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Herbivores and nutrients control grassland plant
diversity via light limitation

Elizabeth T. Borer', Eric W. Seabloom’, Daniel S. Gruner?, W. Stanley Harpole®, Helmut Hillebrand?, Eric M. Lind", Peter B. Adler®,
Juan Alberti®, T. Michael Anderson’, Jonathan D. Bakker®, Lori Biederman®, Dana Blumenthal®, Cynthia S. Brown'°,

Lars A. Brudvig", Yvonne M. Buckley'*'3, Marc Cadotte*, Chengjin Chu'®, Elsa E. Cleland'®, Michael J. Crawley"’, Pedro Daleo®,
Ellen I. Damschen'®, Kendi F. Davies!?, Nicole M. DeCrappeo®°, Guozhen Du'®, Jennifer Firn®, Yann Hautier!,

Robert W. Heckman?, Andy Hector?®, Janneke HilleRisLambers?*, Oscar Iribarne®, Julia A. Klein'®, Johannes M. H. Knops?,
Kimberly J. La Pierre®, Andrew D. B. Leakey”, Wei Li®, Andrew S. MacDougall?®, Rebecca L. McCulley®, Brett A. Melbourne®,
Charles E. Mitchell?, Joslin L. Moore®°, Brent Mortensen®, Lydia R. O’Halloran®, John L. Orrock'®, Jests Pascual®,

Suzanne M. Prober®?, David A. Pyke®®, Anita C. Risch®®, Martin Schuetz*®, Melinda D. Smith'®, Carly J. Stevens™,

Lauren L. Sullivan®, Ryan J. Williams®, Peter D. Wragg', Justin P. Wright®® & Louie H. Yang®®

Human alterations to nutrient cycles"” and herbivore communities®”
are affecting global biodiversity dramatically®. Ecological theory pre-
dicts these changes should be strongly counteractive: nutrient addi-
tion drives plant species loss through intensified competition for
light, whereas herbivores prevent competitive exclusion by increas-
ing ground-level light, particularly in productive systems®®. Here we
use experimental data spanning a globally relevant range of condi-
tions to test the hypothesis that herbaceous plant species losses caused
by eutrophication may be offset by increased light availability due to
herbivory. This experiment, replicated in 40 grasslands on 6 conti-
nents, demonstrates that nutrients and herbivores can serve as counter-
acting forces to control local plant diversity through light limitation,
independent of site productivity, soil nitrogen, herbivore type and
climate. Nutrient addition consistently reduced local diversity through
light limitation, and herbivory rescued diversity at sites where it alle-
viated light limitation. Thus, species loss from anthropogenic eutro-
phication can be ameliorated in grasslands where herbivory increases
ground-level light.

The diversity of life on Earth underlies critical ecosystem functions
and economically important services'’, and the current rapid rate of
biodiversity loss® lends urgency to the task of understanding the forces
that maintain biodiversity. Resources required for economic growth,
energy and agriculture have all impacted natural ecosystems on a global
scale. Introductions and extirpations of herbivore species, particularly
as land is converted for grazing®”’, and increased nutrient supply are
symptoms of humanity’s global footprint* Such widespread altera-
tion of herbivores and nutrient supply may jointly determine the future
diversity of ecosystems. For example, in highly productive, eutrophic

systems in which plant species extinction is likely to occur owing to a
loss of ecological niches®, ecological theory predicts that herbivores can
act to maintain local-scale plant diversity if they selectively consume the
superior resource competitors’. Empirical studies in many ecosystem
types find highly variable effects of herbivores on plant species diversity'' ",
with the magnitude of herbivore mediation of diversity frequently observed
to be greatest in regions of high ecosystem productivity''""”. Thus, eco-
system productivity and its regional climate drivers have been observed
to mediate the local-scale effects of herbivores on plant diversity. The
availability of ground-level light is the commonly postulated mech-
anism modulating the relationships among plant diversity, herbivory
and observed gradients of plant productivity. However, these patterns
and predictions have primarily emerged from studies across observed
gradients of productivity or reviews and meta-analyses based on an
extremely limited number of single-site experiments that manipulate
both nutrients and herbivory, often with different methods''"'>". In
most of these studies, ground-level light has not been measured. Thus,
the generality of these effects is only suggestive, and the mechanisms
underlying the observed relationships remain elusive.

