thesis we study a class of positroids which can be parameterized
by (rational) Dyck paths. We call such positroids (rational) Dyck positroids. We distinguish
Dyck positroids from its generalized counterpart, rational Dyck positroids, mainly because
the former are in a natural bijection with unit interval orders, as we shall reveal in Chapter 2.
We will also offer recipes to read the decorated permutation of a Dyck positroid either
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from the antiadjacency matrix representation or from the interval representation of the
corresponding unit interval order. Then, in Chapter 3 we provide combinatorial descriptions
of the decorated permutation, Grassmann necklace, Le-diagram, and (homotopic classes of)
plabic graphs corresponding to a rational Dyck positroid. Finally, we present a description
by inequalities for the matroid polytope of a rational Dyck positroid, which improves the
number of inequalities used in the description of a positroid polytope given in [17]. The
main question motivating Chapter 2 was kindly provided by Alejandro Morales. Extended
abstracts of Chapter 2 and Chapter 3 can be found in [51] and [93], respectively.

The second part of this thesis is concerned with the study of a family of matroids that
naturally appear in the set of 1-dimensional intersections of complete complex flag arrange-
ments. Specifically, these matroids encode the dependency relations among the lines of such
flag arrangements. It has been proved by Ardila and Billey in [15] that in dimension 2
the bases of such matroids are in bijection with lozenge tilings of a regular triangle. For
this reason, in dimension 2 we call such matroids tiling matroids. In addition, the so-called
Spread Out Conjecture states that a similar characterization should be possible in higher
dimension, as long as fine mixed subdivisions play the role of lozenge tilings. In [33] Billey
and Vakil introduced a criterion that efficiently identifies many structure constant of the
cohomology rings of intersections of Schubert varieties. It turns out that such a criterion can
be refined provided a better understanding of the matroidal structure of higher-dimension
tiling matroids.

In Chapter 4, we provide various cryptomorphic characterizations of tiling matroids. In
particular, we characterize the independent sets, the circuits, and the flats of such matroids
in terms of lozenge-like tilings. We also study the rank function of tiling matroids in con-
nection with certain extremal lozenge tilings. Then, in Chapter 5, we fully characterize the
connectedness of the tiling matroids (in any dimension). In particular, when the dimension
is 2, we show that the connectedness of such matroids can be proved using arguments related
to lozenge tilings.

Finitely generated additive submonoids of N¢, also known as (reduced) affine monoids,
are crucial in the study of toric algebras [121, Part II] and K-theory [37, Part III]. The
last part of this thesis is dedicated to the study of the class consisting of all (not necessarily
finitely generated) additive submonoids of N?. We let C denote such a class. Our study will
focus on the connection between the combinatorial and geometric structures of the cones of
monoids in C and their atomic and factorization properties. Although a systematic study of
the monoids in C has not been carried out yet, subclasses of C have appeared in the recent
literature in connection with algebraic geometry [29] and commutative algebra [69].

The last part of this thesis is devoted to explore how the atomic and factorization prop-
erties of a monoid M in C are connected with the geometry of its conic hull cone(M) and
the combinatorial structure of the face lattice of cone(M). In Chapter 6, we offer combina-
torial and geometric characterizations of three important subclasses of C, those consisting of
factorial, half-factorial, and other-half-factorial monoids. Primary monoids [74] and finitary
monoids [84] have been two of the most important classes of monoids in the development of
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factorization theory. For primary monoids and finitary monoids in C we investigate geometric
aspects of the cones they generate as well as some combinatorial aspects of the face lattice of
such cones. In Chapter 7, we study two factorization invariants of monoids in C, the system
of sets of lengths and the elasticity. We construct monoids in C having extremal systems
of sets of lengths. In addition, we answer a question on the rationality of the elasticities
of monoids in C that was recently asked in [141]. We start Chapter 8 showing how some
of the properties we have studied for monoids in C reflect on their monoid algebras. Then
we contrast the atomicity of the monoid algebras induced by members of the class C and
the atomicity of monoid algebras induced by general atomic monoids as well as monoids in
the class @ (which consists of all atomic submonoids of (Q>o,+)). Finally, we show that
atomicity does not transfer, in general, from a monoid M to the monoid algebras that M
induces over fields of finite characteristic; this provides a partial answer to a fundamental
question about the atomicity of monoid algebras that Gilmer asked back in the 1980’s.



Part 1

On Rational Dyck Positroids and
Related Combinatorial Objects



Chapter 2

Unit Interval Orders and the Totally
Nonnegative Grassmannian

2.1 Introduction

A wunit interval order is a partially ordered set that captures the order relations among a
collection of unit intervals on the real line. Unit interval orders originated in the study of
psychological preferences, first appearing in the work of Wiener [145], and then in greater
detail in the work of Armstrong [24] and others. They were also studied by Luce [119]
to axiomatize a class of utilities in the theory of preferences. Since then they have been
systematically studied (see [62, 63, 64, 65, 146, 134] and references therein). These posets
exhibit many interesting properties; for example, they can be characterized as the posets that
are simultaneously (3 4 1)-free and (2 + 2)-free. Moreover, it was first proved in [146] that
the number of non-isomorphic unit interval orders on the set {1,2,...,n} equals #1(27?),
the n-th Catalan number (see also [62, Section 4]).

In [134], motivated by the desire to understand the f-vectors of various classes of posets,
Skandera and Reed showed that a simple procedure for labeling a unit interval order yields
the useful form of its n x n antiadjacency matrix which is totally nonnegative (i.e., has all
its minors nonnegative) with its zero entries appearing in a right-justified Young diagram
located strictly above the main diagonal and anchored in the upper-right corner. The zero
entries of such a matrix are separated from the one entries by a Dyck path joining the upper-
left corner to the lower-right corner. Motivated by this observation, we call such matrices
Dyck matrices. The Hasse diagram and the antiadjacency (Dyck) matrix of a canonically
labeled unit interval order are shown in Figure 2.1.

On the other hand, it follows from work of Postnikov [127] that the n X n antiadjacency
(Dyck) matrix of a (properly labeled) unit interval order P can be regarded as representing a
rank n positroid on the ground set {1,2,...,2n}. We will say that such a positroid is induced
by P. Positroids, which are special matroids, were introduced and classified by Postnikov in
his study of the totally nonnegative part of the Grassmannian [127]. He showed that there



CHAPTER 2. UNIT INTERVAL ORDERS AND THE TOTALLY NONNEGATIVE

GRASSMANNIAN 6
6
4 5
—
3
1 2

Figure 2.1: A canonically labeled unit interval order on the ground set {1,2,...,6} and its
antiadjacency matrix, in which one entries and zero entries are separated by a Dyck path.

is a cell decomposition of the totally nonnegative part of the Grassmannian so that cells are
indexed by positroids (or equivalent combinatorial objects). Positroids and the nonnegative
Grassmannian have been the subject of a great deal of recent work, with connections and
applications to cluster algebras [133], scattering amplitudes [19], soliton solutions to the
Kadomtsev-Petviashvili equation [115], and free probability [17].

In this chapter we characterize a family of positroids on the ground set {1,2,...,2n}
that bijectively arise from unit interval orders of size n. We call such positroids Dyck
positroids. Positroids, in general, are in bijection with certain generalized permutations,
which are known as decorated permutations. We shall see that the decorated permutations
corresponding to Dyck positroids are standard permutations in the symmetric group Ss,
on 2n letters, where n is the size of the corresponding unit interval order. The permutations
corresponding to Dyck positroids have the following description.

Description of the Permutation. A (decorated) permutation 7w € Sy, represents a Dyck
positroid on the set {1,2,...,2n} if and only if when 1 is fixed as the first entry of 7, the
following two conditions hold:

e the elements 1,..., n appear in increasing order while the elements n+1, ..., 2n appear
in decreasing order;

e for every 1 < k < 2n, there are at least as many elements of the set {1,...,n} as
elements of the set {n+ 1,...,2n} in the first k& entries of .

