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Abstract

Matroids and convex geometry in combinatorics and algebra

by

Felix Gotti

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Lauren K. Williams, Chair

This thesis is a compendium of three studies on which matroids and convex geometry
play a central role and show their connections to Catalan combinatorics, tiling theory, and
factorization theory. First, we study positroids in connection with rational Dyck paths.
Then, we study certain matroids on the lattice points of a regular triangle in connection
with lozenge tilings. Finally, we explore the connection between the atomic structure of
submonoids of (Nd,+) and the geometric properties of the cones they generate.

Positroids, first studied by Postnikov in 2006, are matroids that parameterize the cells of
the totally nonnegative part of a Grassmannian variety. The first part of this thesis concerns
with the study of a family of positroids that can be parameterized by (rational) Dyck paths.
We call such positroids (rational) Dyck positroids. Using work of Reed and Skandera, we
show that Dyck positroids on the ground set [2n] are in natural bijection with unit interval
orders of size n. We also offer recipes to read the decorated permutation of a Dyck positroid
directly from either the antiadjacency matrix representation or the interval representation
of the corresponding unit interval order. Finally, for the family of rational Dyck positroids,
we provide combinatorial descriptions for some of the most relevant combinatorial objects
that are in bijection with positroids.

The second part of this thesis pertains to the study of certain class of matroids which
naturally appear in the set of 1-dimensional intersections of complete complex flag arrange-
ments. More specifically, these matroids encode the dependency relations among the lines of
such flag arrangements. The bases of such matroids can be thought of as certain n-subsets
of lattice points of a regular n-simplex. For dimension 2, we provide various cryptomorphic
characterizations of these matroids in connection with lozenge tilings of a regular triangle.
We also study the connectivity of members of this family of matroids in any dimension.

Finitely generated submonoids of (Nd,+), also known as affine monoids, are crucial in the
study of combinatorial commutative algebra and, in particular, toric geometry. Let C denote
the class consisting of all submonoids of (Nd,+) (not necessarily finitely generated). The
last part of this thesis is devoted to explore how atomic properties of a monoid M in C (and
the monoid algebras M induces) are connected with the geometry of its conic hull cone(M)
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and with the combinatorial structure of the face lattice of cone(M). For monoids in C,
we investigate two of the most important arithmetic invariants in factorization theory: the
system of sets of lengths and the elasticity. We conclude this thesis studying the atomicity of
monoid algebras, including the algebras induced by monoids in C. We shall provide a partial
answer to a fundamental question about the atomicity of monoid algebras that Gilmer asked
back in the 1980’s.
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Chapter 1

Introduction

Matroids, posets, and lattices are combinatorial objects that have found connections to
many other objects with geometric and algebraic flavors. This thesis is a compendium
of three projects on which certain classes of matroids, posets, and lattices play a central
role. The first part of this thesis consists of Chapter 2 and Chapter 3, which are based
on the papers [50] (joint work with Anastasia Chavez) and [96], respectively. Here we
study a family of matroids, called positroids, along with their connection with unit interval
orders and rational Dyck paths. The second part of this thesis consists of Chapter 4 and
Chapter 5, which are based on the paper [102] (joint work with Harold Polo). In this part,
we investigate certain matroids on the lattice points of a regular triangle in connection with
lozenge tilings. Lastly, the third part of this thesis consists of Chapter 6, Chapter 7, and
Chapter 8, which are based on the papers [95], [91] and [56], respectively ([56] is a joint
work with Jim Coykendall). This last part is dedicated to the study of the atomic and
factorization structure of submonoids of (Nd,+) (and their monoid algebras) in connection
with combinatorial and geometric properties of their conic hulls.

The classical theory of total positivity, introduced by Gantmacher, Krein, and Schoenberg
in the 1930’s, has been recently revitalized as a result of the many connections it has with
Lusztig’s work, in particular, with the introduction of the totally nonnegative part of a
real flag variety. Consequently, an exploration of the combinatorial structure of the totally
nonnegative part of the Grassmannian was initiated. Motivated by the work of Lusztig and
the work of Fomin and Zelevinsky, in 2006 Postnikov initiated the study of positroids [127],
matroids represented by elements of (Grd,n)≥0. He proved that they are in bijection with
various families of elegant combinatorial objects, including Grassmann necklaces, decorated
permutations, L-diagrams, and certain classes of plabic graphs (all of them to be introduced
later).

In the first part of this thesis we study a class of positroids which can be parameterized
by (rational) Dyck paths. We call such positroids (rational) Dyck positroids. We distinguish
Dyck positroids from its generalized counterpart, rational Dyck positroids, mainly because
the former are in a natural bijection with unit interval orders, as we shall reveal in Chapter 2.
We will also offer recipes to read the decorated permutation of a Dyck positroid either
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from the antiadjacency matrix representation or from the interval representation of the
corresponding unit interval order. Then, in Chapter 3 we provide combinatorial descriptions
of the decorated permutation, Grassmann necklace, Le-diagram, and (homotopic classes of)
plabic graphs corresponding to a rational Dyck positroid. Finally, we present a description
by inequalities for the matroid polytope of a rational Dyck positroid, which improves the
number of inequalities used in the description of a positroid polytope given in [17]. The
main question motivating Chapter 2 was kindly provided by Alejandro Morales. Extended
abstracts of Chapter 2 and Chapter 3 can be found in [51] and [93], respectively.

The second part of this thesis is concerned with the study of a family of matroids that
naturally appear in the set of 1-dimensional intersections of complete complex flag arrange-
ments. Specifically, these matroids encode the dependency relations among the lines of such
flag arrangements. It has been proved by Ardila and Billey in [15] that in dimension 2
the bases of such matroids are in bijection with lozenge tilings of a regular triangle. For
this reason, in dimension 2 we call such matroids tiling matroids. In addition, the so-called
Spread Out Conjecture states that a similar characterization should be possible in higher
dimension, as long as fine mixed subdivisions play the role of lozenge tilings. In [33] Billey
and Vakil introduced a criterion that efficiently identifies many structure constant of the
cohomology rings of intersections of Schubert varieties. It turns out that such a criterion can
be refined provided a better understanding of the matroidal structure of higher-dimension
tiling matroids.

In Chapter 4, we provide various cryptomorphic characterizations of tiling matroids. In
particular, we characterize the independent sets, the circuits, and the flats of such matroids
in terms of lozenge-like tilings. We also study the rank function of tiling matroids in con-
nection with certain extremal lozenge tilings. Then, in Chapter 5, we fully characterize the
connectedness of the tiling matroids (in any dimension). In particular, when the dimension
is 2, we show that the connectedness of such matroids can be proved using arguments related
to lozenge tilings.

Finitely generated additive submonoids of Nd, also known as (reduced) affine monoids,
are crucial in the study of toric algebras [121, Part II] and K-theory [37, Part III]. The
last part of this thesis is dedicated to the study of the class consisting of all (not necessarily
finitely generated) additive submonoids of Nd. We let C denote such a class. Our study will
focus on the connection between the combinatorial and geometric structures of the cones of
monoids in C and their atomic and factorization properties. Although a systematic study of
the monoids in C has not been carried out yet, subclasses of C have appeared in the recent
literature in connection with algebraic geometry [29] and commutative algebra [69].

The last part of this thesis is devoted to explore how the atomic and factorization prop-
erties of a monoid M in C are connected with the geometry of its conic hull cone(M) and
the combinatorial structure of the face lattice of cone(M). In Chapter 6, we offer combina-
torial and geometric characterizations of three important subclasses of C, those consisting of
factorial, half-factorial, and other-half-factorial monoids. Primary monoids [74] and finitary
monoids [84] have been two of the most important classes of monoids in the development of
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factorization theory. For primary monoids and finitary monoids in C we investigate geometric
aspects of the cones they generate as well as some combinatorial aspects of the face lattice of
such cones. In Chapter 7, we study two factorization invariants of monoids in C, the system
of sets of lengths and the elasticity. We construct monoids in C having extremal systems
of sets of lengths. In addition, we answer a question on the rationality of the elasticities
of monoids in C that was recently asked in [141]. We start Chapter 8 showing how some
of the properties we have studied for monoids in C reflect on their monoid algebras. Then
we contrast the atomicity of the monoid algebras induced by members of the class C and
the atomicity of monoid algebras induced by general atomic monoids as well as monoids in
the class Q (which consists of all atomic submonoids of (Q≥0,+)). Finally, we show that
atomicity does not transfer, in general, from a monoid M to the monoid algebras that M
induces over fields of finite characteristic; this provides a partial answer to a fundamental
question about the atomicity of monoid algebras that Gilmer asked back in the 1980’s.
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Part I

On Rational Dyck Positroids and
Related Combinatorial Objects
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Chapter 2

Unit Interval Orders and the Totally
Nonnegative Grassmannian

2.1 Introduction

A unit interval order is a partially ordered set that captures the order relations among a
collection of unit intervals on the real line. Unit interval orders originated in the study of
psychological preferences, first appearing in the work of Wiener [145], and then in greater
detail in the work of Armstrong [24] and others. They were also studied by Luce [119]
to axiomatize a class of utilities in the theory of preferences. Since then they have been
systematically studied (see [62, 63, 64, 65, 146, 134] and references therein). These posets
exhibit many interesting properties; for example, they can be characterized as the posets that
are simultaneously (3 + 1)-free and (2 + 2)-free. Moreover, it was first proved in [146] that
the number of non-isomorphic unit interval orders on the set {1, 2, . . . , n} equals 1

n+1

(
2n
n

)
,

the n-th Catalan number (see also [62, Section 4]).
In [134], motivated by the desire to understand the f -vectors of various classes of posets,

Skandera and Reed showed that a simple procedure for labeling a unit interval order yields
the useful form of its n × n antiadjacency matrix which is totally nonnegative (i.e., has all
its minors nonnegative) with its zero entries appearing in a right-justified Young diagram
located strictly above the main diagonal and anchored in the upper-right corner. The zero
entries of such a matrix are separated from the one entries by a Dyck path joining the upper-
left corner to the lower-right corner. Motivated by this observation, we call such matrices
Dyck matrices. The Hasse diagram and the antiadjacency (Dyck) matrix of a canonically
labeled unit interval order are shown in Figure 2.1.

On the other hand, it follows from work of Postnikov [127] that the n× n antiadjacency
(Dyck) matrix of a (properly labeled) unit interval order P can be regarded as representing a
rank n positroid on the ground set {1, 2, . . . , 2n}. We will say that such a positroid is induced
by P . Positroids, which are special matroids, were introduced and classified by Postnikov in
his study of the totally nonnegative part of the Grassmannian [127]. He showed that there
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Figure 2.1: A canonically labeled unit interval order on the ground set {1, 2, . . . , 6} and its
antiadjacency matrix, in which one entries and zero entries are separated by a Dyck path.

is a cell decomposition of the totally nonnegative part of the Grassmannian so that cells are
indexed by positroids (or equivalent combinatorial objects). Positroids and the nonnegative
Grassmannian have been the subject of a great deal of recent work, with connections and
applications to cluster algebras [133], scattering amplitudes [19], soliton solutions to the
Kadomtsev-Petviashvili equation [115], and free probability [17].

In this chapter we characterize a family of positroids on the ground set {1, 2, . . . , 2n}
that bijectively arise from unit interval orders of size n. We call such positroids Dyck
positroids. Positroids, in general, are in bijection with certain generalized permutations,
which are known as decorated permutations. We shall see that the decorated permutations
corresponding to Dyck positroids are standard permutations in the symmetric group S2n

on 2n letters, where n is the size of the corresponding unit interval order. The permutations
corresponding to Dyck positroids have the following description.

Description of the Permutation. A (decorated) permutation π ∈ S2n represents a Dyck
positroid on the set {1, 2, . . . , 2n} if and only if when 1 is fixed as the first entry of π, the
following two conditions hold:

• the elements 1, . . . , n appear in increasing order while the elements n+1, . . . , 2n appear
in decreasing order;

• for every 1 ≤ k ≤ 2n, there are at least as many elements of the set {1, . . . , n} as
elements of the set {n+ 1, . . . , 2n} in the first k entries of π.

As indicated in the description above, the permutation corresponding to a Dyck positroid
on the ground set {1, 2, . . . , 2n} naturally encodes a Dyck path of length 2n. In particular,
Dyck positroids are in bijection with Dyck paths of length 2n and, therefore, there are

1
n+1

(
2n
n

)
Dyck positroids on the ground set {1, 2, . . . , 2n}. In this chapter we also provide a

recipe to decode the permutation of a Dyck positroid directly from the antiadjacency matrix
A of the corresponding unit interval order P . When the unit interval order is appropriately
labeled, A shows a Dyck path (separating its zero entries from its one entries), which we call
the semiorder path of A. The semiorder path of A coincides with the Dyck path encoded in
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the permutation corresponding to the Dyck positroid induced by P , and this fact yields the
following recipe to obtain the permutation directly from A.

Recipe. Let P be a canonically labeled unit interval order on the set {1, 2, . . . , n}, and let
A be its antiadjacency matrix. Number the n vertical steps of the semiorder path of A from
bottom to top by 1, . . . , n and label the n horizontal steps from left to right by n+1, . . . , 2n.
Then the sequence of 2n labels, read in the northwest direction, is the decorated permutation
associated to the Dyck positroid induced by P .

Example 2.1.1. The vertical assignment on the left of Figure 2.2 shows a set I of unit
intervals along with a canonically labeled unit interval order P on the set {1, 2, . . . , 5} de-
scribing the order relations among the intervals in I (see Theorem 2.2.4). The vertical
assignment on the right illustrates the recipe given before to read the decorated permutation
π = (1 2 10 3 9 4 8 7 5 6) corresponding to the Dyck positroid induced by P directly from
the antiadjacency matrix. Note that the decorated permutation π is a 10-cycle satisfying
both conditions given in description of the permutation we have given before. The solid and
dashed assignment signs represent functions that we shall introduce later.

Figure 2.2: Following the solid assignments: unit interval representation I, its unit interval
order P , the antiadjacency matrix of P , and the Dyck path that separates the one entries
from the zero entries of the antiadjacency matrix of P showing the decorated permutation
π = (1 2 10 3 9 4 8 7 5 6).

2.2 Posets and Positroids

General Notation: We let N denote the set of nonnegative integers. For every integer
n ≥ 1, we set [n] := {1, 2, . . . , n}. In addition, for a set S and k ∈ N, we let

(
S
k

)
denote
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the collection consisting of all subsets of S of cardinality k, and we call an element of
(
S
k

)
a

k-subset of S. Finally, we let Matd,m(R) denote the set of all d ×m real matrices, and let
Mat+

d,m(R) be the subset of Matd,m(R) consisting of those full-rank matrices with nonnegative
maximal minors.

Unit Interval Orders

For ease of notation, when (P,≤P ) is a partially ordered set (poset for short), we just
write P , tacitly assuming that the order relation on P is to be denoted by the symbol ≤P .
For x, y ∈ P , we will write x <P y when x ≤P y and x 6= y. In addition, every poset showing
up in this thesis is assumed to be finite unless we specify otherwise.

An order ideal of a poset P is a subset I of P such that if x ∈ I and y ≤P x, then y ∈ I.
Similarly, a dual order ideal is a subset I of P such that if x ∈ I and x ≤P y, then y ∈ I.
For any x ∈ P , it is clear that the sets

Λx = {y ∈ P | y ≤P x} and Vx = {y ∈ P | x ≤P y}

are an order ideal and a dual order ideal, respectively. They are called, respectively, the
principal ideal and the principal dual ideal generated by x.

If the poset P has cardinality n, then a bijective function ` : P → [n] is called an n-
labeling of P ; after identifying P with [n] via `, we say that P is an n-labeled poset. The
n-labeled poset P is naturally labeled if i ≤P j implies that i ≤ j as integers for all i, j ∈ P .

Definition 2.2.1. A poset P of size n is a unit interval order if there exists a bijective map
i 7→ [qi, qi + 1] from P to a set S = {[qi, qi + 1] | 1 ≤ i ≤ n, qi ∈ R} of closed unit intervals
of the real line such that for i, j ∈ P , i <P j if and only if qi + 1 < qj. We then say that S
is an interval representation of P .

Example 2.2.2. The figure below depicts the 6-labeled unit interval order introduced in
Figure 2.1 with a corresponding interval representation.

Figure 2.3: A 6-labeled unit interval order and one of its interval representations.
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A useful way of representing an n-labeled unit interval order is through its antiadjacency
matrix. If P is an n-labeled poset, then the antiadjacency matrix of P is the n × n binary
matrix A = (ai,j) with ai,j = 0 if and only if i <P j. The 6-labeled unit interval order of
Example 2.2.2 along with its antiadjacency matrix are illustrated in Figure 2.1.

For each n ∈ N, we denote by Un the set of all non-isomorphic unit interval orders of
cardinality n. For nonnegative integers n and m, let n + m denote the poset which is the
disjoint sum of an n-element chain and an m-element chain. Let P and Q be two posets.
We say that Q is an induced subposet of P if there exists an injective map f : Q→ P such
that for all r, s ∈ Q one has r ≤Q s if and only if f(r) ≤P f(s). By contrast, P is a Q-free
poset if P does not contain any induced subposet isomorphic to Q.

Example 2.2.3. None of the properties of being (3+1)-free or being (2+2)-free imply the
other one. For instance, Figure 2.4 shows, from left to right, a poset having 3+1 as an
induced subposet (in red) and having 2+2 as an induced subposet (in blue), a (2+2)-free
poset having 3+1 as an induced subposet (in red), a (3+1)-free poset having 2+2 as an
induced subposet (in blue), and a poset that is both (3+1)-free and (2+2)-free.

Figure 2.4: From left to right: a poset that is neither (3+1)-free nor (2+2)-free, a poset
that is (2+2)-free but not (3+1)-free, a poset that is (3+1)-free but not (2+2)-free, and a
poset that is both (3+1)-free and (2+2)-free.

The following theorem provides a useful characterization of the elements of Un.

Theorem 2.2.4. [132, Theorem 2.1] A poset is a unit interval order if and only if it is
simultaneously (3 + 1)-free and (2 + 2)-free.

A binary square matrix A is said to be a Dyck matrix if its zero entries are separated from
its one entries by a Dyck path joining the upper-left corner to the lower-right corner. We
call such a Dyck path the semiorder path of A. All minors of a Dyck matrix are nonnegative
(see, for instance, [1]). We denote by Dn the set of all n × n Dyck matrices. As presented
in [134], every unit interval order can be naturally labeled so that its antiadjacency matrix
is a Dyck matrix (details provided in Section 2.3).
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Positroids

We proceed to introduce the first class of matroids we shall be studying in this thesis. From
now on we shall be using the following notation.

Definition 2.2.5. Let E be a finite set, and let B be a nonempty collection of subsets of E.
The pair M = (E,B) is a matroid if for all B,B′ ∈ B and b ∈ B \B′, there exists b′ ∈ B′ \B
such that (B \ {b}) ∪ {b′} ∈ B.

If M = (E,B) is a matroid, then E is called the ground set of M and the elements of B
are called bases of M . Any two bases of M have the same size, which we denote by r(M) and
call the rank of M . If r(M) = d and E = [n], then we say that M is representable if there
exists A ∈ Matd,n(R) with columns A1, . . . , An such that B ∈ B precisely when {Ab | b ∈ B}
is a basis for the vector space Rd.

Definition 2.2.6. The matroid of rank d on the ground set [n] that is represented by a
matrix A ∈ Mat+

d,n(R) is denoted by ρ(A) and called a positroid.

Several families of combinatorial objects, in bijection with positroids, were introduced
in [127] to study the totally nonnegative Grassmannian, including decorated permutations,
Grassmann necklaces, Le-diagrams, and plabic graphs.

Definition 2.2.7. An n-tuple (I1, . . . , In) of d-subsets of [n] is called a Grassmann necklace
of type (d, n) if for every i ∈ [n] the following two conditions hold:

• i ∈ Ii implies Ii+1 = (Ii \ {i}) ∪ {j} for some j ∈ [n],

• i /∈ Ii implies Ii+1 = Ii,

where In+1 = I1.

For i ∈ [n], the total order ([n],≤i) is defined by

i ≤i · · · ≤i n ≤i 1 ≤i · · · ≤i i− 1.

Given a matroid M = ([n],B) of rank d, one can define the sequence I(M) = (I1, . . . , In),
where Ii is the lexicographically minimal ordered basis of M with respect to the order ≤i.
The sequence I(M) is a Grassmann necklace of type (d, n) (see [127]). Moreover, when M
is a positroid, we can recover M from I(M) as we will describe now. For i ∈ [n], consider
the partial order �i on

(
[n]
d

)
defined in the following way: if

S = {s1 ≤i · · · ≤i sd} and T = {t1 ≤i · · · ≤i td}

are subsets of [n], then S �i T if sj ≤i tj for each j ∈ [d].
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Theorem 2.2.8. [124, Theorem 6] If I = (I1, . . . , In) is a Grassmann necklace of type (d, n),
then

B(I) =

{
B ∈

(
[n]

d

) ∣∣∣∣ Ij �j B for each j ∈ [n]

}
is the collection of bases of a positroid M(I) = ([n],B(I)). Moreover, M(I(M)) = M for
all positroids M .

By Theorem 2.2.8, the map P 7→ I(P ) is a one-to-one correspondence between the set
of rank d positroids on the ground set [n] and the set of Grassmann necklaces of type (d, n).
For a positroid P , we call I(P ) its corresponding Grassmann necklace.

Like Grassmann necklaces, decorated permutations are combinatorial objects that can
be used to parameterize positroids. Decorated permutations have the extra advantage of
offering a more compact parameterization.

Definition 2.2.9. A decorated permutation π on n letters is an element π ∈ Sn in which
fixed points j are marked either “clockwise”(denoted by π(j) = j) or “counterclockwise”

(denoted by π(j) = j). A position j ∈ [n] is called a weak excedance of π if j < π(j) or
π(j) = j.

Following the next recipe, one can assign a decorated permutation πI to each Grassmann
necklace I = (I1, . . . , In):

(1) if Ii+1 = (Ii \ {i}) ∪ {j} for i 6= j, then πI(j) = i,

(2) if Ii+1 = Ii and i /∈ Ii, then πI(i) = i,

(3) if Ii+1 = Ii and i ∈ Ii, then πI(i) = i,

where In+1 = I1.
Moreover, the map I 7→ πI is a bijection from the set of Grassmann necklaces of type

(d, n) to the set of decorated permutations of n letters having d weak excedances. Indeed, it
is not hard to verify that the map π 7→ (I1, . . . , In), where

Ii = {j ∈ [n] | j ≤i π−1(j) or π(j) = j̄},

is the inverse of I 7→ πI . See [17, Proposition 4.6] for more details. The corresponding
decorated permutation of a positroid P is πI(P ), where I(P ) is the corresponding Grassmann
necklace of P .

As it is the case for Grassmann necklaces and decorated permutations, L-diagrams are in
natural bijection with positroids, and they explicitly show the dimensions of the Grassmann
cell of their corresponding positroids.
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Definition 2.2.10. Let d and m be positive integers, and let Yλ be the Young diagram
associated to a given partition λ contained in a d × m rectangle. A L-diagram (or Le-
diagram) L of shape λ and type (d, d + m) is obtained by filling the boxes of Yλ with zeros
and pluses so that no zero entry has simultaneously a plus entry above it in the same column
and a plus entry to its left in the same row.

With notation as in the above definition, the southeast border of Yλ determines a path
of length d + m from the northeast to the southwest corner of the d ×m rectangle; we call
such a path the boundary path of L.

It is well known that there is a natural bijection Φ from the set of L-diagrams of type
(d, d+m) to the set of decorated permutations on [d+m] having exactly d excedances (see
[127, Section 20]). Thus, L-diagrams of type (d, d + m) also parameterize rank d positroids
on the ground set [d + m]. Moreover, if Φ: L → π and we label the steps of the boundary
path of L in southwest direction, then i ∈ [d+m] labels a vertical step of the boundary path
of L if and only if i is a weak excedance of π (see [139, Lemma 5]).

Example 2.2.11. The picture below shows a L-diagram L of type (5, 12) with its boundary
path highlighted. The decorated permutation Φ(L) is (1 12 9 2)(3 10 11 7)(4 5)(6 8).

Figure 2.5: A Le-diagram of type (5, 12) and shape λ = (7, 6, 6, 5, 2).

Let λ be a partition, and let Yλ be the Young diagram associated to λ. We call a pipe

dream of shape λ to a tiling of Yλ by elbow joints and crosses . The next lemma
yields a method (illustrated in Figure 2.6) to find the decorated permutation π = Φ(L)
corresponding to a positroid directly from its L-diagram.

Lemma 2.2.12. [17, Lemma 4.8] Let L be the L-diagram corresponding to a rank d positroid P
on the ground set [d+m]. We can compute the decorated permutation π of P as follows.

(1) Replace the pluses in the L-diagram L with elbow joints and the zeros in L with

crosses to obtain a pipe dream.
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(2) Label the steps of the boundary path with 1, . . . , d+m in southwest direction, and then
label the edges of the north and west border of Yλ also with 1, . . . , d+m in such a way
that labels of opposite border steps coincide.

(3) Set π(i) = j if the pipe starting at the step labeled by i in the northwest border ends at
the step labeled by j in the boundary path. If π fixes j write π(j) = j (resp., π(j) = j)
if j labels a horizontal (resp., vertical) step of the boundary path.

Example 2.2.13. Let P be the rank 5 positroid on the ground set [13] having decorated
permutation π = (1 2 13 12 3 11 10 4 9 5 8 7 6). The following picture showing the L-diagram
corresponding to P along with its associated pipe dream sheds light upon the recipe described
in Lemma 2.2.12.

Figure 2.6: The Le-diagram of P on the left and the corresponding pipe dream giving rise
to π on the right.

2.3 Canonical Labelings on Unit Interval Orders

In this section we introduce the concept of a canonically labeled poset, and we use it to exhibit
an explicit bijection from the set Un of non-isomorphic unit interval orders of cardinality n
to the set Dn of n× n Dyck matrices.

We define the altitude function of P to be the map

α : P → Z defined by i 7→ |Λi| − |Vi|.

We say that an n-labeled poset P respects altitude if for all i, j ∈ P , the fact that α(i) < α(j)
implies i < j (as integers). Notice that every poset can be labeled by the set [n] such that,
as an n-labeled poset, it respects altitude (see [63, p. 33]).

Definition 2.3.1. An n-labeled poset is canonically labeled if it respects altitude.
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Each canonically n-labeled poset is, in particular, naturally labeled. The next proposi-
tion, extending [142, proof of Theorem 2.11], characterizes canonically n-labeled unit interval
orders in terms of their antiadjacency matrices.

Proposition 2.3.2. [134, Proposition 5] An n-labeled unit interval order is canonically
labeled if and only if its antiadjacency matrix is a Dyck matrix.

The above proposition indicates that the antiadjacency matrices of canonically labeled
unit interval orders are quite special. In addition, canonically labeled unit interval orders
have very convenient interval representations.

Proposition 2.3.3. Let P be an n-labeled unit interval order. Then the labeling of P is
canonical if and only if there exists an interval representation

{[qi, qi + 1] | 1 ≤ i ≤ n}

of P such that q1 < · · · < qn.

Proof. Let α : P → Z be the altitude map of P . For the forward implication, suppose that
the n-labeling of P is canonical. Among all the interval representations of P , assume that
{[qi, qi + 1] | 1 ≤ i ≤ n} gives the maximum m ∈ [n] such that q1 < · · · < qm. Suppose,
by way of contradiction, that m < n. The maximality of m implies that qm > qm+1. This,
along with the fact that α(m) ≤ α(m + 1), ensures that qm ∈ (qm+1, qm+1 + 1). Similarly,
qi + 1 /∈ (qm+1, qm) for any i ∈ [n]; otherwise

α(m+ 1) = |Λm+1| − |Vm+1| < |Λm| − |Vm+1| ≤ |Λm| − |Vm| = α(m)

would contradict that the n-labeling of P respects altitude. An analogous argument guar-
antees that qi /∈ (qm+1 + 1, qm + 1) for any i ∈ [n].

Now take k to be the smallest natural number in [m] such that qj > qm+1 for all j ≥ k,
and take σ = (k k+1 . . . m m+1) ∈ Sn. We will show that S = {[pi, pi + 1] | 1 ≤ i ≤ n},
where pi = qσ(i), is an interval representation of P . Take i, j ∈ P such that i ≤P j. Since i
and j are comparable in P , at least one of them must be fixed by σ; say σ(i) = i. If σ(j) = j,
then pi + 1 = qi + 1 < qj = pj. Also, if σ(j) 6= j, then qi + 1 < qj ∈ (qm+1, qm). It follows
from qi + 1 < qm that

pi + 1 = qi + 1 < qm+1 < qσ(j) = pj.

The case of σ(j) = j can be argued similarly. Thus, S is an interval representation of P .
As q1 < · · · < qm, the definition of k implies that p1 < · · · < pm+1, which contradicts the
maximality of m. Hence m = n, and the direct implication follows.

Conversely, note that if {[qi, qi + 1] | 1 ≤ i ≤ n} is an interval representation of P
satisfying q1 < · · · < qn, then for every m ∈ [n− 1] we have

α(m) = |Λm| − |Vm| ≤ |Λm+1| − |Vm+1| = α(m+ 1),

which means that the labeling of P is canonical.
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If P is a canonically n-labeled unit interval order, and

I = {[qi, qi + 1] | 1 ≤ i ≤ n}

is an interval representation of P satisfying q1 < · · · < qn, then we say that I is a canonical
interval representation of P .

Note that the image (as a multiset) of the altitude map does not depend on the labels but
only on the isomorphism class of the corresponding poset. On the other hand, the altitude
map αP of a canonically n-labeled unit interval order P satisfies αP (1) ≤ · · · ≤ αP (n). Thus,
if Q is a canonically n-labeled unit interval order isomorphic to P , then

(αP (1), . . . , αP (n)) = (αQ(1), . . . , αQ(n)), (2.1)

where αQ is the altitude map of Q. Let AP and AQ be the antiadjacency matrices of P
and Q, respectively. As αP (1) = αQ(1), the first rows of AP and AQ are equal. Since the
number of zeros in the i-th column (resp., i-th row) of AP is precisely |Vi(P )| − 1 (resp.,
|Λi(P )|−1), and similar statement holds for Q, the next lemma follows immediately by using
(2.1) and induction on the row index of AP and AQ.

Lemma 2.3.4. If two canonically labeled unit interval orders are isomorphic, then they have
the same antiadjacency matrix.

The Bijection ϕ

Now we can define a map ϕ : Un → Dn, by assigning to each unit interval order its antiad-
jacency matrix with respect to any of its canonical labelings. By Lemma 2.3.4, this map is
well defined.

Theorem 2.3.5. For each natural number n, the map ϕ : Un → Dn is a bijection.

Proof. Since |Un| = |Dn| = 1
n+1

(
2n
n

)
, it suffices to argue that ϕ is surjective. We proceed

by induction on n. The case n = 1 is immediate as |U1| = |D1| = 1. Suppose that
surjectivity holds for every k ≤ n and, to check that ϕ : Un+1 → Dn+1 is surjective, take
D = (di,j) ∈ Dn+1. Let D′ be the submatrix of D consisting of the first n columns and the
first n rows. As D′ is an n×n Dyck matrix, there is a canonically n-labeled unit interval order
P ′ whose antiadjacency matrix is D′. Define P to be the (n+ 1)-labeled poset obtained by
adding an element labeled by n+1 to P ′ with exactly the following order relations: i ≤P n+1
if and only if either i = n+ 1 or di,n+1 = 0. Note that n+ 1 is a maximal element in P and
that the antiadjacency matrix of P is precisely D.

We are done once we check that P is a canonically labeled unit interval order. Since
αP (1) ≤ · · · ≤ αP (n + 1), the labeling of P is canonical. Finally, let us show that P is,
indeed, a unit interval order. Because P ′ happens to be a unit interval order, it suffices to
check that for any i, j, k ∈ [n] none of the posets
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Figure 2.7: 2 + 2 and 3 + 1 posets.

is an induced subposet of P . The first and the second subposets in Figure 2.7 cannot be
induced because j ≤P n+ 1 for every non-maximal element j of P ′. Let Q denote the third
subposet shown above. If k ≤P n+ 1, then Q cannot be induced. Suppose then that k is not
comparable with n+ 1 in P . In this case, k is maximal in P . As j is not maximal in P and
the labeling of P is canonical, i < j < k as integers. Since i ≤P j, one has that di,j = 0 and
so di,k = 0. Thus, i ≤P k, which implies that Q is not an induced subposet of P . Hence P
is a canonically (n+ 1)-labeled unit interval order, which concludes the proof.

2.4 Dyck Positroids

Rational Dyck Paths and Matrices

In the first two chapters of this thesis, we are mostly interested in certain class of positroids
that can be parameterized by rational Dyck paths.

Definition 2.4.1. For each pair of nonnegative integers (m, d), a rational Dyck path of type
(m, d) is a lattice path from (0, 0) to (m, d) that only uses unit steps (1, 0) or (0, 1) and never
goes above the diagonal line y = (d/m)x.

Figure 2.8: A (8, 5)-rational Dyck path.
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When there is no risk of ambiguity, we will abuse notation by referring to a rational
Dyck path without specifying the copy of R2 in which it is embedded. Figure 2.8 depicts
a rational Dyck path of type (8, 5). Note that a rational Dyck path of type (m,m) is just
an ordinary Dyck path of length 2m. The number of Dyck paths of length 2m is precisely
the m-th Catalan number (many other families of relevant combinatorial objects can also be
counted by the Catalan numbers; see [137]). The number Cat(m, d) of rational Dyck paths
of type (m, d) is the rational Catalan number associated to the pair (m, d). It is known that

Cat(m, d) =
1

d+m

(
d+m

d

)
(2.2)

when gcd(d,m) = 1. A general formula for the rational Catalan numbers (without assuming
co-primeness) was first conjectured by Grossman [106] and then proved by Bizley [34]. This
general formula is more involved than the one stated in (2.2), as the next generating function
shows:

∞∑
n=0

Cat(nm, nd)xn = exp

( ∞∑
j=1

1

d+m

(
jd+ jm

jd

)
xj

j

)
,

where, as before, gcd(d,m) = 1. The combinatorics associated to the rational Catalan
numbers, also known as rational Catalan combinatorics, has received considerable attention
during the last decade. In particular, rational Dyck paths have been studied in connection
with core partitions [13], parking functions [21], noncrossing partitions [22], and rational
associahedra [23]. For several results and conjectures on (m, d)-cores, the reader can consult
[20] and [138].

Let us use the fact that that rational Dyck paths are natural generalization of Dyck paths
to generalize the class of Dyck matrices.

Definition 2.4.2. A d×m binary matrix is called a rational Dyck matrix if its zero entries
are separated from its one entries by a vertically-reflected rational Dyck path of type (m, d).

Observe that square rational Dyck matrices are precisely those that we have called before
Dyck matrices. Here is an example of a 5× 8 rational Dyck matrix:

1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

 .

Let Dd,m denote the set of d×m rational Dyck matrices. It is clear that Dn = Dn,n for
every n ∈ N. Each rational Dyck path d of type (m, d) induces the d × m rational Dyck
matrix whose zero entries are separated from its one entries via the vertically-reflected path
of d. It is well known that standard Dyck matrices are totally nonnegative, i.e., all their
minors are nonnegative (see, for instance, [1]).
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Notation: If X is an n× n real matrix and I, J ⊆ [n] satisfy |I| = |J |, then we let ∆I,J(X)
denote the minor of X determined by the set of rows indexed by I and the set of columns
indexed by J . Besides, if Y is a k × n matrix and K ⊆ [n] satisfies |K| = k, then we let
∆K(Y ) denote the maximal minor of Y determined by the set of columns indexed by K.

Consider the assignment φd,m : Matd,m(R)→ Matd,d+m(R) defined by
a1,1 . . . a1,m

...
. . .

...
ad−1,1 . . . ad−1,m

ad,1 . . . ad,m

 φd,m7−→


1 . . . 0 0 (−1)d−1ad,1 . . . (−1)d−1ad,m
...

. . .
...

...
...

. . .
...

0 . . . 1 0 −a2,1 . . . −a2,m

0 . . . 0 1 a1,1 . . . a1,m

 .

The map φd,m somehow respects the minors of any given matrix:

Lemma 2.4.3. [127, Lemma 3.9] 1 If A ∈ Matd,m(R) and B = φd,m(A), then

∆I,J(A) = ∆(d+1−[d]\I)∪(d+J)(B)

for all I ⊆ [d] and J ⊆ [m] satisfying |I| = |J |.

The next lemma, which can be immediately argued by induction, is used in the proof of
Proposition 2.4.5.

Lemma 2.4.4. Every square binary matrix whose zero entries form a Young diagram an-
chored in the upper-right corner is totally nonnegative.

Proposition 2.4.5. The inclusion φd,m(Dd,m) ⊆ Mat+
d,d+m(R) holds.

Proof. Take D ∈ Dd,m, and set A = φd,m(D). As A has obviously full rank, it suffices to verify

that each of its maximal minors is nonnegative. For S ∈
(

[d+m]
d

)
let A′ be the submatrix of A

determined by the set of columns indexed by S. Set I = S∩[d] and J = {j1, . . . , j|S\I|} = S\I
with j1 < · · · < j|J |. Note that |J | ≤ d. Let BJ be the d× d matrix whose first |I| columns
are all equal to the vector ((−1)d−1, . . . ,−1, 1)t and whose (|I|+k)-th column is equal to Ajk
for 1 ≤ k ≤ |J |. Notice now that Lemma 2.4.4 ensures that the matrix B = (Id | BJ)
is the image under φd,d of a totally nonnegative matrix of size d. As Dyck matrices are
totally nonnegative, Lemma 2.4.3 ensures that every maximal minor of B is nonnegative.
In particular, the maximal minor detA′ of B is nonnegative. Hence A ∈ Mat+

d,d+m(R), as
desired.

