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Abstract

Evolutionary Emergence, Optimization, and Co-Option of Aminoacylation Ribozymes

by

Evan Janzen

Understanding molecular evolution can reveal a great deal about the past, present,

and future of biological systems. The evolution of catalytic RNA is of particular inter-

est because of its potential role in an ‘RNA World’ at the origin of life. Two crucial

aspects in the evolution of biomolecules are optimization on the fitness landscape and

co-option for new functions. The fitness landscape describes a function of fitness in the

space of all possible sequences. Molecules evolve through a random walk on the fitness

landscape, with a bias toward climbing peaks. In addition, the ability of enzymes, in-

cluding ribozymes, to catalyze side reactions is believed to be essential to the evolution

of novel biochemical activities. It has been speculated that the earliest ribozymes were

low in activity but high in promiscuity, which then gave rise to specialized descendants

with higher activity and specificity. One particularly essential activity for the origin of

life would be the reaction of ribozymes with activated amino acids to form aminoacyl-

RNAs, with co-option of these aminoacyl-RNAs leading to genetic code expansion. In

this work, self-aminoacylating ribozymes were identified through in vitro selection from

full coverage of sequence space and characterized using a massively parallel kinetic assay.

Three major sequence motifs were identified on the landscape and analysis of evolution-

ary pathways revealed that, while local optimization within a ribozyme family would

be possible, optimization of activity over the entire landscape would be frustrated by

large valleys of low activity. The sequence motifs associated with each peak represent

different solutions for catalysis, so the inability to traverse the landscape globally corre-
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sponds to an inability to restructure the ribozyme without losing activity. In addition,

five families representing the three sequence motifs were further investigated to measure

their activity with alternative substrates. Ribozymes in each family displayed high levels

of co-optability, with activity on multiple substrates, demonstrating that co-option for

a new function can occur more readily than optimization of an existing one. Related

ribozymes exhibited preferences for biophysically similar substrates, indicating that co-

option of existing ribozymes to adopt additional amino acids into the genetic code would

itself lead to error minimization. Furthermore, ribozyme activity was positively corre-

lated with specificity, indicating that selection for increased activity would also lead to

increased specificity. These results demonstrate how the genetic code may have evolved

through the emergence and co-option of aminoacylation ribozymes.
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Chapter 1

Preface

Living organisms represent some of the most complex chemical systems in the known

universe. The seemingly limitless solutions designed by nature, which have produced the

vast diversity of life on Earth have reshaped the planet through nano-scale machines,

chemical factories, and brains with unmatched data processing abilities. These devel-

opments are the result of nature’s great inventor, evolution. Improved understanding of

the fundamental molecular principles of evolution would provide unprecedented advances

for human society, from the ability to predict the emergence and progression of disease

to the design and application of bio-based tools for solving global crises, the impacts of

understanding these processes go well beyond addressing fundamental science questions.

In recent years, researchers have attempted to harness the power of evolution through

techniques like in vitro selection and directed evolution, which have revolutionized the

bioengineering community by allowing for the creation of biomolecules with novel func-

tions.1,2 These methods rely on experimentally designed selective pressures that guide the

evolution of desired traits to replicate successful designs and discard unsuccessful ones.

Improved understanding of evolutionary principles will continue to aid in the utility of

these approaches.
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Preface Chapter 1

In addition to shaping the future, evolution can provide insight into the past. With

advances in DNA sequencing, evolutionary biologists have attempted to reconstruct the

evolutionary history of life on Earth, all the way back to the presumptive Last Universal

Common Ancestor.3–5 While researchers in fields from genetics to geology have made

great progress in discerning historical information from contemporary observations, the

limits of preserved information may forever cloud a complete picture from these methods.

For this reason, efforts to recapitulate prebiotic conditions to model possible origins of life

may prove to be one of the best avenues for understanding how the complexities of life can

arise naturally. Since Miller and Urey,6 researchers have attempted to simulate prebiotic

events to better understand how biomolecules might arise abiotically. This research

aims to not only address how life may have formed on an early Earth, but also in what

other forms it might exist elsewhere in the universe. Still, how, or even whether, such

a complex molecular system could have emerged spontaneously is the subject of much

debate. Is life as we know it a predestined consequence of certain physical and chemical

environments, simply a natural progression of the prebiotic chemistries that produced it?

Or is it a low-probability event that is observable only as a result of producing its own

observers? One key challenge to understanding the formation of life is in even defining

the question. For every proposed definition of life, one can find a biological exception.

However, one common theme among these definitions insists that life requires evolution,7

thus providing a reasonable starting point for what life is and how it came to be.

The prevailing idea for a precursor to biological life is the RNA World Hypothesis,

which posits that ribonucleic acids (RNA) were once the primary informational and enzy-

matic molecule.8–10 Evidence for this is perhaps best observed in the biological translation

machinery. Here, the informational molecule encoding genetic information is a messenger

RNA (mRNA). The genetic code, defined as codons of three nucleobases which encode

for corresponding amino acids, is translated through binding of specific transfer RNAs

2



Preface Chapter 1

(tRNA). A tRNA, which has been aminoacylated through the covalent linkage of its cog-

nate amino acid, binds to the mRNA through base-pairing between the codon sequence

on the mRNA and the anti-codon region of the tRNA. The ribosome, a large ribonucle-

oprotein complex, coordinates these interactions and links together amino acids in the

growing polypeptide chain. While most cellular reactions are catalyzed by proteinaceous

enzymes, the peptide bonds formed during protein synthesis are catalyzed by RNA, as

the catalytic core of the ribosome is a ribozyme.11 The central role that RNA plays in

this essential biological process, and its unique ability to both retain genetic information

and catalyze reactions, provide compelling evidence for the prior existence of an RNA

World.

The manifestation of an RNA world would have required overcoming many challenges,

including the evolution of novel molecular functions. Two crucial aspects in the evolution

of biomolecules are optimization on the fitness landscape and co-option for new functions.

The fitness landscape describes a function of fitness in the space of all possible sequences.

Molecules evolve through a random walk on the fitness landscape, with a bias toward

climbing peaks. Mapping the topography of fitness landscapes is fundamental to under-

standing evolution. In addition, the ability of enzymes, including ribozymes, to catalyze

side reactions is believed to be essential to the evolution of novel biochemical activities.

It has been speculated that the earliest ribozymes, whose emergence marked the origin of

life, were low in activity but high in promiscuity, and that these early ribozymes gave rise

to specialized descendants with higher activity and specificity. One particularly essential

activity leading to the genetic code would be the reaction of ribozymes with activated

amino acids to form aminoacyl-RNAs, allowing for the development of translation ma-

chinery. Co-option of these aminoacyl-RNAs could then lead to genetic code expansion,

with error minimization as a by-product.12

The focus of this dissertation is to explore the evolutionary capabilities of catalytic

3



Preface Chapter 1

RNAs, including their emergence from random sequence space, functional optimization

through evolution on the fitness landscape, and their co-option for new functionality. This

text first introduces the concept of evolutionary fitness landscapes, discusses the chal-

lenges for their characterization, and describes recent efforts through the development

of high-throughput approaches. Then, the role of promiscuity in evolutionary innova-

tion is explored, particularly as it relates to ribozymes in a prebiotic context. Next,

experimental methods for this work are described, followed by the results from the selec-

tion and characterization of self-aminoacylating ribozymes and the corresponding fitness

landscape for this function. This work then explores the potential for these ribozymes

to be co-opted for function with new substrates, along with the implications this process

may have had in the origin of the genetic code. Finally, this text concludes with a brief

discussion on the impact and outlook of this field of research. While much remains to

be discovered on these topics, the hope is that this research will aid in the search for

understanding of how new biologies can arise.

4



Chapter 2

Molecular Fitness Landscapes from

High-Coverage Sequence Profiling

2.1 Permissions and Attributions

This chapter was the result of collaboration with Celia Blanco, Abe Pressman, Rana-

jay Saha, and Irene Chen and has been adapted from a version that previously appeared in

Annual Reviews of Biophysics.13 It is reproduced here with the permission of Annual Re-

views, to which further permissions related to the material excerpted should be directed:

https://www.annualreviews.org/doi/full/10.1146/annurev-biophys-052118-115333.

2.2 Introduction

Predicting evolution is a key challenge in biological science which not only tests our

basic understanding but also has real-world ramifications. For example, prediction of

influenza virus evolution14 is used to select vaccine strains. In principle, evolutionary

trajectories could be predicted probabilistically if one knew how any mutation would

5
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affect the fitness of the organism or molecule (as well as knowing other parameters, in-

cluding population size and mutation rate). The function of fitness in sequence space

is known as the fitness landscape.15,16 Evolution can be seen as a random walk (i.e.,

exploration by mutation) on a fitness landscape with a bias toward hill-climbing (i.e.,

selection for higher fitness).17 Despite the importance of mapping fitness landscapes, the

size of sequence space is astronomically large (mN points for an alphabet size m and se-

quence of length N), which has previously hampered substantial mapping efforts. While

experiments in the laboratory can include a large number of biopolymer sequences (e.g.,

up to ∼1017 molecules for in vitro evolution of RNA), analysis is also limited by sequenc-

ing capacity. Therefore, within the last decade, analysis has been transformed by the

accessibility of high-throughput sequencing (HTS), as fitness data can now be collected

on millions of sequences in parallel. These data form a quantitative framework for ad-

dressing classic questions: how does the topography of the fitness landscape constrain

evolution? How repeatable are evolutionary outcomes? What does the topography teach

us about the emergence of new structures and functions?

This chapter highlights progress that has been made to map fitness landscapes em-

pirically using high-throughput techniques, with a focus on biomolecules. First, to give

an initial context for these studies, simple models of fitness landscapes and their prop-

erties are introduced. Next, the case study of a classic question is considered: how well

selection can optimize fitness on real landscapes and the impact of HTS on this problem.

Attention is then devoted to other ways in which HTS has deepened our understanding

of molecular fitness landscapes, where fitness approximates functional activity. Finally,

organismal fitness landscapes and the importance of the environment are considered, a

combination which is daunting in scope but the source of Darwin’s ”endless forms most

beautiful”.

6
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Figure 2.1: Mock fitness landscapes of small binary sequences, depicted as a
projection of the N-dimensional hypercube. Landscapes are drawn with m = 2
and (a) N = 2, (b) N = 3, (c) N = 4, (d) N = 5, (e) N = 8. The fitness of each
point in sequence space is represented by color (see legend) according to a smooth
’Mt. Fuji’ landscape (e.g., fitness related to the number of ’1’s). As N increases, the
number of points and neighbors increases exponentially, making a full representation
of the fitness landscape difficult to interpret at higher N . Figure based on Wright
1932.18

2.3 Sequence Space

Sequence space is discrete, where the number of dimensions N is equal to the number

of variable monomer sites in a biopolymer (e.g., with no fixed sites, N is the sequence

length), and the number of points in each dimension is the alphabet size m. Fitness is

a continuous variable that describes a sequence’s evolutionary favorability, and can be

defined depending on experimental context. Plotting fitness over sequence space gives

the fitness landscape of N + 1 dimensions. To gain some intuition, one may draw the

space of very small binary sequences, with fitness represented as a heat map (Figure 2.1).

For standard RNA or DNA, with an alphabet size of four nucleotides, the size of

sequence space is 4N (∼100.6N). The amount of nucleic acid one might work with in

vitro would be typically <1017 molecules, so sequence space becomes experimentally

intractable in the lab for N >∼27 if one desires full coverage of the space. For standard

proteins, composed of 20 amino acids, the space 20N (∼101.3N) becomes intractable in

vitro for N >∼12 at full coverage. For experimental evolution in vivo (e.g., in microbes),

7
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a 1 L experiment might contain 1012 cells, allowing up to ∼20 genome sites to be covered

in full. In practice, fitness landscapes can be fully mapped for relatively short sequences,

while fitness landscapes for organisms and larger molecules must focus on a small number

of variable sites or sparsely sample the sequence space.

Although sequence space is exponentially large, it is still a special subset of the larger

space of all possible chemicals. Sequence space for a particular polymer type (biological or

artificial) can be thought of as a sort of filigree in chemical space, defined by its particular

bonding patterns, which is closely apposed to those for similar polymer types.19

2.4 Simple Models of Fitness Landscapes

Experimental investigation of fitness landscapes is difficult due to the complexity of

sequence space, so a substantial body of work has involved the development of theoretical

models of fitness landscapes. These models can be applied to biological data as a way

to represent complex patterns with a small number of parameters. Although theoretical

models for fitness landscapes have been reviewed elsewhere,20,21 two simple and influential

models (Mt. Fuji and NK) and related models (Rough Mt. Fuji and House of Cards)

are discussed here to provide some intuition for possible topographies and their possible

mechanisms of origin.

The simplest theoretical model is the ’Mt. Fuji’ landscape,22 named after Japan’s

highest mountain because it is a smooth, single-peak landscape. Mt. Fuji landscapes

are defined as those in which every point on the sequence space – other than the global

optimum – has at least one neighbor sequence (one mutational step away) of higher

fitness. The simplest Mt. Fuji model corresponds to a perfectly smooth, monotonic

climb along any path toward the center. This topography can be created if the effect of

individual mutations are additive (the effect of each site does not depend on the others,

8
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i.e., there is no epistasis). The absence of local optima on Mt. Fuji-type landscapes

allows good reconstruction of the topography even when incomplete random sampling is

performed. Under conditions of strong selection and weak mutation (SSWM),23 evolution

on Mt. Fuji-type landscapes results in the optimal sequence.

Most empirical landscapes exhibit certain epistatic interactions that the Mt. Fuji

model cannot emulate. In particular, Mt. Fuji-type landscapes cannot describe recip-

rocal sign epistasis, in which the presence of one mutation a changes whether another

mutation b is beneficial, and vice versa, creating multiple optima.24These non-additive

effects disrupt the smoothness of a landscape, creating a need for models with tunable

ruggedness. A popular model of this type is the NK landscape,25,26 in which the system

can be solely described by two parameters: the number of sites N , and the epistatic

degree K (the number of other sites influencing the effect of a given site). When K = 0,

the NK model gives a Mt. Fuji landscape. As K increases, the ruggedness of the land-

scape increases and local optima arise, although a global optimum is still present. In

its most rugged incarnation, K = N − 1, the fitness contribution of a single position is

affected by mutations at every other position in the sequence. In this case, the landscape

is dominated by high-order epistasis, leading to a completely uncorrelated landscape with

an average number of local optima (2N/(N − 1)) that scales roughly exponentially with

N (Figure 2.2). A landscape in which the fitnesses of related sequences are totally un-

correlated is also known as the random House of Cards model, because pulling a card

(i.e., a mutation) from the house results in its collapse (i.e., complete change of the

fitness landscape); the house then needs to be entirely rebuilt, reshuffling the genomic

deck.27 Although interesting as a theoretical limit, the completely uncorrelated landscape

probably does not occur in reality. Whether incomplete sampling of sequence space can

result in a reasonable representation of the topography depends on the ruggedness of the

landscape and the properties to be analyzed.
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Figure 2.2: Epistasis and ruggedness on a fitness landscape. (a) For the sim-
plest possible case (m = 2, N = 2), a smooth landscape can be climbed upwards from
00 to 11 (peak). Sign epistasis prevents passage over one trajectory, and reciprocal
sign epistasis blocks both pathways. Fitness increase or decline is indicated by blue or
red arrows, respectively. (b) A similar pattern can be seen for m = 2, N = 4 (refer to
Figure 2.1c). (c) A conceptual 3D depiction of fitness landscapes with varying rugged-
ness; horizontal axes correspond to sequence space and vertical axis corresponds to
fitness values. (d) Random sampling (red dots) can yield a better representation of
smooth landscapes than of rugged ones. (e) Representation of frustration (or lack
of) in a geometrical lattice of spins. With a smooth landscape, conditions leading to
maximum fitness can be satisfied simultaneously. At high K (or p), conditions lead-
ing to maximum fitness (or minimum energy) conflict with each other and frustrate
optimization.

Two modifications to the NK model can be introduced to increase its realism. First,

since biomolecules are often modular (e.g., composed of independent domains), the NK

model can be adapted to include different degrees of correlation on the landscape.28

In the block (or domains) model, mutations in one block only affect the contribution

of that block to the overall fitness of the biomolecule, and each independent block can

have different values of K. Blocks need not correspond to structural domains from the

primary sequence but could represent positions that interact in the tertiary structure.
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Second, although the original NK model does not account for the presence of neutral

mutations (i.e., mutations that do not change the fitness value), two different adaptations

of the model incorporate this feature: the NKP model, where a fraction P of the fitness

contributions have a value of zero, and theNKQmodel, in which each fitness contribution

can only take one of Q possible values. In the limits P → 0 and Q→∞, the NKP and

NKQ models correspond to the original NK model.29

Since its initial application to the maturation of the immune response,26 the NK

model has been used to describe experimental protein and DNA fitness landscapes.30–32

Rugged regions in a landscape are described by high values of K, which can be estimated

from the data, for example, by calculating the autocorrelation function for different values

of K and comparing to the experimental system.31,32 It is important to note that, since

regions of the fitness landscape that are populated with closely related sequences of low

fitness are described by K ∼ 0, attempts to fit the NK model to landscapes over wide

regions might result in artificially low values of K due to averaging over dissimilar regions

of the landscape. Different parameters have also been proposed to measure epistasis in

fitness landscapes (e.g. number of peaks, ratio of the roughness over additive fitness, or

fraction of sign epistasis). Ferretti et al. recently proposed a new measure more directly

related to epistasis, namely the single-step correlation of fitness effects for mutations

between neighbor genotypes, which can also be used in landscapes with missing data.33

Tunable ruggedness can also be introduced into the Mt. Fuji model.34,35 The ’Rough

Mt. Fuji’ model is the addition of a Mt. Fuji-type landscape and the uncorrelated

House of Cards model. This model can include sign epistasis, in which the effect of a

single mutant is positive or negative depending on the presence of another mutation (e.g.,

Figure 2.2a middle), provided there exists a different single mutant that is more fit than

the double mutant. The ruggedness is tuned by varying the proportion of additive and

random fitness components. Examples of landscapes with varying ruggedness are given

11
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in Figure 2.2.

2.5 Case Study on Evolutionary Optimization: Neu-

tral vs. Frustrated Networks

An important property of any fitness landscape is the ease with which evolution can

optimize fitness. Whether this is feasible depends on the ruggedness of the landscape, and

specifically on whether viable evolutionary pathways (i.e., uphill climbs under SSWM)

allow access to the global optimum from distant areas of sequence space. Early com-

putational work investigating this problem studied whether viable paths could be found

connecting unrelated RNA sequences that were predicted to fold into the same secondary

structure. These simulations, which took advantage of the high accuracy of RNA sec-

ondary structure prediction,36 required conservation of the fold to define a viable path.

These simulations revealed two related insights. First, they predicted that almost all com-

mon folds occur within any small region of sequence space.37 Second, for common folds,

the large set of sequences that share a given fold would form an evolutionary network

throughout sequence space.38–41 The fact that this set is large is important; if the fraction

of sequence space that adopts the desired fold is low, then the folded sequences repre-

sent isolated regions in the space. However, if the fraction reaches a critical percolation

threshold (∼1/N), the islands become connected and the landscape as a whole exhibits a

neutral network.42 A neutral network could be conceptualized as a fitness landscape to-

pography that is full of ’holes’, emphasizing the fact that high-dimensional sequence space

has a non-intuitively vast number of potential connections.43 These computational and

theoretical considerations gave rise to the attractive hypothesis that ’neutral networks’

might characterize molecular fitness landscapes, allowing evolutionary optimization over
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large distances.

In contrast to this view of neutral networks, many empirical examples of epistasis

are known in local sequence space, and one might expect that the extension of epistasis

through the landscape (i.e., widespread ruggedness) would result in frustrated optimiza-

tion during selection. This phenomenon can be mimicked in the NK model, which can

be interpreted as a superposition of p-spin glass models44 (Figure 2.2e). In spin glasses,

the Hamiltonian of the system exhibits frustration when no spin configuration can si-

multaneously satisfy all couplings leading to a state of minimum energy. Since there is

no single lowest-energy configuration, the energy landscape contains several metastable

states separated by a distribution of energy barriers. The parameter p (number of inter-

acting spin glasses) tunes the ruggedness of the energy landscape, much like K in the

NK model. In the limit p → ∞, it becomes impossible to satisfy all spin constraints

and the system has an extremely rugged, uncorrelated potential surface, equivalent to

Derrida’s random energy model,45 which is an analog of the random House of Cards

model. Similarly, in the NK model, as K increases, configurations leading to the high-

est fitness contribution for certain positions become mutually incompatible, leading to

blocked evolutionary paths over which optimization by selection is frustrated.

Ideally, experimental detection of a neutral vs. frustrated network would involve

mapping the topography of a complete fitness landscape. However, due to the large size

of sequence space for even small folded RNAs and the limits of sequencing throughput

at the time, early work related to this question focused on construction of a viable

evolutionary pathway between two nucleic acid sequences with different functions.46–48

Several examples of protein evolution to produce new or altered function were also known

(e.g., ref.49). These efforts were surprisingly successful, suggesting that different functions

could be nearby in sequence space, i.e., fitness peaks for different functions can overlap.

Nevertheless, investigating evolutionary optimization on a single fitness landscape
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requires identification of a very large number of functional sequences, and thus substantial

progress had to await the advent of high-throughput sequencing. The first complete

fitness landscape for short RNA sequences (N = 21) revealed very few viable evolutionary

paths between different functional families.50 Although this approach cannot be easily

extended to much longer lengths, one attempt to evolve an RNA polymerase ribozyme

(N = 168) at a high mutation rate did not find a new optimum.51 Although this careful

study was able to relate the results of the selection to the topography of the fitness

landscape, it is possible that similar results in other systems are under-reported in the

literature. These studies hint that frustration may characterize evolutionary optimization

of a particular function for RNA for a relatively fixed landscape. Given the contrast

between these frustrated cases and the apparent ease of evolving certain new functions,

it is tempting to speculate that optimization of a single function might have quite different

evolutionary properties than evolution of a new function.

2.6 Measuring Molecular Fitness Landscapes with

High-Throughput Techniques

2.6.1 RNA and DNA: From Microarrays to High-Throughput

Sequencing

When measuring fitness landscapes, functional nucleic acids present certain advan-

tages compared to more complicated evolvable systems. In particular, an alphabet of

only four nucleotides allows far higher coverage of random sequence libraries. Predomi-

nantly in silico approaches have shown some utility in predicting activity, such as in the

generation of an effective anti-HIV aptamer (an RNA-based affinity reagent),52 but such

studies are relatively uncommon. On the experimental side, HTS for studying fitness
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landscapes can be seen as the successor high-throughput technique following microar-

rays, paralleling the trend in genomics applications. Approximately 105 − 106 sequences

can be studied in reasonable copy number with a single HTS run (or microarray assay),

equivalent to full coverage of sequence space with N = 10. Nucleic acid microarrays have

been used to investigate double and triple-mutational scans of aptamers,25 used with

rational truncation to investigate the importance of structural constraints on aptamer

activity,53 and combined with in silico approaches to interrogate large local evolutionary

spaces in array-based directed evolution.54 A 2010 study was able to use array techniques

to measure DNA-protein binding over all possible 10-nucleotide sequences, showing that

although the fitness landscape contained only a single conserved active motif, the land-

scape contained sufficient ruggedness to produce many separate local fitness optima.31

But microarray approaches have been somewhat limited in their scope and adoption

for multiple reasons, including their reliance on reactions or binding events producing

a fluorescent signal and limitations stemming from attachment of the nucleic acid to a

surface. Instead, HTS-based approaches have increasingly come to dominate RNA and

DNA fitness landscape studies.55 In 2010, Pitt and Ferré-D’Amaré demonstrated the

ability of HTS to measure sequence enrichment during in vitro selection as an estimate

of sequence fitness, generating a local landscape of approximately 107 mutant variants of

a ligase ribozyme (catalytic RNA, Figure 2.3).56 The increasing scale and affordability of

HTS technology has made such measurements an accessible option. Further development

of HTS measurement of fitness landscapes has focused on techniques to improve either

landscape coverage or measurement of fitness.

To improve landscape coverage and interrogate larger sequence spaces, the limitation

is not pool size (typically 1014 − 1016 molecules) but analytical capability, i.e., sequenc-

ing throughput (typically 106 − 108 reads). It is possible to overcome this limit with in

vitro selection – if selection can isolate nearly all of the high-activity sequences, com-
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Figure 2.3: Stereo view of the structure of the class II ligase ribozyme.56

PDB ID: 3FTM; image created with Visual Molecular Dynamics.57

plete mapping of an RNA fitness landscape becomes possible for short sequences. When

studying molecular fitness landscapes in vitro, the interpretation of negative information

can be powerful.50 This requires a well-defined initial pool, but potentially expands the

analysis, as it is no longer limited by the sequencing throughput but by the complexity

of the initial pool, which is larger by several orders of magnitude. Although detailed

information cannot be obtained about lost mutants, their disappearance indicates low

fitness. It should be noted that epistasis and other studies should be interpreted with

respect to the mutants analyzed. For example, if the mutants are not selected at random

(e.g., survived a selection), epistasis values for that subpopulation would likely underes-

timate those for random mutants unless negative information is taken into account. At
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the same time, sparse random sampling can also lead to inaccurate estimation of epista-

sis and ruggedness,58 and the prevalence of indirect evolutionary pathways that bypass

local valleys59 could lead to underestimates of evolvability if the explored space is too

small. However, depending on the hypothesis or question being investigated, in vitro

selections from a large, random pool that only sparsely covers sequence space can still

provide insights into general underlying trends in the larger, un-measurable spaces.56,60

For in vitro selection experiments, fitness is taken to reflect chemical activity, and can

be estimated (or defined) in multiple ways, such as: abundance at the end of selection,

enrichment over a single round, or functional activity under selection conditions. Ideally,

all of these should be correlated as they are related to the true chemical activity of a given

selected species. Abundance, however, can be surprisingly poorly correlated to chemical

activity,50,60 likely due to experimental noise and biases related to sequencing (e.g., PCR).