As indicated in the description above, the permutation corresponding to a Dyck positroid
on the ground set {1,2,...,2n} naturally encodes a Dyck path of length 2n. In particular,
Dyck positroids are in bijection with Dyck paths of length 2n and, therefore, there are
n+r1(2:) Dyck positroids on the ground set {1,2,...,2n}. In this chapter we also provide a
recipe to decode the permutation of a Dyck positroid directly from the antiadjacency matrix
A of the corresponding unit interval order P. When the unit interval order is appropriately
labeled, A shows a Dyck path (separating its zero entries from its one entries), which we call

the semiorder path of A. The semiorder path of A coincides with the Dyck path encoded in
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the permutation corresponding to the Dyck positroid induced by P, and this fact yields the
following recipe to obtain the permutation directly from A.

Recipe. Let P be a canonically labeled unit interval order on the set {1,2,...,n}, and let
A be its antiadjacency matrix. Number the n vertical steps of the semiorder path of A from
bottom to top by 1,...,n and label the n horizontal steps from left to right by n+1,...,2n.
Then the sequence of 2n labels, read in the northwest direction, is the decorated permutation
associated to the Dyck positroid induced by P.

Example 2.1.1. The vertical assignment on the left of Figure 2.2 shows a set Z of unit
intervals along with a canonically labeled unit interval order P on the set {1,2,...,5} de-
scribing the order relations among the intervals in Z (see Theorem 2.2.4). The vertical
assignment on the right illustrates the recipe given before to read the decorated permutation
m=(12103948756) corresponding to the Dyck positroid induced by P directly from
the antiadjacency matrix. Note that the decorated permutation 7 is a 10-cycle satisfying
both conditions given in description of the permutation we have given before. The solid and
dashed assignment signs represent functions that we shall introduce later.

I

4 5 1lo 00 o0
1 1]0 0

0 3 ' 5 11110
111 1

1 1111

Figure 2.2: Following the solid assignments: unit interval representation Z, its unit interval
order P, the antiadjacency matrix of P, and the Dyck path that separates the one entries
from the zero entries of the antiadjacency matrix of P showing the decorated permutation
7=(12103948756).

— s

2.2 Posets and Positroids

General Notation: We let N denote the set of nonnegative integers. For every integer
n > 1, we set [n] := {1,2,...,n}. In addition, for a set S and k € N, we let (*2) denote
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the collection consisting of all subsets of S of cardinality k, and we call an element of (i) a
k-subset of S. Finally, we let Mat,,,(R) denote the set of all d x m real matrices, and let
Mat;  (R) be the subset of Matg,, (R) consisting of those full-rank matrices with nonnegative
maximal minors.

Unit Interval Orders

For ease of notation, when (P,<p) is a partially ordered set (poset for short), we just
write P, tacitly assuming that the order relation on P is to be denoted by the symbol <p.
For z,y € P, we will write x <p y when = <p y and = # y. In addition, every poset showing
up in this thesis is assumed to be finite unless we specify otherwise.

An order ideal of a poset P is a subset I of P such that if z € I and y <p x, then y € I.
Similarly, a dual order ideal is a subset I of P such that if x € [ and = <p y, then y € I.
For any x € P, it is clear that the sets

A ={yePly<pz} and V,={yecP|z<py}

are an order ideal and a dual order ideal, respectively. They are called, respectively, the
principal ideal and the principal dual ideal generated by x.

If the poset P has cardinality n, then a bijective function ¢: P — [n] is called an n-
labeling of P; after identifying P with [n] via ¢, we say that P is an n-labeled poset. The
n-labeled poset P is naturally labeled if i <p j implies that ¢ < j as integers for all 4,7 € P.

Definition 2.2.1. A poset P of size n is a unit interval order if there exists a bijective map
i+ [qi,q + 1] from P toaset S ={[g,q+1] |1 <i<mn,q €R} of closed unit intervals
of the real line such that for ¢,57 € P, i <p j if and only if ¢; +1 < ¢;. We then say that S
is an interval representation of P.

Example 2.2.2. The figure below depicts the 6-labeled unit interval order introduced in
Figure 2.1 with a corresponding interval representation.

6
) . —— | | |
Iy Iy Ig
3 —
I | | | —-
1 2 Iy I3 I5

Figure 2.3: A 6-labeled unit interval order and one of its interval representations.
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A useful way of representing an n-labeled unit interval order is through its antiadjacency
matrix. If P is an n-labeled poset, then the antiadjacency matrixz of P is the n x n binary
matrix A = (a;;) with a;; = 0 if and only if i <p j. The 6-labeled unit interval order of
Example 2.2.2 along with its antiadjacency matrix are illustrated in Figure 2.1.

For each n € N, we denote by U, the set of all non-isomorphic unit interval orders of
cardinality n. For nonnegative integers n and m, let n + m denote the poset which is the
disjoint sum of an n-element chain and an m-element chain. Let P and () be two posets.
We say that @ is an induced subposet of P if there exists an injective map f:  — P such
that for all r,s € @ one has r <g s if and only if f(r) <p f(s). By contrast, P is a Q-free
poset if P does not contain any induced subposet isomorphic to Q.

Example 2.2.3. None of the properties of being (3+1)-free or being (2+42)-free imply the
other one. For instance, Figure 2.4 shows, from left to right, a poset having 3+1 as an
induced subposet (in red) and having 242 as an induced subposet (in blue), a (2+2)-free
poset having 3+1 as an induced subposet (in red), a (3+1)-free poset having 242 as an
induced subposet (in blue), and a poset that is both (3+1)-free and (2+2)-free.

1 K

Figure 2.4: From left to right: a poset that is neither (3+41)-free nor (2+2)-free, a poset
that is (2+2)-free but not (3+1)-free, a poset that is (3—|—1) free but not (2—|—2) free, and a
poset that is both (3+1)-free and (2+2)-free.

The following theorem provides a useful characterization of the elements of U,,.

Theorem 2.2.4. [132, Theorem 2.1] A poset is a unit interval order if and only if it is
simultaneously (3 + 1)-free and (2+ 2)-free.

A binary square matrix A is said to be a Dyck matriz if its zero entries are separated from
its one entries by a Dyck path joining the upper-left corner to the lower-right corner. We
call such a Dyck path the semiorder path of A. All minors of a Dyck matrix are nonnegative
(see, for instance, [1]). We denote by D, the set of all n x n Dyck matrices. As presented
n [134], every unit interval order can be naturally labeled so that its antiadjacency matrix
is a Dyck matrix (details provided in Section 2.3).
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Positroids
We proceed to introduce the first class of matroids we shall be studying in this thesis. From

now on we shall be using the following notation.

Definition 2.2.5. Let F be a finite set, and let B be a nonempty collection of subsets of F.
The pair M = (F, B) is a matroid if for all B, B’ € B and b € B\ B’, there exists b’ € B'\ B
such that (B \ {b}) U{V'} € B.

If M = (F,B) is a matroid, then E is called the ground set of M and the elements of B
are called bases of M. Any two bases of M have the same size, which we denote by (M) and
call the rank of M. If (M) = d and E = [n], then we say that M is representable if there
exists A € Maty,(R) with columns A, ..., A, such that B € B precisely when {4, | b € B}
is a basis for the vector space R%.

Definition 2.2.6. The matroid of rank d on the ground set [n] that is represented by a
matrix A € Mat, (R) is denoted by p(A) and called a positroid.

Several families of combinatorial objects, in bijection with positroids, were introduced
in [127] to study the totally nonnegative Grassmannian, including decorated permutations,
Grassmann necklaces, Le-diagrams, and plabic graphs.