Proposition 2.4.5 will allow us to produce positroids from rational Dyck paths.

1There is a typo in the entries of the matrix B in [127, Lemma 3.9].
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Dyck Positroids

Using Lemma 2.4.3 and the map ϕ : Un → Dn introduced at the end of Section 2.3, we can
assign via φn,n ◦ ϕ a matrix in Mat+

n,2n(R) to each unit interval order of cardinality n. In
turn, every real matrix of Mat+

n,2n(R) gives rise to a positroid, a special representable matroid
which has a very rich combinatorial structure.

Each unit interval order P (labeled so that its antiadjacency matrix is a Dyck ma-
trix) induces a positroid via Lemma 2.4.3, namely, the positroid represented by the matrix
φn,n(ϕ(P )).

Definition 2.4.6. A positroid on [2n] induced by a unit interval order is called a Dyck
positroid.

We denote by Pn the set of all Dyck positroids on the ground set [2n]. The function
ρ ◦ φn,n ◦ ϕ : Un → Pn plays a fundamental role in this chapter. Indeed, we will end up
proving that this function is a bijection (see Theorem 2.5.4).

We use decorated permutations to provide a compact and elegant description of Dyck
positroids.

The Decorated Permutation

We proceed to describe the decorated permutation associated to a Dyck positroid. Through-
out this section A is an n× n Dyck matrix and

B = (bi,j) = φn,n(A)

is as in Lemma 2.4.3. We will consider the indices of the columns of B modulo 2n. Further-
more, let P be the Dyck positroid represented by B, and let IP and π−1 be the Grassmann
necklace and the decorated permutation associated to P .

Lemma 2.4.7. For 1 < i ≤ 2n, the i-th coordinate set of IP does not contain i− 1.

Proof. It is not hard to verify that every matrix resulting from removing one column from B
still has rank n. As the matrix obtained by removing the (i−1)-st column from B has rank n,
it contains n linearly independent columns. Therefore the lemma follows straightforwardly
from the <i-minimality of the i-th coordinate set of IP .

For the rest of this section let Bj denote the j-th column of B. As a direct consequence
of Lemma 2.4.7, we have that π does not have any counterclockwise fixed point. On the
other hand, π cannot have any clockwise fixed point because every column of B is nonzero.
Hence π (and therefore π−1) does not fix any point. The next lemma immediately follows
from the way π−1 is produced from the Grassmann necklace IP (see the end of Section 2.2).

Lemma 2.4.8. For i ∈ {1, . . . , 2n}, π(i) equals the minimum j ∈ [2n] with respect to the
i-order such that Bi ∈ span(Bi+1, . . . , Bj).
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Now we find an explicit expression for the function representing the inverse π of the
decorated permutation π−1 associated to P . In order to do so, we will find it convenient to
associate an index set and a map to the matrix B. We define the set of principal indices
of B to be the subset of {n+ 1, . . . , 2n} defined by

J = {j ∈ {n+ 1, . . . , 2n} | Bj 6= Bj−1}.

We associate to B the weight map ω : [2n] → [n] defined by ω(j) = max{i | bi,j 6= 0}; more
explicitly, we obtain that

ω(j) =

{
j if j ∈ {1, . . . , n}
|b1,j|+ · · ·+ |bn,j| if j ∈ {n+ 1, . . . , 2n}.

Since the last row of the antiadjacency matrix A has all its entries equal to 1, the map ω
is well defined. If j ∈ {n + 1, . . . , 2n}, then ω(j) is the number of nonzero entries in the
column Bj. Now we have the following formula for π.

Proposition 2.4.9. For i ∈ {1, . . . , 2n}, we have

π(i) =


i+ 1 if n < i < 2n and i+ 1 /∈ J,
ω(i) if n < i < 2n and i+ 1 ∈ J, or i = 2n,
n+ 1 if i = 1,
i− 1 if 1 < i ≤ n and i− 1 /∈ ω(J),
j if 1 < i ≤ n and i− 1 = ω(j) for some j ∈ J.

The index j in the final case is necessarily unique.

Proof. First, suppose that n < i < 2n and i + 1 /∈ J . Then we have Bi = Bi+1 and the set
{Bi, Bi+1} is linearly dependent. Lemma 2.4.8 then implies that π(i) = i+ 1.

Now suppose that n < i < 2n and i+1 ∈ J . Then Bi+1 results from replacing m (m > 0)
of the last nonzero entries of Bi by zeros. Since i+1 ∈ J , the indices i and i+1 both appear
in the i-th coordinate set of IP . Also, because the columns Bi, Bi+1, Bω(i+1)+1, . . . , Bω(i) are
linearly dependent, not all the indices ω(i+ 1) + 1, . . . , ω(i) appear in the i-th coordinate set
of IP . On the other hand, at most one index in ω(i + 1) + 1, . . . , ω(i) is missing from the
i-th coordinate of IP ; this is because the submatrix of B determined by the row-index set
{ω(i+1)+1, . . . , ω(i)} and the column-index set {n+1, . . . , 2n} has rank 1. By the minimality
of the i-th coordinate set of IP with respect to the i-order, the index of {ω(i+1)+1, . . . , ω(i)}
missing in the i-th coordinate set of IP is ω(i). As a result, we have π(i) = ω(i); otherwise,
in the submatrix of B whose columns are indexed by the (i+ 1)-st coordinate set of IP , the
ω(i)-th row would consist entirely of zeros, which, in turn, would contradict the fact that
such a coordinate set represents a basis of the positroid P .

The above argument also applies when i = 2n provided that we extend the domain of ω
to [2n+ 1] and set ω(2n+ 1) = 0.

Note that π(1) = n+1 follows immediately from the minimality of the second coordinate
set of IP and the fact that B2, . . . , Bn, Bn+1 are linearly independent.
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Now suppose that 1 < i ≤ n and i − 1 /∈ ω(J). The minimality of the coordinate sets
of IP implies that all the indices i, . . . , n appear in the i-th coordinate set. Furthermore,
Lemma 2.4.7 implies that i−1 does not belong to the i-th coordinate set of IP . Since no j ∈ J
has weight i− 1, the (i− 1)-st and i-th rows of the maximal submatrix of B determined by
the column index set {n+1, . . . , 2n} are equal. Consequently, we have π(i) = i−1; otherwise
the associated maximal submatrix of B determined by the indices of the i-th coordinate set
of IP would have the i-th and (i+ 1)-st rows identical, which would contradict the fact that
the i-th coordinate set of IP represents a basis of P .

Finally, suppose that 1 < i ≤ n and i− 1 ∈ ω(J). Since not two elements of J have the
same weight, there is at most one j ∈ J such that ω(j) = i − 1. As before, all the indices
i, . . . , n + 1 appear in the i-th coordinate set of IP (because i > 1). Each column Bk, for
n < k ≤ 2n such that ω(k) = i − 1, is a linear combination of the columns Bi, . . . , Bn+1.
Therefore such indices k do not appear in the i-th coordinate set of IP . By Lemma 2.4.7, it
follows that i − 1 does not appear in the i-th coordinate set of IP . Thus, π(i) = j, where
j ∈ [2n] satisfies that ω(j) = i − 1; otherwise, in the submatrix of B whose columns are
indexed by the (i + 1)-st coordinate set of IP , the (i − 1)-st row would consist entirely of
zeros, which would contradict that the (i−1)-st coordinate set of IP represents a basis of P .
By minimality of the (i+ 1)-st coordinate set of IP one finds that j ∈ J .

As the next theorem indicates, π−1 is a 2n-cycle satisfying a very special property.

Theorem 2.4.10. π−1 is a 2n-cycle (1 j1 . . . j2n−1) satisfying the next two conditions:

(1) in the sequence (1, j1, . . . , j2n−1) the elements 1, . . . , n appear in increasing order while
the elements n+ 1, . . . , 2n appear in decreasing order;

(2) for every 1 ≤ k ≤ 2n− 1, the set {1, j1, . . . , jk} contains at least as many elements of
the set {1, . . . , n} as elements of the set {n+ 1, . . . , 2n}.

Proof. From Proposition 2.4.9 we immediately deduce that if π(i) = j for 1 < i ≤ 2n, then
ω(i) = ω(j) when i > n and ω(i) = ω(j) + 1 when i ≤ n. This implies, in particular, that
ω(i) ≥ ω(j). Suppose, by way of contradiction, that π−1, and so π, is not a 2n-cycle. Then
there is a cycle (i1 i2 . . . ik) in the canonical cycle-type decomposition of π that does not
contain 1. Therefore one has

ω(i1) ≥ ω(i2) ≥ · · · ≥ ω(ik) ≥ ω(i1),

which implies ω(i1) = ω(i2) = · · · = ω(ik). Since {i1, . . . , ik} does not contain 1, it fol-
lows that {i1, . . . , ik} ⊆ {n + 1, . . . , 2n}, which is a contradiction. Hence the cycle-type
decomposition of π−1 contains only one cycle, which has length 2n.

Since π(1) = n + 1, one gets that π = (1 n+1 i1 i2 . . . i2n−2), where {i1, . . . , i2n−2} is
precisely the set [2n] \ {1, n+ 1}. As

ω(i1) ≥ ω(i2) ≥ · · · ≥ ω(i2n−2),
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and ω(i) = i for every i ∈ [n], the elements of the set {2, . . . , n} must appear in the cycle
(1 n+1 i1 i2 . . . i2n−2) in decreasing order. On the other hand, by Proposition 2.4.9 the indices
of equal columns of B (but perhaps the first one) show in increasing order and consecutively
in the sequence (1, n + 1, i1, i2, . . . , i2n−2). Also, as the weight map ω is strictly decreasing
when restricted to J , the elements of the set {n+ 1, . . . , 2n} must appear in increasing order
in the cycle (1 n+1 i1 i2 . . . i2n−2). Thus, condition (1) holds.

To show condition (2), write π = (n+ 1 i1 i2 . . . i2n−2 1) and suppose, by way of
contradiction, that there exists m ∈ {1, . . . , 2n− 2} such that∣∣{1 ≤ j ≤ m | ij ∈ {2, . . . , n}

}∣∣− 1 >
∣∣{1 ≤ j ≤ m | ij ∈ {n+ 1, . . . , 2n}

}∣∣. (2.3)

Let m be the minimal such index. By the minimality of m, one obtains that im ∈ {2, . . . , n}.
Let k be the maximum index such that m ≤ k and ij ∈ {2, . . . , n} for each j = m, . . . , k.
Note that k < 2n− 2 and π(ik) ∈ {n+ 2, . . . , 2n}. Since

|{j ≤ k | 2 ≤ ij ≤ n}| = |{ik, . . . , n}|

and
|{j ≤ k | n+ 2 ≤ ij ≤ 2n}| = |{n+ 2, . . . , π(ik)− 1}|,

it follows by (2.3) that

(n− ik + 1)− 1 > (π(ik)− 1)− (n+ 2) + 1 = π(ik)− n− 2,

which implies 2n− π(ik) + 1 > ik − 1. On the other hand, the fact that all the entries of A
below and on the main diagonal equal 1 implies that ω(j) ≥ 2n−j+1 for every n+1 ≤ j ≤ 2n.
Since 1 < ik ≤ n, one finds that ik = ω(ik) = ω(π(ik)) + 1. As n+ 1 ≤ π(ik) ≤ 2n, we have

ik − 1 = ω(π(ik)) ≥ 2n− π(ik) + 1 > ik − 1,

which is a contradiction. Hence, writing π−1 = (1 j1 . . . j2n−1), we will obtain that for
k = 1, . . . , 2n− 1, the set {1, j1, . . . , jk} contains at least as many elements of the set [n] as
elements of the set {n+ 1, . . . , 2n}, which is condition (2).

2.5 How to Decode a Dyck Positroid from Its Unit

Interval Order

Decoding a Dyck Positroid from the Antiadjacency Matrix of its
Unit Interval Order

Throughout this section, let P be a canonically n-labeled unit interval order with antiadja-
cency matrix A. Also, let

I = {[qi, qi + 1] | 1 ≤ i ≤ n}
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be a canonical interval representation of P (i.e., q1 < · · · < qn); Proposition 2.3.3 ensures the
existence of such an interval representation. In this section we describe a way to obtain the
decorated permutation associated to the Dyck positroid induced by P directly from either A
or I. Such a description will reveal that the function ρ ◦ φn,n ◦ ϕ : Un → Pn introduced in
Section 2.2 is a bijection (Theorem 2.5.4).

Recall that the north and east borders of the Young diagram formed by the nonzero entries
of A give a path of length 2n that we call the semiorder path of A. Let B = (In|A′) = φn,n(A),
where φn,n is the map introduced in Lemma 2.4.3. We will also associate a second path to A.
Let the inverted path of A be the path consisting of the south and east borders of the Young
diagram formed by the nonzero entries of A′. Note that the inverted path of A is just the
reflection over a horizontal line of the semiorder path of A. Example 2.5.2 sheds light upon
the statement of the next theorem, which describes a way to find the decorated permutation
associated to the Dyck positroid induced by P directly from A.

Theorem 2.5.1. If we number the n vertical steps of the semiorder path of A from bottom
to top in increasing order with {1, . . . , n} and the n horizontal steps from left to right in
increasing order with {n + 1, . . . , 2n}, then by reading the semiorder path in the northwest
direction, we obtain the decorated permutation associated to the Dyck positroid induced by P .

Proof. Let π−1 be the decorated permutation associated to the Dyck positroid induced by P .
We label the n vertical steps of the inverted path of P from top to bottom in increasing order
using the label set [n], and we label the n horizontal steps from left to right in increasing
order using the label set {n+ 1, . . . , 2n} (see Example 2.5.2). Proving the theorem amounts
to showing that we can obtain π (the inverse of the decorated permutation) by reading the
inverted path in the northeast direction. Let (s1, s2, . . . , s2n) be the finite sequence obtained
by reading the inverted path in the northeast direction. Since the first step of the inverted
path is horizontal and the last step of the inverted path is vertical, s1 = n+ 1 and s2n = 1.
Thus, it suffices to check that π(sk) = sk+1 for k = 1, . . . , 2n− 1.

Suppose first that the k-th step of the inverted path is horizontal, and so located right
below the last nonzero entry of the sk-th column of B. If the (k+1)-st step is also horizontal,
then sk+1 = sk+1, which means that π(sk) = sk+1 and so π(sk) = sk+1. On the other hand,
if the (k+1)-st step is vertical, then sk = 2n or sk+1 is in the set of principal indices J of B;
in both cases, π(sk) = ω(sk), the number of vertical steps from the top to sk, namely, sk+1.
Hence π(sk) = sk+1.

Suppose now that the k-th step of the inverted path is vertical. Clearly, this implies that
1 ≤ sk ≤ n. If the (k + 1)-st step is also vertical, then sk+1 = sk − 1. Because steps k and
k + 1 are both vertical, A′ does not contain any column with weight sk − 1. As a result,
π(sk) = sk−1 = sk+1. Finally, if the (k+1)-st step is horizontal, then {sk+1} = J∩ω−1(sk−1)
and, by Proposition 2.4.9, we find that π(sk) = sk+1.

Example 2.5.2. In Figure 2.9, we can see displayed the antiadjacency matrix A of the
canonically 5-labeled unit interval order P introduced in Example 2.1.1 and the matrix
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φ5,5(A) both showing their respective semiorder and inverted path encoding the decorated
permutation π = (1 2 10 3 9 4 8 7 5 6) associated to the positroid induced by P .

Figure 2.9: Dyck matrix A and its image φ5,5(A) exhibiting the decorated permutation π
along their semiorder path and inverted path, respectively.

As a consequence of Theorem 2.5.1, we can deduce that the map ρ ◦ φn,n ◦ ϕ : Un → Pn
is indeed a bijection.

Lemma 2.5.3. The set of 2n-cycles (1 j1 . . . j2n−1) satisfying conditions (1) and (2) of
Theorem 2.4.10 is in bijection with the set of Dyck paths of length 2n.

Proof. We can assign a Dyck path D of length 2n to the 2n-cycle (1=j0 j1 . . . j2n−1) by
thinking of the entries ji ∈ {1, . . . , n} as ascending steps of the Dyck path D and the entries
ji ∈ {n + 1, . . . , 2n} as descending steps of D. The fact that such an assignment yields the
desired bijection is straightforward.

Theorem 2.5.4. The map ρ ◦ φn,n ◦ ϕ : Un → Pn is a bijection.

Proof. By definition of Pn, it follows that ρ ◦ φn,n ◦ ϕ is surjective. Since |Un| is the n-th
Catalan number, it suffices to show that

|Pn| ≥
1

n+ 1

(
2n

n

)
.

To see this, one can take a 2n-cycle σ = (1 j1 . . . j2n−1) satisfying conditions (1) and (2)
of Theorem 2.4.10, and consider the Dyck path D specified by σ as in Lemma 2.5.3. By
Theorem 2.5.1, the Dyck matrix whose semiorder path is the reverse of D induces a Dyck
positroid with decorated permutation σ. Because the decorated permutation associated to
a positroid is unique, Lemma 2.5.3 guarantees that |Pn| ≥ 1

n+1

(
2n
n

)
. Hence ρ ◦ φn,n ◦ ϕ is

bijective.

Corollary 2.5.5. The number of Dyck positroids on the ground set [2n] equals the n-th
Catalan number.
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Decoding a Dyck Positroid from the Interval Representation of its
Unit Interval Order

We conclude this section by describing how to decode the decorated permutation associated
to the Dyck positroid induced by P directly from its canonical interval representation I.
Labeling the left and right endpoints of the intervals [qi, qi + 1] ∈ I by the signs − and +,
respectively, we obtain a 2n-tuple consisting of pluses and minuses by reading from the real
line the labels of the endpoints of all such intervals. On the other hand, we can have another
plus-minus 2n-tuple if we replace the horizontal and vertical steps of the semiorder path of
A by the signs − and +, respectively, and then read it in southeast direction as indicated in
the following example.

Example 2.5.6. The figure below shows the antiadjacency matrix of the canonically 5-
labeled unit interval order P from Example 2.1.1 and a canonical interval representation
of P , both encoding the plus-minus 10-tuple (−,+,−,−,+,−,+,−,+,+), as described in
the previous paragraph.

Figure 2.10: Dyck matrix and canonical interval representation of P encoding the 10-tuple
(−,+,−,−,+,−,+,−,+,+).

Lemma 2.5.7. Let an = (a1, . . . , a2n) and bn = (b1, . . . , b2n) be the 2n-tuples with entries
in {+,−} obtained by labeling the steps of the semiorder path of A and the endpoints of all
intervals in I, respectively, in the way described above. Then an = bn.

Proof. Let us proceed by induction on the cardinality n of P . When n = 1, both a1 and b1

are equal to (−,+) and so a1 = b1. Suppose now that the statement of the lemma is true
for every canonically n-labeled unit interval order, and assume that P is a unit interval
order canonically labeled by [n + 1] with antiadjacency matrix A and canonical interval
representation I. Set m = |Λn+1| − 1. By Proposition 2.3.2, the poset P \{n + 1} is a unit
interval order canonically labeled by [n]; therefore its associated plus-minus 2n-tuples a′n
and b′n are equal. Observe, in addition, that bn+1 can be recovered from b′n by inserting
the sign − corresponding to the left endpoint of qn+1 (labeled by 2n + 2) in the position
m + n + 1 (there are n left interval endpoints and m right interval endpoints to the left
of qm+1 in I) and adding the sign + corresponding to the right endpoint of qn+1 (labeled
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by 1) at the end. On the other hand, an+1 can be recovered from a′n by inserting the sign −
corresponding to the rightmost horizontal step of the semiorder path of A in the position
m+n+ 1 (there are n horizontal steps and m vertical steps before the last horizontal step of
the semiorder path) and placing the sign + corresponding to the vertical step labeled by 1
in the last position. Hence an+1 = bn+1, and the lemma follows by induction.

As a consequence of Theorem 2.5.1 and Lemma 2.5.7, one obtains a way of reading the
decorated permutation associated to the Dyck positroid induced by P directly from I.

Corollary 2.5.8. Labeling the left and right endpoints of the intervals [qi, qi + 1] by n + i
and n + 1 − i, respectively, we obtain the decorated permutation associated to the positroid
induced by P by reading these 2n labels from right to left on the real line.

Proof. By Lemma 2.5.7, the 2n-tuple resulting from reading the set {1, . . . , 2n} as indicated
in Corollary 2.5.8 equals the 2n-tuple resulting from reading the same set from the semiorder
path of A in northwest direction, as described in Theorem 2.5.1. Hence the corollary follows
immediately from Theorem 2.5.1.

Example 2.5.9. The diagram below illustrates how to label the endpoints of a canonical
interval representation of the 6-labeled unit interval order P shown in Figure 2.1 to obtain
the decorated permutation

π = (1 12 2 3 11 10 4 5 9 6 8 7)

associated to the positroid induced by P by reading such labels from the real line (from right
to left).

Figure 2.11: Decorated permutation π encoded in a canonical interval representation of P .
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2.6 Le-diagrams

The set consisting of all d-dimensional subspaces of Rn, denoted by Grd,n(R), is called the
real Grassmannian. Elements in Grd,n(R) can also be understood as the orbits of the set of

full-rank d×n real matrices under the left action of GLd(R). For A ∈ Matd,n(R) and I ∈
(

[n]
d

)
,

the Plücker coordinate ∆I(A) is the maximal minor of A determined by the column set I.

The embedding Grd,n(R) ↪→ RP(n
d)−1 induced by the map A 7→ (∆I(A)) makes Grd,n(R) a

projective variety. Let GL+
d (R) denote the set of real d× d matrices of positive determinant,

and recall that Mat+
d,n(R) is the set of real d × n matrices of rank d having nonnegative

maximal minors.

Definition 2.6.1. The totally nonnegative Grassmannian, denoted by Gr+
d,n(R), is the set

of orbits of Mat+
d,n(R) under the left action of GL+

d (R), i.e., Gr+
d,n(R) = GL+

d (R)\Mat+
d,n(R).

For a full-rank d × n real matrix A, let M(A) denote the matroid represented by A,
and let [A] denote the element of Grd,n(R) represented by A. The matroid stratification or
Gelfand-Serganova stratification of Grd,n(R) is the collection of all strata

SM := {[A] ∈ Grd,n(R) |M(A) =M},

whereM runs over the set of rank k representable matroids on the ground set [n]. For each
stratum SM, we define a positroid cell in Gr+

d,n(R) by

S+
M = SM ∩Gr+

d,n(R).

Note that a representable matroid M is a positroid precisely when S+
M is nonempty. The

collection of nonempty positroid cells is called the cellular decomposition of Gr+
d,n(R). For

further details, see [127, Sections 2 and 3].

Let us proceed to characterize the Le-diagrams corresponding to Dyck positroids.

Theorem 2.6.2. A L-diagram L of type (n, 2n) parameterizes a Dyck positroid on [2n] if
and only if its shape λ is a square of size n and L satisfies the following two conditions:

(1) every column has exactly one plus except the last one that has n pluses;

(2) the horizontal unit steps right below the bottom-most pluses are the horizontal steps of
a length 2n Dyck path supported on the main diagonal of L.

Proof. Suppose first that L satisfies (1) and (2). To verify that L corresponds to a Dyck
positroid, let us use Lemma 2.2.12 to compute its decorated permutation π and show that π−1

satisfies Proposition 2.4.9. Note that π−1(1) = n+ 1. For i ∈ [2n]\{1}, we find π−1(i).
Assume first that i ∈ {2, . . . , n}. If there is only one plus in the (i−1)-st row of L (which

means that ω(j) 6= i − 1 for each j ∈ J), it follows by Lemma 2.2.12 that π−1(i) = i − 1.
On the other hand (i.e., there is exactly one principal element j in ω−1(i− 1)), one obtains
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that π−1(i) is the label of the first column (from right to left) of L having a plus in the
(i− 1)-st row (which means π−1(i) = j).

Assume now that i ∈ {n + 1, . . . , 2n}. If the bottom-most plus in the column of L
labeled by i is the last plus from right to left in its row, which is labeled by ω(i), then by
Lemma 2.2.12 it follows that π−1(i) = ω(i) (note, in this case, that i = 2n or i + 1 is a
principal index). On the other hand, the columns of L labeled by i and i + 1 are identical
(i.e., i+ 1 is not a principal index), and Lemma 2.2.12 yields π−1(i) = i+ 1.

Thus, π−1 is as described in Proposition 2.4.9, and so π is the decorated permutation of a
Dyck positroid on the ground set [2n]. As the number of L-diagrams satisfying the conditions
above and the number of decorated permutations corresponding to Dyck positroids on the
ground set [2n] are equal to the n-th Catalan number, the proof follows.

As a result of Theorem 2.6.2, each Dyck positroid cell in Gr+
k,n(R) can be indexed by a

L-diagrams described in the same theorem. Postnikov proved that the positroid cell indexed
by a L-diagram L has dimension equal to the number of pluses of L [127, Theorem 4.6]. This
immediately implies the following corollary.

Corollary 2.6.3. The positroid cell of a Dyck positroid on the ground set [2n] inside the cell
decomposition of Grn,2n(R) has dimension 2n− 1.

The next example illustrates the characterization established in Theorem 2.6.2.

Example 2.6.4. Figure 2.12 shows the L-diagram corresponding to the positroid induced
by the unit interval order displayed in Figure 2.1.

Figure 2.12: A Le-diagram of a Dyck positroid.
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2.7 Adjacency of Dyck Positroid Cells

Given a decorated permutation π on n letters, its chord diagram is constructed in the fol-
lowing way. First, place n points labeled by [n] in clockwise order around a circle. For all
i, j ∈ [n] with i 6= j and π(i) = j, draw a directed chord from i to j. If π fixes i, then draw
a directed chord from i to i, oriented counterclockwise if and only if π(i) = i. For i, j ∈ [n],
let Arc(i, j) denote the set of points in the boundary circle of the chord diagram from i to j
(both included) in clockwise order. Figure 2.13 shows an example of a chord diagram.

Figure 2.13: Chord diagram of the decorated permutation in Example 2.1.1.

Let AD and CB be two chords in the chord diagram of a decorated permutation π. We
say that AD and CB form a crossing if they intersect inside the circle or on its boundary,
and this crossing is simple if there are no other chords from Arc(C,A) to Arc(B,D). The
left diagram in Figure 2.14 shows a simple crossing. On the other hand, two chords AB
and CD form an alignment if they do not intersect and have a parallel orientation as shown
in the right diagram of Figure 2.14. Notice that if A and B coincided in the right diagram
below, then in order for AB and CD to have parallel orientation AB must be a loop oriented
counterclockwise. An alignment, as shown in the right side of the picture below, is said to
be simple if there are no other chords from Arc(C,A) to Arc(B,D).

Figure 2.14: A simple crossing on the left and a simple alignment on the right.

Let π1 and π2 be two decorated permutations of the same size n. We say that π1 covers π2,
and write π1 → π2, if the chord diagram of π2 is obtained by turning a simple crossing of π1

into a simple alignment. This is depicted in Figure 2.15.
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Figure 2.15: A covering relation.

If the points A and B happen to coincide, then the chord from A to B in the chord
diagram of π2 degenerates to a counterclockwise loop. Similarly, if the points C and D
coincide, then the chord from C to D in the chord diagram of π2 becomes a clockwise loop.
Finally, if A = B or C = D, then the loops at A and C in the chord diagram of π2 must
be counterclockwise and clockwise, respectively. These three types of covering relations,
illustrated in Figure 2.16, are said to be degenerate.

Figure 2.16: The three degenerate covering relations.
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Two positroid cells are adjacent if the decorated permutation parameterizing them cover
a common decorated permutation. Here is a necessary and sufficient condition for two Dyck
positroid cells to be adjacent.

Proposition 2.7.1. Let P1 and P2 be two distinct rank n Dyck positroids and π1 and π2 their
respective decorated permutations. Then P1 and P2 label adjacent positroid cells if and only
if there exists i ∈ [2n]\{1, n + 1} such that when i is removed from the cycle decomposition
of π1 and π2 the resulting cycles are equal.

Proof. Let C1 and C2 be the chord diagrams of π1 and π2, respectively. Assume first that
P1 and P2 label adjacent positroid cells whose decorated permutations both cover a permu-
tation π. Let C denote the chord diagram of π. Theorem 2.4.10 ensures that C1 and C2

have a directed edge from n + 1 to 1 and their non-degenerate simple crossings occur only
along this edge. Unlike non-degenerate coverings, degenerate coverings increase the number
of fixed points; therefore π1 → π is a degenerate covering relation if and only if so is π2 → π.
If π1 → π and π2 → π were both non-degenerate coverings, then the fact that both covering
relations uncross the chord from n+1 to 1 would imply that both π1 and π2 can be uniquely
recovered from π, as the other chord being uncrossed in both covering relations must be the
chord from π−1(1) to π(n + 1). This, in turn, would contradict that π1 6= π2. As a result,
both π1 → π and π2 → π are degenerate coverings. As π1 and π2 are 2n-cycles, π fixes
exactly one element i ∈ [2n]\{1, n + 1}. Moreover, π is the result of removing i from the
cycle decomposition of any of the permutations π1 or π2.

Conversely, suppose that for some i ∈ [2n]\{1, n + 1}, removing i from the cycle de-
composition of either π1 or π2 produces the same (2n − 1)-cycle π. In this case, π1 → π
and π2 → π are degenerate covering relations. Hence π1 and π2 are adjacent and the proof
follows.

Example 2.7.2. There are a total of five Dyck positroids on the ground set [6]. Let π1, . . . , π5

be their five corresponding decorated permutations. These permutations are illustrated in
the top row of Figure 2.17 via their chord diagrams. The bottom row of the same figure shows
the chord diagrams of four of the decorated permutations covered by the πi’s. Although there
are more than four decorated permutations covered by the πi’s, those depicted at the bottom
of Figure 2.17 are enough to obtain all possible adjacency relations between the positroid
cells parameterized by the πi’s. The exterior long arrows in Figure 2.17 represent covering
relations.

It was proved in [127] that if π1 and π2 are two decorated permutations such that π1 → π2,
then they both have the same number of weak excedances. Thus, the set of all decorated
permutations of [2n] having n excedances can be regarded as a poset with order given by
the transitive closure of the covering relation “→”; this poset is called the cyclic Bruhat
order and is denoted by CBn,2n. Given that the adjacency relations of Dyck positroid cells
can be described so nicely, we believe the subposet of CBn,2n consisting of those decorated
permutations representing positroids in the closures of Dyck positroid cells of Gr+

n,2n(R) may
have an interesting description. Here we propose a problem stemming from Proposition 2.7.1.
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Figure 2.17: Subposet of CB3,6 illustrating the adjacency relations among the Dyck positroid
cells of dimension 5.

Problem 2.7.3. Describe the subposet of CBn,2n consisting of those decorated permutations
representing positroids in the closures of Dyck positroid cells of Gr+

n,2n(R).

2.8 An Interpretation of the f-vector of a Unit

Interval Order

In hopes of a more thorough understanding of the f -vectors of (3 + 1)-free posets, Skandera
and Reed in [134] posed the following open problem: characterize the f -vectors of unit
interval orders. With this goal in mind, we provide a combinatorial interpretation for the
f -vector of a naturally labeled poset in terms of its antiadjacency matrix. Throughout this
section, P is assumed to be a naturally labeled poset of cardinality n with antiadjacency
matrix AP = (ai,j).

Definition 2.8.1. The f -vector of P is the sequence f = (f0, f1, . . . , fn−1), where fk is the
number of (k + 1)-element chains of P .
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We wish to interpret the k-element chains of P in terms of some special Dyck paths
inside AP . To do this, define a valley Dyck path of AP to be a Dyck path drawn inside AP
that has its endpoints and all its valleys on the main diagonal and all its peaks in positions
(i, j) such that ai,j = 0. Figure 2.18 illustrates a valley Dyck path with three peaks.

Figure 2.18: A valley Dyck path with three peaks inside the antiadjacency matrix of the
poset displayed in Figure 2.19.

Proposition 2.8.2. The entries of the f -vector of P are f0 = n and fk equals the number
of valley Dyck paths of AP having exactly k peaks.

Proof. To each (k + 1)-element chain c : i1 <P · · · <P ik+1 we can assign a valley Dyck
path vc with k peaks as follows: the j-th peak begins at (ij, ij), heads east to (ij, ij+1), and
then heads south to (ij+1, ij+1). To see that vc is a valley Dyck path, it suffices to notice that
every peak of vc occurs at a zero entry of AP since ij <P ij+1 for each j = 1, . . . , k. On the
other hand, suppose that v is a valley Dyck path with k peaks, namely (i1, i

′
1), . . . , (ik, i

′
k).

Then every valley of v is supported on the main diagonal, which means that i′j = ij+1 for each
j = 1, . . . , k. Setting ik+1 = i′k, we obtain that v = vc, where c is the (k + 1)-element chain
i1 <P · · · <P ik+1. Thus, we have established a bijection that yields the desired result.

Remark 2.8.3. Proposition 2.8.2 provides, in particular, an interpretation of the f -vector
of any unit interval order. Given that a unit interval order can be labeled so that its
antiadjacency matrix is a Dyck matrix, we think that the interpretation of the f -vector in
Proposition 2.8.2 might be useful to find an explicit formula for the fk’s. This is because
zero and one entries in a Dyck matrix are nicely separated, which could facilitate counting
the valley Dyck paths having exactly k peaks.

Example 2.8.4. Let P be the naturally labeled poset on the set [6] whose Hasse dia-
gram is illustrated in Figure 2.19. It can be readily verified that the f -vector of P is
f =

(
6, 9, 4, 1, 0, 0

)
. Valley Dyck paths realized on AP with one, two, and three peaks are

illustrated in Figure 2.20.
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Figure 2.19: Naturally 6-labeled poset.

Figure 2.20: From left to right, antiadjacency matrices of the poset P illustrating valley
Dyck paths with three peaks, two peaks, and one peak.

Problem 2.8.5. Given an n× n Dyck matrix A, let ri be the number of one entries in the
i-th row of A. For k ∈ [n− 1], can we find, in terms of the ri’s, an explicit formula for the
number of valley Dyck paths of A containing exactly k peaks?
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Chapter 3

Positroids Induced by Rational Dyck
Paths

3.1 Introduction

The main purpose of this chapter is to extend the characterization of the decorated per-
mutation corresponding to a Dyck positroid to a more general characterization comprising
all the rational Dyck positroids. In addition, in this section we provide descriptions of the
Grassmann necklace and the plabic graphs of any rational Dyck positroid. Then we study
the classes of plabic graphs parameterizing rational Dyck positroids and provide a recipe to
construct them from the rational Dyck path encoded in the decorated permutation corre-
sponding to the rational Dyck positroid. Finally, we provide a description of the matroid
polytope of a rational Dyck positroid.

3.2 Rational Dyck Positroids

In this section we generalize the characterizations of the decorated permutation and the
Le-diagram of a Dyck positroid that we established in the previous chapter. First, let us
introduce the following notation.

Notation: We denote by Pd,m the set of all rank d rational Dyck positroids on the ground
set [d+m].

Back to Decorated Permutations

For D ∈ Dd,m, set A = (ai,j) = φd,m(D). Let P be the positroid represented by A, and
let π be the decorated permutation corresponding to P . Let us proceed to generalize the
definition of principal indices and the weight map given in the previous chapter. Define the
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set of principal indices IA of A to be

IA = {i ∈ {d+ 1, . . . , d+m} | Ai 6= Ai−1},

where Ai denotes the i-th column of A. In addition, we associate to the matrix A the weight
map ωA : [d+m]→ [d] defined by

ωA(j) = max{i | ai,j 6= 0}

(notice that there is at least a nonzero entry in each column of A). For d+ 1 ≤ j ≤ d+m,
we observe that the number of nonzero entries in the column Aj is precisely ωA(j).

Observe now that if we remove one column from A the resulting matrix still has rank d.
Thus, for each i ∈ [d+m] the i-th entry of the Grassmann necklace corresponding to P does
not contain i − 1. As a result, π has no fixed points, which implies that it is a standard
permutation. The next proposition, whose proof follows mutatis mutandis from that one of
Proposition 2.4.9, gives an explicit description of the inverse of π.

Lemma 3.2.1. (cf. [50, Proposition 4.3]) If A, IA, ωA, and π are defined as before, then for
each i ∈ [d+m],

π−1(i) =


i+ 1 if d < i < d+m and i+ 1 /∈ IA
ωA(i) if d < i and either i = d+m or i+ 1 ∈ IA
d+ 1 if i = 1,
i− 1 if 1 < i ≤ d and ωA(j) 6= i− 1 for all j ∈ IA
j if 1 < i ≤ d and {j} = IA ∩ ω−1

A (i− 1).

The disjoint cycle decomposition of π consists of only one full cycle, as the following
proposition illustrates.

Proposition 3.2.2. The decorated permutation π of a rank d rational Dyck positroid on the
ground set [d+m] is a (d+m)-cycle. Moreover, the set of weak excedances of π is [d].

Proof. Let P be a rational Dyck positroid with decorated permutation π, and let A be
the matrix in φd,m(Dd,m) representing P . It follows from Lemma 3.2.1 that ωA(i) ≤ ωA(j)
provided that π(i) = j and j 6= 1. Let σ be a nontrivial cycle of length ` in the disjoint cycle
decomposition of π. Notice that σ cannot fix 1; otherwise, for i ∈ [d+m] such that σ(i) 6= i
we would obtain σj(i) 6= d+ 1 for j = 1, . . . , ` and so

ωA(i) ≤ ωA(σ(i)) ≤ · · · ≤ ωA(σ`(i)) = ωA(i),

contradicting the fact that σ is nontrivial. Therefore π is a (d+m)-cycle.
Now let us proceed to show that the set of weak excedances of π is precisely [d]. To do

this, write
π−1 = (d+ 1 π−1(d+ 1) . . . (π−1)d+m−2(d+ 1) 1).
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As the map ωA fixes each element of [d], the fact that ωA(i) ≤ ωA(j) whenever π−1(j) = i
and j 6= 1 ensures that the sequence

(π−1(d+ 1), . . . , (π−1)d+m−2(d+ 1))

contains the elements 2, . . . , d in decreasing order. On the other hand, the fact that ωA is
strictly decreasing on IA guarantees that the sequence

(π−1(d+ 1), . . . , (π−1)d+m−2(d+ 1))

contains the elements d+ 2, . . . , d+m in increasing order. Since π does not fix any element,
its weak excedances are those j ∈ [d + m] such that j < π(j). Because the elements of [d]
are the d smallest elements in [d+m] and show increasingly in

π = (1 π(1) . . . πd+m−1(1)),

each element of [d] is a weak excedance of π. Besides, no element greater than d can be a
weak excedance of π as d + 1, . . . , d + m show decreasingly in π = (1 π(1) . . . πd+m−1(1)).
Hence [d] is the set of weak excedances of π.