Thus, new approaches use HTS to perform direct activity screens.61–63 Furthermore,

fitness estimates can be notably improved by considering multiple rounds of selection.60

High-throughput techniques are also being applied to measurement of RNA and

DNA specificity. While these experiments often address different scientific questions

than single-function fitness landscapes, they use similar techniques and analyses. HTS

techniques were used to characterize the DNA binding landscapes of over a thousand

transcription factors (TF).64 These data enabled mapping of DNA-TF binding energy

over large sequence spaces,65 again illustrating the power of applying HTS to traditional

questions.
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2.6.2 Beyond DNA and RNA: Exploring New Chemical Space

with High-Throughput Sequencing

Recent forays into the chemical space of nucleic acids (NAs) with altered backbones

(XNAs) or modified bases raise the prospect that, with modern knowledge and tech-

niques, parallel molecular biology could be developed for these alternative NAs in a

relatively short time.19 Alternative NAs raise many fundamental questions about fitness

landscapes, from biologically inspired issues such as the uniqueness (or not) of RNA and

DNA, to more abstract problems, such as the shape of the larger fitness landscape in

chemical space. While chemical study of alternative NAs dates back to Eschenmoser’s

pioneering work,66 investigations into their functional capacity began with altered bases,

namely in vitro selection on reduced alphabets. Remarkably, ribozymes could be made

from alphabets of only three67,68 or even two letters.69 In both cases, reduction in alphabet

size led to selected ribozymes with lower activity than their larger-alphabet counterparts.

On the other hand, artificially expanded genetic information systems (AEGIS) employ

additional letters70,71 and have been used to identify six-letter aptamers with greater

affinity than those selected containing four-letters. While AEGIS currently poses some

complications requiring probabilistic decoding of HTS data, HTS may still be applied to

increase throughput compared to Sanger sequencing. Further advances to functionality

are aided by a wider exploration of bases. For example, the incorporation of unnatu-

ral hydrophobic nucleobases, (e.g., 7-(2-thienyl)imidazo[4,5-b]pyridine (Ds), SOMAmers,

click-SELEX) result in increased binding affinity to their protein targets.72–74

For some functions, the activity of functional DNA molecules is comparable to that of

RNA molecules.75 On some occasions, the sequence of a functional RNA can be simply

synthesized as DNA and retain functionality,59,76 sometimes requiring additional evolu-

tion.77 These exceptional cases may arise if the major interactions are electrostatic or
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Figure 2.4: Expanded chemical space of functional nucleic acids. (a) The
modified bases Ds (7-(2-thienyl)imidazo[4,5-b]pyridine) and EU (C5-ethynyl-uracil).
(b) Chemical structures for RNA (ribonucleic acid), DNA (deoxyribonucleic acid),
2’-F RNA (2’-fluoro RNA), ANA (arabino nucleic acid), FANA (2’-fluoro ANA), PS2
RNA (phosphorodithioate RNA), TNA (threose nucleic acid), CeNA (cyclohexenyl
nucleic acid), HNA (1,5-anhydrohexitol nucleic acid).

nonspecific stacking interactions. XNAs made from non-natural backbone alterations

(Figure 2.4) have been selected for binding and catalytic activity, with activities similar

to those seen in natural nucleic acids.78–80 Introduction of phosphorodithioate linkages

can improve aptamer binding,81 with a single modified linkage increasing affinity by

∼1,000-fold in one case.82 Another aspect of fitness is the chemical and physiological

stability of the molecule; for example, many backbone modifications confer resistance

to ribonuclease degradation.83 Other modifications, such as 2’-fluoro and 2’-amino RNA,

provide both added stability84 and sometimes increased functionality.85 The employment

of chemical modifications to improve nucleic acids has been reviewed in more detail in

ref.86–88

The application of HTS to alternative NAs is not trivial due to the need for engi-
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neered polymerases to accept the template and read it out in a decodable way. Still,

these challenges are being overcome by ingenious strategies.70,78,80 Although XNA fit-

ness landscapes are largely unstudied at the moment, it seems inevitable that some may

demonstrate different or higher fitness peaks. Whether these changes will lead to new

evolutionary properties is currently a fascinating unknown.

2.7 Fitness Landscapes of Organisms: RNA, Pro-

teins and Genomes

Complete coverage of sequence space for an organismal genome – or even a single

gene – is intractable due to the size of sequence space involved. However, local sampling

around functional proteins (or random sampling of genomic mutants) still provides a rich

source of data about the local landscape of the protein or the organism as a whole. Some

examples of ways to represent HTS data are shown in Figure 2.5. Fitness landscape

studies on sequences in vivo access fewer individuals (∼1012 cells in 1 L) compared to

in vitro studies. While this limits the diversity of the starting pool, it does not directly

affect the number of mutants that can be assayed, since sequencing throughput is still

limiting.

The in vivo fitness landscapes of small functional (non-coding) RNAs (tRNA and

snoRNAs) in yeast have been investigated using HTS to study all single and double mu-

tants. Because these cellular RNAs have smaller sequence spaces than proteins, such

experiments can be done at higher mutational coverage, providing a good system for

exploring in vivo fitness landscapes. In these cases, coverage of the local area around the

wild-type sequence indicates that epistatic effects of mutation tend to be negative, with

loss of fitness often corresponding to predicted disruption of RNA folding.90,91 As more
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Figure 2.5: Representing HTS data of fitness landscapes. (a) A fitness peak
with sequence space collapsed onto one dimension representing the edit distance (i.e.,
number of mutations) from the optimum sequence (after ref.31,50,56). (b) Evolutionary
pathways between one local optimum and other nearby local optima, with sequence
space collapsed as in (a). This representation illustrates fitness valleys and rugged-
ness (after ref.31,50). (c) Heat map representing combinations of mutants, revealing
epistatic interactions along the length of a sequence (after ref.89,90).

RNA fitness landscapes are examined, it will be interesting to compare landscape charac-

teristics of highly evolved biological RNAs vs. RNAs evolved in vitro to understand how

>3.5 billion years of natural selection has shaped the landscape itself. Furthermore, the

introduction of modified bases into cells92 suggests the intriguing possibility of measuring

fitness landscapes of alternative NAs in vivo.

The study of protein fitness landscapes, which began with mutational analysis (e.g.,

alanine scanning) and combinatorial studies of selected mutants, has been greatly im-

pacted by HTS. Both m and N are substantially greater for proteins than RNA (e.g.,

the number of single mutant variants to be tested would be ∼6,000 for a typical single

domain protein of length ∼300, compared to ∼150 for a typical ribozyme of length 50).

The jump from Sanger sequencing to HTS has increased the number of mutants that can

be analyzed by at least 4 orders of magnitude.

In an HTS technique known as deep mutational scanning (DMS), the activity of a

mutant library is linked to organismal (cell or virus) fitness93 (e.g., by cell sorting or
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simply by reproduction and survival for influenza variants94); DMS has been further re-

viewed.95,96 The survival of cells (or viruses) harboring the mutant library is measured by

HTS, allowing assay of the fitness effect of 105 − 106 protein variants. DMS has proven

effective for creating high coverage, highly local fitness landscapes centered around a

wild-type protein, and can identify sites of conserved function.97 The local fitness land-

scape of the green fluorescent protein, measured over thousands of derivative genotypes,

was found to be quite narrow, with the majority of single mutants showing reduced flu-

orescence.98 On the other hand, DMS of a complete nine-amino acid region of Hsp90

showed that the distribution of fitness was bimodal, with one mode consisting of nearly

neutral mutations and the other of deleterious mutations.99 On a practical side, DMS

results within yeast were used to optimize protein engineering, resulting in a new protein

(with five point mutations) with a 25-fold increase in binding affinity to the influenza

virus hemagglutinin.100

DMS is well-poised to measure local epistasis of a protein, since the fitness effect

of many combinations of mutations can be measured. Even so, analysis of epistasis on

in vivo protein landscapes is generally limited to a small number of peptide sites, a

limited library of amino acid substitutions, or one specific set of evolutionary paths.20

Weinreich et al. compiled a comprehensive review of these studies, showing that in

these limited-landscape cases, in vivo protein epistasis tends to be primarily dominated

by low-order epistatic effects of only a few loci,101 although higher-order epistasis was

notable in some cases. A local fitness landscape for four positions in protein GB1 revealed

a very interesting feature – although many direct evolutionary pathways were blocked

by reciprocal sign epistasis, these evolutionary dead ends could be avoided by following

indirect paths in the sequence space.59 Limited epistasis and evolutionary detours suggest

short neutral pathways; whether these could combine over larger sequence space to form a

neutral network is still unknown. However, sequencing technology continues to improve,
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and may allow study of this question to be taken further in the future.

Although the theoretical models described earlier are highly simplified, one may ask

whether empirical fitness landscapes can be fit to them. One 2013 meta-analysis found

general trends in ruggedness and epistasis across a number of such studies, with many

showing reasonable agreement with patterns expected from a Rough Mt. Fuji model.102

Efforts to connect empirical data to these models are important for gaining an intuitive

grasp of the topography of fitness landscapes. It remains an open question whether

these models can also describe effects over organismal fitness landscapes of a larger scale,

multiple peaks, or covering evolutionary sites on multiple genes.

2.8 Environment and the Fitness Landscape

It is nearly impossible to overstate the importance of the environment in determining

the topography of a fitness landscape (Figure 2.6). At the microscopic level, molecular

fitness depends on the temperature, water activity, pH, phase, cosolutes, and nearly any

other environmental variable. These effects modulate both basic properties (e.g., RNA

stability103) as well as sophisticated functions (e.g., ribozyme activity104–106). At the

macroscopic level, genetic and environmental effects on traits cannot be simply decon-

volved, as the heritability of any trait depends on the environment and genetic back-

ground in which it is measured. Even without environmental perturbations, the fitness

landscape of a metabolizing organism is a continuously dynamic object, as organisms

modify their environment, which changes the fitness landscape. Perhaps the most well-

known example of this comes from the multi-decade experimental evolution of E. coli,

in which changes to the genetic background (’potentiating’ mutations) enabled evolution

of the ability to metabolize citrate.107 The efforts may also be driven by the potential

for biomedical applications, as well: for example, DMS of a kinase involved in antibi-
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Figure 2.6: The fitness landscape depends strongly on the environment. For
molecular fitness landscapes, environments might confer (a) stabilization of weakly
folded structures (chaperoning), (b) exaggeration of fitness differences under stressed
conditions, or (c) completely different structure in a new environment (c). The illus-
trations indicate the fitness landscape in one environment (dotted line) and in a new
environment (solid line).

otic resistance characterized a fitness landscape that varies significantly over changes

in both antibiotic concentration and structure.108 Systematic study of the effect of the

environment on the fitness landscape using HTS represents a major goal for this field.

The importance of the environmental context can be seen even in relatively simple

molecular fitness landscapes for RNA. While most studies of functional RNA occur in

vitro, it is clear that in vivo conditions may differ, sometimes greatly. For example,

aptamer-based biosensors evolved in vitro show significantly lower performance in blood

than in buffer.109 Crowded and confined conditions can modify the structure and function

of nucleic acids and proteins.110–114 High levels of molecular crowding have been shown to

stabilize mutations in ribozymes,115 change the binding mechanism of a riboswitch to its

ligand,116 and create a chaperoning effect to assist in aptamer folding.114 Ribozymes can

also modify their environment (e.g., through cooperation117), presenting an attractive

future target for mapping more complex fitness landscapes.

To study the effect of the environment on organismal landscapes, one common method

is to expose the population to a new environment and observe the resulting evolution.

In general, organismal fitness drops after environmental changes, but largely recovers

through subsequent evolution and delayed adaptation at the genetic level.118,119 For ex-

24



Molecular Fitness Landscapes from High-Coverage Sequence Profiling Chapter 2

ample, changes to the fitness landscape of Hsp90 in Saccharomyces cerevisiae were ob-

served in elevated salinity with previously adaptive mutations becoming deleterious in

the new environment,120 and the accessible evolutionary pathways in an esterase were

shown to change at different growth temperatures.121 Interestingly, variation in hosts may

alter the topology of a viral fitness landscape, which may drive virus specialization.122

However, whether the fitness landscape of a gene varies in different environments seems

to depend on the details of the system. In contrast to cellular proteins, where a gene’s

fitness contribution often does vary with environment, studies of tRNA indicate that mu-

tations influence the gene’s fitness contribution by a fixed proportion independent of the

environment, for four growth environments tested.123 Further work in the yeast tRNA

system also indicates that epistatic effects between loci can vary significantly for the

same gene between different organisms.124 If a mutation has multiple conflicting effects

on fitness (antagonistic pleiotropy), adaptation to a new environment might be limited.

Landscape analysis of the yeast genome shows that many gene variants display some

degree of antagonistic pleiotropy in specific growth conditions.125 The “environmental

landscape” for a single sequence can also be measured, as was done for a riboswitch in

nearly 20,000 different environmental conditions.126 Measurement of such environmental

landscapes in conjunction with fitness landscapes is a challenging but essential goal for

which high-throughput techniques are essential.

2.9 Discussion

High-throughput sequencing has transformed the study of fitness landscapes, ex-

panding the focus from theoretical models to empirical mapping. Increased sequencing

throughput is more than a quantitative extension, as it allows exploration of fundamen-

tally new areas of science, from evolutionary networks to environmental landscapes. To
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maximize the knowledge return from this exciting growth of data, perhaps two aspects

should be kept in mind. First, attention should be paid to building intuition and un-

derstanding, such as by analyzing the fit of data to idealized model landscapes. Second,

while raw HTS data can be submitted to databases such as the NCBI Sequence Read

Archive, a dedicated resource for submitting and viewing fitness landscape data could

facilitate meta-analysis, standardization, and contributions from a greater community of

researchers. Regardless, HTS-enabled mapping of fitness landscapes brings the tantaliz-

ing prospect of predicting evolution still closer to reality.
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Chapter 3

Promiscuous Ribozymes and Their

Proposed Role in Prebiotic

Evolution

3.1 Permissions and Attributions

This chapter was the result of collaboration with Celia Blanco, Huan Peng, Josh

Kenchel, and Irene A. Chen and has been adapted from a version that previously appeared

in Chemical Reviews.127 It is reproduced here with the permission of ACS, to which

further permissions related to the material excerpted should be directed: https://pubs.

acs.org/doi/full/10.1021/acs.chemrev.9b00620.

3.2 Introduction

Catalytic RNA sequences, or ribozymes, are widely accepted to have been central to

the origin of life.9,128 Their dual capacity for information storage and catalytic activity
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is the basis for the RNA world theory,129–131 that an RNA-based metabolism could have

preceded the more complex DNA-RNA-protein system that is observed in biology today.

Regardless of whether an RNA world existed on the early Earth, ribozymes represent

an excellent laboratory model system for molecular evolution. Beginning with a pool of

random sequences, strategies can be devised to select for particular activities. Cycles of

selection and amplification by PCR allow enrichment and eventually isolation of active

sequences. A prerequisite of successful in vitro evolution is the presence of one or more

molecules with some activity, however slight, in the initial pool or early rounds. Once

this kernel of activity exists, the active sequences can be selected and activity possibly

improved by mutation during the evolutionary process. In addition to developing new

ribozymes, in vitro evolution of RNA allows well-controlled experiments to observe and

analyze the de novo emergence of biochemical functions.132–134

Promiscuous catalytic activities have been invoked as being particularly significant for

the origin of enzymes,135,136 as one might intuit that early, simple ribozymes or enzymes

would have little specificity, and therefore might catalyze many reactions, albeit with slow

rates. These sequences might possess kernels of activity for many different substrates or

reactions (Figure 3.1). One landmark study of such a ribozyme is a sequence which

was engineered to adopt two possible folds, one of which acted as a ligase and one of

which acted as a self-cleaving ribozyme.137 This sequence had very low activity for each

function, but a relatively small number of mutations would increase function to near

wild-type in both directions. Such promiscuity would promote evolutionary innovation

by poising sequences at a non-zero fitness for multiple activities, each of which could be

potentially optimized by natural selection. This idea also raises the interesting question

of whether ribozymes are intrinsically more promiscuous than protein enzymes. From

extensive work on the directed evolution of enzymes, it has become clear that much of

the success of the field as a whole is due to the presence of low levels of apparently
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Figure 3.1: What role might the evolution of promiscuous ribozymes play
in the origin of an RNA World?

promiscuous activity in extant protein enzymes.138 This surprising degree of promiscuity

in highly evolved enzymes suggests that promiscuity is actually the rule rather than an

exception for protein enzymes.

This chapter reviews what is known about the specificity and promiscuity of ri-

bozymes. First, major concepts and definitions in specificity and promiscuity are in-

troduced, which were originally developed in the enzyme literature. An interesting con-

cept is the relationship between activity and specificity, which underlies the intuition

that early, relatively low-activity ribozymes would be more promiscuous. Then, several
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cases of ribozymes in which studies have demonstrated promiscuity in some way are

reviewed. When possible, a promiscuity index is calculated from what is known about

these ribozymes, a first step toward rigorous comparisons of the promiscuity of ribozymes

and protein enzymes. This chapter ends with a discussion of the implications of these

comparisons for the hypothesis that early ribozymes were particularly promiscuous.

3.3 Promiscuity and Specificity: Concepts and Def-

initions

3.3.1 Defining specificity

Specificity is the ability of an enzyme to discriminate between two different substrates,

assuming both are present. The question of how to measure enzyme specificity has been

a matter of debate in the past (see139,140 and references therein), but it is generally agreed

that specificity in the presence of two different substrates should be compared based on

the discrimination factor,141 defined as the ratio of the catalytic efficiencies (kcat/KM) for

the corresponding reactions. According to transition state theory, the logarithm of the

catalytic efficiency (kcat/KM) is proportional to the free energy difference between the free

enzyme and substrate vs. the transition state complex (∆G‡).142 When comparing the

cognate with an alternate substrate, the discrimination factor is also called the accuracy

A. Thus A is exponentially dependent on the difference ∆∆G‡ between the cognate and

alternate substrates.

In some cases (e.g., polymerases), the use of an error ratio (the rate of incorrect prod-

uct formation divided by the rate of correct product formation) is more appropriate. To

gain an intuition about the possible scale of this ratio, one may note that the theoretical

maximum discrimination between alternative substrates undergoing analogous reactions
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occurs when the formation of the enzyme-substrate complex is much faster than prod-

uct conversion and release (as assumed in Michaelis-Menten kinetics). In this case, the

theoretical minimum error ratio is equal to the ratio of KM values.143,144

3.3.2 General Mechanisms for Specificity and the Possible Trade-

Off with Rate

Discrimination among substrates can arise from different affinities in the initial enzyme-

substrate complexes (ground-state discrimination) or in the transition-state complexes

(catalytic or transition-state discrimination).145 The accuracy (A) for a cognate vs. al-

ternative substrate can be increased by three scenarios: (a) higher rate of substrate

association (ground-state discrimination with kcogon > kalton ), (b) lower rate of substrate dis-

sociation (ground-state discrimination with kcogoff < kaltoff ) or (c) higher rate of conversion

of the enzyme-substrate complex into the transition state (transition-state discrimination

with kcogcat > kaltcat).

In ground-state discrimination, lowering the energy of the enzyme-substrate complex

has two effects, namely decreasing KM as well as decreasing kcat. In other words, al-

though selectivity may be improved via increased substrate affinity, the reaction rate suf-

fers. Examples of enzymes exhibiting ground state discrimination include DNA methyl-

transferases and the ribosome.145 The tradeoff between accuracy and rate might impose

an evolutionary constraint limiting selectivity.145 Indeed, selection for activity on one

substrate does not seem to induce high selectivity by itself,146 and therefore negative

selection against undesired substrates is used when engineering new enzymes.147,148 In-

terestingly, a tradeoff between rate and accuracy created by ground-state discrimination

would contradict the idea that early, less optimized ribozymes or enzymes were more

promiscuous.
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On the other hand, in transition-state discrimination, which tends to apply with rela-

tively small substrates (e.g., DNA polymerases145,149–152), lowering the activation barrier

increases kcat without necessarily affecting KM . Thus, in principle, transition-state dis-

crimination might achieve higher selectivity at high activity since there is not necessarily

a tradeoff between accuracy and rate. In addition, non-equilibrium mechanisms driven

by release of chemical energy may improve selectivity with or without a tradeoff between

accuracy and rate.153 Furthermore, such mechanisms can allow accuracy to surpass the

theoretical thermodynamic limit based on binding energies. For example, in kinetic proof-

reading,143,154 discrimination between two possible substrates is achieved by the presence

of one or more irreversible steps in the reaction pathway, whose rate(s) are biased by the

identity of the substrate. These steps are made irreversible by consumption of chemical

energy, and concatenation of such steps could be used to achieve arbitrarily small error

ratios, in principle. Some biological processes can afford high specificity by using this

mechanism.143 For example, although the valine concentration in vivo is ∼5-fold higher

than that of isoleucine, and isoleucyl-tRNA synthetase favors the reaction with isoleucine

over valine by only ∼100-fold, the rapid hydrolysis of mis-incorporated valine-tRNA de-

creases the error ratio to 1 in 3000. While kinetic proofreading can increase reaction

specificity substantially, this comes with a relatively high energetic cost.145,155

However, in the absence of proofreading mechanisms, substrate specificity is inher-

ently limited due to physicochemical reasons. Indeed, a recent survey of the BRENDA

database (The Comprehensive Enzyme Information System156) suggests discrimination

is usually much lower than the theoretical maximum.141 In the case of substrates differ-

ing by a single methyl group, discrimination was found to be lower than the theoretical

maximum, for 23 out of the 25 enzymes surveyed, by typically 1-2 orders of magnitude.

Interestingly, a similar discrepancy is found in non-enzymatic, template-directed poly-

merization of activated nucleotides,144 suggesting that this phenomenon is not specific
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to enzymes. A discrimination level lower than the expected theoretical maximum might

reflect prioritization of increased rate during evolution, if the enzyme is subject to an

accuracy-rate tradeoff; in other words, the marginal fitness benefit of increased specificity

may come with a larger fitness decrement due to slower rate. Thus, in general, specificity

tends to be lower than the theoretical maximum, possibly because of the costs associated

with accuracy.145

Specificity may appear to be quite suboptimal even for presumably highly evolved

enzymes. For example, the carboxylase enzyme Rubisco plays an essential role in fixing

atmospheric carbon dioxide into sugars during photosynthesis. However, considering

its biomass and critical role, it is surprisingly slow and non-specific, as oxygenation

constitutes a major side reaction. Tradeoff models have been proposed to explain the

observed correlations between specificity and other kinetic parameters,157,158 which were

recently revisited using an extended dataset.159 A strong correlation was found between

the catalytic efficiencies for carboxylation and oxygenation, indicating that lowering the

effective CO2 addition energy barrier (i.e. faster carboxylation) entails a similar reduction

in the effective O2 addition energy barrier (i.e. faster oxygenation). Therefore, the

accuracy of Rubisco appears to be highly constrained.

3.3.3 Promiscuous vs. Multispecific Enzymes

The term ‘catalytic promiscuity’ was originally used to refer to enzymes known to

catalyze more than one type of reaction.135,160 However, in practice, ’promiscuity’ has

not been well-defined and thus has been used to refer to fundamentally different phenom-

ena.141,161 Generally, catalytic promiscuity refers to the capability of enzymes to catalyze

reactions mechanistically different from the primary biological reaction160 and substrate

promiscuity refers to the capability of enzymes to transform different substrates.162 These
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terms warrant additional consideration here, as their usage varies and can depend on in-

complete knowledge.

The native function of an enzyme refers to the physiologically relevant chemical trans-

formation and substrate for which an enzyme has evolved. Native function is selected

for and contributes to organismal fitness. In this context, any physiological functions

for which an enzyme has evolved are considered native, even if they are not the en-

zyme’s primary function. For example, while the primary function of aminoacyl-tRNA

synthetases is to catalyze the attachment of tRNAs to their respective amino acids, some

also catalyze generation of 5’,5’-diadenosine tetraphosphate in a reaction that appears

to be physiologically relevant,163 and thus this additional function would be considered

native. In practice, whether a particular function contributes to organismal fitness may

be difficult to assess.

It is nowadays well accepted that many, if not most, enzymes have multiple side

activities.136,164,165 However, such side activities may or may not be a product of evo-

lution. In the evolutionary biochemistry literature, promiscuity refers to side activities

that are non-native (i.e., not evolved), so the alternative transformation or substrate is

fortuitous. By definition, there is no evolutionary pressure on non-native activities, as

they do not impact organismal fitness (e.g., alternative substrates are not available in the

cell).136,164,166 For biologically evolved enzymes, promiscuity (as defined by evolutionary

biochemists) is nearly impossible to ascertain in practice, since we do not know what past

environments and selective pressures might have applied to the protein. If promiscuity of

a naturally evolved enzyme is suspected, one might use of the term apparent promiscuity,

in contrast to true promiscuity, to acknowledge this uncertainty.

Interestingly, there are two special scenarios in which true promiscuity can indeed

be characterized unequivocally. First, if the enzyme transforms a man-made compound

not present in nature, the enzyme could not have evolved this activity and the activity
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must be non-native. Examples are the atrazine chlorohydrolase and melamine deaminase

enzymes, which degrade the man-made compounds atrazine and melamine, respectively.

Despite very high similarity (98% identity), both enzymes show little activity on the

alternative substrate.139 While it is likely that their host strains evolved the atrazine

or melamine degradation function in response to environmental exposure (both strains

were isolated from areas contaminated by the substrate139,167), it may be presumed that

neither strain experienced both contaminants simultaneously. If so, these enzymes can

be considered as lacking in true promiscuity.168,169 The second scenario in which true

promiscuity might be determined is in the case of in vitro evolved enzymes and ribozymes,

in which the different environments and selective pressures applied to the sequences are

known.

An important contrast to promiscuous enzymes, whose side reactions are non-native,

is multispecific enzymes (or broad-specificity enzymes), which evolved to perform many

native transformations, such as on a broad range of available substrates. These en-

zymes are characterized by small accuracy values, with different substrates having simi-

lar kcat/KM . For example, theta class glutathione transferases from various species can

catalyze the conjugation of the tripeptide glutathione to a variety of electrophilic sub-

strates.170 The enzyme family of cytochromes P450 metabolizes a variety of different

substrates, with activities including biosynthesis of steroids, fatty acids, or fat-soluble vi-

tamins as well as the degradation of herbicides and insecticides. In particular, cytochrome

P450 3A4 contributes to the metabolism of approximately 50% of marketed drugs.171–173

Most of the terpene cyclase enzymes (a.k.a. terpene synthases) are also multispecific. For

example, the class I sesquiterpene cyclase gamma-humulene synthase generates 52 differ-

ent products, of which gamma-humulene constitutes less than 30% in abundance.174,175

Methane monooxygenase oxidizes more than 150 different substrates.176 The RecBCD

nuclease, originally named Exonuclease V, accepts both linear double-stranded DNA
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and single-stranded DNA with very low specificity.177,178 The distinction drawn between

promiscuous and multispecific enzymes hinges on whether the additional substrates rep-

resented selective pressures on the enzyme. While this is an important conceptual dis-

tinction, assessing whether an enzyme is promiscuous vs. multispecific may be difficult

in practice due to lack of knowledge of the evolutionary and environmental history of the

enzyme.