Local-scale plant diversity is likely to be maintained through an inter-
dependent system of interactions with multiple plant species that are
consumed by the same herbivores and that compete for light and nutri-
ents. In particular, terrestrial plants compete for nutrients and light at
the scale of interactions among individuals (neighbourhood of ~1 m?
in grasslands), and one important mechanism for maintaining local
coexistence is a trade-off in competitive ability for nutrients (below-
ground) and for carbon via light (aboveground)'®**. Nutrient enrichment
can lead to competitive exclusion of inferior competitors for light'>*°,
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Figure 1 | Geographic and climatic distribution of experimental sites.

a, Locations of the 40 ‘Nutrient Network’ sites at which the full factorial
experiment was replicated. At each site, nutrient supply and plot access by large
herbivores were manipulated. Sites contributed 1-4 years of plot-scale

but herbivores can remove plant biomass, potentially alleviating unders-
tory light limitation. However, herbivory creates another axis of potential
trade-offs among plant species, involving investment in rapid growth
and light capture versus investment in defence against herbivory> .
These interactions result in a dynamic local community in which
composition responds quickly to changes in the strength of nutrient
limitation or herbivory®>*. In eutrophied systems, where nutrient lim-
itation is alleviated and productivity is increased, theory predicts that
these tradeoffs among plant strategies will simplify the plant community
to species sharing an herbivore and competing for a single resource—
lig}th,lg.

We used an experiment replicated at 40 sites on 6 continents (Fig. 1)
to test the hypothesis that herbivores mediate species losses caused by
nutrient addition by increasing ground-level light, particularly in eutrophic
and highly productive systems. We manipulated herbivores and nutri-
ents using a factorial experiment (nutrient addition X exclusion of her-
bivores > about 50 g, see Methods and ref. 27 for details) replicated in
40 sites dominated by herbaceous plants, spanning broad environmental
gradients of productivity (114t0 1,976 gm ™ >yr~ '), precipitation (mean
annual precipitation from 224 to 1,898 mmyr '), temperature (mean
annual temperature from 0 to 22.1 °C), and soil nitrogen (mean per-
centage of soil N from 0.018 to 1.182%) (Fig. 1 and Extended Data
Table 1). In each plot, we measured local-scale responses of produc-
tivity, light and the number of plant species (diversity) using standard
methods”. We also examined site-level covariates including precipita-
tion, temperature, herbivory intensity, soil nitrogen and atmospheric-
nitrogen deposition rates. Although most sites provided 3 years of data,
a subset of sites contributed 4 years of post-treatment data, and a few
sites, established later, provided only 1 or 2 years of data (Extended Data
Table 1). Effects of the experimental treatments were broadly consistent
across all years of treatments (Extended Data Fig. 1); we present results
from the three year duration in the main text, for a balance of spatial
and temporal extent (see Extended Data Tables 2-8 for statistical mod-
els that describe responses in data collected 3 years after initiation of
the experimental treatments).

Our results support an important mechanism by which nutrients
lead to diversity loss. In particular, nutrient addition caused declines in
diversity (Fig. 2a and Extended Data Table 2, P < 0.001), increased total
plant biomass (Fig. 2b and Extended Data Table 3, P <0.001), and
increased light limitation (reduced transmission of photosynthetically
active radiation (PAR) to ground level, Fig. 2c and Extended Data Table 4,
P <0.001) both inside and outside of fences. Ground-level light avail-
ability, a function of light interception by live and dead biomass, declined
with increasing total biomass (Fig. 2d and Extended Data Table 5,
P < 0.001). This result is consistent with eutrophication-induced loss
of niches for coexistence®”'**® and demonstrates the generality of eutro-
phication as a primary force controlling the diversity of grassland com-
munities by reducing ground-level light®.
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photosynthetically active radiation (PAR), plant species richness and total plant
biomass data. b, Study sites represent a wide range of mean annual temperature

and precipitation (n = 40). Additional site details are provided in Extended
Data Table 1.

Although the removal of vertebrate herbivores did not have consistent
effects on diversity (Fig. 2a, P = 0.522) or biomass (Fig. 2b, P = 0.803),
herbivore removal increased light limitation (Fig. 2¢, P = 0.013). The
lack of a consistent effect of herbivore removal on diversity across these
globally distributed grassland sites (Fig. 2a) reflects the broad range of
positive and negative effects found in past studies'"'”*. However, a
critical assumption underlying the hypothesis that grassland diversity
is jointly controlled by nutrient supply and consumers is that diversity
should be rescued consistently by herbivory. In both ambient and
eutrophied plots, herbivory should lead to greater diversity because
herbivores can alleviate ground-level light limitation, thereby increas-
ing the number of possible tradeoffs (nutrients, light) that maintain

plant species diversity”'.
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Figure 2 | Mixed-effects model parameters showing average response of
plots (n =360) to 3 years of nutrient addition and herbivore exclusion by
fencing. a-d, Nutrient addition (Nut) and herbivore exclusion by fencing
(Fnc) represent the difference from control plots; Nut*Fnc is the additional
effect of combining nutrients and fences (the interaction). Error bars represent
the 95% confidence interval. a Plot-scale diversity declines with nutrients, but is
not consistently altered with fencing. b, Total biomass increases with nutrients,
but is not consistently affected by fencing. ¢, Exclusion of herbivores and
addition of nutrients independently reduce ground-level light. d, The
proportion of light reaching the ground declines with increasing aboveground
biomass.
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We tested whether the inconsistent herbivore effects on plant diver-
sity reflected variable herbivore effects on light and found that plant
diversity increased quantitatively with herbivore effects on ground-
level light (Fig. 3, P = 0.003); nutrient addition did not modify this
relationship (Extended Data Fig. 2). Sites with the greatest effects of
herbivores on light and diversity spanned four continents and were
dominated by larger vertebrates including wild and domestic ungu-
lates, macropods, and lagomorphs (Fig. 3 and Extended Data Table 1).
Thus, we show that under conditions of experimentally imposed nutri-
ent supply gradients and among sites spanning greater than a 26-fold
observed productivity gradient, herbivores rescue plant diversity to the
extent that they enhance ground-level light, regardless of herbivore
identity or nutrient supply.