We shall proceed to verify that rational Dyck positroids are connected matroids. First,
let us formally introduce the notion of connectedness in the context of matroids. We shall
investigate this concept in Chapter 5 for another class of matroids.

Definition 3.2.3. A matroid (E,B) is said to be connected if for every b, b′ ∈ E there exist
B,B′ ∈ B such that B′ = (B \ {b}) ∪ {b′}.

It follows from [17, Corollary 7.9] that a positroid on [n] is connected if and only if its
corresponding decorated permutation does not stabilize any proper cyclic interval of [n].
Hence the following result is an immediate consequence of Proposition 3.2.2.

Corollary 3.2.4. Every rational Dyck positroid is connected.

Before proving the main theorem of this section, let us collect the next technical result.

Lemma 3.2.5. If A ∈ φd,m(Dd,m), then for each j ∈ {d + 1, . . . , d + m} the following
inequality holds:

ωA(j) ≥ d

m
(d+m− j + 1).

Proof. Let A = (Id | A′), and place A into R2 in such a way that the rational Dyck path d of
type (m, d) separating the zero and nonzero entries of A′ goes from T = (0, 0) to R = (m, d).
Let S = (0, d) and let S ′ and T ′ be the intersection of the vertical line passing through
the right endpoint of the (j − d)-th horizontal step of d with the segments SR and TR,
respectively. This description is illustrated in Figure 3.1.
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Figure 3.1: Illustration of the geometric inequality of Lemma 3.2.5.

If x is the length of the segment S ′T ′, then the similarity of the triangles RST and RS ′T ′

implies that
x

d
=
d+m− j

m
.

As the rational Dyck path d never goes above the diagonal line y = (d/m)x, we obtain that

ωA(j) ≥ x+
d

m
=

d

m
(d+m− j + 1),

and the lemma follows.

Theorem 3.2.6. There is a bijection between the set of rational Dyck paths of type (m, d)
and the set of rank d rational Dyck positroids on the ground set [d+m].

Proof. Identify the set of rational Dyck paths of type (m, d) with Dd,m. Let α : Dd,m → Pd,m
be the map assigning to each rational Dyck path of type (m, d) its corresponding rational
Dyck positroid via the map φd,m in Lemma 2.4.3. We will find a map β : Pd,m → Dd,m
which is a left inverse of α. Let P be a positroid in Pd,m with corresponding decorated
permutation π such that π−1 = (i1 . . . id+m), where i1 = d + 1. Define β(P ) to be the
lattice path (s1, . . . , sd+m) where sj = (1, 0) if ij ∈ {d + 1, . . . , d + m} and sj = (0, 1) if
ij ∈ [d]. Showing that β is well defined, i.e., that β(P ) is a rational Dyck path, will be the
fundamental part of this proof.

Let P be as in the previous paragraph, and let A ∈ φd,m(Dd,m) be a matrix representing P .
For j = 1, . . . , d+m, set

Sj = s1 + · · ·+ sj,

and take `j to be the slope of the line determined by the points (0, 0) and Sj. As β(P )
consists of d vertical unit steps and m horizontal unit steps, it is a lattice path from (0, 0)
to (m, d). Suppose, by way of contradiction, that β(P ) is not a rational Dyck path. Then
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there exists a minimum n ∈ [d + m − 1] such that `n > d/m. The minimality of n implies
that sn = (0, 1). Take

k = max{j ∈ [d+m] | j ≥ n and sj′ = (0, 1) for all n ≤ j′ ≤ j}.

As sk = (0, 1) and the elements labeling vertical steps of β(P ), namely 1, . . . , d, show decreas-
ingly in (i1, . . . , id+m), the number of vertical steps in {s1, . . . , sk} is d− ik + 1. In addition,
as sk+1 = (1, 0) and the elements labeling horizontal steps, namely d + 1, . . . , d + m, show
increasingly in (i1, . . . , id+m), there are ik+1 − d − 1 = π−1(ik) − d − 1 horizontal steps in
{s1, . . . , sk}. The fact that `n ≤ `k now implies

d

m
< `k =

d− ik + 1

π−1(ik)− d− 1
. (3.1)

After applying some algebraic manipulations to the inequality (3.1), one finds that

d

m

(
d+m− π−1(ik) + 1

)
> ik − 1. (3.2)

Since sk+1 = (1, 0) and ik+1 = π−1(ik), we have d+1 ≤ π−1(ik) ≤ d+m; thus, an application
of Lemma 3.2.5 yields

ωA(π−1(ik)) ≥
d

m

(
d+m− π−1(ik) + 1

)
. (3.3)

On the other hand, the fact that ik ∈ [d], along with Lemma 3.2.1, implies that

ik = ωA(ik) = ωA(π−1(ik)) + 1. (3.4)

Now we combine (3.2), (3.3), and (3.4) to obtain

ik − 1 = ωA(π−1(ik)) ≥
d

m

(
d+m− π−1(ik) + 1

)
> ik − 1,

which is a contradiction. Hence β(P ) is indeed a rational Dyck path and, therefore, β is a
well-defined function.

To verify that β is a left inverse of α, take

d = (d1, . . . , dd+m) ∈ {(1, 0), (0, 1)}d+m

to be a rational Dyck path in Dd,m such that α(d) = P , and set

d′ = β(P ) = (d′1, . . . , d
′
d+m).

As before, let π−1 = (i1 . . . id+m), where i1 = d + 1. Let us verify that d′ = d. Suppose
inductively that d′j = dj for each j ∈ [d+m−1] (notice that d′1 = d1 = (1, 0)). As j < d+m,
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it follows that ij 6= 1. Assume first that dj = (1, 0), which means that ij ∈ {d+1, . . . , d+m}.
If π−1(ij) = ij + 1, then dj+1 is also a horizontal step by Lemma 3.2.1. Also, the fact that

ij+1 = ij + 1 ∈ {d+ 1, . . . , d+m}

guarantees that d′j+1 is a horizontal step too. On the other hand, if π−1(ij) 6= ij + 1 (which
means that π−1(ij) = ωA(ij)), then dj+1 is vertical by Lemma 3.2.1. In addition,

π−1(ij) = ωA(ij) ≤ d

implies that d′j+1 is also a vertical step. Hence d′j+1 = dj+1. In a similar fashion the reader
can verify that d′j+1 = dj+1 when dj = (0, 1). The fact that α has a left inverse function,
along with |Dd,m| ≥ |Pd,m|, yields that α is a bijection.

Corollary 3.2.7. The number of rank d rational Dyck positroids on the ground set [d+m]
equals the rational Catalan number Cat(m, d). In particular, there are

1

d+m

(
d+m

d

)
rank d rational Dyck positroids on the ground set [d+m] when gcd(d,m) = 1.

The following proposition provides a very straightforward recipe to compute the decorated
permutation of a given rational Dyck positroid directly from its corresponding rational Dyck
path. We will omit the proof as it follows with no substantial changes from the proof of [50,
Proposition 5.1].

Proposition 3.2.8. Let d be a rational Dyck path of type (m, d). Labeling the d vertical steps
of d from top to bottom in increasing order with 1, . . . , d and the m horizontal steps from left
to right in increasing order with d+ 1, . . . , d+m, we obtain the decorated permutation of the
rational Dyck positroid induced by d by reading the step labels of d in southwest direction.

Example 3.2.9. Let P be the rational Dyck positroid induced by the rational Dyck path d
of type (8, 5) illustrated in Figure 3.2. The path d is labeled as indicated in Proposition 3.2.8.
Therefore the decorated permutation of P is

π = (1 2 13 12 3 11 10 4 9 5 8 7 6),

which is obtained by reading the labels of d in southwest direction.
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Figure 3.2: A rational Dyck path of type (8, 5) encoding the decorated permutation of the
rational Dyck positroid it induces.

Back to Le-diagrams

Now that we have characterized the decorated permutation of every rational Dyck positroid,
we are in a good position to generalize the characterization of L-diagrams we gave in Sec-
tion 2.6.

We have seen in Proposition 3.2.2 that the decorated permutation of a rank d rational
Dyck positroid on the ground set [d + m] has [d] as its set of weak excedances. Thus, the

L-diagram of a rational Dyck positroid has a rectangular shape, namely md. The next de-
scription, which gives a complete characterization of the L-diagrams parameterizing rational
Dyck positroids, has been proved in [50] for the case d = m. However, the argument for
proving the general case is basically a reproduction of the case d = m and, therefore, we
decided to omit it.

Proposition 3.2.10. A L-diagram L of type (d, d + m) corresponds to a rank d rational
Dyck positroid on the ground set [d+m] if and only if its shape λ is the full d×m rectangle
and L satisfies the following two conditions:

(1) every column has exactly one plus except the last one that has d pluses;

(2) the horizontal unit steps right below the bottom-most plus of each column are the
horizontal steps of a horizontally-reflected rational Dyck path of type (m, d) (see Fig-
ure 2.6).

Corollary 3.2.11. The positroid cell parameterized by a rank d rational Dyck positroid on
the ground set [d + m] inside the corresponding Grassmannian cell complex has dimension
d+m− 1.

Example 3.2.12. Let P be the rank 5 rational Dyck positroid on the ground set [13] having
decorated permutation

π = (1 2 13 12 3 11 10 4 9 5 8 7 6).
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The Le-diagram of P and the corresponding pipe dream giving rise to the decorated permu-
tation π is the one shown in Figure 2.6 in the previous chapter.

3.3 Grassmann Necklaces

Let us proceed to describe the Grassmann necklaces corresponding to rational Dyck positroids.
We will use this description in Section 3.5 to describe the matroid polytopes of rational Dyck
positroids.

Proposition 3.3.1. Let P be a rational Dyck positroid represented by A ∈ φd,m(Dd,m), and
let

IA = {p1 < · · · < pt}

and
EA = {q1, . . . , qu} = [d]\{ωA(i) | d < i ≤ d+m}.

The Grassmann necklace I(P ) = (I1, . . . , Id+m) of P , where Ij = (aj1, . . . , a
j
d), is character-

ized as follows.

(1) I1 = (1, 2, . . . , d).

(2) If j ∈ [d]\{1} and (d − j + 1) + |{pi | ωA(pi) < j − 1}| ≥ d, then aji = j + i − 1
for i = 1, . . . , d − j + 2, while ajd−j+2+i = ps+i for s = max{k | ωA(k) ≥ j − 1} and
i = 1, . . . , j − 2.

(3) If j ∈ [d]\{1} and (d − j + 1) + |{pi | ωA(pi) < j − 1}| < d, then aji = j + i − 1
for i = 1, . . . , d − j + 2, while ajd−j+2+i = ps+i for s = max{k | ωA(k) ≥ j − 1} and

i = 1, . . . , t− s; also, ajd−j+2+i = qi−(t−s) for i = t− s+ 1, . . . , j − 2.

(4) If j ∈ {d + 1, . . . , d + m}, then aj1 = j and aji = ps+i−1 for s = max{k | pk ≤ j} and
i = 2, . . . , t− s+ 1 while aji = qi−(t−s+1) for i = t− s+ 2, . . . , d+m.

Proof. The statement (1) is straightforward. Let us check (2). The lexicographical minimal-
ity of Ij with respect to the order ≤j implies that aji = j+ i−1 for i = 1, . . . , d− j+1 as the
set {Aj, . . . , Ad} consists of d−j+1 distinct canonical vectors and so is linearly independent.
Also, Ad+1 /∈ span(Aj, . . . , Ad), yielding ajd−j+2 = d+ 1. Since

(d− j + 1) + |{pi | ωA(pi) < j − 1}| ≥ d,

there are enough vectors in {Api | 2 ≤ i ≤ t} to complete the basis Ij. Here let us make
two observations. If ωA(pi) ≥ j − 1, then Api is a linear combination of the columns already
chosen. As Ai = Apj when pj ≤ i < pj+1, the minimality of Ij forces us to complete the basis
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taking indices in IA. Hence completing Ij amounts to collecting the j − 2 minimal elements
in IA indexing columns with weights less than j − 1.

Notice that the first part of (3) follows similarly to (2); therefore it suffices to argue that
ajd−j+2+i = qi−(t−s) for i = t − s + 1, . . . , j − 2. To do so we should take in a minimal way
some vectors from {A1, . . . , Ad} to complete Ij; it suffices to take the first j+s− t−2 indices
of [d] which are not in the set {ωA(aji ) | 1 ≤ i ≤ (d− j + 2) + (t− s)}. Those are precisely
the first j + s− t− 2 smallest elements of EA.

Finally, let us verify (4). Since every column of A is different from the zero vector,
aj1 = j. The fact that aji = ps+i−1 when i = 2, . . . , t− s + 1 is an immediate consequence of
the minimality of Ij; this is because equal columns of A are located consecutively and, for
each i ∈ [t], the column Api is located all the way to the left in the block of identical columns
it belongs. The equalities ajd−j+2+i = qi−(t−s) can be argued in the same manner we did in
the previous paragraph.

3.4 Plabic Graphs

Let us now proceed to characterize the move-equivalence classes of plabic graphs (up to
homotopy) corresponding to rational Dyck positroids.

Definition 3.4.1. A plabic graph is an undirected finite graph G drawn inside a closed disk
D (up to homotopy) satisfying the following two conditions:

(1) Every vertex of G in the interior of D is colored either black or white.

(2) Every vertex of G on the boundary of D is incident to a single edge.

With notation as in the above definition, the vertices in the interior of D are called
internal vertices of G while the vertices on the boundary of D are called boundary vertices
of G. In the context of this chapter, the boundary vertices of G are labeled clockwise starting
by 1. Also, every plabic graph here is assumed to be leafless (i.e., there are no internal
vertices of degree one) and without isolated components (i.e., every connected component
must contain at least one boundary vertex). For the rest of this section, let G denote a
plabic graph with n boundary vertices.

A perfect orientation O of G is a choice of directions for every edge of G in such a way
that black vertices have outdegree one and white vertices have indegree one. If G admits a
perfect orientation O, we call G perfectly orientable and let GO denote the directed graph
on G determined by O. A boundary vertex v of an oriented plabic graph GO is a source
(resp., sink) if v has indegree (resp., outdegree) zero. The set of boundary vertices that are
sources (resp., sinks) of GO is denoted by IO (resp., ĪO). It is known that any two perfect
orientations of the same plabic graph G have source sets of the same size

d :=
1

2

(
n+

∑
v black

(
deg(v)− 2

)
+
∑
v white

(
2− deg(v)

))
. (3.5)
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The type of G is defined to be (d, n). See [127] for more details.

Example 3.4.2. Figure 3.3 shows an oriented plabic graph GO. Here the source set of GO
is IO = {1, 5, 6, 8, 10} and the sink set of GO is ĪO = {2, 3, 4, 7, 9, 11, 12}. Therefore G has
type (5, 12).

Figure 3.3: A plabic graph with a perfect orientation.

The next local transformations will partition the set of plabic graphs into equivalence
classes. We will see later that such a set of equivalence classes is in one-to-one correspondence
with the set of positroids.

(M1) Square move: If G has a square consisting of four trivalent vertices whose colors
alternate, then the colors of these four vertices can be simultaneously switched. This local
transformation is illustrated in Figure 3.4.

Figure 3.4: Local transformation M1.

(M2) Unicolored edge contraction/uncontraction: If G contains two adjacent vertices
of the same color, then any edge joining these two vertices can be contracted into a single
vertex with the same color of the two initial vertices. Conversely, a given vertex of G can be
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Figure 3.5: Local transformation M2.

uncontracted into an edge joining vertices of the same color as the given vertex. This local
transformation is illustrated in Figure 3.5.

(M3) Middle vertex insertion/removal: If G contains a vertex of degree 2, then this
vertex can be removed and its incident edges can be glued together. Conversely, a vertex
(of any color) can be inserted in the middle of any edge of G. This local transformation is
illustrated in Figure 3.6.

Figure 3.6: Local transformation M3.

(R1) Parallel edge reduction: If G contains two trivalent vertices of different colors
connected by a pair of parallel edges, then these vertices and edges can be deleted, and
the remaining two edges can be glued together. This local transformation is illustrated in
Figure 3.7.

Figure 3.7: Local transformation R1.

Two plabic graphs are called move-equivalent if they can be obtained from each other by
applying the local transformations (M1), (M2), and (M3); this defines an equivalence relation
on the set of plabic graphs. A leafless plabic graph G without isolated components is said
to be reduced if the local transformation (R1) cannot be applied to any plabic graph in the
move-equivalence class of G. Any reduced plabic graph is known to be perfectly orientable.

Let G be a reduced plabic graph as above with boundary vertices 1, . . . , n. The trip
from i is the path obtained by starting from i and traveling along edges of G according to
the rule that each time we reach an internal white vertex we turn right, and each time we
reach an internal black vertex we turn left (this rule is also known as ”the rule of the road”).
This trip ends at some boundary vertex π(i). If the starting and ending points of the trip
are the same vertex j, we set the color of the fixed point π(j) = j to match the orientation of
the trip (clockwise or counterclockwise.) In this way we associate a decorated permutation
πG = (π(1), . . . , π(n)) to each reduced plabic graph G.

Definition 3.4.3. For a plabic graph G, the trip πG described above is called the decorated
trip permutation of G.
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Example 3.4.4. Figure 3.8 shows the plabic graph introduced in Example 3.4.2 with a di-
rected path shadowed. This path represents the trip obtained by starting from the boundary
vertex labeled by 3 and following the rule of the road. As a result, if πG is the decorated
trip permutation of G, then πG(3) = 10.

Figure 3.8: A plabic graph G showing a trip from 3 to 10 (following the rule of the road)
corresponding to πG(3) = 10, where πG is the decorated trip permutation of G.

Theorem 3.4.5. [127, Theorem 13.4] Two reduced plabic graphs are move-equivalent if and
only if they have the same decorated trip permutation.

As Grassmann necklaces, decorated permutations, and L-diagrams, move-equivalence
classes of plabic graphs of type (d, n) also parameterize rank d positroids on the ground
set [n].

Proposition 3.4.6. [127, Section 11] For each pair of positive integers d and n with d ≤ n
the assignment G 7→ PG = ([n],BG), where

BG = {IO | O is a perfect orientation of G},

is a one-to-one correspondence between move-equivalence classes of perfectly orientable plabic
graphs of type (d, n) and rank d positroids on the ground set [n].

Example 3.4.7. Let P be the rank 5 positroid on the ground set [12] whose L-diagram and
decorated permutation were introduced in Example 2.2.11. The plabic graph illustrated in
Figure 3.3 is an oriented plabic graph corresponding to P . The perfect orientation O, also
illustrated in Figure 3.3 gives the basis

IO = {1, 5, 6, 8, 10}
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of P . We have seen before that the decorated permutation π corresponding to P can be
written in disjoint cycle decomposition as follows:

π = (1 12 9 2)(3 10 11 7)(4 5)(6 8).

In particular, π(3) = 10, which is indicated by the directed path from 3 to 10 highlighted in
Figure 3.8.

We conclude this section characterizing the plabic graphs corresponding to rational Dyck
positroids.

Proposition 3.4.8. A rational Dyck path d of type (m, d) induces a reduced plabic graph Gd

of type (d, d+m) as follows:

(1) Draw a circle with (0, 0) and (m, d) diametrically opposed, and draw a black (resp.,
white) vertex in the middle of each vertical (resp., horizontal) step of d.

(2) Draw a horizontal segment from each black vertex to the circle (going east) and label
the intersections by 1, . . . , d (clockwise). Similarly, draw a vertical segment from each
white vertex to the circle (going north) and label the intersections by d+ 1, . . . , d+m
(clockwise).

(3) Finally, join consecutive internal vertices in d by segments and ignore the initial ra-
tional Dyck path d (see Figure 3.9).

Proof. It follows immediately that the given recipe yields a plabic graph with d+m boundary
vertices. To find the type of Gd, notice that all internal vertices have degree 3, except the
first internal white vertex and the last internal black vertex on d (in northeast direction)
which have degree 2. Therefore, using the formula (3.5), one obtains

1

2

(
n+

∑
v black

(
deg(v)− 2

)
+
∑
v white

(
2− deg(v)

))
=

1

2

(
d+m+ (d− 1)− (m− 1)

)
= d.

Thus, the type of Gd is (d, d+m).
Let us verify now that the graphs in the move-equivalence class of plabic graphs of a

rational Dyck positroid are trees. Let G be a plabic graph representing a rational Dyck
positroid P of type (d, d + m), and let us check that G is a tree. As any two graphs in the
same move-equivalence class of plabic graphs corresponding to P are homotopic, it suffices
to assume that G is the representative described by the three steps in the statement of the
proposition. Suppose, by way of contradiction, that G is not a tree, meaning that it has a
cycle consisting of the vertices v1, . . . , vk for some k ≥ 2. Because every boundary vertex
has degree one, each vi must be an internal vertex. It immediately follows from the three
steps described above that each internal vertex is connected to exactly one boundary vertex,
which implies that deg(vi) ≥ 3 for each i = 1, . . . , k. It is also clear from the three steps
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above that every vertex of G has degree at most 3. Thus, deg(vi) = 3 for each i = 1, . . . , k.
As G is connected the set of internal vertices of G is {v1, . . . , vk}, contradicting the fact
that G has internal vertices of degree 2, for instance, the black internal vertex adjacent to
the boundary vertex 1.

The fact that no graph in the move-equivalence class of the plabic graph described in the
three steps of the proposition has an internal cycle immediately implies that (R1) cannot be
applied to any of such graphs. Hence the plabic graph we have described in the statement
of the proposition must be reduced.

Corollary 3.4.9. The graphs in the move-equivalence class of plabic graphs of a rational
Dyck positroid are trees.

Theorem 3.4.10. A rank d positroid on the ground set [d+m] is a rational Dyck positroid if
and only if it can be represented by one of the plabic graphs Gd described in Proposition 3.4.8.

Proof. Let us prove first that for every rational Dyck path d of type (m, d), the plabic
graph Gd represents a rational Dyck positroid. To do this we will show that the decorated
trip permutation πG of Gd is precisely the decorated permutation πd = (1 j2 . . . jd+m) of the
rational Dyck positroid P induced by d. Note that, if we label the internal vertices of Gd,
which lie on d, as in Proposition 3.2.8, then the endpoints of each edge of Gd incident to the
boundary have the same label.

First, we suppose that for n < d + m the n-th step (going southwest) of d, which is
labeled by jn, is vertical. If the (n + 1)-th step of d is also vertical, then πG(jn) = jn+1 as
there is a path in Gd from jn to jn+1 following the rules of the road, namely the path going
from the boundary vertex jn west to the black internal vertex in the middle of the n-th step
of d, turning left to the black internal vertex in the middle of the (n + 1)-th step of d, and
turning left to the boundary vertex jn+1. On the other hand, if the (n + 1)-th step of d is
horizontal, then there is also a path from jn to jn+1 following the rules of the road, namely
the one going from the boundary vertex jn to the black internal vertex in the middle of
the n-th step of d, turning left to the white internal vertex in the middle of the (n + 1)-th
step of d, and turning right to the boundary vertex jn+1, yielding again πG(jn) = jn+1. In
a similar way we can argue that πG(jn) = jn+1 when the n-th step of d is horizontal; the
verification is left to the reader.

Also notice that the path in Gd starting at the boundary vertex labeled by d + 1 must
travel in northeast direction through all the internal vertices until it reaches the boundary
vertex labeled by 1; this is because every time it visits a black (resp., white) internal vertex
it must turn left (resp., right) and this forces the path to avoid the edges incident to the
boundary (except the first one and last one). Hence πG(d + 1) = 1 and, therefore, we can
conclude that πG is the decorated permutation of the rational Dyck positroid induced by d.

We have proved that each of the plabic graphs of type (d, d + m) described in Proposi-
tion 3.4.8 represents a rational Dyck positroid of rank d on the ground set [d + m]. On the
other hand, given a positroid induced by a rational Dyck path d of type (m, d), we can find
its decorated permutation πd by reading d in southwest direction as in Proposition 3.2.8 and,
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by the argument just explained above, one finds that πG = πd, where πG is the decorated trip
permutation of the plabic graph Gd obtained from d by following the recipe in the statement
of Proposition 3.4.8. The proof now follows.

Example 3.4.11. Let P be the positroid induced by the rational Dyck path d of type (8, 5)
shown in Figure 2.8. The following picture illustrates the plabic graph Gd corresponding
to P described in Proposition 3.4.8 (on the left) and a minimal bipartite graph in the move-
equivalence class of Gd (on the right).

Figure 3.9: The plabic graph of a rank 5 rational Dyck positroid on the ground set [13] and
a minimal bipartite plabic graph of its move-equivalence class.

3.5 The Polytope of a Rational Dyck Positroid

We conclude this chapter characterizing the matroid polytope of a rational Dyck positroid.
The indicator vector of a subset B of [n] is defined to be eB :=

∑
j∈B ej, where e1, . . . , en

are the standard basic vectors of Rn. Also, for a subset S of Rn, we let conv(S) denote the
convex hull of S.

Definition 3.5.1. The matroid polytope ΓM of the matroid M = ([n],B) is the convex hull
of all indicator vectors of subsets in B, namely

ΓM := conv
(
{eB | B ∈ B}

)
.

When M happens to be a positroid, we call ΓM the positroid polytope of M .

Matroid polytopes have been extensively studied in the literature; see, for example, [14]
and references therein. In particular, the reader will find the next elegant characterization.
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Theorem 3.5.2. [73, Theorem 4.1] Let B be a collection of subsets of [n], and let ΓB denote
conv

(
{eB | B ∈ B}

)
⊂ Rn. Then B is the collection of bases of a matroid if and only if every

edge of ΓB is a parallel translate of ei − ej for some i, j ∈ [n].

Descriptions of matroid polytopes by sets of inequalities have also been established. For
instance, in [144] Welsh describes a general matroid polytope M = ([n],B) by using O(2n)
inequalities. When the matroid M happens to be a positroid, its positroid polytope can be
described by using only O(n2) inequalities.

Proposition 3.5.3. [17, Proposition 5.5] Let I = (I1, . . . , In) be a Grassmann necklace of
type (d, n), and let M be its corresponding positroid. For any j ∈ [n], suppose the elements
of Ij are aj1 ≤j · · · ≤j a

j
d. Then the positroid polytope ΓM can be described by the inequalities

x1 + x2 + · · ·+ xn = d, (3.6)

xj ≥ 0 for each j ∈ [n], (3.7)

xj + xj+1 + · · ·+ xajk−1 ≤ k − 1 for each j ∈ [n] and k ∈ [d], (3.8)

where all the subindices are taken modulo n.

Our next task consists in refining Proposition 3.5.3 for those positroids induced by rational
Dyck paths; we will accomplish this by detecting redundant inequalities.

Proposition 3.5.4. Let P be a rational Dyck positroid represented by the real d× (d + m)
matrix A ∈ φd,m(Dd,m), and let IA = {p1 < · · · < pt} be the set of principal indices of A.
Then the positroid polytope ΓP is described by the inequalities

x1 + · · ·+ xd+m = d, (3.9)

xi ≥ 0 for i ∈ [d+m], (3.10)

xi ≤ 1 for i ∈ [d], (3.11)

xpi + · · ·+ xpi+1−1 ≤ 1 for i ∈ [t], (3.12)

xi + · · ·+ xpm(i)−1 ≤ (d− i) +m(i) for i ∈ [d], (3.13)

xpi + · · ·+ xωA(pi) ≤ ωA(pi) for i ∈ [t]\{1}, (3.14)

where m(i) = max{r ∈ [t] | ωA(pr) ≥ i and r < i}.

Proof. Let I = (I1, . . . , Id+m) be the Grassmann necklace corresponding to P , and let Γ be
the polytope determined by (3.9)–(3.14). Take x = (x1, . . . , xd+m) in ΓP . Both (3.9) and
(3.10) hold by Proposition 3.5.3. Besides, taking j ∈ [d] and k = 2 in (3.8), we obtain
the inequalities (3.11), while taking j ∈ IA and k = 2 we get the inequalities (3.12). By
Proposition 3.3.1, for i ∈ [d], the first d− i+ 1 entries of Ii are i, . . . , d and the next entries
are some of the indices p1, . . . , pt. Therefore taking j = i and k = (d− j + 1) +m(i) in the
inequality (3.8), one gets (3.13). Again, by part (4) of Proposition 3.3.1, the first t − i + 1
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entries of Ipi are pi, . . . , pt and the next ωA(pi) + 1− (t− i+ 1) entries of Ipi are the indices
in [ωA(pi)] \ {ωA(pr) | i ≤ r ≤ t}. Hence (3.14) follows.

Now we show that every element x = (x1, . . . , xd+m) ∈ Γ must satisfy (3.6)–(3.8). As
(3.6) and (3.7) hold by the definition of Γ, it suffices to verify the inequality (3.8). For
j ∈ [d + m] let Ij = (aj1, . . . , a

j
d). We always have aj1 = j. Suppose first that j ∈ [d]. If

j < ajk ≤ d + 1, then (3.8) results from adding k − 1 of the inequalities (3.11). If ajk = 1 or
ajk > d+1, then ajk−1 = pk′ for k′ ∈ [t]. In this case, (3.8) results from adding (3.13) for i = j

and k′ − 2 inequalities (3.12). Now suppose that ajk = r, where 1 < r < j. Then we can
obtain (3.8) by adding (3.13) for i = j, k − 3 inequalities (3.12), and (3.14) for the index i
such that ωA(pi) = ajk − 1.

Finally, suppose that j ∈ {d+1, . . . , d+m}. We can always assume that aj1 ∈ IA because
aj1 ∈ {d+ 1, . . . , d+m}\IA gives redundant inequalities. Let aj1 = ps for some s ∈ [t]. If

ajk ∈ {ps + 1, . . . , d+m} ∪ {1},

then by Proposition 3.3.1, it follows that ajk ∈ IA ∪ {1}; in this case (3.8) is the addition
of k − 1 inequalities (3.12). It only remains to consider ajk ∈ {2, . . . , d}. Suppose first that
ajk ≤ ωA(ps). If ajk ≤ ωA(pn) for each n ∈ [t], then (3.8) is the addition of t−s+1 inequalities
(3.12) and (k− 1)− (t− s+ 1) inequalities (3.11). Otherwise, there exists a smallest index r
in [t] such that ajk > ωA(pr). Taking i = pr, we observe that (3.8) is obtained from adding
i−s inequalities (3.12), the inequality (3.14), and enough inequalities (3.11). Lastly, suppose
that ajk > ωA(ps). In this case it is not hard to see that (3.8) is implied by the addition of
(3.14) for i = s and enough inequalities (3.11).

Remark 3.5.5. Although the description of the rational Dyck positroid given in Propo-
sition 3.5.4 is not as simple as the one presented in Proposition 3.5.3, the reader should
observe that the number of inequalities in Proposition 3.5.4 is O(d + m) while the number
of inequalities in Proposition 3.5.3 is O(d2 + dm).
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Part II

On Tilings and Matroids on the
Lattice Points of a Regular Simplex
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Chapter 4

Matroids and Tilings on Regular
Subdivisions of a Triangle

4.1 Introduction

For n, d ∈ Z≥2, consider the (d− 1)-dimensional simplex

Sn,d :=
{

(x1, . . . , xd) ∈ Rd | x1 + · · ·+ xd = n− 1 and xi ≥ 0 for 1 ≤ i ≤ d
}
,

and let Pn,d denote the set of lattice points contained in Sn,d. The set P4,3 is illustrated in
Figure 4.1. We denote by In,d the collection of all subsets I of Pn,d such that, for each k ≤ n,
every parallel translate of Pk,d contains at most k lattice points of I. It has been proved
in [15] that In,d is the collection of independent sets of a matroid Tn,d with ground set Pn,d.
In this chapter, which is based on a joint work with Harold Polo [102], we study some aspects
of the combinatorial structure of the matroids Tn,3. The case d = 3 is particularly important
because, as it was proved in [15], the matroid Tn,3 is cotransversal and the cotransversality
property of Tn,3 allows to construct the Schubert-generic line arrangement En,3 explicitly (see
[15, Proposition 9.2]). Finally, it is worthy to notice that although cotransversal matroids
have been the subject of a great deal of investigation, cotransversal matroids other than Tn,3
do not seem to have been studied before in connection with tilings.

The original motivation to study the matroids Tn,d comes from [15], where the authors
were interested in understanding the set En,d of 1-dimensional intersections of complete
complex flag arrangements. It turns out that the dependence relations among the lines
in En,d are encoded in Tn,d. As a result, the structure of Tn,d was crucial to understand
the linear dependence of line arrangements resulting from intersecting complete flags of Cn

and, as a byproduct, to facilitate certain computations on the cohomology ring of the flag
manifold. The matroids T3,d have been studied in [16] in connection with acyclic permutations
and fine mixed subdivisions of simplices [131].

Questions about tilings come in many diverse flavors, from problems about existence and
enumeration to problems about computational complexity and feasibility, and they have
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Figure 4.1: The set of lattice points P4,3 and a (shaded) region of the plane in R3 containing
it. The 10 lattice points of P4,3 are depicted by dark black dots.

been investigated in connection with many fields, including combinatorial group theory [53],
algebraic geometry [27], computational complexity theory [32], and stochastic processes [118].
Furthermore, tiling theory also finds applications to perfect matching [40], classical geometric
problems [113], genetic [35], etc. See [18] for a friendly survey on tileability. Here we establish
various cryptomorphic characterizations of the matroids Tn,3 in terms of tilings of Sn,3 into
unit triangles, rhombi, and trapezoids.

4.2 Tiling Matroids

As mentioned in the introduction, it was proved in [15] that for each n, d ∈ N, the pair
Tn,d = (Pn,d, In,d) is a matroid.

Definition 4.2.1. For n ∈ N, we call Tn,3 a tiling matroid and denote it simply by Tn.

It is not hard to verify that the matroid Tn has rank n and its ground set has size
n(n+ 1)/2. From now on we let Tn denote the convex hull of Pn,3 and think of elements in
Pn,3 as triangles in a regular subdivision of Tn as follows. We tacitly assume that Tn is placed
as in the top-right picture of Figure 4.2, namely that Tn is in the plane of the paper and has
a horizontal base. In addition, we think of a lattice point p of Pn,3 as a closed equilateral
triangle pointing upward, centered at p, whose side length is the minimal distance between
lattice points in Tn. Finally, we rescale Tn so that the ground set of Tn consists of unit
triangles. This transition from lattice points to unit triangles is illustrated in Figure 4.2.

Definition 4.2.2. We call the unit triangles representing lattice points of Pn,3 unit upward
triangles of Tn and we call the unit triangles inside Tn \ ∪∆∈Pn,3∆ unit downward triangles
of Tn. Let u(Tn) (resp., d(Tn)) denote the set of unit upward (resp., downward) triangles
of Tn.
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Figure 4.2: The leftmost picture shows P4,3 and an element p0 ∈ P4,3. The next two pictures
show the triangular representation of p0. The rightmost picture in Figure 4.2 illustrates T4

and the unit triangle p0.

Then u(Tn) is the ground set of Tn. We say that a nonempty subset of Tn is a lattice region
if its closure is the union of unit triangles of Tn. Note that any lattice upward triangle T of
Tn is a parallel translate of T` for some ` ≤ n; in this case we call ` the size of T and set
size(T ) := `. If A ⊆ Tn is a lattice region, then we define

u(A) := {X ∈ u(Tn) | X ⊆ A} and d(A) := {X ∈ d(Tn) | X ⊆ A}.

On the other hand, given a collection s of lattice regions of Tn, we set

A(s) :=
⋃
R∈s

R.

The triangular hull of s is the smallest lattice upward triangle of Tn containing all lattice
regions in s. The concepts in the following two definitions are central in our exposition.

Definition 4.2.3. For s ⊆ u(Tn), we call Tn \ A(s) the holey region corresponding to s.

Definition 4.2.4. For a lattice region R of Tn, we call t a tiling of R provided that t
consists of closed lattice regions of Tn whose interiors are pairwise disjoint and ∪T∈tT equals
the closure of R.

Additionally, let us introduce notation for one of the most important lattice regions and
tilings we will consider in this paper.

Definition 4.2.5. Given a tiling matroid Tn, we call the union of two adjacent unit triangles
of Tn a unit rhombus. A tiling into unit rhombi of a lattice region R of Tn is called a lozenge
tiling of R.

Figure 4.3 illustrates all possible unit rhombi of Tn (up to translation): one vertical and
two (symmetric) horizontal. We say that a unit rhombus R of Tn is horizontal provided that
one of its sides is horizontal; otherwise, we say that R is vertical.



CHAPTER 4. MATROIDS AND TILINGS ON REGULAR SUBDIVISIONS OF A
TRIANGLE 56

Figure 4.3: The three unit rhombi of Tn up to translation.

A lozenge tiling of the holey region corresponding to a 4-element subset of u(T4) is
illustrated in the left picture of Figure 4.4. The following characterization of the bases of Tn
was established in [15].

Theorem 4.2.6. [15, Theorem 6.2] For the tiling matroid Tn, let b be a subset of u(Tn).
Then b is a basis of Tn if and only if there exists a lozenge tiling of Tn \ A(b).

The following example illustrates Theorem 4.2.6.