It should be noted that additional usages of the term ’promiscuous’ also exist. Promis-

cuity is sometimes used to refer to the capacity of an enzyme to transform different

physiologically relevant substrates (see141 and references therein), to be contrasted with

’multifunctional enzymes’ whose side activities may be either physiologically useful or

detrimental.179 Unfortunately, this definition of promiscuity can be contradictory to the

one given earlier, in which promiscuity refers to the capacity to perform non-native reac-

tions. In addition, the determination of physiological relevance is difficult to make and

again raises questions of evolutionary history. A third usage of the term promiscuity

refers to enzymes whose catalytic domain executes multiple functions.179–182 This review

favors the definition from the evolutionary biochemistry literature, since ribozymes are

often evolved under known conditions in vitro, allowing true promiscuity to be charac-

terized, while physiological relevance is unspecified and multiple domains are relatively

uncommon.

3.3.4 Promiscuity and Evolutionary Innovation

Fortuitous side reactions of a promiscuous enzyme are believed to be central to evo-

lutionary innovation, as an initial kernel of activity for a side reaction is a starting point

for optimization of the new activity by evolution.135 In addition, an enzyme might ex-

hibit new side activities under new environmental conditions (e.g. temperature, pH),
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and such enzymes are called condition-promiscuous enzymes. Conditional promiscuity

is a possible path for adaptation in new environments.183–185 However, in the absence of

selective pressure, side activities would be subject to neutral drift and may be lost if they

are uncorrelated to native functions of the enzyme.

Interestingly, contrary to native functions, which are usually tolerant of mutations,

directed evolution of enzymes has shown that the non-native functions can be greatly

optimized by just a small number of mutations.146,182 The flip side of this so-called plas-

ticity is that newly evolved non-native functions are typically not tolerant to mutations.

One might therefore suspect that evolutionary robustness, if it is observed for native

functions, likely evolved as a trait or correlate of a selected trait. In addition, the duality

of plasticity for non-native functions and robustness for native functions implies that

evolutionary optimization of non-native functions might not always lead to a significant

decrease of the original native function.186 However, in the absence of continued selection

pressure on the original function, specialization has been shown to occur due to tradeoffs

during selection of the secondary function, even without negative selection against the

original function.187

The idea that enzyme evolution and promiscuity are connected goes back to the

mid-1970’s, when Yčas and Jensen proposed, independently, the first model for enzyme

evolution.135,188 This general model hypothesizes that primitive life had minimal gene

content and the number of available enzymes was limited. It posits that primordial

enzymes may have been less specific, being able to catalyze broad classes of reactions

on a variety of substrates. Gene duplication and mutation would have then increased

genetic diversity, leading to the divergence of new enzymes whose secondary activities

might give an evolutionary advantage under newly encountered selective pressures.189,190

This hypothesis is widely accepted, although direct evidence is scant.141,182 The molec-

ular processes and evolutionary forces involved in the biological evolution of enzymes
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are very difficult to reconstruct, and hence the mechanisms under which duplication and

specialization events shape enzyme evolution have been the subject of much debate.191

Nevertheless, understanding how specificity and promiscuity arise during in vitro selec-

tion and evolution of ribozymes, recapitulating an origin of life, can address this problem

experimentally.

3.3.5 Promiscuity and the Fitness Landscape

The fitness landscape is a well-studied conceptualization of evolution through the

space of all possible sequences (sequence space).13,20 Each point of sequence space is

specified by a sequence and its associated fitness (e.g., activity on a given substrate),

giving the fitness ’landscape’ in sequence space. At each point in sequence space, one

might also imagine the large chemical space of possible substrates, and an activity profile

for that sequence over substrate space, which reflects the promiscuity of the sequence.

Properties of the fitness landscape are not necessarily expected to correlate with

properties of the promiscuity profile. Different fitness landscapes over sequence space

can give rise to the same promiscuity profile in substrate space (Figure 3.2). In general,

optimization for higher activity need not correspond to increased specificity. However,

specific mechanisms, such as a tradeoff between rate and specificity, could produce cor-

relations between the fitness landscape and the associated promiscuity profiles. The idea

that early, non-optimized ribozymes were particularly promiscuous would translate into

a correlation in which highly active sequences on the fitness landscape have lower promis-

cuity compared to less active sequences. Whether the specificity of a ribozyme can be

improved through mutation or evolution would depend not only on the specificity of that

individual ribozyme, but also on the fitness landscapes for the cognate and alternative

substrates (Figure 3.2).
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Figure 3.2: Fitness landscapes and promiscuity profiles. Different fitness land-
scapes (A-D) can correspond to the same promiscuity profile (E-H). Vertical dashed
lines (a, b, c, d, e, f, and g) correspond to different ribozyme sequences. Ribozyme
fitness landscapes (A-D) for two substrates may differ (blue and red) with or without
overlap. The promiscuity profile (E-H), depicted here for two substrates (1:blue and
2:red) depends on the sequence tested, as seen in the comparison among sequences a,
b, and c in panel E. In addition, similar promiscuity profiles can be derived from qual-
itatively different fitness landscapes. Compare sequence a from (A,E) with sequence d
from (B,F), sequence b from (A,E) with sequence e from (C,G), and sequence c from
(A,E) with sequence g from (D,H). While ribozymes a and d have similar promiscuity
profiles, their evolutionary potential is strikingly different. Ribozyme a could evolve
through mutations to specialized activity, but ribozyme d is already at a local max-
imum and has no evolutionary potential for increasing activity. Similarly, ribozymes
b and e have the same promiscuity profile, but only ribozyme b has the possibility
to evolve into a sequence of higher activity and selectivity. Ribozymes c, f, and g are
highly specific, but unlike ribozymes f and g, ribozyme c has increased potential to
evolve into a promiscuous ribozyme.

3.3.6 Quantifying Promiscuity: The Promiscuity Index

Several possible methods exist to quantify substrate specificity. The promiscuity

index (I) proposed by Nath and Atkins is a metric similar to a normalized information

entropy:192

I = − 1

logN

N∑
i=1

ei∑N
j=1 ej

log
ei∑N
j=1 ej
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where N is the number of substrates that can be transformed and ei corresponds to their

individual associated catalytic efficiencies. Due to the normalization, this metric goes

from 0 (only uses one substrate) to 1 (equally efficient on all N substrates).

While this promiscuity index is simple and intuitive, it might be strongly influenced by

the experimenter’s choice of substrates to test. In particular, when comparing promiscu-

ity indices for different ribozymes or enzymes, one sequence might appear more promis-

cuous only because many chemically similar substrates were assayed. To account for

this problem, a weighted promiscuity index (J) factoring in substrate similarity can be

calculated:192

J = − N

(
∑N

i=1〈δ〉i)logN

N∑
i=1

〈δ〉i
ei∑N
j=1 ej

ln
ei∑N
j=1 ej

Chemical similarity can be calculated using a bitwise dissimilarity metric between a pair

of substrates (δ), which is based on the presence or absence of a number of different

functional groups.

Any method for quantifying promiscuity from experimental data is likely to be biased

in at least two ways. First, there is an experimental bias in the selection of substrates (e.g.,

synthetically accessible, similar to known substrates). For comparisons among enzymes,

differences in these biases might affect the promiscuity index calculated, even when using

the weighted value. Second, these metrics do not consider the chemical context in which

an enzyme functions. If the environment never provides a certain substrate, it may not be

justifiable to include such a substrate in the calculation even if the enzyme has non-zero

activity on it in vitro. Additionally, the relationship between chemical similarity and

promiscuity has not been well established, and often little difference between unweighted

(I) and weighted (J) values has been observed.192,193 Other metrics for promiscuity also

exist, such as a measure based on structural information of the catalytic residues.194,195

Despite these limitations, the promiscuity index serves as a starting point for charac-
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terization and comparison of substrate specificities. In this review, promiscuity indices

are calculated for ribozymes for which sufficient data is available in the literature.196 How-

ever, when necessary, catalytic rates were used in place of catalytic efficiency when the

catalytic efficiency was inappropriate or unknown. Quantitative metrics like the promis-

cuity index provide the opportunity to compare the specificity of different molecules and

potentially study the relationship between promiscuity and other measurable character-

istics, such as activity.

3.4 Ribozymes Illustrating Promiscuity

This section first describes substrate promiscuity using aminoacylation ribozymes, for

which different substrates have been studied in some depth. Then, to gain mechanistic in-

sight into a specific case, focus turns to the hammerhead ribozyme, where specificity can

be understood in terms of RNA annealing. An important consequence of this mechanism

is that promiscuity is dependent on environmental conditions, such as temperature. The

expression of promiscuity under new conditions (conditional promiscuity) is a possible

mechanism for uncovering latent side activities. Then, a series of in vitro evolution exper-

iments seeking an RNA replicase are discussed, in which the presumption of promiscuous

activity was essential to the design and success of the experiments. Next, a different

kind of promiscuity, catalytic promiscuity, is described, in a case of a nucleotide synthase

ribozyme that unexpectedly possesses two distinct catalytic mechanisms. This section

ends with a brief discussion of the ribosome, a proteinaceous ribozyme whose promiscuity

appears to be unparalleled.
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Figure 3.3: Substrates for aminoacylation ribozymes. Phenylalanyl-adenosine
monophosphate197,198 (1), BiocytinCoA199 (2), biotinyl-Tyr(Me)-oxazolone200 (3),
amino acid cyanomethyl ester201 (4) and amino acid 3,5-dinitrobenzyl ester201 (5).
Substrates 4 and 5 are flexizyme substrates. The amino acid backbone is depicted
in green, side chains are depicted in blue, and leaving groups are depicted in red. R
indicates possible chemical variation in the side chain.

3.4.1 Substrate Promiscuity: Aminoacylation Ribozymes

Aminoacylation of tRNA is a key step in protein synthesis, and high selectivity for

tRNA-amino acid pairs is crucial for the stability of the genetic code.202 It is presumed

that ribozymes carried out aminoacylation reactions in the earliest stages of the evolu-

tion of the translation apparatus. Indeed, several aminoacyl-RNA synthase ribozymes

have been identified through in vitro selection, which use a variety of activated amino

acid substrates197,199,200,203 (Figure 3.3). These aminoacylating ribozymes show a range

of specificities for the substrate side chain. For example, selection using a phenylalanine

adenylate substrate 1 produced ribozymes that showed little discrimination (i.e., promis-

cuous ribozymes) as well as ribozymes showing a strong preference for aromatic amino

acids.198 Although they are derived from the same selection, these ribozymes have quite

different promiscuity profiles and indices (Figure 3.4, Table 3.1). Selection for aminoa-
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Figure 3.4: Promiscuity profiles for two aminoacylation ribozymes. Promis-
cuity profiles for Ribozyme 77 (blue squares) and Ribozyme 29 (pink circles) show
catalytic rates for each tested amino acid substrate,198 ordered by hydrophilicity as
defined by Hopp and Woods206,207 (Phe = -2.5, Tyr = -2.3, Ile = -1.8, Ala = -0.5,
Gln = 0.2, and Ser = 0.3). Also see Table 3.1.

cylation with coenzyme A (CoA) thioester 2 produced ribozymes that could function

with other CoA thioesters, but required the presence of a free α-amino group.199 None of

these ribozymes match the specificity of the aminoacyl-tRNA synthetase enzymes found

in modern biochemistry. This discrepancy cannot be the result of a tradeoff between

activity and specificity, since the ribozymes are generally much less efficient (∼1000-fold)

than the corresponding enzymes.204,205 Instead, the general finding of promiscuity and

the variation of specificities found among these ribozymes are consistent with the under-

standing that newly evolved sequences are not necessarily specific if they have not been

selected for specificity.

The aminoacylating ribozymes discussed above have also been observed to catalyze

reactions using alternative nucleophilic substrates to generate amide bonds in addition

to esterification. In particular, a minimized, 29 nucleotide version of an aminoacylating

ribozyme that utilizes Phe-AMP was found to catalyze successive reactions: aminoacy-

lation of the RNA and the subsequent amide bond formation to generate a conjugated
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Ribozyme Substrate side chain CID k (M−1min−1) I J

Phenylalanine 6140 60000
Tyrosine 6057 40000

77 Isoleucine 6306 1.5 0.376 0.439
Alanine 5950 3.4

Glutamine 5961 5.3
Serine 5951 0.9

Phenylalanine 6140 140
Tyrosine 6057 220

29 Isoleucine 6306 20 0.810 0.807
Alanine 5950 1000

Glutamine 5961 650
Serine 5951 600

Table 3.1: Promiscuity indices calculated for two aminoacylation ribozymes
(77 and 29). CIDs (PubChem Compound Identifier) for amino acids were used
to determine similarities for calculation of J . The substrates used are aminoacyl
adenylates with the side chain indicated. Both the unweighted (I) and weighted (J)
promiscuity indices were calculated from the rate constants (k) shown. Rate constants
are from Illangasekare, et al.198

peptide.208,209 The rate of peptide formation was approximately 13-fold less than that for

aminoacylation, but this difference could be tuned. Extending the 3’ tail of the RNA by

three nucleotides resulted in a three-fold reduction in the rate of aminoacylation and a

2-fold increase in the rate of peptide formation, presumably by increasing the flexibility

around the active site.

The potential promiscuity of aminoacylating ribozymes is highlighted by the ’flex-

izymes’ developed by Suga and colleagues, so named for their flexibility in accommodat-

ing a variety of substrates. These ribozymes were generated over a series of selections

with the ultimate goal of producing catalysts capable of charging tRNAs with a wide

variety of both natural and non-natural substrates. The starting point of the selection

was a library containing a 5’ random region and a 3’ tRNA. Ribozymes were selected for

their ability to aminoacylate the 3’ terminus of the conjugated tRNA. This first selection

produced ribozymes with a high level of specificity to both the tRNA and phenylalanine
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substrates.203,210,211 To broaden the tRNA substrate range, further design and selection

was performed with an alternative tRNA sequence, which resulted in ribozymes capable

of accepting a variety of tRNAs.212 These early flexizymes exhibited high affinity for the

aromatic side chains. Using the ribozyme’s affinity to the aromatic group to broaden

the side chain specificity, the initial substrate 4 was redesigned to substrate 5, which

contains a 3,5-dinitrobenzyl ester as the leaving group in the aminoacylation reaction.

The idea was that this leaving group could be kept constant, ensuring affinity to the

ribozyme, while the side chain itself was varied. This substrate necessitated an altered

reaction mechanism, but nevertheless, the strategy was successful, with further selec-

tion resulting in ribozymes capable of charging tRNAs without regard to amino acid

side chain.212 More recently, flexizymes have been used to charge tRNAs with various

non-natural amino acids, including D-amino acids, β-amino acids, and α-hydroxy acids,

and 3’-aminoacyl-NH-tRNA can also be charged.213–216 Although the flexizyme does ex-

hibit a minor degree of side chain specificity, yields with the non-natural analogs often

rival those for the L-amino acids used in the initial selections. The additional substrates

represent both promiscuous (non-native) as well as native activities. Overall, the flex-

izyme demonstrates the surprisingly broad substrate specificity that can be evolved and

designed when substrate generality is a desired goal.

3.4.2 Conditional promiscuity: the hammerhead ribozyme

Due to their historical importance in the discovery of ribozymes, much is known

about the self-cleaving ribozymes, which function through general acid-base catalysis.

The ribozyme fold brings the reactant nucleotides to the vicinity of the cleavage site,

with the catalytic strand acting as the general base or acid to activate the nucleophile or

stabilize the leaving group, respectively (Figure 3.5). Many of these ribozymes can also
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Figure 3.5: Proposed mechanism of RNA self-scission by general acid–base
catalysis. A general base promotes deprotonation of the 2’-hydroxyl of the nucle-
ophile, initiating formation of the cyclic intermediate. A general acid stabilizes the
5’-hydroxyl leaving group, allowing resolution of the intermediate to generate the
cleavage products.

catalyze the same transesterification reaction in reverse, using nucleophilic attack from

a 5’-hydroxyl to ligate two substrate strands,217 which represents a possible case of cat-

alytic promiscuity, a phenomenon discussed in Section 3.4.5 in the context of a different

ribozyme. This section focuses on the substrate promiscuity of a self-cleaving ribozyme

and how it arises. Although these ribozymes are cis-acting in vivo, they can be engi-

neered to accept oligonucleotide substrates in trans with multiple turnover. While there

are numerous self-cleaving ribozymes, discussion here is confined to the case of the ham-

merhead ribozyme, a naturally occurring ribozyme found in plant viroid transcripts,218

for which the specificity of trans-acting variants has been extensively investigated.

The trans-acting hammerhead ribozyme can be engineered from the cis-acting an-

cestor by removing a nucleotide loop of one helical arm, thereby creating a cleavable

substrate strand and a catalytic strand.219–223 In such constructs, the catalytic strand

can bind and cleave substrate strands with multiple turnover. In particular, separation

of stem I from stem III of the ribozyme (the I/III construct) is most widely studied224–226

since this construction places most of the conserved nucleotides in the catalytic strand

(Figure 3.6). This allows substrate specificity in the substrate strand to be probed.
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Figure 3.6: Structure of a trans-acting I/III hammerhead ribozyme HH16.
The catalytic strand is shown in black, and substrate is shown in green.227 The red
arrow indicates the cleavage site.

There are two main expectations for sequence specificity of the substrate in a trans-

acting construct. First, residues critical for the catalytic mechanism are expected to

be relatively intolerant to mutations, which would primarily affect kcat.
228 Second, aside

from critical residues, promiscuity for the substrate is expected to be determined by

binding interactions (Km) between enzyme and substrate, namely base-pairing, which

can lead to large variation in dissociation rates among different substrates. In the HH16

ribozyme (Figure 3.6), substrate affinity, which was dominated by stem III, was very

high, implying a low dissociation rate, such that truncation from the 3’ end, down to a 2-

nucleotide version of stem I, had little effect on the overall rate of cleavage.227 Specificity

in either stem I or III of the substrate was therefore only observed when stem III was

destabilized to give a dissociation rate that was on par with or slower than the overall

cleavage rate. Conversely, extending the recognition sequence reduced specificity,229 in
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keeping with the idea that, if substrate dissociation is slow relative to cleavage, mutations

in the substrate are tolerated since the bound complex is sufficiently populated. In terms

of the active site itself, the hammerhead ribozyme has limited substrate promiscuity;

substitution of the reactive phosphate with thiophosphate greatly reduces kcat.
230

The example of the hammerhead ribozyme, particularly the sequence dependence

of the substrate, illustrates, at a molecular level, the property of conditional substrate

promiscuity, in which the apparent promiscuity depends on the environmental condition.

Variants having longer binding regions or higher substrate affinity can tolerate weakening

(or strengthening) of binding without much change in population of the bound state,

and therefore are relatively insensitive to mutations and have high apparent promiscuity.

On the other hand, variants that exist on the threshold of binding can display high

specificity as they are sensitive to small changes in dissociation rate. Thus, exhibition of

promiscuity depends on conditions such as substrate concentration, pH, ionic strength,

and temperature. Conditional promiscuity can be the basis for cryptic genetic variation,

in which an altered phenotype is uncovered in new environments. Thus, it is likely to

be underappreciated in the literature due to observational bias, since most experimental

studies tend to focus on a small set of reaction or environmental conditions. This is an

area ripe for future research given the likely importance of conditional promiscuity for

evolutionary innovation.

3.4.3 Convergent Mechanism, Convergent Promiscuity: a Tale

of Two ’Capping’ Ribozymes

The influence of mechanism on promiscuity, illustrated by the hammerhead ribozyme,

is exemplified in a comparison of two independently derived ribozymes that share a com-

mon mechanism. These ribozymes, isolated under different selection conditions, promote
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the formation of a phosphate-phosphate anhydride bond between the terminal phosphate

of a nucleotide and the 5’-α-phosphate of RNA. The final product is similar to the 5’ cap

found on eukaryotic mRNAs.

These two RNA capping ribozymes, the Iso6 and 6.17 ribozymes, were discovered

in the Yarus and Unrau groups, respectively.231,232 Interestingly, both ribozymes were

isolated from different selections for which this capping reaction was not the desired

function. Iso6 was recovered from a selection originally designed to identify ribozymes

that could produce aminoacyl adenylates through reaction between amino acids and

triphosphorylated RNA. Instead, pyrophosphate release was observed in the absence of

amino acids, and the selection pool even developed labeling with PPi. Selection for

capping activity using UTP instead of PPi quickly resulted in high activity in the pool

and the identification of Iso6.231 On the other hand, the 6.17 ribozyme derived from a

selection initially designed to identify polymerase activity by incorporating labeled UMP

into a primer annealed to a poly(A) template. The resultant ribozyme with the fastest

kinetics, 6.17, instead was found to act on the 5’ end of the RNA, forming a 5’-5’ cap.232

Iso6 and 6.17 display no apparent sequence similarities and are expected to adopt

different secondary structures, consistent with their unique origins. Despite these dif-

ferences, the molecular mechanisms for these two ribozymes appear to be surprisingly

similar. Both ribozymes are predicted to have helices that terminate at the site of cap-

ping, with the terminal 5’ nucleotide retaining some flexibility; this position is unpaired

in Iso6 and requires wobble pairing in 6.17. Both ribozymes also display increased ac-

tivity at lower pH and require divalent cations for activity, although Iso6 prefers Ca2+

while 6.17 tolerates Mg2+, Mn2+ and Ca2+. The ribozymes even possess similar sub-

strate binding affinities.232,233 Finally, both ribozymes appear to have minimal substrate

requirements. The identities of the sugar and base have little impact on activity, despite

possible hydrogen bonding interactions with these moieties. However, decreasing the
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length of the phosphate chain results in a large decrease in substrate binding,232,234,235

indicating that the phosphate itself is responsible for most substrate interactions.

Thus, these ribozymes suggest a common molecular mechanism for RNA capping that

permits a high degree of substrate promiscuity, provided a small number of key features

is present. The fact that two independently evolved, structurally dissimilar ribozymes

have the same requirements supports the idea that substrate promiscuity is determined

by mechanism. In this case, evolutionary convergence on the same mechanism resulted

in convergence to similar promiscuity as well.236

3.4.4 Relying on Promiscuity: Searching for an RNA Replicase

For those interested in the origin of life, one of the most sought-after de novo ribozyme

functions is catalysis of template-directed RNA polymerization (an ’RNA replicase’),

which is thought to be important, if not essential, to a self-replicating RNA system. One

of the major avenues for this search has relied heavily on the promiscuity of newly evolved

ribozymes. The first ribozymes developed by use of in vitro selection from a large pool

of random sequences were RNA ligase ribozymes, including the ’class I ligase’ (Figure

3.7). The class I ligase was selected to catalyze the ligation between a 5’-triphosphate on

the ribozyme and a 3’-hydroxyl on an RNA oligonucleotide substrate, which caused the

ribozyme to tag itself with a sequence on the substrate that was necessary for purification

and amplification.1,237 The 3’,5’-phosphodiester bond formed during ligation is identical

to that formed during template-directed polymerization. Modification of the original

class I ligase to bind a primer-template complex generated a ribozyme that possessed

some polymerization activity, being able to extend a primer through the incorporation

of mononucleotide triphosphates.238,239 This reaction occurred with 92% fidelity, though

activity decreased with successive nucleotide additions, topping out at six nucleotides
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Figure 3.7: The class I ligase ribozyme and its descendants. Structures for the
class I ligase;238,240 the round-18 polymerase introducing the new 3’ accessory domain
(blue), which is known to interact with the loop depicted on the lower right;241,242

the tC19Z polymerase, introducing a new 5’ accessory domain;243 and the 24-3 poly-
merase.244 Blue regions denote new additions to the ribozyme, with point mutations
marked by blue diamonds. Primer and template oligonucleotides are shown in orange
and red.

added after a six-day incubation. Nevertheless, this initial finding signaled that catalytic

promiscuity of the class I ligase could potentially lead to an RNA replicase.

Subsequent work with the class I ligase and its derivatives aimed to increase its

processivity, fidelity, and template generality. Important progress was made through

attachment of an accessory domain to the 3’ end of the ribozyme, which was selected from

a 76-nt random sequence with the idea that this domain could facilitate interaction of

the ribozyme with the primer-template complex.241 Polymerization activity was selected

for through incorporation of tagged nucleotides opposite an attached primer. To increase

the sequence generality of polymerase activity, shorter templates were used to reduce

hybridization with the ribozyme, and different primer-template sequences and lengths
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were used in different rounds of selection. One ribozyme, isolate 10.2, was found to

function without attachment to the primer, and without recognition of a specific sequence.

This feature was conferred by the new accessory domain, which increased binding of

the primer-template complex, but polymerization activity itself occurred with minimal

change to the ligase domain. Mutagenized versions of the 10.2 ribozyme were further

selected for function on longer single-stranded templates and in the presence of higher

concentrations of untagged nucleotides to improve fidelity. After eight more rounds of

selection, the best resultant ribozyme, termed the round-18 polymerase (Figure 3.7),

functioned much better with longer templates, and allowed for the extension of up to 14

nucleotides.