Definition 2.2.7. An n-tuple (I1,...,1,) of d-subsets of [n] is called a Grassmann necklace
of type (d,n) if for every i € [n] the following two conditions hold:

e i c [; implies I;11 = (I; \ {i}) U {j} for some j € [n],
e i ¢ I; implies I;11 = I;,
where I,,11 = I.
For i € [n], the total order (|n], <;) is defined by
1< <in< 1< <= L

Given a matroid M = ([n], B) of rank d, one can define the sequence Z(M) = (Iy,...,I,),
where I; is the lexicographically minimal ordered basis of M with respect to the order <;.
The sequence Z(M) is a Grassmann necklace of type (d,n) (see [127]). Moreover, when M
is a positroid, we can recover M from Z(M) as we will describe now. For i € [n], consider
the partial order <; on ([Z]) defined in the following way: if

S={s1<; - <;sq} and T={t; <; - <;tq}

are subsets of [n], then S <; T'if s; <; t; for each j € [d].
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Theorem 2.2.8. [12/, Theorem 6] If T = (I1,...,1,) is a Grassmann necklace of type (d,n),
then

B(T) = {B e (“j) ’ I; =, B for cach j € [n]}

is the collection of bases of a positroid M(Z) = ([n|, B(Z)). Moreover, M(Z(M)) = M for
all positroids M.

By Theorem 2.2.8, the map P — Z(P) is a one-to-one correspondence between the set
of rank d positroids on the ground set [n] and the set of Grassmann necklaces of type (d,n).
For a positroid P, we call Z(P) its corresponding Grassmann necklace.

Like Grassmann necklaces, decorated permutations are combinatorial objects that can
be used to parameterize positroids. Decorated permutations have the extra advantage of
offering a more compact parameterization.

Definition 2.2.9. A decorated permutation m on n letters is an element m € S,, in which
fixed points j are marked either “clockwise”(denoted by 7(j) = j) or “counterclockwise”
(denoted by 7(j) = j). A position j € [n] is called a weak excedance of m if j < w(j) or
(j) = J.

Following the next recipe, one can assign a decorated permutation 77 to each Grassmann
necklace Z = (Iy, ..., 1,):

(1) if Lipq = (L \ {e}) U{j} for i # j, then mz(j) =i,
(2) if [i+1 = ]Z and ¢ ¢ [i7 then 7TI(7:) = i,
(3) if I;x1 = I; and i € I;, then m7(i) = i,

where I, = I;.

Moreover, the map Z — 77 is a bijection from the set of Grassmann necklaces of type
(d,n) to the set of decorated permutations of n letters having d weak excedances. Indeed, it
is not hard to verify that the map = — ([y,...,1,), where

L={jen]|j<;n'(j)orn(j) = j},

is the inverse of Z — mz. See [17, Proposition 4.6] for more details. The corresponding
decorated permutation of a positroid P is 7z(py, where Z(P) is the corresponding Grassmann
necklace of P.

As it is the case for Grassmann necklaces and decorated permutations, J-diagrams are in
natural bijection with positroids, and they explicitly show the dimensions of the Grassmann
cell of their corresponding positroids.
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Definition 2.2.10. Let d and m be positive integers, and let Y, be the Young diagram
associated to a given partition A contained in a d x m rectangle. A J-diagram (or Le-
diagram) L of shape A and type (d,d + m) is obtained by filling the boxes of Y, with zeros
and pluses so that no zero entry has simultaneously a plus entry above it in the same column
and a plus entry to its left in the same row.

With notation as in the above definition, the southeast border of Y) determines a path
of length d + m from the northeast to the southwest corner of the d x m rectangle; we call
such a path the boundary path of L.

It is well known that there is a natural bijection ® from the set of I-diagrams of type
(d,d+ m) to the set of decorated permutations on [d 4+ m] having exactly d excedances (see
[127, Section 20]). Thus, J-diagrams of type (d,d + m) also parameterize rank d positroids
on the ground set [d + m|. Moreover, if ®: L — 7 and we label the steps of the boundary
path of L in southwest direction, then i € [d+ m]| labels a vertical step of the boundary path
of L if and only if 7 is a weak excedance of 7 (see [139, Lemma 5]).

Example 2.2.11. The picture below shows a JI-diagram L of type (5, 12) with its boundary
path highlighted. The decorated permutation ®(L) is (1 129 2)(3 10 11 7)(4 5)(6 8).

+|+[+/0]0|0]+
O|+|+|+ +|0
olo[ofo|o|+
0olofo[+|+

0

+

Figure 2.5: A Le-diagram of type (5,12) and shape A = (7,6,6,5,2).

Let X\ be a partition, and let Y, be the Young diagram associated to A\. We call a pipe
dream of shape A to a tiling of Y, by elbow joints ‘\L and crosses ‘I_ The next lemma
yields a method (illustrated in Figure 2.6) to find the decorated permutation 7 = ®(L)
corresponding to a positroid directly from its J-diagram.

Lemma 2.2.12. [17, Lemma 4.8] Let L be the I-diagram corresponding to a rank d positroid P
on the ground set [d +m]. We can compute the decorated permutation © of P as follows.

(1) Replace the pluses in the I-diagram L with elbow joints ~>= and the zeros in L with
crosses ‘I‘ to obtain a pipe dream.
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(2) Label the steps of the boundary path with 1,... d+m in southwest direction, and then
label the edges of the north and west border of Yy also with 1,...,d4+m in such a way
that labels of opposite border steps coincide.

(3) Set w(i) = j if the pipe starting at the step labeled by i in the northwest border ends at

the step labeled by j in the boundary path. If w fives j write 7(j) = j (resp., ©(j) = j
if j labels a horizontal (resp., vertical) step of the boundary path.

Example 2.2.13. Let P be the rank 5 positroid on the ground set [13] having decorated
permutation 7 = (1213123 11 104 9 5 8 7 6). The following picture showing the I-diagram
corresponding to P along with its associated pipe dream sheds light upon the recipe described
in Lemma 2.2.12.

13 12 11 10 9 &8 7 6
000000 0+ ! ot
+|+/0 0 0 00 + 24— -2
0/0[+ 4+ 0 0 0 + 3 BN 3
00 0 0+ 00+ 4 - 4
00000 0/+/+ + 5 BB NE

13 12 11 10 9 8 7 6

Figure 2.6: The Le-diagram of P on the left and the corresponding pipe dream giving rise
to m on the right.

2.3 Canonical Labelings on Unit Interval Orders

In this section we introduce the concept of a canonically labeled poset, and we use it to exhibit
an explicit bijection from the set U,, of non-isomorphic unit interval orders of cardinality n
to the set D, of n x n Dyck matrices.

We define the altitude function of P to be the map

a: P —7Z defined by @+ |A;] — |Vl

We say that an n-labeled poset P respects altitude if for all 4, 7 € P, the fact that a(i) < «a(j)
implies ¢ < j (as integers). Notice that every poset can be labeled by the set [n] such that,
as an n-labeled poset, it respects altitude (see [63, p. 33]).

Definition 2.3.1. An n-labeled poset is canonically labeled if it respects altitude.
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Each canonically n-labeled poset is, in particular, naturally labeled. The next proposi-
tion, extending [142, proof of Theorem 2.11}, characterizes canonically n-labeled unit interval
orders in terms of their antiadjacency matrices.

Proposition 2.3.2. [179/, Proposition 5] An n-labeled unit interval order is canonically
labeled if and only if its antiadjacency matriz is a Dyck matrix.

The above proposition indicates that the antiadjacency matrices of canonically labeled
unit interval orders are quite special. In addition, canonically labeled unit interval orders
have very convenient interval representations.