Herbivore effects on plant diversity were not related to variation in
soil nitrogen, nitrogen deposition rates, or site productivity. The change
in ground-level light caused by removing herbivores was greatest at
sites with high herbivory intensity (estimated as change in biomass in
response to fencing; P = 0.006, AIC (Akaike information criterion)-
weighted importance = 0.98, Extended Data Table 6). Herbivory inten-
sity, in turn, was greatest at sites with a cool dry-season climate (P = 0.01,
importance = 1.0, Extended Data Table 7) and sites at which the annual
temperature is relatively warm (P = 0.03, importance = 0.52) and con-
stant (P = 0.05, importance = 0.63). However, the change in diversity
due to herbivores was best described by their effect on ground-level
light (P = 0.012, importance = 1.0, Extended Data Table 8); site-level
climate, productivity, soil nitrogen, nitrogen deposition rates, and her-
bivory intensity were not significant descriptors of changes in site-level
plant diversity (P> 0.05 and importance < 0.25 for these factors).
Thus, climate, which predicts herbivory intensity, places an ultimate
constraint on the effects of herbivores on plant diversity, butlocal plant
diversity is determined primarily through herbivore effects on ground-
level light. These experimental data demonstrate that across a wide
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Figure 3 | Effects of herbivore exclusion by fencing on mean grassland
species richness and the mean proportion of PAR reaching ground level at
29 sites after 3 years of treatment. Log response ratios (LRRs) compare light
and richness inside and outside fences. The grey region indicates the 95%
confidence interval around the regression (P = 0.003). Extended Data Table 1
shows site number codes. Herbivore exclusion generally leads to reduced
ground-level light (<0 on x axis) coupled with reduced grassland species
richness (<0 on y axis). Herbivore effects are consistent across fertilized and
unfertilized plots (Extended Data Fig. 2).
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range of the world’s grasslands, herbivores serve as an important force
to maintain plant diversity in grassland ecosystems in which they increase
ground-level light availability, consistent with the prediction that light
limitation is a critical factor controlling grassland species diversity™'®,
but counter to the interpretation of nutrient supply or ecosystem pro-
ductivity as the dominant force constraining herbivore effects on local
plant diversity''~"".

A predictive understanding of the forces controlling grassland diver-
sity is critical for informing issues of environmental and agricultural
sustainability on all continents because of the steady conversion of the
world’s grasslands for use in livestock production®”’. Previous work
observed that herbivores have the greatest effects on diversity in high
productivity ecosystems''™¢, whereas the experimental results pre-
sented here demonstrate that in grasslands in which herbivores increase
ground-level light, they rescue plant diversity regardless of nutrient
addition or environmental productivity. This result is consistent with
ecological theory™'®*, simultaneously providing greater mechanistic
understanding and clarifying the apparent overall lack of response of
plant diversity to herbivory''. The results from our global-scale experi-
ment suggest that in cases in which anthropogenic nutrient inputs to
natural systems are high, grassland plant diversity will decline. However,
in grasslands in which herbivory leads to increased ground-level light
availability, we expect that these diversity losses will be ameliorated.

METHODS SUMMARY

All 40 herbaceous-dominated (‘grassland’) sites in the analysis (Fig. 1) implemen-
ted a full factorial combination of nutrient addition (‘control’ or ‘all nutrients’) and
herbivore exclusion (‘control or ‘fenced’). The experimental design, treatments and
sampling procedures to document plant diversity, biomass, light interception by the
canopy, and soil chemistry were replicated at all sites, as detailed in ref. 27 and
described in the Methods. Climate data were derived for all sites using the WorldClim
database (version 1.4)*. All sites contributed at least 1 year of post-treatment data.
Light, biomass and species richness were measured concurrently at 29 sites con-
tributing 3 or more years of data (Extended Data Table 1); we focus on these in our
main analyses.

We developed mixed-effects models with ‘site’ and ‘block nested within site’ as
random effects using R (version 3.1; R Foundation for Statistical Computing). Analyses
in Fig. 2a, b were performed using the nlme R library; we used the Ime4 R library
when the proportion of light (binomial error structure) was the response variable
(Fig. 2¢,d). We used the glm R function to analyse changes in each factor estimated
as log(Sg+/Sg-), where Sg, is species richness or proportion PAR reaching the
ground in fenced plots and Sy represents the comparable control plot measure-
ment (Fig. 3). Finally, we used the dredge function in the MuMIn R library to assess
the relative importance of potentially covarying site-level factors. We fit all possible
models, deriving parameter values with error, and kept those models not more
than four AICc (AIC corrected for small sample size) units higher than the best
model. For each parameter, we further estimated AIC-weighted ‘importance’, a
unitless metric indicating summed Akaike information across all models in which
the parameter appears. Importance ranges from 0 (parameter not given explanatory
weight) to 1 (parameter in all top models).