Example 4.2.7. Consider the tiling matroid T4. Let b consist of the dark unit upward
triangles in the left picture of Figure 4.4. Note that b is a basis of T4. A lozenge tiling of
the holey region T4 \A(s) is shown. On the other hand, let s be the set of dark unit upward
triangles in the right picture of Figure 4.4. One can easily see that the holey region T4 \A(s)
cannot be tiled into unit rhombi.

Figure 4.4: On the left, a basis of T4. On the right, a size-4 subset of u(T4) that is not a
basis of T4.

4.3 Tiling Characterization of Independent Sets

In this section, we characterize the independent sets s of the matroid Tn in terms of certain
tilings of Tn\A(s). This characterization generalizes that one of bases given in Theorem 4.2.6.

Definition 4.3.1. A type-1 trapezoid of Tn is a lattice trapezoid of Tn that is the union of
two unit upward triangles and one unit downward triangle.
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As in the case of unit rhombi, we say that a type-1 trapezoid T of Tn is horizontal if it
has its two parallel sides horizontal. Up to translation, there are three type-1 trapezoids, as
depicted in Figure 4.5.

Figure 4.5: The three type-1 trapezoids up to translation.

Theorem 4.3.2. Let s be a subset of u(Tn). Then s is independent if and only if the lattice
region Tn \ A(s) can be tiled using unit rhombi and exactly n− |s| type-1 trapezoids.

Proof. To prove the direct implication, suppose that s is an independent set of Tn. If |s| = n,
then s is a basis of Tn, and we are done by Theorem 4.2.6. So we assume that |s| < n. Take a
basis b of Tn containing s. Theorem 4.2.6 ensures the existence of a lozenge tiling of Tn\A(b).
Let t be one of such tilings. Merging some of the unit upward triangles in b \ s with some of
their adjacent rhombi, we create new tilings t′ of Tn \A(s) consisting of m type-1 trapezoids
(m ≤ n − |s|), some unit rhombi, and some unit upward triangles. Among all such tilings,
let t′ be one maximizing m and, suppose, by way of contradiction, that m < n − |s|. Then
there is a unit upward triangle X ∈ b \ s that did not merge to any unit rhombus of t. By
rotating Tn if necessary, we can assume that X is adjacent to a vertical unit rhombus in t.
Now we consider two cases.

CASE 1. The horizontal side a of X is not in the horizontal border of Tn. The fact
that X is adjacent to a vertical unit rhombus in t forces n ≥ 3. Let R denote one of the
vertical unit rhombus adjacent to X in t. Because X did not merge in t′, another unit
upward triangle Y ∈ b \ s merged to R in t′ creating a type-1 trapezoid. Assume, without
loss of generality, that Y is right after X in the same row. In this case, a is a side of the
horizontal unit rhombus R′ right below X in t. As X did not merge in t′, another unit
upward triangle Z ∈ b \ s merged to R′ in t′ creating a type-1 trapezoid. Note that X, Y ,
and Z belong to the same size-3 lattice upward triangle of Tn, which can be re-tiled by using
exactly three type-1 trapezoids in such a way that no two triangles in {X, Y, Z} are part of
the same trapezoid. But this yields a tiling of Tn \ A(s) containing more type-1 trapezoids
than t′ does, which contradicts the maximality of m.

CASE 2. The horizontal side a of X is in the horizontal border of Tn. As the cases when
n < 3 follow straightforwardly, we assume n ≥ 3. Let x = {X1, . . . , Xt} be the maximal set
of consecutive unit upward triangles in the bottom row of Tn such that X ∈ x ⊆ b\s. Notice
that if t = 1, then the maximality of x would make one of the vertical unit rhombi adjacent
to X in t available to merge with X to form a tiling of Tn \ A(s) containing more type-1
trapezoids than t′ does, which is a contradiction. Hence we also assume that t > 1.
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CASE 2.1. X ∈ {X1, Xt}. Assume, without loss of generality, that X = X1. We first
suppose that X is not a corner of Tn. Then the unit rhombus R adjacent from the left to X
in t must be horizontal by the maximality of x. In addition, as X did not merge in t′, the unit
rhombus R must have merged in t′ with the unit upward triangle Y right on top of it. Also,
note the rhombus R′ adjacent from the right to X in t is vertical and must have merged to
X2 in t′ (by the maximality of m). Now the size-3 lattice upward triangle containing X, X2,
and Y can be re-tiled into three type-1 trapezoids such that not two triangles in {X,X2, Y }
are part of the same trapezoid. However, this results in a new tiling of Tn \A(s) having more
type-1 trapezoids than t′ does, which is a contradiction.

On the other hand, suppose that X = X1 is a corner of Tn. It follows from |s| ≥ 1 that
t < n. As a result, Xt cannot be a corner of Tn. Notice that for every i ∈ [t−1] the common
adjacent tile to Xi and Xi+1 in t is a vertical unit rhombus. If for some i ∈ [t] \ {1} the
triangle Xi did not merge with its left adjacent rhombus in t′, then we can re-tile Tn \ A(s)
by merging Xj to its right adjacent vertical unit rhombus for all j ∈ [i− 1] to create a tiling
of Tn \A(s) containing more type-1 trapezoids than t′ does, which is not possible. Then we
can assume that Xt merges in t′ to its left vertical unit rhombus. By the maximality of x,
the unit rhombus R′′ adjacent from the right to Xt in t must be horizontal. If R′′ does not
merge in t′, then we can re-tile T \A(s) by merging each of the Xi to its right adjacent unit
rhombus, obtaining once again a tiling of Tn \ A(s) with more than m type-1 trapezoids.
Then suppose that R′′ merges in t′ to the unit upward triangle Z right on top of it. In this
case, we can merge Xt with R′′, Z with its top-left vertical unit rhombus, and Xi with its
top-right unit rhombus for each i ∈ [t − 1] to obtain a tiling of Tn \ A(s) containing more
type-1 trapezoids than t′ does. However, this contradicts the maximality of m.

CASE 2.2. X /∈ {X1, Xt}. Let X = Xj. Because t < n, either X1 or Xt is not a corner
of Tn. Suppose, without loss of generality, that Xt is not a corner of Tn. In this case, we can
proceed as we did in the second paragraph of CASE 2.1 to obtain a new tiling of Tn \ A(s)
having more than m type-1 trapezoids, which once again contradicts the maximality of m.

To check the reverse implication, suppose that t is a tiling of the region Tn\A(s) consisting
of unit rhombi and n−|s| type-1 trapezoids. Now split each type-1 trapezoid of t into a unit
rhombus and a unit upward triangle, and let s′ denote the set of all unit upward triangle
resulting from such splittings. Then we have a tiling t′ of Tn \ A(s ∪ s′) using only unit
rhombi. By Theorem 4.2.6, the set s ∪ s′ is a basis of Tn. Hence s is an independent set of
Tn, which completes the proof.

The following example illustrates the characterization established in Theorem 4.3.2.

Example 4.3.3. Consider the tiling matroid T4. The left picture of Figure 4.6 shows an
independent set s of T4 whose elements are depicted by the three dark unit upward triangles.
It also shows a tiling of the holey region corresponding to s into unit rhombi and a type-1
trapezoid. By contrast, the right picture of Figure 4.6 illustrates a dependent set s′ of T4.
Notice that the holey region corresponding to s′ cannot be tiled into unit rhombi and type-1
trapezoids as it consists of more unit downward triangles than unit upward triangles.
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Figure 4.6: On the left, an independent set of T4. On the right, a dependent set of T4.

4.4 Rank and Tilings

Given a subset s of u(Tn), we now study how the size and rank of s can be used to count
the number of congruent pieces of any tiling of Tn \A(s) into unit triangles and unit rhombi
that maximizes the number of rhombi.

Let R be a lattice region of Tn, and let t be a tiling of R consisting of unit triangles and
unit rhombi. We call a tiling t′ of R a reconfiguration of t provided that t′ contains the same
numbers of unit upward triangles, unit downward triangles, and unit rhombi that t does.
Before presenting the main result of this section, let us collect the following lemma.

Lemma 4.4.1. Let s be a subset of u(Tn), and let t be a tiling of Tn \A(s) into unit rhombi
and unit triangles. Then there exists a reconfiguration of t all whose unit downward triangles
are adjacent from below to unit upward triangles.

Proof. Among all reconfigurations of t, let t′ be one maximizing the number N of unit
downward triangles that are adjacent from below to unit upward triangles. Let d and u be
the sets of unit downward triangles and unit upward triangles in t′, respectively. Suppose,
by way of contradiction, that there exists X ∈ d that is not adjacent from below to any
unit upward triangle. Then X must be adjacent from below to a horizontal unit rhombus
of t′ and, therefore, we can move X one unit row up in Tn by using the moves illustrated in
Figure 4.7, obtaining a reconfiguration t′′ of t′. Notice that the triangles in d\{X} that were

Figure 4.7: The two moves used to switch a unit downward triangle with any potential
adjacent horizontal unit rhombus.

adjacent from below in t′ to a unit rhombus (or a unit upward triangle) keep this property
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in t′′. As N is maximal, X is still adjacent from below in t′′ to a unit rhombus. Then we can
actually move between reconfigurations of t′ by performing the move in Figure 4.7 to X until
it reaches the second unit row of Tn (from top to bottom), obtaining a final reconfiguration
of t′ where X is adjacent from below to the top unit triangle of Tn. However, this contradicts
the maximality of N . Hence each unit downward triangle in t′ must be adjacent from below
to a unit upward triangle, and the proof follows.

The next result establishes a relation between the size and rank of subsets s of u(Tn) and
certain tilings of Tn \ A(s) into unit triangles and unit rhombi.

Proposition 4.4.2. If s ⊆ u(Tn), then a tiling of Tn \ A(s) into unit rhombi and unit
triangles with maximum number of rhombi must contain |s| − r(s) unit downward triangles.

Proof. Let us first argue that there exists a tiling of Tn \ A(s) into unit rhombi and unit
triangles having exactly |s|−r(s) unit downward triangles. Let r be an independent set of Tn
contained in s such that |r| = r(s). Now take a basis b of Tn containing r. As any subset of
b is an independent set of Tn, the sets b \ r and s \ r are disjoint. By Theorem 4.2.6, there
exists a lozenge tiling t of Tn \A(b). This, in turns, gives us a tiling t′ of Tn \A(r) consisting
of unit rhombi and the unit upward triangles in b \ r. Since b \ r and s \ r are disjoint, each
X ∈ s \ r must be covered by a rhombus RX of t′. After splitting each rhombus RX into two
unit triangles, one obtains the desired tiling of Tn \A(s) into unit rhombi and unit triangles
containing exactly |s| − r(s) unit downward triangles.

Now observe that the number of rhombi in a tiling t of Tn\A(s) into unit rhombi and unit
triangles determines the number of unit upward triangles and the number of unit downward
triangles in t. Indeed, it is easy to verify that if t contains m unit rhombi, then it must
contain

(
n
2

)
− m unit downward triangles and

(
n+1

2

)
− m − |s| unit upward triangles. In

particular, t maximizes the number of unit rhombi if and only if it minimizes the number
of unit downward triangles. Hence we are done once we prove that every tiling of Tn \ A(s)
into unit rhombi and unit triangles contains at least |s| − r(s) unit downward triangles.

Take a tiling t of Tn \ A(s) into unit rhombi and unit triangles minimizing the number
of unit downward triangles. Let d and u be the sets of unit downward triangles and unit
upward triangles of t, respectively. By Lemma 4.4.1, there is no loss in assuming that all
triangles in d are adjacent from below to unit upward triangles. On the other hand, the
minimality of |d| ensures that no triangle in d is adjacent from below to a triangle in u.
Hence each triangle of d is adjacent from below to a triangle of s. Merging each triangle in d
with its corresponding adjacent from above triangle of s, one obtains a lozenge tiling t′ of a
lattice region R satisfying that u(R)∩ s consists precisely of those triangles in s that did not
merge with the |d| unit downward triangles of t. By Theorem 4.2.6, the subset u(R)∩ s of s
is independent. This implies that |s|− |d| = |u(R)∩ s| ≤ r(s) and, therefore, |d| ≥ |s|− r(s),
which completes the proof.

The following corollary is an immediate consequence of Proposition 4.4.2.
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Corollary 4.4.3. If s ⊆ u(Tn) and t is a tiling of Tn \ A(s) into unit triangles and unit
rhombi that maximizes the number of unit rhombi, then t contains

(
n
2

)
− (|s| − r(s)) unit

rhombi, |s| − r(s) unit downward triangles, and n− r(s) unit upward triangles.

Remark 4.4.4. Notice that Corollary 4.4.3 does not imply Theorem 4.3.2 as some of the
n−r(s) unit upward triangles in the tiling t might be seated at the bottom line of the lattice
region Tn and, therefore, do not have rhombi right below them to merge.

4.5 Tiling Characterization of Circuits

We proceed to characterize the circuits c of Tn in terms of certain tilings of Tn \ A(c) into
unit rhombi and (possibly reflected) type-1 trapezoids.

Let M be a matroid. A subset C of the ground set of M is called a circuit of M if
|C| − r(C) = 1 and C \ {x} is an independent set of M for each x ∈ C, that is, C is a
minimal dependent set of M . On the other hand, a loop (resp., parallel) of M is a dependent
set of M of size one (resp., two).

Remark 4.5.1. Tiling matroids are simple, i.e., they contain neither loops nor parallels.

Example 4.5.2. Consider the tiling matroid T4. The left picture of Figure 4.8 shows a
circuit of rank 2 (and size 3) whose elements are depicted by the three dark unit upward
triangles. It is easy to argue that all circuits of Tn have the same shape, meaning that they
are geometrically equal up to translation. On the other hand, the right picture of Figure 4.8
shows a subset s of u(T4) of rank 4 that is not a circuit even though |s| − r(s) = 1. Note
that s contains a circuit of rank 2.

Figure 4.8: On the left, a circuit of rank 2. On the right, a non-circuit of rank 4.

Definition 4.5.3. A type-2 trapezoid is a lattice trapezoid of Tn which is the union of one
unit upward triangle and two unit downward triangles (cf. Definition 4.3.1).
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As in the case of type-1 trapezoids, one has three possible type-2 trapezoids (up to
translation), one of them being horizontal. Observe that they are the reflection of the type-1
trapezoids through their largest sides.

Figure 4.9: The three type-2 trapezoids up to translation.

To characterize further distinguished subsets s of the ground set of Tn in terms of tiling
of Tn \ A(s) into unit rhombi and unit trapezoids, s cannot contain any circuit of rank 2
because such circuits isolate unit triangles (see Example 4.5.2). However, this requirement
does not suffice as the following example illustrates.

Example 4.5.4. Consider the tiling matroid T4 along with the subset s of u(T4) given by
the dark unit upward triangles illustrated in Figure 4.10. As the lattice region T4 \ A(s)
consists of only one unit upward triangle and three unit downward triangles, it cannot be
tiled into unit rhombi and unit trapezoids.

Figure 4.10: A subset of u(T4) whose corresponding holey region cannot be tiled into unit
rhombi and unit trapezoids.

The holey region corresponding to most circuits, however, can be tiled into unit rhombi
and unit trapezoids. Indeed, we will see in Theorem 4.5.8 a tiling characterization of circuits
of rank greater than 2. First, we collect a few results we shall be using later. For a subset s of
u(Tn), we say that a lattice upward triangle T of Tn of size k is saturated by s if |s∩u(T )| = k,
over-saturated by s if |s ∩ u(T )| ≥ k, and strictly over-saturated by s if |s ∩ u(T )| > k.

Proposition 4.5.5. Let c be a circuit of Tn. Then there exists exactly one lattice upward
triangle of Tn that is strictly over-saturated by c, namely the triangular hull of c.
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Proof. Since c is a dependent set of Tn, there must be a lattice upward triangle T of Tn that
is strictly over-saturated by c. Notice that each X ∈ c must be inside T ; otherwise, T would
be strictly over-saturated by c \ {X}, contradicting that c \ {X} is an independent set of Tn.
Among all lattice upward triangles strictly over-saturated by c, assume that T is minimal
under inclusion. The minimality of T implies now that T is the triangular hull of c. As c
is contained in u(T ), it follows that size(T ) < |c|. The fact that c contains an independent
subset of Tn of size |c| − 1 yields |c| − 1 ≤ size(T ). Hence size(T ) = |c| − 1. Finally, let T ′ be
a lattice upward triangle of Tn strictly over-saturated by c. Since T ′ contains A(c), we have
that T ⊆ T ′. This, along with the fact that T ′ is strictly over-saturated by c, guarantees
that size(T ) ≤ size(T ′) ≤ |c| − 1 = size(T ). Thus, T = T ′, and the uniqueness follows.

Lemma 4.5.6. Each lattice (isosceles) trapezoid of Tn of side length k can be tiled using
unit rhombi and k type-1 trapezoids.

Proof. We can tile each unit row of such a lattice trapezoid by placing a horizontal type-1
trapezoid covering its three leftmost unit triangles and covering the rest of the row with unit
rhombi, as illustrated in Figure 4.11.

Figure 4.11: A lattice trapezoid of side length 3 tiled using unit rhombi and three type-1
trapezoids.

Lemma 4.5.7. Let T be a lattice upward triangle of Tn. Then each unit rhombus or type-1
trapezoid of Tn covers at least the same number of unit upward triangles inside T as unit
downward triangles inside T .

Proof. Let S be either a unit rhombi or a type-1 trapezoid of Tn. Set I = S ∩ T , and let t
be the number of unit triangles inside I, i.e., t = |d(I)| + |u(I)|. Clearly, t ∈ {0, 1, 2, 3}.
If t = 0, then |d(I)| = |u(I)| = 0. If t = 1, then I must be a unit upward triangle
and so 0 = |d(I)| = |u(I)| − 1. If t = 2, then I must be a unit rhombi and, therefore,
1 = |d(I)| = |u(I)|. Finally, if t = 3, then S must be a type-1 trapezoid and I = S, which
implies that 1 = |d(I)| = |u(I)| − 1. As in any case we have verified that |d(I)| ≤ |u(I)|, the
lemma follows.

We are now in a position to give a characterization of the circuits of Tn.

Theorem 4.5.8. Let c be a subset of u(Tn) such that |c| ≥ 4. Then c is a circuit of Tn if
and only if the following two conditions hold:
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(1) the triangular hull of c is the only lattice upward triangle strictly over-saturated by c;

(2) the minimum number of type-2 trapezoids we can use to tile Tn \A(c) into unit rhombi
and unit trapezoids is 1.

Proof. For the forward implication, let c be a circuit. By Proposition 4.5.5, the triangular
hull T of c is the unique lattice upward triangle strictly over-saturated by c. We proceed
to show that condition (2) also holds. As c is a circuit, size(T ) = r(c). Now fix X ∈ c.
Note that c \ {X} is a basis of the tiling matroid Tr(c) with Tr(c) = T . Thus, one can use
Theorem 4.2.6 to obtain a tiling t of T \ A(c \ {X}) consisting of unit rhombi. In such a
tiling, X must be covered by a rhombus RX . Notice that the unit downward triangle of RX

must be adjacent to a unit upward triangle Y not contained in c; otherwise, the triangular
hull of RX (which has size 2) would be strictly over-saturated by c, and Proposition 4.5.5
would force |c| = 3. Let RY be the unit rhombus of t covering Y . Now we can obtain a
tiling t′ of T \ A(c) as follows. First keep the tiling configuration of t outside RX ∪ RY ,
then make X hollow, and finally merge the unit downward triangle of RX to RY . Clearly, t′

consists of unit rhombi and one type-2 trapezoid, namely the new tile containing Y .
From the tiling t′ of T \A(c), we can construct the desired tiling of Tn \A(c) provided we

tile Tn \ T into unit rhombi and type-1 trapezoids. To do this, first split the lattice region
Tn \ T into three lattice trapezoids as illustrated in Figure 4.12. Clearly, the sum of the side

Figure 4.12: The lattice region Tn \ T split into three lattice trapezoids.

lengths of these three lattice trapezoids is n − r(c). Therefore one can use Lemma 4.5.6 to
tile Tn \ T into unit rhombi and n − r(c) type-1 trapezoids, obtaining thereby the desired
tiling of T \ A(c). Finally, notice that 1 is the minimal number of type-2 trapezoids we can
use to tile Tn \ A(c) since using 0 type-2 trapezoids would imply, by Theorem 4.3.2, that c
is an independent set of Tn.

To prove the backward implication, we first show that |u(T ) ∩ c| ≤ `+ 1 for each lattice
upward triangle T of Tn of size `. Suppose, by way of contradiction, that |u(T )∩c| ≥ k+2 for
some lattice upward triangle T of size k. As |u(T )| = |d(T )|+ k and |d(T )| = |d(T \ A(c))|,
one finds that

|u(T \ A(c))| = |u(T )| − |u(T ) ∩ c| ≤ |u(T )| − (k + 2) = |d(T \ A(c))| − 2.



CHAPTER 4. MATROIDS AND TILINGS ON REGULAR SUBDIVISIONS OF A
TRIANGLE 65

Then T \A(c) contains at least two more unit downward triangles than unit upward triangles.
By Lemma 4.5.7, every unit rhombus or type-1 trapezoid in any tiling of Tn \A(c) covers at
least the same number of unit upward triangles as unit downward triangles of u(T ). Thus,
we would need at least two type-2 trapezoids to tile T \ A(c) into unit rhombi and unit
trapezoids, which contradicts condition (2).

It is clear that c cannot be an independent set of Tn; otherwise, we could use Theorem 4.3.2
to tile Tn \A(c) using 0 type-2 trapezoids, contradicting that the minimum number of type-2
trapezoids needed to tile Tn \ A(c) into unit rhombi and unit trapezoids is 1. This, along
with the fact that |u(T )∩ c| ≤ `+ 1 for each lattice upward triangle T of Tn of size `, implies
that |u(T ′) ∩ c| = `+ 1 for some lattice upward triangle T ′ of Tn of size `.

We finally verify that c is a circuit of Tn. Take X ∈ c. By condition (1), the only
lattice upward triangle of Tn strictly over-saturated by c is the triangular hull T of c. Set
` = size(T ). The existence of a lattice upward triangle of Tn over-saturated by c by exactly
one unit upward triangle forces |u(T )∩c| = `+1. Since T is the triangular hull of c, it follows
that X ∈ u(T ) and, therefore, T is not strictly over-saturated by c\{X}. Because no lattice
upward triangle of Tn is strictly over-saturated by c \ {X}, the latter is an independent set
of Tn. As X was arbitrarily chosen, c is a circuit.

The following example illustrates that neither of the two conditions in Theorem 4.5.8 by
itself suffices to ensure that c is a circuit of Tn.

Example 4.5.9. Consider the tiling matroid T4. Let s ⊂ u(T4) consists of the dark unit
upward triangles in the left picture of Figure 4.13. Note that s satisfies condition (1) of
Theorem 4.5.8 since the only lattice triangle of T4 that is strictly over-saturated by s is T4,
which is the triangular hull of s. However, s is not a circuit of T4 (observe that we need at least
two type-2 trapezoids to tile T4 \A(s)). Now let s′ be the set of dark unit upward triangles
in the right picture of Figure 4.13. Observe that s′ satisfies condition (2) of Theorem 4.5.8;
a tiling of T4 \ A(s′) as described in condition (2) is shown in the picture. However, s′ is
not a circuit of T4 (one can see that the triangular hull of s′ is not the only lattice upward
triangle of T4 strictly over-saturated by s′).

Figure 4.13: Two subsets of u(T4) that are not circuits of T4.
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4.6 Geometric Characterization of Flats

Let M be a matroid with ground set E. The closure operator cl : 2E → 2E of M is defined
as follows:

cl(S) = {x ∈ E | r(S ∪ {x}) = r(S)}.

Matroids can be characterized in terms of their closure operators; see [125, Section 1.4]. A
subset S of E is called a flat of M provided that cl(S) = S. In this section, we give a
geometric description of the flats of tiling matroids. To facilitate this, let us first introduce
some notation.

Let s be a subset of u(Tn). Given two lattice upward triangles T and T ′ of Tn, we let
T ∨ T ′ denote the triangular hull of T ∪ T ′. On the other hand, we say that the lattice
upward triangle T of Tn of size k is completely over-saturated by s if u(T ) ⊆ s. We use the
following result in the proof of Proposition 4.6.2

Lemma 4.6.1. [15, Lemma 4.2] Let s be an independent set of Tn, and let T and T ′ be two
lattice upward triangles of Tn saturated by s. If T ∩ T ′ 6= ∅, then the lattice upward triangles
T ∩ T ′ and T ∨ T ′ of Tn are also saturated by s.

Proposition 4.6.2. A subset f of u(Tn) is a flat of Tn if and only if every lattice upward
triangle of Tn over-saturated by f is also completely over-saturated by f.

Proof. Suppose first that f is a flat of Tn. It suffices to prove that every maximal lattice
upward triangle of Tn over-saturated by f is completely over-saturated by f. Let M1, . . . ,Mm

be the maximal lattice upward triangles of Tn over-saturated by f. It follows by Lemma 4.6.1
that the Mi’s are pairwise disjoint. Then the independent subsets of f are unions i1∪· · ·∪ im,
where each ij is an independent set of Tn contained in u(Mj). Fix j ∈ [m], and let us check
that Mj is completely over-saturated by f. To do so, take X ∈ u(Mj). Note that for each
independent set i contained in f ∪ {X},

r(i) =
m∑
i=1

r(i ∩ u(Mi)) ≤
m∑
i=1

r(u(Mi)) ≤
m∑
i=1

size(Mi) = r(f).

Thus, r(f ∪ {X}) = r(f). Since f is a flat of Tn, it follows that X ∈ f. This implies that
u(Mj) ⊆ f. Hence Mi is completely over-saturated by f for every i ∈ [m].

For the backward implication, let M1, . . . ,Mm be the maximal lattice upward triangles
of Tn that are over-saturated by f (and, therefore, completely over-saturated by f). By
Lemma 4.6.1, the Mi’s are pairwise disjoint. For each j ∈ [m], let ij be an independent set
of Tn contained in u(Mj). Take now X ∈ u(Tn)\f, and let us verify that s := {X}∪i1∪· · ·∪im
is also an independent set of Tn. Suppose, by contradiction, that T is a lattice upward triangle
that is strictly over-saturated by s. As s \ {X} ⊆ f, one has that T is over-saturated by f.
Clearly, X ∈ u(T ). This implies that T is a lattice upward triangle over-saturated by f not
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contained in any of the Mi’s, which is a contradiction. Hence s is an independent set of Tn
and, as a result,

r(f ∪ {X}) ≥ r(s) = 1 +
m∑
j=1

r(ij) = 1 + r(f) > r(f).

Since X was arbitrarily taken in u(Tn) \ f, it follows that f is a flat of the tiling matroid Tn,
which concludes the proof.

Corollary 4.6.3. Each flat of Tn consists of all unit upward triangles in the union of a
disjoint collection of lattice upward triangles.

Example 4.6.4. Figure 4.14 shows a flat (on the left) and a non-flat s (on the right). Even
though s is not a flat, note that it consists of all the unit upward triangles inside a disjoint
union of lattice upward triangles (the ones completely over-saturated by s).

Figure 4.14: On the left, a flat of T5. On the right, a subset of u(T5) that is not a flat of T5.
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Chapter 5

Connectedness of Matroids on the
Lattice Points of a Regular Simplex

5.1 Connectedness of Tn,3 Via Tilings

In order to illustrate how the tilings can be useful to prove matroidal properties of Tn, we
start tackling the 2-dimensional case, i.e., d = 3. Recall that a matroid (E,B) is said to be
connected if for all x, y ∈ E there exist B1, B2 ∈ B such that B2 = (B1 \ {x}) ∪ {y}.

We now introduce some terminology that will facilitate the proof of our next result. A
unit strip of Tn is the lattice region occupied by all unit triangles of Tn that are at the same
distance of a fixed border of Tn. A unit row of Tn is a horizontal unit strip. We number the
unit rows of Tn by 1, . . . , n from bottom to top. For X ∈ u(Tn), we define h(X) to be the
number of the unit row of Tn containing X. In addition, we let c(X) denote the set of unit
upward triangles inside the maximal lattice upward triangle of Tn having X as its top unit
triangle.

Proposition 5.1.1. For each n ∈ N, the matroid Tn is connected.

Proof. If n = 1, then Tn is trivially connected. So we assume that n ≥ 2. Take X, Y ∈ u(Tn)
such that X 6= Y . We will find bases b1 and b2 of Tn satisfying that b2 = (b1 \ {X}) ∪ {Y }.
First, suppose that X and Y are in the same unit strip of Tn. After rotating Tn if necessary,
we can assume that X and Y are both in the same unit row of Tn, say the k-th row. Now
take s ⊂ u(Tn) with |s| = n − 1 satisfying that there is exactly one member of s in each
row of Tn except in the k-th row. Clearly, s ∩ {X, Y } is empty. Set b1 = s ∪ {X} and
b2 = s ∪ {Y }. The set b1 is a basis of Tn because each of the n rows of Tn contains exactly
one member of b1. Similarly, b2 is a basis of Tn. In addition, b2 = (b1 \ {X}) ∪ {Y }, as
desired.

Suppose now that X and Y are not in the same unit row of Tn. Then there is no loss in
assuming that h(X) > h(Y ). It is not hard to see that in case of Y ∈ c(X), we can perform a
counterclockwise π/3-rotation to Tn and exchange the names of X and Y to get h(X) > h(Y )
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and Y /∈ c(X). Hence we can assume, without loss of generality, that h(X) > h(Y ) and
Y /∈ c(X).

Clearly, {X, Y } is an independent set of Tn. Let b be a basis of Tn containing X and Y
and having exactly one unit upward triangle in each unit row of Tn. By Theorem 4.2.6, there
exists a lozenge tiling t of the lattice region Tn \ A(b). As each unit downward triangle is
part of a unit rhombus of t, each horizontal rhombus of t is either in the bottom row of Tn
or is adjacent from above to another unit horizontal rhombus. Therefore there exist unit
horizontal rhombi R1, . . . , Rd, where d = h(X) − h(Y ), such that X is supported on R1

and Ri is supported on Ri+1 for each i ∈ [d − 1] (see the left picture of Figure 5.1). For

Figure 5.1: Illustration of how to re-tile a strip consisting of adjacent unit horizontal rhombi
and a unit upward triangle adjacent on the top.

i ∈ [d], let Ri = Ui ∪Di, where Ui and Di denote respectively the unit upward triangle and
the unit downward triangle whose union is Ri. Define

b1 = (b \ {Y }) ∪ {Ud} and b2 = (b \ {X}) ∪ {Ud}.

As Y and Ud are in the same row of Tn, the fact that b has exactly one unit upward triangle
in each row of Tn ensures that b1 is a basis of Tn. To verify that b2 is also a basis, let us find a
lozenge tiling of Tn \A(b2). To do so we keep the configuration of t in the complement of the
lattice region R := X ∪R1 ∪ · · · ∪Rd and re-tile R by merging X with D1, and Ui with Di+1

for each i ∈ [d− 1]. It follows immediately that this produces a lozenge tiling of Tn \A(b2).
Theorem 4.2.6 now guarantees that b2 is a basis of Tn. The fact that b2 = (b1 \ {X})∪ {Y }
completes the proof.

5.2 Connectedness of Tn,d
We conclude this chapter proving that Tn,d is connected when d ≥ 3. Note that the ma-
troid Tn,2 contains only one basis and, therefore, it is connected if and only if n = 1.

Theorem 5.2.1. For each n, d ∈ N such that d ≥ 3, the matroid Tn,d is connected.

Proof. Let y = (y1, . . . , yd) and y′ = (y′1, . . . , y
′
d) be two elements in the ground set Tn,d

of Tn,d, and suppose first that yi = y′i = h− 1 for some i ∈ [d]. Now take a subset S of Tn,d
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such that |S| = n−1 and S intersects the plane determined by the equation xi = j−1 exactly
at one lattice point for each j ∈ [n] \ {h} (clearly, such a set S exists). Following an idea
similar to that one used in the proof of Proposition 5.1.1, the reader is welcome to verify that
By = S∪{y} and By′ = S∪{y′} are two bases of Tn,d satisfying that By′ = (By \{y})∪{y′}.

Now suppose that yi 6= y′i for every i ∈ [d]. As d ≥ 3, there exist j, k ∈ [d] with j 6= k
such that yj < y′j and yk < y′k. Take B ⊂ Tn,d satisfying that {y, y′} ⊂ B and intersecting
the plane determined by the equation xk = i− 1 exactly at one lattice point for each i ∈ [n]
(as yk 6= y′k, such set B exists). In addition, it is clear that B is a basis of Tn,d. Now take
z = (z1, . . . , zd) with zk = yk, zi = y′i for each i /∈ {j, k}, and z1 + · · ·+ zd = n− 1. Since

zj = (n− 1)−
∑

i∈[d]\{j}

zi = (n− 1)− yk −
∑

i∈[d]\{j,k}

y′i > (n− 1)−
∑

i∈[d]\{j}

y′i ≥ 0,

it follows that z is a lattice point in the ground set of Tn,d (i.e., z ∈ Tn,d). Figure 5.2 shows
the relative positions of y, y′, and z.

Figure 5.2: Relative positions of the lattice points y, y′, and z.

Lastly, take

B1 = (B \ {y}) ∪ {z} and B2 = (B \ {y′}) ∪ {z}.

Since zk = yk, it follows that B1 is a basis of Tn,d. Suppose, by way of contradiction, that B2

is not a basis of Tn,d. Then for some ` ∈ [n] there exists a parallel translate T of the lattice
simplex T`,d contained in Tn,d and satisfying that z ∈ T and |T ∩ B2| > `, which means
that T is strictly over-saturated by B2. Take w = (w1, . . . , wd) ∈ Zd≥0 such that T = w+T`,d.
The fact that z ∈ T implies that zi ≥ wi for every i ∈ [d]. As B is a basis of Tn,d, it follows
that y′ /∈ T . Thus, at least one coordinate of the vector y′ − w must be strictly negative.
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As y′i − wi = zi − wi ≥ 0 for each i ∈ [d] \ {j, k}, either y′j < wj or y′k < wk. Now, because
yj < y′j and yk < y′k, the vector y − w also has a strictly negative coordinate. Therefore
y /∈ T . This in turns implies that for every i ∈ [n] the set T ∩ B2 intersects each plane
determined by the equation xk = i− 1 at most at one lattice point. This contradicts that T
is strictly over-saturated by B2. Hence B2 is also a basis of Tn,d. On the other hand, it is
clear that B2 = (B1 \ {y′}) ∪ {y}, which completes the proof.

.
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Part III

On the Geometry of Finite-Rank
Submonoids of a Free Commutative
Monoid and Their Monoid Algebras
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Chapter 6

Geometry of Submonoids of a
Finite-Rank Free Commutative
Monoid

6.1 Introduction

Let C denote the class containing, up to isomorphism, all monoids that can be embedded
into finite-rank free commutative monoids. If F is one of the fields Q or R and M is a monoid
in C, then the chain of natural inclusions

M ↪→ gp(M) ↪→ F⊗Z gp(M)

yields an embedding of M into the finite-dimensional vector space F⊗Zgp(M), where gp(M)
is the Grothendieck group of M . Here we provide a systematic study on the connection
between atomic and factorization aspects of monoids M in C and both the geometry of the
conic hull cone(M) and the combinatorics of the face lattice of cone(M).

A commutative cancellative monoid is called atomic if any non-invertible element can be
expressed as a product of irreducible elements. All monoids in C are atomic. After settling
down the necessary terminology and recalling a few standard concepts in factorization theory
and convex geometry, we begin the main core of this chapter giving some characterizations
of monoids in C. Right after this, we will exhibit some motivating examples of monoids in C,
and then we show that the geometric and combinatorial aspects of the conic hulls of monoids
in C do not depend on the vector space such monoids are embedded into.

As for integral domains, an atomic monoid is called a UFM (or a unique factorization
monoid) if every element has an essentially unique factorization into irreducibles. UFMs
are the simplest monoids in the realm of factorization theory, as the main goal of this field
is to study the deviation of an atomic monoid (resp., integral domain) from being a UFM
(resp., a UFD). A huge variety of atomic conditions between being an atomic monoid (resp.,
domain) and being a unique factorization monoid (resp., domain) have been considered in
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the literature during the last four decades, including half-factoriality, other-half-factoriality,
being finitary, and being strongly primary. We study here some of these intermediate atomic
conditions for monoids in C and their monoid algebras.

An atomic monoid M is called half-factorial (or an HFM) provided that for all x ∈M•,
any two factorizations of x have the same number of irreducibles (counting repetitions). In
addition, an integral domain is called half-factorial (or an HFD) if its multiplicative monoid
is an HFM. The concept of half-factoriality was first investigated by Carlitz in the context
of algebraic number fields, who proved that an algebraic number field is an HFD if and only
if its class group has size at most two [39]. However, the term “half-factorial domain” is due
to Zaks [148]; he also studied Krull domains that are HFDs in terms of their divisor class
groups [149]. Parallel to this, Skula [135] and Śliwa [136], motivated by some questions of
Narkiewicz on algebraic number theory [122, Chapter 9], also carried out systematic studies
of HFDs. Since then HFMs and HFDs have been actively studied (see [41] and reference
therein).

Other-half-factoriality, on the other hand, is a dual version of half-factoriality, and it
was introduced by Coykendall and Smith in [58]. An atomic monoid M is called other-half-
factorial (or an OHFM) provided that for all x ∈ M• and z, z′ ∈ Z(x) with |z| = |z′|, we
have that z = z′. Although an integral domain is a UFD if and only if its multiplicative
monoid is an OHFM [58, Corollary 2.11], OHFMs are not always factorial or half-factorial,
even in the class C. In the second part of this chapter, we offer geometric and combinatorial
characterizations for the HFMs in C and for the OHFMs in C.