While catalytic promiscuity was key to the discovery of an RNA polymerase ribozyme,

substrate promiscuity at a given template base is highly undesirable. That is, fidelity

is important for an RNA replicase, because error rates represent a serious limit in the

transmission of information.245 The round-18 polymerase copied templates with a per-

base fidelity of 96.7%, which corresponds to relatively low promiscuity values (0.01-0.22;

Table 3.2). One of the major determinants of this fidelity is misincorporation resulting

from G:U wobble pairs, which is reflected by their higher promiscuity values compared

to A and C (Table 3.2). While extension across a template A or C resulted in the correct

addition (U or G, respectively) in over 99% of cases, G templated with an incorporation

fidelity of 95.7%, and U templated with a fidelity of 92.1%, with the vast majority of

mismatches resulting in a G:U mispair. This type of mispairing also appears to be the

major limitation on the fidelity of non-enzymatic replication, and may be an echo of the

thermodynamic limit on specificity.144,246

Despite the 3’ accessory domain, a major limitation of the round-18 polymerase con-

tinued to be low binding affinity for the primer-template complex, which was the primary

contributor to the low processivity of the class I polymerase. The affinity also had a high
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Substrate CID kA kC kG kU

ATP 5957 0.30 0.057 0.023 5.3
CTP 6176 0.02 0.008 5.4 0.0002
GTP 135398633 0.02 41 0.003 0.23
UTP 6133 87 0.004 0.46 0.001

Fidelity 0.991 0.9996 0.957 0.921
I 0.020 0.010 0.219 0.126
J 0.020 0.010 0.220 0.125

Table 3.2: Promiscuity of an RNA polymerase ribozyme. Fidelity, promiscuity
index (I), and weighted promiscuity index (J) for the round-18 polymerase. Rate
constants (kN , for template N = A, C, G, U; M−1min−1) are from Johnston et al.241

degree of variability with regard to primer-template sequence, suggesting that further

reduction of sequence specificity was still needed.247 Further progress was achieved by

selecting directly for activity in trans using a water-in-oil emulsion. The first product

of this method was the B6.61 polymerase, which was capable of generating sequences

20 nucleotides long.242,248 B6.61 showed a much faster polymerization rate than its pre-

decessor, with an extension rate over 75-times faster for longer sequences. While there

was no significant improvement in binding to the primer-template, this rate increase was

accompanied by increased fidelity, including a minimization of G:U wobble insertions.

As with the aminoacylation ribozymes (Table 3.1), this trend is a counterexample to the

idea of a general tradeoff between activity and specificity.

A substantial improvement to processivity came using a similar compartmentalization

technique with the addition of a 5’ random region with the aim of improving interactions

between the ribozyme and the primer-template complex. This yielded a 5’ accessory

domain that forms stabilizing interactions with downstream portions of the template,

thus increasing binding of the ribozyme to the template. Randomization and selection of

the template sequence strengthened these interactions. With the optimized template, the

new ribozyme, named tC19, ultimately yielded up to 95 nucleotide extensions with a per-

base fidelity of 97.3%. However, the new interactions were largely intermolecular base-
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pairing, such that activity was strongly dependent on sequence. Selection on different

templates identified four point mutations which, when introduced into tC19 to make

tC19Z (Figure 3.7), improved the sequence generality. These new mutations further

increased the measured per-base fidelity to 99.1%, largely due to a decrease in G insertion

across template U. The tC19Z polymerase was shown to be capable of transcribing a

functional 24 nt variant of the hammerhead ribozyme.243

Consideration of the promiscuity of the RNA polymerase ribozyme raises an interest-

ing irony: while substrate promiscuity of the incoming monomer across a given template

base is undesirable because it leads to copying errors, substrate promiscuity with respect

to the template itself is highly desirable to obtain a ribozyme capable of copying many

different, and ideally any, sequences. Sequences of particular concern are those with

a high degree of structure that would need to be locally melted for ribozyme access,

including sequences that comprise the ribozyme itself. Recent selections based on the

RNA polymerase ribozyme focus on improving its sequence generality. One such study

selected for the polymerase’s ability to synthesize complex folded RNA molecules, with

selection tied to the creation of two functional aptamers, imposing pressure for sequence

generality and high fidelity.244 The most active selected ribozyme, 24-3 (Figure 3.7),

showed a ∼100-fold increased incorporation rate through structured sequences compared

to the parent ribozyme. Likely as a result of selection for functional molecules instead of

sequence fidelity, the 24-3 ribozyme displayed a higher error rate than its predecessors,

in particular an increased tolerance for G-U wobble pairing. Despite this limitation, 24-3

was able to synthesize functional RNAs up to 76 nt long and could perform exponential

amplification of an RNA template.

A different approach to overcoming the substrate generality problem takes advantage

of plasticity, which occurs when non-native functions can be found through a relatively

small number of mutations. In this case, it was hypothesized that copying via ligation of
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oligonucleotides could improve copying through structured sequences, since base-pairing

to the oligonucleotide would mitigate some of the free energy cost of melting the template.

Knowing that the RNA polymerase ribozyme was originally derived from the promiscuous

activity of an RNA ligase, Attwater et al. engineered and evolved an ancestor of the

tC19Z ribozyme to copy templates using trinucleotide triphosphates instead of NTPs.249

The triplet oligonucleotides use strand invasion to unfold structured RNA sequences for

improved copying. The atavistic ribozyme t5+1 displayed reduced fidelity compared to

its NTP-using counterpart, but selection for fidelity yielded an improved variant able

to synthesize its own catalytic subunit. Interestingly, the t5+1 ribozyme consists of a

heterodimer of the catalytic subunit and an RNA ’cofactor’ that assists interaction with

the primer-template complex. Both subunits are descended from the same ancestral pool,

illustrating how specialized descendants originated from distinct domains of the ancestor.

An ingenious orthogonal strategy to overcome the problem of sequence generality was

developed by Joyce and coworkers, who reasoned that base-pairing between ribozyme and

template was the major contributor to the energetics determining template specificity.

Base-pairing is essentially absent between D-RNA and L-RNA sequences,250,251 and thus

a D-ribozyme is expected to have little base-pairing interaction with L-substrates. Selec-

tion for ligase activity indeed discovered D-ribozymes that could ligate L-RNA oligonu-

cleotides.252 As expected, the non-natural, mirror-image L-ribozyme could perform the

complementary reaction using D-RNA substrates and template. Furthermore, as with

the class I ligase, these cross-chiral ligases also possessed polymerization activity. Un-

like non-enzymatic templated RNA replication,253 these ribozymes displayed very little

chiral inhibition, showing a high specificity for substrates of the desired chirality. A

cross-chiral ligase was efficient enough to produce its mirror image enantiomer, which

could then produce the original enantiomer. The cross-chiral ribozymes were not entirely

sequence-general, as some substrates, such as those with 3’-terminal C or G residues,
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were more efficient than others. Nevertheless, given the precedent of the evolutionary

strides demonstrated by the promiscuous class I ligase, the cross-chiral ligases represent

an intriguing starting point for further development.

Polymerase (and ligase) ribozymes present a unique challenge in simultaneously re-

quiring broad template accommodation and strict fidelity. Although this work was not

undertaken for the purpose of studying promiscuity in ribozymes, the advances made with

the class I ligase, spanning more than two decades of work by multiple groups, rely heavily

on the promiscuity and plasticity of the ribozyme. Since this lineage of RNA polymerase

ribozymes has only been selected on RNA substrates, true promiscuity can be clearly

identified if the ribozymes accept different nucleic acids. One ribozyme displays some

activity for incorporation of non-natural sugars and nucleobases, although it often stalls

if modified nucleotides are present at specific positions.254 Unlike other ribozymes in its

lineage, the 24-3 ribozyme, perhaps as a consequence of its selection for tolerance of dif-

ferent RNA aptamer templates, was observed to polymerize DNA on an RNA template

(i.e., reverse transcription), permitting extension by up to 32 deoxyribonucleotides.255

A later generation of this ribozyme, 38-6, shows remarkable promiscuity, with activity

on templates or nucleotides composed of multiple combinations of RNA, DNA, threose

nucleic acid (TNA), or arabinose nucleic acids (ANA), though with reduced activity com-

pared to an RNA-only system.256 38-6 also performs DNA-templated RNA synthesis and

RNA-templated DNA synthesis more effectively than synthesis involving TNA or ANA,

likely due to the structural similarities. These results further demonstrate the promis-

cuity of this ribozyme lineage. While the class I ligase and its descendants constitute

a fascinating case study, it is unknown whether other ribozymes could exhibit similar

versatility.
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3.4.5 Catalytic Promiscuity: The Nucleotide Synthase Ribozyme

While substrate promiscuity appears to be commonly found among ribozymes,232,257,258

one may ask whether true catalytic promiscuity is also observed. Indeed, an interesting

case was found in the pR1 nucleotide synthase.259 Selected to catalyze a reaction between

ribose 5-phosphate (PR) and 6-thioguanosine (6SGua), this ribozyme was found to also be

capable of catalyzing the reaction between 6SGua and 5-phosphoribosyl 1-pyrophospate

(PRPP), an intermediate in the biological synthesis of nucleotides. These two reactions

appear to have distinct reaction mechanisms and resultant products, depending on the

substrate provided. Reaction with PRPP generates a glycosidic bond, resulting in the

corresponding nucleotide, 6SGMP. However, the reaction with PR appears to require

acyclization of ribose, allowing 6SGua to react with the corresponding aldehyde and gen-

erate a Schiff base (Figure 3.8). Each reaction has a unique dependence on magnesium

ion concentration, supporting the existence of two different mechanisms. Interestingly,

ribozymes selected for reactivity with PRPP instead of PR did not exhibit analogous

activity on PR. Thus, not all ribozymes with the same function possess catalytic promis-

cuity. Despite the catalytic promiscuity of pR1, the ribozyme still displays a high degree

of substrate specificity toward 6SGua, as analogous sulfur-containing purines are not rec-

ognized, in contrast to purine synthase ribozymes selected independently.260 The pR1

ribozyme demonstrates that catalytic promiscuity may differ in important ways from

substrate promiscuity. While substrate promiscuity might be readily evolved through a

relaxed binding mode, catalytic promiscuity requires a new reaction mechanism whose

spontaneous emergence might be relatively unusual.
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Figure 3.8: Reactions catalyzed by the pR1 nucleotide synthase ribozyme.
(A) Given a ribose 5-phosphate substrate, the acyclic form of ribose is stabilized
and 6-thioguanosine (6SGua) reacts to form a Schiff base, which can then undergo
an Amadori rearrangement. (B) Reaction with 5-phosphoribosyl 1-pyrophospate pro-
duces the desired nucleotide, 6SGMP. Adapted from Lau and Unrau.259

3.4.6 A Highly Promiscuous Ribozyme: The Ribosome

The ribosome is a ribozyme that translates genetic information of mRNA into protein

sequences and is conserved across all the domains of life. The ribosome core consists of

catalytic RNA, but farther from the catalytic center both proteins and RNA are found.261

In eukaryotes, four ribosomal RNAs (rRNAs) associate with about 70 proteins, while in

E. coli, the ribosome consists of three rRNAs and 52 proteins.262,263 Because the ribosome

is a ribozyme and conserved across all domains, it is presumed to have existed in the

last universal common ancestor (LUCA), and is also taken as circumstantial evidence of

the RNA World.264 Protein translation necessitates high fidelity, with error rates of the

overall process on the order of 10−4 per codon. Fidelity is primarily maintained through

factors other than the ribosome, such as aminoacyl-tRNA synthetase editing and EF-
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Tu binding.265,266 While the peptidyl transferase center of the ribosome provides some

steric selectivity (e.g., preferring L- rather than D-amino acids267), the ribosome itself is

a surprisingly promiscuous molecule overall, permitting a wide assortment of substrates

so long as there is a correct codon-anticodon match.

The ribosome accepts two aminoacyl-tRNAs at a time and catalyzes the formation of

a peptide bond between the amino acids, releasing an uncharged tRNA and retaining a

peptidyl-tRNA.263 The ribosome must accommodate a large variety of substrates: there

are 20 canonical amino acids that can be associated with 50 or more different tRNAs,

depending on the species.268 Even if one only considers two canonical amino acids coming

together to be joined by a peptide bond, there are 400 possible substrate permutations

that the ribosome must accommodate and catalyze. This level of multispecificity is

essential for the production of all extant proteins in the organism. In addition to accom-

modating different amino acids and peptides in the active site, the ribosome must also

accommodate different peptides in the exit tunnel. Interestingly, the exit tunnel is lined

primarily by RNA and lacks significant patches of hydrophobicity, creating a ’nonstick’

character that allows peptides through regardless of sequence.261

The ribosome is similarly multispecific with respect to the mRNA templates, on

which there are minimal sequence restrictions. Following initiation, which does involve

sequence-specific interactions in some organisms, ribosome binding to mRNA is primar-

ily facilitated through interactions with the mRNA backbone.269 However, the ribosome

does display some slight substrate preferences. Early research on the ribosome, for ex-

ample, discovered roughly two-fold higher reactivity with leucine than phenylalanine.270

Additionally, ribosomes display codon preferences that can alter the elongation rate,271 a

property which is used for regulation of gene expression. Still, the degree to which ribo-

somes are capable of utilizing a wide variety of substrates, including many non-canonical

amino acids,272 representing promiscuous activity, is truly striking.
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As with the RNA polymerase ribozymes, the substrate promiscuity of the ribosome

must co-exist with a requirement for high fidelity of information transfer. The promiscu-

ity of the ribosome is tolerated by the cell in part because translation fidelity is handled

during aminoacylation of tRNAs, including proofreading processes.273 In the ribosome,

cognate and non-cognate tRNAs can be distinguished through minor differences in base-

pairing to mRNA. Recognition of the cognate tRNA leads to a structural change that

is identified by elongation factor proteins which permit translation to proceed.274 An-

other restriction imposed on the incoming tRNA is the 3’ terminal CCA sequence, which

forms specific interactions with the ribosome.261,269 This CCA sequence is required, and

occasionally sufficient, for peptidyl transfer to occur.270,275 A small number of important

interactions between tRNAs and the ribosome provide high fidelity of translation while

permitting minimal restrictions on the mRNA or protein sequences.

The innate promiscuity of the ribosome is occasionally exploited by nature. One such

example is puromycin, an antibiotic produced by the bacteria Streptomyces alboniger.

Puromycin is an aminonucleoside, containing nucleoside and amino acid analogs, linked

through an amide bond instead of the conventional ester. This structure mimics the 3’

terminus of a charged tRNA, which allows it to enter the ribosome and be irreversibly

incorporated into the nascent polypeptide, terminating translation.276,277 The efficacy of

this molecule suggests that evolutionary escape from this promiscuous activity has been

difficult despite the selective pressure engendered by the antibiotic.

Synthetic biologists have also taken advantage of the substrate promiscuity of the

ribosome, fundamentally altering the genetic code itself. tRNAs recognizing the amber

stop codon can be charged with non-canonical amino acids. Since the ribosome is essen-

tially agnostic with respect to the side chain of the incoming monomer, the amber codon

is translated into the new amino acid.278,279 Amino acids with a remarkably diverse set of

unnatural functional groups have been successfully incorporated by this method, includ-
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ing alkanes, polybenzenes, sugars and phosphate-containing species.280,281 The ribosome

can even catalyze the formation of ester bonds, yielding mRNA-encoded polyesters, with-

out mutation in the ribosome itself.213 Further evolution can push this versatility further,

as seen with the ribosome variants ribo-Q1 and ribo-X, which translate quadruplet codons

and thus introduce many ’blank’ codons to the genetic code.282–284 Although it was pos-

tulated early on that the genetic code might be a ’frozen accident’,130 it now seems clear

that the code itself has been the subject of evolution, as evidenced by the different version

of the code found in mitochondria285 as well as statistical analyses suggesting that the

code has evolved to minimize the biophysical impact of mutations.286 The evolvability

and malleability of the genetic code attests to the remarkable combination of substrate

promiscuity and informational fidelity in the ribosome.

3.5 Primordial Ribozymes: More Promiscuous?

We now return to a question posed at the beginning of this review: would primordial

ribozymes be particularly promiscuous? There are two reasons why one might hypoth-

esize this. First, given the importance of promiscuity for evolutionary innovation, one

may suppose that primordial ribozymes might have been more promiscuous than highly

evolved enzymes due to evolutionary pressure for greater specificity. Second, given the

wider chemical diversity of functional groups available to proteins, one may suppose

that proteins will have both superior specificity and activity, in general, compared to

ribozymes, due to their ability to engage in more types of interactions. Although there is

insufficient data in the literature to answer these questions definitively, here we consider

two comparisons that bear on these issues. First, we consider whether newly evolved ri-

bozymes are more promiscuous than highly evolved ribozymes. Second, we ask whether

ribozymes are more promiscuous than proteins by examining a head-to-head comparison
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of a ribozyme and a protein enzyme, both of which were evolved de novo.

3.5.1 Newly Evolved vs. Highly Evolved Ribozymes

An interesting comparison can be made between the promiscuity of ribozymes from in

vitro selection, which have very short evolutionary histories, to highly evolved ribozymes,

in particular, the ribosome. The first ribozymes to catalyze amide bond formation were

initially selected for a different activity, to catalyze the transfer of an aminoacyl group

from the 3’-hydroxyl of a short tRNA mimic to the 5’-hydroxyl of the ribozyme.287

However, like the ribosome, one of the selected ribozymes was able to use an alternative

nucleophilic substrate. When the 5’-hydroxyl was substituted with an amino group,

amide bond formation was observed at a similar rate. In both cases, the ribozyme

accelerated the respective non-catalyzed reaction by over 1000-fold. Later, ribozymes

were selected to perform peptide bond formation by linking a phenylalanine to the 5’

end of the RNA and selecting for the ability to attach a biotinylated methionine from

a 3’ acylated AMP substrate.288 The best ribozymes from this selection displayed a

rate enhancement of ∼106. This reaction was inhibited by the presence of AMP, but

not other nucleotides or methionine, suggesting that the ribozyme functions primarily

through specific interactions with AMP. Consistent with this, activity was also observed

with leucine, phenylalanine, and lysine substrates, with methionine and leucine being the

best peptidyl donors.

These peptide synthase ribozymes, much like the flexizyme, illustrate that if there

are sufficient interactions with other parts of the small molecule substrate, the amino

acid side chain may be quite variable. In addition, the fact that one of the ribozymes is

capable of both ester and amide bond formation, much like the ribosome, further corrob-

orates its promiscuity of function. (In this case, these non-native activities represent true
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Figure 3.9: Diels-Alder cycloaddition. A concerted reaction between a conjugated
diene and an alkene (dienophile) results in the formation of a cyclized product.289

The dienophile substituents shown (R3 and R4) are added to the same face of the
cyclohexane ring.

promiscuity since the complete environmental history of the ribozyme is known.) How-

ever, while it may be possible to evolve increased promiscuity in these ribozymes, it seems

a hard task indeed to match or exceed the promiscuity of the ribosome. This comparison

at least suggests that newly evolved ribozymes are not necessarily more promiscuous

than highly evolved ones. Instead, specificity or promiscuity itself may be a selectable

trait, and natural selection may favor either greater or lesser promiscuity.

3.5.2 De Novo Ribozyme vs de Novo Protein Enzyme: The

Diels-Alderases

Are protein enzymes superior to ribozymes, such that ribozymes emerging in the

RNA world would be worse than their protein counterparts? While it seems clear that

proteins have greater activity in general, nearly all protein enzymes have much longer

evolutionary histories compared to ribozymes, most of which have been evolved in vitro.

To avoid this confounding factor, one may compare a de novo ribozyme with a de novo

protein enzyme. Such a comparison can be made with the Diels-Alderase RNA and

protein enzymes, which both catalyze a reaction (Figure 3.9) previously not known to

occur in biology.
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Interestingly, the first biochemical catalyst discovered for the Diels-Alder reaction was

a ribozyme, not a protein. While most ribozyme reactions involve RNA or amino acid

modifications and often involve base-pairing interactions, an early discovery that demon-

strated the catalytic versatility of ribozymes was carbon-carbon bond formation by Diels-

Alderase ribozymes.290,291 The specificity of one such ribozyme was extensively character-

ized by the Jäschke laboratory through testing a series of potential substrates.292,293 The

initial experiments selected for cycloaddition of a biotin-maleimide to anthracene, which

was conjugated to the RNA via a polyethylene glycol linker. The ribozyme produced

from this selection could catalyze this reaction on free substrate with a high degree of

enantioselectivity. Additionally, a synthesized mirror image of this ribozyme composed

of L-nucleotides produced the opposite enantiomer. This enantioselectivity was the re-

sult of a ’tail’ group on the anthracene substrate (e.g. the PEG linker), which restricted

the molecule’s orientation in the binding pocket. Important structural features of both

substrates include: the diene must contain three linearly annellated rings, the dienophile

must be a five-membered maleimide ring with a hydrophobic tail, and both substrates

must be arranged in a stacked, coplanar manner.293 These results present one of the most

rigorous characterizations of ribozyme specificity on a non-nucleotide substrate.

One decade later, a Diels-Alderase protein enzyme was developed by the Baker Lab.294

This enzyme was created de novo using computational design and site-directed mutage-

nesis to catalyze the reaction between 4-carboxybenzyl trans-1,3-butadiene-1-carbamate

and N,N-dimethylacrylamide. Like the ribozyme, this protein enzyme demonstrated

a high level of product stereoselectivity (>97%). The best Diels-Alderase enzymes pos-

sessed higher catalytic activity than the Diels-Alderase ribozymes, but were still markedly

slower than natural enzymes.

Although these catalysts were discovered through different means (in vitro selection

vs. computational design), both were created in a laboratory setting independent of
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Diene Dienophile
DA Enzyme I J I J

RNA 0.620 (0.723) 0.536 (0.765) 0.732 (0.824) 0.665 (0.828)
Protein - - 0.723 0.765

Table 3.3: Promiscuity indices for RNA and protein Diels-Alderase enzymes.
Unweighted (I) and weighted (J) promiscuity indices for RNA (ribozyme) and protein
Diels-Alderase (DA) enzymes. Ribozyme promiscuity indices calculated from kcat
(M−1min−1) and kcat/kuncat (in parentheses) values reported for diene and dienophile
substrates.293 Protein enzyme promiscuity indices calculated from estimated rates
(hr−1) with dienophile substrates.294

natural evolutionary influences, and therefore they are an interesting test comparison to

understand the promiscuity of de novo functions. While the reactions catalyzed by these

molecules use different substrates, the promiscuity indices can be compared between

them (Table 3.3). Note that different values are calculated for the diene and dienophile

when possible, and that I and J varies depending on whether they are calculated from

kcat or from kcat/kuncat (catalytic enhancement). Despite these differences, in general, the

promiscuity indices are not very different; all values for the dienophiles lie in the range

of 0.66-0.83, with the values for the protein enzyme lying in the middle of this range.

Therefore, comparing these two de novo catalysts, it does not appear that the ribozyme

is more promiscuous than the protein enzyme.

It is of practical interest to note that the unweighted (I) and weighted (J) promiscuity

indices (Tables 3.1 - 3.3) are often not very different from one another, as the difference

between these values ranges from 0 to 0.1. This may reflect ruggedness in the promiscuity

profile over the chemical space of the substrates. The motivation for creating a weighted

index was to account for the expectation that chemically similar substrates would have

similar activity. While this must be true to some extent, over the substrates that were

tested and reported in these examples, the additional accounting did not alter the overall

calculation by much.
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3.6 Discussion

Ribozymes identified by in vitro selection or evolution represent an ideal model system

for studying true promiscuity, because the selective pressures on these ribozymes are

controlled by the experimenter and their entire evolutionary history is available for study.

In addition, the promiscuity of ribozymes in particular is a fascinating question relating

to the origin of living systems. An attractive, but untested, hypothesis is that the

earliest ribozymes emerging from the prebiotic milieu of random polymers would be

highly promiscuous, presenting a kernel of activity across many functions that could be

optimized by evolution individually (e.g., after duplication events). Although a rigorous

test of this hypothesis is currently lacking, we may consider how current knowledge

informs this hypothesis of promiscuous ribozymes.

What are the likely properties of a ribozyme selected de novo, i.e., a primordial

ribozyme? It is clear that the activity is likely to be low initially, simply because there

are more sequences of low activity compared to high activity (i.e., the frequency of

sequences is a decreasing function of activity),60 leaving room for optimization of activity

by natural selection. What about promiscuity? While it might seem intuitive that simple,

low activity ribozymes would have high promiscuity, solid evidence for this so far in the

literature is lacking. As discussed above, a de novo peptide synthase ribozyme is less

promiscuous than its highly evolved counterpart (the ribosome). While there are some

examples of ribozymes where in vitro evolution resulted in both improved activity and

specificity (discussed above), it is not clear that there would be a positive correlation

between activity and specificity in general. Indeed at least one mechanism (discussed

in Section 3.3.2) has the opposite effect, causing a negative correlation, i.e., a tradeoff,

between activity and specificity.

The intuition that there should be a positive correlation between activity and speci-

66



Promiscuous Ribozymes and Their Proposed Role in Prebiotic Evolution Chapter 3

ficity is based on the general idea that increased molecular interactions give both increased

activity and increased specificity. This seems to be reasonable, but in one rigorous study

of RNA aptamers, activity was found to be uncorrelated to specificity.295 It is even less

clear that increased interactions should increase specificity in ribozymes, particularly

cis-acting ribozymes, since the entire reaction pathway would be stabilized. How the

ground state, transition state, and product would be affected in relative terms is not

clear. Therefore it should not be assumed that the earliest emerging ribozymes were

particularly promiscuous. Empirical data is required to resolve the relationship between

activity and specificity of ribozymes.

The reason why the hypothesis of promiscuous primordial ribozymes is attractive,

despite the current lack of evidence to support it, is that it solves an important problem

in prebiotic evolution. If the first ribozyme to emerge by chance possesses the ability

to catalyze many reactions, albeit at low activity, this ribozyme could serve as the an-

cestral catalyst to a suite of different reactions, rapidly forming a metabolic network of

ribozymes. In evolutionary terms, a network of ribozymes might then arise from exapta-

tion (or pre-adaptation) of a small number of ancestral ribozymes. However, it may be

that promiscuity, rather than being an automatic property of a low-activity primordial

ribozyme, should be considered as an evolvable or fortuitous trait itself, possibly uncor-

related to activity. In this case, the selective pressures on the RNA world would play an

important role in shaping ribozyme evolvability.
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Chapter 4

Materials and Methods

4.1 Permissions and Attributions

This chapter was the result of collaboration with Abe Pressman, Ziwei Liu, Celia

Blanco, Ulrich F. Müller, Gerald F. Joyce, Robert Pascal, Yuning Shen, and Irene A.

Chen. Portions of this chapter have previously appeared in the Journal of the American

Chemical Society.200 It is reproduced here with the permission of ACS, to which further

permissions related to the material excerpted should be directed: https://pubs.acs.

org/doi/10.1021/jacs.8b13298.

4.2 Overview

This chapter describes materials and methods used to obtain the results presented in

Chapters 5 and 6.
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Table 4.1: 1H NMR spectra for synthesized com-

pounds.