Online Content Any additional Methods, Extended Data display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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METHODS

Site selection. The Nutrient Network (NutNet) is a network of researchers working
at herbaceous-dominated (‘grassland’) sites in countries spread across six conti-
nents, who are performing coordinated, globally distributed observations and
experiments. The full experimental design is detailed here and in ref. 27. All
NutNet sites are located in areas dominated by herbaceous vegetation representing
the regional species composition (for example, shortgrass steppe, tallgrass prairie),
referred to as ‘grassland” here. The NutNet experimental design analysed here is a
completely randomized block design with four 5 X 5 m plots per block and three
replicate blocks at most sites (with blocks ranging from 1 (n =1 site) to 5 (n =3
sites)). Within-site replication is used to determine relative strength of responses,
but the main experimental replication comes from the number of sites.
Experimental treatments. All 40 sites included in the current analysis (Fig. 1)
implemented a full factorial combination of nutrient addition (‘control’ or ‘all
nutrients’) and consumer density (‘control’ or ‘fenced’) for a total of four treat-
ments in randomized, complete blocks. Standard nutrient addition and sampling
protocols were carefully replicated among sites”. All sites collected data before
application of treatments (year 0); most sites began sampling in 2007, but a subset
began sampling in subsequent years. Nutrient and fencing treatments” were
implemented the following year (year 1) and have been maintained continuously
since then. All sites contributed at least 1 year of post-treatment data; 39 of these
sites contributed 3 or more years of post-treatment data. Light, biomass and species
richness measurements (see below) were conducted concurrently at 29 sites con-
tributing 3 or more years of data; we focus on these in our main analyses.

Fences designed to exclude aboveground mammalian herbivores (> about 50 g)
were erected around two plots in each block, one receiving a nutrient combination
(described next) and one used as an ambient nutrient control plot. Fences were
230cm tall with the lower 90cm surrounded by 1-cm woven wire mesh. An
additional 30-cm outward-facing flange was stapled to the ground to exclude
digging animals (for example, rabbits, voles), although not fully subterranean
animals (for example, gophers, moles). Four strands of barbless wire were strung
at equal vertical distances above the wire mesh. Exclosures were built at all sites
before the second year of plant growth. Although most (33) sites built fences
exactly to these specifications, a few sites (8) faced challenges (for example, snow-
pack, materials availability, elephant activity) that required minor modifications.
Modifications are described in Supplementary Table 1.

Nitrogen, phosphorus and potassium were applied annually to experimental
plots; micronutrients were applied once at the start of the experiment to avoid
toxic levels from over-application. Nutrient addition rates and sources were: 10 g
Nmfzyrf1 as timed-release urea ((NH,),CO), IOngfzyr*1 as triple-super
phosphate (Ca(H,POy,),), 10gI(m72yr71 as potassium sulphate (K,SO,) and
IOOganyfl of a micronutrient mix of Fe (15%), S (14%), Mg (1.5%), Mn
(2.5%), Cu (1%), Zn (1%), B (0.2%) and Mo (0.05%).

Each sampling area was separated by at least 1.5m from neighbouring plots
(1 m walkway and 0.5 m within-plot buffer), which served to minimize indirect
effects of treatments in one plot on adjacent plots (for example, nutrient leaching,
shading or mycelial networks). Note that the nutrient and fence treatments had
strong measurable effects on plant responses (for example, biomass, richness)
indicating that plots and measurements were sufficiently sized and spaced.
Species diversity. All NutNet sites followed standard sampling protocols. A ran-
domly designated 1 X 1 m subplot within each 5X 5m plot was permanently
marked and sampled annually at peak biomass. In the 1 X 1 m permanently marked
subplot, cover was estimated visually to the nearest 1% for every species over-
hanging the subplot; cover estimates also included woody over-story, litter, bare
soil and rock.

Productivity. Adjacent to the permanent 1 X 1 m cover subplot, standing crop
was estimated destructively by clipping at ground level all aboveground biomass of
individual plants rooted within two 1 X 0.1 m strips (for a total of 0.2m?). All
biomass was dried at 60 °C to constant mass before weighing to the nearest 0.01 g.
Weights were multiplied by five to estimate grams per square meter. Pre-treatment
data (year 0) from each site in this study demonstrate high correlation 0.976 (95%
confidence interval: 0.955-0.987) between year 0 mean plant biomass in the con-
trol plots (n =3 for most sites) and year 0 mean plant biomass for the site as
characterized by all plots (n = 30 for most sites).