The study of primary monoids was initiated by T. Tamura [140] and M. Petrich [126]
in the 1970’s and has received a great deal of attention since then [109, 110, 74]. Primary
monoids naturally appear in commutative algebra: an integral domain is 1-dimensional
and local if and only if its multiplicative monoid is primary. One of the most useful sub-
classes of primary monoids in factorization theory is that one consisting of finitely primary
monoids. The initial interest on this subclass also comes from commutative algebra: the
multiplicative monoid of a 1-dimensional local Mori domain with nonempty conductor is
finitely primary [79, Proposition 2.10.7.6]. Finitely primary monoids were introduced in [74].
Definitions of primary and finitely primary monoids will be given in Section 6.6.

Motivated by the non-unique factorization phenomenon of certain noetherian domains,
Geroldinger et al. introduced in [84] the class of finitary monoids. More precisely, the mul-
tiplicative monoid of a noetherian domain R is finitary if and only if R is 1-dimensional and
semilocal [84, Proposition 4.14]. In addition, finitary monoids conveniently capture certain
aspects of the arithmetic and factorization structure of more sophisticated monoids, includ-
ing v-noetherian G-monoids [76] and congruence monoids [77]. Strongly primary monoids are
those that are simultaneously primary and finitary. The class of strongly primary monoids
plays an important role in factorization theory and commutative algebra, as it comprises var-
ious classes of well-studied monoids and integral domains. For instance, numerical monoids
and v-noetherian primary monoids are strongly primary. On the other hand, the multiplica-
tive monoid of a 1-dimensional local Mori domain is strongly primary. In the last section of
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this chapter, we study the conic hull cone(M) of monoids M in C that are either primary or
finitary. We conclude this chapter with a few words about strongly primary monoids in C.

6.2 Atomic Monoids and Convex Cones

In this section we introduce most of the relevant concepts on commutative monoids, factor-
ization theory, and convex geometry required to follow the results presented in this chapter.
General references for any undefined terminology or notation can be found in [105] for com-
mutative monoids, in [79] for atomic monoids and factorization theory, and in [128] for convex
geometry.

General Notation

Recall that N := {0, 1, 2, . . . }. If a, b ∈ Z and a ≤ b, then we let [[a, b]] denote the interval
of integers between a and b, i.e.,

[[a, b]] := {z ∈ Z | a ≤ z ≤ b}.

In addition, for X ⊆ R and r ∈ R, we set

X≥r := {x ∈ X | x ≥ r}

and we use the notation X>r in a similar way. Lastly, if Y ⊆ Rd for some d ∈ N \ {0}, then
we set Y • := Y \ {0}.

Atomic Monoids

A monoid is commonly defined in the literature as a semigroup along with an identity
element. However, in what follows all monoids are also assumed to be commutative and
cancellative, and we omit these two attributes accordingly. As we only consider commutative
monoids, unless otherwise specified we will use additive notation. In particular, the identity
element of a monoid M will be denoted by 0, and we let M• denote the set M \{0}. A
monoid is called reduced if its only invertible element is the identity element. Unless we
specify otherwise, monoids in this chapter are assumed to be reduced. For x, y ∈ M , we
say that y divides x in M and write y |M x provided that x = y + z for some z ∈ M . A
submonoid N of M is called divisor-closed if for all y ∈ N and x ∈ M the condition x |M y
implies that x ∈ N .

We write M = 〈S〉 when M is generated by a set S. If M can be generated by a finite
set, we say that M is finitely generated. An element a ∈ M• is called an atom provided
that for each pair of elements y, z ∈ M such that a = y + z either y = 0 or z = 0. The set
consisting of all atoms of M is denoted by A(M), that is,

A(M) := M• \
(
M• +M•).
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Since M is reduced, it follows that A(M) will be contained in each generating set of M .
If A(M) generates M , then M is said to be atomic. All monoids addressed in this paper
are atomic. We say that p ∈ M• is prime if whenever p |M x + y for some x, y ∈ M either
p |M x or p |M y. The monoid M is called a UFM (or a unique factorization monoid) if
every nonzero element can be written as a sum of primes (up to permutation). Clearly, every
prime element of M is an atom. Thus, if M is a UFM, then it is, in particular, an atomic
monoid.

A subset I of M is an ideal of M if I+M ⊆ I. An ideal I is principal if I = x+M for some
x ∈ M . Furthermore, M satisfies the ascending chain condition on principal ideals (or the
ACCP) provided that every increasing sequence of principal ideals of M eventually stabilizes.
It is well known that every monoid satisfying the ACCP is atomic [79, Proposition 1.1.4].
The Gram’s monoid, exhibited in Section 8.3, is an atomic monoid that does not satisfy the
ACCP.

For any monoid M there exist an abelian group gp(M) and a monoid homomorphism
ι : M ↪→ gp(M) such that any monoid homomorphism φ : M → G (where G is a group)
uniquely factors through ι. The group gp(M), which is unique up to isomorphism, is called
the difference group (or Grothendieck group) of M . If M is a monoid in C, then the rank
of M , denoted by rank(M), is the rank of the abelian group gp(M), that is, the dimension
of the Q-space Q⊗Z gp(M). The monoid M is torsion-free if nx = ny for some n ∈ N and
x, y ∈ M implies that x = y. A monoid is torsion-free if and only if its difference group is
torsion-free (see [37, Section 2.A]).

A multiplicative commutative monoid F is free on a subset A of F if every element x ∈ F
can be written uniquely in the form

x =
∏
a∈A

ava(x),

where va(x) ∈ N and va(x) > 0 only for finitely many a ∈ A. It is well known that for each
set A, there exists a unique (up to isomorphism) monoid F such that F is a free commutative
monoid on A. For a monoid M , the free commutative monoid on A(M), denoted by Z(M),
is called the factorization monoid of M , and the elements of Z(M) are called factorizations.
If z = a1 . . . an is a factorization in Z(M) for some n ∈ N and a1, . . . , an ∈ A(M), then n is
called the length of z and is denoted by |z|. In addition, the unique monoid homomorphism
φ : Z(M)→M satisfying φ(a) = a for all a ∈ A(M) is called the factorization homomorphism
of M . For each x ∈M the set

Z(x) := ZM(x) := φ−1(x) ⊆ Z(M)

is called the set of factorizations of x. In addition, for k ∈ N we set

Zk(x) := {z ∈ Z(x) : |z| = k} ⊆ Z(M).

Observe that the monoid M is atomic if and only if Z(x) is nonempty for all x ∈M (notice
that Z(0) = {∅}). The monoid M is called an FFM (or finite factorization monoid provided
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that |Z(x)| <∞ for all x ∈M . For each x ∈M , the set of lengths of x is defined by

L(x) := LM(x) := {|z| : z ∈ Z(x)}.

If |L(x)| <∞ for all x ∈ M , then M is called a BFM (or a bounded factorization monoid).
Clearly, every FFM is a BFM.

A very special family of atomic monoids is that of all numerical monoids, i.e., cofinite
additive submonoids of N. Each numerical monoid M has a unique minimal set of generators,
which is finite; such a unique minimal generating set is precisely A(M). As a result, every
numerical monoid is atomic and contains only finitely many atoms. A friendly introduction
to numerical monoids can be found in [72]. The class of finitely generated submonoids
of (Nd,+) naturally generalizes that one of numerical monoids. Although members of the
former class are finitely generated and, therefore, finitary, numerical monoids are the only
primary monoids in this class (Proposition 6.6.1(2)). However, we shall see later that there
are many non-finitely generated submonoids of (Nd,+) that are primary. In addition, we
will provide necessary conditions and sufficient conditions for a submonoid of (Nd,+) to be
finitary.

Convex Cones

We let e1, . . . , ed denote the canonical basic vectors of Rd. In addition, we denote the
standard inner product of Rd by 〈 , 〉, that is, 〈x, y〉 =

∑d
i=1 xiyi for all x = (x1, . . . , xd)

and y = (y1, . . . , yd) in Rd. As usual, for x ∈ Rd we let ||x|| denote the Euclidean norm
of x. We always consider the space Rd endowed with the topology induced by the Euclidean
norm. Finally, we let the Q-space Qd inherit the inner product and the topology of Rd. For
a subset S of Rd, we let intS, S̄, and bdS denote the interior, closure, and boundary of S,
respectively.

Let V be a vector space over an ordered field. A nonempty convex subset C of V is called
a cone provided that C is closed under linear combinations with nonnegative coefficients. A
cone C is called pointed if C∩−C = {0}. Unless otherwise stated, we assume that the cones
we consider here are pointed. If X is a nonempty subset of V , the conic hull of X, denoted
by cone(X), is defined as

cone(X) := {c1x1 + · · ·+ cnxn | xi ∈ X and ci ≥ 0 for all i ∈ [[1, n]]},

i.e., cone(X) is the smallest cone in V containing X. A cone in V is called simplicial, if it
is the conic hull of a linearly independent set of vectors. In addition, a cone in Rd is called
rational if it is the conic hull of vectors with integer coordinates.

A face of C is a cone F contained in C satisfying the following condition: for all x, y ∈ C
the fact that the open line segment {tx + (1 − t)y | 0 < t < 1} intersects F implies that
both x and y belong to F . If F is a face of C and F ′ is a face of F , then it is clear that F ′

must be a face of C. Now suppose that F is either Q or R. For a nonzero vector u ∈ Fd,
consider the hyperplane H := {x ∈ Fd | 〈x, u〉 = 0}, and denote the closed half-spaces
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{x ∈ Fd | 〈x, u〉 ≤ 0} and {x ∈ Fd | 〈x, u〉 ≥ 0} by H− and H+, respectively. If a cone C
satisfies that C ⊆ H− (resp., C ⊆ H+), then H is called a supporting hyperplane of C
and H− (resp., H+) is called a supporting half-space of C. A face F of C is called exposed
if there exists a supporting hyperplane H of C such that F = C ∩H. The cone C is called
polyhedral provided that it can be expressed as the intersection of finitely many half-spaces.
The Farkas-Minkowski-Weyl Theorem states that a convex cone is polyhedral if and only if
it is the conic hull of a finite set. On the other hand, Gordan’s Lemma states that if C is a
rational polyhedral cone in Rd and G is an additive subgroup of Qd, then C ∩ G is finitely
generated (see [37, Lemma 2.9]).

A subset S of Rn is called an affine set (or an affine subspace) provided that for all x, y ∈ S
with x 6= y, the line determined by x and y is contained in S. Affine sets are translations
of subspaces, and an (n− 1)-dimensional affine set is called an affine hyperplane. The affine
hull of S, denoted by aff(S), is the smallest affine set containing S. The relative interior of S,
denoted by relin(S), is the Euclidean interior of S when considered as a subset of aff(S). If C
is a cone, then C is the disjoint union of all the relative interiors of its nonempty faces [128,
Theorem 18.2].

6.3 Monoids in C

The class C
In this section we introduce the class of monoids we shall be concerned with for the rest of
this thesis. We also introduce the cones associated to such monoids.

Theorem 6.3.1. For a monoid M , the following conditions are equivalent.

(1) M can be embedded into a finite-rank free commutative monoid.

(2) M has finite rank and can be embedded into a free commutative monoid.

(3) There exists d ∈ N such that M can be embedded in (Nd,+) as a maximal-rank sub-
monoid.

Proof. Let us verify first that (1) implies (2). Suppose that F is a finite-rank commutative
monoid containing M . Assuming that gp(M) ⊂ gp(F ), one can consider gp(M) as a Z-
submodule of gp(F ). Since gp(F ) is a finite-rank Z-module, so is gp(M). Hence M has
finite rank, which yields (2).

Now we argue that (2) implies (1), consider a set X such that M is embedded into the
free commutative monoid ⊕x∈XNx. After identifying M with its image, we can assume
that M ⊆ ⊕x∈XNx and also that gp(M) is a subgroup of ⊕x∈XZx. Since M has finite
rank, the dimension of the subspace W of V := ⊕x∈XQx generated by gp(M) is finite. Let
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{b1, . . . , bk} be a basis for W . For each i ∈ [[1, k]] there exists a finite subset Yi of X such
that bi ∈ ⊕x∈YiQx. As a result, W ⊆ ⊕y∈YQy, where Y = ∪ki=1Yi. Then

M ⊆
(⊕

y∈Y

Qy
)⋂(⊕

x∈X

Nx
)

=
⊕
y∈Y

Ny.

Since Y is a finite set, ⊕y∈YNy is a finite-rank free commutative monoid, and so (1) holds.
Clearly, (3) implies (1). So it suffices to prove that (1) implies (3). To do this, let M be a

monoid of rank d, and suppose that M is a submonoid of a free commutative monoid of rank r
for some r ∈ N• with r ≥ d. There is no loss of generality in assuming that M is a submonoid
of (Nr,+). Let V be the subspace of the Q-space Qr generated by M . Since M has rank d,
the subspace V has dimension d. Now consider the submonoid M ′ := Nr ∩ V of (Nr,+).
As M ′ is the intersection of the rational cone cone(Nr ∩ V ) and the lattice Zr ∩ V ∼= Zd, it
follows by Gordan’s Lemma that M ′ is finitely generated. On the other hand, M ⊆M ′ ⊆ V
guarantees that rank(M ′) = d. Since M ′ is a finitely generated additive submonoid of Nr of
rank d, it follows by [37, Proposition 2.17] that M ′ is isomorphic to a submonoid of (Nd,+).
This, in turn, implies that M is isomorphic to a submonoid of (Nd,+), which concludes our
argument.

As we are interested in studying monoids satisfying the equivalent conditions of Theo-
rem 6.3.1, we introduce the following notation.

Notation: Let C denote the class consisting of all monoids (up to isomorphism) satisfying
the conditions in Theorem 6.3.1. In addition, for every d ∈ N•, we set

Cd := {M ∈ C | rank(M) = d}.

A monoid is affine if it is isomorphic to a finitely generated submonoid of the free abelian
group Zd for some d ∈ N. The interested reader may find a self-contained treatment of affine
monoids in [37]. Clearly, the class C contains all affine monoids. Computational aspects of
affine monoids and factorization invariants of half-factorial affine monoids have been studied
in [71] and [70], respectively. Diophantine monoids form a special subclass of that one
consisting of affine monoids and has been studied in [46]. Monoids in C of small rank have
been recently studied in [57]. Some other special subclasses of C have been previously consider
in the literature as they naturally arise in the study of algebraic curves, toric geometry, and
homological algebra. Here we offer a few examples.

Example 6.3.2. If M is finitely primary, then M is primary and satisfies that M̂ ∼= Nd [79,
Theorem 2.9.2]. Hence C contains all finitary primary monoids.

Example 6.3.3. Good semigroups were introduced in [29] in the context of algebraic curves.
Good semigroups are submonoids of (Nd,+) that naturally generalize value semigroups of
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an algebraic curve in the sense that monoids on both classes satisfy certain common “good”
properties. For instance, the value semigroup S of the ring

R := C[[x, y]]/
(
(x7 − x6 + 4x5y + 2x3y2 − y4)(x3 − y2)

)
is represented in Figure 6.1. As {(x, y) ∈ S | x < 13} is finite, the affine line x = 13 of R2

Figure 6.1: A non-finitely generated good semigroup.

contains infinitely many atoms of S. Hence the good semigroup S is not finitely generated
(for more details on this example, see [30, page 8]). In addition, it has been verified in [29,
Example 2.16] that the good semigroup

{(x, y) ∈ N2 | x ≥ 25 and y ≥ 27}

is not the semigroup value of any algebraic curve. Clearly, the class C contains all good
semigroups. Good semigroups have received substantial attention since they were introduced;
see for example [29, 30, 59] and see [60, 120] for more recent studies.

Example 6.3.4. From the structure theorem for modules over a PID, we have that if R is
a 1-dimensional integrally-closed local domain and M is a finitely generated torsion-free R-
module, then M is free if and only if M⊗RHom(M,R) is torsion-free. It has been conjectured
by C. Huneke and R. Wiegand that this property also holds for any 1-dimensional Gorenstein
domain. Given a numerical monoid Γ and s ∈ N \ Γ, consider the collection

M s
Γ := {(0, 0)} ∪ {(x, n) | {x, x+ s, x+ 2s, . . . , x+ ns} ⊆ Γ}

consisting of all arithmetic sequences of step size s contained in Γ. It is clear that M s
Γ

is a monoid; it is a called a Leamer monoid. The atomic structure of Leamer monoids
is connected to the Huneke-Wiegand conjecture via [69, Corollary 7]. Notice that Leamer
monoids are non-finitely generated rank 2 monoids contained in the class C. Factorization
properties of Leamer monoids have been considered in [108].
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The following example has been kindly provided by Roger Wiegand, and will appear
in [25].

Example 6.3.5. Let α and β be two positive irrational numbers such that α < β, and
consider the monoid Mα,β defined as follows:

Mα,β := {(0, 0)}
⋃{

(m,n) ∈ N2

∣∣∣∣ α < n

m
< β

}
.

It follows from Farkas-Minkowski-Weyl Theorem that Mα,β is not finitely generated and,
therefore, |A(Mα,β)| = ∞. In addition, Mα,β is a primary FFM (see Proposition 6.6.1 and
Proposition 6.5.7). For every n ≥ 3, the sequence of monoids {Mn} obtained by setting

α =
2

n+
√
n2 − 4

and β =
n+
√
n2 − 4

2

shows up in the study of Betti tables of short Gorenstein algebras. In an ongoing project,
Avramov, Gibbons, and Wiegand have proved that

A(Mn) = {ω1−a(1, b) | (a, b) ∈ Γ},

where ω : (p, q) 7→ (np − q, p) is an automorphism of Mn and Γ := Z × [[1, n − 2]]. This
suggests the following question.

Question 6.3.6. For any irrational (or algebraic) numbers α and β with α < β, can we
generalize Example 6.3.5 to describe the set of atoms of Mα,β?

The Cones of Monoids in C
A lattice is a partially ordered set L, in which every two elements have a unique join (i.e.,
least upper bound) and a unique meet (i.e., greatest lower bound). The lattice L is complete
if each S ⊆ L has both a join and a meet. Two complete lattices are isomorphic if there
is a bijection between them that preserves joints and meets. For background information
on (complete) lattices and lattice homomorphisms, see [61, Chapter 2]. For a cone C, the
collection of all its faces, denoted by F(C), is a complete lattice (under inclusion) [128,
page 164], where the meet is given by intersection and the join of a given set of faces is the
smallest face in F(C) containing all the given faces. The lattice F(C) is called the face lattice
of C. Two cones C and C ′ are combinatorially equivalent provided that their face lattices
are isomorphic.

Let F denote either Q or R. As mentioned in the introduction, a monoid M in C of rank d
can be embedded in a d-dimensional vector space over F via

M ↪→ gp(M) ↪→ F⊗Z gp(M) =: V,
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where the flatness of F as a Z-module ensures the injectivity of the second map. Then we
can consider the conic hull coneV (M) of M in V . It turns out that the combinatorial and
geometric structures of coneV (M) do not depend on the proposed embedding M ↪→ V , as
we proceed to show.

Proposition 6.3.7. Let F ∈ {Q,R}. Let M and M ′ be two monoids in C, and let V and V ′

be two finite-dimensional vector spaces over F containing M and M ′, respectively. If the
monoids M and M ′ are isomorphic, then

(1) coneV (M) is homeomorphic to coneV ′(M
′);

(2) coneV (M) is combinatorially equivalent to coneV ′(M
′).

Proof. Let d be the rank of M . By Theorem 6.3.1 the monoid M can be embedded in
(Nd,+). After identifying M with its image, we can assume that M ⊆ Nd and gp(M) is a
subgroup of Zd. Let ϕ : M →M ′ be a monoid isomorphism. Then ϕ extends to an injective
group homomorphism gp(M) → V ′ with image gp(M ′). By tensoring gp(M) and V ′ with
the flat Z-module F, such a group homomorphism extends to a linear transformation

ϕ̄ : V := F⊗ gp(M)→ F⊗Z V
′ = V ′.

Since F is flat, ker ϕ̄ is trivial and, therefore, ϕ̄ is a linear embedding. Hence ϕ̄ is a homeo-
morphism onto its image. As

ϕ̄(coneV (M)) = coneϕ̄(V )(M
′) = coneV ′(M

′),

the cones coneV (M) and coneV ′(M
′) are homeomorphic. Notice that we have chosen the

vector space V but not V ′. This, along the fact that being homeomorphic is a transitive
relation, yields (1).

To argue (2), it suffices to observe that the fact that ϕ̄ is a linear bijection taking
coneFd(M) onto coneV ′(M

′) guarantees that the map given by the assignment F 7→ ϕ̄(F ) is
an order-preserving bijection from F(coneFd(M)) to F(coneV ′(M

′)) and, therefore, a lattice
isomorphism.

From now on we shall tacitly assume Proposition 6.3.7 when referring to the cone of
a monoid M in C over a field F ∈ {Q,R}, and feel free to choose (or let unspecified) the
finite-dimensional F-vector space in which M is embedded into.

Corollary 6.3.8. If M is a monoid in C, then dim cone(M) = rank(M).

Proof. Set d = rank(M). By Theorem 6.3.1, we can assume that M ⊆ Nd. Then we have
that cone(M) ⊆ Rd and, therefore, dim cone(M) ≤ d. On the other hand, rank gp(M) = d,
along with the fact that gp(M) is contained in the subspace of Fd generated by M , implies
that M contains d linearly independent vectors. Hence dim coneFd(M) ≥ d, which concludes
the proof.
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Proposition 6.3.9. Let M be a cone in C. Then cone(M) is a pointed cone.

Proof. Set k = rank(M), and for F ∈ {Q,R} set V := R ⊗Z gp(M). Suppose, by way of
contradiction, that coneV (M) is not pointed. Using Theorem 6.3.1, one can assume that M
can be embedded into (Nk,+). Let ι : M → (Nk,+) be an injective monoid homomorphism.
After tensoring both gp(M) and gp(Nk) = Zk with the flat Z-module F, the homomorphism ι
extends to a linear transformation ῑ : R⊗Z gp(M)→ Fk. Since coneV (M) is not pointed, it
contains a 1-dimensional subspace L. As ῑ is linear, it must be continuous and, therefore,

ῑ(L) ⊆ ῑ
(

coneV (M)
)
⊆ ῑ(coneV (M)) = ι(coneV (M)).

This, along with the fact that ι(coneV (M)) ⊆ Rk
≥0, implies that ῑ(L) ⊆ Fk≥0. Since ῑ(L) is

a subspace of Fk, it must be trivial, which contradicts the injectivity of ῑ. Thus, coneV (M)
must be pointed, which completes our argument.

Members of C are finite-rank torsion-free monoids. However, not every finite-rank torsion-
free monoid is in C. The next two examples shed some light upon this observation.

Example 6.3.10. A nontrivial submonoid M of (Q≥0,+) is obviously a rank 1 torsion-free
monoid. It follows by Theorem 6.3.1 that M belongs to C if and only if M is isomorphic
to a numerical monoid. Hence [94, Proposition 3.2] guarantees that M is in C if and only
if M is finitely generated. As a result, non-finitely generated submonoids of (Q≥0,+) such
as 〈1/p | p is prime〉 are finite-rank torsion-free monoids that do not belong to the class C.
Clearly, the Grothendieck groups of such monoids cannot be free.

The following example, courtesy of Winfried Bruns, shows that a finite-rank torsion-free
monoid might not belong to C even though its Grothendieck group is free.

Example 6.3.11. Consider the additive monoid

M := {(0, 0)} ∪ {(m,n) ∈ Z2 | n > 0} ⊆ Z2.

It is clear that M is an additive submonoid of Z2 and, therefore, it has finite rank. In
addition, it is clear that M is torsion-free. On the other hand,

coneR2(M) = {(x, y) ∈ R2 | y ≥ 0},

which is not a pointed cone. As a consequence, it follows from Proposition 6.3.9 that M
does not belong to the class C.
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Cones Realized by Monoids in C
We conclude this section characterizing the positive cones that can be realized by the monoids
in C. First, let us argue the following lemma.

Lemma 6.3.12. For d ∈ N, let C be a d-dimension positive cone in Rd and let x ∈ intC.
Then there exists a d-dimensional rational simplicial cone Cp such that R>0x ⊂ intCp and
Cp ⊆ {0} ∪ intC.

Proof. For d = 1, take Cp = R≥0x. Then suppose that d ≥ 2 and write x = (x1, . . . , xd).
As C is positive and x ∈ intC, we have that xi > 0 for i ∈ [[1, d]]. Let ` be the distance from x
to the complement of intC. Since the complement of intC is closed and {x} is compact,
` > 0. Consider the d-dimensional regular simplex ∆n := conv(e1, . . . , ed), and choose N ∈ N
large enough such that diam(∆n/N) =

√
2/N < `. In addition, take q = (q1, . . . , qd) ∈ Qd

>0

such that qi < xi for i ∈ [[1, d]] and
∑d

i=1(xi − di) < 1/N . Now set ∆ := q + ∆n/N .
Clearly, x− q is an interior point of ∆n/N and, therefore, x is an interior point of ∆. This,
along with the fact that diam(∆) = diam(∆n/N) < `, ensures that ∆ ⊂ intC. Lastly take
Cp := cone(∆). It is clear that Cp is a closed cone contained in {0} ∪ intC. In addition,
x ∈ int ∆ implies that R>0x ⊂ intCp. As dim ∆ = d, we have that dim Cp = d. Hence the
set of 1-dimensional edges of the polyhedral Cp has size at least d. On the other hand, the
1-dimensional faces of Cp are determined by some of the vertices of ∆. As R>0q ∈ intCp, the
1-dimensional faces of Cp are precisely the d nonnegative rays containing the points q+ei/N
for i ∈ [[1, d]]. Thus, Cp is a d-dimensional rational simplicial cone.

Notation: We call a 1-dimensional subspace of Rd (resp., an infinite ray) a rational line
(resp., a rational ray) if it contains a nonzero point with rational components.

Theorem 6.3.13. For d ∈ N, let C be a positive cone in Rd. Then C can be generated by
a monoid in C if and only if each 1-dimensional face of C is a rational ray.

Proof. For the direct implication, suppose that C is generated by a monoid in C. Then
one can assume that C = cone(M), where M is a rank d submonoid of (Nd,+). Let L be
a 1-dimensional face of C, and let x be a nonzero point in L. Now take c1, . . . , ck ∈ R>0

and x1, . . . , xk ∈ M• such that x = c1x1 + · · · + ckxk. If k = 1, then x1 = 1
c1
x ∈ L and,

therefore, L is a rational ray. If k > 1, then x′1 := c2x2 + · · ·+ ckxk ∈ cone(M)• and

c1

1 + c1

x1 +
1

1 + c1

x′1 =
1

1 + c1

x ∈ L.

As L is a face of C and the segment line from x1 to x′1 intersects L, it follows that the whole
segment is contained in L. In particular, x1 ∈ L. Hence L is a rational ray.

For the reverse implication, assume that all 1-dimensional faces of C are rational rays.
Consider the set M := C∩Nd. Clearly, M is an additive submonoid of Nd and cone(M) ⊆ C.
Take x ∈ C•, and set ` := R>0x. Since C is the disjoint union of all the relative interiors
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of its nonempty faces, there exists a face C ′ of C such that x ∈ relinC ′. Suppose that C ′

is d′-dimensional. Then by Lemma 6.3.12 there exists a rational cone Cx ⊆ relinC ′ with d′

1-dimensional faces such that ` ⊂ relinCx. Now take v1, . . . , vd′ ∈ Nd \ {0} such that
R≥0vi for i ∈ [[1, d′]] are the 1-dimensional faces of Cx. As x ∈ relinCx we can write
x = c1v1 + · · · + cd′vd′ for some c1, . . . , cd′ ∈ R≥0. Because vi ∈ C ∩ Nd for i ∈ [[1, d′]], it
follows that x ∈ cone(M).

Not every positive cone in Rd can be generated by a monoid in C. The following example
sheds some light upon this observation.

Example 6.3.14. Let C be the cone in Rd generated by the set of vectors {e1, . . . , ed−1, vd},
where vd := πed+

∑d−1
i=1 ei. It is clear that C is a positive cone. Note, in addition, that R≥0vd

is a 1-dimensional face of C. Finally, observe that R>0vd contains no point with rational
components. Hence it follows by Theorem 6.3.13 that C cannot be generated by any monoid
in C.

6.4 Face Submonoids

Face Submonoids

For M in C we would like to understand the structure of the face lattice of cone(M) in
connection with the divisibility aspects of M . In particular, the submonoids of M obtained
by intersecting M with the faces of cone(M) are very special as they inherit many divisibility
and atomic properties from M , as we shall see in the next three sections.

Definition 6.4.1. Let M be a nontrivial monoid in C. A submonoid N of M is called a face
submonoid of M provided that N = M ∩ F for some face F of cone(M) ⊆ R⊗Z gp(M).

It follows from Proposition 6.3.7 that the definition of a face submonoid only depends
on M .

Proposition 6.4.2. Let M be a monoid in C, and let N be the face submonoid of M
determined by the face F . Then the following conditions hold.

(1) N is a monoid in C satisfying that A(N) = A(M) ∩ F .

(2) cone(N) = F .

Proof. Let us argue (1) first. The fact that N is a monoid in C is a direct implication of
Theorem 6.3.1. Since A(M) ∩ F ⊆ N , one has that A(M) ∩ F ⊆ A(N). To verify the
reverse inclusion, take a′ ∈ A(N), and let a ∈ A(M) such that a |M a′. Take b ∈ M such
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that a′ = a+b. Then a′/2 belongs to the intersection of F and relin {ta+(1−t)b | 0 ≤ t ≤ 1}.
This implies that both a and b belong to F . As a result,

a ∈ A(M) ∩ F ⊆ N ⊆ A(N).

Then a′ = a ∈ A(M) ∩ F , which yields the desired inclusion. Hence (1) holds.
To argue (2), it suffices to assume that M is a submonoid of (Nd,+) of rank d for some

d ∈ N• and F is a face of coneQd(M). Since N ⊆ F and F is a cone, coneQd(N) ⊆ F .

To show the reverse inclusion, take x ∈ F •. Then x =
∑k

i=1 qiai for a1, . . . , ak ∈ A(M)
and q1, . . . , qk ∈ Q>0. Then mx ∈ M ∩ F = N , where m is the least common multiple
of the denominators of the q′is. So x ∈ cone(N). As a result, F ⊆ cone(N), and then (2)
follows.

Remark 6.4.3. With notation as in Proposition 6.4.2, the condition that the submonoid N
is a face submonoid of M is needed to guarantee that A(N) = A(M) ∩ F . To see this
consider, for instance, any submonoid N of M such that N ∩ A(M) is an empty set. It is
clear in this case that A(N) 6= A(M) ∩ F .

For a monoid M in C, there might be submonoids of M obtained by intersecting M
with certain non-supporting hyperplanes whose sets of atoms can be obtained as in Propo-
sition 6.4.2.

Example 6.4.4. Consider the submonoid M = 〈2e1, 2e2, e1 +e2〉 of (N2,+). It can be easily
checked that A(M) = {2e1, 2e2, e1 + e2}. Now consider the hyperplane H = R(e1 + e2) of R2

and set N = M ∩H. It is clear that N is a submonoid of M satisfying that

A(N) = {e1 + e2} = A(M) ∩H.

However, notice that N is not a face submonoid of M .

Recall that a submonoid N of a monoid M is said to be divisor-closed provided that for
all y ∈ N and x ∈M the condition x |M y implies that x ∈ N . For any monoid M in C, the
concepts of a face submonoid and a divisor-closed submonoid coincide.

Theorem 6.4.5. Let M be a monoid in C. Then a submonoid N of M is divisor-closed
in M if and only if N is a face submonoid of M .

Proof. Suppose that M ∈ Ck, and assume that M ⊆ Nk ⊂ Rk. We verify first that face
submonoids of M are divisor-closed. To do so, take a face F of cone(M) and set N := M∩F .
To argue that N is a divisor-closed submonoid of M , take x ∈ N and y ∈M \ {x} such that
y |M x. Then x = y + y′ for some y′ ∈M , which implies that

x/2 ∈ F ∩ relin {ty + (1− t)y′ | 0 ≤ t ≤ 1}.

As F is a face both y and y′ belong to F , and so y ∈ N . Hence N is divisor-closed.
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Let us argue the reverse implication by induction. Notice that when M has rank 1, it
is isomorphic to a numerical monoid and the only submonoids of M that are divisor-closed
are the trivial and M itself, which are the face submonoids of M corresponding to the origin
and to cone(M), respectively. Fix now k > 1 and assume that the divisor-closed submonoids
of any monoid in C with rank less than k are face submonoids. Let M be a maximal-rank
submonoid of (Nk,+) and let N be a submonoid of M that is not a face submonoid.

CASE 1. rank(N) = k. Since N is not a face submonoid of M , it follows that N 6= M .
Take v ∈M \N and a basis v1, . . . , vk ∈ N of Qk such that v =

∑k
i=1 qivi, where the rational

coefficients satisfy that q1, . . . , qj ≤ 0 and qj+1, . . . , qk > 0 (not all zeros) for some index
j ∈ N•. Then

dv +

j∑
i=1

(dqi)vi =
k∑

i=j+1

(dqi)vi ∈ N,

where d is the least common multiple of the denominators of all the nonzero qi’s. Since
v /∈ N , the monoid N cannot be divisor-closed.

CASE 2. rank(N) < k. Take u ∈ Qk such that the hyperplane

H := {h ∈ Rk | 〈h, u〉 = 0}
of Rk contains linearly independent vectors v1, . . . , vk−1 ∈M such that v1, . . . , vr ∈ N , where
r = rank(N). Consider the following two subcases.

CASE 2.1. H is a supporting hyperplane of cone(M). Because N is not a face submonoid
of M , the face F := H ∩ cone(M) of cone(M) must contain an element of M \ N . Since
cone(M ∩ F ) = cone(M) ∩ F = F , we have that N is not a face submonoid of M ∩ F . As
rank(M ∩ F ) < rank(M), it follows by induction that N is not a divisor-closed submonoid
of M ∩ F . Therefore N cannot be a divisor-closed submonoid of M .

CASE 2.2. H is not a supporting hyperplane of cone(M). So there exist wr+1, w
′
r+1 ∈M

such that 〈wr+1, u〉 > 0 and 〈w′r+1, u〉 < 0. As {v1, . . . , vk−1, w
′
r+1} is a basis for Rk there

exists wr+2 in M ∩ int cone(v1, . . . , vk−1, w
′
r+1) such that S := {v1, . . . , vr} ∪ {wr+1, wr+2}

is linearly dependent. Clearly, 〈wr+2, u〉 < 0. After relabeling the vectors v1, . . . , vr (if
necessary), we have that

j∑
i=1

qivi =

( r∑
i=j+1

qivi

)
+ qr+1wr+1 + qr+2wr+2 (6.1)

for some j ∈ [[1, r]], and coefficients q1, . . . , qr+1 ∈ Q≥0, and qr+2 ∈ Q (not all zeros). Observe
that both coefficients qr+1 and qr+2 are different from zero. After taking the scalar product
with u in both sides of (6.1), one obtains that

qr+2〈wr+2, u〉 = −qr+1〈wr+1, u〉.
Hence qr+1 and qr+2 are both positive. Now we can multiply (6.1) by the common denom-
inator d of all nonzero qi, to obtain that wr+1 |M

∑j
i=1(dqi)vi. Since wr+1 /∈ N , we have

that N is not divisor-closed, which concludes the proof.



CHAPTER 6. GEOMETRY OF SUBMONOIDS OF A FINITE-RANK FREE
COMMUTATIVE MONOID 88

6.5 Factoriality

Unique Factorization Monoids

In this section we study the factoriality of members of C in connection with the geometric
properties of their corresponding cones. We shall provide geometric characterizations of the
UFMs, HFMs, and OHFMs in C.

To begin with, let us characterize the UFMs in C.

Proposition 6.5.1. For a monoid in C, the following conditions are equivalent.

(1) M is a UFM.

(2) Each face submonoid of M is a UFM.

(3) |A(M)| = dim cone(M).

Proof. To prove that (1) implies (3), we will first verify that |A(M)| ≥ dim cone(M). Such
inequality holds trivially if M contains infinitely many atoms. Then suppose that A(M) is
finite. By Farkas-Minkowski-Weyl Theorem, cone(M) is polyhedral. As a result, cone(M)
contains at least dim cone(M) 1-dimensional edges. Since cone(M) = cone(A(M)), any 1-
dimensional edge of cone(M) must contain an atom of M . Thus, |A(M)| ≥ dim cone(M),
as desired. Suppose now, by way of contradiction, that |A(M)| > dim cone(M). Let
a1, . . . , ad+1 ∈ A(M) be distinct atoms. Then

∑d+1
i=1 βiai = 0 for some β1, . . . , βd+1 ∈ Q

not all zeros. There is no loss in assuming that there exists an index k ∈ [[1, d]] such that
βi < 0 for i ∈ [[1, k]] and βi ≥ 0 for i ∈ [[k + 1, d+ 1]]. Hence

k∑
i=1

βiai and
d+1∑
i=k+1

(−βi)ai

are two distinct factorizations of the same element of M , contradicting that M is a UFM.
Now we show that (3) implies (2). Set d := dim cone(M) and suppose that |A(M)| = d.

Let N be a face submonoid of M . Since |A(M)| = d, it follows by Farkas-Minkowski-Weyl
Theorem that cone(M) is polyhedral. Then N = M ∩ H for some supporting hyperplane
H = {x ∈ Rd | 〈x, u〉 = 0} determined by u ∈ Rd. Suppose that cone(M) ⊆ H−. Then if
x ∈ N and

∑t
i=1 ai ∈ ZM(x), one has that

∑t
i=1〈ai, u〉 = 0 and, therefore, 〈ai, u〉 = 0 for

i ∈ [[1, t]]. This implies that
∑t

i=1 ai ∈ ZN(x). As a consequence, A(N) = A(M)∩N . Thus,
N is a UFM, and (2) follows.

As (2) trivially implies (1), our proof is complete.

Corollary 6.5.2. Let M be a UFM in C. Then cone(M) is rational and polyhedral.