Proposition 2.3.3. Let P be an n-labeled unit interval order. Then the labeling of P s
canonical if and only if there exists an interval representation

{lgia +1] 11 <i<n}
of P such that ¢ < --- < qp.

Proof. Let a: P — 7Z be the altitude map of P. For the forward implication, suppose that
the n-labeling of P is canonical. Among all the interval representations of P, assume that
{lgi»qi + 1] | 1 < i < n} gives the maximum m € [n]| such that ¢ < -+ < ¢,,. Suppose,
by way of contradiction, that m < n. The maximality of m implies that ¢,, > ¢n.1. This,
along with the fact that a(m) < a(m + 1), ensures that ¢,, € (¢m+1, gme1 + 1). Similarly,
¢+ 1 ¢ (¢ni1,qm) for any i € [n]; otherwise

a(m+1) = [Apsa] = V| < [An] = [Vinga| < A = [Vin| = a(m)

would contradict that the n-labeling of P respects altitude. An analogous argument guar-
antees that ¢; € (¢ms1 + 1, gm + 1) for any i € [n].

Now take k to be the smallest natural number in [m] such that ¢; > ¢4 for all j > &,
and take o0 = (k k+1 ... m m+1) € S,,. We will show that S = {[p;,p; + 1] | 1 <i <n},
where p; = ¢o(;), is an interval representation of P. Take 7,5 € P such that ¢« <p j. Since ¢
and j are comparable in P, at least one of them must be fixed by o; say o(i) = i. If 0(j) = 7,
then p; +1=¢,+1 < g; = p;. Also, if 0(j) # j, then ¢; + 1 < ¢; € (Gm+1,qm)- It follows
from ¢; + 1 < @, that

pit1=4q+1<gu1 <doy) =Dj-
The case of o(j) = j can be argued similarly. Thus, S is an interval representation of P.
As ¢1 < -+ < @, the definition of k£ implies that p; < --- < p,,+1, which contradicts the
maximality of m. Hence m = n, and the direct implication follows.

Conversely, note that if {[g;,¢; + 1] | 1 < i < n} is an interval representation of P
satisfying ¢; < - -+ < ¢y, then for every m € [n — 1] we have

a(m) = |Am| = Vin| < |Amia] = [Vimia| = alm + 1),

which means that the labeling of P is canonical. O]
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If P is a canonically n-labeled unit interval order, and
T={lgiqa+1]|1<i<n}

is an interval representation of P satisfying ¢; < --- < ¢,, then we say that Z is a canonical
interval representation of P.

Note that the image (as a multiset) of the altitude map does not depend on the labels but
only on the isomorphism class of the corresponding poset. On the other hand, the altitude
map ap of a canonically n-labeled unit interval order P satisfies ap(1) < -+ < ap(n). Thus,
if () is a canonically n-labeled unit interval order isomorphic to P, then

(ap(1),...,ap(n)) = (ag(l),...,ag(n)), (2.1)

where ag is the altitude map of ). Let Ap and Ay be the antiadjacency matrices of P
and @, respectively. As ap(l) = ag(1), the first rows of Ap and Ag are equal. Since the
number of zeros in the i-th column (resp., i-th row) of Ap is precisely |V;(P)| — 1 (resp.,
|A;(P)|—1), and similar statement holds for @), the next lemma follows immediately by using
(2.1) and induction on the row index of Ap and Ag.

Lemma 2.3.4. If two canonically labeled unit interval orders are isomorphic, then they have
the same antiadjacency matrix.

The Bijection ¢

Now we can define a map ¢: U, — D, by assigning to each unit interval order its antiad-
jacency matrix with respect to any of its canonical labelings. By Lemma 2.3.4, this map is
well defined.

Theorem 2.3.5. For each natural number n, the map ¢: U, — D, is a bijection.

Proof. Since [U,| = |D,| = %H(Zg), it suffices to argue that ¢ is surjective. We proceed
by induction on n. The case n = 1 is immediate as [U;| = |D;| = 1. Suppose that

surjectivity holds for every k < n and, to check that ¢: U,; — D, is surjective, take
D = (d;;) € Dpt1. Let D' be the submatrix of D consisting of the first n columns and the
first n rows. As D’ is an nxn Dyck matrix, there is a canonically n-labeled unit interval order
P’ whose antiadjacency matrix is D’. Define P to be the (n + 1)-labeled poset obtained by
adding an element labeled by n+1 to P’ with exactly the following order relations: i <p n+1
if and only if either ¢ = n + 1 or d; ,41 = 0. Note that n 4 1 is a maximal element in P and
that the antiadjacency matrix of P is precisely D.

We are done once we check that P is a canonically labeled unit interval order. Since
ap(l) < .-+ < ap(n + 1), the labeling of P is canonical. Finally, let us show that P is,
indeed, a unit interval order. Because P’ happens to be a unit interval order, it suffices to
check that for any 4, j, k € [n] none of the posets
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n+1 I I k k ® n+tl n+1 ok
i J J J
i i

Figure 2.7: 2+ 2 and 3 + 1 posets.

is an induced subposet of P. The first and the second subposets in Figure 2.7 cannot be
induced because j <p n + 1 for every non-maximal element j of P’. Let ) denote the third
subposet shown above. If £ <p n+ 1, then ) cannot be induced. Suppose then that k is not
comparable with n + 1 in P. In this case, k£ is maximal in P. As j is not maximal in P and
the labeling of P is canonical, i < j < k as integers. Since @ <p j, one has that d; ; = 0 and
so d;, = 0. Thus, ¢ <p k, which implies that @) is not an induced subposet of P. Hence P
is a canonically (n + 1)-labeled unit interval order, which concludes the proof. ]

2.4 Dyck Positroids

Rational Dyck Paths and Matrices

In the first two chapters of this thesis, we are mostly interested in certain class of positroids
that can be parameterized by rational Dyck paths.

Definition 2.4.1. For each pair of nonnegative integers (m, d), a rational Dyck path of type
(m,d) is a lattice path from (0, 0) to (m, d) that only uses unit steps (1,0) or (0, 1) and never
goes above the diagonal line y = (d/m)z.

(8,5)

(0,0)

Figure 2.8: A (8, 5)-rational Dyck path.
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When there is no risk of ambiguity, we will abuse notation by referring to a rational
Dyck path without specifying the copy of R? in which it is embedded. Figure 2.8 depicts
a rational Dyck path of type (8,5). Note that a rational Dyck path of type (m,m) is just
an ordinary Dyck path of length 2m. The number of Dyck paths of length 2m is precisely
the m-th Catalan number (many other families of relevant combinatorial objects can also be
counted by the Catalan numbers; see [137]). The number Cat(m,d) of rational Dyck paths
of type (m, d) is the rational Catalan number associated to the pair (m,d). It is known that

Cat(m, d) = (HLm (d Zm) (2.2)

when ged(d, m) = 1. A general formula for the rational Catalan numbers (without assuming
co-primeness) was first conjectured by Grossman [106] and then proved by Bizley [34]. This
general formula is more involved than the one stated in (2.2), as the next generating function

shows:
- . = 1 [jd+jm\a’
Z Cat(nm, nd)z" = exp (Z d—i——m( id >7)’
n=0 J=1
where, as before, ged(d,m) = 1. The combinatorics associated to the rational Catalan

numbers, also known as rational Catalan combinatorics, has received considerable attention
during the last decade. In particular, rational Dyck paths have been studied in connection
with core partitions [13], parking functions [21], noncrossing partitions [22], and rational
associahedra [23]. For several results and conjectures on (m, d)-cores, the reader can consult
[20] and [138].

Let us use the fact that that rational Dyck paths are natural generalization of Dyck paths
to generalize the class of Dyck matrices.

Definition 2.4.2. A d x m binary matrix is called a rational Dyck matriz if its zero entries
are separated from its one entries by a vertically-reflected rational Dyck path of type (m,d).