Light interception. At the time of biomass clipping, photosynthetically active
radiation (PAR, pmol photons per m* per s) was determined at approximately
solar noon (between 11:00 and 14:00). Two measurements, integrated acrossa 1-m
light ceptometer, were made at ground level from opposite corners of each 1-m?
plant-diversity plot, diagonal to each other, and one measurement was made above
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the canopy of each plot. We calculated the proportion of PAR available at ground
level as the ratio of the average of the ground level to the ambient measurements.
Climate. We used the WorldClim database to derive comparable climate data for
all sites (version 1.4; http://www.worldclim.org/bioclim). This database provides
high-resolution interpolated global climate data for stations with 10 to 30 years of
data®. To examine climate covariates with site-level fencing effects on net con-
sumption (biomass inside minus outside of fences), light and richness, we used
climate variables that summarized the mean and seasonality of site-level temper-
ature and precipitation. These were (BIO designator indicates the variable code in
the WorldClim database): mean annual temperature (°C; BIO1), mean maximum
temperature of the warmest month (°C; BIO5), mean minimum temperature of
the warmest month (°C; BIO5), mean annual precipitation (mm per year; BIO12),
precipitation variability (coefficient of variation in precipitation among months;
BIO15), rainfall-potential evapotranspiration (mm per month), temperature vari-
ability (standard deviation of temperature among months; BIO4), mean temper-
ature in the wettest quarter (°C; BIO8), and mean temperature in the driest quarter
(°C; BIOY).
Nitrogen deposition. We used modelled nitrogen deposition rates® to determine
the annual atmospheric N deposition (kg Nha ™' yr ') for each experimental site
(associated with model output based on latitude and longitude). N deposition was
modelled based on existing measurements and future projections using a global
three-dimensional chemistry-transport model (TM3)*'. The spatial resolution of
the model, 5 degrees longitude by 3.75 degrees latitude, and the resolution of the
output grid (50 X 50 km sub-grids), provide sufficient resolution to distinguish
site-level variation in annual N deposition among our experimental sites.
Statistical analysis. To explore the independent and interactive effects of verte-
brate herbivory and nutrient supply on species diversity, total biomass and photo-
synthetically active radiation, we developed mixed effects models with site and
block within site as random effects. Analyses in Fig. 2a, b were performed using the
nlme library in R (R version 3.1; R Foundation for Statistical Computing); for
Fig. 2¢, d, we used the Ime4 R library to fit models in which proportion of light was
the response variable (binomial error structure and a proportion bounded between
0 and 1). Although not presented here, models using logit and arcsin square root
transformations of the data generated qualitatively identical results. Site and block
nested within sites were included in all regressions. We also estimated the effects of
herbivores on richness and light at each site as the change in these factors resulting
from fencing in both fertilized and unfertilized plots. Change in each factor was
estimated as the log ratio of the treatment divided by the control, log(Ss/Sf-),
where S is the species richness or proportion PAR reaching the ground in fenced
plots and Sy is the species richness or proportion PAR reaching the ground in
control plots. We examined residuals to ensure homogeneity of variance. Because
of missing PAR data for a few sites, this analysis included 29 sites. The relation-
ships were independent of whether plots had been fertilized (see Extended Data
Fig. 2 for more details), so we present a final model of site means including both
fertilized and unfertilized plots in the main text. The log ratio analyses were
performed using the glm library in R (R version 3.1; R Foundation for Statistical
Computing). We generated models separately for each experimental year (year 1,
n = 40; year 2, n = 38; year 3, n = 34; year 4, n = 30). The results were broadly
consistent (Extended Data Fig. 1), so we present results from 3 years of manipula-
tions in the main text and results comparing 1 to 4 years of manipulations, greater
spatial (year 1 and year 2) or temporal (year 4) extent, in Extended Data Fig. 1.
Finally, to examine the effects of climate and site productivity as predictors for
site-level mean herbivore effects on biomass, ground-level light and plant richness,
we analysed site-level mean values using model averaging®. The model averaging
approach allowed us to assess the relative importance of a range of covarying factors,
and to recognize explicitly that there could be a suite of similar models. Prior to
fitting the models, all of the independent variables were standardized using the
standardize function in the arm R library. Tmportance’ in this modelling approach
is a term representing the relativized sum of the Akaike weights summed across all
of the models in which the parameter appears that are within four AIC. (AIC cor-
rected for small sample size) units of the model with the lowest AIC. Importance
ranges from 0 (parameter not given explanatory weight) to 1 (parameter in all top
models). We used the dredge function in the MuMIn R library to fit all possible
models. We estimated parameter values, errors, and AIC-weighted importance
using the model.avg function in the MuMIn R library.

31. The Oak Ridge National Laboratory Distributed Active Archive Center. http://
daac.ornl.gov/ (accessed 25 August 2011).