Proof. By Proposition 6.5.1, the monoid M is finitely generated and so cone(M) is the conic
hull of a finite set. Now the corollary follows by Farkas-Minkowski-Weyl Theorem.
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Half-Factorial Monoids

The concept of half-factoriality is a weaker version of that one of factoriality (or being a
UFD). We proceed to offer characterizations of half-factorial monoids in the class C in terms
of their face submonoids and in terms of the convex hull of their sets of atoms.

Definition 6.5.3. An atomic monoid M is called an HFM (or a half-factorial monoid)
provided that for all x ∈M• and z, z′ ∈ Z(x), we have that |z| = |z′|.

HFMs in C can be characterized as follows.

Proposition 6.5.4. For a monoid M in C the next conditions are equivalent.

(1) M is an HFM.

(2) Each face submonoid of M is an HFM.

(3) dim conv(A(M)) < dim cone(M).

Proof. First, we show that (1) implies (3). To do this, suppose that M is an HFM. Set
d := dim cone(M). Since cone(M) = cone(A(M)), one can take linearly independent vectors
a1, . . . , ad in A(M). Take also u ∈ Qd and α ∈ Q such that the polytope conv(a1, . . . , ad) is
contained in the affine hyperplane H := {q ∈ Qd | 〈q, u〉 = α}. In addition, fix a ∈ A(M),
and write a =

∑d
i=1 βiai for some β1, . . . , βd ∈ Q. From the fact that M is an HFM, we can

deduce that
∑d

i=1 βi = 1. As a result,

〈a, u〉 =
d∑
i=1

βi〈ai, u〉 = α
d∑
i=1

βi = α,

which means that a ∈ H. Hence A(M) ⊂ H, which implies that dim conv(A(M)) is at most
d− 1. Then we have that dim conv(A(M)) < dim cone(M), as desired.

To argue that (3) implies (2), suppose that dim conv(A(M)) < dim cone(M). Then there
exists an affine hyperplane H containing conv(A(M)). As in the previous paragraph, take
u ∈ Qd and α ∈ Q such that H = {q ∈ Qd | 〈q, u〉 = α}. Now if x ∈M and

z :=
∑

a∈A(M)

βaa ∈ Z(x),

then

|z| =
∑

a∈A(M)

βa =
1

α

∑
a∈A(M)

βa〈a, u〉 =
1

α

〈 ∑
a∈A(M)

βaa, u

〉
=

1

α
〈x, u〉.

Hence L(x) = {1/α〈x, u〉} for all x ∈M•, and so M is an HFM.
That (2) implies (1) follows trivially.



CHAPTER 6. GEOMETRY OF SUBMONOIDS OF A FINITE-RANK FREE
COMMUTATIVE MONOID 90

Corollary 6.5.5. A monoid M in Cd is an HFM if and only if A(M) is contained in an
affine hyperplane of Q⊗Z gp(M).

Remark 6.5.6. Corollary 6.5.5 has been previously established by Kainrath and Lettl
in [112]. Fairly similar versions of the same result were first given by Zaks [149] and
Narkiewicz [123].

The chain of implications (6.2), where being a UFM, an HFM, and an atomic monoid
are included, has received a great deal of attention since it was first studied (in the context
of integral domains) by Anderson, Anderson, and Zafrullah [3]:

UFM ⇒ HFM ⇒ FFM ⇒ BFM ⇒ ACCP monoid ⇒ atomic monoid. (6.2)

The first three implications above are obvious, while the last two implications follow from [79,
Proposition 1.1.4] and [79, Corollary 1.3.3]. In addition, all the implications above are strict,
and examples witnessing this observation (in the context of integral domains) can be found
in [3]. We have already seen that not every monoid in C is an HFM. However, each monoid
in C is an FFM, as the next proposition illustrates.

Proposition 6.5.7. Each monoid in C is an FFM.

Proof. By Theorem 6.3.1, it suffices to show that for every d ∈ Z≥1, any additive submonoid
M of Nd is an FFM. Fix x ∈ M . It is clear that 〈x, y〉 ≥ 0 for all y ∈ M . Thus, y |M x
implies that ||y|| ≤ ||x||. As a result, the set

{a ∈ A(M) : a |M x}

is finite, which implies that Z(x) is also finite. Hence M is an FFM.

As an immediate consequence of Proposition 6.5.7, every monoid in C satisfies the last
four conditions in the chain of implications (6.2).

Other-Half-Factorial Monoids

Other-half-factoriality is a dual version of half-factoriality and was introduced by Coykendall
and Smith in [58].

Definition 6.5.8. An atomic monoid M is called an OHFM (or an other-half-factorial
monoid) provided that for all x ∈M• and z, z′ ∈ Z(x) with |z| = |z′|, we have that z = z′.

Although an integral domain is a UFD if and only if its multiplicative monoid is an
OHFM [58, Corollary 2.11], an OHFM is not, in general, a UFM or an HFM, as one can
deduce from the next theorem.

A set of points in a d-dimensional F-space V (where F is either Q or R) is said to be
affinely independent provided that no k of such points lie in a (k − 2)-dimensional affine
subspace of V for k ∈ [[2, d+ 1]]. If a set is affinely independent, its points are said to be in
general linear position.
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Theorem 6.5.9. Let M be a nontrivial monoid in C. Then the following statements are
equivalent.

(1) M is an OHFM.

(2) every face submonoid of M is an OHFM.

(3) The points in A(M) are affinely independent.

(4) conv(A(M)) is a simplex with dimension either rank(M)− 1 or rank(M).

Proof. To begin with, we verify that (1) and (3) are equivalent statements. For this, set
d = dim cone(M) and V := Q ⊗Z gp(M). Let us first prove that (1) implies (3). Assume,
therefore, that M is an OHFM and suppose, by way of contradiction, that the points in
A(M) are not affinely independent. Then there exist k ∈ [[2, d + 1]] and pairwise distinct
vectors a1, . . . , ak ∈ A(M) contained in a (k − 2)-dimensional affine subspace W of V . Let
M ′ denote the submonoid of M generated by a1, . . . , ak. Since W−ak is a (k−2)-dimensional
subspace of V , the vectors a1 − ak, . . . , ak−1 − ak are linearly dependent in W − ak and so∑k−1

i=1 qi(ai−ak) = 0 for some rational coefficients q1, . . . , qk−1 (not all zeros). After relabeling
vectors and coefficients, we can assume the existence of j ∈ [[1, k − 2]] such that q1, . . . , qj
are negative and qj+1, . . . , qk−1 are nonnegative. Set

x :=

j∑
i=1

(−mqi)ak +
k−1∑
i=j+1

(mqi)ai ∈M ′,

where m is the least common multiple of the denominators of the nonzero qi’s. Then

z :=

( j∑
i=1

(−mqi)
)
ak +

k−1∑
i=j+1

(mqi)ai and z′ :=

j∑
i=1

(mqi)ai +

( k−1∑
i=j+1

(−mqi)
)
ak,

are two factorizations in ZM ′(x) having the same length. As a1, . . . , ak are also atoms of
M , it follows that z and z′ are also factorizations in ZM(x), which contradicts that M is an
OHFM. Thus, (3) follows.

To prove that (3) implies (1), suppose that the points in A(M) are affinely independent
in V . We have seen in the proof of Proposition 6.5.1 that |A(M)| ≥ dim cone(M). As
a result, |A(M)| ∈ {d, d + 1}. If |A(M)| = d, then Proposition 6.5.1 ensures that M
is an UFM and, therefore, an HFM. Thus, we finally assume that |A(M)| = d + 1. Let
A(M) =: {a0, a1, . . . , ad} and suppose, by way of contradiction, that M is not an OHFM.
This implies the existence of mi, ni ∈ N for i ∈ [[0, d]] such that

d∑
i=0

miai =
d∑
i=0

niai and
d∑
i=0

(mi − ni) = 0.
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Assume, without loss of generality, that m0 6= n0. Let H be an affine hyperplane in V
containing a1, . . . , an. Take u ∈ Qd and α ∈ Q such that H = {q ∈ Qd | 〈q, u〉 = α}. As the
points a0, a2, . . . , an are affinely independent, a0 /∈ H. Then

0 =
d∑
i=0

(mi − ni)〈u, ai〉

= (m0 − n0)〈u, a0〉+ α

d∑
i=1

(mi − ni)

= (m0 − n0)(〈u, a0〉 − α).

As a result, 〈u, a0〉 = α, which contradicts the fact that a0 does not belong to H. Hence M
must be an OHFM, yielding statement (1).

To argue that (3) implies (2), suppose that the points in A(M) are affinely independent.
Assume that M is a submonoid of (Nd,+) of rank d for some d ∈ N. Now suppose that N is a
face submonoid of M , and let F be a face of cone(M) such that N = M∩F . Proposition 6.4.2
ensures that A(N) = A(M) ∩ F . Since the set of points A(M) is affinely independent, the
set of points A(N) is also affinely independent. As we have already proved the equivalence
of (1) and (3), we can conclude that N is an OHFM. Hence statement (2) follows.

It is clear, on the other hand, that (2) implies (1). Now the fact that (4) is a restatement
of (3) completes our proof.

Corollary 6.5.10. Let N be a numerical monoid. Then N is an OHFM if and only if the
embedding dimension of N is at most 2.

Remark 6.5.11. The characterization proposed in Theorem 6.5.9 was indeed motivated by
Corollary 6.5.10, which was first proved by Coykendall and Smith in [58].

The fact that every proper face submonoid of a monoid M in C is an OHFM does not
guarantee that M is an OHFM, as one can see in the following example.

Example 6.5.12. Consider the submonoid M := 〈2e1, 3e1, 2e2, 3e2〉 of (N2,+). It is easy to
argue that A(M) = {2e1, 3e1, 2e2, 3e2}. Notice that the 1-dimensional faces of coneR2(M) are
R≥0e1 and R≥0e2. Then there are two face submonoids of M corresponding to 1-dimensional
faces of cone(M), and they are both isomorphic to the numerical monoid 〈2, 3〉, which is an
OHFM by Corollary 6.5.10. Hence every proper face submonoid of M is an OHFM. However,
conv(A(M)) is not a simplex and, therefore, it follows by Theorem 6.5.9 that M is not an
OHFM.

We conclude this section with the following proposition.

Proposition 6.5.13. Let M be an OHFM in C. Then the faces of cone(M) whose corre-
sponding face submonoids are not UFMs form a (possibly empty) interval in the face lattice
F(cone(M)).
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Proof. Let N consist of all faces of cone(M) whose corresponding face submonoids are not
UFMs. If M is a UFM, it follows by Proposition 6.5.1 that every face submonoid of M is
also a UFM and, therefore, N is empty. Then we assume that M is not a UFM.

Among all the faces in N , let F and F ′ be minimal in F(cone(M)). Suppose, by way of
contradiction, that F 6= F ′. SetN := M∩F andN ′ := M∩F ′. It follows by Proposition 6.4.2
that F = cone(N) and F ′ = cone(N ′). Since F and F ′ are minimal, they are not comparable
and so we can take a ∈ A(N) \ A(N ′) and a′ ∈ A(N ′) \ A(N). Once again, one can rely on
the minimality of F and F ′ to obtain

rank(A(N)) = rank(A(N) \ {a}) and rank(A(N ′)) = rank(A(N ′) \ {a′}).

As a result, the rank of the set A := A(N)∪A(N ′) is at most |A| − 2. Set n := |A|, and let
A be the d× n matrix whose columns are the vectors in A (after some order is fixed). Then
rankA = rank(A) ≤ n− 2. Thus, dim ker A ≥ 2. Consider the hyperplane of Qn defined by

H := {(x1, . . . , xn) ∈ Qn | x1 + · · ·+ xn = 0}

and note that

dim(H ∩ ker A) = dim(H) + dim(ker A)− dim(span(H ∪ ker A)) ≥ (n− 1) + 2− n ≥ 1.

Therefore there is a nonzero vector (q1, . . . , qn) in ker A satisfying that q1 + · · · + qn = 0.
First, taking j ∈ [[1, n]] such that q1, . . . , qj ≤ 0 and qj+1, . . . , qn > 0, then taking m to be the
least common multiple of the denominators of the nonzero qi’s, and finally proceeding as we
did in the second paragraph of the proof of Theorem 6.5.9, we can obtain two factorizations
of the same element of M having the same length. However, this contradicts that M is an
OHFM. Hence there exists only one minimal face of cone(M) whose face submonoid is not a
UFM, namely, F . Clearly, the face submonoid of any face containing F cannot be a UFM.
This implies that [F, cone(M)] ⊆ N . The reverse inclusion follows from the uniqueness of a
minimal face in N . Hence N is the interval [F, cone(M)], which concludes our argument.

The reverse implication of Proposition 6.5.13 does not hold, as the next example illus-
trates.

Example 6.5.14. Consider the submonoid M :=
〈
3e1, 3e2, 2e3, 3e3

〉
of (N3,+). It can be

readily verified that A(M) = {3e1, 3e2, 2e3, 3e3}. Since {2e3, 3e3} is an affinely dependent
set, it follows by Theorem 6.5.9 that M is not an OHFM. However, the non-UFM face
submonoids of M are precisely those determined by the faces of cone(M) contained in the
interval [Re3, cone(M)].
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6.6 Primary Monoids and Finitary Monoids

As mentioned at the beginning of this chapter, primary monoids and finitary monoids have
been crucial in the development of non-unique factorization theory as the factorization struc-
ture of members in these two classes abstracts certain properties of important classes of
integral domains. In the first part of this section, we investigate some geometric aspects of
primary monoids in C. Then we shift our focus to the study of finitary monoids of C.

Primary Monoids

A monoid M is called primary provided that M is nontrivial and for all a, b ∈ M• there
exists n ∈ N such that nb ∈ a+M . The primary monoids in C are precisely those minimizing
the number of face submonoids.

Proposition 6.6.1. For a nontrivial monoid M in C, the following conditions are equivalent.

(1) M is primary.

(2) The only face submonoids of M are {0} and M .

(3) cone(M)• is an open subset of R⊗Z gp(M).

Proof. It follows from [79, Lemma 2.7.7] that M is primary if and only if the only divisor-
closed submonoids of M are {0} and M . This, along with Theorem 6.4.5, implies that the
conditions (1) and (2) are equivalent.

To argue that (2) implies (3), take x ∈ cone(M)•. Since cone(M) is the disjoint union of
the relative interiors of all its faces, there exists a face F of cone(M) such that x ∈ relinF . As
x 6= 0, the dimension of F is at least 1 and, therefore, M ∩F is a nontrivial face submonoid
of M . It follows now by (2) that M ∩ F = M and, therefore, x ∈ relin cone(M). Hence
cone(M)• is open.

Finally, let us verify that (3) implies (2). Since every proper face of cone(M) is contained
in the boundary of cone(M), the fact that cone(M)• is open implies that the only proper
face of cone(M) is the origin, from which (2) follows.

Remark 6.6.2. We want to emphasize that the fact that (1) and (3) are equivalent condi-
tions in Proposition 6.6.1 was first established by Geroldinger, Halter-Koch, and Lettl [80,
Theorem 2.4]. However, we obtain such a result here from the poset structure of the face
lattice of cone(M).

Primary monoids in C account for all primary submonoids of any (non-necessarily finite-
rank) free commutative monoid, as the next proposition illustrates.

Proposition 6.6.3. Let M be a primary submonoid of a free commutative monoid. Then M
has finite rank, and M can be embedded into (Nr,+), where r = rank(M).
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Proof. Let FP be a free commutative monoid on an infinite set P such that M is a submonoid
of FP . For s ∈ FP and S ⊆ FP , write

Spec(s) :=
{
p ∈ P | p divides s in FP

}
and Spec(S) :=

⋃
s∈S

Spec(s).

Suppose for a contradiction that Spec(M) contains infinitely many elements. Fix x ∈ M•,
and take p ∈ P such that p ∈ Spec(M) \ Spec(x). Since p is a prime element of FP , it is
clear that the set

S := {x ∈M | p does not divide x in FP}

is a divisor-closed submonoid of M . The fact that p /∈ Spec(x) implies that S is a nontrivial
submonoid of M , and the fact that p ∈ Spec(M) implies that S 6= M . Thus, S is a proper
nontrivial divisor-closed submonoid of M , which contradicts that M is primary. Hence
Spec(M) is finite and, as a result, M can be naturally embedded into Np1⊕· · ·⊕Npt, where
p1, . . . , pt are the prime elements Spec(M). It follows now from Theorem 6.3.1 that M can
be embedded into (Nr,+).

Finitely Primary Monoids

Now we restrict our attention to a special subclass of primary monoids, that one consisting
of finitely primary monoids. The complete integral closure of a monoid M , denoted by M̂ ,
is defined as follows:

M̂ :=
{
x ∈ gp(M) | there exists y ∈M such that nx+ y ∈M for every n ∈ N

}
.

Clearly, M̂ is a submonoid of gp(M) containing M , and so rank(M̂) = rank(M). A monoid M
is called finitely primary if there exist d ∈ N and a UFM F := 〈p1, . . . , pd〉, where p1, . . . , pd
are pairwise distinct prime elements, such that

(1) M is a submonoid of F ,

(2) M• ⊆ p1 + · · ·+ pd + F , and

(3) α(p1 + · · ·+ pd) + F ⊆M for some α ∈ N•.

In this case, it follows by [79, Theorem 2.9.2] that M̂ ∼= (Nd,+). Then rank(M) = d and,
moreover, any finitely primary monoid of rank d is in Cd. On the other hand, it also follows
from [79, Theorem 2.9.2] that finitely primary monoids are primary. Therefore, it follows
from Proposition 6.6.1 that for any finitely primary monoid M the set cone(M)• is open. As
the next proposition reveals, the closure of the same set happens to be a simplicial cone.

Proposition 6.6.4. If M is a finitely primary monoid, then M is in C and cone(M) is a
rational simplicial cone.
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Proof. Let d be the rank of M . We have already observed that M is in the class C. For the
rest of the proof, assume that M ⊆ M̂ ⊆ Nd. Because M̂ ∼= (Nd,+), one can take distinct

prime elements p1, . . . , pd of M̂ such that M̂ = 〈p1, . . . , pd〉 = Np1 ⊕ · · · ⊕ Npd. It follows
from [79, Theorem 2.9.2] that

M• ⊆ p1 + · · ·+ pd + M̂ and α(p1 + · · ·+ pd) + M̂ ⊆M,

for some α ∈ N•. Let Cp be the cone in Rd generated by p1, . . . , pd. Clearly, Cp is a rational

simplicial cone of dimension d. We claim that cone(M) = Cp. Since

M• ⊆ p1 + · · ·+ pd + M̂ ⊂ intCp,

we have that M ⊆ Cp. Therefore cone(M) ⊆ Cp and, as the cone Cp is closed, cone(M) ⊆ Cp.

Let us proceed to argue that Cp ⊆ cone(M). To do so, fix ε > 0 and fix also an index
j ∈ [[1, d]]. Let L be the 1-dimensional face of Cp in the direction of the vector pj, and
consider the conical open ball with central axis L given by

B(pj, ε) :=

{
w ∈ Rd \ {0}

∣∣∣∣ ||w − pL(w)||
||w||

< ε

}
,

where pL : Rd → Rpj is the linear projection of Rd onto its subspace Rpj. It is clear that the
set

{0} ∪
(
B(pj, ε) ∩ intCp

)
is a d-dimensional subcone of Cp and, therefore, it must intersect M̂ . Then one can take

y ∈ M̂ ∩ intCp such that R>0y ⊂ B(pj, ε). Because

α
(
M̂ ∩ intCp

)
⊆ α(p1 + · · ·+ pd) + M̂ ⊆M,

we have that αy ∈ M . As a result, R>0y ⊂ cone(M). As cone(M) and every open conical
ball with central axis L have an open ray in common, pj ∈ L ⊆ cone(M). As the index j

was arbitrarily taken, pj ∈ cone(M) for every j ∈ [[1, . . . , d]], and so Cp ⊆ cone(M). Hence

cone(M) is a rational simplicial cone.

For a primary monoid M in C, the fact that cone(M) is rational and simplicial does
not imply that M is finitely primary. The following example sheds some light upon this
observation.

Example 6.6.5. Consider the subset M of N2 defined by

M := {(0, 0)} ∪
{

(n,m) ∈ N2 | n,m ∈ N• and m ≤ 2n
}
.

From the fact that f(x) = 2x is a convex function, one can readily verify that M is a
submonoid of (N2,+). Since M contains (n, 1) for every n ∈ N• and M , the ray R≥0e1 is
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contained in coneR2(M). On the other hand, the fact that {(n, 2n) | n ∈ N•} ⊂ M , along
with limn→∞ 2n/n =∞, guarantees that the ray R≥0e2 is contained in coneR2(M). Thus,

coneR2(M) =
{

(0, 0)} ∪ {(x, y) ∈ R2 | x, y > 0
}

= {(0, 0)} ∪ R2
>0.

As cone(M)• is open, Proposition 6.6.1 ensures that M is a primary monoid. On the other
hand, cone(M) = R2

≥0 is a rational simplicial cone.

To argue that M is not finitely primary, it suffices to verify that M̂ 6∼= (N2,+). To do so,
fix m ∈ N, and then take N ∈ N large enough so that nm ≤ 2n for every n ≥ N . Note that
y := (N,Nm) belongs to M . Moreover,

n(1,m) + y = (n+N, (n+N)m) ∈M

for every n ∈ N. Therefore (1,m) ∈ M̂ for every m ∈ N. On the other hand, for any m ∈ N•
and (a, b) ∈M•,

2a(0,m) + (a, b) = (a, 2am+ b) /∈M.

Hence (n,m) ∈ M̂• implies that n > 0. As a result,

M̂ = {(n,m) ∈ N2 | n > 0}.

Since A(M̂) = {(1, n) | n ∈ N} contains infinitely many elements, M̂ 6∼= (N2,+). Hence M
cannot be finitely primary.

Finitary Monoids

Let M be a monoid. We say that M is weakly finitary if there exist a finite subset S of M
and n ∈ N• such that nx ∈ S + M for all x ∈ M•. In addition, a BFM M is called finitary
if there exist a finite subset S of M and n ∈ N• such that nM• ⊆ S + M . Clearly, every
finitary monoid is weakly finitary. In addition, every finitely generated monoid is finitary.
Also, affine monoids are finitary.

The face submonoids of a monoid in C inherit the condition of being (weakly) finitary.

Proposition 6.6.6. Let M be a monoid in C. Then M is finitary (resp., weakly finitary) if
and only if each face submonoid of M is finitary (resp., weakly finitary).

Proof. We will prove only the finitary version of the proposition as the weakly finitary version
follows similarly. Suppose that M is finitary, and let d be the rank of M . Take F to be a face
of cone(M), and consider the face submonoid N := M ∩ F . Since M is finitary, there exist
n ∈ N and a finite subset S of M such that nM• ⊆ S +M . We claim that nN• ⊆ SF +N ,
where SF := S ∩ F . Take x1, . . . , xn ∈ N• = M• ∩ F . As

n(M• ∩ F ) ⊆ nM• ⊆ S +M,
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there exist s ∈ S and y ∈M such that x1 + · · ·+xn = s+ y. Since M ∩F is a divisor-closed
submonoid of M , we find that s, y ∈ F . Therefore s ∈ SF and y ∈ N , which implies that
x1 + · · · + xn ∈ SF + N . Hence N is a finitary monoid. The reverse implication follows
trivially as cone(M) is a face of itself.

Our next goal is to give a sufficient geometric condition for a monoid in C to be finitary.
First, let us recall the concept of triangulation. A conical polyhedral complex p in Rd is a
collection of polyhedral cones in Rd satisfying the following conditions:

(1) Every face of a polyhedron in p is also in p;

(2) The intersection of any two polyhedral cones C1 and C2 in p is a face of both C1

and C2.

Clearly, the underlying set of the face lattice of a given polyhedral cone is a conical polyhedral
complex. For a conical polyhedral complex p in Rd, we set |p| := ∪C∈pC. Let p and p′ be
two conical polyhedral complexes. We say that p′ is a polyhedral subdivision of p provided
that |p| = |p′| and each face of p is the union of faces of p′. A polyhedral subdivision p′

of p is called a triangulation of p if p′ consists of simplicial cones. Every conical polyhedral
complex has certain special triangulations.

Theorem 6.6.7. [37, Theorem 1.54] Let p be a conical polyhedral complex, and let S ⊂ |p|
be a finite set of nonzero vectors such that S ∩ C generates C for each C ∈ p. Then there
exists a triangulation p′ of p such that {R≥0v | v ∈ S} is the set of 1-dimensional faces of p′.

We are in a position now to offer a sufficient geometric condition for a monoid in C to be
finitary.

Theorem 6.6.8. Let M be a monoid in C. If cone(M) is polyhedral, then M is finitary.

Proof. Let d be the rank of M , and assume that M ⊆ Nd. Since cone(M) is polyhedral, it
follows by Farkas-Minkowski-Weyl Theorem that cone(M) is the conic hull of a finite set of
vectors. As the vectors in such a generating set are nonnegative rational linear combinations
of vectors in M , there exists S = {v1, . . . , vk} ⊂M with k ≥ d such that cone(M) = cone(S).
By Theorem 6.6.7, there exists a triangulation T of the face lattice of cone(M) whose set of
1-dimensional faces is {R≥0vi | i ∈ [[1, k]]}. Then for any T ∈ T there are unique indices
t1, . . . , td satisfying that

1 ≤ t1 < · · · < td ≤ k and T = cone(vt1 , . . . , vtd),

and we can use this to assign to T the parallelepiped

ΠT :=
{
α1vt1 + · · ·+ αdvtd | 0 ≤ αi < 1 for every i ∈ [[1, d]]

}
.

It is clear that

|ΠT ∩ Zd| <∞ and ΠT ∩ Zd ⊂ Q≥0vt1 + · · ·+ Q≥0vtd .
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Then we can choose NT ∈ N large enough so that NTv ∈ Nvt1 + · · · + Nvtd for every
v ∈ ΠT ∩ Zd. Now take

m := max{NT |ΠT ∩ Zd| : T ∈ T }

and set n := m |T |. In order to show thatM is finitary, it suffices to verify that nM• ⊆ S+M .
To do so, take (possibly repeated) elements x1, . . . , xn ∈M•. For every x ∈ {x1, . . . , xn},

there exists T ∈ T with x ∈ T . Let T = cone(vt1 , . . . , vtd) for t1 < · · · < td be a simplicial
cone in T . Observe that we can naturally partition T into (translated) copies of the paral-
lelepiped ΠT , that is, T equals the disjoint union of the sets v+ ΠT for v ∈ Nvt1 + · · ·+Nvtd .
As a result, there exist z ∈ ΠT ∩ Zd and coefficients α1, . . . , αd ∈ N such that

x = z +
d∑
i=1

αivti . (6.3)

Hence for i ∈ [[1, n]], we can write xi = zi + mi for some zi ∈ ∪T∈TΠT ∩ Zd and mi ∈ M .
Since n = m|T |, there exists T0 ∈ T such that

|{i ∈ [[1, n]] | zi ∈ ΠT0 ∩ Zd}| ≥ m.

Consider now the equivalence relation on the set of indices {i ∈ [[1, n]] | zi ∈ T0} defined
by i ∼ j whenever zi = zj. The fact that m ≥ NT0 |ΠT0 ∩ Zd| guarantees the existence of
a class I determined by the relation ∼ and containing at least NT0 distinct indices. Take
I0 ⊆ I such that |I0| = NT0 . Setting z := zi for some i ∈ I0, one has that∑

i∈I0

zi = NT0z ∈ Nv1 + · · ·+ Nvn ∈ S +M

and, therefore, there exist v ∈ S and m ∈ M such that
∑

i∈I0 zi = v + m. As a result, one
can set m′ =

∑n
i=1 xi −

∑
i∈I0 xi ∈M to obtain that

n∑
i=1

xi =

(∑
i∈I0

xi

)
+m′ =

∑
i∈I0

zi +m′ +
∑
i∈I0

mi = v +

(
m+m′ +

∑
i∈I0

mi

)
∈ S +M.

Since the elements x1, . . . , xn were arbitrarily taken in M•, the inclusion nM• ⊆ S + M
holds. Hence the monoid M is finitary, as desired.

According to the characterization of cones generated by monoids in C we have provided
in Theorem 6.3.13, every d-dimensional positive cone C of Rd with C• open can be generated
by a monoid in C. Indeed, any such a cone can be generated by a finitary monoid in C.

Proposition 6.6.9. For d ∈ N, let C be a positive cone in Rd. If C• is open in Rd, then C
can be generated by a finitary monoid in C.
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Proof. Assume that C• is open in Rd. Take M = Nd ∩ C. It is clear that C = cone(M).
Now take v0 ∈ M•, and consider the monoid M ′ := {0} ∪ (v0 + M). Let C ′ be the cone
generated by M ′. Notice that Qd ∩ C and Qd ∩ C ′ are the cones generated by M and M ′

over Q, respectively. So proving that C ′ = C amounts to showing that Qd ∩ C ′ = Qd ∩ C
(see [37, Proposition 1.70]). Since M ′ ⊆M it follows that Qd ∩ C ′ ⊆ Qd ∩ C. Now let `0 be
the distance from {v0} to Rd \C. As Rd \C is closed and {v0} is compact, `0 > 0. Now take
v ∈ Qd ∩ C• such that ||v|| > 1, and let ` be the distance from v to Rd \ C. By a similar
argument, ` > 0. Notice that the conical ball

B(v, `) :=

{
w ∈ Qd

∣∣∣∣ ||w − pv(w)||
||w||

<
`

2

}
is contained in Qd ∩ C. Take N ∈ N such that

N > max
{ ||v0||
||v|| − 1

,
2||v0||
`

}
and Nv ∈ Qd. Now set w0 := Nv − v0. Notice that ||w0|| ≥ N ||v|| − ||v0|| > N . Then we
have that

||w0 − pv(w0)||
||w0||

<
||v0 − pv(v0)||

N
≤ ||v0||

N
<
`

2
.

Hence w0 ∈ Qd ∩ B(v, `) ⊆ Qd ∩ C, and so there exist c1, . . . , ck ∈ Q>0 and v1, . . . , vk ∈ M•

such that w0 =
∑k

i=1 civi. This implies that nv ∈ M ′ ⊆ cone(M ′) for some n ∈ N and,
therefore, v ∈ Qd ∩ cone(M ′). Hence Qd ∩ C• ⊆ Qd ∩ C.

As M ′ generates C, we only need to verify that M ′ is finitary. Take w1, w2 ∈ M ′•, and
then v1, v2 ∈M such that w1 = v0 + v1 and w2 = v0 + v2. Then

w1 + w2 = v0 + (v0 + v1 + v2) ∈ v0 + (v0 +M) ⊂ v0 +M ′.

As a result, 2M ′• ⊆ v0 +M ′, which implies that M ′ is a finitary monoid, as desired.

Theorem 6.6.8 and Proposition 6.6.9 indicate that there is a huge variety of finitary
monoids in C. We proceed to exhibit a monoid in C2 that is not even weakly finitary. First,
let us introduce the following notation.

Notation: For x ∈ R2
≥0 \ {0}, we let slope(x) ∈ R≥0 ∪ {∞} denote the slope of the line Rx,

and for X ⊂ R2
≥0 we set

slope(X) := {slope(x) | x ∈ X•}.

Example 6.6.10. Construct a sequence {vn} of vectors in N•×N• as follows. Set v1 = (1, 1)
and suppose that, for n ∈ N, we have chosen vectors vi = (xi, yi) ∈ N• × N• such that
slope(vi) < slope(vi+1) and i||vi|| < ||vi+1|| for i ∈ [[1, n− 1]]. Let vn+1 = (xn+1, yn+1) ∈ N2

such that xn+1 > 0, slope(vn+1) > slope(vn), and ||vn+1|| > n||vn||. Now consider the
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submonoid M := 〈vn | n ∈ N•〉 of (N2,+). Clearly, A(M) ⊆ {vn | n ∈ N}. On the other
hand, the fact that ||vm|| > ||vn|| when m > n implies that only atoms in {v1, . . . , vn−1} can
divide vn in M . This, along with the fact that

slope(vn) > max
{

slope(vi) | i ∈ [[1, n− 1]]
}

for every n ∈ N, ensures that
A(M) = {vn | n ∈ N}.

Finally, let us verify that M is not weakly finitary. Assume for a contradiction that there
exist n ∈ N and a finite subset S of M such that nx ∈ S+M for all x ∈M•. We can assume
without loss of generality that S ⊆ A(M), so we let S = {vn1 , . . . , vnk

}, where n1 < · · · < nk.
Take N > max{n, nk}. Then write n′vN = vni

+m for some i ∈ [[1, k]] and m ∈M such that
n′ ≤ n and vN -M m. Since slope(n′vN) > slope(vni

), there exists j > N such that vj |M m.
Therefore

||NvN || > ||n′vN || = ||vni
+m|| > ||m|| ≥ ||vj|| ≥ ||vN+1||,

which is a contradiction. Hence M is not weakly finitary.

Strongly Primary Monoids

We conclude this section with a few words about strongly primary monoids in C. A monoid
is called strongly primary if it is simultaneously primary and finitary. The class of strongly
primary monoids contains that one of finitely primary monoids [79, Theorem 2.9.2]. Let M
be a monoid. For x ∈ M• the smallest n ∈ N satisfying that nM• ⊆ x + M is denoted
by M(x). When such n does not exist, we set M(x) = ∞. If M is strongly primary, then
M(x) <∞ for all x ∈M• [79, Lemma 2.7.7]. In addition, set

M(M) := sup{M(a) | a ∈ A(M)} ⊆ N ∪ {∞}.

Example 6.6.11. Consider the monoid

M := {(0, 0)} ∪ {(x, y) ∈ N2 | x, y > 0}.

It is clear that
A := {(a, b) ∈M | a = 1 or b = 1} ⊆ A(M)

On the other hand, if (x, y) ∈M• \ A, then x, y ≥ 2 and, therefore,

(x, y) = (1, 1) + (x− 1, y − 1) ∈M• +M•.

Hence A(M) = A. In addition, the fact that (1, 1) |M (x, y) for all (x, y) ∈ M• \ A implies
that M((1, 1)) = 2. The inclusion 2M• ⊆ (1, 1) + M implies that M is a finitary monoid.
On the other hand, cone(M)• is the open first quadrant, which implies via Proposition 6.6.1
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that M is a primary monoid. As a result, M is strongly primary. Now fix n ∈ Z≥2. Note that
if (n, 1) |M m(1, 1) for some m ∈ N, then m ≥ n+ 1. Thus,M((n, 1)) ≥ n+ 1. On the other
hand, if (x, y) ∈ (n+1)M•, then x ≥ n+1 and y ≥ 2, which implies that (x, y)−(n, 1) ∈M .
As a result, M((n, 1)) = n + 1 and, by a similar argument, M((1, n)) = n + 1. Hence
M((a, b)) = a+ b for every (a, b) ∈ A and, in particular, M(M) =∞.

Unlike the computations in Example 6.6.11, an explicit computation of {M(a) | a ∈M}
for a monoid M in C can be hard to carry out. However, for most monoids M in C one can
argue that M(M) =∞ without performing such computations.

Proposition 6.6.12. Let M be a strongly primary monoid in C. Then the following condi-
tions are equivalent.

(1) M(M) <∞.

(2) dim cone(M) = 1.

(3) M is isomorphic to a numerical monoid.

Proof. Conditions (2) and (3) are obviously equivalent. Therefore it suffices to verify that (1)
and (2) are equivalent. To argue that (1) implies (2) suppose, by way of contradiction, that
dim cone(M) 6= 1. SinceM is strongly primaryM• is not empty and, thus, dim cone(M) ≥ 2.
As M is primary, cone(M) is open by Proposition 6.6.1. Therefore M cannot be finitely
generated, which means that |A(M)| =∞. Since

{a ∈ A(M) | ||a|| < n}

is a finite set for every n ∈ N, there exists a sequence {an} of atoms of M satisfying that
limn→∞ ||an|| = ∞. Now fix x ∈ M•. Because M(an)x = an + b for some b ∈ M , we have
that

lim
n→∞

M(an) = lim
n→∞

||an + b||
||x||

≥ 1

||x||
lim
n→∞

||an|| =∞.

Hence M(M) = ∞, which is a contradiction. For the reverse implication, suppose that
dim cone(M) = 1. In this case, M is isomorphic to a numerical monoid. Since numerical
monoids are finitely generated, M(M) <∞, and the proof follows.
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Chapter 7

Two Factorization Invariants

7.1 Introduction

In 1960 L. Carlitz proved that a ring of integers is an HFD (i.e., a half-factorial domain)
if and only if the size of its class group is at most 2 [39]. The phenomenon of non-unique
factorizations of many other families of integral domains has been systematically studied
since then (see [9, 11] and references therein). The study of the non-uniqueness of factoriza-
tions on commutative cancellative monoids has also earned significant attention during the
last few decades (see [44, 49, 83]). This is mainly because several factorization properties of
an integral domain R are purely multiplicative in nature and, therefore, can be completely
understood by studying only its multiplicative monoid R \ {0}. To measure how far an
integral domain or a commutative cancellative monoid is from being a UFD (or an HFD),
many algebraic and arithmetic invariants have proved to be useful. Such invariants include
the class group (of a Krull domain/monoid) [39], the system of sets of lengths [75], the
elasticity [9], and the set of distances [44]. In this chapter we investigate the phenomenon
of non-unique factorizations of monoids in C by using two important non-factoriality mea-
sures: the system of sets of lengths and the elasticity. The interested reader can find further
factorization invariants as well as the role they play in non-unique factorization theory in
the survey [78]. See [43] for a friendly insight to non-unique factorization theory through a
number theoretical perspective.

The system of sets of lengths L(M) of an atomic monoid M encodes significant informa-
tion about the arithmetic of factorizations in M . As a result, the system of sets of lengths is
perhaps the most investigated factorization invariant in the context of atomic monoids. In
particular, the search for examples of families of atomic monoids having extremal systems
of sets of lengths has been frequently explored in the recent literature (see [111] and [68]).
In the first part of this chapter we exhibit, for every d ≥ 2, a monoid Md in Cd having full
system of sets of lengths.