Observe that square rational Dyck matrices are precisely those that we have called before
Dyck matrices. Here is an example of a 5 x 8 rational Dyck matrix:

11100000
11110000
11111100
11111111
11111111

Let Dy, denote the set of d x m rational Dyck matrices. It is clear that D,, = D,,,, for
every n € N. Each rational Dyck path d of type (m,d) induces the d x m rational Dyck
matrix whose zero entries are separated from its one entries via the vertically-reflected path
of d. It is well known that standard Dyck matrices are totally nonnegative, i.e., all their
minors are nonnegative (see, for instance, [1]).
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Notation: If X is an n x n real matrix and I, J C [n] satisfy || = |J|, then we let A; ;(X)

denote the minor of X determined by the set of rows indexed by I and the set of columns

indexed by J. Besides, if Y is a k x n matrix and K C [n| satisfies |K| = k, then we let

Ak (Y) denote the maximal minor of Y determined by the set of columns indexed by K.
Consider the assignment ¢g,,: Mat,(R) — Matgg1m(R) defined by

d—1 d—1
ai c. a1,m 1 ... 00 (—1) Aq1 - (—1) Ad.m
¢d,m .
M
ag—1,1 -+ Qd—1m 0 10 —as . —A2.m
Qd.1 ce Qdm 0 01 11 ce a1m

The map ¢g4,, somehow respects the minors of any given matrix:

Lemma 2.4.3. [127, Lemma 3.9]' If A € Maty,,(R) and B = ¢4.n,(A), then

A1 7(A) = Ari—apnuatn)(B)
for all I C [d] and J C [m] satisfying |I| = |J|.

The next lemma, which can be immediately argued by induction, is used in the proof of
Proposition 2.4.5.

Lemma 2.4.4. Every square binary matriz whose zero entries form a Young diagram an-
chored in the upper-right corner is totally nonnegative.

Proposition 2.4.5. The inclusion ¢g,,(Dam) C Mat:lidij(R) holds.

Proof. Take D € Dy, and set A = ¢g,,(D). As A has obviously full rank, it suffices to verify
that each of its maximal minors is nonnegative. For S € ([dzm]) let A’ be the submatrix of A
determined by the set of columns indexed by S. Set I = SN[d] and J = {j1,...,Js\1/} = S\
with j; < --- < jj;. Note that |J| < d. Let B; be the d x d matrix whose first [/| columns
are all equal to the vector ((—1)471,..., —1,1)" and whose (|I|+k)-th column is equal to A4;,
for 1 < k < |J|. Notice now that Lemma 2.4.4 ensures that the matrix B = (I; | By)
is the image under ¢44 of a totally nonnegative matrix of size d. As Dyck matrices are
totally nonnegative, Lemma 2.4.3 ensures that every maximal minor of B is nonnegative.
In particular, the maximal minor det A’ of B is nonnegative. Hence A € Mat . (R), as

d,d+m
desired. O

Proposition 2.4.5 will allow us to produce positroids from rational Dyck paths.

IThere is a typo in the entries of the matrix B in [127, Lemma 3.9].
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Dyck Positroids

Using Lemma 2.4.3 and the map ¢: U,, — D,, introduced at the end of Section 2.3, we can
assign via ¢, 0 ¢ a matrix in Mat, ,, (R) to each unit interval order of cardinality n. In
turn, every real matrix of Mat:{zn (R) gives rise to a positroid, a special representable matroid
which has a very rich combinatorial structure.

Each unit interval order P (labeled so that its antiadjacency matrix is a Dyck ma-

trix) induces a positroid via Lemma 2.4.3, namely, the positroid represented by the matrix

Ona(p(P)).

Definition 2.4.6. A positroid on [2n| induced by a unit interval order is called a Dyck
positroid.

We denote by P, the set of all Dyck positroids on the ground set [2n]. The function
po dnnop: U, — P, plays a fundamental role in this chapter. Indeed, we will end up
proving that this function is a bijection (see Theorem 2.5.4).

We use decorated permutations to provide a compact and elegant description of Dyck
positroids.

The Decorated Permutation

We proceed to describe the decorated permutation associated to a Dyck positroid. Through-
out this section A is an n x n Dyck matrix and

B = (bi,j) = an,n(A)

is as in Lemma 2.4.3. We will consider the indices of the columns of B modulo 2n. Further-
more, let P be the Dyck positroid represented by B, and let Zp and 7—! be the Grassmann
necklace and the decorated permutation associated to P.

Lemma 2.4.7. For 1 < i < 2n, the i-th coordinate set of Zp does not contain i — 1.

Proof. Tt is not hard to verify that every matrix resulting from removing one column from B
still has rank n. As the matrix obtained by removing the (i—1)-st column from B has rank n,
it contains n linearly independent columns. Therefore the lemma follows straightforwardly
from the <;-minimality of the i-th coordinate set of Zp. ]

For the rest of this section let B; denote the j-th column of B. As a direct consequence
of Lemma 2.4.7, we have that m does not have any counterclockwise fixed point. On the
other hand, 7 cannot have any clockwise fixed point because every column of B is nonzero.
Hence 7 (and therefore 7—!) does not fix any point. The next lemma immediately follows
from the way 7! is produced from the Grassmann necklace Zp (see the end of Section 2.2).

Lemma 2.4.8. Fori € {1,...,2n}, n(i) equals the minimum j € [2n] with respect to the
i-order such that B; € span(B;q, ..., Bj).
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Now we find an explicit expression for the function representing the inverse 7 of the
decorated permutation 7! associated to P. In order to do so, we will find it convenient to
associate an index set and a map to the matrix B. We define the set of principal indices
of B to be the subset of {n+1,...,2n} defined by

J:{jE{TL+1,,2n}|BJ7éBJ_1}

We associate to B the weight map w: [2n] — [n] defined by w(j) = max{i | b;; # 0}; more
explicitly, we obtain that

o if j e {1,....n}
w(])—{ b1l 4+ |bn,| fjE{n+1,...,2n}.

Since the last row of the antiadjacency matrix A has all its entries equal to 1, the map w
is well defined. If j € {n+1,...,2n}, then w(j) is the number of nonzero entries in the
column B;. Now we have the following formula for 7.

Proposition 2.4.9. Fori € {1,...,2n}, we have

i+1 ifn<i<2nandi+1¢J,
w(i) ifn<i<2nandi+ 1€ J, ori=2n,

al@) =4 n+1 ifi=1,
i—1 ifl<i<nandi—1¢w(J),
j ifl<i<nandi—1=w(j) for some j € J.

The index j in the final case is necessarily unique.

Proof. First, suppose that n < ¢ < 2n and i + 1 ¢ J. Then we have B; = B;;; and the set
{B;, Bi+1} is linearly dependent. Lemma 2.4.8 then implies that (i) =i + 1.

Now suppose that n < i < 2n and i+1 € J. Then B;;; results from replacing m (m > 0)
of the last nonzero entries of B; by zeros. Since i+ 1 € J, the indices ¢ and i+ 1 both appear
in the i-th coordinate set of Zp. Also, because the columns B;, Biy1, By(it1)+1, - - -, Bui) are
linearly dependent, not all the indices w(i+ 1) +1,...,w(i) appear in the i-th coordinate set
of Zp. On the other hand, at most one index in w(i + 1) + 1,...,w(é) is missing from the
i-th coordinate of Zp; this is because the submatrix of B determined by the row-index set
{w(i+1)+1,...,w(i)} and the column-index set {n+1,...,2n} hasrank 1. By the minimality
of the i-th coordinate set of Zp with respect to the i-order, the index of {w(i+1)+1,...,w(i)}
missing in the i-th coordinate set of Zp is w(i). As a result, we have 7(i) = w(i); otherwise,
in the submatrix of B whose columns are indexed by the (i + 1)-st coordinate set of Zp, the
w(i)-th row would consist entirely of zeros, which, in turn, would contradict the fact that
such a coordinate set represents a basis of the positroid P.