Compound 1H NMR Spectrum

N -tert-Butoxycarbonyl-

O-methyl-tyrosine methyl

ester (Boc-Tyr(Me)-OMe)

1H NMR (400 MHz, DMSO-d6) δ 7.14 (d, J = 8.5 Hz,

2H), 6.84 (d, J = 8.6 Hz, 2H), 4.11 (ddd, J = 10.0, 8.1,

5.3 Hz, 1H), 3.72 (s, 3H), 3.61 (s, 3H), 2.99 – 2.72 (m,

2H), 1.33 (s, 9H)

Biotinylated O-Methyl-

Tyrosine methyl ester

(Biotin-Tyr(Me)-OMe)

1H NMR (400 MHz, CDCl3) δ 7.14 (d, J = 8.1 Hz, 2H),

6.88 (d, J = 7.9 Hz, 2H), 4.23 (t, J = 6.4 Hz, 1H), 3.80

(s, 3H), 3.78 (s, 3H), 3.24 (qd, J = 14.6, 6.2 Hz, 2H)

Biotinylated O-Methyl-

Tyrosine (Biotin-Tyr(Me)-

OH)

1H NMR (300 MHz, DMSO-d6) δ 8.05 (d, J = 8.1 Hz,

1H), 7.13 (d, J = 8.5 Hz, 2H), 6.83 (d, J = 8.5 Hz, 2H),

6.37 (d, J = 9.9 Hz, 2H), 4.45 – 4.24 (m, 2H), 4.19 –

4.06 (m, 1H), 3.71 (s, 3H), 3.09 – 2.90 (m, 2H), 2.80

(ddd, J = 20.9, 13.2, 7.3 Hz, 2H), 2.05 (t, J = 7.1 Hz,

2H), 1.69 – 1.08 (m, 6H)
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Biotinyl-tryptophan methyl

ester

1H NMR (600 MHz, DMSO-d6) δ 10.82 (s, 1H), 8.19 (d,

J = 7.6 Hz, 1H), 7.47 (d, J = 7.9 Hz, 1H), 7.31 (d, J

= 8.1 Hz, 1H), 7.11 (d, J = 2.3 Hz, 1H), 7.04 (dd, J =

11.1, 4.0 Hz, 1H), 6.96 (t, J = 7.5 Hz, 1H), 6.35 (s, 1H),

6.32 (s, 1H), 4.48 (dd, J = 13.8, 8.2 Hz, 1H), 4.30 – 4.25

(m, 1H), 4.09 – 4.04 (m, 1H), 3.56 (s, 3H), 3.11 (dd, J

= 14.6, 5.5 Hz, 1H), 3.01 (m, 2H), 2.80 (dd, J = 12.4,

5.1 Hz, 1H), 2.55 (d, J = 12.4 Hz, 1H), 2.12 – 2.00 (m,

2H), 1.60 – 1.19 (m, 6H).

Biotinyl-tryptophan 1H NMR (600 MHz, DMSO-d6) δ = 12.53 (s, 1H), 10.79

(s, 1H), 8.03 (d, J = 7.9 Hz, 1H), 7.50 (d, J = 7.8 Hz,

1H), 7.31 (d, J = 8.1 Hz, 1H), 7.10 (d, J = 2.2 Hz, 1H),

7.04 (t, J = 7.5 Hz, 1H), 6.96 (t, J = 7.1 Hz, 1H), 6.35

(s, 1H), 6.32 (s, 1H), 4.45 (td, J = 8.5, 5.1 Hz, 1H), 4.30

– 4.25 (m, 1H), 4.08 – 4.03 (m, 1H), 3.13 (dd, J = 14.6,

5.0 Hz, 1H), 3.03 – 2.93 (m, 2H), 2.79 (dd, J = 12.4,

5.1 Hz, 1H), 2.55 (d, J = 12.4 Hz, 1H), 2.11 – 1.99 (m,

2H), 1.60 – 1.13 (m, 6H).
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Biotinyl-tryptophan oxa-

zolone (BWO)

1H NMR (600 MHz, DMSO-d6) δ = 10.86 (s, 1H), 7.50

(d, J = 7.9 Hz, 1H), 7.29 (dd, J = 8.1, 2.6 Hz, 1H), 7.06

(t, J = 2.6 Hz, 1H), 7.03 (dd, J = 11.1, 4.0 Hz, 1H),

6.94 (dd, J = 11.0, 3.9 Hz, 1H), 6.37 (s, 1H), 6.33 (s,

1H), 4.67 (d, J = 4.9 Hz, 1H), 4.33 – 4.24 (m, 1H), 4.09

– 4.04 (m, 1H), 3.23 (dd, J = 14.5, 4.6 Hz, 1H), 3.13

(ddd, J = 14.8, 6.0, 1.9 Hz, 1H), 2.96 (ddd, J = 17.9,

11.6, 6.6 Hz, 1H), 2.81 (dt, J = 12.4, 4.9 Hz, 1H), 2.56

(d, J = 12.4 Hz, 1H), 2.31 – 2.18 (m, 2H), 1.56 – 1.07

(m, 6H).

Biotinyl-phenylalanine

methyl ester

1H NMR (600 MHz, DMSO-d6) δ = 8.24 (d, J = 7.8

Hz, 1H), 7.30 – 7.14 (m, 5H), 6.37 (s, 1H), 6.33 (s, 1H),

4.44 (td, J = 9.3, 5.5 Hz, 1H), 4.32 – 4.25 (m, 1H), 4.13

– 4.04 (m, 1H), 3.57 (d, J = 8.5 Hz, 3H), 3.08 – 2.96

(m, 2H), 2.85 (dd, J = 13.7, 9.7 Hz, 1H), 2.81 (dd, J =

12.4, 5.1 Hz, 1H), 2.56 (d, J = 12.4 Hz, 1H), 2.09 – 1.98

(m, 2H), 1.60 – 1.12 (m, 6H).

Biotinyl-phenylalanine 1H NMR (600 MHz, DMSO-d6) δ = 12.57 (s, 1H), 8.03

(d, J = 8.1 Hz, 1H), 7.25 – 7.09 (m, 5H), 6.32 (s, 1H),

6.28 (s, 1H), 4.39 – 4.32 (m, 1H), 4.26 – 4.22 (m, 1H),

4.06 – 4.01 (m, 1H), 3.03 – 2.94 (m, 2H), 2.81 – 2.73 (m,

2H), 2.52 (d, J = 12.4 Hz, 1H), 2.03 – 1.92 (m, 2H),

1.57 – 1.07 (m, 6H).
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Biotinyl-phenylalanine oxa-

zolone (BFO)

1H NMR (600 MHz, DMSO-d6) δ = 7.31 – 7.12 (m, 5H),

6.41 (s, 1H), 6.33 (s, 1H), 4.72 – 4.66 (m, 1H), 4.32 –

4.26 (m, 1H), 4.14 – 4.07 (m, 1H), 3.12 (dd, J = 14.0,

5.1 Hz, 1H), 3.07 – 3.02 (m, 1H), 2.96 (dd, J = 14.0, 6.8

Hz, 1H), 2.81 (ddd, J = 12.4, 5.1, 2.2 Hz, 1H), 2.57 (d,

J = 12.4 Hz, 1H), 2.39 – 2.25 (m, 2H), 1.62 – 1.16 (m,

6H).

Biotinyl-leucine methyl es-

ter

1H NMR (600 MHz, DMSO-d6) δ = 8.13 (d, J = 7.7 Hz,

1H), 6.37 (s, 1H), 6.33 (s, 1H), 4.31 – 4.27 (m, 1H), 4.26

– 4.21 (m, 1H), 4.13 – 4.08 (m, 1H), 3.59 (s, 3H), 3.10 –

3.03 (m, 1H), 2.80 (dd, J = 12.4, 5.1 Hz, 1H), 2.56 (d,

J = 12.4 Hz, 1H), 2.10 (t, J = 7.3 Hz, 2H), 1.67 – 1.19

(m, 9H), 0.84 (dd, J = 32.3, 6.6 Hz, 6H).

Biotinyl-leucine 1H NMR (600 MHz, DMSO-d6) δ = 12.37 (s, 1H), 7.94

(d, J = 8.0 Hz, 1H), 6.32 (s, 1H), 6.28 (s, 1H), 4.26 –

4.21 (m, 1H), 4.14 (dd, J = 14.0, 9.0 Hz, 1H), 4.06 (d, J

= 6.0 Hz, 1H), 3.02 (t, J = 9.3 Hz, 1H), 2.76 (dd, J =

12.4, 5.1 Hz, 1H), 2.51 (d, J = 12.4 Hz, 1H), 2.05 (t, J

= 7.2 Hz, 2H), 1.62 – 1.21 (m, 9H), 0.80 (dd, J = 32.1,

6.5 Hz, 6H).
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Biotinyl-leucine oxazolone

(BLO)

1H NMR (600 MHz, DMSO-d6) δ = 6.41 (s, 1H), 6.33

(s, 1H), 4.35 (dd, J = 8.1, 6.5 Hz, 1H), 4.31 – 4.26 (m,

1H), 4.14 – 4.09 (m, 1H), 3.12 – 3.06 (m, 1H), 2.81 (dd,

J = 12.4, 5.1 Hz, 1H), 2.56 (d, J = 12.4 Hz, 1H), 2.44

(tt, J = 10.8, 5.4 Hz, 2H), 1.86 – 1.33 (m, 9H), 0.89 (dd,

J = 14.2, 6.7 Hz, 6H).

Biotinyl-isoleucine methyl

ester

1H NMR (600 MHz, DMSO-d6) δ = 8.00 (d, J = 8.0

Hz, 1H), 6.32 (s, 1H), 6.27 (s, 1H), 4.26 – 4.20 (m, 1H),

4.13 (t, J = 7.4 Hz, 1H), 4.06 (d, J = 2.6 Hz, 1H), 3.54

(s, 3H), 3.02 (dd, J = 6.4, 3.9 Hz, 1H), 2.75 (dd, J =

12.4, 5.0 Hz, 1H), 2.50 (d, J = 12.4 Hz, 1H), 2.15 – 1.99

(m, 2H), 1.73 – 1.05 (m, 9H), 0.76 (dd, J = 7.0, 5.3 Hz,

6H).

Biotinyl-isoleucine 1H NMR (600 MHz, DMSO-d6) δ = 12.46 (s, 1H), 7.90

(d, J = 8.4 Hz, 1H), 6.37 (s, 1H), 6.32 (s, 1H), 4.31 –

4.26 (m, 1H), 4.15 (dd, J = 8.3, 6.3 Hz, 1H), 4.13 – 4.08

(m, 1H), 3.07 (dt, J = 8.6, 6.1 Hz, 1H), 2.80 (dd, J =

12.4, 5.1 Hz, 1H), 2.56 (d, J = 12.4 Hz, 1H), 2.19 – 2.07

(m, 2H), 1.78 – 1.11 (m, 9H), 0.86 – 0.79 (m, 6H).

Biotinyl-isoleucine oxa-

zolone (BIO)

1H NMR (600 MHz, DMSO-d6) δ = 6.41 (s, 1H), 6.33

(s, 1H), 4.34 (ddt, J = 32.9, 4.1, 1.9 Hz, 1H), 4.30 – 4.26

(m, 1H), 4.14 – 4.10 (m, 1H), 3.13 – 3.05 (m, 1H), 2.81

(dd, J = 12.4, 5.1 Hz, 1H), 2.56 (d, J = 12.4 Hz, 1H),

2.46 (dd, J = 7.3, 1.9 Hz, 2H), 1.92 – 1.14 (m, 9H), 0.94

– 0.69 (m, 6H).
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Biotinyl-valine methyl ester 1H NMR (600 MHz, DMSO-d6) δ = 7.99 (d, J = 8.0 Hz,

1H), 6.33 (s, 1H), 6.28 (s, 1H), 4.27 – 4.21 (m, 1H), 4.12

– 4.02 (m, 2H), 3.56 (s, 3H), 3.07 – 2.99 (m, 1H), 2.76

(dd, J = 12.3, 5.0 Hz, 1H), 2.51 (d, J = 12.5 Hz, 1H),

2.15 – 2.04 (m, 2H), 1.94 (dt, J = 13.1, 6.5 Hz, 1H),

1.59 – 1.18 (m, 6H), 0.80 (dd, J = 12.1, 6.8 Hz, 6H).

Biotinyl-valine 1H NMR (600 MHz, DMSO-d6) δ = 12.47 (s, 1H), 7.88

(d, J = 8.5 Hz, 1H), 6.37 (s, 1H), 6.32 (s, 1H), 4.31 –

4.25 (m, 1H), 4.11 (m, 2H), 3.07 (dt, J = 8.6, 6.0 Hz,

1H), 2.80 (dd, J = 12.4, 5.1 Hz, 1H), 2.55 (d, J = 12.4

Hz, 1H), 2.21 – 2.08 (m, 2H), 2.01 (dq, J = 13.4, 6.7

Hz, 1H), 1.66 – 1.22 (m, 6H), 0.85 (dd, J = 6.8, 1.9 Hz,

6H).

Biotinyl-valine oxazolone

(BVO)

1H NMR (600 MHz, DMSO-d6) δ = 6.41 (s, 1H), 6.33

(s, 1H), 4.31 – 4.24 (m, 2H), 4.14 – 4.09 (m, 1H), 3.13 –

3.05 (m, 1H), 2.81 (dd, J = 12.4, 5.1 Hz, 1H), 2.56 (d,

J = 12.4 Hz, 1H), 2.46 (dd, J = 8.9, 6.9 Hz, 2H), 2.15 –

2.06 (m, 1H), 1.67 – 1.32 (m, 6H), 1.00 – 0.79 (m, 6H).

Biotinyl-methionine methyl

ester

1H NMR (600 MHz, DMSO-d6) δ = 8.18 (d, J = 7.5 Hz,

1H), 6.37 (s, 1H), 6.33 (s, 1H), 4.37 – 4.31 (m, 1H), 4.31

– 4.26 (m, 1H), 4.15 – 4.08 (m, 1H), 3.60 (s, 3H), 3.10 –

3.04 (m, 1H), 2.80 (dd, J = 12.4, 5.1 Hz, 1H), 2.56 (d,

J = 12.4 Hz, 1H), 2.53 – 2.38 (m, 2H), 2.10 (t, J = 7.4

Hz, 2H), 2.02 (s, 3H), 1.95 – 1.78 (m, 2H), 1.66 – 1.20

(m, 6H).
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Biotinyl-methionine 1H NMR (600 MHz, DMSO-d6) δ = 12.53 (s, 1H), 8.05

(d, J = 7.8 Hz, 1H), 6.37 (s, 1H), 6.33 (s, 1H), 4.32 –

4.24 (m, 2H), 4.14 – 4.08 (m, 1H), 3.12 – 3.03 (m, 1H),

2.80 (dd, J = 12.4, 5.1 Hz, 1H), 2.56 (d, J = 12.4 Hz,

1H), 2.51 – 2.38 (m, 2H), 2.10 (t, J = 7.3 Hz, 2H), 2.02

(s, 3H), 1.97 – 1.75 (m, 2H), 1.67 – 1.21 (m, 6H).

Biotinyl-methionine oxa-

zolone (BMO)

1H NMR (600 MHz, DMSO-d6) δ = 6.41 (s, 1H), 6.33

(s, 1H), 4.45 (td, J = 5.7, 2.0 Hz, 1H), 4.29 (dd, J =

7.6, 5.2 Hz, 1H), 4.15 – 4.09 (m, 1H), 3.09 (dd, J = 12.6,

6.4 Hz, 1H), 2.81 (dd, J = 12.4, 5.1 Hz, 1H), 2.59 – 2.38

(m, 5H), 2.08 – 1.83 (m, 5H), 1.63 – 1.37 (m, 6H).

4.3 Synthesis of Biotinyl-Tyr(Me)-Oxazolone (BYO)

4.3.1 General Synthesis Procedures

Reagents and solvents were obtained from Fluka, Sigma-Aldrich or Bachem, and were

used without further purification. NMR spectra in either CDCl3, DMSO-d6 or D2O solu-

tion were recorded on a Bruker DPX 300 spectrometer (300 MHz) or on a Bruker Avance

400 spectrometer (400 MHz); chemical shifts δH are reported in ppm with reference to

the solvent resonance (CDCl3: δH = 7.26 ppm; DMSO: δH = 2.50 ppm; H2O: δH = 4.79

ppm); coupling constants J are reported in Hz. UHPLC analyses were carried out on

a Thermo Scientific Dionex UltiMate 3000 Standard system including an autosampler

unit, a thermostated column compartment and a photodiode array detector, using UV

absorbance detection at λ = 273 nm. HPLC/ESI-MS analyses were carried out on a
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Waters UPLC Acquity H-Class system including a photodiode array detector (acquisi-

tion in the 200–400 nm range), coupled to a Waters Synapt G2-S mass spectrometer,

with capillary and cone voltage of 30 kV and 30 V respectively, source and desolvation

temperature of 140 ◦C and 450 ◦C respectively. ESI+ and ESI– refer to electrospray

ionisation in positive and negative mode respectively. HRMS spectra were recorded on

the same spectrometer, using the same source settings as above.

4.3.2 Preparation of N -tert-Butoxycarbonyl-O-methyl-tyrosine

methyl ester (Boc-Tyr(Me)-OMe)

Synthesis of Boc-Tyr(Me)-OMe was carried out according to a published proce-

dure.296,297 A solution of Boc-Tyr-OH (7.0 mmol, 2.0 g; Bachem) in dimethylformamide

(DMF, 20 mL) was cooled using an ice bath and treated with freshly ground KOH (7.7

mmol, 0.43 g). A cooled solution of CH3I (7.7 mmol, 0.49 mL) in DMF (5 mL) was

added dropwise over 1 min. The mixture was stirred at room temperature for 30 min,

then cooled using an ice bath, and additional KOH (7.7 mmol, 0.43 g) and a cooled solu-

tion of CH3I (7.7 mmol, 0.49 mL) in DMF (5 mL) were added dropwise over 1 min. The

mixture was stirred for 3 h at room temperature, poured onto ice (40 g), and extracted

with ethyl acetate (3 × 20 mL). The organic layers were washed with water (3 × 13 mL),

brine (2 × 13 mL), and dried over Na2SO4. The solvent was removed under reduced

pressure to afford a colorless oily residue. Then the oil was purified by preparative silica

gel chromatography (mobile phase: ethyl acetate - hexane, 3:7 v/v) (yield: 1.4 g, 63.6%).

NMR spectrum on Table 4.1.
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4.3.3 Preparation of Biotinylated O-Methyl-Tyrosine (Biotin-

Tyr(Me)-OH)

This compound was prepared in three steps. In the first stage, Boc-Tyr(Me)-OMe

(1.0 g) was treated by trifluoroacetic acid (TFA) / water solution (9:1 v/v, 2 ml) for 30

min. TFA was removed by evaporation in vacuo, the residue was poured into diethyl

ether, the TFA salt of H-Tyr(Me)-OMe was collected by filtration as a white precipitate

(yield: 0.88 g, 84%). NMR spectrum on Table 4.1.

In the second stage, biotin (345 mg, 1.41 mmol), was activated with 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC, 293 mg, 1.55 mmol) and hydroxybenzotriazole

monohydrate (HOBt, 242 mg, 1.55 mmol) in a mixture of CH2Cl2 (7 ml) and DMF (7 ml).

The mixture was stirred for 5 h. Then the TFA salt of H-Tyr(Me)-OMe (500 mg, 1.55

mmol) was added with N -ethyl-N,N -diisopropylamine (DIEA, 531 µL, 3 mmol) and the

mixture stirred overnight. DMF was removed under reduced pressure, and the residue

redissolved in ethyl acetate (100 ml), washed with water (30 ml), 1M KHSO4 (10 ml),

NaHCO3 (saturated solution, 10 ml),and brine (10 ml), consecutively. The solution was

dried over anhydrous Na2SO4 and concentrated under reduced pressure. Residual DMF

was removed by dissolving the residue in ethyl acetate (20 ml) and precipitation with

hexane (5 ml). The solid was recovered by filtration, washed with hexane and dried in

vacuo (300 mg, 46%).

The methyl ester biotinyl-Tyr(Me)-OMe (270 mg, 0.62 mmol) was then dissolved in

iPrOH:H2O (7:3 v/v) (minimum volume), treated with 1N NaOH (0.93 ml). The mixture

was stirred at room temperature overnight. The solvent was removed under reduced

pressure and the product was precipitated upon addition of water and acidification with

1M HCl. The free acid biotinyl-Tyr(Me)-OH was recovered by filtration as a white solid,

washed with water and then dried under reduced pressure (yield: 226 mg, 86%). NMR
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spectrum on Table 4.1. HRMS (ESI+): m/z calcd for C20H28N3O5S [M + H]+ 422.1750;

found, 422.1747.

4.3.4 Preparation of Biotinyl-Tyr(Me)-Oxazolone (BYO)

In a typical experiment, biotinyl-Tyr(Me)-OH (42 mg, 0.1 mmol) was mixed with

CH2Cl2 (3 ml) and then EDC (21.9 mg, 0.12 mmol) was added. After stirring by magnetic

stirrer for 1 h, all the starting material was dissolved. Additional CH2Cl2 (3 ml) was

added, then the mixture was washed by H2O (5 ml) twice and saturated brine (5 ml)

once. The organic layer was dried by anhydrous Na2SO4 and concentrated under reduced

pressure. The residue was dried in vacuum in the presence of P2O5 for 1 h. The product

was stored under -20 ◦C, or kept in a solution of CH3CN under -20 ◦C. HRMS (ESI+):

m/z calcd for C20H26N3O4S [M + H]+ 404.1644; found, 404.1644. See Figures 4.1, 4.2,

and 4.3 for NMR data.

4.4 Synthesis of Additional Biotinyl-Aminoacyl Ox-

azolones (BXO)

4.4.1 General Synthesis Procedures

Reagents and solvents were obtained from Sigma-Aldrich or Fisher Scientific and were

used without purification, unless otherwise noted. All 1H NMR spectra were recorded

using a Varian Unity Inova AS600 (600 MHz) with samples dissolved in DMSO-d6; chem-

ical shifts δH are reported in ppm with reference to residual internal DMSO (δH = 2.50

ppm). Spectra were analyzed using MNova software.
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Figure 4.1: 1H NMR spectra for biotinyl-tyrosine oxazolone (BYO).

Figure 4.2: 2D-COSY NMR spectra for biotinyl-tyrosine oxazolone (BYO).
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Figure 4.3: 13C NMR spectra for biotinyl-tyrosine oxazolone (BYO).
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4.4.2 Preparation of Biotinyl-Amino Acids

Biotinylation reactions were performed in 10 mL anhydrous pyridine under nitrogen.

Typical reactions contained L-amino acid methyl ester hydrochloride (1 mmol), biotin (1

mmol), N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC, 2 mmol),

and 4-(dimethylamino)pyridine (0.1 mmol). The mixture was allowed to react at room

temperature with stirring overnight, after which the solvent was evaporated under re-

duced pressure. The residue was then dissolved in dichloromethane (DCM) and washed

with equal volumes of distilled water, saturated sodium bisulfate solution (twice), and

saturated sodium bicarbonate solution (twice). The solution was dried with sodium sul-

fate, filtered, and the solvent was evaporated with reduced pressure to yield a clear,

yellow solid (1H NMR chemical shifts reported in Table 4.1).

The recovered compound was dissolved by sonication in iPrOH:H2O (2:1 v/v) (15

mL), to which 1 mL of 3M NaOH was added. This solution was stirred overnight at room

temperature, after which the isopropyl alcohol was evaporated under reduced pressure

and the product was precipitated from the remaining solution by the addition of 1M HCl

to produce a white solid. This compound was recovered by filtration, washed with water,

and dried in vacuo (Table 4.1).

4.4.3 Preparation of Biotinyl-Aminoacyl Oxazolones

Oxazolone formation was performed by reacting biotinyl-amino acids (0.1 mmol) with

EDC (0.12 mmol) in anhydrous DCM and stirred at 4 ◦C overnight. The organic phase

was then washed with distilled water (twice), saturated sodium bicarbonate solution, and

saturated sodium chloride solution, and dried with sodium sulfate. The solution was then

filtered and the solvent was evaporated under reduced pressure to yield a solid product,

which was stored at -20 ◦C (Figures 4.4 - 4.9 and Table 4.1). NMR characterization was
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Figure 4.4: 1H NMR spectra for biotinyl-tryptophan oxazolone (BWO).
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Figure 4.5: 1H NMR spectra for biotinyl-phenylalanine oxazolone (BFO).
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Figure 4.6: 1H NMR spectra for biotinyl-leucine oxazolone (BLO).
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Figure 4.7: 1H NMR spectra for biotinyl-isoleucine oxazolone (BIO).
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Figure 4.8: 1H NMR spectra for biotinyl-valine oxazolone (BVO).
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Figure 4.9: 1H NMR spectra for biotinyl-methionine oxazolone (BMO).
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Compound [biotin] (mM) σ

BWO 9.57 0.98
BFO 10.37 1.88
BLO 14.35 0.42
BIO 13.49 1.34
BVO 14.00 2.13
BMO 12.56 1.51

Table 4.2: Biotin quantification of BXO solutions. Average measured biotin
concentration ([biotin]) and standard deviation (σ) of prepared BXO solutions (where
X = W (Trp), F (Phe), L (Leu), I (Ile), V (Val), or M (Met)). Expected concentrations
were 25 mM.

performed as described above.

Substrate solutions were prepared by weighing Biotinyl-Aminoacyl-Oxazolone (BXO,

where X = W (Trp), F (Phe), L (Leu), I (Ile), V (Val), or M (Met)) and dissolving

in acetonitrile with sonication to a final concentration of 25 mM. Fresh solutions were

prepared daily for each set of experiments. As a secondary means of verifying BXO

concentrations in prepared solutions, a HABA biotin quantification kit (AnaSpec) was

used to measure the biotin concentrations of each solution. Average measured biotin

concentration and standard deviation of triplicates are shown in Table 4.2 (expected

BXO concentration for all samples is 25 mM). While biotin quantitation measurements

indicate systematically lower BXO concentrations than by weight by a factor of ∼2, BXO

concentrations were similar across different compounds. The low-activity background

peaks also provide internal normalization to account for differences between compounds.