In the 1970’s, Narkiewicz posed the question of whether the arithmetic describing the non-
uniqueness of factorizations in a Krull domain could be used to characterize its class group
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(for affirmative answers to this, see [79, Sections 7.1 and 7.2]). In general, the question of
whether L(M) completely determines a monoidM (up to isomorphism) inside a distinguished
family of atomic monoids has been previously studied (see [2], [98, Section 4], and [75,
Section 6]). In the context of Krull monoids, this question is known as the Characterization
Problem, which is still open and being actively investigated. Similar questions have been
answered for numerical monoids [2] and for monoids in the class Q [98]. Here, we argue that,
for any d ≥ 2, the system of sets of lengths does not characterize (up to isomorphism) the
monoids in the class Cd.

The concept of elasticity was introduced by R. Valenza [143] in the context of algebraic
number theory. The elasticity ρ(M) ∈ R≥1∪{∞} of an atomic monoid M measures how far
is M from being an HFM; in particular, M is an HFM if and only if ρ(M) = 1. Although the
elasticity encodes substantially less amount of information than the system of sets of lengths
does, the former is, in general, much easier to compute. The elasticity of integral domains
and atomic monoids has been considered by many authors (see, for instance, [9], [28], [47],
and [101]). In the second part of this chapter, we turn to study the elasticity of monoids
in C. In particular, we prove that the elasticity of any monoid in C2 is either rational or
infinite. Then, we show that if the convex cone of M ∈ C is a polyhedral cone, then ρ(M) is
also rational or infinite. We conclude this chapter exploring how our study of the geometry
of monoids in C reflects on their monoid algebras.

7.2 Sets of Lengths

The System of Sets of Lengths

As in the previous chapters, monoids are assumed to be commutative and cancellative and
are written additively, unless we specify otherwise. Also, until Section 8.1 all monoids are
tacitly assumed to be reduced. Recall that C denotes the class of all finite-rank submonoids of
any free commutative monoid (up to isomorphism), while Cd denotes the subclass of monoids
in C of rank d. Given an atomic monoid M and x ∈ M , recall that Z(x) denotes the set of
factorizations of x and L(x) is the set of lengths of x.

Definition 7.2.1. Let M be a atomic monoid. Then the system of sets of lengths of M ,
denoted by L(M), is the collection of all the sets of lengths of elements of M , i.e.,

L(M) := {L(x) | x ∈M}.

We say that a BFM M has full system of sets of lengths if L(M) = Pfin, where

Pfin :=
{
{0}, {1}

}
∪
{
S ⊂ Z≥2 | S is finite

}
.

Note that Pfin is the largest (under inclusion) system of sets of lengths a BFM can have.
In [75] the interested reader can find a friendly introduction to the system of sets of lengths
and the role such invariant plays in factorization theory.
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The Elasticity

Another important factorization invariant related to the system of sets of lengths of an
atomic monoid M is the elasticity.

Definition 7.2.2. The elasticity ρ(x) of an element x ∈M• is defined as

ρ(x) := ρM(x) :=
sup L(x)

inf L(x)
.

Note that ρ(x) ∈ Q≥1 ∪ {∞} for all x ∈ M•. On the other hand, the elasticity of M is
defined to be

ρ(M) := sup{ρ(x) | x ∈M}.

The set of elasticities of M is R(M) := {ρ(x) | x ∈ M•}. We say that M is fully
elastic provided that R(M) = {q ∈ Q | 1 ≤ q ≤ ρ(M)}. The elasticity was first used by
R. Valenza [13] as a tool to measure the phenomenon of non-unique factorizations in the
context of algebraic number theory. The system of sets of lengths and the elasticity have
received a great deal of attention in the literature in recent years; see, for instance, [2, 47,
66, 101, 103].

Numerical monoids, introduced in the previous chapter, plays an important role in our
study of the system of sets of lengths of monoids in C. We end this section with the fol-
lowing realization theorem of Geroldinger and Schmid, which will be crucial in the proof of
Theorem 7.3.4.

Theorem 7.2.3. [82, Theorem 3.3] Let L be a finite and nonempty subset of Z≥2, and let
f : L → Z≥1 be a map. Then there exist a numerical monoid M and a squarefree element
x ∈M such that

L(x) = L and |Zk(x)| = f(k) for every k ∈ L,

where Zk(x) := {z ∈ Z(x) | |z| = k}.

7.3 The Systems of Sets of Lengths of Monoids in C

The Kainrath Property

After [111], an atomic monoid is said to satisfy the Kainrath Property provided it is a BFM
and it has full system of sets of lengths. In this section we construct, for each d ≥ 2, a
monoid M in Cd having the Kainrath Property.

As every monoid in C is a BFM, to show that a monoid M in C satisfies the Kainrath
Property, it suffices to verify that Pfin ⊆ L(M). Before proceeding with our main result,
let us exhibit some examples of families of atomic monoids and domains that have recently
been proved to satisfy the Kainrath Property.
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The first class of atomic monoids satisfying the Kainrath Property was given by Kain-
rath [111] in the context of Krull monoids. A monoid K is called a Krull monoid if there
exists a monoid homomorphism φ : K → D, where D is a free commutative monoid, satisfy-
ing the next two conditions:

(1) if a, b ∈ K and φ(a) |D φ(b), then a |K b;

(2) for every d ∈ D there exist a1, . . . , an ∈ K with d = gcd{φ(a1), . . . , φ(an)}.

The basis elements of D are called the prime divisors of K, and the group Cl(K) := D/φ(K)
is called the class group of K. As Krull monoids are isomorphic to submonoids of free
commutative monoids, Krull monoids are atomic (see [79, Section 2.3] for further details
about Krull monoids).

Theorem 7.3.1. [111, Theorem 1] Let M be a Krull monoid with infinite class group in
which every divisor class contains a prime divisor. For a finite subset L of Z≥2 there exists
some x ∈M such that L(x) = L.

In the same direction, Frisch has proved that the multiplicative monoid of the domain of
integer-valued polynomials Int(Z) also satisfies the Kainrath Property (see [67]). This result
was recently generalized in [68] to the domain Int(OK) of polynomials over a given number
field K stabilizing the ring of integers OK .

Theorem 7.3.2. [68, Theorem 1] Let K be a number field with ring of integers OK. More-
over, let 1 ≤ m1 ≤ · · · ≤ mn be natural numbers. Then there exists a polynomial in Int(OK)
with n essentially different factorizations into irreducible polynomials in Int(OK) where the
lengths of these factorizations are m1 + 1, . . . ,mn + 1.

Let Q denote the class consisting of all submonoids of (Q≥0,+). Although monoids
in Q are natural generalizations of numerical monoids, the former are not necessarily finitely
generated or atomic. Moreover, if an atomic monoid M of Q is not isomorphic to a numerical
monoid, then |A(M)| =∞. The atomic structure and factorization theory of monoids in Q
and their monoid algebras have only been studied recently (see [94, 99, 92, 42, 56]). In
particular, it has been proved the existence of monoids inQ satisfying the Kainrath Property.

Theorem 7.3.3. [98, Theorem 3.6] There exists a monoid in Q satisfying the Kainrath
Property.

It was proved in [81] that for d large enough there exists a primary monoid in Cd satisfying
the Kainrath Property. Now we exhibit a primary monoid in C2 satisfying the Kainrath
Property. Then we use such a monoid, to construct, for every d ∈ Z≥2, a monoid in Cd
satisfying the Kainrath Property.

Theorem 7.3.4. There exists a primary monoid in C2 satisfying the Kainrath Property.
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Proof. As Pfin is a countable collection, we can list its members. Let S1, S2, . . . be an
enumeration of the members of Pfin. Fix `, L ∈ Q>0 such that ` < L. Now take a sequence
{an} of elements in N2 such that the sequence {slope(a2n−1)} strictly decreases to ` and the
sequence {slope(a2n)} strictly increases to L. In addition, assume that

max{slope(a2n−1) | n ∈ N} < min{slope(a2n) | n ∈ N}.

Now for every n ∈ N, we use Theorem 7.2.3 to obtain an additive submonoid Mn of Nan and
an element xn ∈Mn such that LMn(xn) = Sn (note that Nan contains an isomorphic copy of
every numerical monoid). After rescaling each M1,M2, . . . (in this order) one can guarantee
that

min{||a|| | a ∈ A(Mn+1)} > max
{
||xn||,max{||a|| | a ∈ A(Mn)}

}
(7.1)

for every n ∈ N. Take M to be the smallest additive submonoid of N2 containing every
monoid Mn. Clearly, M is generated by the set

A := ∪n∈NA(Mn).

Let us prove that each Sn is contained in L(M).

Claim : If a ∈ A(M) divides xn in M , then slope(a) = slope(xn).

Proof of Claim : Suppose, by way of contradiction, that there exist n ∈ N and a ∈ A(M)
such that a |M xn and slope(a) 6= slope(xn). Assume first that n is even, say n = 2k. Since
a |M x2k, there exists b ∈ M such that a + b = x2k. Because a and b are vectors located in
the interior of the first quadrant, x2k is the longest diagonal of the lattice parallelogram de-
termined by the vectors a and b. Hence ||a|| < ||x2k||. Observe that if slope(a) < slope(x2k),
then we can take a′ ∈ A(M) satisfying that a′ |M x2k and slope(a′) > slope(x2k). Then
we can assume without loss of generality that slope(a) > slope(x2k). This, along with the
fact that x2k has an even index, ensures that a ∈ A(Mm) for some index m > 2k. Now
the inequality (7.1) guarantees that ||a|| > ||x2k||, which contradicts the already-established
inequality ||a|| < ||x2k||. Hence every atom a of M dividing x2k in M must satisfy that
slope(a) = slope(x2k). The case when n is odd can be argued similarly. Thus, the claim
follows.

As a direct consequence of the above claim, LM(xn) = LMn(xn) = Sn for every n ∈ N.
Hence Pfin ⊆ L(M), and so M satisfies the Kainrath Property. Finally, notice that

cone(M)• := {x ∈ Q2 | x 6= 0 and ` < slope(x) < L},

which is an open subset of Q2. Thus, it follows by Proposition 6.6.1 that M is primary,
which concludes the proof.

The reader might have noticed that the argument we presented in the proof of The-
orem 7.3.4 can be simplified by using only one limit slope instead of two. We record this
parallel result in the next proposition for future reference. However, it is not hard to see that
the monoid resulting from using only one slope does not have the extra desirable property
of being primary.
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Proposition 7.3.5. There exists a monoid M in C2 satisfying the Kainrath Property such
that slope(M) has only one limit point.

Proof. It is left to the reader as it follows the same argument as the proof of Theorem 7.3.4.

As every submonoid of N is isomorphic to a numerical monoid, and the elasticity of
a numerical monoid is finite [45, Theorem 2.1], no monoid in C1 can satisfy the Kainrath
Property. However, Theorem 7.3.4 can be used to construct, for each d ≥ 2, a maximal-rank
submonoid of Nd satisfying the Kainrath Property.

Corollary 7.3.6. For every d ≥ 2, there exists a monoid in Cd satisfying the Kainrath
Property.

Proof. The case d = 2 is Theorem 7.3.4. Suppose, therefore, that d ≥ 3. By Theorem 7.3.4
there exists a submonoid M ′ of Nd with rank(M ′) = 2 such that pi(M

′) = {0} for every
i ∈ [[3, d]]. Take vectors v3, . . . , vd ∈ Nd such that the rank of the submonoid

M := 〈M ′ ∪ {v3, . . . , vd}〉

of Nd is d. Since vi /∈M ′ for each i ∈ [[3, d]], it follows that M ′ is a divisor-closed submonoid
of M . Therefore LM ′(x) = LM(x) for all x ∈ M ′. As a result, L(M ′) = Pfin implies that
L(M) = Pfin. Thus, M satisfies the Kainrath Property.

We would like to remark that the submonoid M of Nd (for d ≥ 3) constructed in Corol-
lary 7.3.6 is not primary. Notice, for instance, that

M ∩ {x ∈ Qd | pd(x) = 0}

is a nonempty proper divisor-closed submonoid of M . However, the reader is invited to prove
the following conjecture, which we believe to be true.

Conjecture 7.3.7. For every dimension d ≥ 3, there exists a primary monoid in Cd satis-
fying the Kainrath Property.

The Characterization Problem

We conclude this section answering the characterization problem for sets of lengths in each
class Cd. Let φ : M → M ′ be a monoid isomorphism, where M and M ′ are monoids in C.
Then φ extends to a group isomorphism gp(M) → gp(M ′). In particular, if two monoids
in C are isomorphic, they have the same rank. Therefore Corollary 7.3.6 immediately implies
that the system of sets of lengths does not characterize monoids in C≥2. On the other hand,
it was proved in [2] that the system of sets of lengths does not characterize monoids in C1.
Now we extend these two observations.
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Proposition 7.3.8. For any d ≥ 2, the system of sets of lengths does not characterize
monoids inside the class Cd.

Proof. First, suppose that d = 2. Take M,M ′ ∈ Cd, and let φ : M → M ′ be a monoid
isomorphism. Then φ extends to a group isomorphism gp(M) → gp(M ′) and, since Q is
a flat Z-module, φ also extends to an isomorphism φ̄ : Q ⊗Z gp(M) → Q ⊗Z gp(M ′) of Q-
spaces. As φ̄ is a linear transformation, it must be continuous. Thus, if the monoids M
and M ′ are isomorphic, then slope(A(M)) and slope(A(M ′)) have the same number of limit
points. Now if M and M ′ are the monoids in C2 constructed in Proposition 7.3.5 and in
the proof of Theorem 7.3.4, respectively, then slope(A(M)) ⊂ R has one limit point and
slope(A(M ′)) ⊂ R has two limit points. Hence L(M) = Pfin = L(M ′), but M and M ′ are
not isomorphic.

Suppose, on the other hand, that d > 2. Notice that the monoid M of Cd constructed
in Corollary 7.3.6 satisfies that cone(M) is polyhedral. This is because there exists one
supporting plane of cone(M) containing all but finitely many elements of A(M). Slightly
modifying the proof of Corollary 7.3.6, we can construct a monoid M ′ in Cd with one of its
1-dimensional extreme rays containing two atoms. As an isomorphism φ : M → M ′ would
send atoms to atoms and its Q-linear extension φ̄ : Q⊗Zgp(M)→ Q⊗Zgp(M ′) would send 1-
dimensional faces of cone(M) to 1-dimensional faces of cone(M ′), such isomorphism φ cannot
exist. Hence M and M ′ are not isomorphic monoids even though L(M) = Pfin = L(M ′).

7.4 Rationality of the Elasticity of Monoids in C

The Rational-Infinite Elasticity Problem

We now turn our attention to the elasticity of monoids in C. In [141], S. Tringali posed the
following question.

Question 7.4.1. Is always the elasticity of a submonoid of a free commutative monoid of
finite rank either rational or infinite?

Clearly, the submonoids of free commutative monoids of finite rank are precisely those
in C. In Theorem 7.4.7 and Theorem 7.4.8, we shall provide two positive partial answers to
Question 7.4.1.

Before delving into the actual question, let us extend the notion of the set of lengths and
the elasticity for submonoids M of N so they are both defined in terms of any fixed finite
generating set of M (not necessarily A(M)). Similar generalizations of other arithmetic
invariants have been useful in the past to study aspects of the non-unique factorization
theory of certain classes of monoids, including arithmetical congruence monoids [26]. In
particular, the generalized set of lengths was first used in the context of numerical monoids
in [48], where a similar relaxation of the set of distances was studied.
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Definition 7.4.2. Let k ∈ N and n1, . . . , nk ∈ N•. Then for any nonzero x ∈ 〈n1, . . . , nk〉,
we define the generalized set of lengths of x with respect to the distinguished generators
n1, . . . , nk to be

Lg(x) =

{
c1 + · · ·+ ck

∣∣∣∣ c1, . . . , ck ∈ N and
k∑
i=1

cini = x

}
⊂ N•.

Similarly, the generalized elasticity of x with respect to n1, . . . , nk is defined to be

ρg(x) =
max Lg(x)

min Lg(x)
.

Lemma 7.4.3. For k ∈ Z≥2, take n1, . . . , nk ∈ N such that n1 < · · · < nk. If the set{
ρg(x) | x ∈ 〈n1, . . . , nk〉•

}
has a limit point, then it must be nk/n1.

Proof. Set M = 〈n1, . . . , nk〉. It is not hard to see that we can take N ∈ N large enough such
that for all x ∈ M• there exists rx ∈ [[1, N ]] ∩M satisfying that x = rx + mxn1nk for some
mx ∈ N. Now fix x0 ∈ M with x0 > N , and write x0 = r + mn1nk for r ∈ [[1, N ]] ∩M and
m ∈ N. As x0 > N , it follows that m ≥ 1. Therefore any formal sum of copies of n1, . . . , nk
adding to x0 and maximizing the number of distinguished generators (counting repetitions)
must contain at least mnk copies of n1 and so

max Lg(x0) = max Lg(r +mn1nk) = max Lg(r) +mnk. (7.2)

Similarly, any formal sum of copies of n1, . . . , nk adding to x0 and minimizing the number
of distinguished generators must contain at least mn1 copies of nk and so

min Lg(x0) = min Lg(r +mn1nk) = min Lg(r) +mn1. (7.3)

Using (7.2) and (7.3), we obtain that

ρg(x0) =
max Lg(r) +mnk
min Lg(r) +mn1

.

As a result,

{
ρg(x) | x ∈M \ [[1, N ]]

}
⊆
{
nk + 1

m
max Lg(r)

n1 + 1
m

min Lg(r)

∣∣∣∣ r ∈ [[1, N ]] ∩M and m ∈ Z≥1

}
.

From the above inclusion of sets, it immediately follows that
{
ρg(x) | x ∈ M•} can have at

most one limit point, namely nk/n1.
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Remark 7.4.4. Lemma 7.4.3 is essentially a generalization of [45, Corollary 2.3], which
states that the only limit point of the set of elasticities of a numerical monoid minimally
generated by the elements a1 < a2 < · · · < ak (for k ≥ 2) is ak/a1.

Remark 7.4.5. Another result similar to Lemma 7.4.3 was previously established in [28,
Corollary 4.5]. We decided to reprove it here not only for the sake of completeness, but
also because we need to work in a more general context, meaning that our distinguished
set of generators {n1, . . . , nk} is not necessarily minimal, and n1, . . . , nk are not necessarily
relatively prime.

The Case of Dimension Two

For a nonzero vector a ∈ Rd, we let pa : Rd → Ra be the linear transformation that projects
a vector of Rd onto the 1-dimensional space Ra. Also, for each j ∈ [[1, d]], we let pj(x) denote
the j-th component of x. In particular, for nonzero vectors a, b ∈ N2, we have that

〈a, b〉
||a||

=
p1(a)p1(b) + p2(a)p2(b)

||a||

is the Fourier coefficient of b with respect to the unit vector a/||a||. Therefore the projection
of b on a is given by

pa(b) =
p1(a)p1(b) + p2(a)p2(b)

||a||2
a. (7.4)

Lemma 7.4.6. Let a, x, y ∈ N2 such that slope(x) < slope(a) < slope(y). Also, let α be
the acute angle between x and a, and let β be the acute angle between a and y. Then the
following identity holds:(

||a|| ||y|| sin β
)
x+

(
||a|| ||x|| sinα

)
y = ||x|| ||y|| sin(α + β)a.

Moreover, the coefficients of x, y, and a in the above identity are nonnegative integers.

Proof. Set a⊥ := (−p2(a), p1(a)), and note that

pa⊥(x) = −(||x|| sinα) a⊥/||a⊥||

and
pa⊥(y) = (||y|| sin β) a⊥/||a⊥||.

Taking
z = (||y|| sin β)x+ (||x|| sinα)y,

we obtain that pa⊥(z) = 0, which implies that z and a are colinear, i.e., pa(z) = z. Since

pa(x) = (||x|| cosα)a/||a|| and pa(y) = (||y|| cos β)a/||a||,
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it follows that

z = pa(z) = (||y|| sin β)pa(x) + (||x|| sinα)pa(y)

= ||x|| ||y||
(

sinα cos β + sin β cosα)
a

||a||
= ||x|| ||y|| sin(α + β)

a

||a||
.

Hence ||a||z = ||x|| ||y|| sin(α + β)a, which is the desired trigonometric identity. Finally,
observe that the coefficients of a, x, and y represent areas of lattice parallelograms. Hence
such coefficients must be nonnegative integers.

We are now in a position to prove that the elasticity of each monoid in C2 is either rational
or infinite.

Theorem 7.4.7. Let M be a monoid in C2. Then ρ(M) is either rational or infinite.

Proof. If M is finitely generated, then it follows by [8, Theorem 7] that ρ(M) is rational.
So we assume that M is not finitely generated. Note that for every v ∈ N2, the submonoid
Nv∩M of M is isomorphic to an additive submonoid of N and is, therefore, finitely generated.
This, along with the fact that |A(M)| =∞, implies that the set slope(A(M)) must have at
least one limit point (maybe∞). By reflecting M with respect to the line y = x if necessary,
we can assume that slope(A(M)) has a finite limit point.

CASE 1. The set slope(A(M)) has at least two limit points. In this case, we will argue
that M has infinite elasticity. To do so, take N ∈ N.

CASE 1.1. There exists a ∈ A(M) such that the vector slope(a) is strictly between two
limit points of slope(M). Then the sets

X := {x ∈ A(M) | slope(x) < slope(a)}

and
Y := {y ∈ A(M) | slope(y) > slope(a)}

are both infinite. So there exist atoms x ∈ X and y ∈ Y such that min{||x||, ||y||} ≥ 2N ||a||.
By Lemma 7.4.6, one has that(

||a|| ||y|| sin β
)
x+

(
||a|| ||x|| sinα

)
y = ||x|| ||y|| sin(α + β)a, (7.5)

where α is the acute angle between x and a, and β is the acute angle between a and y. Using
the fact that min{||x||, ||y||} ≥ 2N ||a||, we obtain

||x|| ||y|| sin(α + β) > N(||a|| ||y|| sin β + ||a|| ||x|| sinα). (7.6)



CHAPTER 7. TWO FACTORIZATION INVARIANTS 113

Because the coefficients of x, y, and a in the identity (7.5) are positive integers, the element
h0 := ||x|| ||y|| sin(α+β)a belongs to M . Moreover, applying the inequality (7.6), one obtains
that

ρ(M) ≥ ρ(h0) ≥ ||x|| ||y|| sin(α + β)

||a|| ||y|| sin β + ||a|| ||x|| sinα
≥ N.

Hence ρ(M) =∞.

CASE 1.2. There is no a ∈ A(M) such that slope(a) is strictly between two limit points.
Observe that, in this case, slope(M) contains exactly two limit points. As a consequence,
one can choose x, y, a ∈ A(M) such that slope(x) < slope(a) < slope(y). In addition, note
that we can assume that ||a|| is large enough that the inequalities ||a|| sin β > N ||x||/2
and |a| sinα > N ||y||/2 hold, where the angles α and β are defined as in the CASE 1.1.
By Lemma 7.4.6, we again obtain the identity (7.5). Because the coefficients of x, y, and a
in (7.5) are positive integers, h1 = 2||x|| ||y|| sin(α+β)a belongs to M . Using the inequalities
||a|| sin β > N ||x||/2 and ||a|| sinα > N ||y||/2, we get

ρ(M) ≥ ρ(h1) ≥ ||a|| ||y|| sin β + ||a|| ||x|| sinα
||x|| ||y|| sin(α + β)

> N.

Thus, in this case, ρ(M) =∞.

CASE 2. The set slope(A(M)) contains only one limit point. Let ` be the limit point
of slope(A(M)). Now consider the set X` := {x ∈ A(M) | slope(x) < `} and the set
Y` := {y ∈ A(M) | slope(y) > `}.

CASE 2.1. The sets X` and Y` are both nonempty. Fix N ∈ N. Take x ∈ X` and
y ∈ Y`. Since ` is a limit point of slope(M), we can choose a ∈ A(M) satisfying that
slope(x) < slope(a) < slope(y) and large enough such that ||a|| sin β > N ||x||/2 and
||a|| sinα > N ||y||/2. Proceeding exactly as we did in CASE 1.2, we can conclude that
ρ(M) > N . Hence ρ(M) =∞ in this case again.

CASE 2.2. One of the sets X` and Y` is empty. Assume, without loss of generality,
that X` is not empty. Take a nonzero vector v ∈ R2

≥0 such that slope(v) = `, and set

v⊥ = (−p2(v), p1(v))/||(−p2(v), p1(v))||.

Now define the set
S` = {||pv⊥(a)|| : a ∈ A(M)}.

CASE 2.2.1. The set S` is not finite. Fix x ∈ X`. As S` is infinite and the Fourier
coefficient of each vector in X` with respect to the normal vector v⊥ is an integer, there
exists a ∈ X` such that ||pv⊥(a)|| > 2N ||x||. Note that ||pv⊥(a)|| = ||a|| sin β′, where β′ is
the acute angle between a and v. Now take y ∈ X` such that the acute angle β between y
and a is close enough to β′ that both inequalities slope(y) > slope(a) and ||a|| sin β > N ||x||
hold. Now, we can apply Lemma 7.4.6 to obtain once again the identity (7.5). Since the
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coefficients of x, y, and a in (7.5) are positive integers, the element h2 := 2||x|| ||y|| sin(α+β)a
belongs to M . On the other hand, using the fact that ||a|| sin β > N ||x||, one finds that

ρ(M) ≥ ρ(h2) ≥ ||a|| ||y|| sin β + ||a|| ||x|| sinα
||x|| ||y|| sin(α + β)

>
||a|| sin β

||x|| sin(α + β)
> N.

This allows us to conclude again that ρ(M) =∞.

CASE 2.2.2. The set S` is finite. Take M` = 〈s1, . . . , sk〉, where S` = {s1, . . . , sk} and
s1 < · · · < sk. Among all the atoms of M minimizing the set S`, let x be the one of largest
slope. On the other hand, among all the atoms of M maximizing S`, let a be the one with
largest slope. Fix ε > 0.

First, suppose that slope(a) < slope(x), and let α be the acute angle between x and a.
Now take y ∈ A(M), and let β denote the acute angle between a and y. Since

lim
||y||→∞

||a|| sin β
||x|| sin(α + β)

=
||pv⊥(a)||
||pv⊥(x)||

=
sk
s1

,

we can assume that ||y|| is large enough such that the inequalities slope(a) > slope(y) and

||a|| sin β
||x|| sin(α + β)

>
sk
s1

− ε (7.7)

both hold. Now, Lemma 7.4.6 allows us to use identity (7.5) once again. This, along with
the fact that h3 := ||x|| ||y|| sin(α + β)a ∈M , implies that

ρ(M) ≥ ρ(h3) ≥
||a|| sin β +

(
||x||/||y||

)
||a|| sinα

||x|| sin(α + β)
>
sk
s1

− ε.

Thus, ρ(M) ≥ sk/s1 ≥ ρg(M`).
Now suppose that slope(a) > slope(x). Let α be defined as before, take y ∈ A(M), and

let β now denote the acute angle between x and y. Since

lim
||y||→∞

||a|| sin(α + β)

(||x||/||y||)||a|| sinα + ||x|| sin β
=
||pv⊥(a)||
||pv⊥(x)||

=
sk
s1

and ` is a limit point of slope(M), we can assume that ||y|| large enough so that slope(x) >
slope(y) and

||a|| sin(α + β)

(||x||/||y||)||a|| sinα + ||x|| sin β
>
sk
s1

− ε.

By Lemma 7.4.6,(
||x|| ||y|| sin β

)
a+

(
||x|| ||a|| sinα

)
y = ||a|| ||y|| sin(α + β)x. (7.8)

Since the coefficients in (7.8) are positive integers, h4 := ||a|| ||y|| sin(α + β)x is an element
of M and, therefore,

ρ(M) ≥ ρ(h4) ≥ ||a|| sin(α + β)(
||x||/||y||

)
||a|| sinα + ||x|| sin β

≥ sk
s1

− ε.
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As a consequence, ρ(M) ≥ sk/s1 ≥ ρg(M`).
Finally, suppose that slope(a) = slope(x). In this case, it is not hard to see that the

element h5 := p1(a)p2(a)x ∈ M can also be written in the form h5 = p1(a)p2(x)a. Since
a, x ∈ A(M), it follows that

ρ(M) = ρ(h5) ≥ p2(a)

p2(x)
=
||a||
||x||

=
sk
s1

≥ ρg(M`).

Thus, we always have ρ(M) ≥ ρg(M`). On the other hand, if a1 + · · · + an ∈ ZM(w) is an
n-length factorization of w ∈M , then ||pv⊥(a1)||+ · · ·+ ||pv⊥(an)|| is an n-length generalized
factorization of ||pv⊥(w)|| in M`. Therefore LM(w) ⊆ Lg(M`)(||pv⊥(w)||) for all w ∈M , where
Lg(M`)(h) denotes the generalized set of lengths of h in M` with respect to the distinguished
set of generators s1, . . . , sk. This implies that ρ(M) ≤ ρg(M`). Hence ρ(M) = ρg(M`), which
is rational by Lemma 7.4.3. This completes the proof.

Higher Dimension

We conclude our exposition providing a subclass of Cd (for d ≥ 3) whose members have
rational or infinite elasticity.

Theorem 7.4.8. Let M be a monoid in Cd with d ≥ 3. If the cone of M in the Q-space
Q⊗Z gp(M) is polyhedral, then ρ(M) is either rational or infinite.

Proof. Set d = rank(M). After identifying Q⊗Z gp(M) with Qd, we can assume that M is
a submonoid of Nd. If M is finitely generated, then we can argue that ρ(M) ∈ Q as we did
at the beginning of the proof of Theorem 7.4.7. Then there is no loss in assuming that M is
not finitely generated, i.e., |A(M)| =∞.

Fix N ∈ N. As cone(M) is polyhedral, it must have finitely many 1-dimensional faces;
call them L1, . . . , Ln. Since each Li is a 1-dimensional face, we can take ai ∈ Li ∩A(M) for
each i ∈ [[1, n]]. Clearly, cone(M) = cone(a1, . . . , an). Consider the parallelepiped

Π :=
{
α1a1 + · · ·+ αnan | 0 ≤ αi ≤ 1 for every i ∈ [[1, n]]

}
.

Since Π ∩ Zd is finite and
Π ∩ Zd ⊂ Q≥0a1 + · · ·+ Q≥0an,

we can choose N0 ∈ N• large enough that N0z ∈ Z≥0a1 + · · · + Z≥0an for each z ∈ Π ∩ Zd.
Notice that for each n ∈ N, there exist only finitely many atoms of H whose norms are at
most n. As a result, there exists a ∈ A(M) such that ||a|| > (N + 1)(||a1||+ · · ·+ ||an||).

As we can naturally partition cone(M) into copies of the parallelepiped Π, we can write
a = v+ c1a1 + · · ·+ cnan for some v ∈ Π∩Zd and nonnegative integer coefficients c1, . . . , cn.
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Since the diameter of Π is ||a1 + · · ·+an|| and v ∈ Π, it follows that ||v|| ≤ ||a1||+ · · ·+ ||an||
and, therefore,

1 +
n∑
i=1

ci ≥
||v||∑n
i=1 ||ai||

+
||
∑n

i=1 ciai||∑n
i=1 ||ai||

≥ ||a||∑n
i=1 ||ai||

> 1 +N.

Hence c1 + · · · + cn > N . Taking c′1, . . . , c
′
n ∈ Z≥0 such that N0v = c′1a1 + · · · + c′nan, we

obtain that

N0a = N0v +
n∑
i=1

N0ciai =
n∑
i=1

(c′i +N0ci)ai.

Therefore

ρ(M) ≥ ρ(N0a) ≥
∑n

i=1(c′i +N0ci)

N0

≥
n∑
i=1

ci > N.

As N was arbitrarily taken, ρ(M) =∞, which concludes the proof.

Recall that an atomic monoid M is fully elastic if

R(M) = {q ∈ Q | 1 ≤ q ≤ ρ(M)}.

Each monoid in C1 fails to be fully elastic (see [45, Theorem 2.2]). However, because every
atomic monoid satisfying the Kainrath Property is, obviously, fully elastic, we have the
following direct implication of Corollary 7.3.6.

Proposition 7.4.9. For each d ≥ 2, there exists a monoid in Cd that is fully elastic.
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Chapter 8

Atomicity of Monoid Algebras

8.1 Introduction

For a monoid M and an integral domain R, let R[M ] denote the algebra consisting of all
polynomial expressions with coefficients in R and exponents in M . In [86] R. Gilmer offers
a very comprehensive summary of the theory of commutative semigroup rings developed
until the 1980’s. Many algebraic properties of an integral domain R and a monoid M
implying the corresponding property on the algebra R[M ] had been studied by that time. In
the 1990’s there was a flurry of papers investigating whether factorization properties of an
integral domain R (including being an atomic domain, being a UFD, HFD, FFD, BFD, and
satisfying the ACCP) are inherited by the ring of polynomials R[X], the ring of power series
R[[X]], or certain special subrings of R[X] and R[[X]]; see, for instance, [3, 5, 4, 10, 31]. We
conclude this thesis exploring whether some of the atomic properties of R are inherited by
R[M ] for all monoids M in the class C.

Factorizations (revisited)

From now on, we no longer assume that monoids are, by default, reduced. This is mainly
because in this section we study the multiplicative monoids of the monoid algebras induced
by monoids in C, which are not in general reduced. Therefore we need to revise some of the
concepts about factorizations introduced in Section 6.2.

8.2 Factorizations and Monoid Algebras

Monoids and Factorizations (revisited)

For a monoid M , we let M× denote the set of all invertible elements of M , which we also
call units of M . Two elements x, y ∈M are called associates if y = ux for some u ∈M×. It
can be readily verified that being associates defines an equivalence relation ' on M that is
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compatible with the monoid operation. Therefore the operation of M induces a well defined
operation on the set of classes M/ ' of ', and with this operation M/ ' becomes a monoid,
which is denoted by Mred. The monoid Mred is reduced, and it is called the reduced monoid
of M . An element a ∈ M is called an atom if whenever a = x + y for some x, y ∈ M , then
either x ∈M× or y ∈M×. The set of all atoms of M is denoted by A(M), and M is called
atomic if A(M) generates M . It is easy to check that M is atomic if and only if Mred is
atomic.

Let M be a monoid. The factorization monoid Z(M) of M is the (multiplicatively-
written) free commutative monoid on the setA(Mred), while the factorization homomorphism
of M is the unique monoid homomorphism φ : Z(M)→Mred fixing every atom of Mred. For
an element x ∈M , the sets

Z(x) := φ−1(xM×) ⊆ Z(M) and L(x) = {|z| : z ∈ Z(x)} ⊆ N,

are called the set of factorizations and the set of lengths of x, respectively. The monoid M
is called an HFM (resp., a UFM ) provided that L(x) (resp., Z(x)) is a singleton for every
x ∈ M \M×. On the other hand, M is said to be a BFM (resp., an FFM ) provided that
L(x) (resp., Z(x)) is a finite set for every x ∈M \M×. Clearly, M is a UFM (resp., an HFM,
a BFM, an FFM) if and only if Mred is a UFM (resp., an HFM, a BFM, an FFM).

For an integral domain R, we let R• denote the multiplicative monoid of R. By simplicity,
we let A(R), Z(R), and φR denote A(R•), Z(R•), and φR• , respectively. In addition, for a
nonzero non-unit r ∈ R, we let ZR(r) and LR(r) denote ZR•(r) and LR•(r), respectively.

Monoid Algebras

For an integral domain R and a monoid M , let R[X;M ] denote the set consisting of all
functions f : M → R satisfying that {s ∈ M | f(s) 6= 0} is finite. We shall conveniently
represent an element f ∈ R[X;M ] by

f =
∑
s∈M

f(s)Xs =
n∑
i=1

f(si)X
si ,

where s1, . . . , sn are those elements s ∈ M satisfying that f(s) 6= 0. After defining addition
and multiplication on R[X;M ] as in a ring of polynomials, R[X;M ] becomes an integral
domain [86, Theorem 8.1] with set of units R× [86, Theorem 11.1]. Following Gilmer [86],
we will write R[M ] instead of R[X;M ]. The domain R[M ] is called the monoid algebra of M
over R, while M is called the monoid of exponents of R[M ]. Monoid algebras have been
studied by Gilmer et al. in [85, 87, 88] and more recently in [114]. In addition, numerical
monoid algebras have been studied in [12, 36], while affine monoid algebras have been studied
in [38, 107]. Finally, monoid algebras with monoids of exponents in the class Q have been
investigated in [7] and more recently in [89, 90, 100]. For background information on monoid
algebras see [86].
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As we are particularly interested in monoid algebras induced by monoids in the class C,
the following notation will make our statements more succinct:

CA := {R[M ] | R is an integral domain and M ∈ C}.

An integral domain R is called an atomic domain (resp., an ACCP domain, a BFD, an
FFD, an HFD) if its multiplicative monoid is an atomic monoid (resp., an ACCP monoid,
a BFM, an FFM, an HFM). Although we have previously introduced this variety of non-
factoriality types in the context of monoids, it was indeed in the context of integral domains
where most of these concepts were introduced. The definition of an atomic domain is due
to Cohn [52], the definitions of a BFD and an FFD are due to Anderson, Anderson, and
Zafrullah [3] and, as we have pointed out before, the definition of an HFD is due to Zaks [148].
As the multiplicative monoid of an integral domain may not be reduced, we have to slightly
modify the chain of implication (6.2) so it holds in the context of integral domains:

UFD ⇒
(
HFD, FFD

)
⇒ BFD ⇒ ACCP domain ⇒ atomic domain. (8.1)

Notice that in the chain of implications (8.1), being an HFD does not imply being an FFD.
Like in the class of all monoids, in the class of all integral domains each implication in (8.1)
is strict. Examples witnessing this observation can be found in [3].