The above argument also applies when ¢ = 2n provided that we extend the domain of w
to [2n + 1] and set w(2n + 1) = 0.

Note that m(1) = n+1 follows immediately from the minimality of the second coordinate
set of Zp and the fact that Bs, ..., B,, B, are linearly independent.
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Now suppose that 1 < i < n and i —1 ¢ w(J). The minimality of the coordinate sets
of Zp implies that all the indices 7,...,n appear in the ¢-th coordinate set. Furthermore,
Lemma 2.4.7 implies that ¢—1 does not belong to the i-th coordinate set of Zp. Sinceno j € J
has weight ¢ — 1, the (i — 1)-st and i-th rows of the maximal submatrix of B determined by
the column index set {n+1,...,2n} are equal. Consequently, we have 7 (i) = i—1; otherwise
the associated maximal submatrix of B determined by the indices of the i-th coordinate set
of Zp would have the i-th and (i + 1)-st rows identical, which would contradict the fact that
the i-th coordinate set of Zp represents a basis of P.

Finally, suppose that 1 <i <n and i —1 € w(J). Since not two elements of J have the
same weight, there is at most one j € J such that w(j) =i — 1. As before, all the indices
i,...,n+ 1 appear in the i-th coordinate set of Zp (because ¢ > 1). Each column By, for
n < k < 2n such that w(k) = ¢ — 1, is a linear combination of the columns B, ..., B,i1.
Therefore such indices k& do not appear in the i-th coordinate set of Zp. By Lemma 2.4.7, it
follows that i — 1 does not appear in the i-th coordinate set of Zp. Thus, 7(i) = j, where
J € [2n] satisfies that w(j) = ¢ — 1; otherwise, in the submatrix of B whose columns are
indexed by the (i + 1)-st coordinate set of Zp, the (i — 1)-st row would consist entirely of
zeros, which would contradict that the (i — 1)-st coordinate set of Zp represents a basis of P.
By minimality of the (i 4+ 1)-st coordinate set of Zp one finds that j € J. O

As the next theorem indicates, 771 is a 2n-cycle satisfying a very special property.

Theorem 2.4.10. 7' is a 2n-cycle (1 jy ... jon_1) satisfying the next two conditions:
(1) in the sequence (1,741, ..., Jon—1) the elements 1,... ,n appear in increasing order while
the elementsn+1,...,2n appear in decreasing order;

(2) for every 1 <k <2n—1, the set {1,71,...,jkx} contains at least as many elements of
the set {1,...,n} as elements of the set {n+1,...,2n}.

Proof. From Proposition 2.4.9 we immediately deduce that if w(7) = j for 1 < i < 2n, then
w(i) = w(j) when i > n and w(i) = w(j) + 1 when ¢ < n. This implies, in particular, that
w(i) > w(j). Suppose, by way of contradiction, that 7=1, and so 7, is not a 2n-cycle. Then
there is a cycle (i1 i3 ... i) in the canonical cycle-type decomposition of 7 that does not
contain 1. Therefore one has

wlir) > w(iz) > - > wlix) > w(iy),

which implies w(i;) = w(iz) = -+ = w(ix). Since {iy,...,ix} does not contain 1, it fol-
lows that {iy,...,ix} C {n+1,...,2n}, which is a contradiction. Hence the cycle-type
decomposition of 771 contains only one cycle, which has length 2n.

Since m(1) = n + 1, one gets that m = (1 n+1 4y 45 ... i9,_2), where {iy, ..., i3, o} is
precisely the set [2n] \ {1,n + 1}. As

W(il) Z W(ig) Z e 2 w<i2nf2>7
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and w(i) = i for every i € [n], the elements of the set {2,...,n} must appear in the cycle
(I m41 4y 49 ... d9,_2) in decreasing order. On the other hand, by Proposition 2.4.9 the indices
of equal columns of B (but perhaps the first one) show in increasing order and consecutively
in the sequence (1,n + 1,i1,19,...,79,-2). Also, as the weight map w is strictly decreasing
when restricted to J, the elements of the set {n+1,...,2n} must appear in increasing order
in the cycle (1 n+1 iy i3 ... i2,-2). Thus, condition (1) holds.

To show condition (2), write 7 = (n+1 4y i3 ... 43,2 1) and suppose, by way of
contradiction, that there exists m € {1,...,2n — 2} such that

H{i<ji<ml|ije{2,....n}}-1>{1<j<ml|i;e{n+1,... 2n}}| (2.3)
Let m be the minimal such index. By the minimality of m, one obtains that i,, € {2,...,n}.
Let k& be the maximum index such that m < k and i; € {2,...,n} for each j = m,... k.

Note that £ < 2n — 2 and 7(ix) € {n +2,...,2n}. Since
{7 < k|2 < <n}f=Hix,...,n}

and
Hi<k|n+2<i<2n}|=[{n+2,...,7(ix) — 1},

it follows by (2.3) that
m—ip+1)—1> () —1)—(n+2)+1=7(ix) —n — 2,

which implies 2n — 7(ix) + 1 > i — 1. On the other hand, the fact that all the entries of A
below and on the main diagonal equal 1 implies that w(j) > 2n—j+1 for every n+1 < j < 2n.
Since 1 < ix < n, one finds that i, = w(ix) = w(m(ix)) + 1. Asn+ 1 < w(ix) < 2n, we have

Zk—lzw(ﬂ'(lk)) 22n—7r(2k)+1 > — 1,

which is a contradiction. Hence, writing 7=' = (1 j; ... ja,_1), we will obtain that for
k=1,...,2n — 1, the set {1, j1,...,Jx} contains at least as many elements of the set [n] as
elements of the set {n + 1,...,2n}, which is condition (2). O

2.5 How to Decode a Dyck Positroid from Its Unit
Interval Order

Decoding a Dyck Positroid from the Antiadjacency Matrix of its
Unit Interval Order

Throughout this section, let P be a canonically n-labeled unit interval order with antiadja-
cency matrix A. Also, let
Z={lga+1|1<i<n}
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be a canonical interval representation of P (i.e., ¢; < -+ < ¢,); Proposition 2.3.3 ensures the
existence of such an interval representation. In this section we describe a way to obtain the
decorated permutation associated to the Dyck positroid induced by P directly from either A
or Z. Such a description will reveal that the function p o ¢,,,, o ¢: U,, = P, introduced in
Section 2.2 is a bijection (Theorem 2.5.4).

Recall that the north and east borders of the Young diagram formed by the nonzero entries
of A give a path of length 2n that we call the semiorder path of A. Let B = (I,,|A") = ¢nn(A),
where ¢,, , is the map introduced in Lemma 2.4.3. We will also associate a second path to A.
Let the inverted path of A be the path consisting of the south and east borders of the Young
diagram formed by the nonzero entries of A’. Note that the inverted path of A is just the
reflection over a horizontal line of the semiorder path of A. Example 2.5.2 sheds light upon
the statement of the next theorem, which describes a way to find the decorated permutation
associated to the Dyck positroid induced by P directly from A.

Theorem 2.5.1. If we number the n vertical steps of the semiorder path of A from bottom
to top in increasing order with {1,...,n} and the n horizontal steps from left to right in
increasing order with {n + 1,...,2n}, then by reading the semiorder path in the northwest
direction, we obtain the decorated permutation associated to the Dyck positroid induced by P.