4.5 Aminoacylation Ribozyme Selections

Chemical synthesis (IDT, PAGE purification) was used to obtain a library of DNA

molecules having the sequence 5’-GATAATACGACTCACTATA-

GGGAATGGATCCACATCTACGAATTC-N21-TTCACTGCAGACTTGACGAAGCTG-
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3’, where N21 denotes 21 consecutive random positions and nucleotides upstream of the

transcription start site are underlined. Two replicates of the selection were performed

(RS1 and RS2), beginning with 9.1 (coverage ≈ 1.3-fold) and 145 pmol (coverage ≈ 20-

fold) of DNA for RS1 and RS2, respectively. RNA was transcribed using HiScribe T7

polymerase (New England Biolabs) and purified by denaturing polyacrylamide gel elec-

trophoresis (PAGE). In the first round of selection, 3.4x1014 or 1.9x1015 RNA sequences

(RS1 and RS2, respectively) were incubated with 50 µM BYO in the aminoacylation

selection buffer (100 mM HEPES (pH 6.95), 100 mM NaCl, 100 mM KCl, 5 mM MgCl2,

5 mM CaCl2) for 90 min, at an RNA concentration of 1.4 - 3.2 µM. The reaction was

stopped by removing unreacted substrate using Bio-Spin P-30 Tris desalting columns

(Bio-Rad). Streptavidin MagneSphere paramagnetic beads (Promega) were used to iso-

late reacted sequences at a volume ratio of 1:4, which were then eluted with a 5 min

incubation at 65 ◦C in a solution containing 95% formamide and 10 mM EDTA. Se-

quences were prepared for the next round of selection by reverse transcription and PCR

(RT-PCR), with primers complementary to the fixed sequence shown above. Five ad-

ditional rounds of selection were performed using the same procedure, with ∼400 pmol

(∼2x1014 molecules; 2 µM) of RNA in each round. DNA samples from each round were

barcoded and pooled for sequencing by Illumina NextSeq 500 (Biological Nanostructures

Laboratory, California NanoSystems Institute at UCSB).

Selections for self-aminoacylating ribozymes with BFO and BLO were conducted

as described for BYO aminoacylation.200 Libraries were obtained from IDT with the se-

quence 5’-GATAATACGACTCACTATAGGGAATGGATCCACATCTACGAATTC-N21-

TTCACTGCAGACTTGACGAAGCTG-3’ (T7 promoter sequence underlined), where N

is an equimolar mixture of A, G, C, and T. For the first round of selection, 145 pmol

of library DNA was transcribed using HiScribe T7 polymerase (New England Biolabs)

and RNA was purified by gel electrophoresis. For the first round of selection, reac-
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tions contained 3.2 µM RNA and 50 µM BFO or BLO in 1 mL of selection buffer with

0.2% acetonitrile. Reactions were incubated at room temperature with rotation for 90

minutes and stopped by desalting using Micro Bio-Spin Columns with Bio-Gel P-30 (Bio-

Rad Laboratories). Reacted sequences were isolated by addition of one sample volume

of Streptavidin MagneSphere paramagnetic beads (Promega) per sample. Beads were

washed bead buffer (PBS + 0.01% Triton X-100), 20 mM NaOH, and once more with

bead buffer, then eluted by heating to 65 ◦C for 10 minutes in 95% formamide with 10

mM EDTA. Samples were reverse transcribed using SuperScript III Reverse Transcrip-

tase (Thermo Fisher Scientific) and amplified with Phusion DNA Polymerase (Thermo

Fisher Scientific). For subsequent rounds of selection, 7.2 pmol (round 2) or 3.6 pmol

(rounds 3-5) of recovered DNA was transcribed and RNA was used at 2.2 µM in 200

µL reactions. Selections were performed for five rounds in duplicate. Samples were pre-

pared for sequencing using the Nextera XT DNA Library Preparation Kit (Illumina),

pooled, and sequenced by Illumina NextSeq 500 (Biological Nanostructures Laboratory,

California NanoSystems Institute at UCSB)

4.6 Clustering Analyses of Sequences from Selections

Clustering of BYO selection data was performed on the Galaxy platform298 for se-

quences in Rounds 4-6. Multiple families containing the same motif were designated as

1A.1, 1A.2, etc., or 2.1, 2.2, etc. Center sequences were used to assign each family to

a motif. SeqLogo plots299 representing motifs were generated from all sequences iden-

tified among every family grouped into that motif. Sequences are named according to

the convention: S-Motif.family rank-sequence rank, where rank is determined by rela-

tive abundance in Round 6. For example, S-1B.1-a is the top-ranked sequence from the

top-ranked family of Motif 1B.
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Sequences from BFO and BLO selections were clustered into families based on se-

quence similarity, using a custom Python script. The script ClusterBOSS.py uses the

enumerated read output files generated from the EasyDIVER package.300 In general,

first, all sequences were sorted according to their read count values. Then, the most

abundant sequence was chosen as a candidate ’center’ sequence to start a family, as

long as its read count value was at least 10 (cmin = 10). The Levenshtein edit distance

(number of substitutions, insertions, or deletions) from this candidate sequence to every

other sequence in the distribution was computed (no restriction on minimum number of

counts; amin = 1). If the distance was less than a cutoff (dcutoff = 3 mutations from

the center sequence), the sequence was considered to be part of the same family as the

initially chosen center sequence. No restriction was applied to the number of sequences

required to define a family (nmin), which includes the center sequence and any sequences

found to cluster with it. Once assigned to a family, sequences were not allowed to be

clustered into another family. To find the rest of the family clusters, the same procedure

was followed until all sequences had been explored.

4.7 Kinetic Sequencing (k-Seq) Experiments and Anal-

yses

4.7.1 Kinetic Sequencing (k-Seq) of BYO Selection Pool

2 µmoles of RNA from Round 5 (RS1) were incubated with BYO substrate at various

concentrations (2, 10, 50, and 250 µM), under buffer conditions and reaction time other-

wise identical to those during selection. Streptavidin beads were added at a volume ratio

of 1:1, and bound RNA was eluted as described above. To enable absolute quantitation

of the products, 4, 12, 17, and 42 fmol, respectively, of a control RNA sequence were
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spiked into the RNA eluted from each concentration point. The spike-in control sequence

was transcribed by T7 RNA polymerase from a DNA oligonucleotide (IDT) having the

sequence 5’-GATAATACGACTCACTATAGGGAATGGATCCACATCTACGAATTC-

AAAAACAAAAACAAAAACAAATTCACTGCAGACTTGACGAAGCTG-3’ (promoter

underlined). The k-Seq reactions were performed in triplicate, barcoded, and sequenced

as described above.

Every unique sequence detected in Round 5 was tracked across all 12 k-Seq samples.

The absolute concentration of each sequence was calculated as (ns/nspike)[spike], where

ns and nspike are the number of reads found for sequence s or the spike-in sequence,

respectively, and [spike] is the known concentration of the spike-in sequence in the sample.

Concentrations were averaged across triplicates and fit to the first-order rate equation

Fs([BY O]) = As(1 − e(−ksα[BY O]t)), where Fs is the measured fraction of sequence s

reacted, As is the maximum reacted fraction, t is the incubation time of 90 min, and ks

is the effective rate constant of the reaction catalyzed by sequence s. α is the coefficient

accounting for the hydrolysis of substrate BXO during the reaction time (t=90 min),

and a fixed value (0.479, see below).200 To obtain an estimate of error, each set of 12

observations was randomly grouped into three series of four concentrations, ks and As

were fit individually for each set, and the standard deviation among the three series was

calculated.

For sequences of low activity, the parameter As could not be accurately estimated over

the concentrations tested, leading to a fitting artifact with As = 1 and underestimation

of ks. However, while As and ks are poorly estimated individually, the combined chemical

activity parameter ksAs is estimated more accurately. Thus ksAs was used to compare

catalytic activity across the broad range of observed activity. The ratio of ksAs to k0A0

(the uncatalyzed activity, see below) is defined as the catalytic enhancement of sequence

s (rs).
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4.7.2 Kinetic Sequencing (k-Seq) of Variable Pools

DNA libraries for kinetic sequencing experiments were designed as described.301 Li-

braries were obtained from Integrated DNA Technologies (IDT) or Keck Biotechnology

Laboratory with the sequence

5’-GATAATACGACTCACTATAGGGAATGGATCCACATCTACGAATTC-[central vari-

able region, length 21]-TTCACTGCAGACTTGACGAAGCTG-3’ (nucleotides upstream

of the transcription start site are underlined). The variable region was designed to con-

tain one of the five wild-type sequences of interest (Table 4.3) with variability at each

position corresponding to 91% wild-type base and 3% each substitution. RNA was tran-

scribed using HiScribe T7 RNA polymerase (New England Biolabs) and purified by

denaturing polyacrylamide gel electrophoresis (PAGE). Reaction pools were prepared as

an equimolar mixture of each purified RNA pool and quantified by Qubit 3 Fluorometer

(Invitrogen).

Family Wild-type sequence for 21-nt selected region

1A.1 CTACTTCAAACAATCGGTCTG
1B.1 CCACACTTCAAGCAATCGGTC
2.1 ATTACCCTGGTCATCGAGTGA
2.2 ATTCACCTAGGTCATCGGGTG
3.1 AAGTTTGCTAATAGTCGCAAG

Table 4.3: Wild-type sequences for ribozyme families used in this study.

Kinetic sequencing experiments were performed as previously described.200,301 Reac-

tions were performed in 50 µL aqueous solutions containing selection buffer (100 mM

HEPES, 100 mM NaCl, 100 mM KCl, 5 mM MgCl2, 5 mM CaCl2) and 5% acetonitrile

at a pH between 6.9 and 7.0. Reactions contained 0.43 µM RNA and BXO at 1250,

250, 50, 10, or 2 µM. Reactions were incubated at room temperature with rotation for

90 minutes and stopped by desalting using Micro Bio-Spin Columns with Bio-Gel P-

30 (Bio-Rad Laboratories). Reacted sequences were isolated with 100 µL Streptavidin
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MagneSphere paramagnetic beads (Promega) per sample. Beads were washed three times

with PBS + 0.01% Triton X-100 and sequences were eluted into 50 µL water by heating

to 70 ◦C for 1 minute. Samples were reverse transcribed using SuperScript III Re-

verse Transcriptase (Thermo Fisher Scientific). Following reverse transcription of k-Seq

samples, qPCR reactions were performed in triplicate for each sample, including input

RNA, using SsoAdvanced Universal SYBR Green Supermix (Bio-Rad Laboratories) with

2 µL of cDNA following the manufacturer’s protocol and containing 500 nM forward and

reverse primers 5’-GATAATACGACTCACTATAGGGAATGGATCCACATCTACGA-3’

and 5’-CAGCTTCGTCAAGTCTGCAGTGAA-3’. Serial dilutions of random library ss-

DNA were prepared in triplicate from 5x10−5 to 5x102 pg/µL alongside each experiment

for generating standard curves.302 Samples were analyzed using Bio-Rad CFX96 Touch

system. The remaining cDNA was amplified by PCR with Phusion DNA Polymerase

(Thermo Fisher Scientific) using the same forward and reverse primers as used for qPCR

above. Samples were adapted for sequencing using the Nextera XT DNA Library Prepa-

ration Kit (Illumina), pooled, and sequenced by Illumina NovaSeqS4 PE150 (Novogene).

4.7.3 Computational Analyses of Variable Pool k-Seq Data

Sequencing reads were processed using trimmomatic SE CROP:90 to facilitate join-

ing,303 and then paired-end reads were joined and unique sequences were enumerated us-

ing EasyDIVER.300 Joining was performed using the following PANDAseq304 flags: -a -l

1 -A pear -C completely miss the point:0. These flags strip primers after assembly rather

than before (-a), requires sequences to have a minimum length of 1 after removing primers

(-l 1), sets the assembly algorithm to PEAR305 (-A pear), and excludes sequences with

mismatches in overlapping paired-end regions (completely miss the point:0). Primer se-

quences were extracted using CTACGAATTC as the forward primer and CTGCAGT-
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GAA as the reverse primer.

k-Seq analyses were performed using developed ‘k-seq’ package.301 Briefly, the ab-

solute quantity (ng) of a sequence in a sample was calculated as the fraction of the

sequence’s read count over the total number of reads in the sample, multiplied by the

mean total RNA (ng) from triplicated qPCR measurements. The input amount (ng) for a

sequence was determined by the median sequence amount across 6 replicates for the unre-

acted pool. The fraction reacted (Fs) was calculated as the reacted amount in the sample

divided by the input amount. Sequences that contain ambiguous nucleotides (’N’), that

were not 21 nucleotides long, or that were more than two substitutions from a center

sequence were excluded in downstream fitting. For each sequence, the fractions reacted

in samples were fit to the pseudo-first order kinetic model FBXO
s = As(1− e(−ksα[BXO]t)),

where FBXO
s is the fraction reacted for sequence s with substrate BXO, As is the maxi-

mum reaction amplitude, ks is the rate constant, and [BXO] is the initial concentration

of BXO. α is the coefficient accounting for the hydrolysis of substrate BXO during the

reaction time (t=90 min), and a fixed value (0.479, measured for BYO200) was used for

all substrates. Note that the effect of α on estimated ks cancels out when calculating the

catalytic enhancement ratio rs. To quantify the estimation uncertainty of kinetic model

parameters (ks, As) for each sequence, samples (fractions reacted) were bootstrapped

(resampling with replacement to the original size) for 1000 times and each bootstrapped

sample set was fit into the model for ks and As. Statistics (e.g., median, standard de-

viation, 2.5-percentile, 97.5 percentile) were calculated from bootstrapped results. The

median product ksAs was used to represent the activity of each sequence.
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4.8 Determination of Aminoacylation Rates by Elec-

trophoretic Mobility Shift Assay

Ten sequences were chosen from among the top 20 peaks for experimental testing.

The corresponding DNA oligonucleotides were obtained from IDT (HPLC-purified) and

RNA was transcribed using T7 RNA polymerase. In addition, a control sample of random

pool sequences was used to determine baseline uncatalyzed activity (k0A0, measured as

a combined parameter). RNA was labeled using a 5’ EndTag Labeling Kit (Vector Lab-

oratories) with Alexa Fluor 488 (Fisher), and purified by phenol-chloroform extraction.

Labeled RNA sequences were then incubated (RNA concentration of 100 nM) with BYO

for 90 min under conditions described as above for k-Seq. Following desalting, samples

were incubated with 2 µM streptavidin for 15 min in 10 mM Tris (pH 7.0), then analyzed

by native PAGE. Gels were scanned and fluorescence was quantified with ImageQuant

software on an Amersham Typhoon 5 Biomolecular Imager. Bands corresponding to the

streptavidin complex and the free RNA band were quantified to calculate the fraction

of each sequence that had undergone aminoacylation. Values determined by k-Seq were

compared to gel shift percentages to determine the average fraction loss l during strep-

tavidin bead pull-down. This value of l was used as a correction factor when calculating

catalytic enhancements using k-Seq data, as k0A0 was measured by gel-shift assay.

For determining the uncatalyzed reaction rate with BFO, aminoacylation reactions

were performed in 50 µL selection buffer with 5% acetonitrile and contained 0.43 µM

random library RNA and BFO at 1250, 250, 50, 10, or 2 µM. Reactions were incubated

at room temperature for 90 minutes with rotation and stopped by desalting using Micro

Bio-Spin Columns with Bio-Gel P-30 (Bio-Rad Laboratories). 95 nmol of streptavidin

(New England Biolabs) was added to each sample, which were then incubated for 15

minutes with rotation at room temperature and run on an 8% polyacrylamide gel. Gel
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shift assays for qualitative observation of reactivity were performed as above with 500

µM BXO per sample unless otherwise noted.

4.9 Degradation Rate of BYO

RNA sequence S-1A.1-a was added to 250 µM BYO that was pre-incubated with

reaction buffer for 5 - 180 min. The initial rate of the reaction was compared to the

reaction kinetics for this sequence determined without pre-incubation of BYO (see above).

The effective concentration of BYO at the start of reaction was calculated assuming a

first-order reaction (i.e., effective [BYO] = (250 µM x initial rate)/(ksAs), where ksAs is

the activity of the ribozyme without pre-incubation of BYO), giving a half-life for BYO

of 36.5 min. Reaction rates for ribozymes were adjusted accordingly to account for lower

effective substrate concentrations.

4.10 Identification of Reactive Nucleotides

Ribozyme aminoacylation reactions were performed in selection buffer containing 1

µM RNA and 500 µM BYO and incubated with gentle agitation for 90 min. RNA was

concentrated using Amicon Ultracel-3 filters (EMD Millipore) and an adapter oligo hav-

ing the sequence 5’-AACCTGCTGTCATCGTCGTCCCTATAGTGAGC-3’ was adeny-

lated using a 5’ adenylation kit (NEB) and ligated to the 3’ end using T4 RNA Ligase 2,

truncated KQ (New England BioLabs) (see exception noted below). The ligated products

were gel purified and reverse transcribed using a 5’ Rhodamine Green-X-tagged reverse

primer complementary to a region of the adapter sequence

(5’-CTCACTATAGGGACGACGATGACAGCAGG-3’) and SuperScript III Reverse Tran-

scriptase (Thermo Fisher), with a 10 min extension at 55 ◦C. Reverse transcripts were
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run on a 12% denaturing sequencing gel, scanned on an Amersham Typhoon 5 Biomolec-

ular Imager. The likely site of truncation was identified by gel position from the primer

(bands at single nucleotide resolution could be visualized at high contrast; see Figure

5.3). To verify specific 2’-OH positions, RNA sequences containing 2’-O-methyl modifi-

cations were obtained from IDT and tested for aminoacylation activity by streptavidin

gel shift (described above).

Sequences from families 1A.1 and 1B.1 were ligated to an alternative adapter oligo (5’-

AAAACGGGCTTCGGTCCGGTTC-3’), as ligation to the original adapter oligo (listed

above) was noted to interfere with folding of these sequences. The corresponding RT

primer was 5’-GAACCGGACCGAAGCCCG-3’.

4.11 Background Reaction Rate Estimation of Re-

sults from Variable Pool k-Seq

Histograms (100 bins) of log10-transformed ksAs values for sequences from all families

were fit to a bimodal Gaussian distribution (Figure 4.10 and Table 4.4). The mean of

the low-activity peak (µ1) was used as the estimated uncatalyzed rate (k0A0) and the

standard deviation of the fit (σ1) was used to inform the choice of catalytic enhancement

threshold.

4.12 Promiscuity Index Calculations

Promiscuity indices were calculated using the calculator available at http://hetaira.

herokuapp.com/. Due to the single-turnover nature of the aminoacylation ribozymes

studied here, promiscuity indices are calculated using catalytic enhancement values in-

stead of the catalytic efficiency as originally described by Nath and Atkins.192
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Figure 4.10: Estimation of background rate k0A0. Frequency distribution (his-
togram) of log10-transformed ksAs for the ribozyme variants reacted with each sub-
strate. The frequency distribution of ribozymes has been previously found to be
log-normal.60,200 Bimodal Gaussian fits (black lines) were used to characterize the

low-activity peak using the equation y = A1e
−(x−µ1

2σ1
)2

+ A2e
−(x−µ2

2σ2
)2

. The centers of
the low-activity peaks (µ1) and their standard deviations (σ1) are shown in Table 4.4.
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Substrate µ1 σ1 2.5% 97.5% 10µ1 95% range
(M−1min−1) (M−1min−1)

BWO 0.196 0.247 -0.289 0.680 1.57 0.51 - 4.79
BFO 0.138 0.205 -0.265 0.541 1.37 0.54 - 3.47
BLO 0.164 0.185 -0.200 0.527 1.46 0.63 - 3.36
BIO -0.060 0.141 -0.337 0.217 0.87 0.46 - 1.65
BVO 0.083 0.140 -0.191 0.357 1.21 0.64 - 2.28
BMO 0.331 0.180 -0.021 0.684 2.14 0.95 - 4.83

Table 4.4: Characterization of the background peaks. The center of the low-ac-
tivity peak, 10µ1 (Figure 4.10), was used as the presumed background rate (k0A0) for
each substrate.

4.13 Data and Code Availability

Galaxy computer code used is available as previously reported.298 Additional scripts

and files for review are available on GitHub (https://github.com/ichen-lab-ucsb/

SCAPE-BYO). The HTS datasets generated and analyzed during the current study will be

available in the UCSB Dash Data Repository.

Data from high-throughput sequencing and k-Seq analysis of the variable pools will

be available at the Dryad Digital Repository (https://doi.org/10.25349/D92C9C).

Scripts not reported elsewhere are available at https://github.com/ichen-lab-ucsb/

ClusterBOSS (ClusterBOSS: Cluster Based On Sequence Similarity) and https://github.

com/ichen-lab-ucsb/WFLIVM_k-Seq (scripts used to generate figures).
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Chapter 5

Mapping a Systematic Ribozyme

Fitness Landscape Reveals a

Frustrated Evolutionary Network for

Self-Aminoacylating RNA

5.1 Permissions and Attributions

Portions of this chapter were the result of collaboration with Abe Pressman, Ziwei

Liu, Celia Blanco, Ulrich F. Müller, Gerald F. Joyce, Robert Pascal, and Irene A. Chen

and have previously appeared in the Journal of the American Chemical Society.200 It

is reproduced here with the permission of ACS, to which further permissions related to

the material excerpted should be directed: https://pubs.acs.org/doi/10.1021/jacs.

8b13298.

98

https://pubs.acs.org/doi/10.1021/jacs.8b13298
https://pubs.acs.org/doi/10.1021/jacs.8b13298


Mapping a Systematic Ribozyme Fitness Landscape Reveals a Frustrated Evolutionary Network for
Self-Aminoacylating RNA Chapter 5

5.2 Introduction

Molecular evolution is largely governed by the function of fitness in the space of all

possible sequences, known as the ”fitness landscape”.15,16 Evolution corresponds to a

biased random walk on this landscape, in which mutation enables exploration of neigh-

boring points in sequence space, and natural (or artificial) selection favors hill-climbing

toward higher fitness. Therefore, knowledge of the fitness landscape is necessary for a sys-

tematic, quantitative understanding of molecular evolution.17,20,306 For example, a deep

question is whether the landscape allows selection to optimize biochemical activity. If the

topography of the fitness landscape is relatively smooth, optimization by selection can

occur readily through hill-climbing. However, if the landscape is riddled with low-fitness

valleys between local fitness optima, then many potential evolutionary pathways through

sequence space will be inaccessible, inhibiting global optimization of activity. A compre-

hensive map of the fitness landscape would enable understanding of such fundamental

issues.

Fitness landscapes of ribozymes are of special interest because RNA may have been

the first evolving molecule during an ”RNA World” at the origin of life.8,9,36,55,130,131,307 In

addition, ribozymes have been proposed as the genetic and catalytic basis for a minimal

synthetic cell.308 On the practical side, ribozymes can be relatively short in length (L),209

so it is possible to interrogate the entirety of sequence space in a laboratory setting

(e.g., for L = 21, 421 ≈ 4x1012 possible sequences). Recent studies have emphasized

the importance of comprehensive coverage vs. sparse sampling of sequence space for

understanding evolutionary pathways. For example, sparse sampling (e.g., based on

known genotypes) can miss viable evolutionary pathways and create a biased view of the

fitness landscape.59,309 Exhaustive data could also aid computational efforts to explore

larger sequence spaces.310,311 Therefore, mapping the comprehensive fitness landscape for
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ribozymes is an important goal.

The Chen Lab previously developed a method for mapping the comprehensive fitness

landscape of an RNA aptamer by in vitro selection,50 with abundance used as a proxy

for fitness. However, binding is qualitatively different from catalysis,312 which involves a

reaction pathway, often including covalent modification of the ribozyme, in addition to

binding of the substrate and stabilization of the transition state. Furthermore, previous

work has established methods for measuring affinity constants, ribozyme reaction rates,

and RNA processing and thermodynamic stability by high-throughput sequencing, rais-

ing the prospect of mapping the landscape in terms of affinity or activity.31,56,60–63,313–315

Although prior studies measuring chemical activity were applied to small populations or

sparse samples of sequence space, these studies, combined with the ability to map a com-

prehensive fitness landscape, point toward the possibility of mapping the comprehensive

chemical activity landscape for ribozymes.

This current work uses this combined approach, termed SCAPE (sequencing to mea-

sure catalytic activity paired with in vitro evolution), to map a comprehensive ribozyme

activity landscape. We focus on an activity that would be foundational to protein trans-

lation, perhaps the most impressive invention of the RNA World. Despite its importance,

the emergence of protein translation is poorly understood. A key activity is the covalent

attachment of specific amino acids to specific tRNAs, which establishes the biophysical

information content of the ”second genetic code”.316 In modern biology, this attachment

is catalyzed by aminoacyl-tRNA synthetases, but self-aminoacylating ribozymes could

have been the original basis of the tRNA / synthetase system. Ribozymes that react with

aminoacyl adenylates or other activated substrates have been discovered,197,198,212,317,318

illustrating the ability of ribozymes to catalyze formation of aminoacyl-RNAs, although

the substrates studied previously are prebiotically implausible or highly unstable. In con-

trast, N -carboxyanhydrides (NCAs) and the related 5(4H )-oxazolones can be produced
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from amino acids (or peptides) by multiple prebiotically plausible reaction pathways (e.g.,

with carbonyl sulfide,319 cyanate,320 or cyanamide321 as activating agents). These com-

pounds react with amino acids to form peptides,322 and therefore have been proposed as

a prebiotic form of chemically activated amino acids. At high concentration, NCAs and

5(4H )-oxazolones react with phosphate esters, including nucleotides, to form aminoacyl-

RNA mixed anhydrides in low yield,323–327 suggesting this reaction as a candidate for

ribozyme catalysis. Use of 5(4H )-oxazolones avoids uncontrolled polymerization in com-

parison to NCAs, making oxazolones a practical and prebiotically relevant substrate for

in vitro selection. Thus, SCAPE is employed to map the catalytic activity landscape for

ribozymes that self-aminoacylate using a prebiotically plausible form of chemical acti-

vation and the evolutionary and mechanistic implications of the empirically determined

ribozyme landscape are analyzed.