32.  Grueber, C.E., Nakagawa, S., Laws, R.J. & Jamieson, |. G. Multimodel inference in
ecology and evolution: challenges and solutions. J. Evol. Biol. 24, 699-711
(2011).
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Extended Data Figure 1 | Regression parameters for treatment effects.

a—c, All available data are shown for richness (a), total biomass (b) and ambient
light reaching ground level (c). Error bars represent +2 s.e.m. Treatment
years and their associated sample sizes are shown in each panel. One- and
two-year models represent greater spatial extent and replication, but reduced
temporal extent compared to Fig. 2 in the main text. Four-year models
represent longer temporal effects, but reduced spatial extent, particularly for
light measurements. All models were fitted as in Extended Data Tables 2-4 and
described in the Methods.
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Extended Data Figure 2 | Fertilization does not alter the relationship

between ‘fence’ effects on light and diversity. The log response ratio (LRR)
model of the effect of fences (herbivore exclusion) on richness and light (year 3
data) demonstrates no additional effect of nutrient addition on the relationship
shown in Fig. 3. The grey region indicates the 95% confidence interval around

the regression. The effect of fences on ground-level light predicts changes in
plot-scale species richness (P = 0.00254), whereas fertilization is not included
in the final statistical model of this relationship (P > 0.05). Thus, the magnitude
of the effect of grazers on richness is dependent on the magnitude of their effect
on light regardless of whether a plot has been fertilized.
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Extended Data Table 1 | Sites contributing experimental data

Control Control plot
Exp’t MAT MAP Mean plot mass richness
Site # Site code* Country Continent Lat. Long. years (°c) {mm) soil %N (g m'z) (m'z)
1 azi.cn China Asia 33.670 101.870 4 0.0 684 0.556 411.40 33.17
2 barta.us USA N Amer. 42.245 -99.652 4 8.7 597 0.057 442.90 13.75
3 bldr.us* USA N Amer. 39.972 -105.234 4 9.7 425 0.089 283.45 8.10
4 bnch.us* USA N Amer. 44277 -121.968 4 55 1647 0.537 281.87 9.43
5 bogong.au* Australia Australia -36.874 147.254 4 5.7 1592 0.722 554.27 18.93
6 burrawan.au* Australia Australia -27.735 151.140 4 18.4 683 0.087 251.18 10.33
7 cbgb.us* USA N Amer. 41.785 -93.385 3 9.0 855 0.063 870.38 8.08
8 cder.us* USA N Amer. 45.401 -93.201 4 6.3 750 0.039 270.40 10.55
9 cdpt.us USA N Amer. 41.200 -101.630 4 9.3 454 0.097 233.59 11.72
10 cowi.ca® Canada N Amer. 48.460 -123.380 4 9.8 764 0.374 1018.63 4.80
11 elliot.us* USA N Amer. 32.875 -117.052 4 17.0 224 0.165 463.98 11.25
12 frue.ch Switz. Europe 47.113 8.542 3 9.0 1150 0.364 1046.54 13.58
13 gilb.za* S Africa Africa -29.284 30.292 3 13.1 926 1.182 223.23 27.08
14 hall.us* USA N Amer. 36.872 -86.702 4 13.6 1282 0.139 948.55 6.13
15 hart.us* USA N Amer. 42.724 -119.498 4 7.4 272 0.109 113.82 10.33
16 hero.uk UK Europe 51.411 -0.639 4 9.9 692 NA 740.88 16.00
17 hnvr.us* USA N Amer. 43.419 -72.138 3 6.4 1033 0.395 524.58 9.50
18 hopl.us* USA N Amer. 39.013 -123.060 4 12.3 1127 NA 347.28 18.43
19 kiny.au* AUS Australia -36.200 143.750 4 15.5 426 0.120 490.11 11.20
20 koffler.ca Canada N Amer. 44024 79536 1 as 815 NA 96447 9.39
21 konz.us* USA N Amer. 39.071 -96.583 4 12.0 872 NA 433.15 15.07
22 lancaster.uk* UK Europe 53.986 -2.628 3 8.0 1322 1.180 126.97 9.50
23 look.us* USA N Amer. 44.205 -122.128 4 4.8 1898 1.170 332.69 7.20
24 marc.ar Argent. SAmer.  -37.715 -57.425 1 13.9 838 NA  953.79 11.90
25 mcla.us* USA N Amer. 38.864 -122.406 4 13.5 867 NA 554.20 5.33
26 mtca.au* AUS Australia -31.782 117.611 4 17.3 330 0.092 115.40 14.66
27 pape.de Germany Europe 53.086 7.473 4 8.9 783 0.190 1292.78 5.00
28 rook.uk UK Europe 51.406 -0.644 4 9.8 706 NA 233.19 10.92
29 sage.us* USA N Amer. 39.430 -120.240 4 5.7 882 0.714 159.92 12.36
30 saline.us USA N Amer. 39.050 -99.100 4 11.8 605 NA 490.44 10.75
31 sava.us* USA N Amer. 33.344 -81.651 4 17.3 1194 0.018 393.80 10.30
32 sereng.tz* Tanzania Africa -2.255 34.513 3 221 854 0.133 362.90 12.58
33 sgs.us* USA N Amer. 40.817 -104.767 4 8.4 364 0.081 129.08 6.89
34 sier.us* USA N Amer. 39.236 -121.284 4 15.6 935 0.171 378.29 8.32
35 smith.us* USA N Amer. 48.207 -122.625 4 9.8 597 0.521 440.24 20.67
36 spin.us* USA N Amer. 38.136 -84.501 4 12.5 1140 0.261 425.16 9.53
37 trel.us* USA N Amer. 40.075 -88.829 3 11.0 982 0.273 1976.39 4.22
38 tyso.us USA N Amer. 38.519 -90.565 2 12.5 997 0.261 599.34 10.33
39 unc.us* USA N Amer. 36.008 -79.020 4 14.7 1162 0.162 427.24 11.73
40 valm.ch* Switz. Europe 46.631 10.372 4 0.3 1098 0.498 253.20 26.85