Proof. Let 7! be the decorated permutation associated to the Dyck positroid induced by P.
We label the n vertical steps of the inverted path of P from top to bottom in increasing order
using the label set [n], and we label the n horizontal steps from left to right in increasing
order using the label set {n+1,...,2n} (see Example 2.5.2). Proving the theorem amounts
to showing that we can obtain 7 (the inverse of the decorated permutation) by reading the
inverted path in the northeast direction. Let (s1, sa,. .., S2,) be the finite sequence obtained
by reading the inverted path in the northeast direction. Since the first step of the inverted
path is horizontal and the last step of the inverted path is vertical, s; = n + 1 and s,, = 1.
Thus, it suffices to check that m(sg) = sgyq for k=1,...,2n — 1.

Suppose first that the k-th step of the inverted path is horizontal, and so located right
below the last nonzero entry of the sg-th column of B. If the (k+1)-st step is also horizontal,
then sg11 = sg+ 1, which means that 7(sy) = sx+1 and so 7(s) = sg41. On the other hand,
if the (k+1)-st step is vertical, then s = 2n or sy +1 is in the set of principal indices J of B;
in both cases, 7(sg) = w(sg), the number of vertical steps from the top to si, namely, sjy1.
Hence 7(sg) = Sg41-

Suppose now that the k-th step of the inverted path is vertical. Clearly, this implies that
1 < s, < n. If the (k4 1)-st step is also vertical, then s;; = s, — 1. Because steps k and
k + 1 are both vertical, A’ does not contain any column with weight s — 1. As a result,
7(sk) = sg—1 = sp41. Finally, if the (k+1)-st step is horizontal, then {sj11} = JNw ™ (s, —1)
and, by Proposition 2.4.9, we find that 7(sg) = Sgy1. O

Example 2.5.2. In Figure 2.9, we can see displayed the antiadjacency matrix A of the
canonically 5-labeled unit interval order P introduced in Example 2.1.1 and the matrix
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¢55(A) both showing their respective semiorder and inverted path encoding the decorated
permutation 7 = (121039 4 8 7 5 6) associated to the positroid induced by P.

.6 [ 1111 1},
5780 1111 1},
Lo ¢ I 111 1[,©

— 3

1 *L10 5 11 1],°9

2
178

) 1l /

Figure 2.9: Dyck matrix A and its image ¢55(A) exhibiting the decorated permutation 7
along their semiorder path and inverted path, respectively.

As a consequence of Theorem 2.5.1, we can deduce that the map po ¢, ., 0 p: U, = P,
is indeed a bijection.

Lemma 2.5.3. The set of 2n-cycles (1 j1 ... jon—1) satisfying conditions (1) and (2) of
Theorem 2.4.10 is in bijection with the set of Dyck paths of length 2n.

Proof. We can assign a Dyck path D of length 2n to the 2n-cycle (1=jy j1 ... jan_1) by
thinking of the entries j; € {1,...,n} as ascending steps of the Dyck path D and the entries
Jji € {n+1,...,2n} as descending steps of D. The fact that such an assignment yields the
desired bijection is straightforward. m

Theorem 2.5.4. The map po ¢p, 0 p: U, — Py, is a bijection.

Proof. By definition of P, it follows that p o ¢, o ¢ is surjective. Since |U,| is the n-th
Catalan number, it suffices to show that

|79n|zL<2”).
n+1\n

To see this, one can take a 2n-cycle 0 = (1 j; ... jo,—1) satisfying conditions (1) and (2)
of Theorem 2.4.10, and consider the Dyck path D specified by ¢ as in Lemma 2.5.3. By
Theorem 2.5.1, the Dyck matrix whose semiorder path is the reverse of D induces a Dyck
positroid with decorated permutation o. Because the decorated permutation associated to

a positroid is unique, Lemma 2.5.3 guarantees that |P,| > L(271") Hence p o ¢y, 0 ¢ is

.. . n+1
bijective. O]

Corollary 2.5.5. The number of Dyck positroids on the ground set [2n] equals the n-th
Catalan number.



CHAPTER 2. UNIT INTERVAL ORDERS AND THE TOTALLY NONNEGATIVE
GRASSMANNIAN 25

Decoding a Dyck Positroid from the Interval Representation of its
Unit Interval Order

We conclude this section by describing how to decode the decorated permutation associated
to the Dyck positroid induced by P directly from its canonical interval representation Z.
Labeling the left and right endpoints of the intervals [¢;, ¢; + 1] € Z by the signs — and +,
respectively, we obtain a 2n-tuple consisting of pluses and minuses by reading from the real
line the labels of the endpoints of all such intervals. On the other hand, we can have another
plus-minus 2n-tuple if we replace the horizontal and vertical steps of the semiorder path of
A by the signs — and +, respectively, and then read it in southeast direction as indicated in
the following example.

Example 2.5.6. The figure below shows the antiadjacency matrix of the canonically 5-
labeled unit interval order P from Example 2.1.1 and a canonical interval representation

of P, both encoding the plus-minus 10-tuple (—,+,—, —, +, —, 4+, —, +, +), as described in
the previous paragraph.
] O - + - + - +
== ———  — —
+ I, I, I,
+

Figure 2.10: Dyck matrix and canonical interval representation of P encoding the 10-tuple
(_7 +7 T T +7 ) +7 ) +7 +)

Lemma 2.5.7. Let a, = (a,...,as,) and b, = (by,...,by,) be the 2n-tuples with entries
in {+,—} obtained by labeling the steps of the semiorder path of A and the endpoints of all
intervals in L, respectively, in the way described above. Then a,, = b,,.

Proof. Let us proceed by induction on the cardinality n of P. When n = 1, both a; and by
are equal to (—,+) and so a; = b;. Suppose now that the statement of the lemma is true
for every canonically n-labeled unit interval order, and assume that P is a unit interval
order canonically labeled by [n + 1] with antiadjacency matrix A and canonical interval
representation Z. Set m = |A,+1| — 1. By Proposition 2.3.2, the poset P\{n + 1} is a unit
interval order canonically labeled by [n]; therefore its associated plus-minus 2n-tuples a/,
and b/ are equal. Observe, in addition, that b,; can be recovered from b/, by inserting
the sign — corresponding to the left endpoint of ¢,y (labeled by 2n + 2) in the position
m + n + 1 (there are n left interval endpoints and m right interval endpoints to the left
of gm+1 in Z) and adding the sign + corresponding to the right endpoint of ¢,1 (labeled
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by 1) at the end. On the other hand, a,; can be recovered from a/, by inserting the sign —
corresponding to the rightmost horizontal step of the semiorder path of A in the position
m+mn+1 (there are n horizontal steps and m vertical steps before the last horizontal step of
the semiorder path) and placing the sign + corresponding to the vertical step labeled by 1
in the last position. Hence a, ;1 = b,,.1, and the lemma follows by induction. O

As a consequence of Theorem 2.5.1 and Lemma 2.5.7, one obtains a way of reading the
decorated permutation associated to the Dyck positroid induced by P directly from Z.

Corollary 2.5.8. Labeling the left and right endpoints of the intervals [q;,q; + 1] by n + i
and n + 1 — 1, respectively, we obtain the decorated permutation associated to the positroid
induced by P by reading these 2n labels from right to left on the real line.

Proof. By Lemma 2.5.7, the 2n-tuple resulting from reading the set {1,...,2n} as indicated
in Corollary 2.5.8 equals the 2n-tuple resulting from reading the same set from the semiorder
path of A in northwest direction, as described in Theorem 2.5.1. Hence the corollary follows
immediately from Theorem 2.5.1. m

Example 2.5.9. The diagram below illustrates how to label the endpoints of a canonical
interval representation of the 6-labeled unit interval order P shown in Figure 2.1 to obtain
the decorated permutation

7=(112231110459687)

associated to the positroid induced by P by reading such labels from the real line (from right
to left).