5.3 Research Strategy

The SCAPE strategy begins with a population of molecules containing a random-

ized central region of 21 nt flanked by two constant regions used for PCR amplification

(total length = 71 nt). In a first step, this library is subjected to in vitro selection

for aminoacylation activity to isolate the ribozymes. In a second step to assay the ri-

bozymes’ activities, a pool of the selected molecules that includes many (∼104 to 105)

different active sequences is allowed to react with various concentrations of substrate,

and the products are isolated and sequenced on the Illumina platform. The sequencing

output is used to quantify reaction products313 and thereby measure the catalytic rates

of potentially hundreds of thousands of sequences in parallel. This second step is referred

to here as kinetic sequencing (k-Seq).
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5.4 Selection of Aminoacylation Ribozymes

Beginning with a pool of random-sequence RNAs (central random region length L =

21) with high coverage of sequence space (∼70-99.99% coverage), six rounds of in vitro

selection for aminoacylation activity were conducted (Figure 5.1A). In each round, the

RNA pool was reacted with a biotinylated tyrosine analog, biotinyl-Tyr(Me)-oxazolone

(BYO). RNAs that react with BYO become covalently attached to the biotin tag, allowing

their isolation by binding to streptavidin beads. These RNAs are reverse-transcribed and

amplified by PCR, providing templates for the next round of selection and amplification.

The progress of the selection was followed by high-throughput sequencing, which yielded

2x106−1x107 sequence reads per round of selection. Two replicates of the selection were

performed (RS1 and RS2). Analysis was conducted using RS1, with data from RS2 used

to confirm reproducibility of the selection.

For each round, sequences were first clustered into families using a maximum edit

distance of 3 mutations (substitutions, insertions, or deletions) from the center sequence,

which was defined as the sequence of highest abundance in the family. Sequence families

could be identified starting in Round 4 (Figure 5.1B). The 20 ribozyme families of highest

center abundance identified in the RS1, Round 5 pool were compared manually to identify

conserved sequence motifs. The top 20 families comprised 80% of sequence reads by

Round 6 and were consistent in RS1 and RS2. These 20 families could be characterized

by one of three distinct motifs, numbered as Motif 1, 2, and 3. Motif 1 contained the

shortest conserved region (Figure 5.1C) and the greatest number of unique sequences

contained Motif 1. This motif could be further categorized into three submotifs (1A, 1B,

1C) based on differences in the conserved region, with 14 of the top 20 families containing

Motifs 1A or 1B. Motif 2 characterized fewer unique sequences than Motif 1, but more

than Motifs 1A, 1B, or 1C. Motif 2 also characterized Family 2.1, the most abundant
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Figure 5.1: In vitro selection for aminoacylation ribozymes.
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Figure 5.1: In vitro selection for aminoacylation ribozymes. (A) Selection be-
gan with DNA templates containing a transcription promoter (gray) and a central re-
gion of 21 random-sequence residues (red or blue) flanked by constant regions (black).
These templates were transcribed into RNA and incubated with BYO. Aminoacylated
RNAs (red) were isolated using streptavidin beads and amplified by RT-PCR for the
next round of selection. (B) Pool composition over Rounds 4-6 after clustering. The
top 20 families are indicated in non-neutral colors; gray corresponds to unclustered
sequences; white corresponds to families with rank by abundance >20. Multiple fam-
ilies from submotif 1A (purple), 1B (dark blue), 1C (cyan), Motif 2 (green) and Motif
3 (yellow) are shown. Inset: Abundance of the top 20 families in Rounds 4-6 (same
color scheme, except that the dotted black line corresponds to families of rank >20).
(C) SeqLogo representations of the motifs.

family in the pool. Of these motifs, Motif 3 was found in the smallest fraction of the

pool and characterized the fewest unique sequences.

5.5 Kinetic Sequencing (k-Seq)

The rate constants of the selected ribozymes were determined by a massively parallel

assay (kinetic sequencing, or k-Seq; Figure 5.2A). In a gel-based assay to measure the rate

constant of aminoacylation, a single RNA sequence was mixed with BYO and product

formation was monitored by gel shift of the RNA in the presence of streptavidin. In

the k-Seq assay, a heterogeneous pool obtained from in vitro selection, which contained

many different RNA sequences, was reacted with BYO and the aminoacylated RNAs

were isolated using streptavidin beads. These RNAs were analyzed by high-throughput

sequencing (HTS), yielding the relative abundance of each sequence in the products,

which were converted to absolute concentrations by comparison to a standard of known

concentration in the product pool. Rate constants (ks for sequence s) and maximum

amplitude of reaction (As) in both assays were obtained from the dependence of product

formation on the concentration of BYO. k-Seq estimates for activity could be obtained

for 8.9x106 sequences, but the majority of sequences were present at low abundance
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Figure 5.2: Kinetic characteristics of ribozymes. In k-Seq, an RNA pool enriched
for active ribozymes is reacted at multiple BYO concentrations, in triplicate. Captured
RNA is then reverse-transcribed and sequenced. Activity curves are constructed for
sequences detected in the enriched pool. (B) Aminoacylation at various [BYO] for
ribozyme S-2.1-a observed by both gel shift and k-Seq. Error bars correspond to
standard deviation among triplicates. (C) Correlation between catalytic enhancement
of ten ribozymes, measured by gel shift assay and k-Seq. Error bars correspond to
standard deviation among triplicates (k-Seq) or 2-3 replicates (gel assay) (R2 = 0.87).
Dotted orange line indicates line of unity.

and correspond to low activity. ∼105 unique sequences, out of ∼421 possibilities, were

found to have activity >10-fold above the non-catalytic background rate (i.e., catalytic

enhancement rs > 10, where rs = ksAs
k0A0

, and k0 and A0 are the rate constant and amplitude

of reaction of the non-catalyzed reaction, measured in the randomized RNA pool).

To determine how well k-Seq results corresponded to results of the standard assay,

ten sequences were chosen that are close to the consensus sequences of the high- or

medium-activity families (with all five motifs and submotifs represented) and aminoacy-

lation activity was measured by the gel-shift assay.328 Rate constants determined from
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k-Seq matched well with gel-shift measurements (Figure 5.2B-C). All k-Seq and gel-shift

measurements were performed in triplicate and the standard error was similar between k-

Seq and gel-shift measurements. Measurement error during k-Seq decreased as sequence

read abundance increased, as expected for stochastic noise. For most sequences with

count >10, and nearly all sequences with count >100, the noise of k-Seq measurements

appeared to be within a factor of 2.

High-activity sequences (e.g., the center of Family 2.1, with rS−2.1−a = 1010 and

ks = 779±21 M−1min−1) exhibit saturating kinetics from k-Seq, providing both the rate

constant (ks) and the maximum amplitude of reaction (As). However, the reaction for

lower activity sequences (approximately ks < 20 M−1min−1) appears linear under the

conditions tested, so that ks and As are difficult to estimate separately using these data;

instead the combined parameter ksAs can be estimated.

5.6 Aminoacylation Site and True Catalytic Enhance-

ment

The most highly abundant sequences from each major motif were chosen (S-1A.1-a,

S-1B.1-a, S-2.1-a, S-3.1-a; see Section 4.6 for sequence nomenclature) for characterization

of the reactive site. Identification of the reactive site was performed in two steps. First,

reverse transcription is known to be sensitive to 2’ adducts, such that stalled products can

be used to identify the sites of 2’ acylation.330,331 The putative ribozymes were ligated

to a 3’ adapter to test for stalling of reverse transcription along the entire length of

the ribozyme. Stalling resulted in a truncated product whose length, determined by

gel electrophoresis, suggested a likely site of aminoacylation (Figure 5.3). Second, the

nucleophilic importance of the 2’OH at the candidate site was verified by testing the
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Figure 5.3: Identification of aminoacylation site by reverse transcriptase
stalling. The likely site of BYO modification was identified by stalling of reverse
transcription, resulting in a truncated product. Here, high (left) and low (right) con-
trast versions of a gel show single-nucleotide resolution of banding used to identify the
suspected site of aminoacylation. Blue marks indicate bands terminating within the
ligated adapter; red marks indicate bands terminating within the ribozyme sequence.
In this case, for ribozyme S-1A.1-a, the main reverse transcription stall occurs imme-
diately before the 7th position from the end of ribozyme sequence, implicating G65
as the site of aminoacylation.
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Figure 5.4: Verification and position of aminoacylation sites. (A) Streptavidin
(SA) gel shift assays for ribozymes S-2.1-a, S-1A.1-a, S-1B.1-a, and S-3.1-a. The site
of aminoacylation predicted by reverse transcriptase stalling (Figure 5.3) was verified
by loss of activity upon 2’-O-methylation. 2’-O-Methylation of an adjacent site did
not show loss of activity. (B) Minimum free energy secondary structures for the
sequences indicated, as predicted by mfold.329 Note that these structures have not
been experimentally verified in this work. Black denotes constant regions. Sites in
the selected region conserved with information content <1 bit are shown in blue; sites
with information content >1 bit are shown in red (also see Figure 5.1C). Red arrows
indicate the observed aminoacylation site.
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activity of a synthetic RNA modified at this position by 2’-O-methylation. In each case,

a control synthetic RNA that was instead modified at an adjacent position was also

tested. Blocking of the candidate site (but not the control site) by O-methylation is

expected to abolish the reaction. For all sequences tested, the results were consistent

with aminoacylation at a specific internal 2’-OH position within the 3’ constant region

of the sequence (Figure 5.4). While the reactive site was conserved for sequences from

the same major motif (e.g. S-1A.1-a and S-1B.1-a, both from Motif 1), the site differed

among sequences from the three major motifs, indicating that ribozymes with different

motifs utilize different detailed reaction mechanisms.

Note that the catalytic enhancement rs calculated here underestimates the true cat-

alytic enhancement at the modified site. The potential nucleophilic sites include 70

internal 2’-OH groups, the vicinal diol at the 3’ end, and the 5’-triphosphate. Thus the

uncatalyzed reaction rate at a particular site is at least 73-fold lower than k0A0, which

was measured for the entire RNA. In addition, previous work on oxazolone modification

of small RNA oligonucleotide models indicates that the vicinal diol and terminal phos-

phates (2’, 3’, or 5’) are strongly preferred as nucleophiles, with no detectable reactivity

at internal 2’-OH sites.326,327 In contrast, all ribozymes tested, representing each motif

(1A, 1B, 2, 3), were modified at an internal 2’-OH. Therefore, the true catalytic enhance-

ment provided by these ribozymes at a specific internal 2’-OH is likely to be at least

700-fold greater than the rs as reported here.
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Figure 5.5: Evolutionary pathways for aminoacylation ribozymes.
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Figure 5.5: Evolutionary pathways for aminoacylation ribozymes. (A) Cat-
alytic enhancement along a best pathway discovered from the center of Family 1B.1
(pink, S-1B.1-a), to 1A.1 (purple, S-1A.1-a), to 2.1 (cyan, S-2.1-a), to 2.2 (gray,
S-2.2-a). Capital letters denote sequence positions changing at each step; underscore
indicates a deletion. A large drop in activity is required for several mutations between
Motif 1 and Motif 2. Error bars are standard deviation from triplicate measurements
(only top bar is shown). Asterisk (*) indicates a sequence that was found in only one
replicate (RS1). (B) Evolutionary network displaying the 10 best pathways discovered
between the centers of six key families (1A.1, 1B.1, 1C.1, 2.1, 2.2, and 3.1) represent-
ing each motif and submotif and the two most active centers from Motif 2. Each
node is an individual sequence with activity measured by k-Seq indicated by color
(see legend; red indicates activity at or below the baseline rate). The lines indicate
mutational distance between sequences (solid black line = 1 mutation). Dotted lines
indicate sequences at baseline activity (see legend). The majority (67%) of the edits
along these pathways are substitutions; the remainder are indels.

5.7 Evolutionary Pathways between Ribozyme Mo-

tifs

A series of single mutations defines an evolutionary pathway between two sequences.

Although there are very many conceivable pathways, many of these include intermediate

sequences of low fitness. Under selection, such fitness valleys represent dead ends that

effectively block evolution. An open question is whether viable evolutionary pathways

exist between different sequences that catalyze the same reaction. Using the chemical

activity data from k-Seq, we searched for viable evolutionary pathways between center

sequences of the major ribozyme families (Figure 5.5).

A broad network of pathways was found among Families 1A.1, 1B.1, and 1C.1, with

a <10-fold catalytic rate decrement at the lowest point of the best pathways. Thus the

families of Motif 1 form a ‘plateau’ in the chemical activity landscape, corresponding to

the small size of Motif 1. Similarly, viable pathways exist between the top two families

of Motif 2. Although Motif 2 encompasses a smaller region of sequence space compared

to Motif 1 due to a larger conserved region, Motif 2 contains the global optimum of the
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landscape. Viable pathways were not found between families of Motif 3, likely due to the

small number of unique sequences in this motif. Within Motifs 1 and 2, the number of

viable pathways was relatively small, suggesting that evolution within a motif would be

fairly reproducible.

However, evolutionary pathways between motifs appeared strikingly different. The

only pathways that could be constructed between different motifs contain fitness losses

down to baseline activity, with multiple mutational steps occurring at near baseline

activity. The closest apposition of motifs was a pathway between Family 3.1 and Family

1A.1, which involves 5 consecutive intermediates expected to have baseline activity (i.e.,

r ∼ 103-fold less than rS−2.1−a). The global optimum (Family 2.1) is especially isolated,

with >10 mutations at baseline activity required along any pathway toward a different

motif. These pathways would not be viable under selection, indicating that optimization

of activity over the global fitness landscape would be frustrated.

5.8 Discussion

In the SCAPE method, a ribozyme fitness landscape can be mapped in two steps.

First, the vast majority of inactive sequences are removed from the pool through in vitro

selection. Second, the catalytic activities of the remaining sequences are directly assayed

by kinetic sequencing (k-Seq). In this case, k-Seq yielded estimates for ∼105 unique

sequences (a number that in general depends on pool diversity, activity distribution, and

sequencing depth). Using SCAPE, the first comprehensive fitness landscape was mapped

for catalytic activity, subject to the following caveats. First, in order to survive the se-

lection, sequences must be both catalytically active and replicable (by transcription and

RT-PCR). Because RT stalls at the aminoacylated site, ribozymes that aminoacylate

within the randomized region are presumably disfavored. Consistent with this, all of
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the ribozymes tested here react within the 3’ constant region, as modification does not

preclude primer binding. Sequences may also have been lost during selection for other

reasons (e.g., transcription or RT-PCR bias, and genetic drift in early rounds). While

such occasional losses might affect the details of evolutionary pathways, they would likely

not affect the overall findings given the extensive fitness valleys found. Alternatively, if

the starting library were relatively small (∼106 sequences), k-Seq alone (without selec-

tion) could be used to build a comprehensive map of the library; advances in sequencing

technologies may push this bound further. Second, fitness is measured in the specific

environment applied, in this case for aminoacylation activity under the chemical condi-

tions of the selection. How the environment would affect the fitness landscape, and how

aminoacylation activity might relate to the replicative fitness of an RNA World organism

(a variety of relationships are possible332–336), are difficult to address at present.

Ribozymes were discovered that self-aminoacylate using a 5(4H )-oxazolone, a key step

toward the genetic code. The best ribozyme found here has a rate constant comparable

to that of ribozymes obtained using a biologically derived aminoacyl adenylate,197,318 in-

dicating that these reactions could proceed efficiently even with only prebiotic substrates.

Interestingly, all ribozyme families discovered here react at an internal 2’-OH of the RNA.

These sites stand in contrast to the modification of modern tRNAs at the vicinal diol

(3’ terminus), which is also found to be more reactive in model oligonucleotides.326,327

It is possible that an internal reaction site facilitates establishment of multiple contacts

with BYO, and the rate acceleration caused by these structural features outweighs the

intrinsic reactivity of the vicinal diol. Similarly, it is unknown whether the identity of the

3’ terminal sequence (CUG in this study, compared to CCA in tRNAs) may contribute

to this finding. This difference raises the interesting question of whether ribozymes such

as those discovered in this model system could be on the pathway toward the modern im-

plementation of the genetic code; whether they have the evolutionary capacity to adopt a
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mechanism more similar to the aminoacyl-tRNA synthetase system is currently unknown.

In addition to discovering novel ribozymes, a primary motivation for SCAPE analysis

is to learn about molecular evolution by exhaustively determining the viable evolutionary

pathways and networks through sequence space. While some viable pathways exist lo-

cally around an optimum, most conceivable pathways toward the global fitness optimum

(Family 2.1) are blocked by extensive fitness valleys. The likely reason is that the three

major motifs differ substantially in structure, as indicated by their different aminoacyla-

tion sites. It appears that the ribozyme structure cannot be changed without essentially

destroying the structure of one ribozyme and building another, requiring extensive mu-

tations at negligible activity. Such evolutionary walks would be essentially impossible

while under selection for catalytic activity, frustrating optimization over the network.

This landscape can be compared to other landscapes and evolutionary pathways that

have been described for functional RNAs. Extensive work on in silico folding of RNA

sequences has predicted the existence of large neutral networks for secondary structure,

in which evolutionary walks over long distances could maintain a given structure.38,42,337

Such neutral networks would permit facile exploration of sequence space through evolu-

tion. In addition, multiple examples of ribozymes evolving to perform different functions

are known.137,249,338,339 In contrast, the previously described landscape for RNAs selected

to bind GTP (based on sequence abundance rather than activity measurement) showed

that the landscape consisted of several evolutionarily isolated peaks.50 Thus, it appears

that, although preservation of secondary structure could occur over a neutral network,

the additional tertiary structural requirements of a functional RNA leads to a qualita-

tive change in the nature of the evolutionary network. Such a change is analogous to

the phase transition-like behavior of percolation through a network;340 as the frequency

of active nodes decreases, the network suddenly switches from highly connected, as in

the case of neutral networks of RNA secondary structure, to essentially impermeable, as
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observed for evolutionary networks of functional RNAs. An important caveat is that the

landscape reported here was mapped under constant selection for a single catalytic activ-

ity and cannot be directly compared to evolutionary pathways leading to new functions;

changing environments341 or selection pressures may significantly alter this picture.

The phenomenon of frustration arises when competing interactions prevent overall

optimization of a system, and the following discussion uses the term ’frustration’ in this

general sense. A classic illustration of frustration is the anti-ferromagnetic spin glass,

in which energy would be minimized by antiparallel placement of neighboring electronic

spins. In certain configurations (e.g., a triangle), no placement of spins can satisfy all

desired constraints, leading to rugged energy landscapes.342 An example of frustration in

biology is the folding energy landscape of proteins,343–345 where individual local molecular

arrangements that minimize energy may be mutually incompatible, resulting in rugged

energy landscapes and misfolded states. The analogy to frustrated spin glasses is also be-

ing explored theoretically to understand fitness landscapes,102,346,347 gene expression net-

works,348 morphological innovation,349 and even the evolution of biological complexity.350

These results show that the experimentally determined ribozyme activity landscape ex-

hibits frustration, as individually beneficial mutations are often mutually incompatible,

leading to ruggedness on the fitness landscape.13,351 Walks on such energy or evolutionary

landscapes are characterized by sensitivity to initial conditions, frustrated optimization,

and multiple possible outcomes. It should be noted that mechanisms that favor greater

genetic diversity, such as recombination, gene duplication, or epistasis among genes, could

enable crossing of fitness valleys.352,353 Recent work suggests that recombination, in par-

ticular, can occur spontaneously in pools of RNA.354,355 The quantitative effect of such

mechanisms on traversal of the fitness landscape is unknown at present. Nevertheless, in

the absence of such mechanisms, the emergence of a globally optimal sequence is likely

to result from chance events rather than natural selection.
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Chapter 6

Error Minimization and Specificity

Could Emerge in a Genetic Code as

By-Products of Prebiotic Evolution

6.1 Attributions

This chapter was the result of collaboration with Yuning Shen, Ziwei Liu, Celia

Blanco, and Irene A. Chen.

6.2 Introduction

The origin of life is believed to have progressed through an RNA World in which ri-

bozymes catalyzed critical biochemical reactions.9,10 In principle, ribozymes performing

new functions could arise either by chance or by adaptation of pre-existing ribozymes

having promiscuous activities. Co-option of a pre-existing sequence (i.e., exaptation) is a

well-established mechanism for evolutionary innovation.135,141,182,188,191,356 Gene duplica-
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tion coupled with co-option could lead to a more complex system as the ribozymes adopt

additional substrates.357 However, the degree to which the evolution of complex systems

in the RNA World would rely on chance vs. co-option is unclear.127

The genetic code of protein translation is one of the most complex products of the

RNA World, and its emergence is considered a ‘major evolutionary transition’.358 In

modern biology, the mapping of specific codons to their cognate amino acids is as-

sured through the aminoacylation of tRNAs by aminoacyl-tRNA synthetase (aaRS) pro-

teins.316,359,360 However, during the emergence of protein translation itself, these func-

tions were presumably performed by ribozymes. Indeed, evolutionary analysis of the

aaRS proteins indicates that these enzymes evolved after the establishment of a primi-

tive genetic code358,361–363 and have heterogeneous genetic origins.364 Several ribozymes

catalyzing aminoacylation reactions have been discovered by in vitro selection, including

self-aminoacylating RNAs.197–200,203,212 Such ribozymes could serve as precursors to the

aaRS/tRNA encoding system.

A well-documented feature of the standard genetic code is robustness to errors, i.e.,

that non-synonymous point mutations tend to result in amino acid substitutions that

conserve biophysical properties.129,130,286,365,366 This ‘error minimization’ confers a clear

selective advantage as it reduces the deleterious impact of mutations on the resultant

protein.367,368 However, the standard genetic code does not appear to be particularly

optimal with respect to error minimization.369–372 This raises a fundamental open ques-

tion about the origin of error minimization, namely, whether error minimization of the

standard genetic code is the product of natural selection, or a serendipitous by-product

of the evolution of protein translation.130 In other words, in contrast to direct natural

selection for error minimization, it is possible that expansion of an early version of the

code, initially comprising a small number of amino acids, to the full set of 20 amino acids,

involved an evolutionary mechanism that happened to conserve the biophysical character
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of the amino acids.12,373

This work evaluates the evolutionary potential of self-aminoacylating ribozymes to

adopt new amino acid substrates. Previously, in vitro selection and high-throughput se-

quencing were used to exhaustively search sequence space (21 nt) for self-aminoacylating

ribozymes.200 These ribozymes were originally selected to react with biotinyl-Tyr(Me)-

oxazolone (BYO), a chemically activated amino acid. The 5(4H )-oxazolones and re-

lated N -carboxyanhydrides can be made abiotically under prebiotically plausible condi-

tions.319–323,325,326,374 Three distinct, evolutionarily unrelated catalytic motifs had been

discovered from the exhaustive search. Here, the co-option potential of these ribozymes

is determined by measuring the activity of all single- and double- mutants of five ri-

bozymes, representing the three catalytic motifs, for six alternative substrates, using

a massively parallel assay (k-Seq). This assay and related techniques leverage high-

throughput sequencing to measure the activity of thousands of candidate sequences in a

mixed pool.62,314,375,376 The six substrates (analogs of tryptophan, phenylalanine, leucine,

isoleucine, valine, and methionine) represent a range of sizes and biophysical classes (aro-

matic, aliphatic, sulfur-containing), as well as supposed early (Leu, Ile, Val) and late (Trp,

Phe, Met) incorporations into the genetic code.377–381 The results indicate extensive op-

portunities for co-option to incorporate new substrates into the system. In addition,

two major by-products of evolution of these ribozymes are described. First, a positive

correlation between activity and specificity was observed, indicating that greater speci-

ficity would be a by-product of selection for greater activity. Second, related ribozymes

react with biophysically similar amino acids, suggesting that expansion of the code by

co-option would incorporate a biophysically similar amino acid into the system, with

error minimization arising as a by-product. Such effects could favor the emergence of a

complex biochemical system.
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6.3 Aminoacylation Substrates and Design of the Ri-

bozyme Pool

To investigate whether ribozymes previously selected for aminoacylation with BYO

(tyrosine analog) would react with substrates having other aminoacyl side chains, six

additional biotinyl-aminoacyl oxazolones were synthesized for analysis: tryptophanyl

(BWO), phenylalanyl (BFO), leucyl (BLO), isoleucyl (BIO), valyl (BVO), and methionyl

(BMO) (Figure 6.1A). Compounds were synthesized using previously described meth-

ods200 and verified by NMR spectroscopy. An initial test by a gel shift assay at high

substrate concentration (500 µM) indicated that each oxazolone served as substrate for

at least one ribozyme tested, although the tested ribozymes - S-1A.1-a and S-2.1-a -

differed in selectivity (Figure 6.1B). To study the cross-reactivity of these ribozymes

and their mutants systematically, pools of sequence variants were designed to explore

the sequence space around the major ribozyme families obtained from the selection on

BYO (Table 4.3). The ribozyme families chosen for testing include all of the previously

discovered motifs (Motifs 1, 2, and 3), specifically the two most abundant families con-

taining Motif 1 (Family 1A.1 and 1B.1) and Motif 2 (Family 2.1 and 2.2), as well as

the only family identified from Motif 3 (Family 3.1). These ribozyme families had been

discovered during an exhaustive search of sequence space varying a central 21-mer re-

gion, and sequences containing these motifs had comprised ∼80% of the selected pool.200

Sequencing of the variant pool showed that it included 13.5% of the unique sequences

(having abundance ≥ 10−6) from the originally selected pool. Thus, the variant pool,

based on these five ribozyme families, was designed to be representative of ribozymes

having aminoacylation activity.

Because the ribozymes had been identified through selection with substrate BYO, it

was possible that entirely new ribozyme families might react with different BXO sub-
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Figure 6.1: Aminoacylation activity of two ribozymes with BXO substrates.
(A) Biotinyl aminoacyl oxazolones (BXO) used in this study: tryptophanyl (BWO),
phenylalanyl (BFO), leucyl (BLO), isoleucyl (BIO), valyl (BVO), and methionyl
(BMO). (B) Aminoacylation activity of two ribozymes (S-1A.1-a, the center of Family
1A.1, and S-2.1-a, the center of Family 2.1) with BXO substrates analyzed by strepta-
vidin gel shift (X = F, L, I, M, V, or W, as indicated). Reactions were conducted for
90 min at 500 µM BXO. The reacted RNA is detected by its slower migration through
the gel due to complexation with streptavidin. Multiple bands may be caused by the
presence of multiple conformers or streptavidin oligomers.

strates. To assess this possibility, in vitro selections for self-aminoacylating ribozymes

were performed for two of the new substrates (BFO and BLO), starting from libraries

with completely random 21-mer variable regions. These selections followed a process

identical to the original selection with the exception of the substrate compound. All

families found in the BFO and BLO selections had been previously identified in the

earlier BYO selection (Figure 6.2). Interestingly, selection with BLO resulted predomi-

nantly in sequences containing Motif 2, consistent with the low activity of a Family 1A.1

ribozyme on BLO observed in the gel shift assay (Figure 6.1B). These results indicate

that the designed pool of variants would probe the major motifs of the active sequence

space for these substrates.
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Figure 6.2: Convergence of selections for aminoacylating ribozymes with
BFO and BLO. Duplicate selections (A and B) for aminoacylating ribozymes with
BFO and BLO result in convergence on the same primary families identified previously
under selection with BYO.200 Note that only Motif 2 emerges in substantial fraction
following selection with BLO, while the BFO selection yields families from multiple
Motifs.