Nutrient Network sites with 1 to 4 years of experimental manipulations of both nutrient supply and herbivore access to plots. Control plot mass and control plot richness, the mean total biomass and mean number
of species per m? in un-manipulated plots across all sample years; experiment years, the number of years of experimental data collected at each site for the current analyses; mean soil %N, the average percentage
of nitrogen in soil of the site (across all plots, measured before establishment of experimental treatments); MAP is mean annual precipitation; and MAT is mean annual temperature. Lat. and Long. provide
geographic coordinates of each site.

*Sites used in the main text analyses (year 3 measurements of richness, biomass and photosynthetically active radiation (PARY)).
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Extended Data Table 2 | Statistical model for treatment effects on richness after 3 years of treatment (n = 29) as a function of fertilization by
N, P and K and micronutrients, herbivore exclusion by fencing, and their interaction

Value

Std.Error

DF t-value p-value
(Intercept) 11.965 1.085 264  11.031 <0.0001
fetFERTILIZED -1.987 0.391 264  -5075  <0.0001
excloseFENCE -0.321 0.397 264  -0.809 0.4194
fetFERTILIZED:excloseFENCE -0.166 0.561 264  -0.296 0.7677

Linear mixed-effects model was fit by maximum likelihood. Random effects in model were ‘site’ (s.d. = 5.60) and ‘block within site’ (s.d. = 1.22). The intercept is the estimated mean value of the control plots (no

fence, no nutrients). This model is shown in Fig. 2a.

©2014 Macmillan Publishers Limited. All rights reserved



LETTER

Extended Data Table 3 | Statistical model for treatment effects on biomass after 3 years of treatment (n = 29) as a function of fertilization by
N, P and K and micronutrients, herbivore exclusion by fencing, and their interaction

Value Std.Error DF _ t-value p-value
(Intercept) 5.803 0.143 264  40.497 <0.0001
fetFERTILIZED 0.379 0.061 264 6.235 <0.0001
excloseFENCE 0.027 0.062 264 0.438 0.6619
fetFERTILIZED:excloseFENCE 0.113 0.087 264 1.296 0.1961

Linear mixed-effects model was fit by maximum likelihood. Random effects in model were ‘site’ (s.d. = 0.73) and ‘block within site’ (s.d. = 0.20). The intercept is the estimated mean value of the control plots (no
fence, no nutrients). This model is shown in Fig. 2b.
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Extended Data Table 4 | Statistical model for treatment effects on proportion of photosynthetically active radiation (PAR) reaching ground
level after 3 years of treatment (n = 29) as a function of fertilization by N, P and K and micronutrients, herbivore exclusion by fencing, and their

interaction
Value Std.Error DF t-value p-value
(Intercept) 0.399 0.046 264 8.615 <0.0001
fetFERTILIZED -0.109 0.023 264 -4.850 <0.0001
excloseFENCE -0.060 0.023 264 -2.614 0.0095
fetFERTILIZED:excloseFENCE -0.009 0.032 264 -0.290 0.7721

Linear mixed-effects model was fit by maximum likelihood. Random effects in model were ‘site’ (s.d. = 0.23) and ‘block within site’ (s.d. = 6.24 x 10~°). The intercept is the estimated mean value of the control

plots (no fence, no nutrients). This model is shown in Fig. 2c.
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Extended Data Table 5 | Statistical model for biomass effects on ground-level proportion of photosynthetically active radiation (PAR) after
3 years of treatment (n = 29) as a function of total plot-scale biomass

Estimate Std.Error z-value Pr(>|z])
(Intercept) -0.584 0.395 -1.479 0.1391
fetFERTILIZED -1.108 0.361 -3.073 0.0021
excloseFENCE -0.993 0.363 -2.736 0.0062
fetFERTILIZED:excloseFENCE 0.166 0.551 0.302 0.7626