8 5 10 3 12 1
| 1 I |
L2 | 4| e
7 169 4 111 1 2 |
— = | ;
A A |
| oL o ! |
7 86 95 41011 3 212 1

Figure 2.11: Decorated permutation 7 encoded in a canonical interval representation of P.
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2.6 Le-diagrams

The set consisting of all d-dimensional subspaces of R™, denoted by Grg,(R), is called the
real Grassmannian. Elements in Grg,(R) can also be understood as the orbits of the set of
full-rank d xn real matrices under the left action of GL4(R). For A € Maty,(R) and [ € ([Z]),
the Pliicker coordinate Ar(A) is the maximal minor of A determined by the column set /.
The embedding Grg,(R) < RP(1)~! induced by the map A — (A;(A)) makes Grg,(R) a
projective variety. Let GL} (R) denote the set of real d x d matrices of positive determinant,
and recall that Mat;n(R) is the set of real d x n matrices of rank d having nonnegative
maximal minors.

Definition 2.6.1. The totally nonnegative Grassmannian, denoted by Grzn(R), is the set
of orbits of Mat,, (R) under the left action of GL; (R), i.e., Grj, (R) = GL] (R)\Mat ] (R).

For a full-rank d x n real matrix A, let M(A) denote the matroid represented by A,
and let [A] denote the element of Gry,(R) represented by A. The matroid stratification or
Gelfand-Serganova stratification of Gry,(R) is the collection of all strata

Sm = {[A] € Gran(R) | M(A) = M},

where M runs over the set of rank k representable matroids on the ground set [n]. For each
stratum Sy, we define a positroid cell in Gry, (R) by

St = Sp N Gry, (R).

Note that a representable matroid M is a positroid precisely when Sj(/[ is nonempty. The
collection of nonempty positroid cells is called the cellular decomposition of Gr:lfn(R). For
further details, see [127, Sections 2 and 3].

Let us proceed to characterize the Le-diagrams corresponding to Dyck positroids.

Theorem 2.6.2. A I-diagram L of type (n,2n) parameterizes a Dyck positroid on [2n] if
and only if its shape X is a square of size n and L satisfies the following two conditions:

(1) every column has exactly one plus except the last one that has n pluses;

(2) the horizontal unit steps right below the bottom-most pluses are the horizontal steps of
a length 2n Dyck path supported on the main diagonal of L.

Proof. Suppose first that L satisfies (1) and (2). To verify that L corresponds to a Dyck
positroid, let us use Lemma 2.2.12 to compute its decorated permutation 7 and show that 7!
satisfies Proposition 2.4.9. Note that 7=!(1) = n + 1. For i € [2n]\{1}, we find 7 (4).
Assume first that ¢ € {2,...,n}. If there is only one plus in the (i —1)-st row of L (which
means that w(j) # i — 1 for each j € J), it follows by Lemma 2.2.12 that 7=!(i) = i — 1.
On the other hand (i.e., there is exactly one principal element j in w™!(i — 1)), one obtains
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that 771(z) is the label of the first column (from right to left) of L having a plus in the
(i — 1)-st row (which means 71(z) = j).

Assume now that ¢ € {n + 1,...,2n}. If the bottom-most plus in the column of L
labeled by i is the last plus from right to left in its row, which is labeled by w(i), then by
Lemma 2.2.12 it follows that 7=1(i) = w(i) (note, in this case, that i = 2n or i + 1 is a
principal index). On the other hand, the columns of L labeled by ¢ and i + 1 are identical
(i.e., 7+ 1 is not a principal index), and Lemma 2.2.12 yields 771(i) = ¢ + 1.

Thus, 7! is as described in Proposition 2.4.9, and so 7 is the decorated permutation of a
Dyck positroid on the ground set [2n]. As the number of I-diagrams satisfying the conditions
above and the number of decorated permutations corresponding to Dyck positroids on the
ground set [2n] are equal to the n-th Catalan number, the proof follows. ]

As a result of Theorem 2.6.2, each Dyck positroid cell in Gr,:n(R) can be indexed by a
J-diagrams described in the same theorem. Postnikov proved that the positroid cell indexed
by a I-diagram L has dimension equal to the number of pluses of L [127, Theorem 4.6]. This
immediately implies the following corollary.

Corollary 2.6.3. The positroid cell of a Dyck positroid on the ground set [2n] inside the cell
decomposition of Gry, 2,(R) has dimension 2n — 1.

The next example illustrates the characterization established in Theorem 2.6.2.

Example 2.6.4. Figure 2.12 shows the J-diagram corresponding to the positroid induced
by the unit interval order displayed in Figure 2.1.

+

o loco|lol4+ oo

oclo|lo|l4 oo

+ I+ |+ [+ ]+ [+

0
0
0
0
0
+

ol |olo|o|o

0
0
0
0
0

Figure 2.12: A Le-diagram of a Dyck positroid.



CHAPTER 2. UNIT INTERVAL ORDERS AND THE TOTALLY NONNEGATIVE
GRASSMANNIAN 29

2.7 Adjacency of Dyck Positroid Cells

Given a decorated permutation m on n letters, its chord diagram is constructed in the fol-
lowing way. First, place n points labeled by [n] in clockwise order around a circle. For all
i,7 € [n] with i # 7 and 7(i) = j, draw a directed chord from i to j. If 7 fixes i, then draw
a directed chord from i to 4, oriented counterclockwise if and only if 7(i) = i. For i,j € [n],
let Arc(i, j) denote the set of points in the boundary circle of the chord diagram from i to j
(both included) in clockwise order. Figure 2.13 shows an example of a chord diagram.

—_—

10—~ 2

Figure 2.13: Chord diagram of the decorated permutation in Example 2.1.1.

Let AD and C'B be two chords in the chord diagram of a decorated permutation 7. We
say that AD and C'B form a crossing if they intersect inside the circle or on its boundary,
and this crossing is simple if there are no other chords from Arc(C, A) to Arc(B, D). The
left diagram in Figure 2.14 shows a simple crossing. On the other hand, two chords AB
and C'D form an alignment if they do not intersect and have a parallel orientation as shown
in the right diagram of Figure 2.14. Notice that if A and B coincided in the right diagram
below, then in order for AB and C'D to have parallel orientation AB must be a loop oriented
counterclockwise. An alignment, as shown in the right side of the picture below, is said to
be simple if there are no other chords from Arc(C, A) to Arc(B, D).

A B A B

C D C D

Figure 2.14: A simple crossing on the left and a simple alignment on the right.

Let 1 and 75 be two decorated permutations of the same size n. We say that m; covers mo,
and write m — 79, if the chord diagram of 7y is obtained by turning a simple crossing of
into a simple alignment. This is depicted in Figure 2.15.
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A B A B
—
C D C D

Figure 2.15: A covering relation.

If the points A and B happen to coincide, then the chord from A to B in the chord
diagram of 7y, degenerates to a counterclockwise loop. Similarly, if the points C' and D
coincide, then the chord from C' to D in the chord diagram of 7 becomes a clockwise loop.
Finally, if A = B or C' = D, then the loops at A and C' in the chord diagram of m, must
be counterclockwise and clockwise, respectively. These three types of covering relations,
illustrated in Figure 2.16, are said to be degenerate.

A=B A=B

l

l

C=D C=D

A=B A=B
<D

C=D C=D

Figure 2.16: The three degenerate covering relations.
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Two positroid cells are adjacent if the decorated permutation parameterizing them cover
a common decorated permutation. Here is a necessary and sufficient condition for two Dyck
positroid cells to be adjacent.

Proposition 2.7.1. Let P, and P, be two distinct rank n Dyck positroids and w, and wo their
respective decorated permutations. Then Py and Py label adjacent positroid cells if and only
if there exists i € [2n]\{1,n + 1} such that when i is removed from the cycle decomposition
of m1 and o the resulting cycles are equal.
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