6.4 Cross-Reaction of Self-Aminoacylating Ribozymes

with Alternative Aminoacyl Side Chains

Sequences in the ribozyme variant pool were assayed for activity on each alternative

substrate in a massively parallel format by kinetic sequencing (k-Seq).200,301,302 During

k-Seq, a pool containing thousands of candidate ribozymes is reacted with a substrate

at multiple concentrations. The reacted molecules, having been biotinylated through

reaction, are isolated by streptavidin binding, and then sequenced on the Illumina plat-

form. Quantitation of the reacted fraction allows fitting to a kinetic model to determine

ribozyme activity. Data obtained from this method correlate well with traditional bio-
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chemical assays, provided a sufficient number of sequencing counts, and confidence inter-

vals of the measurements are obtained by experimental replicates and bootstrapping.301

In each k-Seq experiment here, one of six BXO (X = W, F, L, I, V, or M) substrates

was tested to measure reaction kinetics for sequences in the pool. Samples were exposed

to substrate concentrations from 2 to 1250 µM in triplicate. Reaction data were fit to a

pseudo-first-order kinetic model (FBXO
s = As(1− e(−ksα[BXO]t))) with maximum reaction

amplitude As and rate constant ks for sequence s, where FBXO
s is the fraction of RNA

that is aminoacylated with substrate BXO, [BXO] is the initial substrate concentration, t

is the reaction time (90 min), and α is the coefficient accounting for substrate hydrolysis

during the reaction. Although data over a fixed concentration range are inadequate for

separately estimating ks and As for low activity ribozymes, the product ksAs can be

accurately estimated across a wide range of activities, due to the inverse correlation of

ks and As during curve fitting200,301 (Figure 6.3). The product ksAs reflects ribozyme

activity at non-saturating conditions and was used in the following analyses. The data

yielded ksAs estimates for a total of 9,770 sequences, encompassing five family wild-

type sequences and a complete set of both single and double mutants related to the five

wild-type ribozymes (Figure 6.4).

k-Seq cannot distinguish catalyzed and uncatalyzed (background) reactions, and thus

both reactions are measured. To determine catalytic enhancement, i.e., the ratio of

catalyzed to background reaction rates, the rate of the background reaction for BFO was

measured by gel shift assay with the randomized RNA library. The background rate was

0.55 ± 0.18 M−1min−1 (µ ± σ), which is similar to that measured previously for BYO

(0.65 ± 0.28 M−1min−1).200 Comparing to the frequency distribution of ksAs measured

by k-Seq (Figures 6.4 and 4.10 and Table 4.4), the measured background rate was found

to correspond to the center of a low-activity peak, indicating that this peak represented

a background of catalytically inactive, or nearly inactive, mutants. This is consistent
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Figure 6.3: Precision of k-Seq estimates of ksAs. Bootstrapping (N = 1000) was
used to estimate 95% confidence intervals (95% CI range, i.e. 97.5%-2.5%) and medi-
ans as previously described.301 Confidence intervals were normalized to the medians
estimated from bootstrapping. It can be seen that normalized confidence intervals are
generally within one order of magnitude.
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Figure 6.4: Histograms of ribozyme ksAs values with each substrate, for
each family.
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with observations that individual Motif 1 ribozymes display little activity with some

substrates at high concentration when analyzed by a gel-shift assay (Figure 6.1B). The

low-activity peak was therefore used as an internal control in k-Seq, and the effective

background reaction rate (k0A0) of each substrate was estimated as the center of this

peak (Figure 4.10 and Table 4.4). ksAs values for sequences reacted with each substrate

were normalized by the corresponding k0A0 to obtain the catalytic enhancement above

background, or rs (defined as rs = ksAs/k0A0 for each sequence s).

The rs values obtained from the k-Seq experiments revealed that all tested families

contained sequences which displayed some activity on a new substrate or on multiple

new substrates (Figures 6.5 and 6.6). Details of the frequency distribution of catalytic

enhancement depended on both the aminoacyl side chain of the substrate as well as the

ribozyme family. The distribution of sequences in Families 1A.1, 1B.1, and 3.1 could be

characterized as containing a peak centered around background activity accompanied by a

long, high-activity tail, particularly with BWO and BFO. In contrast, the distributions of

Families 2.1 and 2.2 displayed distinct peaks at higher activity, with bimodality apparent

in some cases (especially for Family 2.1). This indicated a higher tolerance for mutations

in families 2.1 and 2.2 than in 1A.1, 1B.1, and 3.1, as mutant sequences were less likely

to exhibit substantial detrimental effects.

6.5 Ribozyme Families Distinguish Different Biophys-

ical Features of Substrate Side Chains

To assess the activity and specificity of individual ribozymes for each substrate, cat-

alytic enhancement values for different substrates were compared in a pairwise fashion

(Figure 6.7 and Figure 6.13). All families displayed a high degree of correlation among
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Figure 6.5: Catalytic enhancement of ribozyme families for different sub-
strates. Histograms of catalytic enhancement values (rs = ksAs

k0A0
) with each BXO

substrate, measured by k-Seq, for ribozymes in Family 1A.1, 1B.1, 2.1, 2.2, and 3.1.
While many ribozyme mutants in Motif 2 families have activity on each substrate
tested, many ribozyme sequences containing Motif 1 or 3 are inactive.
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Figure 6.6: Catalytic enhancement of ribozyme families for different sub-
strates. Histograms of catalytic enhancement values (rs) for each family with each
substrate. The same data are represented in Figure 6.5 (but presented by family
instead of by substrate).

127



Error Minimization and Specificity Could Emerge in a Genetic Code as By-Products of Prebiotic
Evolution Chapter 6

activities for non-aromatic amino acid analogs (BLO (Leu), BIO (Ile), BVO (Val), and

BMO (Met)) and also between activities for the two aromatic analogs (BWO (Trp) and

BFO (Phe)) (Figure 6.8A). The high correlations indicated that few sequences exhibit

large activity differences between amino acids within the same biophysical class.

However, when comparing amino acids of different classes (i.e., aromatic vs. non-

aromatic), strong correlations were only observed for Families 2.1 and 2.2, indicating

that the effects of mutations in Motif 2 ribozymes tend to be relatively independent of

the side chain. In contrast, Families 1A.1, 1B.1, and 3.1 showed substantially lower ac-

tivity with non-aromatic side chains (Figure 6.7), resulting in lower correlations between

activity on aromatic and non-aromatic side chains (Figure 6.8A). These preferences were

also captured by the slopes on the correlation plots (Figure 6.8B), which confirm that Mo-

tif 1 ribozymes strongly favor aromatic side chains, while Motif 2 ribozymes demonstrate

less pronounced preferences, and Motif 3 ribozymes display an intermediate strength of

preference. While less pronounced than for Motif 1, some preferences were still observed

for Motif 2 ribozymes, in which BFO was most preferred, BWO, BLO, and BMO were

weakly preferred, and BIO and BVO were disfavored. Interestingly, BIO and BVO, in

contrast to the other side chains, are both branched at the α-carbon position. For Family

3.1, BFO was preferred over BWO, and all non-aromatic substrates were similarly dis-

favored. The differences observed between trends characterizing the separate ribozyme

motifs suggest differences in the recognition mechanisms among Motifs 1, 2, and 3. Nev-

ertheless, all ribozyme families display some preferences that correspond to biophysical

features of the side chains.
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Figure 6.7: Pairwise comparisons of ribozyme activity on different sub-
strates. Pairwise comparisons of catalytic enhancement (rs) for individual ribozyme
sequences with each BXO substrate. Dashed gray line indicates the identity line.
Substrates are ordered by hydrophilicity.207 See Figure 6.13 at the end of this chapter
for error bars and mutant order for each family.
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Figure 6.8: Ribozyme correlations of activity and substrate preferences. (A)
Heat maps of coefficient of determination (R2) for pairwise comparisons in Figure 6.7.
(B) Heat maps for slopes of linear regression fits for pairwise comparisons in Figure
6.7. Slope >1 indicates a preference for the substrate on the y-axis; slope <1 indicates
a preference for the substrate on the x-axis.
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Promiscuity Index Aromatic Preference
Family r ρ r ρ

1A.1 -0.696 -0.647 0.554 0.711
1B.1 -0.839 -0.502 0.738 0.477
2.1 -0.535 -0.888 0.452 0.911
2.2 -0.538 -0.866 0.445 0.865
3.1 -0.814 -0.462 0.749 0.513

Table 6.1: Correlations between overall catalytic activity and specificity for
each ribozyme family. Pearson’s r and Spearman’s ρ; n = 1954, p-values < 10−95

in all cases.

6.6 Substrate Specificity is Positively Correlated with

Activity

To probe the relationship between catalytic activity and substrate specificity, two

measures of specificity were used. First, as a general measure of substrate specificity for

each sequence, we adapted the ‘promiscuity index’192 (Figure 6.9). This metric (Is =

− 1
logN

∑N
i=1

ri∑N
j=1 rj

log ri∑N
j=1 rj

) is a normalized entropy which describes the evenness of

rates across different substrates. The promiscuity index Is ranges from 0 to 1, such that

sequences that are completely promiscuous have Is = 1 and sequences completely specific

to one substrate have Is = 0. Promiscuity was observed to decrease as overall activity

increased for all families (Figure 6.9).

Second, since ribozymes in some families displayed preferential activity with aromatic

amino acids compared to non-aromatic amino acids, the relative preference for aromatic

substrates was calculated as (rBWO
s +rBFOs )∑

X rBXOs
. This ‘aromatic preference’ ratio reflects the

proportion of ribozyme products that would have aromatic side chains in a reaction con-

taining all six substrates at equal, sub-saturating concentration (Figure 6.10). Both the

aromatic preference and the promiscuity index showed that the total activity of a ri-

bozyme was positively correlated with specificity (negatively correlated with promiscuity
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Figure 6.9: Relationship between activity and promiscuity. Promiscuity index
(Is) values for each sequence as a function of total activity (sum of activities with all
tested substrates). Shown are each family individually and a composite of all families.
The general trend indicates that promiscuity decreases (specificity increases) as overall
activity increases.
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Figure 6.10: Relationship between activity and aromatic preference. Ob-
served preference for aromatic substrates, as determined by the ratio of the sum of
activities on BWO and BFO to the sum of activities on all tested substrates (BXO)
(aromatic preference ratio). Increasing preference can be observed for increasing ac-
tivity.

index and positively correlated with aromatic preference; Table 6.1).

6.7 Abundance of Opportunities for Co-Option for

Alternative Substrates

To quantify the frequency of sequences with potential for co-option, sequences were

categorized as active or inactive using a catalytic enhancement threshold rt. Sequences

below this threshold are considered to be nearly inactive, being close to the background

rate (see above). An activity threshold of rt = 5 was chosen for two reasons. First,

this threshold is two-fold more than the estimated 95% range for background activity
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Figure 6.11: Ribozyme sequences with co-option potential. The frequency
distribution of the fraction of unique sequences in each family (y-axis) that is active
on a given number of substrates (x-axis). Activity on 2 or more substrates indicates
potential for co-option. While Motif 2 sequences (Families 2.1 and 2.2) show a higher
abundance of sequences active on more substrates, all families possess some co-option
potential. Inset shows an enlargement of the low y-value region of the plot.

(Figure 4.10, Table 4.4), so values of rs > 5 are statistically significantly greater than

the normalized background rate. Second, increasing the rate of reaction by a factor of

5 is potentially significant in a prebiotic context, as abundances are expected to depend

exponentially on relative fitness. Using this threshold, ribozymes that were active on

more than one substrate were considered capable of co-option.

Consistent with the observation that sequences in Families 2.1 and 2.2 displayed

a high level of correlation of activities among all tested substrates, these families also

yielded abundant opportunities for co-option, with most sequences being active with at

least two substrates (1029 sequences in Family 2.1; 853 sequences in Family 2.2), and

many active with all six tested substrates (Figure 6.11). In contrast, Families 1A.1, 1B.1,
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and 3.1, which contain more inactive sequences and generally preferred aromatic amino

acids, yielded fewer co-option opportunities, with most sequences accepting one or zero

substrates. Of sequences capable of co-option in Families 1A.1, 1B.1, and 3.1, most were

only active with two substrates. Nevertheless, even in these families, >2% of sequences

accepted 2 or more substrates (254 sequences in Family 1A.1, 278 sequences in Family

1B.1, and 43 sequences in Family 3.1).

6.8 Optimization of Co-Opted Function on the Fit-

ness Landscape

The sequences identified as presenting opportunities for co-option are active on two (or

more) substrates, but may not be optimally active on either. To determine how readily co-

option might lead to an optimally active sequence on a given substrate through evolution

over the fitness landscape, we investigated the connectivity of optimal sequences (i.e.,

fitness peaks) for each substrate within the fitness landscape defined by each substrate,

for each ribozyme family. With the exception of Family 3.1, the substrate peaks (highest

rs) for each family were accessible to one another by evolutionary pathways proceeding

through single mutations, while maintaining some activity (i.e., maintaining
∑

X r
BXO
s >

30, in analogy to rt = 5 for 6 substrates) (Figure 6.12). Family 3.1 was unique among

families, in that the few co-optable sequences active on non-aromatic substrates were

isolated in sequence space from the larger number of aromatic-preferring ribozymes.

6.9 Discussion

The genetic code is an ideal platform for studying co-option in ribozyme evolution,

as aminoacylations by the 20 biogenic amino acids represent naturally distinct functions.
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Figure 6.12: Evolutionary pathways for optimization from potential co-op-
tion points on the fitness landscape.
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Figure 6.12: Evolutionary pathways for optimization from potential co-op-
tion points on the fitness landscape. Each circular ‘pie’ represents a single
sequence, whose catalytic enhancement for each substrate is shown by sector shading
according to the heat map legend. For each family, the wild-type and the ribozymes
having the six highest catalytic enhancements for each substrate are included. The
wild-type sequence in each family is highlighted by a blue circle; the most active
sequence for each substrate is indicated by a green sector outline for the substrate.
Among the set of high-activity sequences, every pair of sequences for which Ham-
ming distance d = 2 was examined to identify intervening sequences (d = 1 to both
sequences of the pair) having substantial overall activity (

∑
X r

BXO
s >30). The inter-

vening sequences are also shown in the plot. Lines connect sequences where d = 1.

The genetic code itself is thought to have been established during the RNA World, in

which ribozymes catalyzed aminoacylation.361–363,382 Here we determined the activities

of self-aminoacylating ribozyme families with several activated amino acid substrates.

These ribozymes were originally discovered by exhaustive in vitro selection over sequence

space (21 nt random region flanked by constant regions),200 and thus their properties

are expected to be a reasonable model for self-aminoacylating ribozymes. Each tested

family contained dozens or hundreds of ribozyme sequences that could utilize multiple

substrates, often with high correlations in activity between substrates. In addition, the

optimally active sequences with each substrate were closely connected in sequence space

in four of the five families, demonstrating high evolvability and optimization potential

between functions. This highlights the potential for ribozymes with activity for a selected

substrate to be co-opted and evolved to adopt other amino acid substrates. In an RNA

World scenario, this process could be beneficial for expanding metabolic chemical space

and incorporating new compounds into increasingly complex systems.

While all families displayed substantial potential for adopting new substrates through

co-option, ribozyme families differed in substrate preference and overall activity. Namely,

Families 1A.1, 1B.1, and 3.1 contained relatively few active ribozymes, and these tended

to display strong preference for aromatic amino acid side chains, although some sequences
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in these families were more promiscuous. The families in Motif 1 followed the general

preference order of F,W > M,L,I,V, and the Motif 3 family followed the general preference

order of F > W > M,L,I,V. Thus, these ribozymes appear to distinguish aromatic and

non-aromatic side chains. On the other hand, Families 2.1 and 2.2 contained many

sequences with high activity on all tested substrates, and also tended to prefer BFO.

The families in Motif 2 followed the general preference order of F > M,W,L > I,V.

This preference order suggests that Motif 2 ribozymes prefer the aromatic side chains,

and are also subject to steric constraints, as they prefer F over W and also prefer L

(non-branched β-carbon) over I and V (branched β-carbon). Given that these ribozymes

were not selected for specificity (i.e., no counter-selections or negative selections), these

preferences reflect inherent biophysical and structural features of the RNA interactions

with different side chains.

The evolution of error minimization in the standard genetic code has been a subject

of extensive theoretical and analytical study stemming from the realization that the code

is unusually conservative in light of mutations. Since error minimization has adaptive

value, a prevalent and intuitive view is that this property arose through natural selec-

tion.286,366,369 However, an alternative view is that this trait emerged as a by-product

during the initial expansion of the genetic code.12,371,372 For example, it has been sug-

gested that duplication of aminoacyl-tRNA synthetases would lead to emergence of a

conservative pairing, as the tRNA and amino acid would be similar to the ancestral

versions.383 Since the catalytic elements of the earliest protein translation machinery

were presumably composed of RNA, and indeed, phylogenetic evidence suggests that the

genetic code predates aminoacyl-tRNA synthetases, a similar logic suggests that code

expansion in the RNA World would have a tendency to conserve biophysical features

of the substrate.12,373 Using our experimental system of self-aminoacylating RNAs, we

found that all ribozymes showed preferences for certain biophysical features, being par-
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ticularly sensitive to aromaticity and branching in the side chain. Thus, co-option of

these ribozymes would produce an association between these biophysical features and

the RNA sequence, possibly including the primitive anticodon region. While the self-

aminoacylating ribozymes studied here are a model system and not expected to reca-

pitulate the evolution of the existing standard genetic code, these results illustrate the

feasibility of the general principle that ribozyme co-option to incorporate new amino acid

substrates would lead to error minimization as a by-product of expansion of the genetic

code.

Substrate preferences were amplified with increasing activity, resulting in a positive

correlation between activity and substrate specificity. Previous research on the relation-

ship between activity and specificity has noted intuitively appealing trade-offs between

these two properties in some systems,136,145,158,159,384–386 as may be caused by ground-state

discrimination in enzymes. In contrast, the results seen here indicate a positive correla-

tion between catalytic activity and substrate specificity, instead reminiscent of enzymes

that employ transition-state discrimination.145,149 The evolutionary consequence of the

positive activity-specificity correlation is that natural selection for greater activity would

also lead to greater substrate specificity, as a by-product. At the same time, given the

prevalence of promiscuous sequences and the short evolutionary pathways among opti-

mal sequences for different substrates, new substrate specificities would still be accessible

even from highly active, specialized sequences. Such properties of the overlapping fitness

landscapes could facilitate the expansion from a weakly active, promiscuous ribozyme to

an elaborated system of ribozyme-substrate pairs.

While the order in which amino acids were incorporated into the genetic code is a

subject of debate, the amino acid substrates tested here include those that are generally

believed to be early (L, I, V) and late (W, F, M) additions to the code.377–381 Interestingly,

the aromatic residues were generally preferred by all ribozyme families. While the original
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selection employed a tyrosine analog, an analogous selection using the leucine analog

did not yield new ribozymes, indicating that this preference may be intrinsic. Such a

preference is not surprising based on considerations for intermolecular interactions (e.g.,

π-π stacking) and is supported by an analysis of amino acid preferences among RNA

aptamers evolved in vitro.206 Thus, in a plausible scenario, self-aminoacylating RNAs

that react with ‘early’ amino acid substrates would have promiscuous activity on ‘late’

substrates, allowing co-option of these ribozymes to incorporate new substrates once they

become available. During code expansion, any natural selection for increased activity

would also lead to increased substrate specificity, and error minimization would emerge

due to the biophysical and structural preferences of the ribozymes. These evolutionary

by-products, in turn, would further improve the ability of a primitive genetic code to

faithfully convert genetic information into peptide sequences with defined biophysical

properties. Such emergent phenomena have been argued to be critical complements to

natural selection during the origin of translation.387,388 Like the spandrels of St. Mark’s

Cathedral, architectural by-products that acquired important aesthetic value,389 error

minimization and specificity may have originated as mechanistic by-products of how the

genetic code emerged, to later become invaluable features of the modern genetic code.
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Figure 6.13: Pairwise comparisons of ribozyme activity on different sub-
strates. Wild-type sequences are shown in red, single-mutants are shown in blue,
and double-mutants are shown in yellow. Dashed gray line indicates line of identity.
Black lines indicate linear regression fits used to calculate R2 values and slopes in
Figure 6.8. The same data are also plotted in Figure 6.7, but here the families are
plotted separately, with mutant order and error bars (95% confidence interval) indi-
cated. 95% confidence intervals of rs were calculated from confidence intervals of ksAs
with normalization by the constant k0A0.
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Figure 6.13: Pairwise comparisons of ribozyme activity on different substrates.
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Figure 6.13: Pairwise comparisons of ribozyme activity on different substrates.
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Figure 6.13: Pairwise comparisons of ribozyme activity on different substrates.
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Figure 6.13: Pairwise comparisons of ribozyme activity on different substrates.
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Chapter 7

Concluding Remarks

The research presented here describes the fundamental potential for a catalytic func-

tion, aminoacylation, to arise from a random collection of sequences, evolve higher fitness,

and become co-opted for function with new substrates. Self-aminoacylating ribozymes

were identified through in vitro selection from full coverage of sequence space and char-

acterized using a massively parallel kinetic assay. Three major sequence motifs were

identified on the landscape and analysis of evolutionary pathways revealed that, while

local optimization within a ribozyme family would be possible, optimization of activ-

ity over the entire landscape would be frustrated by large valleys of low activity. The

sequence motifs associated with each peak represent different solutions for catalysis, so

the inability to traverse the landscape globally corresponds to an inability to restructure

the ribozyme without losing activity. Five families representing the three sequence mo-

tifs were further investigated to measure their activity on six alternative substrates and

were observed to possess high levels of co-optability. Related ribozymes exhibited similar

biophysical substrate preferences and ribozyme activity was positively correlated with

specificity.

The frustrated nature of the evolutionary landscape suggests that chance emergence
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of a ribozyme motif would be more important than optimization by natural selection in

determining evolutionary outcomes. In contrast, co-option of existing ribozyme motifs

for new functions occurs quite readily, as a single functional motif can be recycled for use

with many substrates. Indeed, promiscuity is considered one of the central tenets of evolu-

tionary innovation.182 The field of directed evolution has similarly relied on the co-option

of promiscuous enzymes to produce new functions, with the greatest challenges often in

optimizing, rather than identifying, a desired activity.138 In many cases, specificity may

in fact be the trait that requires selective pressure to attain.390 Aminoacyl-tRNA syn-

thetases, for example, often rely on extensive proofreading mechanisms to maintain the

integrity of the genetic code.360 Furthermore, promiscuity at the origin of life may not

have been limited to ribozymes. Recent evolutionary analysis of another essential com-

ponent of the translation machinery, elongation factor-Tu, suggests that early proteins

may have exhibited similar substrate promiscuity, later evolving into more specialized

forms.391 While many different ribozyme activities have been identified, the range of cat-

alytic RNA chemistries are yet to be fully explored. Testing the limits of co-optability

through further exploration of substrate space may reveal the full extent of possible

functions which could arise from the chance emergence of a single catalytic function. For

example, catalytic promiscuity in aminoacylation ribozymes may have even made these

the first biomolecules to catalyze the formation of polypeptides.208,209

The positive correlation between activity and specificity observed for all tested ri-

bozyme families indicates that selection for increased activity also leads to increased

specificity. However, the specificity identified in these ribozymes was not the result of

selection for highly selective catalysts, but due to innate preferences for certain sub-

strates by ribozymes in each family. In fact, the high degree of correlation between the

landscapes of ribozymes with BYO, BFO, and BLO suggest instead that high selectivity

for any one substrate may be unattainable in this system. While purifying selection for
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highly specific ribozymes might produce different results, the results obtained in this

work may be more relevant to a complex, dynamic prebiotic milieu. This type of en-

vironment would have been necessary for ribonucleic acid polymers to emerge, but also

would have produced myriad other compounds. The aromatic amino acids (tyrosine,

phenylalanine, tryptophan, and histidine) are thought to be among the most recent ad-

ditions to the genetic code.377–381 It is possible that a high affinity for these side chains

by RNA was a factor in incorporating these particular amino acids, out of any possible

R group that might have resulted from prebiotic chemistries, into the select 20 biogenic

amino acids of the universal genetic code. Based on the results of this research, it is

likely that the emergence of a single aminoacylation ribozyme may be sufficient for gen-

erating a diverse repertoire of aminoacyl-RNAs available for the emergence of protein

translation. The type of selective pressures that would have resulted in aminoacyl-RNAs

prior to the evolution of a translation system are unclear, but it’s possible that, given

the limited chemical complexity of RNA, aminoacyl groups may have initially served as

a form of covalent cofactor, expanding the catalytic potential of these molecules. In this

’prebiotic soup’, any new chemical compounds would likely have become substrates for

promiscuous catalysts, creating a cycle of ever-expanding reactants and products. The

most harmoniously interconnected of these reactions, contained by membranous vesicles,

could then have established an early metabolism. It’s possible, then, that promiscuous

ribozymes were a key driver in the origin of life.

The original selection which identified these ribozymes selected only for reaction with

BYO. While many other factors were implicitly selected for (e.g., RNA stability, reverse-

transcription efficiency, etc.), many beneficial properties were observed which were not

evenly distributed across the landscape. Traits like co-optability, specificity, and muta-

tional robustness were present in varying degrees on the landscape. Given the apparent

challenges for evolution in a prebiotic setting, the existence of these types of unintendend
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properties would be immensely beneficial for the emergence of complex systems. This

work suggests that the error minimization featured in the organization of the genetic

code may have been one of these fortuitous characteristics. The further exploration of

these types of properties may ultimately reveal the extent to which the origin of life was

serendipitous or inevitable. While much remains to be discovered about how living sys-

tems evolve, this work, along with that of many others, may one day help us understand

where we come from and where we are going.
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