Generalized linear mixed-effects model with logit link and binomial errors was fit by maximum likelihood. Random effects in model were ‘site’ (s.d. = 1.68) and ‘block within site’ (s.d. = 1.06 x 10~ °). The intercept
is the estimated mean value of the control plots (no fence, no nutrients). This model is shown in Fig. 2d.
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Extended Data Table 6 | Effects of climate, nitrogen deposition, soil nitrogen and site productivity on change in ground-level light across
experimental fencing treatments after 3 years of treatment

Adjusted Relative
Estimate Std. Error SE z value p-value Importance
(Intercept) -0.30123 0.07368 0.07827 3.849 <0.001 1.00
Change in mass across fence -0.56329 0.19684 0.20635 2.730 0.006 0.98
Annual Precipitation Variability 0.29938 0.16493 0.17463 1.714 0.086 0.51
Wet Quarter Temperature -0.42281 0.28903 0.29826 1.418 0.156 0.40
Mean Annual Temperature -0.51396 0.46975 0.48080 1.069 0.285 0.36
Maximum Temperature 0.53099 0.35922 0.37327 1.423 0.155 0.35
Minimum Temperature -0.28435 0.43556 0.44519 0.639 0.523 0.29
Dry Quarter Temperature -0.14111 054170 055158 0.256 0.798 0.18
Annual Temperature Variability 0.12017 0.39288 0.40263 0.298 0.765 0.17
Annual N-Deposition Rate -0.14619 0.18187 0.19180 0.762 0.446 0.08
Rainfall Potential Evapotranspir. -0.06077 0.22652 0.23682 0.257 0.797 0.06
Net primary production in Y3 -0.05213 0.16746  0.17748 0.294 0.769 0.04

Summary results of change in site-level means of ground-level light after model averaging; all factors are normalized. Soil nitrogen was included in the original models, but was never significant so was dropped
from final models because of missing values.
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Extended Data Table 7 | Effects of climate, nitrogen deposition, soil nitrogen and site productivity on site-level mean biomass change across
experimental fencing treatments after 3 years of treatment

Adjusted Relative
Estimate Std. Error SE z value p-value Importance
(Intercept) 0.12111 0.04966 0.05247 2.308 0.021 1.00
Dry Quarter Temperature -0.66911 0.26088 0.27013 2.477 0.013 1.00
Annual Temperature Variability -0.58513 0.28798 0.29564 1.979 0.048 0.63
Annual Precipitation Variability -0.10096 0.13851 0.14446 0.699 0.485 0.63
Minimum Temperature 0.65583 0.29851 0.30830 2.127 0.033 0.52
Wet Quarter Temperature -0.28870 0.29658 0.30660 0.942 0.346 0.29
Mean Annual Temperature 0.34511 0.40053 0.40959 0.843 0.400 0.29
Net primary production in Y3 -0.11616 0.10543 0.11130 1.044 0.297 0.15
Mean Annual Precipitation -0.01959 0.11602 0.12206 0.160 0.873 0.10
Rainfall Potential Evapotranspir. -0.06785 0.16203 0.16898 0.402 0.688 0.09
Annual N-Deposition Rate -0.09961 0.14467 0.15200 0.655 0.512 0.09

Summary results of site-level means of biomass off-take after model averaging; all factors are normalized. Soil nitrogen was included in the original models, but was never significant so was dropped from final
models because of missing values.
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Extended Data Table 8 | Effects of climate, nitrogen deposition, soil nitrogen, site productivity, and change in light on change in site-level
mean plant species richness across experimental fencing treatments after three years of treatments

Adjusted Relative
Estimate Std. Error SE z value p-value Importance
(Intercept) -0.05642 0.03317 0.03511 1.607 0.108 1.00
Change in light across fence 0.21878 0.08325 0.08734 2.505 0.012 1.00
Minimum Temperature -0.16634 0.20331 0.20831 0.798 0.425 0.21
Maximum Temperature 0.15296 0.14054 0.14489 1.056 0.291 0.19
Change in mass across fence -0.0941 0.08964 0.09495 0.991 0.322 0.13
Annual Temperature Variability -0.0571 0.26403 0.26864 0.213 0.832 0.13
Rainfall Potential Evapotranspir. -0.2268 0.32134 0.32656 0.695 0.487 0.13
Mean Annual Temperature -0.17278 0.18625 0.19128 0.903 0.366 0.1
Annual N-Deposition Rate -0.063 0.08599 0.09065 0.695 0.487 0.08
Mean Annual Precipitation 0.18256 0.28651 0.29187 0.625 0.532 0.07
Annual Precipitation Variability 0.05612 0.07807 0.08242 0.681 0.496 0.06
Dry Quarter Temperature 0.05108 0.12828 0.13300 0.384 0.701 0.06
Wet Quarter Temperature 0.03975 0.07086 0.07498 0.530 0.596 0.04
Net primary production in Y3 0.04017  0.07414 0.07845 0.512  0.609 0.04

Summary results of change in site-level means of plant richness after model averaging; all factors are normalized. Soil nitrogen was included in the original models, but was never significant so was dropped from

final models because of missing values.
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