8.3 Algebras in CA
Classic Types of Integral Domains in CA
We would like to study the class of algebras CA (up to isomorphism) induced by monoids
in C. To begin with, let us determine which algebras in CA are Dedekind domains, UFDs,
PIDs, or Euclidean domains. Gilmer and Parker proved in [87] (see also [86, Theorem 13.8])
that for a torsion-free monoid M and an integral domain R the following statements are
equivalent:

(1) R[M ] is a Euclidean domain;

(2) R[M ] is a PID domain;

(3) R[M ] is a Dedekind domain;

(4) R is a field and M ∈ {N,Z}.

As a result, the only algebras in CA which are Dedekind domains, PIDs and/or Euclidean
domains are, up to isomorphism, the polynomial rings F [X], where F is a field. On the other
hand, Gilmer and Parker proved that R[M ] is a UFD if and only if M is a UFM and R is
a UFD [86, Theorem 14.16] (when M is a monoid in C). Therefore, as an immediate conse-
quence of the characterization of UFMs in C given in Proposition 6.5.1, one can deduce that
the only UFD monoid algebras induced by monoids in C are polynomial rings R[X1, . . . , Xn],
where n ∈ N and R is a UFD.
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HFDs in CA
Any UFD is clearly an HFD, and a Krull domain is an HFD provided that its class group is
Z/2Z [39].

Unlike we have seen for UFDs, it is not true in general that R[M ] is an HFD when M
is in C and R is an HFD. This is illustrated in Example 8.3.1 below, which has been taken
from [12]. Indeed, this is not true even if we take M to be (N0,+) (see [5, Example 5.4]):
it has been proved by Coykendall in [54] that if R is an integral domain such that the
polynomial ring R[X] is an HFD, then R is an HFD and integrally closed. Coykendall has
also proved that the integral closure of an HFD is not in general an atomic domain [55].

Example 8.3.1. Take R to be the field Z2, which is obviously an HFD. Now consider the
monoid algebra Z2[N ], where N is the numerical monoid 〈3, 4〉. It can be readily verified
that the polynomial expressions

f = X8(1 +X)3(1 +X2 +X5) and g = X8(1 +X +X2)3(1 +X2 +X5)

are both irreducible elements in Z2[N ]. Now consider the polynomial expression h := (fg)3 ∈
Z2[N ]. It is clear that 6 ∈ ZZ2[N ](h). In addition, we can also write

h = (X3)16(1 +X3)9(1 +X4 +X10)3.

Therefore 28 is also an element of ZZ2[N ](h). As |ZZ2[N ](h)| ≥ 2, the monoid algebra Z2[N ]
is not an HFD.

BFDs and FFDs in CA
Let us proceed to show that if an integral domain R is a BFD (resp., an FFD), then the
monoid algebra R[M ] is a BFD (resp., an FFD) for each monoid M in the class C.

Clearly, every UFD is an FFD, and every FFD is a BFD. In addition, every Krull do-
main is an FFD [3, Theorem 5.1] and every Noetherian domain is a BFD [3, Proposition 2.2].
However, neither FFDs are necessarily HFDs nor HFDs are necessarily FFDs; see [3, Sec-
tion 5] for examples. An integral domain R is a BFD (resp., an FFD) if and only if its ring
of polynomials R[X] is a BFD (resp., an FFD) [3, Proposition 2.5 and Proposition 5.3]. In
addition, when R is a BFD, the ring of power series R[[X]] is also a BFD [3, Proposition 2.5].
It is not true, however, that R[[X]] is an FFD provided that R is an FFD [6, Example 10].

Notation. For an integral domain R and d ∈ N•, let R[X1, . . . , Xd] denote the polynomial
ring on d variables. If f =

∑n
i=1 riX

αi ∈ R[X1, . . . , Xd] for some n ∈ N, where the Xαi ’s are
pairwise distinct monomials, then we set

deg(f) := max degsX
αi , where degs(X

αi1
1 . . . Xαid

d ) =
d∑
j=1

αij.
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Proposition 8.3.2. Let M be a monoid in C, and let R be an integral domain. Then the
following statements hold.

(1) R[M ] is a BFD if and only if R is a BFD.

(2) R[M ] is an FFD if and only if R is an FFD.

Proof. Set d := rank(M) and think of R[M ] as a subdomain of R[X1, . . . , Xd]. The direct im-
plication of (1) follows from the fact that M is torsion-free, along with [114, Proposition 1.4].
To argue the reverse implication of (1), suppose, by way of contradiction, that R[M ] is not
a BFD. Then there exists f ∈ R[M ] such that |LR[M ](f)| = ∞. Since R is a BFD, it is
also a GCD domain. Let m be a greatest common divisor of all nonzero coefficients of f ,
and let ` := max LR(m) ∈ N (as m might be a unit of R). Now set v := deg f , and take
g1 . . . gN ∈ ZR[M ](f) for some N > `+ v and irreducible elements g1, . . . , gN of R[M ]. Notice
that at most ` irreducible elements in {g1, . . . , gN} belong to R. Suppose, without loss of
generality, that g1, . . . , gN−` ∈ R[M ] \R. Then

deg f ≥ deg g1 . . . gN−` =
N−∑̀
i=1

deg gi ≥ N − ` > v,

which contradicts the fact that deg f = v. Hence R[M ] is a UFD, and the reverse implication
follows.

Since M is a torsion-free monoid, the direct implication is an immediate consequence
of [114, Proposition 1.4]. For the reverse implication, assume that R is an FFD. Since R[M ]
is atomic, [3, Theorem 5.1] ensures that R[M ] is an FFD if and only if each nonzero element
of R[M ] has at most finitely many non-associate irreducible divisors. Let us verify this for
an arbitrary element f ∈ R[M ]•. Because R is an FFD and R[Nd] ∼= R[X1, . . . , Xd], the
algebra R[Nd] is also an FFD. Thus, there are only finitely many non-associate irreducible
elements in R[Nd] dividing f (i.e., f is contained in only finitely many principal ideals of
R[Nd]). Clearly, for g ∈ R[M ]• one has that g |R[M ] f if and only if f ∈ (g)R[M ], which
implies that f ∈ (g)R[Nd]; here (g)R[M ] and (g)R[Nd] denote the principal ideals generated by g
in R[M ] and R[Nd], respectively. If g′ ∈ R[M ] satisfies that (g′)R[Nd] = (g)R[Nd], then g′ = ug
for some u ∈ R[Nd]× = R× = R[M ]× and, therefore, (g′)R[M ] = (g)R[M ]. This, along with
the fact that f is only contained in finitely many principal ideals of R[Nd], ensures that f
is contained in only finitely many principal ideals of R[M ]. Hence f has only finitely many
non-associate irreducible divisors in R[M ], which concludes the proof.

ACCP domains in CA
It is clear that an integral domain is an ACCP domain if and only if it satisfies the ACCP
(i.e., every ascending chain of principal ideals eventually stabilizes). So it follows from the
chain of implications (6.2) that if an integral domain is a BFD, then it must satisfy the
ACCP. In a similar manner, we have that if an integral domain satisfies the ACCP, then
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it must be atomic. On the other hand, not every integral domain satisfying the ACCP is
atomic. However, examples witnessing this observation are not easy to construct. The first
such an example was given by Grams [104] using the monoid we exhibit in Example 8.3.3.
Further examples of atomic domains not satisfying the ACCP were given by Zaks in [147].

Example 8.3.3. Let pn denote the nth odd prime. The monoid

G =

〈
1

2n · pn

∣∣∣∣ n ∈ N
〉

was introduced by A. Grams in [104] to construct the first atomic integral domain that does
not satisfy the ACCP. It is not hard to check that G is an atomic monoid. However, the
increasing chain of principal ideals {1/2n +G} does not stabilize and, therefore, G does not
satisfy the ACCP. We call G the Gram’s monoid.

It is well known that an integral domain R satisfies the ACCP if and only if the ring of
polynomials R[X] satisfies the ACCP, and the same is true if we replace R[X] by the ring of
power series R[[X]] (for a stronger version of these two statements, see [10, Proposition 1.1]).
However, the problem of determining whether a monoid algebra R[M ] satisfies the ACCP is
more subtle and not settled yet in its full generality. As the following result indicates, there
are many algebras in CA satisfying the ACCP.

Proposition 8.3.4. Let M be a monoid and let F be a field. Then M satisfies the ACCP
if and only if F [M ] satisfies the ACCP.

Proof. For the direct implication, suppose that M satisfies the ACCP. Let (f1) ⊆ (f2) ⊆ · · ·
be an ascending chain of principal ideals of F [M ]. Then the sequence {deg(fn) + M} of
subsets of M is an ascending chain of principal ideals, which stabilizes because M satisfies
the ACCP. As M is reduced, there exists N ∈ N such that deg(fn) = deg(fN) for all
n ≥ N . This, along with the fact that fn divides fN in F [M ] for each n ≥ N , implies that
(fn) = (fN) for each n ≥ N . The reverse implication follows immediately from the fact
that a1 + M ⊆ a2 + M ⊆ · · · is an increasing chain of principal ideals of M if and only if
(Xa1) ⊆ (Xa2) ⊆ · · · is an increasing chain of principal ideals in R[M ].

Corollary 8.3.5. For any monoid in C and any field F , the monoid algebra F [M ] satisfies
the ACCP.

If R ⊆ T is an extension of integral domains with T× ∩ R = R×, then R satisfies the
ACCP provided that T satisfies the ACCP. This can be used to argue the following simple
result.

Proposition 8.3.6. Let M be a monoid in C and let R be an integral domain. If R[M ]
satisfies the ACCP, then R satisfies the ACCP.
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Proof. We have that R ⊆ R[M ] is an integral extension, and it follows from [86, Theo-
rem 11.1] that the set of units of R[M ] is R×. Then R satisfies the ACCP when R[M ]
does.

8.4 Algebras in CA with Extremal Systems of Sets of

Lengths

Now that we have characterized the monoid algebras of members of C that are BFDs, let
us verify that some of these monoid algebras satisfy the Kainrath Property. Recall that a
nontrivial BFM M satisfies the Kainrath Property provided that for each L ⊆ N≥2, there
exists x ∈M• with L(x) = L. In addition, an integral domain satisfies the Kainrath Property
if its multiplicative monoid satisfies the Kainrath Property.

Proposition 8.4.1. For a BFD R, the following statements hold.

(1) For every d ∈ N≥2, there exists a rank-d monoid M in C such that R[M ] satisfies the
Kainrath Property.

(2) For every d ∈ N≥3, there exists a rank-d primary monoid M in C such that R[M ]
satisfies the Kainrath Property.

Proof. To prove (1), suppose that d ∈ N≥2. By [95, Corollary 4.8], there exists a rank-d
monoid M in C satisfying the Kainrath Property. For q ∈M•, let us argue that the equality
LR[M ](X

q) = LM(q) holds. Notice that if an element f ∈ R[M ] divides Xq in R[M ], then
f must be a monomial. i.e., there exist r ∈ R and b ∈ M such that f = rXb. Since Xb is
irreducible in R[M ] if and only if b is an atom of M , each factorization zR[M ] of Xq in R[M ]
determines a unique factorization of q in M having length |zR[M ]|. Conversely, it follows
immediately that each factorization zM of q in M uniquely determines a factorization of Xq

in R[M ] of length |zM |. Hence LR[M ](X
q) = LM(q), as desired.

Now suppose that L ⊆ N≥2. Since the monoid M satisfies the Kainrath Property, there
exists b ∈M such that LM(b) = L. This, in turn, implies that LR[M ](X

b) = L. On the other
hand, it follows by Proposition 8.3.2 that R[M ] is a BFD. Hence R[M ] satisfies the Kainrath
Property. The statement (2) follows in a similar way, once we invoke [95, Corollary 4.9] to
find, for each d ∈ N≥3, a rank-d primary monoid in C satisfying the Kainrath Property.

8.5 Atomicity of Monoid Algebras over Fields of

Finite Characteristic

Unlike some of the atomic properties presented before, atomicity does not transfer from an
integral domain to its polynomial ring. In 1993, M. Roitman constructed a class of atomic
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integral domains whose polynomial rings fail to be atomic [130]. This implies, in particular,
that atomicity does not transfer, in general, from an integral domain R to the algebras in CA
with coefficients in R. However, we have already seen that for any monoid M in C and any
field F , the monoid algebra F [M ] is an FFD and, therefore, an atomic domain. By contrast,
it is not true in general that F [M ] is an atomic domain provided that M is an atomic monoid.
This is a question we will answer in this chapter. Furthermore, even if we take M in Q, it is
not true in general that F [M ] is atomic over any field F . We will also construct a monoid M
in Q such that Z2[M ] is not atomic. Note, however, that the members of both classes C
and Q are natural (non-finitely generated) generalizations of numerical monoids.

The Atomicity Transfer Problem

The following fundamental question about the atomicity of monoid algebras was stated by
R. Gilmer as an open problem back in the 1980’s.

Question 8.5.1. [86, p. 189] Let M be a commutative cancellative monoid and let R be
an integral domain. Is the monoid algebra R[M ] atomic provided that both M and R are
atomic?

In 1990, D. Anderson et al. restated a special version of the above question in the context
of polynomial rings, namely the case of M = (N0,+).

Question 8.5.2. [3, Question 1] If R is an atomic integral domain, is the integral do-
main R[X] also atomic?

Question 8.5.2 was answered negatively by M. Roitman in 1993. He constructed a class
of atomic integral domains whose polynomial rings fail to be atomic [130]. In a similar
direction, Roitman constructed examples of atomic integral domains whose corresponding
power series rings fail to be atomic as well as examples of atomic power series rings over non-
atomic domains [129]. This illustrates that, in general, atomicity is not easily inherited. In
the positive side, it was proved in [3, Section 1] that for an integral domain R, the polynomial
ring R[X] is atomic if and only if R[{Xα}] is atomic for any family {Xα} of indeterminates.

Observe that Roitman’s negative answer to Question 8.5.2 gives a striking answer to
Question 8.5.1, showing thatR[M ] can fail to be atomic even if one takesM to be the simplest
nontrivial atomic monoid, namely M = (N0,+). This naturally suggests the question of
whether the atomicity of M implies the atomicity of R[M ] provided that R is the taken to
be one of the simplest nontrivial atomic integral domains, a field. Clearly, this is another
special version of Question 8.5.1.

Question 8.5.3. Let F be a field. If M is an atomic monoid, is the monoid algebra F [M ]
also atomic?

There are many known classes of atomic monoids whose monoid algebras (over any field)
happen to be atomic. For instance, we have seen in Proposition 8.3.4 that if a monoid M
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satisfies the ACCP (and, therefore, is atomic), then for any field F the monoid algebra F [M ]
also satisfies the ACCP. Therefore F [M ] inherits the atomicity of M as it is well known that
integral domains satisfying the ACCP are atomic. In particular, every finitely generated
monoid satisfies the ACCP and, thus, induces atomic monoid algebras. As BFMs also satisfy
the ACCP [79, Corollary 1.3.3], one can use them to obtain many non-finitely generated
atomic monoid algebras with rational (or even real) exponents; this is because submonoids
of (R≥0,+) not having 0 as a limit point are BFMs [92, Proposition 4.5]. Furthermore, an
infinite class of atomic submonoids of (Q≥0,+) (which are not BFMs) with atomic monoid
algebras was exhibited in [97, Theorem 5.4].

Let us proceed to provide a negative answer for Question 8.5.3. First we find, for every
field F of finite characteristic, a rank-2 totally ordered atomic monoid M such that the
monoid algebra F [M ] is not atomic. Then we construct a rank-1 totally ordered atomic
monoid M (i.e., an additive submonoid of Q≥0) such that the monoid algebra Z2[M ] is not
atomic.

Non-atomic Monoid Algebras of Finite Characteristic

We proceed to find, for any given field F of finite characteristic, a rank-2 totally ordered
atomic monoid M such that the monoid algebra F [M ] is not atomic.

Proposition 8.5.4. For reduced monoids M and N the following statements hold.

(1) If M and N are atomic, then M ×N is atomic.

(2) If M and N satisfy the ACCP, then M ×N satisfies the ACCP.

Proof. To argue (1), suppose that M and N are atomic. Clearly, (a, 0) and (0, b) belong
to A(M × N) when a ∈ A(M) and b ∈ A(N). Therefore, for any atomic decompositions
r =

∑k
i=1 ai and s =

∑`
j=1 bj of r ∈M and s ∈ N ,

(r, s) =
k∑
i=1

(ai, 0) +
∑̀
j=1

(0, bj)

is an atomic decomposition of (r, s) in M × N . Hence M × N is atomic, and (1) follows.
To argue (2), assume that M and N both satisfy the ACCP. Let {(an, bn) +M ×N} be an
increasing chain of principal ideals in M ×N . Then {an +M} and {bn +N} are increasing
chains of principal ideals in M and N , respectively. As {an + M} and {bn + N} stabilize,
{(an, bn) + M × N} must also stabilize. As a result, M × N satisfies the ACCP, which
completes the proof.

Let r and m be integers with m > 0 and gcd(r,m) = 1. Recall that the order of r
modulo m is the smallest n ∈ N• for which rn ≡ 1 (mod m), and that r is a primitive root
modulo m if its order modulo m equals φ(m), where φ is the Euler’s totient function. It is
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well known that for any odd prime p and positive integer k, there exists a primitive root
modulo pk.

Lemma 8.5.5. Let F be a field of characteristic p and n ∈ N be such that gcd(p, n) = 1.
Then the polynomial Xn + Y n +XnY n is irreducible in F [X, Y ].

Proof. Set f(X, Y ) = Y n(1 + Xn) + Xn. Because there are no a, b ∈ F satisfying that
X+Y +XY = (X+a)(Y + b), it is clear that f(X, Y ) is irreducible in F [X, Y ] when n = 1.
Then we assume that n ≥ 2. Since gcd(p, n) = 1, there exists a primitive nth root of unity ω
over F . Let α be a root of Xn + 1 ∈ F [X] in some extension field of F . Now set

K := F (ω, α,X, (1 +Xn)
1
n ),

where X is an indeterminate. Note that F [Y ] is a UFD containing F [X, Y ]. In addition,

f(X, Y ) =
n∏
i=1

(
Y (1 +Xn)

1
n − ωiαX

)
in K[Y ]. So in order to show that f is irreducible in F [X, Y ] it suffices to argue that
(1 +Xn)

m
n /∈ F [X] for any m ∈ [[1, n− 1]].

Let gcd(m,n) = d. Take n′,m′ ∈ N such that n = n′d and m = m′d. Since F [X] is a
UFD, there exist k ∈ N and irreducible polynomials p1(X), . . . , pk(X) ∈ F [X] such that

(Xn + 1)
m
n = (Xn + 1)

m′
n′ = p1(X)a1p2(X)a2 · · · pk(X)ak ,

for some exponents a1, . . . , ak ∈ N. Similarly, there exist t ∈ N and irreducible polynomials
q1(X), . . . , qt(X) ∈ F [X] such that (Xn+1) = q1(X)b1q2(X)b2 · · · qt(X)bt for some exponents
b1, . . . , bt ∈ N. Combining the above observations, we find that

(Xn + 1)m
′
= p1(X)n

′a1p2(X)n
′a2 · · · pk(X)n

′ak = q1(X)m
′b1q2(X)m

′b2 · · · qt(X)m
′bt .

Since gcd(n′,m′) = 1 and F [X] is a UFD, it follows that t = k, pi(X) = qi(X) (without
loss of generality), and n′ai = m′bi. Hence m′ | ai for all 1 ≤ i ≤ k. Writing ai = m′a′i one
obtains

Xn + 1 =
(
p1(X)a

′
1p2(X)a

′
2 . . . pk(X)a

′
k

)n′
. (8.2)

For simplicity, we write the product p1(X)a
′
1p2(X)a

′
2 . . . pk(X)a

′
k more concisely as p(X). As

a result, (8.2) becomes
Xn + 1 = p(X)n

′
.

Taking the formal derivatives on both sides of the previous equality, one obtains that
nXn−1 = n′p(X)n

′−1p′(X). As n 6= 0 in a field of characteristic p, we must have that p(x) is
a monomial. However, this contradicts the equality Xn + 1 = p(X)n

′
.
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Motivated by the Gram’s monoid, in the next example we exhibit a family of monoids
in the class Q indexed by prime numbers whose members are atomic but do not satisfy the
ACCP.

Example 8.5.6. Let {pn} be a sequence consisting of all prime numbers ordered increasingly.
For each prime p consider the monoid

Mp :=

〈
1

pnpn

∣∣∣∣ pn 6= p

〉
.

A very elementary argument of divisibility can be used to check that Mp is atomic for each
prime p. On the other hand, Mp contains the strictly increasing sequence of principal ideals
{1/pn +Mp} and, therefore, Mp does not satisfy the ACCP. Notice that M2 is precisely the
Gram’s monoid.

For any field F and any monoids M and N in Q, there is a canonical F -algebra isomor-
phism

F [M ×N ] ∼= F [X;M ][Y ;N ]

induced by the assignment x(a,b) 7→ XaY b. To avoid having ordered pairs as exponents,
we will identify F [M × N ] with F [X;M ][Y ;N ] and write the elements of F [M × N ] as
polynomial expressions in two variables.

Theorem 8.5.7. For each field F of finite characteristic p, there exists an atomic monoid M
such that the monoid algebra F [M ] is not atomic.

Proof. Let M := Mp ×Mp, where Mp is the atomic monoid parametrized by p exhibited in
Example 8.5.6. We first claim that each nonunit factor of f := X + Y + XY ∈ F [M ] has
the form (

X
1

pk + Y
1

pk +X
1

pk Y
1

pk
)t

for some k ∈ N0 and t ∈ N. To prove our claim, let g ∈ F [M ] be a nonunit factor of f , and
take h ∈ F [M ] such that f = g h. Then there exist k ∈ N0 and a ∈ N with p - a such that
g(Xapk , Y apk) and h(Xapk , Y apk) are both in the polynomial ring F [X, Y ]. After changing
variables, we obtain

g(Xapk , Y apk)h(Xapk , Y apk) = Xapk + Y apk +XapkY apk = (Xa + Y a +XaY a)p
k

.

By Lemma 8.5.5, the polynomial Xa + Y a + XaY a is irreducible in the polynomial ring
F [X, Y ]. Since F [X, Y ] is a UFD, there exists t ∈ N such that

g
(
Xapk , Y apk

)
=
(
Xa + Y a +XaY a

)t
.

Going back to the original variables, we obtain g(X, Y ) =
(
X

1

pk + Y
1

pk + X
1

pk Y
1

pk
)t

, which
establishes our initial claim.
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Now we verify that F [M ] is not atomic. As f =
(
X

1
p + Y

1
p + X

1
pY

1
p
)p

, the polynomial
expression f is not irreducible. By the argument given in the previous paragraph, any
factor g of f in a potential decomposition into irreducibles of F [M ] must be of the form(
X

1

pk + Y
1

pk +X
1

pk Y
1

pk
)t

and, therefore,

g =
(
X

1

pk+1 + Y
1

pk+1 +X
1

pk+1 Y
1

pk+1
)pt
. (8.3)

Since X
1

pk+1 +Y
1

pk+1 +X
1

pk+1 Y
1

pk+1 ∈ F [M ], the equality (8.3) would contradict that g is an
irreducible element of F [M ]. Thus, the algebra F [M ] is not atomic.

It is clear that any submonoid M of (R,+) is totally ordered with respect to the natural
order inherited from R.

Corollary 8.5.8. For each field F of finite characteristic p, there exists a rank-2 totally
ordered atomic monoid M such that F [M ] is not atomic.

Proof. Let Mp be the monoid introduced in Example 8.5.6 corresponding to the prime p.
Since π is irrational, for any a, a′, b, b′ ∈ Q the fact that a+πb = a′+πb′ immediately implies
that a = a′ and b = b′. Using this observation, one can easily verify that the map

ψ : Mp ×Mp →Mp + πMp defined by ψ(a, b) = a+ πb

is a monoid isomorphism. On the other hand, the fact that {1, π} is a linearly independent
set of R (seen as a Q-vector space) implies that {1, π} is also a linearly independent set
of the Q-vector space Q ⊗Z gp(Mp + πMp). Thus, Mp + πMp is a rank-2 totally ordered
monoid. Because Mp is atomic, Proposition 8.5.4(1) ensures that Mp + πMp is also atomic.
Since Mp ×Mp and Mp + πMp are isomorphic monoids, [86, Theorem 7.2(2)] ensures that
F [Mp×Mp] and F [Mp+πMp] are isomorphic F -algebras. Finally, it follows by Theorem 8.5.7
that F [Mp + πMp] is not an atomic domain.

A Non-atomic Monoid Algebra with Rational Exponents

The purpose of this section is to construct an atomic monoid M in Q such that the algebra
Z2[M ] fails to be atomic. Since each monoid in Q is totally ordered and has rank 1, this
result will complement Corollary 8.5.8.

Proposition 8.5.9. There exists an atomic monoid M in Q satisfying the following two
conditions:

(1) M is contained in the ring Z
[

1
2
, 1

3

]
, and

(2) 1
2n
∈M for every n ∈ N.
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Proof. Let {`n} be a strictly increasing sequence of positive integers satisfying that

3`n−`n−1 > 2n+1

for every n ∈ N. Now set A = {an, bn | n ∈ N}, where

an :=
2n3`n − 1

22n3`n
and bn :=

2n3`n + 1

22n3`n
.

It is clear that 1 > bn > an for every n ∈ N. In addition,

an =
1

2n
− 1

22n3`n
=

1

2n+1
+

(
1

2n+1
− 1

22n3`n

)
>

1

2n+1
+

1

22n+23`n+1
= bn+1

for every n ∈ N. Therefore the sequence b1, a1, b2, a2, . . . is strictly decreasing and bounded
from above by 1. Consider now the monoid M = 〈A〉. Clearly, M satisfies condition (1). On
the other hand, 1

2n
= an+1 +bn+1 ∈M for every n ∈ N0. Thus, M also satisfies condition (2).

All we need to prove is that M is atomic. It suffices to verify that A is a minimal
generating set of M [79, Proposition 1.1.7]. Suppose, by way of contradiction, that this is
not the case. Then there exists n ∈ N such that M = 〈A \ {an}〉 or M = 〈A \ {bn}〉.

CASE 1. M = 〈A \ {an}〉. In this case,

an =
N∑
i=1

αiai +
N∑
i=1

βibi (8.4)

for some N ∈ N≥n and nonnegative integer coefficients αi’s and βi’s (i ∈ [[1, N ]]) such
that αn = 0 and either αN > 0 or βN > 0. Since the sequence b1, a1, b2, a2, . . . is strictly
decreasing, αi = βi = 0 for i ∈ [[1, n]]. Notice that αi = βi cannot hold for all i ∈ [[n+1, N ]];
otherwise,

an =
N∑

i=n+1

αiai +
N∑

i=n+1

αibi =
N∑

i=n+1

αi
1

2i−1
,

which is impossible because 3 | d(an). Set

m = max
{
i ∈ [[n+ 1, N ]] | αi 6= βi

}
.

First assume that αm > βm. Then we can rewrite (8.4) as follows:

an = (αm − βm)
2m3`m − 1

22m3`m
+

N∑
i=m

βi
1

2i−1
+

m−1∑
i=n+1

αi(2
i3`i − 1) + βi(2

i3`i + 1)

22i3`i
. (8.5)

After multiplying both sides of the equality (8.5) by 22N3`m , one can easily see that each
summand involved in such an equality except perhaps 22N−2m(αm−βm)(2m3`m−1) is divisible
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by 3`m−`m−1 . Therefore 3`m−`m−1 must also divide αm − βm. Now since am > bm+1 >
1

2m+1 ,
we find that

an ≥ αmam ≥ (αm − βm)bm+1 ≥ 3`m−`m−1bm+1 >
3`m−`m−1

2m+1
> 1, (8.6)

which is a contradiction. In a similar way we arrive at a contradiction if we assume that
βm > αm.

CASE 2: M = 〈A \ {bn}〉. In this case, it is not hard to see that

bn − αnan =
N∑

i=n+1

αiai +
N∑

i=n+1

βibi (8.7)

for some nonnegative coefficients αi’s (i ∈ [[n,N ]]) and βj’s (j ∈ [[n+1, N ]]) such that either
αN > 0 or βN > 0. Observe that αn ∈ {0, 1} as it is obvious that 2an > bn. As before, there
exists m ∈ [[n + 1, N ]] such that αm 6= βm, and we can assume that such m is as large as
possible. If αm > βm, then

bn − αnan = (αm − βm)
2m3`m − 1

22m3`m
+

N∑
i=m

βi
1

2i−1
+

m−1∑
i=n+1

αi(2
i3`i − 1) + βi(2

i3`i + 1)

22i3`i
.

Since d(bn − αnan) ∈ {2n−13`n , 22n3`n}, after multiplying the previous equation by 22N3`m

we can see that 3`m−`m−1 divides αm − βm. Now, an argument similar to that one given in
CASE 1 can be used to obtain that bn > 1, which is a contradiction. We can proceed in a
similar manner to obtain a contradiction if we assume that αm < βm. Hence we have proved
that A is a minimal generating set of M , which means that M is atomic with A(M) = A.

The following result will be used in the proof of Lemma 8.5.11.

Lemma 8.5.10. [116, page 179] If p is an odd prime and r is a primitive root modulo p2,
then r is a primitive root modulo pn for every n ≥ 2.

The next lemma is proposed as an exercise in [117, Chapter 3]. For the convenience of
the reader, we provide a proof here.

Lemma 8.5.11. For each n ∈ N, the polynomial X2·3n +X3n + 1 is irreducible in Z2[X].

Proof. One can verify that the order of 2 modulo 9 is φ(9) = 6. Then 2 is a primitive root
modulo 32. It follows now by Lemma 8.5.10 that 2 is also a primitive root modulo 3n for
every n ≥ 2, that is, 2 + 3nZ generates the multiplicative group of units of Z/3nZ for each
n ≥ 2.

Set f(X) = X2·3n +X3n + 1, and suppose that f(X) = g(X)h(X) in Z2[X], where g(X)
is irreducible. Since

X3n+1

+ 1 =
(
X3n + 1

)
f(X),
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each primitive root of unity modulo 3n+1 must be a root of f(X). Take r to be a primitive
root modulo 3n+1. As r is a root of f(X), either g(r) = 0 or h(r) = 0. Suppose, without
loss of generality, that g(r) = 0. Let m ∈ [[1, 3n+1]] such that 3 - m. Since 2 is a generator
of the multiplicative group (Z/3n+1Z)×, there exists k ∈ N• such that

2k = m (mod 3n+1).

Taking ` ∈ N0 so that m = 2k + 3n+1`, one obtains

g
(
rm
)

= g
(
r2k+3n+1`

)
= g
(
r2k
(
r3n+1)`)

= g
(
r2k
)

= g(r)2k = 0.

Thus, the polynomial g(X) contains at least φ(3n+1) = 2 · 3n distinct roots. This implies
that deg g(X) = deg f(X). Hence f(X) = g(X), and so f(X) is irreducible over Z2.

Theorem 8.5.12. There exists an atomic monoid M in Q such that Z2[M ] is not atomic.

Proof. LetM be an atomic monoid inQ satisfying conditions (1) and (2) of Proposition 8.5.9.
First, we will argue that each factor of the element X2 + X + 1 in Z2[M ] has the form(
X2 1

2k + X
1

2k + 1
)t

for some k ∈ N and t ∈ N•. First, note that because M contains
〈1/2k | k ∈ N〉, it follows that

X2 1

2k +X
1

2k + 1 ∈ Z2[M ]

for all k ∈ N0. Now suppose that f(X) is a factor of X2 + X + 1 in Z2[M ], and take
g(X) ∈ Z2[M ] such that

X2 +X + 1 = f(X)g(X).

Then there exists k ∈ N such that

f
(
X6k

)
g
(
X6k

)
=
(
X6k

)2
+X6k + 1 =

(
X2·3k +X3k + 1

)2k

in the polynomial ring Z2[X]. By Lemma 8.5.11, the polynomial X2·3k +X3k +1 is irreducible
in Z2[X]. Since Z2[X] is a UFD, there exists t ∈ N• such that

f
(
X6k

)
=
(
X2·3k +X3k + 1

)t
=
((
X6k

)2 1

2k +
(
X6k

) 1

2k + 1
)t
. (8.8)

After changing variables in (8.8), one obtains that f(X) =
(
X2 1

2k + X
1

2k + 1)t. Thus, each
factor of X2 +X + 1 in Z2[M ] has the desired form.

Now suppose, by way of contradiction, that the domain Z2[M ] is atomic. Then

X2 +X + 1 =
n∏
i=1

fi(X)



CHAPTER 8. ATOMICITY OF MONOID ALGEBRAS 132

for some n ∈ N• and irreducible elements f1(X), . . . , fn(X) in Z2[M ]. Since f1(X) is a factor
of X2 +X + 1, there exist k ∈ N and t ∈ N• such that

f1(X) =
(
X2 1

2k +X
1

2k + 1)t.

As f1(X) is irreducible, t = 1. Now the equality

f1(X) =
(
X2 1

2k+1 +X
1

2k+1 + 1
)2

contradicts the fact that f1(X) is irreducible in Z2[M ]. Hence Z2[M ] is not atomic.



133

Bibliography

[1] M. Aissen, I. J. Schoenberg, and A. Whitney. “On generating functions of totally
positive sequences”. In: J. Anal. Math. 2 (1952), pp. 93–103.

[2] J. Amos et al. “Sets of lengths do not characterize numerical monoids”. In: Integers
7 (2007), A50.

[3] D. D. Anderson, D. F. Anderson, and M. Zafrullah. “Factorizations in integral do-
mains”. In: J. Pure Appl. Algebra 69 (1990), pp. 1–19.

[4] D. D. Anderson, D. F. Anderson, and M. Zafrullah. “Factorizations in integral do-
mains II”. In: J. Algebra 152 (1992), pp. 78–93.

[5] D. D. Anderson, D. F. Anderson, and M. Zafrullah. “Rings between D[X] and K[X]”.
In: Houston J. Math. 17 (1991), pp. 109–129.

[6] D. D. Anderson and B. Mullins. “Finite factorization domains”. In: Proc. Amer. Math.
Soc. 124 (1996), pp. 389–396.

[7] D. D. Anderson et al. “Monoid domain constructions of antimatter domains”. In:
Comm. Alg. 35 (2007), pp. 3236–3241.

[8] D. D. Anderson et al. “Rational elasticity of factorizations in Krull domains”. In:
Proc. Amer. Math. Soc. 117 (1993), pp. 37–43.

[9] D. F. Anderson. “Elasticity of factorizations in integral domains: a survey”. In: Fac-
torization in Integral Domains. Ed. by D. D. Anderson. Vol. 189. Lect. Notes Pure
Appl. Math. New York: Marcel Dekker, 1997, pp. 1–29.

[10] D. F. Anderson and D. N. El Abidine. “Factorization in integral domains, III”. In: J.
Pure Appl. Algebra 135 (1999), pp. 107–127.

[11] D. F. Anderson, S. T. Chapman, and W. W. Smith. “Some factorization properties
of Krull domains with infinite cyclic divisor class group”. In: J. Pure Appl. Algebra
96 (1994), pp. 97–112.

[12] D. F. Anderson and D. Scherpenisse. “Factorization in K[S]”. In: Factorization in
Integral Domains. Ed. by D. D. Anderson. Vol. 189. Lect. Notes Pure Appl. Math.
New York: Marcel Dekker, 1997, pp. 45–56.

[13] J. Anderson. “Partitions which are simultaneously t1- and t2-core”. In: Discrete Math.
248 (2002), pp. 237–243.



BIBLIOGRAPHY 134

[14] F. Ardila, C. Benedetti, and J. Doker. “Matroid polytopes and their volumes”. In:
Discrete Comput. Geom. 43 (2010), pp. 841–854.

[15] F. Ardila and S. Billey. “Flag arrangements and triangulations of products of sim-
plices”. In: Adv. Math. 214 (2007), pp. 495–524.

[16] F. Ardila and C. Ceballos. “Acyclic systems of permutations and fine mixed subdivi-
sions of simplices”. In: Discrete Comput. Geom. 49 (2013), pp. 485–510.

[17] F. Ardila, F. Rincón, and L. K. Williams. “Positroids and non-crossing partitions”.
In: Trans. Amer. Math. Soc. 368 (2016), pp. 337–363.

[18] F. Ardila and R. P. Stanley. “Tilings”. In: Math. Intelligencer 32 (2010), pp. 32–43.

[19] N. Arkani-Hamed et al. Grassmannian Geometry of Scattering Amplitudes. Cam-
bridge: Cambridge University Press, 2016.

[20] D. Armstrong, C. R. H. Hanusa, and B. C. Jones. “Results and conjectures on simul-
taneous core partitions”. In: European J. Combin. 41 (2014), pp. 205–220.

[21] D. Armstrong, N. A. Loehr, and G. S. Warrington. “Rational parking functions and
Catalan numbers”. In: Ann. Comb. 20 (2016), pp. 21–58.

[22] D. Armstrong, B. Rhoades, and N. Williams. “Rational associahedra and noncrossing
partitions”. In: Electron. J. Combin. 20 (2013), #54.

[23] D. Armstrong, B. Rhoades, and N. Williams. “Rational Catalan combinatorics: the
associahedron”. In: Discrete Math. Theor. Comput. Sci. 20 (2013), pp. 933–944.

[24] W. E. Armstrong. “The determinateness of the utility function”. In: Econom. J. 49
(1939), pp. 453–467.

[25] L. L. Avramov, C. Gibbons, and R. Wiegand. “Monoids of Betti tables over short
Gorenstein algebras”. Under preparation.

[26] P. Baginski, S. T. Chapman, and G. J. Schaeffer. “On the delta-set of a singular
arithmetical congruence monoid”. In: J. Théor. Nombres Bordeaux 20 (2008), pp. 45–
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